1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
30 #include "coretypes.h"
33 #ifdef HAVE_GAS_HIDDEN
34 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
36 #define ATTRIBUTE_HIDDEN
39 /* Work out the largest "word" size that we can deal with on this target. */
40 #if MIN_UNITS_PER_WORD > 4
41 # define LIBGCC2_MAX_UNITS_PER_WORD 8
42 #elif (MIN_UNITS_PER_WORD > 2 \
43 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
44 # define LIBGCC2_MAX_UNITS_PER_WORD 4
46 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
49 /* Work out what word size we are using for this compilation.
50 The value can be set on the command line. */
51 #ifndef LIBGCC2_UNITS_PER_WORD
52 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
55 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
59 #ifdef DECLARE_LIBRARY_RENAMES
60 DECLARE_LIBRARY_RENAMES
63 #if defined (L_negdi2)
67 const DWunion uu
= {.ll
= u
};
68 const DWunion w
= { {.low
= -uu
.s
.low
,
69 .high
= -uu
.s
.high
- ((UWtype
) -uu
.s
.low
> 0) } };
77 __addvSI3 (Wtype a
, Wtype b
)
79 const Wtype w
= (UWtype
) a
+ (UWtype
) b
;
81 if (b
>= 0 ? w
< a
: w
> a
)
86 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
88 __addvsi3 (SItype a
, SItype b
)
90 const SItype w
= (USItype
) a
+ (USItype
) b
;
92 if (b
>= 0 ? w
< a
: w
> a
)
97 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
102 __addvDI3 (DWtype a
, DWtype b
)
104 const DWtype w
= (UDWtype
) a
+ (UDWtype
) b
;
106 if (b
>= 0 ? w
< a
: w
> a
)
115 __subvSI3 (Wtype a
, Wtype b
)
117 const Wtype w
= (UWtype
) a
- (UWtype
) b
;
119 if (b
>= 0 ? w
> a
: w
< a
)
124 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
126 __subvsi3 (SItype a
, SItype b
)
128 const SItype w
= (USItype
) a
- (USItype
) b
;
130 if (b
>= 0 ? w
> a
: w
< a
)
135 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
140 __subvDI3 (DWtype a
, DWtype b
)
142 const DWtype w
= (UDWtype
) a
- (UDWtype
) b
;
144 if (b
>= 0 ? w
> a
: w
< a
)
153 __mulvSI3 (Wtype a
, Wtype b
)
155 const DWtype w
= (DWtype
) a
* (DWtype
) b
;
157 if ((Wtype
) (w
>> W_TYPE_SIZE
) != (Wtype
) w
>> (W_TYPE_SIZE
- 1))
162 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
164 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
166 __mulvsi3 (SItype a
, SItype b
)
168 const DItype w
= (DItype
) a
* (DItype
) b
;
170 if ((SItype
) (w
>> WORD_SIZE
) != (SItype
) w
>> (WORD_SIZE
-1))
175 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
182 const Wtype w
= -(UWtype
) a
;
184 if (a
>= 0 ? w
> 0 : w
< 0)
189 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
193 const SItype w
= -(USItype
) a
;
195 if (a
>= 0 ? w
> 0 : w
< 0)
200 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
207 const DWtype w
= -(UDWtype
) a
;
209 if (a
>= 0 ? w
> 0 : w
< 0)
234 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
252 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
277 __mulvDI3 (DWtype u
, DWtype v
)
279 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
280 but the checked multiplication needs only two. */
281 const DWunion uu
= {.ll
= u
};
282 const DWunion vv
= {.ll
= v
};
284 if (__builtin_expect (uu
.s
.high
== uu
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
286 /* u fits in a single Wtype. */
287 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
289 /* v fits in a single Wtype as well. */
290 /* A single multiplication. No overflow risk. */
291 return (DWtype
) uu
.s
.low
* (DWtype
) vv
.s
.low
;
295 /* Two multiplications. */
296 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
297 * (UDWtype
) (UWtype
) vv
.s
.low
};
298 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
299 * (UDWtype
) (UWtype
) vv
.s
.high
};
302 w1
.s
.high
-= uu
.s
.low
;
305 w1
.ll
+= (UWtype
) w0
.s
.high
;
306 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
308 w0
.s
.high
= w1
.s
.low
;
315 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
317 /* v fits into a single Wtype. */
318 /* Two multiplications. */
319 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
320 * (UDWtype
) (UWtype
) vv
.s
.low
};
321 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.high
322 * (UDWtype
) (UWtype
) vv
.s
.low
};
325 w1
.s
.high
-= vv
.s
.low
;
328 w1
.ll
+= (UWtype
) w0
.s
.high
;
329 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
331 w0
.s
.high
= w1
.s
.low
;
337 /* A few sign checks and a single multiplication. */
342 if (uu
.s
.high
== 0 && vv
.s
.high
== 0)
344 const DWtype w
= (UDWtype
) (UWtype
) uu
.s
.low
345 * (UDWtype
) (UWtype
) vv
.s
.low
;
346 if (__builtin_expect (w
>= 0, 1))
352 if (uu
.s
.high
== 0 && vv
.s
.high
== (Wtype
) -1)
354 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
355 * (UDWtype
) (UWtype
) vv
.s
.low
};
357 ww
.s
.high
-= uu
.s
.low
;
358 if (__builtin_expect (ww
.s
.high
< 0, 1))
367 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== 0)
369 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
370 * (UDWtype
) (UWtype
) vv
.s
.low
};
372 ww
.s
.high
-= vv
.s
.low
;
373 if (__builtin_expect (ww
.s
.high
< 0, 1))
379 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== (Wtype
) - 1)
381 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
382 * (UDWtype
) (UWtype
) vv
.s
.low
};
384 ww
.s
.high
-= uu
.s
.low
;
385 ww
.s
.high
-= vv
.s
.low
;
386 if (__builtin_expect (ww
.s
.high
>= 0, 1))
400 /* Unless shift functions are defined with full ANSI prototypes,
401 parameter b will be promoted to int if shift_count_type is smaller than an int. */
404 __lshrdi3 (DWtype u
, shift_count_type b
)
409 const DWunion uu
= {.ll
= u
};
410 const shift_count_type bm
= W_TYPE_SIZE
- b
;
416 w
.s
.low
= (UWtype
) uu
.s
.high
>> -bm
;
420 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
422 w
.s
.high
= (UWtype
) uu
.s
.high
>> b
;
423 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
432 __ashldi3 (DWtype u
, shift_count_type b
)
437 const DWunion uu
= {.ll
= u
};
438 const shift_count_type bm
= W_TYPE_SIZE
- b
;
444 w
.s
.high
= (UWtype
) uu
.s
.low
<< -bm
;
448 const UWtype carries
= (UWtype
) uu
.s
.low
>> bm
;
450 w
.s
.low
= (UWtype
) uu
.s
.low
<< b
;
451 w
.s
.high
= ((UWtype
) uu
.s
.high
<< b
) | carries
;
460 __ashrdi3 (DWtype u
, shift_count_type b
)
465 const DWunion uu
= {.ll
= u
};
466 const shift_count_type bm
= W_TYPE_SIZE
- b
;
471 /* w.s.high = 1..1 or 0..0 */
472 w
.s
.high
= uu
.s
.high
>> (W_TYPE_SIZE
- 1);
473 w
.s
.low
= uu
.s
.high
>> -bm
;
477 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
479 w
.s
.high
= uu
.s
.high
>> b
;
480 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
489 __bswapsi2 (SItype u
)
491 return ((((u
) & 0xff000000) >> 24)
492 | (((u
) & 0x00ff0000) >> 8)
493 | (((u
) & 0x0000ff00) << 8)
494 | (((u
) & 0x000000ff) << 24));
499 __bswapdi2 (DItype u
)
501 return ((((u
) & 0xff00000000000000ull
) >> 56)
502 | (((u
) & 0x00ff000000000000ull
) >> 40)
503 | (((u
) & 0x0000ff0000000000ull
) >> 24)
504 | (((u
) & 0x000000ff00000000ull
) >> 8)
505 | (((u
) & 0x00000000ff000000ull
) << 8)
506 | (((u
) & 0x0000000000ff0000ull
) << 24)
507 | (((u
) & 0x000000000000ff00ull
) << 40)
508 | (((u
) & 0x00000000000000ffull
) << 56));
521 count_trailing_zeros (count
, u
);
531 const DWunion uu
= {.ll
= u
};
532 UWtype word
, count
, add
;
535 word
= uu
.s
.low
, add
= 0;
536 else if (uu
.s
.high
!= 0)
537 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
541 count_trailing_zeros (count
, word
);
542 return count
+ add
+ 1;
548 __muldi3 (DWtype u
, DWtype v
)
550 const DWunion uu
= {.ll
= u
};
551 const DWunion vv
= {.ll
= v
};
552 DWunion w
= {.ll
= __umulsidi3 (uu
.s
.low
, vv
.s
.low
)};
554 w
.s
.high
+= ((UWtype
) uu
.s
.low
* (UWtype
) vv
.s
.high
555 + (UWtype
) uu
.s
.high
* (UWtype
) vv
.s
.low
);
561 #if (defined (L_udivdi3) || defined (L_divdi3) || \
562 defined (L_umoddi3) || defined (L_moddi3))
563 #if defined (sdiv_qrnnd)
564 #define L_udiv_w_sdiv
569 #if defined (sdiv_qrnnd)
570 #if (defined (L_udivdi3) || defined (L_divdi3) || \
571 defined (L_umoddi3) || defined (L_moddi3))
572 static inline __attribute__ ((__always_inline__
))
575 __udiv_w_sdiv (UWtype
*rp
, UWtype a1
, UWtype a0
, UWtype d
)
582 if (a1
< d
- a1
- (a0
>> (W_TYPE_SIZE
- 1)))
584 /* Dividend, divisor, and quotient are nonnegative. */
585 sdiv_qrnnd (q
, r
, a1
, a0
, d
);
589 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
590 sub_ddmmss (c1
, c0
, a1
, a0
, d
>> 1, d
<< (W_TYPE_SIZE
- 1));
591 /* Divide (c1*2^32 + c0) by d. */
592 sdiv_qrnnd (q
, r
, c1
, c0
, d
);
593 /* Add 2^31 to quotient. */
594 q
+= (UWtype
) 1 << (W_TYPE_SIZE
- 1);
599 b1
= d
>> 1; /* d/2, between 2^30 and 2^31 - 1 */
600 c1
= a1
>> 1; /* A/2 */
601 c0
= (a1
<< (W_TYPE_SIZE
- 1)) + (a0
>> 1);
603 if (a1
< b1
) /* A < 2^32*b1, so A/2 < 2^31*b1 */
605 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
607 r
= 2*r
+ (a0
& 1); /* Remainder from A/(2*b1) */
624 else if (c1
< b1
) /* So 2^31 <= (A/2)/b1 < 2^32 */
627 c0
= ~c0
; /* logical NOT */
629 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
631 q
= ~q
; /* (A/2)/b1 */
634 r
= 2*r
+ (a0
& 1); /* A/(2*b1) */
652 else /* Implies c1 = b1 */
653 { /* Hence a1 = d - 1 = 2*b1 - 1 */
671 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
673 __udiv_w_sdiv (UWtype
*rp
__attribute__ ((__unused__
)),
674 UWtype a1
__attribute__ ((__unused__
)),
675 UWtype a0
__attribute__ ((__unused__
)),
676 UWtype d
__attribute__ ((__unused__
)))
683 #if (defined (L_udivdi3) || defined (L_divdi3) || \
684 defined (L_umoddi3) || defined (L_moddi3))
689 const UQItype __clz_tab
[256] =
691 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
692 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
693 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
694 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
695 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
696 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
697 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
698 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
709 count_leading_zeros (ret
, x
);
720 const DWunion uu
= {.ll
= x
};
725 word
= uu
.s
.high
, add
= 0;
727 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
729 count_leading_zeros (ret
, word
);
741 count_trailing_zeros (ret
, x
);
752 const DWunion uu
= {.ll
= x
};
757 word
= uu
.s
.low
, add
= 0;
759 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
761 count_trailing_zeros (ret
, word
);
776 return W_TYPE_SIZE
- 1;
777 count_leading_zeros (ret
, x
);
785 __clrsbDI2 (DWtype x
)
787 const DWunion uu
= {.ll
= x
};
792 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
793 else if (uu
.s
.high
== -1)
794 word
= ~uu
.s
.low
, add
= W_TYPE_SIZE
;
795 else if (uu
.s
.high
>= 0)
796 word
= uu
.s
.high
, add
= 0;
798 word
= ~uu
.s
.high
, add
= 0;
803 count_leading_zeros (ret
, word
);
805 return ret
+ add
- 1;
809 #ifdef L_popcount_tab
810 const UQItype __popcount_tab
[256] =
812 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
813 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
814 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
815 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
816 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
817 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
818 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
819 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
826 __popcountSI2 (UWtype x
)
830 for (i
= 0; i
< W_TYPE_SIZE
; i
+= 8)
831 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
840 __popcountDI2 (UDWtype x
)
844 for (i
= 0; i
< 2*W_TYPE_SIZE
; i
+= 8)
845 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
854 __paritySI2 (UWtype x
)
857 # error "fill out the table"
868 return (0x6996 >> x
) & 1;
875 __parityDI2 (UDWtype x
)
877 const DWunion uu
= {.ll
= x
};
878 UWtype nx
= uu
.s
.low
^ uu
.s
.high
;
881 # error "fill out the table"
892 return (0x6996 >> nx
) & 1;
898 #if (defined (L_udivdi3) || defined (L_divdi3) || \
899 defined (L_umoddi3) || defined (L_moddi3))
900 static inline __attribute__ ((__always_inline__
))
903 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
905 const DWunion nn
= {.ll
= n
};
906 const DWunion dd
= {.ll
= d
};
908 UWtype d0
, d1
, n0
, n1
, n2
;
917 #if !UDIV_NEEDS_NORMALIZATION
924 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
927 /* Remainder in n0. */
934 d0
= 1 / d0
; /* Divide intentionally by zero. */
936 udiv_qrnnd (q1
, n1
, 0, n1
, d0
);
937 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
939 /* Remainder in n0. */
950 #else /* UDIV_NEEDS_NORMALIZATION */
958 count_leading_zeros (bm
, d0
);
962 /* Normalize, i.e. make the most significant bit of the
966 n1
= (n1
<< bm
) | (n0
>> (W_TYPE_SIZE
- bm
));
970 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
973 /* Remainder in n0 >> bm. */
980 d0
= 1 / d0
; /* Divide intentionally by zero. */
982 count_leading_zeros (bm
, d0
);
986 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
987 conclude (the most significant bit of n1 is set) /\ (the
988 leading quotient digit q1 = 1).
990 This special case is necessary, not an optimization.
991 (Shifts counts of W_TYPE_SIZE are undefined.) */
1000 b
= W_TYPE_SIZE
- bm
;
1004 n1
= (n1
<< bm
) | (n0
>> b
);
1007 udiv_qrnnd (q1
, n1
, n2
, n1
, d0
);
1012 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1014 /* Remainder in n0 >> bm. */
1019 rr
.s
.low
= n0
>> bm
;
1024 #endif /* UDIV_NEEDS_NORMALIZATION */
1035 /* Remainder in n1n0. */
1047 count_leading_zeros (bm
, d1
);
1050 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1051 conclude (the most significant bit of n1 is set) /\ (the
1052 quotient digit q0 = 0 or 1).
1054 This special case is necessary, not an optimization. */
1056 /* The condition on the next line takes advantage of that
1057 n1 >= d1 (true due to program flow). */
1058 if (n1
> d1
|| n0
>= d0
)
1061 sub_ddmmss (n1
, n0
, n1
, n0
, d1
, d0
);
1080 b
= W_TYPE_SIZE
- bm
;
1082 d1
= (d1
<< bm
) | (d0
>> b
);
1085 n1
= (n1
<< bm
) | (n0
>> b
);
1088 udiv_qrnnd (q0
, n1
, n2
, n1
, d1
);
1089 umul_ppmm (m1
, m0
, q0
, d0
);
1091 if (m1
> n1
|| (m1
== n1
&& m0
> n0
))
1094 sub_ddmmss (m1
, m0
, m1
, m0
, d1
, d0
);
1099 /* Remainder in (n1n0 - m1m0) >> bm. */
1102 sub_ddmmss (n1
, n0
, n1
, n0
, m1
, m0
);
1103 rr
.s
.low
= (n1
<< b
) | (n0
>> bm
);
1104 rr
.s
.high
= n1
>> bm
;
1111 const DWunion ww
= {{.low
= q0
, .high
= q1
}};
1118 __divdi3 (DWtype u
, DWtype v
)
1121 DWunion uu
= {.ll
= u
};
1122 DWunion vv
= {.ll
= v
};
1132 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*) 0);
1142 __moddi3 (DWtype u
, DWtype v
)
1145 DWunion uu
= {.ll
= u
};
1146 DWunion vv
= {.ll
= v
};
1155 (void) __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&w
);
1165 __umoddi3 (UDWtype u
, UDWtype v
)
1169 (void) __udivmoddi4 (u
, v
, &w
);
1177 __udivdi3 (UDWtype n
, UDWtype d
)
1179 return __udivmoddi4 (n
, d
, (UDWtype
*) 0);
1185 __cmpdi2 (DWtype a
, DWtype b
)
1187 const DWunion au
= {.ll
= a
};
1188 const DWunion bu
= {.ll
= b
};
1190 if (au
.s
.high
< bu
.s
.high
)
1192 else if (au
.s
.high
> bu
.s
.high
)
1194 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1196 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1204 __ucmpdi2 (DWtype a
, DWtype b
)
1206 const DWunion au
= {.ll
= a
};
1207 const DWunion bu
= {.ll
= b
};
1209 if ((UWtype
) au
.s
.high
< (UWtype
) bu
.s
.high
)
1211 else if ((UWtype
) au
.s
.high
> (UWtype
) bu
.s
.high
)
1213 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1215 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1221 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1223 __fixunstfDI (TFtype a
)
1228 /* Compute high word of result, as a flonum. */
1229 const TFtype b
= (a
/ Wtype_MAXp1_F
);
1230 /* Convert that to fixed (but not to DWtype!),
1231 and shift it into the high word. */
1232 UDWtype v
= (UWtype
) b
;
1234 /* Remove high part from the TFtype, leaving the low part as flonum. */
1236 /* Convert that to fixed (but not to DWtype!) and add it in.
1237 Sometimes A comes out negative. This is significant, since
1238 A has more bits than a long int does. */
1240 v
-= (UWtype
) (- a
);
1247 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1249 __fixtfdi (TFtype a
)
1252 return - __fixunstfDI (-a
);
1253 return __fixunstfDI (a
);
1257 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1259 __fixunsxfDI (XFtype a
)
1264 /* Compute high word of result, as a flonum. */
1265 const XFtype b
= (a
/ Wtype_MAXp1_F
);
1266 /* Convert that to fixed (but not to DWtype!),
1267 and shift it into the high word. */
1268 UDWtype v
= (UWtype
) b
;
1270 /* Remove high part from the XFtype, leaving the low part as flonum. */
1272 /* Convert that to fixed (but not to DWtype!) and add it in.
1273 Sometimes A comes out negative. This is significant, since
1274 A has more bits than a long int does. */
1276 v
-= (UWtype
) (- a
);
1283 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1285 __fixxfdi (XFtype a
)
1288 return - __fixunsxfDI (-a
);
1289 return __fixunsxfDI (a
);
1293 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1295 __fixunsdfDI (DFtype a
)
1297 /* Get high part of result. The division here will just moves the radix
1298 point and will not cause any rounding. Then the conversion to integral
1299 type chops result as desired. */
1300 const UWtype hi
= a
/ Wtype_MAXp1_F
;
1302 /* Get low part of result. Convert `hi' to floating type and scale it back,
1303 then subtract this from the number being converted. This leaves the low
1304 part. Convert that to integral type. */
1305 const UWtype lo
= a
- (DFtype
) hi
* Wtype_MAXp1_F
;
1307 /* Assemble result from the two parts. */
1308 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1312 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1314 __fixdfdi (DFtype a
)
1317 return - __fixunsdfDI (-a
);
1318 return __fixunsdfDI (a
);
1322 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1324 __fixunssfDI (SFtype a
)
1326 #if LIBGCC2_HAS_DF_MODE
1327 /* Convert the SFtype to a DFtype, because that is surely not going
1328 to lose any bits. Some day someone else can write a faster version
1329 that avoids converting to DFtype, and verify it really works right. */
1330 const DFtype dfa
= a
;
1332 /* Get high part of result. The division here will just moves the radix
1333 point and will not cause any rounding. Then the conversion to integral
1334 type chops result as desired. */
1335 const UWtype hi
= dfa
/ Wtype_MAXp1_F
;
1337 /* Get low part of result. Convert `hi' to floating type and scale it back,
1338 then subtract this from the number being converted. This leaves the low
1339 part. Convert that to integral type. */
1340 const UWtype lo
= dfa
- (DFtype
) hi
* Wtype_MAXp1_F
;
1342 /* Assemble result from the two parts. */
1343 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1344 #elif FLT_MANT_DIG < W_TYPE_SIZE
1347 if (a
< Wtype_MAXp1_F
)
1349 if (a
< Wtype_MAXp1_F
* Wtype_MAXp1_F
)
1351 /* Since we know that there are fewer significant bits in the SFmode
1352 quantity than in a word, we know that we can convert out all the
1353 significant bits in one step, and thus avoid losing bits. */
1355 /* ??? This following loop essentially performs frexpf. If we could
1356 use the real libm function, or poke at the actual bits of the fp
1357 format, it would be significantly faster. */
1359 UWtype shift
= 0, counter
;
1363 for (counter
= W_TYPE_SIZE
/ 2; counter
!= 0; counter
>>= 1)
1365 SFtype counterf
= (UWtype
)1 << counter
;
1373 /* Rescale into the range of one word, extract the bits of that
1374 one word, and shift the result into position. */
1377 return (DWtype
)counter
<< shift
;
1386 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1388 __fixsfdi (SFtype a
)
1391 return - __fixunssfDI (-a
);
1392 return __fixunssfDI (a
);
1396 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1398 __floatdixf (DWtype u
)
1400 #if W_TYPE_SIZE > XF_SIZE
1403 XFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1410 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1412 __floatundixf (UDWtype u
)
1414 #if W_TYPE_SIZE > XF_SIZE
1417 XFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1424 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1426 __floatditf (DWtype u
)
1428 #if W_TYPE_SIZE > TF_SIZE
1431 TFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1438 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1440 __floatunditf (UDWtype u
)
1442 #if W_TYPE_SIZE > TF_SIZE
1445 TFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1452 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1453 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1454 #define DI_SIZE (W_TYPE_SIZE * 2)
1455 #define F_MODE_OK(SIZE) \
1457 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1458 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1459 #if defined(L_floatdisf)
1460 #define FUNC __floatdisf
1461 #define FSTYPE SFtype
1462 #define FSSIZE SF_SIZE
1464 #define FUNC __floatdidf
1465 #define FSTYPE DFtype
1466 #define FSSIZE DF_SIZE
1472 #if FSSIZE >= W_TYPE_SIZE
1473 /* When the word size is small, we never get any rounding error. */
1474 FSTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1478 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1479 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1480 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1482 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1483 # define FSIZE DF_SIZE
1484 # define FTYPE DFtype
1485 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1486 # define FSIZE XF_SIZE
1487 # define FTYPE XFtype
1488 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1489 # define FSIZE TF_SIZE
1490 # define FTYPE TFtype
1495 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1497 /* Protect against double-rounding error.
1498 Represent any low-order bits, that might be truncated by a bit that
1499 won't be lost. The bit can go in anywhere below the rounding position
1500 of the FSTYPE. A fixed mask and bit position handles all usual
1502 if (! (- ((DWtype
) 1 << FSIZE
) < u
1503 && u
< ((DWtype
) 1 << FSIZE
)))
1505 if ((UDWtype
) u
& (REP_BIT
- 1))
1507 u
&= ~ (REP_BIT
- 1);
1512 /* Do the calculation in a wider type so that we don't lose any of
1513 the precision of the high word while multiplying it. */
1514 FTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1519 #if FSSIZE >= W_TYPE_SIZE - 2
1522 /* Finally, the word size is larger than the number of bits in the
1523 required FSTYPE, and we've got no suitable wider type. The only
1524 way to avoid double rounding is to special case the
1527 /* If there are no high bits set, fall back to one conversion. */
1529 return (FSTYPE
)(Wtype
)u
;
1531 /* Otherwise, find the power of two. */
1532 Wtype hi
= u
>> W_TYPE_SIZE
;
1536 UWtype count
, shift
;
1537 count_leading_zeros (count
, hi
);
1539 /* No leading bits means u == minimum. */
1541 return -(Wtype_MAXp1_F
* (Wtype_MAXp1_F
/ 2));
1543 shift
= 1 + W_TYPE_SIZE
- count
;
1545 /* Shift down the most significant bits. */
1548 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1549 if ((UWtype
)u
<< (W_TYPE_SIZE
- shift
))
1552 /* Convert the one word of data, and rescale. */
1554 if (shift
== W_TYPE_SIZE
)
1556 /* The following two cases could be merged if we knew that the target
1557 supported a native unsigned->float conversion. More often, we only
1558 have a signed conversion, and have to add extra fixup code. */
1559 else if (shift
== W_TYPE_SIZE
- 1)
1560 e
= Wtype_MAXp1_F
/ 2;
1562 e
= (Wtype
)1 << shift
;
1568 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1569 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1570 #define DI_SIZE (W_TYPE_SIZE * 2)
1571 #define F_MODE_OK(SIZE) \
1573 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1574 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1575 #if defined(L_floatundisf)
1576 #define FUNC __floatundisf
1577 #define FSTYPE SFtype
1578 #define FSSIZE SF_SIZE
1580 #define FUNC __floatundidf
1581 #define FSTYPE DFtype
1582 #define FSSIZE DF_SIZE
1588 #if FSSIZE >= W_TYPE_SIZE
1589 /* When the word size is small, we never get any rounding error. */
1590 FSTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1594 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1595 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1596 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1598 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1599 # define FSIZE DF_SIZE
1600 # define FTYPE DFtype
1601 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1602 # define FSIZE XF_SIZE
1603 # define FTYPE XFtype
1604 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1605 # define FSIZE TF_SIZE
1606 # define FTYPE TFtype
1611 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1613 /* Protect against double-rounding error.
1614 Represent any low-order bits, that might be truncated by a bit that
1615 won't be lost. The bit can go in anywhere below the rounding position
1616 of the FSTYPE. A fixed mask and bit position handles all usual
1618 if (u
>= ((UDWtype
) 1 << FSIZE
))
1620 if ((UDWtype
) u
& (REP_BIT
- 1))
1622 u
&= ~ (REP_BIT
- 1);
1627 /* Do the calculation in a wider type so that we don't lose any of
1628 the precision of the high word while multiplying it. */
1629 FTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1634 #if FSSIZE == W_TYPE_SIZE - 1
1637 /* Finally, the word size is larger than the number of bits in the
1638 required FSTYPE, and we've got no suitable wider type. The only
1639 way to avoid double rounding is to special case the
1642 /* If there are no high bits set, fall back to one conversion. */
1644 return (FSTYPE
)(UWtype
)u
;
1646 /* Otherwise, find the power of two. */
1647 UWtype hi
= u
>> W_TYPE_SIZE
;
1649 UWtype count
, shift
;
1650 count_leading_zeros (count
, hi
);
1652 shift
= W_TYPE_SIZE
- count
;
1654 /* Shift down the most significant bits. */
1657 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1658 if ((UWtype
)u
<< (W_TYPE_SIZE
- shift
))
1661 /* Convert the one word of data, and rescale. */
1663 if (shift
== W_TYPE_SIZE
)
1665 /* The following two cases could be merged if we knew that the target
1666 supported a native unsigned->float conversion. More often, we only
1667 have a signed conversion, and have to add extra fixup code. */
1668 else if (shift
== W_TYPE_SIZE
- 1)
1669 e
= Wtype_MAXp1_F
/ 2;
1671 e
= (Wtype
)1 << shift
;
1677 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1678 /* Reenable the normal types, in case limits.h needs them. */
1691 __fixunsxfSI (XFtype a
)
1693 if (a
>= - (DFtype
) Wtype_MIN
)
1694 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1699 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1700 /* Reenable the normal types, in case limits.h needs them. */
1713 __fixunsdfSI (DFtype a
)
1715 if (a
>= - (DFtype
) Wtype_MIN
)
1716 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1721 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1722 /* Reenable the normal types, in case limits.h needs them. */
1735 __fixunssfSI (SFtype a
)
1737 if (a
>= - (SFtype
) Wtype_MIN
)
1738 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1743 /* Integer power helper used from __builtin_powi for non-constant
1746 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1747 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1748 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1749 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1750 # if defined(L_powisf2)
1751 # define TYPE SFtype
1752 # define NAME __powisf2
1753 # elif defined(L_powidf2)
1754 # define TYPE DFtype
1755 # define NAME __powidf2
1756 # elif defined(L_powixf2)
1757 # define TYPE XFtype
1758 # define NAME __powixf2
1759 # elif defined(L_powitf2)
1760 # define TYPE TFtype
1761 # define NAME __powitf2
1767 NAME (TYPE x
, int m
)
1769 unsigned int n
= m
< 0 ? -m
: m
;
1770 TYPE y
= n
% 2 ? x
: 1;
1777 return m
< 0 ? 1/y
: y
;
1782 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1783 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1784 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1785 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1791 #if defined(L_mulsc3) || defined(L_divsc3)
1792 # define MTYPE SFtype
1793 # define CTYPE SCtype
1796 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1797 #elif defined(L_muldc3) || defined(L_divdc3)
1798 # define MTYPE DFtype
1799 # define CTYPE DCtype
1801 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1806 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1808 #elif defined(L_mulxc3) || defined(L_divxc3)
1809 # define MTYPE XFtype
1810 # define CTYPE XCtype
1814 #elif defined(L_multc3) || defined(L_divtc3)
1815 # define MTYPE TFtype
1816 # define CTYPE TCtype
1818 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
1821 # define CEXT LIBGCC2_TF_CEXT
1828 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1829 #define _CONCAT3(A,B,C) A##B##C
1831 #define CONCAT2(A,B) _CONCAT2(A,B)
1832 #define _CONCAT2(A,B) A##B
1834 /* All of these would be present in a full C99 implementation of <math.h>
1835 and <complex.h>. Our problem is that only a few systems have such full
1836 implementations. Further, libgcc_s.so isn't currently linked against
1837 libm.so, and even for systems that do provide full C99, the extra overhead
1838 of all programs using libgcc having to link against libm. So avoid it. */
1840 #define isnan(x) __builtin_expect ((x) != (x), 0)
1841 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1842 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1844 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
1847 /* Helpers to make the following code slightly less gross. */
1848 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1849 #define FABS CONCAT2(__builtin_fabs, CEXT)
1851 /* Verify that MTYPE matches up with CEXT. */
1852 extern void *compile_type_assert
[sizeof(INFINITY
) == sizeof(MTYPE
) ? 1 : -1];
1854 /* Ensure that we've lost any extra precision. */
1858 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1861 #if defined(L_mulsc3) || defined(L_muldc3) \
1862 || defined(L_mulxc3) || defined(L_multc3)
1865 CONCAT3(__mul
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1867 MTYPE ac
, bd
, ad
, bc
, x
, y
;
1883 if (isnan (x
) && isnan (y
))
1885 /* Recover infinities that computed as NaN + iNaN. */
1887 if (isinf (a
) || isinf (b
))
1889 /* z is infinite. "Box" the infinity and change NaNs in
1890 the other factor to 0. */
1891 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1892 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1893 if (isnan (c
)) c
= COPYSIGN (0, c
);
1894 if (isnan (d
)) d
= COPYSIGN (0, d
);
1897 if (isinf (c
) || isinf (d
))
1899 /* w is infinite. "Box" the infinity and change NaNs in
1900 the other factor to 0. */
1901 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1902 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1903 if (isnan (a
)) a
= COPYSIGN (0, a
);
1904 if (isnan (b
)) b
= COPYSIGN (0, b
);
1908 && (isinf (ac
) || isinf (bd
)
1909 || isinf (ad
) || isinf (bc
)))
1911 /* Recover infinities from overflow by changing NaNs to 0. */
1912 if (isnan (a
)) a
= COPYSIGN (0, a
);
1913 if (isnan (b
)) b
= COPYSIGN (0, b
);
1914 if (isnan (c
)) c
= COPYSIGN (0, c
);
1915 if (isnan (d
)) d
= COPYSIGN (0, d
);
1920 x
= INFINITY
* (a
* c
- b
* d
);
1921 y
= INFINITY
* (a
* d
+ b
* c
);
1929 #endif /* complex multiply */
1931 #if defined(L_divsc3) || defined(L_divdc3) \
1932 || defined(L_divxc3) || defined(L_divtc3)
1935 CONCAT3(__div
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1937 MTYPE denom
, ratio
, x
, y
;
1940 /* ??? We can get better behavior from logarithmic scaling instead of
1941 the division. But that would mean starting to link libgcc against
1942 libm. We could implement something akin to ldexp/frexp as gcc builtins
1944 if (FABS (c
) < FABS (d
))
1947 denom
= (c
* ratio
) + d
;
1948 x
= ((a
* ratio
) + b
) / denom
;
1949 y
= ((b
* ratio
) - a
) / denom
;
1954 denom
= (d
* ratio
) + c
;
1955 x
= ((b
* ratio
) + a
) / denom
;
1956 y
= (b
- (a
* ratio
)) / denom
;
1959 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1960 are nonzero/zero, infinite/finite, and finite/infinite. */
1961 if (isnan (x
) && isnan (y
))
1963 if (c
== 0.0 && d
== 0.0 && (!isnan (a
) || !isnan (b
)))
1965 x
= COPYSIGN (INFINITY
, c
) * a
;
1966 y
= COPYSIGN (INFINITY
, c
) * b
;
1968 else if ((isinf (a
) || isinf (b
)) && isfinite (c
) && isfinite (d
))
1970 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
1971 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
1972 x
= INFINITY
* (a
* c
+ b
* d
);
1973 y
= INFINITY
* (b
* c
- a
* d
);
1975 else if ((isinf (c
) || isinf (d
)) && isfinite (a
) && isfinite (b
))
1977 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
1978 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
1979 x
= 0.0 * (a
* c
+ b
* d
);
1980 y
= 0.0 * (b
* c
- a
* d
);
1988 #endif /* complex divide */
1990 #endif /* all complex float routines */
1992 /* From here on down, the routines use normal data types. */
1994 #define SItype bogus_type
1995 #define USItype bogus_type
1996 #define DItype bogus_type
1997 #define UDItype bogus_type
1998 #define SFtype bogus_type
1999 #define DFtype bogus_type
2017 /* Like bcmp except the sign is meaningful.
2018 Result is negative if S1 is less than S2,
2019 positive if S1 is greater, 0 if S1 and S2 are equal. */
2022 __gcc_bcmp (const unsigned char *s1
, const unsigned char *s2
, size_t size
)
2026 const unsigned char c1
= *s1
++, c2
= *s2
++;
2036 /* __eprintf used to be used by GCC's private version of <assert.h>.
2037 We no longer provide that header, but this routine remains in libgcc.a
2038 for binary backward compatibility. Note that it is not included in
2039 the shared version of libgcc. */
2041 #ifndef inhibit_libc
2043 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2047 __eprintf (const char *string
, const char *expression
,
2048 unsigned int line
, const char *filename
)
2050 fprintf (stderr
, string
, expression
, line
, filename
);
2059 #ifdef L_clear_cache
2060 /* Clear part of an instruction cache. */
2063 __clear_cache (char *beg
__attribute__((__unused__
)),
2064 char *end
__attribute__((__unused__
)))
2066 #ifdef CLEAR_INSN_CACHE
2067 CLEAR_INSN_CACHE (beg
, end
);
2068 #endif /* CLEAR_INSN_CACHE */
2071 #endif /* L_clear_cache */
2075 /* Jump to a trampoline, loading the static chain address. */
2077 #if defined(WINNT) && ! defined(__CYGWIN__)
2078 #include <windows.h>
2079 int getpagesize (void);
2080 int mprotect (char *,int, int);
2093 mprotect (char *addr
, int len
, int prot
)
2112 if (VirtualProtect (addr
, len
, np
, &op
))
2118 #endif /* WINNT && ! __CYGWIN__ */
2120 #ifdef TRANSFER_FROM_TRAMPOLINE
2121 TRANSFER_FROM_TRAMPOLINE
2123 #endif /* L_trampoline */
2128 #include "gbl-ctors.h"
2130 /* Some systems use __main in a way incompatible with its use in gcc, in these
2131 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2132 give the same symbol without quotes for an alternative entry point. You
2133 must define both, or neither. */
2135 #define NAME__MAIN "__main"
2136 #define SYMBOL__MAIN __main
2139 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2140 #undef HAS_INIT_SECTION
2141 #define HAS_INIT_SECTION
2144 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2146 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2147 code to run constructors. In that case, we need to handle EH here, too. */
2149 #ifdef EH_FRAME_SECTION_NAME
2150 #include "unwind-dw2-fde.h"
2151 extern unsigned char __EH_FRAME_BEGIN__
[];
2154 /* Run all the global destructors on exit from the program. */
2157 __do_global_dtors (void)
2159 #ifdef DO_GLOBAL_DTORS_BODY
2160 DO_GLOBAL_DTORS_BODY
;
2162 static func_ptr
*p
= __DTOR_LIST__
+ 1;
2169 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2171 static int completed
= 0;
2175 __deregister_frame_info (__EH_FRAME_BEGIN__
);
2182 #ifndef HAS_INIT_SECTION
2183 /* Run all the global constructors on entry to the program. */
2186 __do_global_ctors (void)
2188 #ifdef EH_FRAME_SECTION_NAME
2190 static struct object object
;
2191 __register_frame_info (__EH_FRAME_BEGIN__
, &object
);
2194 DO_GLOBAL_CTORS_BODY
;
2195 atexit (__do_global_dtors
);
2197 #endif /* no HAS_INIT_SECTION */
2199 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2200 /* Subroutine called automatically by `main'.
2201 Compiling a global function named `main'
2202 produces an automatic call to this function at the beginning.
2204 For many systems, this routine calls __do_global_ctors.
2205 For systems which support a .init section we use the .init section
2206 to run __do_global_ctors, so we need not do anything here. */
2208 extern void SYMBOL__MAIN (void);
2212 /* Support recursive calls to `main': run initializers just once. */
2213 static int initialized
;
2217 __do_global_ctors ();
2220 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2222 #endif /* L__main */
2223 #endif /* __CYGWIN__ */
2227 #include "gbl-ctors.h"
2229 /* Provide default definitions for the lists of constructors and
2230 destructors, so that we don't get linker errors. These symbols are
2231 intentionally bss symbols, so that gld and/or collect will provide
2232 the right values. */
2234 /* We declare the lists here with two elements each,
2235 so that they are valid empty lists if no other definition is loaded.
2237 If we are using the old "set" extensions to have the gnu linker
2238 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2239 must be in the bss/common section.
2241 Long term no port should use those extensions. But many still do. */
2242 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2243 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2244 func_ptr __CTOR_LIST__
[2] = {0, 0};
2245 func_ptr __DTOR_LIST__
[2] = {0, 0};
2247 func_ptr __CTOR_LIST__
[2];
2248 func_ptr __DTOR_LIST__
[2];
2250 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2251 #endif /* L_ctors */
2252 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */