1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type_double.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type_double takes a constant, an overflowable flag and a
43 prior overflow indicator. It forces the value to fit the type and
46 Note: Since the folders get called on non-gimple code as well as
47 gimple code, we need to handle GIMPLE tuples as well as their
48 corresponding tree equivalents. */
52 #include "coretypes.h"
57 #include "fixed-value.h"
65 #include "langhooks.h"
68 /* Nonzero if we are folding constants inside an initializer; zero
70 int folding_initializer
= 0;
72 /* The following constants represent a bit based encoding of GCC's
73 comparison operators. This encoding simplifies transformations
74 on relational comparison operators, such as AND and OR. */
75 enum comparison_code
{
94 static void encode (HOST_WIDE_INT
*, unsigned HOST_WIDE_INT
, HOST_WIDE_INT
);
95 static void decode (HOST_WIDE_INT
*, unsigned HOST_WIDE_INT
*, HOST_WIDE_INT
*);
96 static bool negate_mathfn_p (enum built_in_function
);
97 static bool negate_expr_p (tree
);
98 static tree
negate_expr (tree
);
99 static tree
split_tree (tree
, enum tree_code
, tree
*, tree
*, tree
*, int);
100 static tree
associate_trees (tree
, tree
, enum tree_code
, tree
);
101 static tree
const_binop (enum tree_code
, tree
, tree
, int);
102 static enum comparison_code
comparison_to_compcode (enum tree_code
);
103 static enum tree_code
compcode_to_comparison (enum comparison_code
);
104 static tree
combine_comparisons (enum tree_code
, enum tree_code
,
105 enum tree_code
, tree
, tree
, tree
);
106 static int truth_value_p (enum tree_code
);
107 static int operand_equal_for_comparison_p (tree
, tree
, tree
);
108 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
109 static tree
eval_subst (tree
, tree
, tree
, tree
, tree
);
110 static tree
pedantic_omit_one_operand (tree
, tree
, tree
);
111 static tree
distribute_bit_expr (enum tree_code
, tree
, tree
, tree
);
112 static tree
make_bit_field_ref (tree
, tree
, int, int, int);
113 static tree
optimize_bit_field_compare (enum tree_code
, tree
, tree
, tree
);
114 static tree
decode_field_reference (tree
, HOST_WIDE_INT
*, HOST_WIDE_INT
*,
115 enum machine_mode
*, int *, int *,
117 static int all_ones_mask_p (tree
, int);
118 static tree
sign_bit_p (tree
, tree
);
119 static int simple_operand_p (tree
);
120 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
121 static tree
range_predecessor (tree
);
122 static tree
range_successor (tree
);
123 static tree
make_range (tree
, int *, tree
*, tree
*, bool *);
124 static tree
build_range_check (tree
, tree
, int, tree
, tree
);
125 static int merge_ranges (int *, tree
*, tree
*, int, tree
, tree
, int, tree
,
127 static tree
fold_range_test (enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
fold_truthop (enum tree_code
, tree
, tree
, tree
);
131 static tree
optimize_minmax_comparison (enum tree_code
, tree
, tree
, tree
);
132 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
133 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
134 static tree
fold_binary_op_with_conditional_arg (enum tree_code
, tree
,
137 static bool fold_real_zero_addition_p (tree
, tree
, int);
138 static tree
fold_mathfn_compare (enum built_in_function
, enum tree_code
,
140 static tree
fold_inf_compare (enum tree_code
, tree
, tree
, tree
);
141 static tree
fold_div_compare (enum tree_code
, tree
, tree
, tree
);
142 static bool reorder_operands_p (tree
, tree
);
143 static tree
fold_negate_const (tree
, tree
);
144 static tree
fold_not_const (tree
, tree
);
145 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
148 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
149 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
150 and SUM1. Then this yields nonzero if overflow occurred during the
153 Overflow occurs if A and B have the same sign, but A and SUM differ in
154 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
156 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
158 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
159 We do that by representing the two-word integer in 4 words, with only
160 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
161 number. The value of the word is LOWPART + HIGHPART * BASE. */
164 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
165 #define HIGHPART(x) \
166 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
167 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
169 /* Unpack a two-word integer into 4 words.
170 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
171 WORDS points to the array of HOST_WIDE_INTs. */
174 encode (HOST_WIDE_INT
*words
, unsigned HOST_WIDE_INT low
, HOST_WIDE_INT hi
)
176 words
[0] = LOWPART (low
);
177 words
[1] = HIGHPART (low
);
178 words
[2] = LOWPART (hi
);
179 words
[3] = HIGHPART (hi
);
182 /* Pack an array of 4 words into a two-word integer.
183 WORDS points to the array of words.
184 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
187 decode (HOST_WIDE_INT
*words
, unsigned HOST_WIDE_INT
*low
,
190 *low
= words
[0] + words
[1] * BASE
;
191 *hi
= words
[2] + words
[3] * BASE
;
194 /* Force the double-word integer L1, H1 to be within the range of the
195 integer type TYPE. Stores the properly truncated and sign-extended
196 double-word integer in *LV, *HV. Returns true if the operation
197 overflows, that is, argument and result are different. */
200 fit_double_type (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
201 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
, const_tree type
)
203 unsigned HOST_WIDE_INT low0
= l1
;
204 HOST_WIDE_INT high0
= h1
;
206 int sign_extended_type
;
208 if (POINTER_TYPE_P (type
)
209 || TREE_CODE (type
) == OFFSET_TYPE
)
212 prec
= TYPE_PRECISION (type
);
214 /* Size types *are* sign extended. */
215 sign_extended_type
= (!TYPE_UNSIGNED (type
)
216 || (TREE_CODE (type
) == INTEGER_TYPE
217 && TYPE_IS_SIZETYPE (type
)));
219 /* First clear all bits that are beyond the type's precision. */
220 if (prec
>= 2 * HOST_BITS_PER_WIDE_INT
)
222 else if (prec
> HOST_BITS_PER_WIDE_INT
)
223 h1
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
227 if (prec
< HOST_BITS_PER_WIDE_INT
)
228 l1
&= ~((HOST_WIDE_INT
) (-1) << prec
);
231 /* Then do sign extension if necessary. */
232 if (!sign_extended_type
)
233 /* No sign extension */;
234 else if (prec
>= 2 * HOST_BITS_PER_WIDE_INT
)
235 /* Correct width already. */;
236 else if (prec
> HOST_BITS_PER_WIDE_INT
)
238 /* Sign extend top half? */
239 if (h1
& ((unsigned HOST_WIDE_INT
)1
240 << (prec
- HOST_BITS_PER_WIDE_INT
- 1)))
241 h1
|= (HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
);
243 else if (prec
== HOST_BITS_PER_WIDE_INT
)
245 if ((HOST_WIDE_INT
)l1
< 0)
250 /* Sign extend bottom half? */
251 if (l1
& ((unsigned HOST_WIDE_INT
)1 << (prec
- 1)))
254 l1
|= (HOST_WIDE_INT
)(-1) << prec
;
261 /* If the value didn't fit, signal overflow. */
262 return l1
!= low0
|| h1
!= high0
;
265 /* We force the double-int HIGH:LOW to the range of the type TYPE by
266 sign or zero extending it.
267 OVERFLOWABLE indicates if we are interested
268 in overflow of the value, when >0 we are only interested in signed
269 overflow, for <0 we are interested in any overflow. OVERFLOWED
270 indicates whether overflow has already occurred. CONST_OVERFLOWED
271 indicates whether constant overflow has already occurred. We force
272 T's value to be within range of T's type (by setting to 0 or 1 all
273 the bits outside the type's range). We set TREE_OVERFLOWED if,
274 OVERFLOWED is nonzero,
275 or OVERFLOWABLE is >0 and signed overflow occurs
276 or OVERFLOWABLE is <0 and any overflow occurs
277 We return a new tree node for the extended double-int. The node
278 is shared if no overflow flags are set. */
281 force_fit_type_double (tree type
, unsigned HOST_WIDE_INT low
,
282 HOST_WIDE_INT high
, int overflowable
,
285 int sign_extended_type
;
288 /* Size types *are* sign extended. */
289 sign_extended_type
= (!TYPE_UNSIGNED (type
)
290 || (TREE_CODE (type
) == INTEGER_TYPE
291 && TYPE_IS_SIZETYPE (type
)));
293 overflow
= fit_double_type (low
, high
, &low
, &high
, type
);
295 /* If we need to set overflow flags, return a new unshared node. */
296 if (overflowed
|| overflow
)
300 || (overflowable
> 0 && sign_extended_type
))
302 tree t
= make_node (INTEGER_CST
);
303 TREE_INT_CST_LOW (t
) = low
;
304 TREE_INT_CST_HIGH (t
) = high
;
305 TREE_TYPE (t
) = type
;
306 TREE_OVERFLOW (t
) = 1;
311 /* Else build a shared node. */
312 return build_int_cst_wide (type
, low
, high
);
315 /* Add two doubleword integers with doubleword result.
316 Return nonzero if the operation overflows according to UNSIGNED_P.
317 Each argument is given as two `HOST_WIDE_INT' pieces.
318 One argument is L1 and H1; the other, L2 and H2.
319 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
322 add_double_with_sign (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
323 unsigned HOST_WIDE_INT l2
, HOST_WIDE_INT h2
,
324 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
,
327 unsigned HOST_WIDE_INT l
;
331 h
= h1
+ h2
+ (l
< l1
);
337 return (unsigned HOST_WIDE_INT
) h
< (unsigned HOST_WIDE_INT
) h1
;
339 return OVERFLOW_SUM_SIGN (h1
, h2
, h
);
342 /* Negate a doubleword integer with doubleword result.
343 Return nonzero if the operation overflows, assuming it's signed.
344 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
345 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
348 neg_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
349 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
355 return (*hv
& h1
) < 0;
365 /* Multiply two doubleword integers with doubleword result.
366 Return nonzero if the operation overflows according to UNSIGNED_P.
367 Each argument is given as two `HOST_WIDE_INT' pieces.
368 One argument is L1 and H1; the other, L2 and H2.
369 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
372 mul_double_with_sign (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
373 unsigned HOST_WIDE_INT l2
, HOST_WIDE_INT h2
,
374 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
,
377 HOST_WIDE_INT arg1
[4];
378 HOST_WIDE_INT arg2
[4];
379 HOST_WIDE_INT prod
[4 * 2];
380 unsigned HOST_WIDE_INT carry
;
382 unsigned HOST_WIDE_INT toplow
, neglow
;
383 HOST_WIDE_INT tophigh
, neghigh
;
385 encode (arg1
, l1
, h1
);
386 encode (arg2
, l2
, h2
);
388 memset (prod
, 0, sizeof prod
);
390 for (i
= 0; i
< 4; i
++)
393 for (j
= 0; j
< 4; j
++)
396 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
397 carry
+= arg1
[i
] * arg2
[j
];
398 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
400 prod
[k
] = LOWPART (carry
);
401 carry
= HIGHPART (carry
);
406 decode (prod
, lv
, hv
);
407 decode (prod
+ 4, &toplow
, &tophigh
);
409 /* Unsigned overflow is immediate. */
411 return (toplow
| tophigh
) != 0;
413 /* Check for signed overflow by calculating the signed representation of the
414 top half of the result; it should agree with the low half's sign bit. */
417 neg_double (l2
, h2
, &neglow
, &neghigh
);
418 add_double (neglow
, neghigh
, toplow
, tophigh
, &toplow
, &tophigh
);
422 neg_double (l1
, h1
, &neglow
, &neghigh
);
423 add_double (neglow
, neghigh
, toplow
, tophigh
, &toplow
, &tophigh
);
425 return (*hv
< 0 ? ~(toplow
& tophigh
) : toplow
| tophigh
) != 0;
428 /* Shift the doubleword integer in L1, H1 left by COUNT places
429 keeping only PREC bits of result.
430 Shift right if COUNT is negative.
431 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
432 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
435 lshift_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
436 HOST_WIDE_INT count
, unsigned int prec
,
437 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
, int arith
)
439 unsigned HOST_WIDE_INT signmask
;
443 rshift_double (l1
, h1
, -count
, prec
, lv
, hv
, arith
);
447 if (SHIFT_COUNT_TRUNCATED
)
450 if (count
>= 2 * HOST_BITS_PER_WIDE_INT
)
452 /* Shifting by the host word size is undefined according to the
453 ANSI standard, so we must handle this as a special case. */
457 else if (count
>= HOST_BITS_PER_WIDE_INT
)
459 *hv
= l1
<< (count
- HOST_BITS_PER_WIDE_INT
);
464 *hv
= (((unsigned HOST_WIDE_INT
) h1
<< count
)
465 | (l1
>> (HOST_BITS_PER_WIDE_INT
- count
- 1) >> 1));
469 /* Sign extend all bits that are beyond the precision. */
471 signmask
= -((prec
> HOST_BITS_PER_WIDE_INT
472 ? ((unsigned HOST_WIDE_INT
) *hv
473 >> (prec
- HOST_BITS_PER_WIDE_INT
- 1))
474 : (*lv
>> (prec
- 1))) & 1);
476 if (prec
>= 2 * HOST_BITS_PER_WIDE_INT
)
478 else if (prec
>= HOST_BITS_PER_WIDE_INT
)
480 *hv
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
481 *hv
|= signmask
<< (prec
- HOST_BITS_PER_WIDE_INT
);
486 *lv
&= ~((unsigned HOST_WIDE_INT
) (-1) << prec
);
487 *lv
|= signmask
<< prec
;
491 /* Shift the doubleword integer in L1, H1 right by COUNT places
492 keeping only PREC bits of result. COUNT must be positive.
493 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
494 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
497 rshift_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
498 HOST_WIDE_INT count
, unsigned int prec
,
499 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
,
502 unsigned HOST_WIDE_INT signmask
;
505 ? -((unsigned HOST_WIDE_INT
) h1
>> (HOST_BITS_PER_WIDE_INT
- 1))
508 if (SHIFT_COUNT_TRUNCATED
)
511 if (count
>= 2 * HOST_BITS_PER_WIDE_INT
)
513 /* Shifting by the host word size is undefined according to the
514 ANSI standard, so we must handle this as a special case. */
518 else if (count
>= HOST_BITS_PER_WIDE_INT
)
521 *lv
= (unsigned HOST_WIDE_INT
) h1
>> (count
- HOST_BITS_PER_WIDE_INT
);
525 *hv
= (unsigned HOST_WIDE_INT
) h1
>> count
;
527 | ((unsigned HOST_WIDE_INT
) h1
<< (HOST_BITS_PER_WIDE_INT
- count
- 1) << 1));
530 /* Zero / sign extend all bits that are beyond the precision. */
532 if (count
>= (HOST_WIDE_INT
)prec
)
537 else if ((prec
- count
) >= 2 * HOST_BITS_PER_WIDE_INT
)
539 else if ((prec
- count
) >= HOST_BITS_PER_WIDE_INT
)
541 *hv
&= ~((HOST_WIDE_INT
) (-1) << (prec
- count
- HOST_BITS_PER_WIDE_INT
));
542 *hv
|= signmask
<< (prec
- count
- HOST_BITS_PER_WIDE_INT
);
547 *lv
&= ~((unsigned HOST_WIDE_INT
) (-1) << (prec
- count
));
548 *lv
|= signmask
<< (prec
- count
);
552 /* Rotate the doubleword integer in L1, H1 left by COUNT places
553 keeping only PREC bits of result.
554 Rotate right if COUNT is negative.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
558 lrotate_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
559 HOST_WIDE_INT count
, unsigned int prec
,
560 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
562 unsigned HOST_WIDE_INT s1l
, s2l
;
563 HOST_WIDE_INT s1h
, s2h
;
569 lshift_double (l1
, h1
, count
, prec
, &s1l
, &s1h
, 0);
570 rshift_double (l1
, h1
, prec
- count
, prec
, &s2l
, &s2h
, 0);
575 /* Rotate the doubleword integer in L1, H1 left by COUNT places
576 keeping only PREC bits of result. COUNT must be positive.
577 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
580 rrotate_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
581 HOST_WIDE_INT count
, unsigned int prec
,
582 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
584 unsigned HOST_WIDE_INT s1l
, s2l
;
585 HOST_WIDE_INT s1h
, s2h
;
591 rshift_double (l1
, h1
, count
, prec
, &s1l
, &s1h
, 0);
592 lshift_double (l1
, h1
, prec
- count
, prec
, &s2l
, &s2h
, 0);
597 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
598 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
599 CODE is a tree code for a kind of division, one of
600 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
602 It controls how the quotient is rounded to an integer.
603 Return nonzero if the operation overflows.
604 UNS nonzero says do unsigned division. */
607 div_and_round_double (enum tree_code code
, int uns
,
608 unsigned HOST_WIDE_INT lnum_orig
, /* num == numerator == dividend */
609 HOST_WIDE_INT hnum_orig
,
610 unsigned HOST_WIDE_INT lden_orig
, /* den == denominator == divisor */
611 HOST_WIDE_INT hden_orig
,
612 unsigned HOST_WIDE_INT
*lquo
,
613 HOST_WIDE_INT
*hquo
, unsigned HOST_WIDE_INT
*lrem
,
617 HOST_WIDE_INT num
[4 + 1]; /* extra element for scaling. */
618 HOST_WIDE_INT den
[4], quo
[4];
620 unsigned HOST_WIDE_INT work
;
621 unsigned HOST_WIDE_INT carry
= 0;
622 unsigned HOST_WIDE_INT lnum
= lnum_orig
;
623 HOST_WIDE_INT hnum
= hnum_orig
;
624 unsigned HOST_WIDE_INT lden
= lden_orig
;
625 HOST_WIDE_INT hden
= hden_orig
;
628 if (hden
== 0 && lden
== 0)
629 overflow
= 1, lden
= 1;
631 /* Calculate quotient sign and convert operands to unsigned. */
637 /* (minimum integer) / (-1) is the only overflow case. */
638 if (neg_double (lnum
, hnum
, &lnum
, &hnum
)
639 && ((HOST_WIDE_INT
) lden
& hden
) == -1)
645 neg_double (lden
, hden
, &lden
, &hden
);
649 if (hnum
== 0 && hden
== 0)
650 { /* single precision */
652 /* This unsigned division rounds toward zero. */
658 { /* trivial case: dividend < divisor */
659 /* hden != 0 already checked. */
666 memset (quo
, 0, sizeof quo
);
668 memset (num
, 0, sizeof num
); /* to zero 9th element */
669 memset (den
, 0, sizeof den
);
671 encode (num
, lnum
, hnum
);
672 encode (den
, lden
, hden
);
674 /* Special code for when the divisor < BASE. */
675 if (hden
== 0 && lden
< (unsigned HOST_WIDE_INT
) BASE
)
677 /* hnum != 0 already checked. */
678 for (i
= 4 - 1; i
>= 0; i
--)
680 work
= num
[i
] + carry
* BASE
;
681 quo
[i
] = work
/ lden
;
687 /* Full double precision division,
688 with thanks to Don Knuth's "Seminumerical Algorithms". */
689 int num_hi_sig
, den_hi_sig
;
690 unsigned HOST_WIDE_INT quo_est
, scale
;
692 /* Find the highest nonzero divisor digit. */
693 for (i
= 4 - 1;; i
--)
700 /* Insure that the first digit of the divisor is at least BASE/2.
701 This is required by the quotient digit estimation algorithm. */
703 scale
= BASE
/ (den
[den_hi_sig
] + 1);
705 { /* scale divisor and dividend */
707 for (i
= 0; i
<= 4 - 1; i
++)
709 work
= (num
[i
] * scale
) + carry
;
710 num
[i
] = LOWPART (work
);
711 carry
= HIGHPART (work
);
716 for (i
= 0; i
<= 4 - 1; i
++)
718 work
= (den
[i
] * scale
) + carry
;
719 den
[i
] = LOWPART (work
);
720 carry
= HIGHPART (work
);
721 if (den
[i
] != 0) den_hi_sig
= i
;
728 for (i
= num_hi_sig
- den_hi_sig
- 1; i
>= 0; i
--)
730 /* Guess the next quotient digit, quo_est, by dividing the first
731 two remaining dividend digits by the high order quotient digit.
732 quo_est is never low and is at most 2 high. */
733 unsigned HOST_WIDE_INT tmp
;
735 num_hi_sig
= i
+ den_hi_sig
+ 1;
736 work
= num
[num_hi_sig
] * BASE
+ num
[num_hi_sig
- 1];
737 if (num
[num_hi_sig
] != den
[den_hi_sig
])
738 quo_est
= work
/ den
[den_hi_sig
];
742 /* Refine quo_est so it's usually correct, and at most one high. */
743 tmp
= work
- quo_est
* den
[den_hi_sig
];
745 && (den
[den_hi_sig
- 1] * quo_est
746 > (tmp
* BASE
+ num
[num_hi_sig
- 2])))
749 /* Try QUO_EST as the quotient digit, by multiplying the
750 divisor by QUO_EST and subtracting from the remaining dividend.
751 Keep in mind that QUO_EST is the I - 1st digit. */
754 for (j
= 0; j
<= den_hi_sig
; j
++)
756 work
= quo_est
* den
[j
] + carry
;
757 carry
= HIGHPART (work
);
758 work
= num
[i
+ j
] - LOWPART (work
);
759 num
[i
+ j
] = LOWPART (work
);
760 carry
+= HIGHPART (work
) != 0;
763 /* If quo_est was high by one, then num[i] went negative and
764 we need to correct things. */
765 if (num
[num_hi_sig
] < (HOST_WIDE_INT
) carry
)
768 carry
= 0; /* add divisor back in */
769 for (j
= 0; j
<= den_hi_sig
; j
++)
771 work
= num
[i
+ j
] + den
[j
] + carry
;
772 carry
= HIGHPART (work
);
773 num
[i
+ j
] = LOWPART (work
);
776 num
[num_hi_sig
] += carry
;
779 /* Store the quotient digit. */
784 decode (quo
, lquo
, hquo
);
787 /* If result is negative, make it so. */
789 neg_double (*lquo
, *hquo
, lquo
, hquo
);
791 /* Compute trial remainder: rem = num - (quo * den) */
792 mul_double (*lquo
, *hquo
, lden_orig
, hden_orig
, lrem
, hrem
);
793 neg_double (*lrem
, *hrem
, lrem
, hrem
);
794 add_double (lnum_orig
, hnum_orig
, *lrem
, *hrem
, lrem
, hrem
);
799 case TRUNC_MOD_EXPR
: /* round toward zero */
800 case EXACT_DIV_EXPR
: /* for this one, it shouldn't matter */
804 case FLOOR_MOD_EXPR
: /* round toward negative infinity */
805 if (quo_neg
&& (*lrem
!= 0 || *hrem
!= 0)) /* ratio < 0 && rem != 0 */
808 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) -1, (HOST_WIDE_INT
) -1,
816 case CEIL_MOD_EXPR
: /* round toward positive infinity */
817 if (!quo_neg
&& (*lrem
!= 0 || *hrem
!= 0)) /* ratio > 0 && rem != 0 */
819 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) 1, (HOST_WIDE_INT
) 0,
827 case ROUND_MOD_EXPR
: /* round to closest integer */
829 unsigned HOST_WIDE_INT labs_rem
= *lrem
;
830 HOST_WIDE_INT habs_rem
= *hrem
;
831 unsigned HOST_WIDE_INT labs_den
= lden
, ltwice
;
832 HOST_WIDE_INT habs_den
= hden
, htwice
;
834 /* Get absolute values. */
836 neg_double (*lrem
, *hrem
, &labs_rem
, &habs_rem
);
838 neg_double (lden
, hden
, &labs_den
, &habs_den
);
840 /* If (2 * abs (lrem) >= abs (lden)) */
841 mul_double ((HOST_WIDE_INT
) 2, (HOST_WIDE_INT
) 0,
842 labs_rem
, habs_rem
, <wice
, &htwice
);
844 if (((unsigned HOST_WIDE_INT
) habs_den
845 < (unsigned HOST_WIDE_INT
) htwice
)
846 || (((unsigned HOST_WIDE_INT
) habs_den
847 == (unsigned HOST_WIDE_INT
) htwice
)
848 && (labs_den
< ltwice
)))
852 add_double (*lquo
, *hquo
,
853 (HOST_WIDE_INT
) -1, (HOST_WIDE_INT
) -1, lquo
, hquo
);
856 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) 1, (HOST_WIDE_INT
) 0,
868 /* Compute true remainder: rem = num - (quo * den) */
869 mul_double (*lquo
, *hquo
, lden_orig
, hden_orig
, lrem
, hrem
);
870 neg_double (*lrem
, *hrem
, lrem
, hrem
);
871 add_double (lnum_orig
, hnum_orig
, *lrem
, *hrem
, lrem
, hrem
);
875 /* If ARG2 divides ARG1 with zero remainder, carries out the division
876 of type CODE and returns the quotient.
877 Otherwise returns NULL_TREE. */
880 div_if_zero_remainder (enum tree_code code
, tree arg1
, tree arg2
)
882 unsigned HOST_WIDE_INT int1l
, int2l
;
883 HOST_WIDE_INT int1h
, int2h
;
884 unsigned HOST_WIDE_INT quol
, reml
;
885 HOST_WIDE_INT quoh
, remh
;
886 tree type
= TREE_TYPE (arg1
);
887 int uns
= TYPE_UNSIGNED (type
);
889 int1l
= TREE_INT_CST_LOW (arg1
);
890 int1h
= TREE_INT_CST_HIGH (arg1
);
891 /* &obj[0] + -128 really should be compiled as &obj[-8] rather than
892 &obj[some_exotic_number]. */
893 if (POINTER_TYPE_P (type
))
896 type
= signed_type_for (type
);
897 fit_double_type (int1l
, int1h
, &int1l
, &int1h
,
901 fit_double_type (int1l
, int1h
, &int1l
, &int1h
, type
);
902 int2l
= TREE_INT_CST_LOW (arg2
);
903 int2h
= TREE_INT_CST_HIGH (arg2
);
905 div_and_round_double (code
, uns
, int1l
, int1h
, int2l
, int2h
,
906 &quol
, &quoh
, &reml
, &remh
);
907 if (remh
!= 0 || reml
!= 0)
910 return build_int_cst_wide (type
, quol
, quoh
);
913 /* This is nonzero if we should defer warnings about undefined
914 overflow. This facility exists because these warnings are a
915 special case. The code to estimate loop iterations does not want
916 to issue any warnings, since it works with expressions which do not
917 occur in user code. Various bits of cleanup code call fold(), but
918 only use the result if it has certain characteristics (e.g., is a
919 constant); that code only wants to issue a warning if the result is
922 static int fold_deferring_overflow_warnings
;
924 /* If a warning about undefined overflow is deferred, this is the
925 warning. Note that this may cause us to turn two warnings into
926 one, but that is fine since it is sufficient to only give one
927 warning per expression. */
929 static const char* fold_deferred_overflow_warning
;
931 /* If a warning about undefined overflow is deferred, this is the
932 level at which the warning should be emitted. */
934 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
936 /* Start deferring overflow warnings. We could use a stack here to
937 permit nested calls, but at present it is not necessary. */
940 fold_defer_overflow_warnings (void)
942 ++fold_deferring_overflow_warnings
;
945 /* Stop deferring overflow warnings. If there is a pending warning,
946 and ISSUE is true, then issue the warning if appropriate. STMT is
947 the statement with which the warning should be associated (used for
948 location information); STMT may be NULL. CODE is the level of the
949 warning--a warn_strict_overflow_code value. This function will use
950 the smaller of CODE and the deferred code when deciding whether to
951 issue the warning. CODE may be zero to mean to always use the
955 fold_undefer_overflow_warnings (bool issue
, tree stmt
, int code
)
960 gcc_assert (fold_deferring_overflow_warnings
> 0);
961 --fold_deferring_overflow_warnings
;
962 if (fold_deferring_overflow_warnings
> 0)
964 if (fold_deferred_overflow_warning
!= NULL
966 && code
< (int) fold_deferred_overflow_code
)
967 fold_deferred_overflow_code
= code
;
971 warnmsg
= fold_deferred_overflow_warning
;
972 fold_deferred_overflow_warning
= NULL
;
974 if (!issue
|| warnmsg
== NULL
)
977 /* Use the smallest code level when deciding to issue the
979 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
980 code
= fold_deferred_overflow_code
;
982 if (!issue_strict_overflow_warning (code
))
985 if (stmt
== NULL_TREE
|| !expr_has_location (stmt
))
986 locus
= input_location
;
988 locus
= expr_location (stmt
);
989 warning (OPT_Wstrict_overflow
, "%H%s", &locus
, warnmsg
);
992 /* Stop deferring overflow warnings, ignoring any deferred
996 fold_undefer_and_ignore_overflow_warnings (void)
998 fold_undefer_overflow_warnings (false, NULL_TREE
, 0);
1001 /* Whether we are deferring overflow warnings. */
1004 fold_deferring_overflow_warnings_p (void)
1006 return fold_deferring_overflow_warnings
> 0;
1009 /* This is called when we fold something based on the fact that signed
1010 overflow is undefined. */
1013 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
1015 gcc_assert (!flag_wrapv
&& !flag_trapv
);
1016 if (fold_deferring_overflow_warnings
> 0)
1018 if (fold_deferred_overflow_warning
== NULL
1019 || wc
< fold_deferred_overflow_code
)
1021 fold_deferred_overflow_warning
= gmsgid
;
1022 fold_deferred_overflow_code
= wc
;
1025 else if (issue_strict_overflow_warning (wc
))
1026 warning (OPT_Wstrict_overflow
, gmsgid
);
1029 /* Return true if the built-in mathematical function specified by CODE
1030 is odd, i.e. -f(x) == f(-x). */
1033 negate_mathfn_p (enum built_in_function code
)
1037 CASE_FLT_FN (BUILT_IN_ASIN
):
1038 CASE_FLT_FN (BUILT_IN_ASINH
):
1039 CASE_FLT_FN (BUILT_IN_ATAN
):
1040 CASE_FLT_FN (BUILT_IN_ATANH
):
1041 CASE_FLT_FN (BUILT_IN_CASIN
):
1042 CASE_FLT_FN (BUILT_IN_CASINH
):
1043 CASE_FLT_FN (BUILT_IN_CATAN
):
1044 CASE_FLT_FN (BUILT_IN_CATANH
):
1045 CASE_FLT_FN (BUILT_IN_CBRT
):
1046 CASE_FLT_FN (BUILT_IN_CPROJ
):
1047 CASE_FLT_FN (BUILT_IN_CSIN
):
1048 CASE_FLT_FN (BUILT_IN_CSINH
):
1049 CASE_FLT_FN (BUILT_IN_CTAN
):
1050 CASE_FLT_FN (BUILT_IN_CTANH
):
1051 CASE_FLT_FN (BUILT_IN_ERF
):
1052 CASE_FLT_FN (BUILT_IN_LLROUND
):
1053 CASE_FLT_FN (BUILT_IN_LROUND
):
1054 CASE_FLT_FN (BUILT_IN_ROUND
):
1055 CASE_FLT_FN (BUILT_IN_SIN
):
1056 CASE_FLT_FN (BUILT_IN_SINH
):
1057 CASE_FLT_FN (BUILT_IN_TAN
):
1058 CASE_FLT_FN (BUILT_IN_TANH
):
1059 CASE_FLT_FN (BUILT_IN_TRUNC
):
1062 CASE_FLT_FN (BUILT_IN_LLRINT
):
1063 CASE_FLT_FN (BUILT_IN_LRINT
):
1064 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
1065 CASE_FLT_FN (BUILT_IN_RINT
):
1066 return !flag_rounding_math
;
1074 /* Check whether we may negate an integer constant T without causing
1078 may_negate_without_overflow_p (const_tree t
)
1080 unsigned HOST_WIDE_INT val
;
1084 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
1086 type
= TREE_TYPE (t
);
1087 if (TYPE_UNSIGNED (type
))
1090 prec
= TYPE_PRECISION (type
);
1091 if (prec
> HOST_BITS_PER_WIDE_INT
)
1093 if (TREE_INT_CST_LOW (t
) != 0)
1095 prec
-= HOST_BITS_PER_WIDE_INT
;
1096 val
= TREE_INT_CST_HIGH (t
);
1099 val
= TREE_INT_CST_LOW (t
);
1100 if (prec
< HOST_BITS_PER_WIDE_INT
)
1101 val
&= ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
1102 return val
!= ((unsigned HOST_WIDE_INT
) 1 << (prec
- 1));
1105 /* Determine whether an expression T can be cheaply negated using
1106 the function negate_expr without introducing undefined overflow. */
1109 negate_expr_p (tree t
)
1116 type
= TREE_TYPE (t
);
1118 STRIP_SIGN_NOPS (t
);
1119 switch (TREE_CODE (t
))
1122 if (TYPE_OVERFLOW_WRAPS (type
))
1125 /* Check that -CST will not overflow type. */
1126 return may_negate_without_overflow_p (t
);
1128 return (INTEGRAL_TYPE_P (type
)
1129 && TYPE_OVERFLOW_WRAPS (type
));
1137 return negate_expr_p (TREE_REALPART (t
))
1138 && negate_expr_p (TREE_IMAGPART (t
));
1141 return negate_expr_p (TREE_OPERAND (t
, 0))
1142 && negate_expr_p (TREE_OPERAND (t
, 1));
1145 return negate_expr_p (TREE_OPERAND (t
, 0));
1148 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
1149 || HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
1151 /* -(A + B) -> (-B) - A. */
1152 if (negate_expr_p (TREE_OPERAND (t
, 1))
1153 && reorder_operands_p (TREE_OPERAND (t
, 0),
1154 TREE_OPERAND (t
, 1)))
1156 /* -(A + B) -> (-A) - B. */
1157 return negate_expr_p (TREE_OPERAND (t
, 0));
1160 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
1161 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
1162 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
1163 && reorder_operands_p (TREE_OPERAND (t
, 0),
1164 TREE_OPERAND (t
, 1));
1167 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
1173 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t
))))
1174 return negate_expr_p (TREE_OPERAND (t
, 1))
1175 || negate_expr_p (TREE_OPERAND (t
, 0));
1178 case TRUNC_DIV_EXPR
:
1179 case ROUND_DIV_EXPR
:
1180 case FLOOR_DIV_EXPR
:
1182 case EXACT_DIV_EXPR
:
1183 /* In general we can't negate A / B, because if A is INT_MIN and
1184 B is 1, we may turn this into INT_MIN / -1 which is undefined
1185 and actually traps on some architectures. But if overflow is
1186 undefined, we can negate, because - (INT_MIN / 1) is an
1188 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
1189 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
)))
1191 return negate_expr_p (TREE_OPERAND (t
, 1))
1192 || negate_expr_p (TREE_OPERAND (t
, 0));
1195 /* Negate -((double)float) as (double)(-float). */
1196 if (TREE_CODE (type
) == REAL_TYPE
)
1198 tree tem
= strip_float_extensions (t
);
1200 return negate_expr_p (tem
);
1205 /* Negate -f(x) as f(-x). */
1206 if (negate_mathfn_p (builtin_mathfn_code (t
)))
1207 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
1211 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1212 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
1214 tree op1
= TREE_OPERAND (t
, 1);
1215 if (TREE_INT_CST_HIGH (op1
) == 0
1216 && (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (type
) - 1)
1217 == TREE_INT_CST_LOW (op1
))
1228 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1229 simplification is possible.
1230 If negate_expr_p would return true for T, NULL_TREE will never be
1234 fold_negate_expr (tree t
)
1236 tree type
= TREE_TYPE (t
);
1239 switch (TREE_CODE (t
))
1241 /* Convert - (~A) to A + 1. */
1243 if (INTEGRAL_TYPE_P (type
))
1244 return fold_build2 (PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
1245 build_int_cst (type
, 1));
1249 tem
= fold_negate_const (t
, type
);
1250 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
1251 || !TYPE_OVERFLOW_TRAPS (type
))
1256 tem
= fold_negate_const (t
, type
);
1257 /* Two's complement FP formats, such as c4x, may overflow. */
1258 if (!TREE_OVERFLOW (tem
) || !flag_trapping_math
)
1263 tem
= fold_negate_const (t
, type
);
1268 tree rpart
= negate_expr (TREE_REALPART (t
));
1269 tree ipart
= negate_expr (TREE_IMAGPART (t
));
1271 if ((TREE_CODE (rpart
) == REAL_CST
1272 && TREE_CODE (ipart
) == REAL_CST
)
1273 || (TREE_CODE (rpart
) == INTEGER_CST
1274 && TREE_CODE (ipart
) == INTEGER_CST
))
1275 return build_complex (type
, rpart
, ipart
);
1280 if (negate_expr_p (t
))
1281 return fold_build2 (COMPLEX_EXPR
, type
,
1282 fold_negate_expr (TREE_OPERAND (t
, 0)),
1283 fold_negate_expr (TREE_OPERAND (t
, 1)));
1287 if (negate_expr_p (t
))
1288 return fold_build1 (CONJ_EXPR
, type
,
1289 fold_negate_expr (TREE_OPERAND (t
, 0)));
1293 return TREE_OPERAND (t
, 0);
1296 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
1297 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
1299 /* -(A + B) -> (-B) - A. */
1300 if (negate_expr_p (TREE_OPERAND (t
, 1))
1301 && reorder_operands_p (TREE_OPERAND (t
, 0),
1302 TREE_OPERAND (t
, 1)))
1304 tem
= negate_expr (TREE_OPERAND (t
, 1));
1305 return fold_build2 (MINUS_EXPR
, type
,
1306 tem
, TREE_OPERAND (t
, 0));
1309 /* -(A + B) -> (-A) - B. */
1310 if (negate_expr_p (TREE_OPERAND (t
, 0)))
1312 tem
= negate_expr (TREE_OPERAND (t
, 0));
1313 return fold_build2 (MINUS_EXPR
, type
,
1314 tem
, TREE_OPERAND (t
, 1));
1320 /* - (A - B) -> B - A */
1321 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
))
1322 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type
))
1323 && reorder_operands_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1)))
1324 return fold_build2 (MINUS_EXPR
, type
,
1325 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
1329 if (TYPE_UNSIGNED (type
))
1335 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
)))
1337 tem
= TREE_OPERAND (t
, 1);
1338 if (negate_expr_p (tem
))
1339 return fold_build2 (TREE_CODE (t
), type
,
1340 TREE_OPERAND (t
, 0), negate_expr (tem
));
1341 tem
= TREE_OPERAND (t
, 0);
1342 if (negate_expr_p (tem
))
1343 return fold_build2 (TREE_CODE (t
), type
,
1344 negate_expr (tem
), TREE_OPERAND (t
, 1));
1348 case TRUNC_DIV_EXPR
:
1349 case ROUND_DIV_EXPR
:
1350 case FLOOR_DIV_EXPR
:
1352 case EXACT_DIV_EXPR
:
1353 /* In general we can't negate A / B, because if A is INT_MIN and
1354 B is 1, we may turn this into INT_MIN / -1 which is undefined
1355 and actually traps on some architectures. But if overflow is
1356 undefined, we can negate, because - (INT_MIN / 1) is an
1358 if (!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
1360 const char * const warnmsg
= G_("assuming signed overflow does not "
1361 "occur when negating a division");
1362 tem
= TREE_OPERAND (t
, 1);
1363 if (negate_expr_p (tem
))
1365 if (INTEGRAL_TYPE_P (type
)
1366 && (TREE_CODE (tem
) != INTEGER_CST
1367 || integer_onep (tem
)))
1368 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MISC
);
1369 return fold_build2 (TREE_CODE (t
), type
,
1370 TREE_OPERAND (t
, 0), negate_expr (tem
));
1372 tem
= TREE_OPERAND (t
, 0);
1373 if (negate_expr_p (tem
))
1375 if (INTEGRAL_TYPE_P (type
)
1376 && (TREE_CODE (tem
) != INTEGER_CST
1377 || tree_int_cst_equal (tem
, TYPE_MIN_VALUE (type
))))
1378 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MISC
);
1379 return fold_build2 (TREE_CODE (t
), type
,
1380 negate_expr (tem
), TREE_OPERAND (t
, 1));
1386 /* Convert -((double)float) into (double)(-float). */
1387 if (TREE_CODE (type
) == REAL_TYPE
)
1389 tem
= strip_float_extensions (t
);
1390 if (tem
!= t
&& negate_expr_p (tem
))
1391 return fold_convert (type
, negate_expr (tem
));
1396 /* Negate -f(x) as f(-x). */
1397 if (negate_mathfn_p (builtin_mathfn_code (t
))
1398 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
1402 fndecl
= get_callee_fndecl (t
);
1403 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
1404 return build_call_expr (fndecl
, 1, arg
);
1409 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1410 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
1412 tree op1
= TREE_OPERAND (t
, 1);
1413 if (TREE_INT_CST_HIGH (op1
) == 0
1414 && (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (type
) - 1)
1415 == TREE_INT_CST_LOW (op1
))
1417 tree ntype
= TYPE_UNSIGNED (type
)
1418 ? signed_type_for (type
)
1419 : unsigned_type_for (type
);
1420 tree temp
= fold_convert (ntype
, TREE_OPERAND (t
, 0));
1421 temp
= fold_build2 (RSHIFT_EXPR
, ntype
, temp
, op1
);
1422 return fold_convert (type
, temp
);
1434 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1435 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1436 return NULL_TREE. */
1439 negate_expr (tree t
)
1446 type
= TREE_TYPE (t
);
1447 STRIP_SIGN_NOPS (t
);
1449 tem
= fold_negate_expr (t
);
1451 tem
= build1 (NEGATE_EXPR
, TREE_TYPE (t
), t
);
1452 return fold_convert (type
, tem
);
1455 /* Split a tree IN into a constant, literal and variable parts that could be
1456 combined with CODE to make IN. "constant" means an expression with
1457 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1458 commutative arithmetic operation. Store the constant part into *CONP,
1459 the literal in *LITP and return the variable part. If a part isn't
1460 present, set it to null. If the tree does not decompose in this way,
1461 return the entire tree as the variable part and the other parts as null.
1463 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1464 case, we negate an operand that was subtracted. Except if it is a
1465 literal for which we use *MINUS_LITP instead.
1467 If NEGATE_P is true, we are negating all of IN, again except a literal
1468 for which we use *MINUS_LITP instead.
1470 If IN is itself a literal or constant, return it as appropriate.
1472 Note that we do not guarantee that any of the three values will be the
1473 same type as IN, but they will have the same signedness and mode. */
1476 split_tree (tree in
, enum tree_code code
, tree
*conp
, tree
*litp
,
1477 tree
*minus_litp
, int negate_p
)
1485 /* Strip any conversions that don't change the machine mode or signedness. */
1486 STRIP_SIGN_NOPS (in
);
1488 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
1489 || TREE_CODE (in
) == FIXED_CST
)
1491 else if (TREE_CODE (in
) == code
1492 || (! FLOAT_TYPE_P (TREE_TYPE (in
))
1493 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
1494 /* We can associate addition and subtraction together (even
1495 though the C standard doesn't say so) for integers because
1496 the value is not affected. For reals, the value might be
1497 affected, so we can't. */
1498 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
1499 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
1501 tree op0
= TREE_OPERAND (in
, 0);
1502 tree op1
= TREE_OPERAND (in
, 1);
1503 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
1504 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
1506 /* First see if either of the operands is a literal, then a constant. */
1507 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
1508 || TREE_CODE (op0
) == FIXED_CST
)
1509 *litp
= op0
, op0
= 0;
1510 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
1511 || TREE_CODE (op1
) == FIXED_CST
)
1512 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
1514 if (op0
!= 0 && TREE_CONSTANT (op0
))
1515 *conp
= op0
, op0
= 0;
1516 else if (op1
!= 0 && TREE_CONSTANT (op1
))
1517 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
1519 /* If we haven't dealt with either operand, this is not a case we can
1520 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1521 if (op0
!= 0 && op1
!= 0)
1526 var
= op1
, neg_var_p
= neg1_p
;
1528 /* Now do any needed negations. */
1530 *minus_litp
= *litp
, *litp
= 0;
1532 *conp
= negate_expr (*conp
);
1534 var
= negate_expr (var
);
1536 else if (TREE_CONSTANT (in
))
1544 *minus_litp
= *litp
, *litp
= 0;
1545 else if (*minus_litp
)
1546 *litp
= *minus_litp
, *minus_litp
= 0;
1547 *conp
= negate_expr (*conp
);
1548 var
= negate_expr (var
);
1554 /* Re-associate trees split by the above function. T1 and T2 are either
1555 expressions to associate or null. Return the new expression, if any. If
1556 we build an operation, do it in TYPE and with CODE. */
1559 associate_trees (tree t1
, tree t2
, enum tree_code code
, tree type
)
1566 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1567 try to fold this since we will have infinite recursion. But do
1568 deal with any NEGATE_EXPRs. */
1569 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
1570 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
1572 if (code
== PLUS_EXPR
)
1574 if (TREE_CODE (t1
) == NEGATE_EXPR
)
1575 return build2 (MINUS_EXPR
, type
, fold_convert (type
, t2
),
1576 fold_convert (type
, TREE_OPERAND (t1
, 0)));
1577 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
1578 return build2 (MINUS_EXPR
, type
, fold_convert (type
, t1
),
1579 fold_convert (type
, TREE_OPERAND (t2
, 0)));
1580 else if (integer_zerop (t2
))
1581 return fold_convert (type
, t1
);
1583 else if (code
== MINUS_EXPR
)
1585 if (integer_zerop (t2
))
1586 return fold_convert (type
, t1
);
1589 return build2 (code
, type
, fold_convert (type
, t1
),
1590 fold_convert (type
, t2
));
1593 return fold_build2 (code
, type
, fold_convert (type
, t1
),
1594 fold_convert (type
, t2
));
1597 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1598 for use in int_const_binop, size_binop and size_diffop. */
1601 int_binop_types_match_p (enum tree_code code
, tree type1
, tree type2
)
1603 if (TREE_CODE (type1
) != INTEGER_TYPE
&& !POINTER_TYPE_P (type1
))
1605 if (TREE_CODE (type2
) != INTEGER_TYPE
&& !POINTER_TYPE_P (type2
))
1620 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
1621 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
1622 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
1626 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1627 to produce a new constant. Return NULL_TREE if we don't know how
1628 to evaluate CODE at compile-time.
1630 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1633 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
, int notrunc
)
1635 unsigned HOST_WIDE_INT int1l
, int2l
;
1636 HOST_WIDE_INT int1h
, int2h
;
1637 unsigned HOST_WIDE_INT low
;
1639 unsigned HOST_WIDE_INT garbagel
;
1640 HOST_WIDE_INT garbageh
;
1642 tree type
= TREE_TYPE (arg1
);
1643 int uns
= TYPE_UNSIGNED (type
);
1645 = (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type
));
1648 int1l
= TREE_INT_CST_LOW (arg1
);
1649 int1h
= TREE_INT_CST_HIGH (arg1
);
1650 int2l
= TREE_INT_CST_LOW (arg2
);
1651 int2h
= TREE_INT_CST_HIGH (arg2
);
1656 low
= int1l
| int2l
, hi
= int1h
| int2h
;
1660 low
= int1l
^ int2l
, hi
= int1h
^ int2h
;
1664 low
= int1l
& int2l
, hi
= int1h
& int2h
;
1670 /* It's unclear from the C standard whether shifts can overflow.
1671 The following code ignores overflow; perhaps a C standard
1672 interpretation ruling is needed. */
1673 lshift_double (int1l
, int1h
, int2l
, TYPE_PRECISION (type
),
1680 lrotate_double (int1l
, int1h
, int2l
, TYPE_PRECISION (type
),
1685 overflow
= add_double (int1l
, int1h
, int2l
, int2h
, &low
, &hi
);
1689 neg_double (int2l
, int2h
, &low
, &hi
);
1690 add_double (int1l
, int1h
, low
, hi
, &low
, &hi
);
1691 overflow
= OVERFLOW_SUM_SIGN (hi
, int2h
, int1h
);
1695 overflow
= mul_double (int1l
, int1h
, int2l
, int2h
, &low
, &hi
);
1698 case TRUNC_DIV_EXPR
:
1699 case FLOOR_DIV_EXPR
: case CEIL_DIV_EXPR
:
1700 case EXACT_DIV_EXPR
:
1701 /* This is a shortcut for a common special case. */
1702 if (int2h
== 0 && (HOST_WIDE_INT
) int2l
> 0
1703 && !TREE_OVERFLOW (arg1
)
1704 && !TREE_OVERFLOW (arg2
)
1705 && int1h
== 0 && (HOST_WIDE_INT
) int1l
>= 0)
1707 if (code
== CEIL_DIV_EXPR
)
1710 low
= int1l
/ int2l
, hi
= 0;
1714 /* ... fall through ... */
1716 case ROUND_DIV_EXPR
:
1717 if (int2h
== 0 && int2l
== 0)
1719 if (int2h
== 0 && int2l
== 1)
1721 low
= int1l
, hi
= int1h
;
1724 if (int1l
== int2l
&& int1h
== int2h
1725 && ! (int1l
== 0 && int1h
== 0))
1730 overflow
= div_and_round_double (code
, uns
, int1l
, int1h
, int2l
, int2h
,
1731 &low
, &hi
, &garbagel
, &garbageh
);
1734 case TRUNC_MOD_EXPR
:
1735 case FLOOR_MOD_EXPR
: case CEIL_MOD_EXPR
:
1736 /* This is a shortcut for a common special case. */
1737 if (int2h
== 0 && (HOST_WIDE_INT
) int2l
> 0
1738 && !TREE_OVERFLOW (arg1
)
1739 && !TREE_OVERFLOW (arg2
)
1740 && int1h
== 0 && (HOST_WIDE_INT
) int1l
>= 0)
1742 if (code
== CEIL_MOD_EXPR
)
1744 low
= int1l
% int2l
, hi
= 0;
1748 /* ... fall through ... */
1750 case ROUND_MOD_EXPR
:
1751 if (int2h
== 0 && int2l
== 0)
1753 overflow
= div_and_round_double (code
, uns
,
1754 int1l
, int1h
, int2l
, int2h
,
1755 &garbagel
, &garbageh
, &low
, &hi
);
1761 low
= (((unsigned HOST_WIDE_INT
) int1h
1762 < (unsigned HOST_WIDE_INT
) int2h
)
1763 || (((unsigned HOST_WIDE_INT
) int1h
1764 == (unsigned HOST_WIDE_INT
) int2h
)
1767 low
= (int1h
< int2h
1768 || (int1h
== int2h
&& int1l
< int2l
));
1770 if (low
== (code
== MIN_EXPR
))
1771 low
= int1l
, hi
= int1h
;
1773 low
= int2l
, hi
= int2h
;
1782 t
= build_int_cst_wide (TREE_TYPE (arg1
), low
, hi
);
1784 /* Propagate overflow flags ourselves. */
1785 if (((!uns
|| is_sizetype
) && overflow
)
1786 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1789 TREE_OVERFLOW (t
) = 1;
1793 t
= force_fit_type_double (TREE_TYPE (arg1
), low
, hi
, 1,
1794 ((!uns
|| is_sizetype
) && overflow
)
1795 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1800 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1801 constant. We assume ARG1 and ARG2 have the same data type, or at least
1802 are the same kind of constant and the same machine mode. Return zero if
1803 combining the constants is not allowed in the current operating mode.
1805 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1808 const_binop (enum tree_code code
, tree arg1
, tree arg2
, int notrunc
)
1810 /* Sanity check for the recursive cases. */
1817 if (TREE_CODE (arg1
) == INTEGER_CST
)
1818 return int_const_binop (code
, arg1
, arg2
, notrunc
);
1820 if (TREE_CODE (arg1
) == REAL_CST
)
1822 enum machine_mode mode
;
1825 REAL_VALUE_TYPE value
;
1826 REAL_VALUE_TYPE result
;
1830 /* The following codes are handled by real_arithmetic. */
1845 d1
= TREE_REAL_CST (arg1
);
1846 d2
= TREE_REAL_CST (arg2
);
1848 type
= TREE_TYPE (arg1
);
1849 mode
= TYPE_MODE (type
);
1851 /* Don't perform operation if we honor signaling NaNs and
1852 either operand is a NaN. */
1853 if (HONOR_SNANS (mode
)
1854 && (REAL_VALUE_ISNAN (d1
) || REAL_VALUE_ISNAN (d2
)))
1857 /* Don't perform operation if it would raise a division
1858 by zero exception. */
1859 if (code
== RDIV_EXPR
1860 && REAL_VALUES_EQUAL (d2
, dconst0
)
1861 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1864 /* If either operand is a NaN, just return it. Otherwise, set up
1865 for floating-point trap; we return an overflow. */
1866 if (REAL_VALUE_ISNAN (d1
))
1868 else if (REAL_VALUE_ISNAN (d2
))
1871 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1872 real_convert (&result
, mode
, &value
);
1874 /* Don't constant fold this floating point operation if
1875 the result has overflowed and flag_trapping_math. */
1876 if (flag_trapping_math
1877 && MODE_HAS_INFINITIES (mode
)
1878 && REAL_VALUE_ISINF (result
)
1879 && !REAL_VALUE_ISINF (d1
)
1880 && !REAL_VALUE_ISINF (d2
))
1883 /* Don't constant fold this floating point operation if the
1884 result may dependent upon the run-time rounding mode and
1885 flag_rounding_math is set, or if GCC's software emulation
1886 is unable to accurately represent the result. */
1887 if ((flag_rounding_math
1888 || (REAL_MODE_FORMAT_COMPOSITE_P (mode
)
1889 && !flag_unsafe_math_optimizations
))
1890 && (inexact
|| !real_identical (&result
, &value
)))
1893 t
= build_real (type
, result
);
1895 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1899 if (TREE_CODE (arg1
) == FIXED_CST
)
1901 FIXED_VALUE_TYPE f1
;
1902 FIXED_VALUE_TYPE f2
;
1903 FIXED_VALUE_TYPE result
;
1908 /* The following codes are handled by fixed_arithmetic. */
1914 case TRUNC_DIV_EXPR
:
1915 f2
= TREE_FIXED_CST (arg2
);
1920 f2
.data
.high
= TREE_INT_CST_HIGH (arg2
);
1921 f2
.data
.low
= TREE_INT_CST_LOW (arg2
);
1929 f1
= TREE_FIXED_CST (arg1
);
1930 type
= TREE_TYPE (arg1
);
1931 sat_p
= TYPE_SATURATING (type
);
1932 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1933 t
= build_fixed (type
, result
);
1934 /* Propagate overflow flags. */
1935 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1937 TREE_OVERFLOW (t
) = 1;
1938 TREE_CONSTANT_OVERFLOW (t
) = 1;
1940 else if (TREE_CONSTANT_OVERFLOW (arg1
) | TREE_CONSTANT_OVERFLOW (arg2
))
1941 TREE_CONSTANT_OVERFLOW (t
) = 1;
1945 if (TREE_CODE (arg1
) == COMPLEX_CST
)
1947 tree type
= TREE_TYPE (arg1
);
1948 tree r1
= TREE_REALPART (arg1
);
1949 tree i1
= TREE_IMAGPART (arg1
);
1950 tree r2
= TREE_REALPART (arg2
);
1951 tree i2
= TREE_IMAGPART (arg2
);
1958 real
= const_binop (code
, r1
, r2
, notrunc
);
1959 imag
= const_binop (code
, i1
, i2
, notrunc
);
1963 real
= const_binop (MINUS_EXPR
,
1964 const_binop (MULT_EXPR
, r1
, r2
, notrunc
),
1965 const_binop (MULT_EXPR
, i1
, i2
, notrunc
),
1967 imag
= const_binop (PLUS_EXPR
,
1968 const_binop (MULT_EXPR
, r1
, i2
, notrunc
),
1969 const_binop (MULT_EXPR
, i1
, r2
, notrunc
),
1976 = const_binop (PLUS_EXPR
,
1977 const_binop (MULT_EXPR
, r2
, r2
, notrunc
),
1978 const_binop (MULT_EXPR
, i2
, i2
, notrunc
),
1981 = const_binop (PLUS_EXPR
,
1982 const_binop (MULT_EXPR
, r1
, r2
, notrunc
),
1983 const_binop (MULT_EXPR
, i1
, i2
, notrunc
),
1986 = const_binop (MINUS_EXPR
,
1987 const_binop (MULT_EXPR
, i1
, r2
, notrunc
),
1988 const_binop (MULT_EXPR
, r1
, i2
, notrunc
),
1991 if (INTEGRAL_TYPE_P (TREE_TYPE (r1
)))
1992 code
= TRUNC_DIV_EXPR
;
1994 real
= const_binop (code
, t1
, magsquared
, notrunc
);
1995 imag
= const_binop (code
, t2
, magsquared
, notrunc
);
2004 return build_complex (type
, real
, imag
);
2010 /* Create a size type INT_CST node with NUMBER sign extended. KIND
2011 indicates which particular sizetype to create. */
2014 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
2016 return build_int_cst (sizetype_tab
[(int) kind
], number
);
2019 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2020 is a tree code. The type of the result is taken from the operands.
2021 Both must be equivalent integer types, ala int_binop_types_match_p.
2022 If the operands are constant, so is the result. */
2025 size_binop (enum tree_code code
, tree arg0
, tree arg1
)
2027 tree type
= TREE_TYPE (arg0
);
2029 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
2030 return error_mark_node
;
2032 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
2035 /* Handle the special case of two integer constants faster. */
2036 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2038 /* And some specific cases even faster than that. */
2039 if (code
== PLUS_EXPR
)
2041 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
2043 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
2046 else if (code
== MINUS_EXPR
)
2048 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
2051 else if (code
== MULT_EXPR
)
2053 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
2057 /* Handle general case of two integer constants. */
2058 return int_const_binop (code
, arg0
, arg1
, 0);
2061 return fold_build2 (code
, type
, arg0
, arg1
);
2064 /* Given two values, either both of sizetype or both of bitsizetype,
2065 compute the difference between the two values. Return the value
2066 in signed type corresponding to the type of the operands. */
2069 size_diffop (tree arg0
, tree arg1
)
2071 tree type
= TREE_TYPE (arg0
);
2074 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
2077 /* If the type is already signed, just do the simple thing. */
2078 if (!TYPE_UNSIGNED (type
))
2079 return size_binop (MINUS_EXPR
, arg0
, arg1
);
2081 if (type
== sizetype
)
2083 else if (type
== bitsizetype
)
2084 ctype
= sbitsizetype
;
2086 ctype
= signed_type_for (type
);
2088 /* If either operand is not a constant, do the conversions to the signed
2089 type and subtract. The hardware will do the right thing with any
2090 overflow in the subtraction. */
2091 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
2092 return size_binop (MINUS_EXPR
, fold_convert (ctype
, arg0
),
2093 fold_convert (ctype
, arg1
));
2095 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2096 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2097 overflow) and negate (which can't either). Special-case a result
2098 of zero while we're here. */
2099 if (tree_int_cst_equal (arg0
, arg1
))
2100 return build_int_cst (ctype
, 0);
2101 else if (tree_int_cst_lt (arg1
, arg0
))
2102 return fold_convert (ctype
, size_binop (MINUS_EXPR
, arg0
, arg1
));
2104 return size_binop (MINUS_EXPR
, build_int_cst (ctype
, 0),
2105 fold_convert (ctype
, size_binop (MINUS_EXPR
,
2109 /* A subroutine of fold_convert_const handling conversions of an
2110 INTEGER_CST to another integer type. */
2113 fold_convert_const_int_from_int (tree type
, tree arg1
)
2117 /* Given an integer constant, make new constant with new type,
2118 appropriately sign-extended or truncated. */
2119 t
= force_fit_type_double (type
, TREE_INT_CST_LOW (arg1
),
2120 TREE_INT_CST_HIGH (arg1
),
2121 /* Don't set the overflow when
2122 converting a pointer */
2123 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
2124 (TREE_INT_CST_HIGH (arg1
) < 0
2125 && (TYPE_UNSIGNED (type
)
2126 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2127 | TREE_OVERFLOW (arg1
));
2132 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2133 to an integer type. */
2136 fold_convert_const_int_from_real (enum tree_code code
, tree type
, tree arg1
)
2141 /* The following code implements the floating point to integer
2142 conversion rules required by the Java Language Specification,
2143 that IEEE NaNs are mapped to zero and values that overflow
2144 the target precision saturate, i.e. values greater than
2145 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2146 are mapped to INT_MIN. These semantics are allowed by the
2147 C and C++ standards that simply state that the behavior of
2148 FP-to-integer conversion is unspecified upon overflow. */
2150 HOST_WIDE_INT high
, low
;
2152 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2156 case FIX_TRUNC_EXPR
:
2157 real_trunc (&r
, VOIDmode
, &x
);
2164 /* If R is NaN, return zero and show we have an overflow. */
2165 if (REAL_VALUE_ISNAN (r
))
2172 /* See if R is less than the lower bound or greater than the
2177 tree lt
= TYPE_MIN_VALUE (type
);
2178 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2179 if (REAL_VALUES_LESS (r
, l
))
2182 high
= TREE_INT_CST_HIGH (lt
);
2183 low
= TREE_INT_CST_LOW (lt
);
2189 tree ut
= TYPE_MAX_VALUE (type
);
2192 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2193 if (REAL_VALUES_LESS (u
, r
))
2196 high
= TREE_INT_CST_HIGH (ut
);
2197 low
= TREE_INT_CST_LOW (ut
);
2203 REAL_VALUE_TO_INT (&low
, &high
, r
);
2205 t
= force_fit_type_double (type
, low
, high
, -1,
2206 overflow
| TREE_OVERFLOW (arg1
));
2210 /* A subroutine of fold_convert_const handling conversions of a
2211 FIXED_CST to an integer type. */
2214 fold_convert_const_int_from_fixed (tree type
, tree arg1
)
2217 double_int temp
, temp_trunc
;
2220 /* Right shift FIXED_CST to temp by fbit. */
2221 temp
= TREE_FIXED_CST (arg1
).data
;
2222 mode
= TREE_FIXED_CST (arg1
).mode
;
2223 if (GET_MODE_FBIT (mode
) < 2 * HOST_BITS_PER_WIDE_INT
)
2225 lshift_double (temp
.low
, temp
.high
,
2226 - GET_MODE_FBIT (mode
), 2 * HOST_BITS_PER_WIDE_INT
,
2227 &temp
.low
, &temp
.high
, SIGNED_FIXED_POINT_MODE_P (mode
));
2229 /* Left shift temp to temp_trunc by fbit. */
2230 lshift_double (temp
.low
, temp
.high
,
2231 GET_MODE_FBIT (mode
), 2 * HOST_BITS_PER_WIDE_INT
,
2232 &temp_trunc
.low
, &temp_trunc
.high
,
2233 SIGNED_FIXED_POINT_MODE_P (mode
));
2240 temp_trunc
.high
= 0;
2243 /* If FIXED_CST is negative, we need to round the value toward 0.
2244 By checking if the fractional bits are not zero to add 1 to temp. */
2245 if (SIGNED_FIXED_POINT_MODE_P (mode
) && temp_trunc
.high
< 0
2246 && !double_int_equal_p (TREE_FIXED_CST (arg1
).data
, temp_trunc
))
2251 temp
= double_int_add (temp
, one
);
2254 /* Given a fixed-point constant, make new constant with new type,
2255 appropriately sign-extended or truncated. */
2256 t
= force_fit_type_double (type
, temp
.low
, temp
.high
, -1,
2258 && (TYPE_UNSIGNED (type
)
2259 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2260 | TREE_OVERFLOW (arg1
));
2265 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2266 to another floating point type. */
2269 fold_convert_const_real_from_real (tree type
, tree arg1
)
2271 REAL_VALUE_TYPE value
;
2274 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2275 t
= build_real (type
, value
);
2277 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2281 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2282 to a floating point type. */
2285 fold_convert_const_real_from_fixed (tree type
, tree arg1
)
2287 REAL_VALUE_TYPE value
;
2290 real_convert_from_fixed (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
));
2291 t
= build_real (type
, value
);
2293 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2294 TREE_CONSTANT_OVERFLOW (t
)
2295 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg1
);
2299 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2300 to another fixed-point type. */
2303 fold_convert_const_fixed_from_fixed (tree type
, tree arg1
)
2305 FIXED_VALUE_TYPE value
;
2309 overflow_p
= fixed_convert (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
),
2310 TYPE_SATURATING (type
));
2311 t
= build_fixed (type
, value
);
2313 /* Propagate overflow flags. */
2314 if (overflow_p
| TREE_OVERFLOW (arg1
))
2316 TREE_OVERFLOW (t
) = 1;
2317 TREE_CONSTANT_OVERFLOW (t
) = 1;
2319 else if (TREE_CONSTANT_OVERFLOW (arg1
))
2320 TREE_CONSTANT_OVERFLOW (t
) = 1;
2324 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2325 to a fixed-point type. */
2328 fold_convert_const_fixed_from_int (tree type
, tree arg1
)
2330 FIXED_VALUE_TYPE value
;
2334 overflow_p
= fixed_convert_from_int (&value
, TYPE_MODE (type
),
2335 TREE_INT_CST (arg1
),
2336 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2337 TYPE_SATURATING (type
));
2338 t
= build_fixed (type
, value
);
2340 /* Propagate overflow flags. */
2341 if (overflow_p
| TREE_OVERFLOW (arg1
))
2343 TREE_OVERFLOW (t
) = 1;
2344 TREE_CONSTANT_OVERFLOW (t
) = 1;
2346 else if (TREE_CONSTANT_OVERFLOW (arg1
))
2347 TREE_CONSTANT_OVERFLOW (t
) = 1;
2351 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2352 to a fixed-point type. */
2355 fold_convert_const_fixed_from_real (tree type
, tree arg1
)
2357 FIXED_VALUE_TYPE value
;
2361 overflow_p
= fixed_convert_from_real (&value
, TYPE_MODE (type
),
2362 &TREE_REAL_CST (arg1
),
2363 TYPE_SATURATING (type
));
2364 t
= build_fixed (type
, value
);
2366 /* Propagate overflow flags. */
2367 if (overflow_p
| TREE_OVERFLOW (arg1
))
2369 TREE_OVERFLOW (t
) = 1;
2370 TREE_CONSTANT_OVERFLOW (t
) = 1;
2372 else if (TREE_CONSTANT_OVERFLOW (arg1
))
2373 TREE_CONSTANT_OVERFLOW (t
) = 1;
2377 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2378 type TYPE. If no simplification can be done return NULL_TREE. */
2381 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2383 if (TREE_TYPE (arg1
) == type
)
2386 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2388 if (TREE_CODE (arg1
) == INTEGER_CST
)
2389 return fold_convert_const_int_from_int (type
, arg1
);
2390 else if (TREE_CODE (arg1
) == REAL_CST
)
2391 return fold_convert_const_int_from_real (code
, type
, arg1
);
2392 else if (TREE_CODE (arg1
) == FIXED_CST
)
2393 return fold_convert_const_int_from_fixed (type
, arg1
);
2395 else if (TREE_CODE (type
) == REAL_TYPE
)
2397 if (TREE_CODE (arg1
) == INTEGER_CST
)
2398 return build_real_from_int_cst (type
, arg1
);
2399 else if (TREE_CODE (arg1
) == REAL_CST
)
2400 return fold_convert_const_real_from_real (type
, arg1
);
2401 else if (TREE_CODE (arg1
) == FIXED_CST
)
2402 return fold_convert_const_real_from_fixed (type
, arg1
);
2404 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2406 if (TREE_CODE (arg1
) == FIXED_CST
)
2407 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2408 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2409 return fold_convert_const_fixed_from_int (type
, arg1
);
2410 else if (TREE_CODE (arg1
) == REAL_CST
)
2411 return fold_convert_const_fixed_from_real (type
, arg1
);
2416 /* Construct a vector of zero elements of vector type TYPE. */
2419 build_zero_vector (tree type
)
2424 elem
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2425 units
= TYPE_VECTOR_SUBPARTS (type
);
2428 for (i
= 0; i
< units
; i
++)
2429 list
= tree_cons (NULL_TREE
, elem
, list
);
2430 return build_vector (type
, list
);
2433 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2436 fold_convertible_p (const_tree type
, const_tree arg
)
2438 tree orig
= TREE_TYPE (arg
);
2443 if (TREE_CODE (arg
) == ERROR_MARK
2444 || TREE_CODE (type
) == ERROR_MARK
2445 || TREE_CODE (orig
) == ERROR_MARK
)
2448 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2451 switch (TREE_CODE (type
))
2453 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2454 case POINTER_TYPE
: case REFERENCE_TYPE
:
2456 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2457 || TREE_CODE (orig
) == OFFSET_TYPE
)
2459 return (TREE_CODE (orig
) == VECTOR_TYPE
2460 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2463 return TREE_CODE (type
) == TREE_CODE (orig
);
2467 /* Convert expression ARG to type TYPE. Used by the middle-end for
2468 simple conversions in preference to calling the front-end's convert. */
2471 fold_convert (tree type
, tree arg
)
2473 tree orig
= TREE_TYPE (arg
);
2479 if (TREE_CODE (arg
) == ERROR_MARK
2480 || TREE_CODE (type
) == ERROR_MARK
2481 || TREE_CODE (orig
) == ERROR_MARK
)
2482 return error_mark_node
;
2484 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2485 return fold_build1 (NOP_EXPR
, type
, arg
);
2487 switch (TREE_CODE (type
))
2489 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2490 case POINTER_TYPE
: case REFERENCE_TYPE
:
2492 if (TREE_CODE (arg
) == INTEGER_CST
)
2494 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2495 if (tem
!= NULL_TREE
)
2498 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2499 || TREE_CODE (orig
) == OFFSET_TYPE
)
2500 return fold_build1 (NOP_EXPR
, type
, arg
);
2501 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2503 tem
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2504 return fold_convert (type
, tem
);
2506 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2507 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2508 return fold_build1 (NOP_EXPR
, type
, arg
);
2511 if (TREE_CODE (arg
) == INTEGER_CST
)
2513 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2514 if (tem
!= NULL_TREE
)
2517 else if (TREE_CODE (arg
) == REAL_CST
)
2519 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2520 if (tem
!= NULL_TREE
)
2523 else if (TREE_CODE (arg
) == FIXED_CST
)
2525 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2526 if (tem
!= NULL_TREE
)
2530 switch (TREE_CODE (orig
))
2533 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2534 case POINTER_TYPE
: case REFERENCE_TYPE
:
2535 return fold_build1 (FLOAT_EXPR
, type
, arg
);
2538 return fold_build1 (NOP_EXPR
, type
, arg
);
2540 case FIXED_POINT_TYPE
:
2541 return fold_build1 (FIXED_CONVERT_EXPR
, type
, arg
);
2544 tem
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2545 return fold_convert (type
, tem
);
2551 case FIXED_POINT_TYPE
:
2552 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2553 || TREE_CODE (arg
) == REAL_CST
)
2555 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2556 if (tem
!= NULL_TREE
)
2560 switch (TREE_CODE (orig
))
2562 case FIXED_POINT_TYPE
:
2567 return fold_build1 (FIXED_CONVERT_EXPR
, type
, arg
);
2570 tem
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2571 return fold_convert (type
, tem
);
2578 switch (TREE_CODE (orig
))
2581 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2582 case POINTER_TYPE
: case REFERENCE_TYPE
:
2584 case FIXED_POINT_TYPE
:
2585 return build2 (COMPLEX_EXPR
, type
,
2586 fold_convert (TREE_TYPE (type
), arg
),
2587 fold_convert (TREE_TYPE (type
), integer_zero_node
));
2592 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2594 rpart
= fold_convert (TREE_TYPE (type
), TREE_OPERAND (arg
, 0));
2595 ipart
= fold_convert (TREE_TYPE (type
), TREE_OPERAND (arg
, 1));
2596 return fold_build2 (COMPLEX_EXPR
, type
, rpart
, ipart
);
2599 arg
= save_expr (arg
);
2600 rpart
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2601 ipart
= fold_build1 (IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2602 rpart
= fold_convert (TREE_TYPE (type
), rpart
);
2603 ipart
= fold_convert (TREE_TYPE (type
), ipart
);
2604 return fold_build2 (COMPLEX_EXPR
, type
, rpart
, ipart
);
2612 if (integer_zerop (arg
))
2613 return build_zero_vector (type
);
2614 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2615 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2616 || TREE_CODE (orig
) == VECTOR_TYPE
);
2617 return fold_build1 (VIEW_CONVERT_EXPR
, type
, arg
);
2620 tem
= fold_ignored_result (arg
);
2621 if (TREE_CODE (tem
) == GIMPLE_MODIFY_STMT
)
2623 return fold_build1 (NOP_EXPR
, type
, tem
);
2630 /* Return false if expr can be assumed not to be an lvalue, true
2634 maybe_lvalue_p (tree x
)
2636 /* We only need to wrap lvalue tree codes. */
2637 switch (TREE_CODE (x
))
2648 case ALIGN_INDIRECT_REF
:
2649 case MISALIGNED_INDIRECT_REF
:
2651 case ARRAY_RANGE_REF
:
2657 case PREINCREMENT_EXPR
:
2658 case PREDECREMENT_EXPR
:
2660 case TRY_CATCH_EXPR
:
2661 case WITH_CLEANUP_EXPR
:
2664 case GIMPLE_MODIFY_STMT
:
2673 /* Assume the worst for front-end tree codes. */
2674 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2682 /* Return an expr equal to X but certainly not valid as an lvalue. */
2687 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2692 if (! maybe_lvalue_p (x
))
2694 return build1 (NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2697 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2698 Zero means allow extended lvalues. */
2700 int pedantic_lvalues
;
2702 /* When pedantic, return an expr equal to X but certainly not valid as a
2703 pedantic lvalue. Otherwise, return X. */
2706 pedantic_non_lvalue (tree x
)
2708 if (pedantic_lvalues
)
2709 return non_lvalue (x
);
2714 /* Given a tree comparison code, return the code that is the logical inverse
2715 of the given code. It is not safe to do this for floating-point
2716 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2717 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2720 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2722 if (honor_nans
&& flag_trapping_math
)
2732 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2734 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2736 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2738 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2752 return UNORDERED_EXPR
;
2753 case UNORDERED_EXPR
:
2754 return ORDERED_EXPR
;
2760 /* Similar, but return the comparison that results if the operands are
2761 swapped. This is safe for floating-point. */
2764 swap_tree_comparison (enum tree_code code
)
2771 case UNORDERED_EXPR
:
2797 /* Convert a comparison tree code from an enum tree_code representation
2798 into a compcode bit-based encoding. This function is the inverse of
2799 compcode_to_comparison. */
2801 static enum comparison_code
2802 comparison_to_compcode (enum tree_code code
)
2819 return COMPCODE_ORD
;
2820 case UNORDERED_EXPR
:
2821 return COMPCODE_UNORD
;
2823 return COMPCODE_UNLT
;
2825 return COMPCODE_UNEQ
;
2827 return COMPCODE_UNLE
;
2829 return COMPCODE_UNGT
;
2831 return COMPCODE_LTGT
;
2833 return COMPCODE_UNGE
;
2839 /* Convert a compcode bit-based encoding of a comparison operator back
2840 to GCC's enum tree_code representation. This function is the
2841 inverse of comparison_to_compcode. */
2843 static enum tree_code
2844 compcode_to_comparison (enum comparison_code code
)
2861 return ORDERED_EXPR
;
2862 case COMPCODE_UNORD
:
2863 return UNORDERED_EXPR
;
2881 /* Return a tree for the comparison which is the combination of
2882 doing the AND or OR (depending on CODE) of the two operations LCODE
2883 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2884 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2885 if this makes the transformation invalid. */
2888 combine_comparisons (enum tree_code code
, enum tree_code lcode
,
2889 enum tree_code rcode
, tree truth_type
,
2890 tree ll_arg
, tree lr_arg
)
2892 bool honor_nans
= HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg
)));
2893 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2894 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2895 enum comparison_code compcode
;
2899 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2900 compcode
= lcompcode
& rcompcode
;
2903 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2904 compcode
= lcompcode
| rcompcode
;
2913 /* Eliminate unordered comparisons, as well as LTGT and ORD
2914 which are not used unless the mode has NaNs. */
2915 compcode
&= ~COMPCODE_UNORD
;
2916 if (compcode
== COMPCODE_LTGT
)
2917 compcode
= COMPCODE_NE
;
2918 else if (compcode
== COMPCODE_ORD
)
2919 compcode
= COMPCODE_TRUE
;
2921 else if (flag_trapping_math
)
2923 /* Check that the original operation and the optimized ones will trap
2924 under the same condition. */
2925 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2926 && (lcompcode
!= COMPCODE_EQ
)
2927 && (lcompcode
!= COMPCODE_ORD
);
2928 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2929 && (rcompcode
!= COMPCODE_EQ
)
2930 && (rcompcode
!= COMPCODE_ORD
);
2931 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2932 && (compcode
!= COMPCODE_EQ
)
2933 && (compcode
!= COMPCODE_ORD
);
2935 /* In a short-circuited boolean expression the LHS might be
2936 such that the RHS, if evaluated, will never trap. For
2937 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2938 if neither x nor y is NaN. (This is a mixed blessing: for
2939 example, the expression above will never trap, hence
2940 optimizing it to x < y would be invalid). */
2941 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2942 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2945 /* If the comparison was short-circuited, and only the RHS
2946 trapped, we may now generate a spurious trap. */
2948 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2951 /* If we changed the conditions that cause a trap, we lose. */
2952 if ((ltrap
|| rtrap
) != trap
)
2956 if (compcode
== COMPCODE_TRUE
)
2957 return constant_boolean_node (true, truth_type
);
2958 else if (compcode
== COMPCODE_FALSE
)
2959 return constant_boolean_node (false, truth_type
);
2961 return fold_build2 (compcode_to_comparison (compcode
),
2962 truth_type
, ll_arg
, lr_arg
);
2965 /* Return nonzero if CODE is a tree code that represents a truth value. */
2968 truth_value_p (enum tree_code code
)
2970 return (TREE_CODE_CLASS (code
) == tcc_comparison
2971 || code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
2972 || code
== TRUTH_OR_EXPR
|| code
== TRUTH_ORIF_EXPR
2973 || code
== TRUTH_XOR_EXPR
|| code
== TRUTH_NOT_EXPR
);
2976 /* Return nonzero if two operands (typically of the same tree node)
2977 are necessarily equal. If either argument has side-effects this
2978 function returns zero. FLAGS modifies behavior as follows:
2980 If OEP_ONLY_CONST is set, only return nonzero for constants.
2981 This function tests whether the operands are indistinguishable;
2982 it does not test whether they are equal using C's == operation.
2983 The distinction is important for IEEE floating point, because
2984 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2985 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2987 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2988 even though it may hold multiple values during a function.
2989 This is because a GCC tree node guarantees that nothing else is
2990 executed between the evaluation of its "operands" (which may often
2991 be evaluated in arbitrary order). Hence if the operands themselves
2992 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2993 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2994 unset means assuming isochronic (or instantaneous) tree equivalence.
2995 Unless comparing arbitrary expression trees, such as from different
2996 statements, this flag can usually be left unset.
2998 If OEP_PURE_SAME is set, then pure functions with identical arguments
2999 are considered the same. It is used when the caller has other ways
3000 to ensure that global memory is unchanged in between. */
3003 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
3005 /* If either is ERROR_MARK, they aren't equal. */
3006 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
)
3009 /* If both types don't have the same signedness, then we can't consider
3010 them equal. We must check this before the STRIP_NOPS calls
3011 because they may change the signedness of the arguments. */
3012 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3015 /* If both types don't have the same precision, then it is not safe
3017 if (TYPE_PRECISION (TREE_TYPE (arg0
)) != TYPE_PRECISION (TREE_TYPE (arg1
)))
3023 /* In case both args are comparisons but with different comparison
3024 code, try to swap the comparison operands of one arg to produce
3025 a match and compare that variant. */
3026 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3027 && COMPARISON_CLASS_P (arg0
)
3028 && COMPARISON_CLASS_P (arg1
))
3030 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
3032 if (TREE_CODE (arg0
) == swap_code
)
3033 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3034 TREE_OPERAND (arg1
, 1), flags
)
3035 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3036 TREE_OPERAND (arg1
, 0), flags
);
3039 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3040 /* This is needed for conversions and for COMPONENT_REF.
3041 Might as well play it safe and always test this. */
3042 || TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3043 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3044 || TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
)))
3047 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3048 We don't care about side effects in that case because the SAVE_EXPR
3049 takes care of that for us. In all other cases, two expressions are
3050 equal if they have no side effects. If we have two identical
3051 expressions with side effects that should be treated the same due
3052 to the only side effects being identical SAVE_EXPR's, that will
3053 be detected in the recursive calls below. */
3054 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3055 && (TREE_CODE (arg0
) == SAVE_EXPR
3056 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3059 /* Next handle constant cases, those for which we can return 1 even
3060 if ONLY_CONST is set. */
3061 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3062 switch (TREE_CODE (arg0
))
3065 return tree_int_cst_equal (arg0
, arg1
);
3068 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3069 TREE_FIXED_CST (arg1
));
3072 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0
),
3073 TREE_REAL_CST (arg1
)))
3077 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
))))
3079 /* If we do not distinguish between signed and unsigned zero,
3080 consider them equal. */
3081 if (real_zerop (arg0
) && real_zerop (arg1
))
3090 v1
= TREE_VECTOR_CST_ELTS (arg0
);
3091 v2
= TREE_VECTOR_CST_ELTS (arg1
);
3094 if (!operand_equal_p (TREE_VALUE (v1
), TREE_VALUE (v2
),
3097 v1
= TREE_CHAIN (v1
);
3098 v2
= TREE_CHAIN (v2
);
3105 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3107 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3111 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3112 && ! memcmp (TREE_STRING_POINTER (arg0
),
3113 TREE_STRING_POINTER (arg1
),
3114 TREE_STRING_LENGTH (arg0
)));
3117 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3123 if (flags
& OEP_ONLY_CONST
)
3126 /* Define macros to test an operand from arg0 and arg1 for equality and a
3127 variant that allows null and views null as being different from any
3128 non-null value. In the latter case, if either is null, the both
3129 must be; otherwise, do the normal comparison. */
3130 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3131 TREE_OPERAND (arg1, N), flags)
3133 #define OP_SAME_WITH_NULL(N) \
3134 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3135 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3137 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3140 /* Two conversions are equal only if signedness and modes match. */
3141 switch (TREE_CODE (arg0
))
3145 case FIX_TRUNC_EXPR
:
3146 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3147 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3157 case tcc_comparison
:
3159 if (OP_SAME (0) && OP_SAME (1))
3162 /* For commutative ops, allow the other order. */
3163 return (commutative_tree_code (TREE_CODE (arg0
))
3164 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3165 TREE_OPERAND (arg1
, 1), flags
)
3166 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3167 TREE_OPERAND (arg1
, 0), flags
));
3170 /* If either of the pointer (or reference) expressions we are
3171 dereferencing contain a side effect, these cannot be equal. */
3172 if (TREE_SIDE_EFFECTS (arg0
)
3173 || TREE_SIDE_EFFECTS (arg1
))
3176 switch (TREE_CODE (arg0
))
3179 case ALIGN_INDIRECT_REF
:
3180 case MISALIGNED_INDIRECT_REF
:
3186 case ARRAY_RANGE_REF
:
3187 /* Operands 2 and 3 may be null.
3188 Compare the array index by value if it is constant first as we
3189 may have different types but same value here. */
3191 && (tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3192 TREE_OPERAND (arg1
, 1))
3194 && OP_SAME_WITH_NULL (2)
3195 && OP_SAME_WITH_NULL (3));
3198 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3199 may be NULL when we're called to compare MEM_EXPRs. */
3200 return OP_SAME_WITH_NULL (0)
3202 && OP_SAME_WITH_NULL (2);
3205 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3211 case tcc_expression
:
3212 switch (TREE_CODE (arg0
))
3215 case TRUTH_NOT_EXPR
:
3218 case TRUTH_ANDIF_EXPR
:
3219 case TRUTH_ORIF_EXPR
:
3220 return OP_SAME (0) && OP_SAME (1);
3222 case TRUTH_AND_EXPR
:
3224 case TRUTH_XOR_EXPR
:
3225 if (OP_SAME (0) && OP_SAME (1))
3228 /* Otherwise take into account this is a commutative operation. */
3229 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3230 TREE_OPERAND (arg1
, 1), flags
)
3231 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3232 TREE_OPERAND (arg1
, 0), flags
));
3239 switch (TREE_CODE (arg0
))
3242 /* If the CALL_EXPRs call different functions, then they
3243 clearly can not be equal. */
3244 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3249 unsigned int cef
= call_expr_flags (arg0
);
3250 if (flags
& OEP_PURE_SAME
)
3251 cef
&= ECF_CONST
| ECF_PURE
;
3258 /* Now see if all the arguments are the same. */
3260 const_call_expr_arg_iterator iter0
, iter1
;
3262 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3263 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3265 a0
= next_const_call_expr_arg (&iter0
),
3266 a1
= next_const_call_expr_arg (&iter1
))
3267 if (! operand_equal_p (a0
, a1
, flags
))
3270 /* If we get here and both argument lists are exhausted
3271 then the CALL_EXPRs are equal. */
3272 return ! (a0
|| a1
);
3278 case tcc_declaration
:
3279 /* Consider __builtin_sqrt equal to sqrt. */
3280 return (TREE_CODE (arg0
) == FUNCTION_DECL
3281 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3282 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3283 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3290 #undef OP_SAME_WITH_NULL
3293 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3294 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3296 When in doubt, return 0. */
3299 operand_equal_for_comparison_p (tree arg0
, tree arg1
, tree other
)
3301 int unsignedp1
, unsignedpo
;
3302 tree primarg0
, primarg1
, primother
;
3303 unsigned int correct_width
;
3305 if (operand_equal_p (arg0
, arg1
, 0))
3308 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3309 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3312 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3313 and see if the inner values are the same. This removes any
3314 signedness comparison, which doesn't matter here. */
3315 primarg0
= arg0
, primarg1
= arg1
;
3316 STRIP_NOPS (primarg0
);
3317 STRIP_NOPS (primarg1
);
3318 if (operand_equal_p (primarg0
, primarg1
, 0))
3321 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3322 actual comparison operand, ARG0.
3324 First throw away any conversions to wider types
3325 already present in the operands. */
3327 primarg1
= get_narrower (arg1
, &unsignedp1
);
3328 primother
= get_narrower (other
, &unsignedpo
);
3330 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
3331 if (unsignedp1
== unsignedpo
3332 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
3333 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
3335 tree type
= TREE_TYPE (arg0
);
3337 /* Make sure shorter operand is extended the right way
3338 to match the longer operand. */
3339 primarg1
= fold_convert (signed_or_unsigned_type_for
3340 (unsignedp1
, TREE_TYPE (primarg1
)), primarg1
);
3342 if (operand_equal_p (arg0
, fold_convert (type
, primarg1
), 0))
3349 /* See if ARG is an expression that is either a comparison or is performing
3350 arithmetic on comparisons. The comparisons must only be comparing
3351 two different values, which will be stored in *CVAL1 and *CVAL2; if
3352 they are nonzero it means that some operands have already been found.
3353 No variables may be used anywhere else in the expression except in the
3354 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3355 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3357 If this is true, return 1. Otherwise, return zero. */
3360 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
3362 enum tree_code code
= TREE_CODE (arg
);
3363 enum tree_code_class
class = TREE_CODE_CLASS (code
);
3365 /* We can handle some of the tcc_expression cases here. */
3366 if (class == tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3368 else if (class == tcc_expression
3369 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3370 || code
== COMPOUND_EXPR
))
3373 else if (class == tcc_expression
&& code
== SAVE_EXPR
3374 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
3376 /* If we've already found a CVAL1 or CVAL2, this expression is
3377 two complex to handle. */
3378 if (*cval1
|| *cval2
)
3388 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
3391 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
3392 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3393 cval1
, cval2
, save_p
));
3398 case tcc_expression
:
3399 if (code
== COND_EXPR
)
3400 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
3401 cval1
, cval2
, save_p
)
3402 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3403 cval1
, cval2
, save_p
)
3404 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
3405 cval1
, cval2
, save_p
));
3408 case tcc_comparison
:
3409 /* First see if we can handle the first operand, then the second. For
3410 the second operand, we know *CVAL1 can't be zero. It must be that
3411 one side of the comparison is each of the values; test for the
3412 case where this isn't true by failing if the two operands
3415 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3416 TREE_OPERAND (arg
, 1), 0))
3420 *cval1
= TREE_OPERAND (arg
, 0);
3421 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3423 else if (*cval2
== 0)
3424 *cval2
= TREE_OPERAND (arg
, 0);
3425 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3430 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3432 else if (*cval2
== 0)
3433 *cval2
= TREE_OPERAND (arg
, 1);
3434 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3446 /* ARG is a tree that is known to contain just arithmetic operations and
3447 comparisons. Evaluate the operations in the tree substituting NEW0 for
3448 any occurrence of OLD0 as an operand of a comparison and likewise for
3452 eval_subst (tree arg
, tree old0
, tree new0
, tree old1
, tree new1
)
3454 tree type
= TREE_TYPE (arg
);
3455 enum tree_code code
= TREE_CODE (arg
);
3456 enum tree_code_class
class = TREE_CODE_CLASS (code
);
3458 /* We can handle some of the tcc_expression cases here. */
3459 if (class == tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3461 else if (class == tcc_expression
3462 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3468 return fold_build1 (code
, type
,
3469 eval_subst (TREE_OPERAND (arg
, 0),
3470 old0
, new0
, old1
, new1
));
3473 return fold_build2 (code
, type
,
3474 eval_subst (TREE_OPERAND (arg
, 0),
3475 old0
, new0
, old1
, new1
),
3476 eval_subst (TREE_OPERAND (arg
, 1),
3477 old0
, new0
, old1
, new1
));
3479 case tcc_expression
:
3483 return eval_subst (TREE_OPERAND (arg
, 0), old0
, new0
, old1
, new1
);
3486 return eval_subst (TREE_OPERAND (arg
, 1), old0
, new0
, old1
, new1
);
3489 return fold_build3 (code
, type
,
3490 eval_subst (TREE_OPERAND (arg
, 0),
3491 old0
, new0
, old1
, new1
),
3492 eval_subst (TREE_OPERAND (arg
, 1),
3493 old0
, new0
, old1
, new1
),
3494 eval_subst (TREE_OPERAND (arg
, 2),
3495 old0
, new0
, old1
, new1
));
3499 /* Fall through - ??? */
3501 case tcc_comparison
:
3503 tree arg0
= TREE_OPERAND (arg
, 0);
3504 tree arg1
= TREE_OPERAND (arg
, 1);
3506 /* We need to check both for exact equality and tree equality. The
3507 former will be true if the operand has a side-effect. In that
3508 case, we know the operand occurred exactly once. */
3510 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3512 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3515 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3517 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3520 return fold_build2 (code
, type
, arg0
, arg1
);
3528 /* Return a tree for the case when the result of an expression is RESULT
3529 converted to TYPE and OMITTED was previously an operand of the expression
3530 but is now not needed (e.g., we folded OMITTED * 0).
3532 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3533 the conversion of RESULT to TYPE. */
3536 omit_one_operand (tree type
, tree result
, tree omitted
)
3538 tree t
= fold_convert (type
, result
);
3540 /* If the resulting operand is an empty statement, just return the ommited
3541 statement casted to void. */
3542 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3543 return build1 (NOP_EXPR
, void_type_node
, fold_ignored_result (omitted
));
3545 if (TREE_SIDE_EFFECTS (omitted
))
3546 return build2 (COMPOUND_EXPR
, type
, fold_ignored_result (omitted
), t
);
3548 return non_lvalue (t
);
3551 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3554 pedantic_omit_one_operand (tree type
, tree result
, tree omitted
)
3556 tree t
= fold_convert (type
, result
);
3558 /* If the resulting operand is an empty statement, just return the ommited
3559 statement casted to void. */
3560 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3561 return build1 (NOP_EXPR
, void_type_node
, fold_ignored_result (omitted
));
3563 if (TREE_SIDE_EFFECTS (omitted
))
3564 return build2 (COMPOUND_EXPR
, type
, fold_ignored_result (omitted
), t
);
3566 return pedantic_non_lvalue (t
);
3569 /* Return a tree for the case when the result of an expression is RESULT
3570 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3571 of the expression but are now not needed.
3573 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3574 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3575 evaluated before OMITTED2. Otherwise, if neither has side effects,
3576 just do the conversion of RESULT to TYPE. */
3579 omit_two_operands (tree type
, tree result
, tree omitted1
, tree omitted2
)
3581 tree t
= fold_convert (type
, result
);
3583 if (TREE_SIDE_EFFECTS (omitted2
))
3584 t
= build2 (COMPOUND_EXPR
, type
, omitted2
, t
);
3585 if (TREE_SIDE_EFFECTS (omitted1
))
3586 t
= build2 (COMPOUND_EXPR
, type
, omitted1
, t
);
3588 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue (t
) : t
;
3592 /* Return a simplified tree node for the truth-negation of ARG. This
3593 never alters ARG itself. We assume that ARG is an operation that
3594 returns a truth value (0 or 1).
3596 FIXME: one would think we would fold the result, but it causes
3597 problems with the dominator optimizer. */
3600 fold_truth_not_expr (tree arg
)
3602 tree type
= TREE_TYPE (arg
);
3603 enum tree_code code
= TREE_CODE (arg
);
3605 /* If this is a comparison, we can simply invert it, except for
3606 floating-point non-equality comparisons, in which case we just
3607 enclose a TRUTH_NOT_EXPR around what we have. */
3609 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3611 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3612 if (FLOAT_TYPE_P (op_type
)
3613 && flag_trapping_math
3614 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3615 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3619 code
= invert_tree_comparison (code
,
3620 HONOR_NANS (TYPE_MODE (op_type
)));
3621 if (code
== ERROR_MARK
)
3624 return build2 (code
, type
,
3625 TREE_OPERAND (arg
, 0), TREE_OPERAND (arg
, 1));
3632 return constant_boolean_node (integer_zerop (arg
), type
);
3634 case TRUTH_AND_EXPR
:
3635 return build2 (TRUTH_OR_EXPR
, type
,
3636 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3637 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3640 return build2 (TRUTH_AND_EXPR
, type
,
3641 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3642 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3644 case TRUTH_XOR_EXPR
:
3645 /* Here we can invert either operand. We invert the first operand
3646 unless the second operand is a TRUTH_NOT_EXPR in which case our
3647 result is the XOR of the first operand with the inside of the
3648 negation of the second operand. */
3650 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3651 return build2 (TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3652 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3654 return build2 (TRUTH_XOR_EXPR
, type
,
3655 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3656 TREE_OPERAND (arg
, 1));
3658 case TRUTH_ANDIF_EXPR
:
3659 return build2 (TRUTH_ORIF_EXPR
, type
,
3660 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3661 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3663 case TRUTH_ORIF_EXPR
:
3664 return build2 (TRUTH_ANDIF_EXPR
, type
,
3665 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3666 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3668 case TRUTH_NOT_EXPR
:
3669 return TREE_OPERAND (arg
, 0);
3673 tree arg1
= TREE_OPERAND (arg
, 1);
3674 tree arg2
= TREE_OPERAND (arg
, 2);
3675 /* A COND_EXPR may have a throw as one operand, which
3676 then has void type. Just leave void operands
3678 return build3 (COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3679 VOID_TYPE_P (TREE_TYPE (arg1
))
3680 ? arg1
: invert_truthvalue (arg1
),
3681 VOID_TYPE_P (TREE_TYPE (arg2
))
3682 ? arg2
: invert_truthvalue (arg2
));
3686 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3687 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3689 case NON_LVALUE_EXPR
:
3690 return invert_truthvalue (TREE_OPERAND (arg
, 0));
3693 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3694 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
3698 return build1 (TREE_CODE (arg
), type
,
3699 invert_truthvalue (TREE_OPERAND (arg
, 0)));
3702 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3704 return build2 (EQ_EXPR
, type
, arg
,
3705 build_int_cst (type
, 0));
3708 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
3710 case CLEANUP_POINT_EXPR
:
3711 return build1 (CLEANUP_POINT_EXPR
, type
,
3712 invert_truthvalue (TREE_OPERAND (arg
, 0)));
3721 /* Return a simplified tree node for the truth-negation of ARG. This
3722 never alters ARG itself. We assume that ARG is an operation that
3723 returns a truth value (0 or 1).
3725 FIXME: one would think we would fold the result, but it causes
3726 problems with the dominator optimizer. */
3729 invert_truthvalue (tree arg
)
3733 if (TREE_CODE (arg
) == ERROR_MARK
)
3736 tem
= fold_truth_not_expr (arg
);
3738 tem
= build1 (TRUTH_NOT_EXPR
, TREE_TYPE (arg
), arg
);
3743 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3744 operands are another bit-wise operation with a common input. If so,
3745 distribute the bit operations to save an operation and possibly two if
3746 constants are involved. For example, convert
3747 (A | B) & (A | C) into A | (B & C)
3748 Further simplification will occur if B and C are constants.
3750 If this optimization cannot be done, 0 will be returned. */
3753 distribute_bit_expr (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
3758 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3759 || TREE_CODE (arg0
) == code
3760 || (TREE_CODE (arg0
) != BIT_AND_EXPR
3761 && TREE_CODE (arg0
) != BIT_IOR_EXPR
))
3764 if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0), 0))
3766 common
= TREE_OPERAND (arg0
, 0);
3767 left
= TREE_OPERAND (arg0
, 1);
3768 right
= TREE_OPERAND (arg1
, 1);
3770 else if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1), 0))
3772 common
= TREE_OPERAND (arg0
, 0);
3773 left
= TREE_OPERAND (arg0
, 1);
3774 right
= TREE_OPERAND (arg1
, 0);
3776 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 0), 0))
3778 common
= TREE_OPERAND (arg0
, 1);
3779 left
= TREE_OPERAND (arg0
, 0);
3780 right
= TREE_OPERAND (arg1
, 1);
3782 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 1), 0))
3784 common
= TREE_OPERAND (arg0
, 1);
3785 left
= TREE_OPERAND (arg0
, 0);
3786 right
= TREE_OPERAND (arg1
, 0);
3791 return fold_build2 (TREE_CODE (arg0
), type
, common
,
3792 fold_build2 (code
, type
, left
, right
));
3795 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3796 with code CODE. This optimization is unsafe. */
3798 distribute_real_division (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
3800 bool mul0
= TREE_CODE (arg0
) == MULT_EXPR
;
3801 bool mul1
= TREE_CODE (arg1
) == MULT_EXPR
;
3803 /* (A / C) +- (B / C) -> (A +- B) / C. */
3805 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3806 TREE_OPERAND (arg1
, 1), 0))
3807 return fold_build2 (mul0
? MULT_EXPR
: RDIV_EXPR
, type
,
3808 fold_build2 (code
, type
,
3809 TREE_OPERAND (arg0
, 0),
3810 TREE_OPERAND (arg1
, 0)),
3811 TREE_OPERAND (arg0
, 1));
3813 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3814 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
3815 TREE_OPERAND (arg1
, 0), 0)
3816 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
3817 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
3819 REAL_VALUE_TYPE r0
, r1
;
3820 r0
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
3821 r1
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
3823 real_arithmetic (&r0
, RDIV_EXPR
, &dconst1
, &r0
);
3825 real_arithmetic (&r1
, RDIV_EXPR
, &dconst1
, &r1
);
3826 real_arithmetic (&r0
, code
, &r0
, &r1
);
3827 return fold_build2 (MULT_EXPR
, type
,
3828 TREE_OPERAND (arg0
, 0),
3829 build_real (type
, r0
));
3835 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3836 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3839 make_bit_field_ref (tree inner
, tree type
, int bitsize
, int bitpos
,
3846 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3847 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3848 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3849 && host_integerp (size
, 0)
3850 && tree_low_cst (size
, 0) == bitsize
)
3851 return fold_convert (type
, inner
);
3854 result
= build3 (BIT_FIELD_REF
, type
, inner
,
3855 size_int (bitsize
), bitsize_int (bitpos
));
3857 BIT_FIELD_REF_UNSIGNED (result
) = unsignedp
;
3862 /* Optimize a bit-field compare.
3864 There are two cases: First is a compare against a constant and the
3865 second is a comparison of two items where the fields are at the same
3866 bit position relative to the start of a chunk (byte, halfword, word)
3867 large enough to contain it. In these cases we can avoid the shift
3868 implicit in bitfield extractions.
3870 For constants, we emit a compare of the shifted constant with the
3871 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3872 compared. For two fields at the same position, we do the ANDs with the
3873 similar mask and compare the result of the ANDs.
3875 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3876 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3877 are the left and right operands of the comparison, respectively.
3879 If the optimization described above can be done, we return the resulting
3880 tree. Otherwise we return zero. */
3883 optimize_bit_field_compare (enum tree_code code
, tree compare_type
,
3886 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3887 tree type
= TREE_TYPE (lhs
);
3888 tree signed_type
, unsigned_type
;
3889 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3890 enum machine_mode lmode
, rmode
, nmode
;
3891 int lunsignedp
, runsignedp
;
3892 int lvolatilep
= 0, rvolatilep
= 0;
3893 tree linner
, rinner
= NULL_TREE
;
3897 /* Get all the information about the extractions being done. If the bit size
3898 if the same as the size of the underlying object, we aren't doing an
3899 extraction at all and so can do nothing. We also don't want to
3900 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3901 then will no longer be able to replace it. */
3902 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3903 &lunsignedp
, &lvolatilep
, false);
3904 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3905 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
)
3910 /* If this is not a constant, we can only do something if bit positions,
3911 sizes, and signedness are the same. */
3912 rinner
= get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3913 &runsignedp
, &rvolatilep
, false);
3915 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3916 || lunsignedp
!= runsignedp
|| offset
!= 0
3917 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
)
3921 /* See if we can find a mode to refer to this field. We should be able to,
3922 but fail if we can't. */
3923 nmode
= get_best_mode (lbitsize
, lbitpos
,
3924 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3925 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3926 TYPE_ALIGN (TREE_TYPE (rinner
))),
3927 word_mode
, lvolatilep
|| rvolatilep
);
3928 if (nmode
== VOIDmode
)
3931 /* Set signed and unsigned types of the precision of this mode for the
3933 signed_type
= lang_hooks
.types
.type_for_mode (nmode
, 0);
3934 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3936 /* Compute the bit position and size for the new reference and our offset
3937 within it. If the new reference is the same size as the original, we
3938 won't optimize anything, so return zero. */
3939 nbitsize
= GET_MODE_BITSIZE (nmode
);
3940 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3942 if (nbitsize
== lbitsize
)
3945 if (BYTES_BIG_ENDIAN
)
3946 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3948 /* Make the mask to be used against the extracted field. */
3949 mask
= build_int_cst_type (unsigned_type
, -1);
3950 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
), 0);
3951 mask
= const_binop (RSHIFT_EXPR
, mask
,
3952 size_int (nbitsize
- lbitsize
- lbitpos
), 0);
3955 /* If not comparing with constant, just rework the comparison
3957 return fold_build2 (code
, compare_type
,
3958 fold_build2 (BIT_AND_EXPR
, unsigned_type
,
3959 make_bit_field_ref (linner
,
3964 fold_build2 (BIT_AND_EXPR
, unsigned_type
,
3965 make_bit_field_ref (rinner
,
3971 /* Otherwise, we are handling the constant case. See if the constant is too
3972 big for the field. Warn and return a tree of for 0 (false) if so. We do
3973 this not only for its own sake, but to avoid having to test for this
3974 error case below. If we didn't, we might generate wrong code.
3976 For unsigned fields, the constant shifted right by the field length should
3977 be all zero. For signed fields, the high-order bits should agree with
3982 if (! integer_zerop (const_binop (RSHIFT_EXPR
,
3983 fold_convert (unsigned_type
, rhs
),
3984 size_int (lbitsize
), 0)))
3986 warning (0, "comparison is always %d due to width of bit-field",
3988 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3993 tree tem
= const_binop (RSHIFT_EXPR
, fold_convert (signed_type
, rhs
),
3994 size_int (lbitsize
- 1), 0);
3995 if (! integer_zerop (tem
) && ! integer_all_onesp (tem
))
3997 warning (0, "comparison is always %d due to width of bit-field",
3999 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4003 /* Single-bit compares should always be against zero. */
4004 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4006 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4007 rhs
= build_int_cst (type
, 0);
4010 /* Make a new bitfield reference, shift the constant over the
4011 appropriate number of bits and mask it with the computed mask
4012 (in case this was a signed field). If we changed it, make a new one. */
4013 lhs
= make_bit_field_ref (linner
, unsigned_type
, nbitsize
, nbitpos
, 1);
4016 TREE_SIDE_EFFECTS (lhs
) = 1;
4017 TREE_THIS_VOLATILE (lhs
) = 1;
4020 rhs
= const_binop (BIT_AND_EXPR
,
4021 const_binop (LSHIFT_EXPR
,
4022 fold_convert (unsigned_type
, rhs
),
4023 size_int (lbitpos
), 0),
4026 return build2 (code
, compare_type
,
4027 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
),
4031 /* Subroutine for fold_truthop: decode a field reference.
4033 If EXP is a comparison reference, we return the innermost reference.
4035 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4036 set to the starting bit number.
4038 If the innermost field can be completely contained in a mode-sized
4039 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4041 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4042 otherwise it is not changed.
4044 *PUNSIGNEDP is set to the signedness of the field.
4046 *PMASK is set to the mask used. This is either contained in a
4047 BIT_AND_EXPR or derived from the width of the field.
4049 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4051 Return 0 if this is not a component reference or is one that we can't
4052 do anything with. */
4055 decode_field_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
4056 HOST_WIDE_INT
*pbitpos
, enum machine_mode
*pmode
,
4057 int *punsignedp
, int *pvolatilep
,
4058 tree
*pmask
, tree
*pand_mask
)
4060 tree outer_type
= 0;
4062 tree mask
, inner
, offset
;
4064 unsigned int precision
;
4066 /* All the optimizations using this function assume integer fields.
4067 There are problems with FP fields since the type_for_size call
4068 below can fail for, e.g., XFmode. */
4069 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4072 /* We are interested in the bare arrangement of bits, so strip everything
4073 that doesn't affect the machine mode. However, record the type of the
4074 outermost expression if it may matter below. */
4075 if (TREE_CODE (exp
) == NOP_EXPR
4076 || TREE_CODE (exp
) == CONVERT_EXPR
4077 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4078 outer_type
= TREE_TYPE (exp
);
4081 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4083 and_mask
= TREE_OPERAND (exp
, 1);
4084 exp
= TREE_OPERAND (exp
, 0);
4085 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4086 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4090 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
4091 punsignedp
, pvolatilep
, false);
4092 if ((inner
== exp
&& and_mask
== 0)
4093 || *pbitsize
< 0 || offset
!= 0
4094 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
4097 /* If the number of bits in the reference is the same as the bitsize of
4098 the outer type, then the outer type gives the signedness. Otherwise
4099 (in case of a small bitfield) the signedness is unchanged. */
4100 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4101 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4103 /* Compute the mask to access the bitfield. */
4104 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4105 precision
= TYPE_PRECISION (unsigned_type
);
4107 mask
= build_int_cst_type (unsigned_type
, -1);
4109 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
), 0);
4110 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
), 0);
4112 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4114 mask
= fold_build2 (BIT_AND_EXPR
, unsigned_type
,
4115 fold_convert (unsigned_type
, and_mask
), mask
);
4118 *pand_mask
= and_mask
;
4122 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4126 all_ones_mask_p (tree mask
, int size
)
4128 tree type
= TREE_TYPE (mask
);
4129 unsigned int precision
= TYPE_PRECISION (type
);
4132 tmask
= build_int_cst_type (signed_type_for (type
), -1);
4135 tree_int_cst_equal (mask
,
4136 const_binop (RSHIFT_EXPR
,
4137 const_binop (LSHIFT_EXPR
, tmask
,
4138 size_int (precision
- size
),
4140 size_int (precision
- size
), 0));
4143 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4144 represents the sign bit of EXP's type. If EXP represents a sign
4145 or zero extension, also test VAL against the unextended type.
4146 The return value is the (sub)expression whose sign bit is VAL,
4147 or NULL_TREE otherwise. */
4150 sign_bit_p (tree exp
, tree val
)
4152 unsigned HOST_WIDE_INT mask_lo
, lo
;
4153 HOST_WIDE_INT mask_hi
, hi
;
4157 /* Tree EXP must have an integral type. */
4158 t
= TREE_TYPE (exp
);
4159 if (! INTEGRAL_TYPE_P (t
))
4162 /* Tree VAL must be an integer constant. */
4163 if (TREE_CODE (val
) != INTEGER_CST
4164 || TREE_OVERFLOW (val
))
4167 width
= TYPE_PRECISION (t
);
4168 if (width
> HOST_BITS_PER_WIDE_INT
)
4170 hi
= (unsigned HOST_WIDE_INT
) 1 << (width
- HOST_BITS_PER_WIDE_INT
- 1);
4173 mask_hi
= ((unsigned HOST_WIDE_INT
) -1
4174 >> (2 * HOST_BITS_PER_WIDE_INT
- width
));
4180 lo
= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
4183 mask_lo
= ((unsigned HOST_WIDE_INT
) -1
4184 >> (HOST_BITS_PER_WIDE_INT
- width
));
4187 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
4188 treat VAL as if it were unsigned. */
4189 if ((TREE_INT_CST_HIGH (val
) & mask_hi
) == hi
4190 && (TREE_INT_CST_LOW (val
) & mask_lo
) == lo
)
4193 /* Handle extension from a narrower type. */
4194 if (TREE_CODE (exp
) == NOP_EXPR
4195 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4196 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4201 /* Subroutine for fold_truthop: determine if an operand is simple enough
4202 to be evaluated unconditionally. */
4205 simple_operand_p (tree exp
)
4207 /* Strip any conversions that don't change the machine mode. */
4210 return (CONSTANT_CLASS_P (exp
)
4211 || TREE_CODE (exp
) == SSA_NAME
4213 && ! TREE_ADDRESSABLE (exp
)
4214 && ! TREE_THIS_VOLATILE (exp
)
4215 && ! DECL_NONLOCAL (exp
)
4216 /* Don't regard global variables as simple. They may be
4217 allocated in ways unknown to the compiler (shared memory,
4218 #pragma weak, etc). */
4219 && ! TREE_PUBLIC (exp
)
4220 && ! DECL_EXTERNAL (exp
)
4221 /* Loading a static variable is unduly expensive, but global
4222 registers aren't expensive. */
4223 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4226 /* The following functions are subroutines to fold_range_test and allow it to
4227 try to change a logical combination of comparisons into a range test.
4230 X == 2 || X == 3 || X == 4 || X == 5
4234 (unsigned) (X - 2) <= 3
4236 We describe each set of comparisons as being either inside or outside
4237 a range, using a variable named like IN_P, and then describe the
4238 range with a lower and upper bound. If one of the bounds is omitted,
4239 it represents either the highest or lowest value of the type.
4241 In the comments below, we represent a range by two numbers in brackets
4242 preceded by a "+" to designate being inside that range, or a "-" to
4243 designate being outside that range, so the condition can be inverted by
4244 flipping the prefix. An omitted bound is represented by a "-". For
4245 example, "- [-, 10]" means being outside the range starting at the lowest
4246 possible value and ending at 10, in other words, being greater than 10.
4247 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4250 We set up things so that the missing bounds are handled in a consistent
4251 manner so neither a missing bound nor "true" and "false" need to be
4252 handled using a special case. */
4254 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4255 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4256 and UPPER1_P are nonzero if the respective argument is an upper bound
4257 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4258 must be specified for a comparison. ARG1 will be converted to ARG0's
4259 type if both are specified. */
4262 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4263 tree arg1
, int upper1_p
)
4269 /* If neither arg represents infinity, do the normal operation.
4270 Else, if not a comparison, return infinity. Else handle the special
4271 comparison rules. Note that most of the cases below won't occur, but
4272 are handled for consistency. */
4274 if (arg0
!= 0 && arg1
!= 0)
4276 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4277 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4279 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4282 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4285 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4286 for neither. In real maths, we cannot assume open ended ranges are
4287 the same. But, this is computer arithmetic, where numbers are finite.
4288 We can therefore make the transformation of any unbounded range with
4289 the value Z, Z being greater than any representable number. This permits
4290 us to treat unbounded ranges as equal. */
4291 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4292 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4296 result
= sgn0
== sgn1
;
4299 result
= sgn0
!= sgn1
;
4302 result
= sgn0
< sgn1
;
4305 result
= sgn0
<= sgn1
;
4308 result
= sgn0
> sgn1
;
4311 result
= sgn0
>= sgn1
;
4317 return constant_boolean_node (result
, type
);
4320 /* Given EXP, a logical expression, set the range it is testing into
4321 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4322 actually being tested. *PLOW and *PHIGH will be made of the same
4323 type as the returned expression. If EXP is not a comparison, we
4324 will most likely not be returning a useful value and range. Set
4325 *STRICT_OVERFLOW_P to true if the return value is only valid
4326 because signed overflow is undefined; otherwise, do not change
4327 *STRICT_OVERFLOW_P. */
4330 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4331 bool *strict_overflow_p
)
4333 enum tree_code code
;
4334 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
4335 tree exp_type
= NULL_TREE
, arg0_type
= NULL_TREE
;
4337 tree low
, high
, n_low
, n_high
;
4339 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4340 and see if we can refine the range. Some of the cases below may not
4341 happen, but it doesn't seem worth worrying about this. We "continue"
4342 the outer loop when we've changed something; otherwise we "break"
4343 the switch, which will "break" the while. */
4346 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4350 code
= TREE_CODE (exp
);
4351 exp_type
= TREE_TYPE (exp
);
4353 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4355 if (TREE_OPERAND_LENGTH (exp
) > 0)
4356 arg0
= TREE_OPERAND (exp
, 0);
4357 if (TREE_CODE_CLASS (code
) == tcc_comparison
4358 || TREE_CODE_CLASS (code
) == tcc_unary
4359 || TREE_CODE_CLASS (code
) == tcc_binary
)
4360 arg0_type
= TREE_TYPE (arg0
);
4361 if (TREE_CODE_CLASS (code
) == tcc_binary
4362 || TREE_CODE_CLASS (code
) == tcc_comparison
4363 || (TREE_CODE_CLASS (code
) == tcc_expression
4364 && TREE_OPERAND_LENGTH (exp
) > 1))
4365 arg1
= TREE_OPERAND (exp
, 1);
4370 case TRUTH_NOT_EXPR
:
4371 in_p
= ! in_p
, exp
= arg0
;
4374 case EQ_EXPR
: case NE_EXPR
:
4375 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4376 /* We can only do something if the range is testing for zero
4377 and if the second operand is an integer constant. Note that
4378 saying something is "in" the range we make is done by
4379 complementing IN_P since it will set in the initial case of
4380 being not equal to zero; "out" is leaving it alone. */
4381 if (low
== 0 || high
== 0
4382 || ! integer_zerop (low
) || ! integer_zerop (high
)
4383 || TREE_CODE (arg1
) != INTEGER_CST
)
4388 case NE_EXPR
: /* - [c, c] */
4391 case EQ_EXPR
: /* + [c, c] */
4392 in_p
= ! in_p
, low
= high
= arg1
;
4394 case GT_EXPR
: /* - [-, c] */
4395 low
= 0, high
= arg1
;
4397 case GE_EXPR
: /* + [c, -] */
4398 in_p
= ! in_p
, low
= arg1
, high
= 0;
4400 case LT_EXPR
: /* - [c, -] */
4401 low
= arg1
, high
= 0;
4403 case LE_EXPR
: /* + [-, c] */
4404 in_p
= ! in_p
, low
= 0, high
= arg1
;
4410 /* If this is an unsigned comparison, we also know that EXP is
4411 greater than or equal to zero. We base the range tests we make
4412 on that fact, so we record it here so we can parse existing
4413 range tests. We test arg0_type since often the return type
4414 of, e.g. EQ_EXPR, is boolean. */
4415 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4417 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4419 build_int_cst (arg0_type
, 0),
4423 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4425 /* If the high bound is missing, but we have a nonzero low
4426 bound, reverse the range so it goes from zero to the low bound
4428 if (high
== 0 && low
&& ! integer_zerop (low
))
4431 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4432 integer_one_node
, 0);
4433 low
= build_int_cst (arg0_type
, 0);
4441 /* (-x) IN [a,b] -> x in [-b, -a] */
4442 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4443 build_int_cst (exp_type
, 0),
4445 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4446 build_int_cst (exp_type
, 0),
4448 low
= n_low
, high
= n_high
;
4454 exp
= build2 (MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4455 build_int_cst (exp_type
, 1));
4458 case PLUS_EXPR
: case MINUS_EXPR
:
4459 if (TREE_CODE (arg1
) != INTEGER_CST
)
4462 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4463 move a constant to the other side. */
4464 if (!TYPE_UNSIGNED (arg0_type
)
4465 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4468 /* If EXP is signed, any overflow in the computation is undefined,
4469 so we don't worry about it so long as our computations on
4470 the bounds don't overflow. For unsigned, overflow is defined
4471 and this is exactly the right thing. */
4472 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4473 arg0_type
, low
, 0, arg1
, 0);
4474 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4475 arg0_type
, high
, 1, arg1
, 0);
4476 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4477 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4480 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4481 *strict_overflow_p
= true;
4483 /* Check for an unsigned range which has wrapped around the maximum
4484 value thus making n_high < n_low, and normalize it. */
4485 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4487 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4488 integer_one_node
, 0);
4489 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4490 integer_one_node
, 0);
4492 /* If the range is of the form +/- [ x+1, x ], we won't
4493 be able to normalize it. But then, it represents the
4494 whole range or the empty set, so make it
4496 if (tree_int_cst_equal (n_low
, low
)
4497 && tree_int_cst_equal (n_high
, high
))
4503 low
= n_low
, high
= n_high
;
4508 case NOP_EXPR
: case NON_LVALUE_EXPR
: case CONVERT_EXPR
:
4509 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4512 if (! INTEGRAL_TYPE_P (arg0_type
)
4513 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4514 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4517 n_low
= low
, n_high
= high
;
4520 n_low
= fold_convert (arg0_type
, n_low
);
4523 n_high
= fold_convert (arg0_type
, n_high
);
4526 /* If we're converting arg0 from an unsigned type, to exp,
4527 a signed type, we will be doing the comparison as unsigned.
4528 The tests above have already verified that LOW and HIGH
4531 So we have to ensure that we will handle large unsigned
4532 values the same way that the current signed bounds treat
4535 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4539 /* For fixed-point modes, we need to pass the saturating flag
4540 as the 2nd parameter. */
4541 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4542 equiv_type
= lang_hooks
.types
.type_for_mode
4543 (TYPE_MODE (arg0_type
),
4544 TYPE_SATURATING (arg0_type
));
4546 equiv_type
= lang_hooks
.types
.type_for_mode
4547 (TYPE_MODE (arg0_type
), 1);
4549 /* A range without an upper bound is, naturally, unbounded.
4550 Since convert would have cropped a very large value, use
4551 the max value for the destination type. */
4553 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4554 : TYPE_MAX_VALUE (arg0_type
);
4556 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4557 high_positive
= fold_build2 (RSHIFT_EXPR
, arg0_type
,
4558 fold_convert (arg0_type
,
4560 build_int_cst (arg0_type
, 1));
4562 /* If the low bound is specified, "and" the range with the
4563 range for which the original unsigned value will be
4567 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4568 1, n_low
, n_high
, 1,
4569 fold_convert (arg0_type
,
4574 in_p
= (n_in_p
== in_p
);
4578 /* Otherwise, "or" the range with the range of the input
4579 that will be interpreted as negative. */
4580 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4581 0, n_low
, n_high
, 1,
4582 fold_convert (arg0_type
,
4587 in_p
= (in_p
!= n_in_p
);
4592 low
= n_low
, high
= n_high
;
4602 /* If EXP is a constant, we can evaluate whether this is true or false. */
4603 if (TREE_CODE (exp
) == INTEGER_CST
)
4605 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4607 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4613 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4617 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4618 type, TYPE, return an expression to test if EXP is in (or out of, depending
4619 on IN_P) the range. Return 0 if the test couldn't be created. */
4622 build_range_check (tree type
, tree exp
, int in_p
, tree low
, tree high
)
4624 tree etype
= TREE_TYPE (exp
);
4627 #ifdef HAVE_canonicalize_funcptr_for_compare
4628 /* Disable this optimization for function pointer expressions
4629 on targets that require function pointer canonicalization. */
4630 if (HAVE_canonicalize_funcptr_for_compare
4631 && TREE_CODE (etype
) == POINTER_TYPE
4632 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4638 value
= build_range_check (type
, exp
, 1, low
, high
);
4640 return invert_truthvalue (value
);
4645 if (low
== 0 && high
== 0)
4646 return build_int_cst (type
, 1);
4649 return fold_build2 (LE_EXPR
, type
, exp
,
4650 fold_convert (etype
, high
));
4653 return fold_build2 (GE_EXPR
, type
, exp
,
4654 fold_convert (etype
, low
));
4656 if (operand_equal_p (low
, high
, 0))
4657 return fold_build2 (EQ_EXPR
, type
, exp
,
4658 fold_convert (etype
, low
));
4660 if (integer_zerop (low
))
4662 if (! TYPE_UNSIGNED (etype
))
4664 etype
= unsigned_type_for (etype
);
4665 high
= fold_convert (etype
, high
);
4666 exp
= fold_convert (etype
, exp
);
4668 return build_range_check (type
, exp
, 1, 0, high
);
4671 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4672 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4674 unsigned HOST_WIDE_INT lo
;
4678 prec
= TYPE_PRECISION (etype
);
4679 if (prec
<= HOST_BITS_PER_WIDE_INT
)
4682 lo
= ((unsigned HOST_WIDE_INT
) 1 << (prec
- 1)) - 1;
4686 hi
= ((HOST_WIDE_INT
) 1 << (prec
- HOST_BITS_PER_WIDE_INT
- 1)) - 1;
4687 lo
= (unsigned HOST_WIDE_INT
) -1;
4690 if (TREE_INT_CST_HIGH (high
) == hi
&& TREE_INT_CST_LOW (high
) == lo
)
4692 if (TYPE_UNSIGNED (etype
))
4694 etype
= signed_type_for (etype
);
4695 exp
= fold_convert (etype
, exp
);
4697 return fold_build2 (GT_EXPR
, type
, exp
,
4698 build_int_cst (etype
, 0));
4702 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4703 This requires wrap-around arithmetics for the type of the expression. */
4704 switch (TREE_CODE (etype
))
4707 /* There is no requirement that LOW be within the range of ETYPE
4708 if the latter is a subtype. It must, however, be within the base
4709 type of ETYPE. So be sure we do the subtraction in that type. */
4710 if (TREE_TYPE (etype
))
4711 etype
= TREE_TYPE (etype
);
4716 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4717 TYPE_UNSIGNED (etype
));
4724 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4725 if (TREE_CODE (etype
) == INTEGER_TYPE
4726 && !TYPE_OVERFLOW_WRAPS (etype
))
4728 tree utype
, minv
, maxv
;
4730 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4731 for the type in question, as we rely on this here. */
4732 utype
= unsigned_type_for (etype
);
4733 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4734 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4735 integer_one_node
, 1);
4736 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4738 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4745 high
= fold_convert (etype
, high
);
4746 low
= fold_convert (etype
, low
);
4747 exp
= fold_convert (etype
, exp
);
4749 value
= const_binop (MINUS_EXPR
, high
, low
, 0);
4752 if (POINTER_TYPE_P (etype
))
4754 if (value
!= 0 && !TREE_OVERFLOW (value
))
4756 low
= fold_convert (sizetype
, low
);
4757 low
= fold_build1 (NEGATE_EXPR
, sizetype
, low
);
4758 return build_range_check (type
,
4759 fold_build2 (POINTER_PLUS_EXPR
, etype
, exp
, low
),
4760 1, build_int_cst (etype
, 0), value
);
4765 if (value
!= 0 && !TREE_OVERFLOW (value
))
4766 return build_range_check (type
,
4767 fold_build2 (MINUS_EXPR
, etype
, exp
, low
),
4768 1, build_int_cst (etype
, 0), value
);
4773 /* Return the predecessor of VAL in its type, handling the infinite case. */
4776 range_predecessor (tree val
)
4778 tree type
= TREE_TYPE (val
);
4780 if (INTEGRAL_TYPE_P (type
)
4781 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
4784 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0, integer_one_node
, 0);
4787 /* Return the successor of VAL in its type, handling the infinite case. */
4790 range_successor (tree val
)
4792 tree type
= TREE_TYPE (val
);
4794 if (INTEGRAL_TYPE_P (type
)
4795 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
4798 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0, integer_one_node
, 0);
4801 /* Given two ranges, see if we can merge them into one. Return 1 if we
4802 can, 0 if we can't. Set the output range into the specified parameters. */
4805 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4806 tree high0
, int in1_p
, tree low1
, tree high1
)
4814 int lowequal
= ((low0
== 0 && low1
== 0)
4815 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4816 low0
, 0, low1
, 0)));
4817 int highequal
= ((high0
== 0 && high1
== 0)
4818 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4819 high0
, 1, high1
, 1)));
4821 /* Make range 0 be the range that starts first, or ends last if they
4822 start at the same value. Swap them if it isn't. */
4823 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4826 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4827 high1
, 1, high0
, 1))))
4829 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4830 tem
= low0
, low0
= low1
, low1
= tem
;
4831 tem
= high0
, high0
= high1
, high1
= tem
;
4834 /* Now flag two cases, whether the ranges are disjoint or whether the
4835 second range is totally subsumed in the first. Note that the tests
4836 below are simplified by the ones above. */
4837 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4838 high0
, 1, low1
, 0));
4839 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4840 high1
, 1, high0
, 1));
4842 /* We now have four cases, depending on whether we are including or
4843 excluding the two ranges. */
4846 /* If they don't overlap, the result is false. If the second range
4847 is a subset it is the result. Otherwise, the range is from the start
4848 of the second to the end of the first. */
4850 in_p
= 0, low
= high
= 0;
4852 in_p
= 1, low
= low1
, high
= high1
;
4854 in_p
= 1, low
= low1
, high
= high0
;
4857 else if (in0_p
&& ! in1_p
)
4859 /* If they don't overlap, the result is the first range. If they are
4860 equal, the result is false. If the second range is a subset of the
4861 first, and the ranges begin at the same place, we go from just after
4862 the end of the second range to the end of the first. If the second
4863 range is not a subset of the first, or if it is a subset and both
4864 ranges end at the same place, the range starts at the start of the
4865 first range and ends just before the second range.
4866 Otherwise, we can't describe this as a single range. */
4868 in_p
= 1, low
= low0
, high
= high0
;
4869 else if (lowequal
&& highequal
)
4870 in_p
= 0, low
= high
= 0;
4871 else if (subset
&& lowequal
)
4873 low
= range_successor (high1
);
4878 /* We are in the weird situation where high0 > high1 but
4879 high1 has no successor. Punt. */
4883 else if (! subset
|| highequal
)
4886 high
= range_predecessor (low1
);
4890 /* low0 < low1 but low1 has no predecessor. Punt. */
4898 else if (! in0_p
&& in1_p
)
4900 /* If they don't overlap, the result is the second range. If the second
4901 is a subset of the first, the result is false. Otherwise,
4902 the range starts just after the first range and ends at the
4903 end of the second. */
4905 in_p
= 1, low
= low1
, high
= high1
;
4906 else if (subset
|| highequal
)
4907 in_p
= 0, low
= high
= 0;
4910 low
= range_successor (high0
);
4915 /* high1 > high0 but high0 has no successor. Punt. */
4923 /* The case where we are excluding both ranges. Here the complex case
4924 is if they don't overlap. In that case, the only time we have a
4925 range is if they are adjacent. If the second is a subset of the
4926 first, the result is the first. Otherwise, the range to exclude
4927 starts at the beginning of the first range and ends at the end of the
4931 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4932 range_successor (high0
),
4934 in_p
= 0, low
= low0
, high
= high1
;
4937 /* Canonicalize - [min, x] into - [-, x]. */
4938 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
4939 switch (TREE_CODE (TREE_TYPE (low0
)))
4942 if (TYPE_PRECISION (TREE_TYPE (low0
))
4943 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
4947 if (tree_int_cst_equal (low0
,
4948 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
4952 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
4953 && integer_zerop (low0
))
4960 /* Canonicalize - [x, max] into - [x, -]. */
4961 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
4962 switch (TREE_CODE (TREE_TYPE (high1
)))
4965 if (TYPE_PRECISION (TREE_TYPE (high1
))
4966 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
4970 if (tree_int_cst_equal (high1
,
4971 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
4975 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
4976 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
4978 integer_one_node
, 1)))
4985 /* The ranges might be also adjacent between the maximum and
4986 minimum values of the given type. For
4987 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4988 return + [x + 1, y - 1]. */
4989 if (low0
== 0 && high1
== 0)
4991 low
= range_successor (high0
);
4992 high
= range_predecessor (low1
);
4993 if (low
== 0 || high
== 0)
5003 in_p
= 0, low
= low0
, high
= high0
;
5005 in_p
= 0, low
= low0
, high
= high1
;
5008 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5013 /* Subroutine of fold, looking inside expressions of the form
5014 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5015 of the COND_EXPR. This function is being used also to optimize
5016 A op B ? C : A, by reversing the comparison first.
5018 Return a folded expression whose code is not a COND_EXPR
5019 anymore, or NULL_TREE if no folding opportunity is found. */
5022 fold_cond_expr_with_comparison (tree type
, tree arg0
, tree arg1
, tree arg2
)
5024 enum tree_code comp_code
= TREE_CODE (arg0
);
5025 tree arg00
= TREE_OPERAND (arg0
, 0);
5026 tree arg01
= TREE_OPERAND (arg0
, 1);
5027 tree arg1_type
= TREE_TYPE (arg1
);
5033 /* If we have A op 0 ? A : -A, consider applying the following
5036 A == 0? A : -A same as -A
5037 A != 0? A : -A same as A
5038 A >= 0? A : -A same as abs (A)
5039 A > 0? A : -A same as abs (A)
5040 A <= 0? A : -A same as -abs (A)
5041 A < 0? A : -A same as -abs (A)
5043 None of these transformations work for modes with signed
5044 zeros. If A is +/-0, the first two transformations will
5045 change the sign of the result (from +0 to -0, or vice
5046 versa). The last four will fix the sign of the result,
5047 even though the original expressions could be positive or
5048 negative, depending on the sign of A.
5050 Note that all these transformations are correct if A is
5051 NaN, since the two alternatives (A and -A) are also NaNs. */
5052 if ((FLOAT_TYPE_P (TREE_TYPE (arg01
))
5053 ? real_zerop (arg01
)
5054 : integer_zerop (arg01
))
5055 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5056 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5057 /* In the case that A is of the form X-Y, '-A' (arg2) may
5058 have already been folded to Y-X, check for that. */
5059 || (TREE_CODE (arg1
) == MINUS_EXPR
5060 && TREE_CODE (arg2
) == MINUS_EXPR
5061 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5062 TREE_OPERAND (arg2
, 1), 0)
5063 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5064 TREE_OPERAND (arg2
, 0), 0))))
5069 tem
= fold_convert (arg1_type
, arg1
);
5070 return pedantic_non_lvalue (fold_convert (type
, negate_expr (tem
)));
5073 return pedantic_non_lvalue (fold_convert (type
, arg1
));
5076 if (flag_trapping_math
)
5081 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5082 arg1
= fold_convert (signed_type_for
5083 (TREE_TYPE (arg1
)), arg1
);
5084 tem
= fold_build1 (ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5085 return pedantic_non_lvalue (fold_convert (type
, tem
));
5088 if (flag_trapping_math
)
5092 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5093 arg1
= fold_convert (signed_type_for
5094 (TREE_TYPE (arg1
)), arg1
);
5095 tem
= fold_build1 (ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5096 return negate_expr (fold_convert (type
, tem
));
5098 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5102 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5103 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5104 both transformations are correct when A is NaN: A != 0
5105 is then true, and A == 0 is false. */
5107 if (integer_zerop (arg01
) && integer_zerop (arg2
))
5109 if (comp_code
== NE_EXPR
)
5110 return pedantic_non_lvalue (fold_convert (type
, arg1
));
5111 else if (comp_code
== EQ_EXPR
)
5112 return build_int_cst (type
, 0);
5115 /* Try some transformations of A op B ? A : B.
5117 A == B? A : B same as B
5118 A != B? A : B same as A
5119 A >= B? A : B same as max (A, B)
5120 A > B? A : B same as max (B, A)
5121 A <= B? A : B same as min (A, B)
5122 A < B? A : B same as min (B, A)
5124 As above, these transformations don't work in the presence
5125 of signed zeros. For example, if A and B are zeros of
5126 opposite sign, the first two transformations will change
5127 the sign of the result. In the last four, the original
5128 expressions give different results for (A=+0, B=-0) and
5129 (A=-0, B=+0), but the transformed expressions do not.
5131 The first two transformations are correct if either A or B
5132 is a NaN. In the first transformation, the condition will
5133 be false, and B will indeed be chosen. In the case of the
5134 second transformation, the condition A != B will be true,
5135 and A will be chosen.
5137 The conversions to max() and min() are not correct if B is
5138 a number and A is not. The conditions in the original
5139 expressions will be false, so all four give B. The min()
5140 and max() versions would give a NaN instead. */
5141 if (operand_equal_for_comparison_p (arg01
, arg2
, arg00
)
5142 /* Avoid these transformations if the COND_EXPR may be used
5143 as an lvalue in the C++ front-end. PR c++/19199. */
5145 || (strcmp (lang_hooks
.name
, "GNU C++") != 0
5146 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5147 || ! maybe_lvalue_p (arg1
)
5148 || ! maybe_lvalue_p (arg2
)))
5150 tree comp_op0
= arg00
;
5151 tree comp_op1
= arg01
;
5152 tree comp_type
= TREE_TYPE (comp_op0
);
5154 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5155 if (TYPE_MAIN_VARIANT (comp_type
) == TYPE_MAIN_VARIANT (type
))
5165 return pedantic_non_lvalue (fold_convert (type
, arg2
));
5167 return pedantic_non_lvalue (fold_convert (type
, arg1
));
5172 /* In C++ a ?: expression can be an lvalue, so put the
5173 operand which will be used if they are equal first
5174 so that we can convert this back to the
5175 corresponding COND_EXPR. */
5176 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
5178 comp_op0
= fold_convert (comp_type
, comp_op0
);
5179 comp_op1
= fold_convert (comp_type
, comp_op1
);
5180 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5181 ? fold_build2 (MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5182 : fold_build2 (MIN_EXPR
, comp_type
, comp_op1
, comp_op0
);
5183 return pedantic_non_lvalue (fold_convert (type
, tem
));
5190 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
5192 comp_op0
= fold_convert (comp_type
, comp_op0
);
5193 comp_op1
= fold_convert (comp_type
, comp_op1
);
5194 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5195 ? fold_build2 (MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5196 : fold_build2 (MAX_EXPR
, comp_type
, comp_op1
, comp_op0
);
5197 return pedantic_non_lvalue (fold_convert (type
, tem
));
5201 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
5202 return pedantic_non_lvalue (fold_convert (type
, arg2
));
5205 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
5206 return pedantic_non_lvalue (fold_convert (type
, arg1
));
5209 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5214 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5215 we might still be able to simplify this. For example,
5216 if C1 is one less or one more than C2, this might have started
5217 out as a MIN or MAX and been transformed by this function.
5218 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5220 if (INTEGRAL_TYPE_P (type
)
5221 && TREE_CODE (arg01
) == INTEGER_CST
5222 && TREE_CODE (arg2
) == INTEGER_CST
)
5226 /* We can replace A with C1 in this case. */
5227 arg1
= fold_convert (type
, arg01
);
5228 return fold_build3 (COND_EXPR
, type
, arg0
, arg1
, arg2
);
5231 /* If C1 is C2 + 1, this is min(A, C2). */
5232 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5234 && operand_equal_p (arg01
,
5235 const_binop (PLUS_EXPR
, arg2
,
5236 build_int_cst (type
, 1), 0),
5238 return pedantic_non_lvalue (fold_build2 (MIN_EXPR
,
5240 fold_convert (type
, arg1
),
5245 /* If C1 is C2 - 1, this is min(A, C2). */
5246 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5248 && operand_equal_p (arg01
,
5249 const_binop (MINUS_EXPR
, arg2
,
5250 build_int_cst (type
, 1), 0),
5252 return pedantic_non_lvalue (fold_build2 (MIN_EXPR
,
5254 fold_convert (type
, arg1
),
5259 /* If C1 is C2 - 1, this is max(A, C2). */
5260 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5262 && operand_equal_p (arg01
,
5263 const_binop (MINUS_EXPR
, arg2
,
5264 build_int_cst (type
, 1), 0),
5266 return pedantic_non_lvalue (fold_build2 (MAX_EXPR
,
5268 fold_convert (type
, arg1
),
5273 /* If C1 is C2 + 1, this is max(A, C2). */
5274 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5276 && operand_equal_p (arg01
,
5277 const_binop (PLUS_EXPR
, arg2
,
5278 build_int_cst (type
, 1), 0),
5280 return pedantic_non_lvalue (fold_build2 (MAX_EXPR
,
5282 fold_convert (type
, arg1
),
5296 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5297 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
5300 /* EXP is some logical combination of boolean tests. See if we can
5301 merge it into some range test. Return the new tree if so. */
5304 fold_range_test (enum tree_code code
, tree type
, tree op0
, tree op1
)
5306 int or_op
= (code
== TRUTH_ORIF_EXPR
5307 || code
== TRUTH_OR_EXPR
);
5308 int in0_p
, in1_p
, in_p
;
5309 tree low0
, low1
, low
, high0
, high1
, high
;
5310 bool strict_overflow_p
= false;
5311 tree lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5312 tree rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5314 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5315 "when simplifying range test");
5317 /* If this is an OR operation, invert both sides; we will invert
5318 again at the end. */
5320 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5322 /* If both expressions are the same, if we can merge the ranges, and we
5323 can build the range test, return it or it inverted. If one of the
5324 ranges is always true or always false, consider it to be the same
5325 expression as the other. */
5326 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5327 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5329 && 0 != (tem
= (build_range_check (type
,
5331 : rhs
!= 0 ? rhs
: integer_zero_node
,
5334 if (strict_overflow_p
)
5335 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5336 return or_op
? invert_truthvalue (tem
) : tem
;
5339 /* On machines where the branch cost is expensive, if this is a
5340 short-circuited branch and the underlying object on both sides
5341 is the same, make a non-short-circuit operation. */
5342 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5343 && lhs
!= 0 && rhs
!= 0
5344 && (code
== TRUTH_ANDIF_EXPR
5345 || code
== TRUTH_ORIF_EXPR
)
5346 && operand_equal_p (lhs
, rhs
, 0))
5348 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5349 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5350 which cases we can't do this. */
5351 if (simple_operand_p (lhs
))
5352 return build2 (code
== TRUTH_ANDIF_EXPR
5353 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5356 else if (lang_hooks
.decls
.global_bindings_p () == 0
5357 && ! CONTAINS_PLACEHOLDER_P (lhs
))
5359 tree common
= save_expr (lhs
);
5361 if (0 != (lhs
= build_range_check (type
, common
,
5362 or_op
? ! in0_p
: in0_p
,
5364 && (0 != (rhs
= build_range_check (type
, common
,
5365 or_op
? ! in1_p
: in1_p
,
5368 if (strict_overflow_p
)
5369 fold_overflow_warning (warnmsg
,
5370 WARN_STRICT_OVERFLOW_COMPARISON
);
5371 return build2 (code
== TRUTH_ANDIF_EXPR
5372 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5381 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
5382 bit value. Arrange things so the extra bits will be set to zero if and
5383 only if C is signed-extended to its full width. If MASK is nonzero,
5384 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5387 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5389 tree type
= TREE_TYPE (c
);
5390 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
5393 if (p
== modesize
|| unsignedp
)
5396 /* We work by getting just the sign bit into the low-order bit, then
5397 into the high-order bit, then sign-extend. We then XOR that value
5399 temp
= const_binop (RSHIFT_EXPR
, c
, size_int (p
- 1), 0);
5400 temp
= const_binop (BIT_AND_EXPR
, temp
, size_int (1), 0);
5402 /* We must use a signed type in order to get an arithmetic right shift.
5403 However, we must also avoid introducing accidental overflows, so that
5404 a subsequent call to integer_zerop will work. Hence we must
5405 do the type conversion here. At this point, the constant is either
5406 zero or one, and the conversion to a signed type can never overflow.
5407 We could get an overflow if this conversion is done anywhere else. */
5408 if (TYPE_UNSIGNED (type
))
5409 temp
= fold_convert (signed_type_for (type
), temp
);
5411 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1), 0);
5412 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1), 0);
5414 temp
= const_binop (BIT_AND_EXPR
, temp
,
5415 fold_convert (TREE_TYPE (c
), mask
), 0);
5416 /* If necessary, convert the type back to match the type of C. */
5417 if (TYPE_UNSIGNED (type
))
5418 temp
= fold_convert (type
, temp
);
5420 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
, 0));
5423 /* Find ways of folding logical expressions of LHS and RHS:
5424 Try to merge two comparisons to the same innermost item.
5425 Look for range tests like "ch >= '0' && ch <= '9'".
5426 Look for combinations of simple terms on machines with expensive branches
5427 and evaluate the RHS unconditionally.
5429 For example, if we have p->a == 2 && p->b == 4 and we can make an
5430 object large enough to span both A and B, we can do this with a comparison
5431 against the object ANDed with the a mask.
5433 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5434 operations to do this with one comparison.
5436 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5437 function and the one above.
5439 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5440 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5442 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5445 We return the simplified tree or 0 if no optimization is possible. */
5448 fold_truthop (enum tree_code code
, tree truth_type
, tree lhs
, tree rhs
)
5450 /* If this is the "or" of two comparisons, we can do something if
5451 the comparisons are NE_EXPR. If this is the "and", we can do something
5452 if the comparisons are EQ_EXPR. I.e.,
5453 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5455 WANTED_CODE is this operation code. For single bit fields, we can
5456 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5457 comparison for one-bit fields. */
5459 enum tree_code wanted_code
;
5460 enum tree_code lcode
, rcode
;
5461 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5462 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5463 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5464 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5465 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5466 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5467 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5468 enum machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5469 enum machine_mode lnmode
, rnmode
;
5470 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5471 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5472 tree l_const
, r_const
;
5473 tree lntype
, rntype
, result
;
5474 int first_bit
, end_bit
;
5476 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5477 enum tree_code orig_code
= code
;
5479 /* Start by getting the comparison codes. Fail if anything is volatile.
5480 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5481 it were surrounded with a NE_EXPR. */
5483 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5486 lcode
= TREE_CODE (lhs
);
5487 rcode
= TREE_CODE (rhs
);
5489 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5491 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5492 build_int_cst (TREE_TYPE (lhs
), 0));
5496 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5498 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5499 build_int_cst (TREE_TYPE (rhs
), 0));
5503 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5504 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5507 ll_arg
= TREE_OPERAND (lhs
, 0);
5508 lr_arg
= TREE_OPERAND (lhs
, 1);
5509 rl_arg
= TREE_OPERAND (rhs
, 0);
5510 rr_arg
= TREE_OPERAND (rhs
, 1);
5512 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5513 if (simple_operand_p (ll_arg
)
5514 && simple_operand_p (lr_arg
))
5517 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5518 && operand_equal_p (lr_arg
, rr_arg
, 0))
5520 result
= combine_comparisons (code
, lcode
, rcode
,
5521 truth_type
, ll_arg
, lr_arg
);
5525 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5526 && operand_equal_p (lr_arg
, rl_arg
, 0))
5528 result
= combine_comparisons (code
, lcode
,
5529 swap_tree_comparison (rcode
),
5530 truth_type
, ll_arg
, lr_arg
);
5536 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5537 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5539 /* If the RHS can be evaluated unconditionally and its operands are
5540 simple, it wins to evaluate the RHS unconditionally on machines
5541 with expensive branches. In this case, this isn't a comparison
5542 that can be merged. Avoid doing this if the RHS is a floating-point
5543 comparison since those can trap. */
5545 if (BRANCH_COST
>= 2
5546 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5547 && simple_operand_p (rl_arg
)
5548 && simple_operand_p (rr_arg
))
5550 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5551 if (code
== TRUTH_OR_EXPR
5552 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5553 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5554 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
))
5555 return build2 (NE_EXPR
, truth_type
,
5556 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5558 build_int_cst (TREE_TYPE (ll_arg
), 0));
5560 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5561 if (code
== TRUTH_AND_EXPR
5562 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5563 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5564 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
))
5565 return build2 (EQ_EXPR
, truth_type
,
5566 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5568 build_int_cst (TREE_TYPE (ll_arg
), 0));
5570 if (LOGICAL_OP_NON_SHORT_CIRCUIT
)
5572 if (code
!= orig_code
|| lhs
!= orig_lhs
|| rhs
!= orig_rhs
)
5573 return build2 (code
, truth_type
, lhs
, rhs
);
5578 /* See if the comparisons can be merged. Then get all the parameters for
5581 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5582 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5586 ll_inner
= decode_field_reference (ll_arg
,
5587 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5588 &ll_unsignedp
, &volatilep
, &ll_mask
,
5590 lr_inner
= decode_field_reference (lr_arg
,
5591 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5592 &lr_unsignedp
, &volatilep
, &lr_mask
,
5594 rl_inner
= decode_field_reference (rl_arg
,
5595 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5596 &rl_unsignedp
, &volatilep
, &rl_mask
,
5598 rr_inner
= decode_field_reference (rr_arg
,
5599 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5600 &rr_unsignedp
, &volatilep
, &rr_mask
,
5603 /* It must be true that the inner operation on the lhs of each
5604 comparison must be the same if we are to be able to do anything.
5605 Then see if we have constants. If not, the same must be true for
5607 if (volatilep
|| ll_inner
== 0 || rl_inner
== 0
5608 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5611 if (TREE_CODE (lr_arg
) == INTEGER_CST
5612 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5613 l_const
= lr_arg
, r_const
= rr_arg
;
5614 else if (lr_inner
== 0 || rr_inner
== 0
5615 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5618 l_const
= r_const
= 0;
5620 /* If either comparison code is not correct for our logical operation,
5621 fail. However, we can convert a one-bit comparison against zero into
5622 the opposite comparison against that bit being set in the field. */
5624 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5625 if (lcode
!= wanted_code
)
5627 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5629 /* Make the left operand unsigned, since we are only interested
5630 in the value of one bit. Otherwise we are doing the wrong
5639 /* This is analogous to the code for l_const above. */
5640 if (rcode
!= wanted_code
)
5642 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5651 /* See if we can find a mode that contains both fields being compared on
5652 the left. If we can't, fail. Otherwise, update all constants and masks
5653 to be relative to a field of that size. */
5654 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5655 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5656 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
,
5657 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
5659 if (lnmode
== VOIDmode
)
5662 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5663 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5664 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5665 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5667 if (BYTES_BIG_ENDIAN
)
5669 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5670 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5673 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert (lntype
, ll_mask
),
5674 size_int (xll_bitpos
), 0);
5675 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert (lntype
, rl_mask
),
5676 size_int (xrl_bitpos
), 0);
5680 l_const
= fold_convert (lntype
, l_const
);
5681 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5682 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
), 0);
5683 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5684 fold_build1 (BIT_NOT_EXPR
,
5688 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5690 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5695 r_const
= fold_convert (lntype
, r_const
);
5696 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5697 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
), 0);
5698 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5699 fold_build1 (BIT_NOT_EXPR
,
5703 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5705 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5709 /* If the right sides are not constant, do the same for it. Also,
5710 disallow this optimization if a size or signedness mismatch occurs
5711 between the left and right sides. */
5714 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5715 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5716 /* Make sure the two fields on the right
5717 correspond to the left without being swapped. */
5718 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5721 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5722 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5723 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
,
5724 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
5726 if (rnmode
== VOIDmode
)
5729 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5730 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5731 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5732 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5734 if (BYTES_BIG_ENDIAN
)
5736 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5737 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5740 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert (rntype
, lr_mask
),
5741 size_int (xlr_bitpos
), 0);
5742 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert (rntype
, rr_mask
),
5743 size_int (xrr_bitpos
), 0);
5745 /* Make a mask that corresponds to both fields being compared.
5746 Do this for both items being compared. If the operands are the
5747 same size and the bits being compared are in the same position
5748 then we can do this by masking both and comparing the masked
5750 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
, 0);
5751 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
, 0);
5752 if (lnbitsize
== rnbitsize
&& xll_bitpos
== xlr_bitpos
)
5754 lhs
= make_bit_field_ref (ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5755 ll_unsignedp
|| rl_unsignedp
);
5756 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5757 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
5759 rhs
= make_bit_field_ref (lr_inner
, rntype
, rnbitsize
, rnbitpos
,
5760 lr_unsignedp
|| rr_unsignedp
);
5761 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
5762 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
5764 return build2 (wanted_code
, truth_type
, lhs
, rhs
);
5767 /* There is still another way we can do something: If both pairs of
5768 fields being compared are adjacent, we may be able to make a wider
5769 field containing them both.
5771 Note that we still must mask the lhs/rhs expressions. Furthermore,
5772 the mask must be shifted to account for the shift done by
5773 make_bit_field_ref. */
5774 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
5775 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
5776 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
5777 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
5781 lhs
= make_bit_field_ref (ll_inner
, lntype
, ll_bitsize
+ rl_bitsize
,
5782 MIN (ll_bitpos
, rl_bitpos
), ll_unsignedp
);
5783 rhs
= make_bit_field_ref (lr_inner
, rntype
, lr_bitsize
+ rr_bitsize
,
5784 MIN (lr_bitpos
, rr_bitpos
), lr_unsignedp
);
5786 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5787 size_int (MIN (xll_bitpos
, xrl_bitpos
)), 0);
5788 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5789 size_int (MIN (xlr_bitpos
, xrr_bitpos
)), 0);
5791 /* Convert to the smaller type before masking out unwanted bits. */
5793 if (lntype
!= rntype
)
5795 if (lnbitsize
> rnbitsize
)
5797 lhs
= fold_convert (rntype
, lhs
);
5798 ll_mask
= fold_convert (rntype
, ll_mask
);
5801 else if (lnbitsize
< rnbitsize
)
5803 rhs
= fold_convert (lntype
, rhs
);
5804 lr_mask
= fold_convert (lntype
, lr_mask
);
5809 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5810 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5812 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5813 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5815 return build2 (wanted_code
, truth_type
, lhs
, rhs
);
5821 /* Handle the case of comparisons with constants. If there is something in
5822 common between the masks, those bits of the constants must be the same.
5823 If not, the condition is always false. Test for this to avoid generating
5824 incorrect code below. */
5825 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
, 0);
5826 if (! integer_zerop (result
)
5827 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
, 0),
5828 const_binop (BIT_AND_EXPR
, result
, r_const
, 0)) != 1)
5830 if (wanted_code
== NE_EXPR
)
5832 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5833 return constant_boolean_node (true, truth_type
);
5837 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5838 return constant_boolean_node (false, truth_type
);
5842 /* Construct the expression we will return. First get the component
5843 reference we will make. Unless the mask is all ones the width of
5844 that field, perform the mask operation. Then compare with the
5846 result
= make_bit_field_ref (ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5847 ll_unsignedp
|| rl_unsignedp
);
5849 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
, 0);
5850 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5851 result
= build2 (BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5853 return build2 (wanted_code
, truth_type
, result
,
5854 const_binop (BIT_IOR_EXPR
, l_const
, r_const
, 0));
5857 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5861 optimize_minmax_comparison (enum tree_code code
, tree type
, tree op0
, tree op1
)
5864 enum tree_code op_code
;
5865 tree comp_const
= op1
;
5867 int consts_equal
, consts_lt
;
5870 STRIP_SIGN_NOPS (arg0
);
5872 op_code
= TREE_CODE (arg0
);
5873 minmax_const
= TREE_OPERAND (arg0
, 1);
5874 consts_equal
= tree_int_cst_equal (minmax_const
, comp_const
);
5875 consts_lt
= tree_int_cst_lt (minmax_const
, comp_const
);
5876 inner
= TREE_OPERAND (arg0
, 0);
5878 /* If something does not permit us to optimize, return the original tree. */
5879 if ((op_code
!= MIN_EXPR
&& op_code
!= MAX_EXPR
)
5880 || TREE_CODE (comp_const
) != INTEGER_CST
5881 || TREE_OVERFLOW (comp_const
)
5882 || TREE_CODE (minmax_const
) != INTEGER_CST
5883 || TREE_OVERFLOW (minmax_const
))
5886 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5887 and GT_EXPR, doing the rest with recursive calls using logical
5891 case NE_EXPR
: case LT_EXPR
: case LE_EXPR
:
5893 tree tem
= optimize_minmax_comparison (invert_tree_comparison (code
, false),
5896 return invert_truthvalue (tem
);
5902 fold_build2 (TRUTH_ORIF_EXPR
, type
,
5903 optimize_minmax_comparison
5904 (EQ_EXPR
, type
, arg0
, comp_const
),
5905 optimize_minmax_comparison
5906 (GT_EXPR
, type
, arg0
, comp_const
));
5909 if (op_code
== MAX_EXPR
&& consts_equal
)
5910 /* MAX (X, 0) == 0 -> X <= 0 */
5911 return fold_build2 (LE_EXPR
, type
, inner
, comp_const
);
5913 else if (op_code
== MAX_EXPR
&& consts_lt
)
5914 /* MAX (X, 0) == 5 -> X == 5 */
5915 return fold_build2 (EQ_EXPR
, type
, inner
, comp_const
);
5917 else if (op_code
== MAX_EXPR
)
5918 /* MAX (X, 0) == -1 -> false */
5919 return omit_one_operand (type
, integer_zero_node
, inner
);
5921 else if (consts_equal
)
5922 /* MIN (X, 0) == 0 -> X >= 0 */
5923 return fold_build2 (GE_EXPR
, type
, inner
, comp_const
);
5926 /* MIN (X, 0) == 5 -> false */
5927 return omit_one_operand (type
, integer_zero_node
, inner
);
5930 /* MIN (X, 0) == -1 -> X == -1 */
5931 return fold_build2 (EQ_EXPR
, type
, inner
, comp_const
);
5934 if (op_code
== MAX_EXPR
&& (consts_equal
|| consts_lt
))
5935 /* MAX (X, 0) > 0 -> X > 0
5936 MAX (X, 0) > 5 -> X > 5 */
5937 return fold_build2 (GT_EXPR
, type
, inner
, comp_const
);
5939 else if (op_code
== MAX_EXPR
)
5940 /* MAX (X, 0) > -1 -> true */
5941 return omit_one_operand (type
, integer_one_node
, inner
);
5943 else if (op_code
== MIN_EXPR
&& (consts_equal
|| consts_lt
))
5944 /* MIN (X, 0) > 0 -> false
5945 MIN (X, 0) > 5 -> false */
5946 return omit_one_operand (type
, integer_zero_node
, inner
);
5949 /* MIN (X, 0) > -1 -> X > -1 */
5950 return fold_build2 (GT_EXPR
, type
, inner
, comp_const
);
5957 /* T is an integer expression that is being multiplied, divided, or taken a
5958 modulus (CODE says which and what kind of divide or modulus) by a
5959 constant C. See if we can eliminate that operation by folding it with
5960 other operations already in T. WIDE_TYPE, if non-null, is a type that
5961 should be used for the computation if wider than our type.
5963 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5964 (X * 2) + (Y * 4). We must, however, be assured that either the original
5965 expression would not overflow or that overflow is undefined for the type
5966 in the language in question.
5968 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5969 the machine has a multiply-accumulate insn or that this is part of an
5970 addressing calculation.
5972 If we return a non-null expression, it is an equivalent form of the
5973 original computation, but need not be in the original type.
5975 We set *STRICT_OVERFLOW_P to true if the return values depends on
5976 signed overflow being undefined. Otherwise we do not change
5977 *STRICT_OVERFLOW_P. */
5980 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5981 bool *strict_overflow_p
)
5983 /* To avoid exponential search depth, refuse to allow recursion past
5984 three levels. Beyond that (1) it's highly unlikely that we'll find
5985 something interesting and (2) we've probably processed it before
5986 when we built the inner expression. */
5995 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6002 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6003 bool *strict_overflow_p
)
6005 tree type
= TREE_TYPE (t
);
6006 enum tree_code tcode
= TREE_CODE (t
);
6007 tree ctype
= (wide_type
!= 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type
))
6008 > GET_MODE_SIZE (TYPE_MODE (type
)))
6009 ? wide_type
: type
);
6011 int same_p
= tcode
== code
;
6012 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6013 bool sub_strict_overflow_p
;
6015 /* Don't deal with constants of zero here; they confuse the code below. */
6016 if (integer_zerop (c
))
6019 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6020 op0
= TREE_OPERAND (t
, 0);
6022 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6023 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6025 /* Note that we need not handle conditional operations here since fold
6026 already handles those cases. So just do arithmetic here. */
6030 /* For a constant, we can always simplify if we are a multiply
6031 or (for divide and modulus) if it is a multiple of our constant. */
6032 if (code
== MULT_EXPR
6033 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, t
, c
, 0)))
6034 return const_binop (code
, fold_convert (ctype
, t
),
6035 fold_convert (ctype
, c
), 0);
6038 case CONVERT_EXPR
: case NON_LVALUE_EXPR
: case NOP_EXPR
:
6039 /* If op0 is an expression ... */
6040 if ((COMPARISON_CLASS_P (op0
)
6041 || UNARY_CLASS_P (op0
)
6042 || BINARY_CLASS_P (op0
)
6043 || VL_EXP_CLASS_P (op0
)
6044 || EXPRESSION_CLASS_P (op0
))
6045 /* ... and is unsigned, and its type is smaller than ctype,
6046 then we cannot pass through as widening. */
6047 && ((TYPE_UNSIGNED (TREE_TYPE (op0
))
6048 && ! (TREE_CODE (TREE_TYPE (op0
)) == INTEGER_TYPE
6049 && TYPE_IS_SIZETYPE (TREE_TYPE (op0
)))
6050 && (GET_MODE_SIZE (TYPE_MODE (ctype
))
6051 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0
)))))
6052 /* ... or this is a truncation (t is narrower than op0),
6053 then we cannot pass through this narrowing. */
6054 || (GET_MODE_SIZE (TYPE_MODE (type
))
6055 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0
))))
6056 /* ... or signedness changes for division or modulus,
6057 then we cannot pass through this conversion. */
6058 || (code
!= MULT_EXPR
6059 && (TYPE_UNSIGNED (ctype
)
6060 != TYPE_UNSIGNED (TREE_TYPE (op0
))))))
6063 /* Pass the constant down and see if we can make a simplification. If
6064 we can, replace this expression with the inner simplification for
6065 possible later conversion to our or some other type. */
6066 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6067 && TREE_CODE (t2
) == INTEGER_CST
6068 && !TREE_OVERFLOW (t2
)
6069 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
6071 ? ctype
: NULL_TREE
,
6072 strict_overflow_p
))))
6077 /* If widening the type changes it from signed to unsigned, then we
6078 must avoid building ABS_EXPR itself as unsigned. */
6079 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6081 tree cstype
= (*signed_type_for
) (ctype
);
6082 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6085 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6086 return fold_convert (ctype
, t1
);
6092 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6094 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6097 case MIN_EXPR
: case MAX_EXPR
:
6098 /* If widening the type changes the signedness, then we can't perform
6099 this optimization as that changes the result. */
6100 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6103 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6104 sub_strict_overflow_p
= false;
6105 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6106 &sub_strict_overflow_p
)) != 0
6107 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6108 &sub_strict_overflow_p
)) != 0)
6110 if (tree_int_cst_sgn (c
) < 0)
6111 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6112 if (sub_strict_overflow_p
)
6113 *strict_overflow_p
= true;
6114 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6115 fold_convert (ctype
, t2
));
6119 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6120 /* If the second operand is constant, this is a multiplication
6121 or floor division, by a power of two, so we can treat it that
6122 way unless the multiplier or divisor overflows. Signed
6123 left-shift overflow is implementation-defined rather than
6124 undefined in C90, so do not convert signed left shift into
6126 if (TREE_CODE (op1
) == INTEGER_CST
6127 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6128 /* const_binop may not detect overflow correctly,
6129 so check for it explicitly here. */
6130 && TYPE_PRECISION (TREE_TYPE (size_one_node
)) > TREE_INT_CST_LOW (op1
)
6131 && TREE_INT_CST_HIGH (op1
) == 0
6132 && 0 != (t1
= fold_convert (ctype
,
6133 const_binop (LSHIFT_EXPR
,
6136 && !TREE_OVERFLOW (t1
))
6137 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6138 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6139 ctype
, fold_convert (ctype
, op0
), t1
),
6140 c
, code
, wide_type
, strict_overflow_p
);
6143 case PLUS_EXPR
: case MINUS_EXPR
:
6144 /* See if we can eliminate the operation on both sides. If we can, we
6145 can return a new PLUS or MINUS. If we can't, the only remaining
6146 cases where we can do anything are if the second operand is a
6148 sub_strict_overflow_p
= false;
6149 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6150 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6151 if (t1
!= 0 && t2
!= 0
6152 && (code
== MULT_EXPR
6153 /* If not multiplication, we can only do this if both operands
6154 are divisible by c. */
6155 || (multiple_of_p (ctype
, op0
, c
)
6156 && multiple_of_p (ctype
, op1
, c
))))
6158 if (sub_strict_overflow_p
)
6159 *strict_overflow_p
= true;
6160 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6161 fold_convert (ctype
, t2
));
6164 /* If this was a subtraction, negate OP1 and set it to be an addition.
6165 This simplifies the logic below. */
6166 if (tcode
== MINUS_EXPR
)
6167 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6169 if (TREE_CODE (op1
) != INTEGER_CST
)
6172 /* If either OP1 or C are negative, this optimization is not safe for
6173 some of the division and remainder types while for others we need
6174 to change the code. */
6175 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6177 if (code
== CEIL_DIV_EXPR
)
6178 code
= FLOOR_DIV_EXPR
;
6179 else if (code
== FLOOR_DIV_EXPR
)
6180 code
= CEIL_DIV_EXPR
;
6181 else if (code
!= MULT_EXPR
6182 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6186 /* If it's a multiply or a division/modulus operation of a multiple
6187 of our constant, do the operation and verify it doesn't overflow. */
6188 if (code
== MULT_EXPR
6189 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
, 0)))
6191 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6192 fold_convert (ctype
, c
), 0);
6193 /* We allow the constant to overflow with wrapping semantics. */
6195 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6201 /* If we have an unsigned type is not a sizetype, we cannot widen
6202 the operation since it will change the result if the original
6203 computation overflowed. */
6204 if (TYPE_UNSIGNED (ctype
)
6205 && ! (TREE_CODE (ctype
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (ctype
))
6209 /* If we were able to eliminate our operation from the first side,
6210 apply our operation to the second side and reform the PLUS. */
6211 if (t1
!= 0 && (TREE_CODE (t1
) != code
|| code
== MULT_EXPR
))
6212 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
), op1
);
6214 /* The last case is if we are a multiply. In that case, we can
6215 apply the distributive law to commute the multiply and addition
6216 if the multiplication of the constants doesn't overflow. */
6217 if (code
== MULT_EXPR
)
6218 return fold_build2 (tcode
, ctype
,
6219 fold_build2 (code
, ctype
,
6220 fold_convert (ctype
, op0
),
6221 fold_convert (ctype
, c
)),
6227 /* We have a special case here if we are doing something like
6228 (C * 8) % 4 since we know that's zero. */
6229 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6230 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6231 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6232 && integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
, 0)))
6233 return omit_one_operand (type
, integer_zero_node
, op0
);
6235 /* ... fall through ... */
6237 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6238 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6239 /* If we can extract our operation from the LHS, do so and return a
6240 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6241 do something only if the second operand is a constant. */
6243 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6244 strict_overflow_p
)) != 0)
6245 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6246 fold_convert (ctype
, op1
));
6247 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6248 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6249 strict_overflow_p
)) != 0)
6250 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6251 fold_convert (ctype
, t1
));
6252 else if (TREE_CODE (op1
) != INTEGER_CST
)
6255 /* If these are the same operation types, we can associate them
6256 assuming no overflow. */
6258 && 0 != (t1
= const_binop (MULT_EXPR
, fold_convert (ctype
, op1
),
6259 fold_convert (ctype
, c
), 0))
6260 && !TREE_OVERFLOW (t1
))
6261 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
), t1
);
6263 /* If these operations "cancel" each other, we have the main
6264 optimizations of this pass, which occur when either constant is a
6265 multiple of the other, in which case we replace this with either an
6266 operation or CODE or TCODE.
6268 If we have an unsigned type that is not a sizetype, we cannot do
6269 this since it will change the result if the original computation
6271 if ((TYPE_OVERFLOW_UNDEFINED (ctype
)
6272 || (TREE_CODE (ctype
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (ctype
)))
6273 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6274 || (tcode
== MULT_EXPR
6275 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6276 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
)))
6278 if (integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
, 0)))
6280 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6281 *strict_overflow_p
= true;
6282 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6283 fold_convert (ctype
,
6284 const_binop (TRUNC_DIV_EXPR
,
6287 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR
, c
, op1
, 0)))
6289 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6290 *strict_overflow_p
= true;
6291 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6292 fold_convert (ctype
,
6293 const_binop (TRUNC_DIV_EXPR
,
6306 /* Return a node which has the indicated constant VALUE (either 0 or
6307 1), and is of the indicated TYPE. */
6310 constant_boolean_node (int value
, tree type
)
6312 if (type
== integer_type_node
)
6313 return value
? integer_one_node
: integer_zero_node
;
6314 else if (type
== boolean_type_node
)
6315 return value
? boolean_true_node
: boolean_false_node
;
6317 return build_int_cst (type
, value
);
6321 /* Return true if expr looks like an ARRAY_REF and set base and
6322 offset to the appropriate trees. If there is no offset,
6323 offset is set to NULL_TREE. Base will be canonicalized to
6324 something you can get the element type from using
6325 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
6326 in bytes to the base in sizetype. */
6329 extract_array_ref (tree expr
, tree
*base
, tree
*offset
)
6331 /* One canonical form is a PLUS_EXPR with the first
6332 argument being an ADDR_EXPR with a possible NOP_EXPR
6334 if (TREE_CODE (expr
) == POINTER_PLUS_EXPR
)
6336 tree op0
= TREE_OPERAND (expr
, 0);
6337 tree inner_base
, dummy1
;
6338 /* Strip NOP_EXPRs here because the C frontends and/or
6339 folders present us (int *)&x.a p+ 4 possibly. */
6341 if (extract_array_ref (op0
, &inner_base
, &dummy1
))
6344 *offset
= fold_convert (sizetype
, TREE_OPERAND (expr
, 1));
6345 if (dummy1
!= NULL_TREE
)
6346 *offset
= fold_build2 (PLUS_EXPR
, sizetype
,
6351 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
6352 which we transform into an ADDR_EXPR with appropriate
6353 offset. For other arguments to the ADDR_EXPR we assume
6354 zero offset and as such do not care about the ADDR_EXPR
6355 type and strip possible nops from it. */
6356 else if (TREE_CODE (expr
) == ADDR_EXPR
)
6358 tree op0
= TREE_OPERAND (expr
, 0);
6359 if (TREE_CODE (op0
) == ARRAY_REF
)
6361 tree idx
= TREE_OPERAND (op0
, 1);
6362 *base
= TREE_OPERAND (op0
, 0);
6363 *offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (idx
), idx
,
6364 array_ref_element_size (op0
));
6365 *offset
= fold_convert (sizetype
, *offset
);
6369 /* Handle array-to-pointer decay as &a. */
6370 if (TREE_CODE (TREE_TYPE (op0
)) == ARRAY_TYPE
)
6371 *base
= TREE_OPERAND (expr
, 0);
6374 *offset
= NULL_TREE
;
6378 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
6379 else if (SSA_VAR_P (expr
)
6380 && TREE_CODE (TREE_TYPE (expr
)) == POINTER_TYPE
)
6383 *offset
= NULL_TREE
;
6391 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6392 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6393 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6394 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6395 COND is the first argument to CODE; otherwise (as in the example
6396 given here), it is the second argument. TYPE is the type of the
6397 original expression. Return NULL_TREE if no simplification is
6401 fold_binary_op_with_conditional_arg (enum tree_code code
,
6402 tree type
, tree op0
, tree op1
,
6403 tree cond
, tree arg
, int cond_first_p
)
6405 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6406 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6407 tree test
, true_value
, false_value
;
6408 tree lhs
= NULL_TREE
;
6409 tree rhs
= NULL_TREE
;
6411 /* This transformation is only worthwhile if we don't have to wrap
6412 arg in a SAVE_EXPR, and the operation can be simplified on at least
6413 one of the branches once its pushed inside the COND_EXPR. */
6414 if (!TREE_CONSTANT (arg
))
6417 if (TREE_CODE (cond
) == COND_EXPR
)
6419 test
= TREE_OPERAND (cond
, 0);
6420 true_value
= TREE_OPERAND (cond
, 1);
6421 false_value
= TREE_OPERAND (cond
, 2);
6422 /* If this operand throws an expression, then it does not make
6423 sense to try to perform a logical or arithmetic operation
6425 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6427 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6432 tree testtype
= TREE_TYPE (cond
);
6434 true_value
= constant_boolean_node (true, testtype
);
6435 false_value
= constant_boolean_node (false, testtype
);
6438 arg
= fold_convert (arg_type
, arg
);
6441 true_value
= fold_convert (cond_type
, true_value
);
6443 lhs
= fold_build2 (code
, type
, true_value
, arg
);
6445 lhs
= fold_build2 (code
, type
, arg
, true_value
);
6449 false_value
= fold_convert (cond_type
, false_value
);
6451 rhs
= fold_build2 (code
, type
, false_value
, arg
);
6453 rhs
= fold_build2 (code
, type
, arg
, false_value
);
6456 test
= fold_build3 (COND_EXPR
, type
, test
, lhs
, rhs
);
6457 return fold_convert (type
, test
);
6461 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6463 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6464 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6465 ADDEND is the same as X.
6467 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6468 and finite. The problematic cases are when X is zero, and its mode
6469 has signed zeros. In the case of rounding towards -infinity,
6470 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6471 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6474 fold_real_zero_addition_p (tree type
, tree addend
, int negate
)
6476 if (!real_zerop (addend
))
6479 /* Don't allow the fold with -fsignaling-nans. */
6480 if (HONOR_SNANS (TYPE_MODE (type
)))
6483 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6484 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
6487 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6488 if (TREE_CODE (addend
) == REAL_CST
6489 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6492 /* The mode has signed zeros, and we have to honor their sign.
6493 In this situation, there is only one case we can return true for.
6494 X - 0 is the same as X unless rounding towards -infinity is
6496 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
));
6499 /* Subroutine of fold() that checks comparisons of built-in math
6500 functions against real constants.
6502 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6503 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6504 is the type of the result and ARG0 and ARG1 are the operands of the
6505 comparison. ARG1 must be a TREE_REAL_CST.
6507 The function returns the constant folded tree if a simplification
6508 can be made, and NULL_TREE otherwise. */
6511 fold_mathfn_compare (enum built_in_function fcode
, enum tree_code code
,
6512 tree type
, tree arg0
, tree arg1
)
6516 if (BUILTIN_SQRT_P (fcode
))
6518 tree arg
= CALL_EXPR_ARG (arg0
, 0);
6519 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg0
));
6521 c
= TREE_REAL_CST (arg1
);
6522 if (REAL_VALUE_NEGATIVE (c
))
6524 /* sqrt(x) < y is always false, if y is negative. */
6525 if (code
== EQ_EXPR
|| code
== LT_EXPR
|| code
== LE_EXPR
)
6526 return omit_one_operand (type
, integer_zero_node
, arg
);
6528 /* sqrt(x) > y is always true, if y is negative and we
6529 don't care about NaNs, i.e. negative values of x. */
6530 if (code
== NE_EXPR
|| !HONOR_NANS (mode
))
6531 return omit_one_operand (type
, integer_one_node
, arg
);
6533 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6534 return fold_build2 (GE_EXPR
, type
, arg
,
6535 build_real (TREE_TYPE (arg
), dconst0
));
6537 else if (code
== GT_EXPR
|| code
== GE_EXPR
)
6541 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
6542 real_convert (&c2
, mode
, &c2
);
6544 if (REAL_VALUE_ISINF (c2
))
6546 /* sqrt(x) > y is x == +Inf, when y is very large. */
6547 if (HONOR_INFINITIES (mode
))
6548 return fold_build2 (EQ_EXPR
, type
, arg
,
6549 build_real (TREE_TYPE (arg
), c2
));
6551 /* sqrt(x) > y is always false, when y is very large
6552 and we don't care about infinities. */
6553 return omit_one_operand (type
, integer_zero_node
, arg
);
6556 /* sqrt(x) > c is the same as x > c*c. */
6557 return fold_build2 (code
, type
, arg
,
6558 build_real (TREE_TYPE (arg
), c2
));
6560 else if (code
== LT_EXPR
|| code
== LE_EXPR
)
6564 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
6565 real_convert (&c2
, mode
, &c2
);
6567 if (REAL_VALUE_ISINF (c2
))
6569 /* sqrt(x) < y is always true, when y is a very large
6570 value and we don't care about NaNs or Infinities. */
6571 if (! HONOR_NANS (mode
) && ! HONOR_INFINITIES (mode
))
6572 return omit_one_operand (type
, integer_one_node
, arg
);
6574 /* sqrt(x) < y is x != +Inf when y is very large and we
6575 don't care about NaNs. */
6576 if (! HONOR_NANS (mode
))
6577 return fold_build2 (NE_EXPR
, type
, arg
,
6578 build_real (TREE_TYPE (arg
), c2
));
6580 /* sqrt(x) < y is x >= 0 when y is very large and we
6581 don't care about Infinities. */
6582 if (! HONOR_INFINITIES (mode
))
6583 return fold_build2 (GE_EXPR
, type
, arg
,
6584 build_real (TREE_TYPE (arg
), dconst0
));
6586 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6587 if (lang_hooks
.decls
.global_bindings_p () != 0
6588 || CONTAINS_PLACEHOLDER_P (arg
))
6591 arg
= save_expr (arg
);
6592 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
6593 fold_build2 (GE_EXPR
, type
, arg
,
6594 build_real (TREE_TYPE (arg
),
6596 fold_build2 (NE_EXPR
, type
, arg
,
6597 build_real (TREE_TYPE (arg
),
6601 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6602 if (! HONOR_NANS (mode
))
6603 return fold_build2 (code
, type
, arg
,
6604 build_real (TREE_TYPE (arg
), c2
));
6606 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6607 if (lang_hooks
.decls
.global_bindings_p () == 0
6608 && ! CONTAINS_PLACEHOLDER_P (arg
))
6610 arg
= save_expr (arg
);
6611 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
6612 fold_build2 (GE_EXPR
, type
, arg
,
6613 build_real (TREE_TYPE (arg
),
6615 fold_build2 (code
, type
, arg
,
6616 build_real (TREE_TYPE (arg
),
6625 /* Subroutine of fold() that optimizes comparisons against Infinities,
6626 either +Inf or -Inf.
6628 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6629 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6630 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6632 The function returns the constant folded tree if a simplification
6633 can be made, and NULL_TREE otherwise. */
6636 fold_inf_compare (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6638 enum machine_mode mode
;
6639 REAL_VALUE_TYPE max
;
6643 mode
= TYPE_MODE (TREE_TYPE (arg0
));
6645 /* For negative infinity swap the sense of the comparison. */
6646 neg
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
));
6648 code
= swap_tree_comparison (code
);
6653 /* x > +Inf is always false, if with ignore sNANs. */
6654 if (HONOR_SNANS (mode
))
6656 return omit_one_operand (type
, integer_zero_node
, arg0
);
6659 /* x <= +Inf is always true, if we don't case about NaNs. */
6660 if (! HONOR_NANS (mode
))
6661 return omit_one_operand (type
, integer_one_node
, arg0
);
6663 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6664 if (lang_hooks
.decls
.global_bindings_p () == 0
6665 && ! CONTAINS_PLACEHOLDER_P (arg0
))
6667 arg0
= save_expr (arg0
);
6668 return fold_build2 (EQ_EXPR
, type
, arg0
, arg0
);
6674 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6675 real_maxval (&max
, neg
, mode
);
6676 return fold_build2 (neg
? LT_EXPR
: GT_EXPR
, type
,
6677 arg0
, build_real (TREE_TYPE (arg0
), max
));
6680 /* x < +Inf is always equal to x <= DBL_MAX. */
6681 real_maxval (&max
, neg
, mode
);
6682 return fold_build2 (neg
? GE_EXPR
: LE_EXPR
, type
,
6683 arg0
, build_real (TREE_TYPE (arg0
), max
));
6686 /* x != +Inf is always equal to !(x > DBL_MAX). */
6687 real_maxval (&max
, neg
, mode
);
6688 if (! HONOR_NANS (mode
))
6689 return fold_build2 (neg
? GE_EXPR
: LE_EXPR
, type
,
6690 arg0
, build_real (TREE_TYPE (arg0
), max
));
6692 temp
= fold_build2 (neg
? LT_EXPR
: GT_EXPR
, type
,
6693 arg0
, build_real (TREE_TYPE (arg0
), max
));
6694 return fold_build1 (TRUTH_NOT_EXPR
, type
, temp
);
6703 /* Subroutine of fold() that optimizes comparisons of a division by
6704 a nonzero integer constant against an integer constant, i.e.
6707 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6708 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6709 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6711 The function returns the constant folded tree if a simplification
6712 can be made, and NULL_TREE otherwise. */
6715 fold_div_compare (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6717 tree prod
, tmp
, hi
, lo
;
6718 tree arg00
= TREE_OPERAND (arg0
, 0);
6719 tree arg01
= TREE_OPERAND (arg0
, 1);
6720 unsigned HOST_WIDE_INT lpart
;
6721 HOST_WIDE_INT hpart
;
6722 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (arg0
));
6726 /* We have to do this the hard way to detect unsigned overflow.
6727 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6728 overflow
= mul_double_with_sign (TREE_INT_CST_LOW (arg01
),
6729 TREE_INT_CST_HIGH (arg01
),
6730 TREE_INT_CST_LOW (arg1
),
6731 TREE_INT_CST_HIGH (arg1
),
6732 &lpart
, &hpart
, unsigned_p
);
6733 prod
= force_fit_type_double (TREE_TYPE (arg00
), lpart
, hpart
,
6735 neg_overflow
= false;
6739 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6740 build_int_cst (TREE_TYPE (arg01
), 1), 0);
6743 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6744 overflow
= add_double_with_sign (TREE_INT_CST_LOW (prod
),
6745 TREE_INT_CST_HIGH (prod
),
6746 TREE_INT_CST_LOW (tmp
),
6747 TREE_INT_CST_HIGH (tmp
),
6748 &lpart
, &hpart
, unsigned_p
);
6749 hi
= force_fit_type_double (TREE_TYPE (arg00
), lpart
, hpart
,
6750 -1, overflow
| TREE_OVERFLOW (prod
));
6752 else if (tree_int_cst_sgn (arg01
) >= 0)
6754 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6755 build_int_cst (TREE_TYPE (arg01
), 1), 0);
6756 switch (tree_int_cst_sgn (arg1
))
6759 neg_overflow
= true;
6760 lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
, 0);
6765 lo
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6770 hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
, 0);
6780 /* A negative divisor reverses the relational operators. */
6781 code
= swap_tree_comparison (code
);
6783 tmp
= int_const_binop (PLUS_EXPR
, arg01
,
6784 build_int_cst (TREE_TYPE (arg01
), 1), 0);
6785 switch (tree_int_cst_sgn (arg1
))
6788 hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
, 0);
6793 hi
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6798 neg_overflow
= true;
6799 lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
, 0);
6811 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6812 return omit_one_operand (type
, integer_zero_node
, arg00
);
6813 if (TREE_OVERFLOW (hi
))
6814 return fold_build2 (GE_EXPR
, type
, arg00
, lo
);
6815 if (TREE_OVERFLOW (lo
))
6816 return fold_build2 (LE_EXPR
, type
, arg00
, hi
);
6817 return build_range_check (type
, arg00
, 1, lo
, hi
);
6820 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6821 return omit_one_operand (type
, integer_one_node
, arg00
);
6822 if (TREE_OVERFLOW (hi
))
6823 return fold_build2 (LT_EXPR
, type
, arg00
, lo
);
6824 if (TREE_OVERFLOW (lo
))
6825 return fold_build2 (GT_EXPR
, type
, arg00
, hi
);
6826 return build_range_check (type
, arg00
, 0, lo
, hi
);
6829 if (TREE_OVERFLOW (lo
))
6831 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6832 return omit_one_operand (type
, tmp
, arg00
);
6834 return fold_build2 (LT_EXPR
, type
, arg00
, lo
);
6837 if (TREE_OVERFLOW (hi
))
6839 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6840 return omit_one_operand (type
, tmp
, arg00
);
6842 return fold_build2 (LE_EXPR
, type
, arg00
, hi
);
6845 if (TREE_OVERFLOW (hi
))
6847 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6848 return omit_one_operand (type
, tmp
, arg00
);
6850 return fold_build2 (GT_EXPR
, type
, arg00
, hi
);
6853 if (TREE_OVERFLOW (lo
))
6855 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6856 return omit_one_operand (type
, tmp
, arg00
);
6858 return fold_build2 (GE_EXPR
, type
, arg00
, lo
);
6868 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6869 equality/inequality test, then return a simplified form of the test
6870 using a sign testing. Otherwise return NULL. TYPE is the desired
6874 fold_single_bit_test_into_sign_test (enum tree_code code
, tree arg0
, tree arg1
,
6877 /* If this is testing a single bit, we can optimize the test. */
6878 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6879 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6880 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6882 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6883 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6884 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6886 if (arg00
!= NULL_TREE
6887 /* This is only a win if casting to a signed type is cheap,
6888 i.e. when arg00's type is not a partial mode. */
6889 && TYPE_PRECISION (TREE_TYPE (arg00
))
6890 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00
))))
6892 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6893 return fold_build2 (code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6894 result_type
, fold_convert (stype
, arg00
),
6895 build_int_cst (stype
, 0));
6902 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6903 equality/inequality test, then return a simplified form of
6904 the test using shifts and logical operations. Otherwise return
6905 NULL. TYPE is the desired result type. */
6908 fold_single_bit_test (enum tree_code code
, tree arg0
, tree arg1
,
6911 /* If this is testing a single bit, we can optimize the test. */
6912 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6913 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6914 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6916 tree inner
= TREE_OPERAND (arg0
, 0);
6917 tree type
= TREE_TYPE (arg0
);
6918 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6919 enum machine_mode operand_mode
= TYPE_MODE (type
);
6921 tree signed_type
, unsigned_type
, intermediate_type
;
6924 /* First, see if we can fold the single bit test into a sign-bit
6926 tem
= fold_single_bit_test_into_sign_test (code
, arg0
, arg1
,
6931 /* Otherwise we have (A & C) != 0 where C is a single bit,
6932 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6933 Similarly for (A & C) == 0. */
6935 /* If INNER is a right shift of a constant and it plus BITNUM does
6936 not overflow, adjust BITNUM and INNER. */
6937 if (TREE_CODE (inner
) == RSHIFT_EXPR
6938 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6939 && TREE_INT_CST_HIGH (TREE_OPERAND (inner
, 1)) == 0
6940 && bitnum
< TYPE_PRECISION (type
)
6941 && 0 > compare_tree_int (TREE_OPERAND (inner
, 1),
6942 bitnum
- TYPE_PRECISION (type
)))
6944 bitnum
+= TREE_INT_CST_LOW (TREE_OPERAND (inner
, 1));
6945 inner
= TREE_OPERAND (inner
, 0);
6948 /* If we are going to be able to omit the AND below, we must do our
6949 operations as unsigned. If we must use the AND, we have a choice.
6950 Normally unsigned is faster, but for some machines signed is. */
6951 #ifdef LOAD_EXTEND_OP
6952 ops_unsigned
= (LOAD_EXTEND_OP (operand_mode
) == SIGN_EXTEND
6953 && !flag_syntax_only
) ? 0 : 1;
6958 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6959 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6960 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6961 inner
= fold_convert (intermediate_type
, inner
);
6964 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6965 inner
, size_int (bitnum
));
6967 one
= build_int_cst (intermediate_type
, 1);
6969 if (code
== EQ_EXPR
)
6970 inner
= fold_build2 (BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6972 /* Put the AND last so it can combine with more things. */
6973 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6975 /* Make sure to return the proper type. */
6976 inner
= fold_convert (result_type
, inner
);
6983 /* Check whether we are allowed to reorder operands arg0 and arg1,
6984 such that the evaluation of arg1 occurs before arg0. */
6987 reorder_operands_p (tree arg0
, tree arg1
)
6989 if (! flag_evaluation_order
)
6991 if (TREE_CONSTANT (arg0
) || TREE_CONSTANT (arg1
))
6993 return ! TREE_SIDE_EFFECTS (arg0
)
6994 && ! TREE_SIDE_EFFECTS (arg1
);
6997 /* Test whether it is preferable two swap two operands, ARG0 and
6998 ARG1, for example because ARG0 is an integer constant and ARG1
6999 isn't. If REORDER is true, only recommend swapping if we can
7000 evaluate the operands in reverse order. */
7003 tree_swap_operands_p (const_tree arg0
, const_tree arg1
, bool reorder
)
7005 STRIP_SIGN_NOPS (arg0
);
7006 STRIP_SIGN_NOPS (arg1
);
7008 if (TREE_CODE (arg1
) == INTEGER_CST
)
7010 if (TREE_CODE (arg0
) == INTEGER_CST
)
7013 if (TREE_CODE (arg1
) == REAL_CST
)
7015 if (TREE_CODE (arg0
) == REAL_CST
)
7018 if (TREE_CODE (arg1
) == FIXED_CST
)
7020 if (TREE_CODE (arg0
) == FIXED_CST
)
7023 if (TREE_CODE (arg1
) == COMPLEX_CST
)
7025 if (TREE_CODE (arg0
) == COMPLEX_CST
)
7028 if (TREE_CONSTANT (arg1
))
7030 if (TREE_CONSTANT (arg0
))
7036 if (reorder
&& flag_evaluation_order
7037 && (TREE_SIDE_EFFECTS (arg0
) || TREE_SIDE_EFFECTS (arg1
)))
7040 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7041 for commutative and comparison operators. Ensuring a canonical
7042 form allows the optimizers to find additional redundancies without
7043 having to explicitly check for both orderings. */
7044 if (TREE_CODE (arg0
) == SSA_NAME
7045 && TREE_CODE (arg1
) == SSA_NAME
7046 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
7049 /* Put SSA_NAMEs last. */
7050 if (TREE_CODE (arg1
) == SSA_NAME
)
7052 if (TREE_CODE (arg0
) == SSA_NAME
)
7055 /* Put variables last. */
7064 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
7065 ARG0 is extended to a wider type. */
7068 fold_widened_comparison (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
7070 tree arg0_unw
= get_unwidened (arg0
, NULL_TREE
);
7072 tree shorter_type
, outer_type
;
7076 if (arg0_unw
== arg0
)
7078 shorter_type
= TREE_TYPE (arg0_unw
);
7080 #ifdef HAVE_canonicalize_funcptr_for_compare
7081 /* Disable this optimization if we're casting a function pointer
7082 type on targets that require function pointer canonicalization. */
7083 if (HAVE_canonicalize_funcptr_for_compare
7084 && TREE_CODE (shorter_type
) == POINTER_TYPE
7085 && TREE_CODE (TREE_TYPE (shorter_type
)) == FUNCTION_TYPE
)
7089 if (TYPE_PRECISION (TREE_TYPE (arg0
)) <= TYPE_PRECISION (shorter_type
))
7092 arg1_unw
= get_unwidened (arg1
, shorter_type
);
7094 /* If possible, express the comparison in the shorter mode. */
7095 if ((code
== EQ_EXPR
|| code
== NE_EXPR
7096 || TYPE_UNSIGNED (TREE_TYPE (arg0
)) == TYPE_UNSIGNED (shorter_type
))
7097 && (TREE_TYPE (arg1_unw
) == shorter_type
7098 || (TREE_CODE (arg1_unw
) == INTEGER_CST
7099 && (TREE_CODE (shorter_type
) == INTEGER_TYPE
7100 || TREE_CODE (shorter_type
) == BOOLEAN_TYPE
)
7101 && int_fits_type_p (arg1_unw
, shorter_type
))))
7102 return fold_build2 (code
, type
, arg0_unw
,
7103 fold_convert (shorter_type
, arg1_unw
));
7105 if (TREE_CODE (arg1_unw
) != INTEGER_CST
7106 || TREE_CODE (shorter_type
) != INTEGER_TYPE
7107 || !int_fits_type_p (arg1_unw
, shorter_type
))
7110 /* If we are comparing with the integer that does not fit into the range
7111 of the shorter type, the result is known. */
7112 outer_type
= TREE_TYPE (arg1_unw
);
7113 min
= lower_bound_in_type (outer_type
, shorter_type
);
7114 max
= upper_bound_in_type (outer_type
, shorter_type
);
7116 above
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
7118 below
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
7125 return omit_one_operand (type
, integer_zero_node
, arg0
);
7130 return omit_one_operand (type
, integer_one_node
, arg0
);
7136 return omit_one_operand (type
, integer_one_node
, arg0
);
7138 return omit_one_operand (type
, integer_zero_node
, arg0
);
7143 return omit_one_operand (type
, integer_zero_node
, arg0
);
7145 return omit_one_operand (type
, integer_one_node
, arg0
);
7154 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7155 ARG0 just the signedness is changed. */
7158 fold_sign_changed_comparison (enum tree_code code
, tree type
,
7159 tree arg0
, tree arg1
)
7162 tree inner_type
, outer_type
;
7164 if (TREE_CODE (arg0
) != NOP_EXPR
7165 && TREE_CODE (arg0
) != CONVERT_EXPR
)
7168 outer_type
= TREE_TYPE (arg0
);
7169 arg0_inner
= TREE_OPERAND (arg0
, 0);
7170 inner_type
= TREE_TYPE (arg0_inner
);
7172 #ifdef HAVE_canonicalize_funcptr_for_compare
7173 /* Disable this optimization if we're casting a function pointer
7174 type on targets that require function pointer canonicalization. */
7175 if (HAVE_canonicalize_funcptr_for_compare
7176 && TREE_CODE (inner_type
) == POINTER_TYPE
7177 && TREE_CODE (TREE_TYPE (inner_type
)) == FUNCTION_TYPE
)
7181 if (TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
7184 if (TREE_CODE (arg1
) != INTEGER_CST
7185 && !((TREE_CODE (arg1
) == NOP_EXPR
7186 || TREE_CODE (arg1
) == CONVERT_EXPR
)
7187 && TREE_TYPE (TREE_OPERAND (arg1
, 0)) == inner_type
))
7190 if (TYPE_UNSIGNED (inner_type
) != TYPE_UNSIGNED (outer_type
)
7195 if (TREE_CODE (arg1
) == INTEGER_CST
)
7196 arg1
= force_fit_type_double (inner_type
, TREE_INT_CST_LOW (arg1
),
7197 TREE_INT_CST_HIGH (arg1
), 0,
7198 TREE_OVERFLOW (arg1
));
7200 arg1
= fold_convert (inner_type
, arg1
);
7202 return fold_build2 (code
, type
, arg0_inner
, arg1
);
7205 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
7206 step of the array. Reconstructs s and delta in the case of s * delta
7207 being an integer constant (and thus already folded).
7208 ADDR is the address. MULT is the multiplicative expression.
7209 If the function succeeds, the new address expression is returned. Otherwise
7210 NULL_TREE is returned. */
7213 try_move_mult_to_index (tree addr
, tree op1
)
7215 tree s
, delta
, step
;
7216 tree ref
= TREE_OPERAND (addr
, 0), pref
;
7221 /* Strip the nops that might be added when converting op1 to sizetype. */
7224 /* Canonicalize op1 into a possibly non-constant delta
7225 and an INTEGER_CST s. */
7226 if (TREE_CODE (op1
) == MULT_EXPR
)
7228 tree arg0
= TREE_OPERAND (op1
, 0), arg1
= TREE_OPERAND (op1
, 1);
7233 if (TREE_CODE (arg0
) == INTEGER_CST
)
7238 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7246 else if (TREE_CODE (op1
) == INTEGER_CST
)
7253 /* Simulate we are delta * 1. */
7255 s
= integer_one_node
;
7258 for (;; ref
= TREE_OPERAND (ref
, 0))
7260 if (TREE_CODE (ref
) == ARRAY_REF
)
7262 /* Remember if this was a multi-dimensional array. */
7263 if (TREE_CODE (TREE_OPERAND (ref
, 0)) == ARRAY_REF
)
7266 itype
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref
, 0)));
7270 step
= array_ref_element_size (ref
);
7271 if (TREE_CODE (step
) != INTEGER_CST
)
7276 if (! tree_int_cst_equal (step
, s
))
7281 /* Try if delta is a multiple of step. */
7282 tree tmp
= div_if_zero_remainder (EXACT_DIV_EXPR
, delta
, step
);
7288 /* Only fold here if we can verify we do not overflow one
7289 dimension of a multi-dimensional array. */
7294 if (TREE_CODE (TREE_OPERAND (ref
, 1)) != INTEGER_CST
7295 || !INTEGRAL_TYPE_P (itype
)
7296 || !TYPE_MAX_VALUE (itype
)
7297 || TREE_CODE (TYPE_MAX_VALUE (itype
)) != INTEGER_CST
)
7300 tmp
= fold_binary (PLUS_EXPR
, itype
,
7301 fold_convert (itype
,
7302 TREE_OPERAND (ref
, 1)),
7303 fold_convert (itype
, delta
));
7305 || TREE_CODE (tmp
) != INTEGER_CST
7306 || tree_int_cst_lt (TYPE_MAX_VALUE (itype
), tmp
))
7315 if (!handled_component_p (ref
))
7319 /* We found the suitable array reference. So copy everything up to it,
7320 and replace the index. */
7322 pref
= TREE_OPERAND (addr
, 0);
7323 ret
= copy_node (pref
);
7328 pref
= TREE_OPERAND (pref
, 0);
7329 TREE_OPERAND (pos
, 0) = copy_node (pref
);
7330 pos
= TREE_OPERAND (pos
, 0);
7333 TREE_OPERAND (pos
, 1) = fold_build2 (PLUS_EXPR
, itype
,
7334 fold_convert (itype
,
7335 TREE_OPERAND (pos
, 1)),
7336 fold_convert (itype
, delta
));
7338 return fold_build1 (ADDR_EXPR
, TREE_TYPE (addr
), ret
);
7342 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7343 means A >= Y && A != MAX, but in this case we know that
7344 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7347 fold_to_nonsharp_ineq_using_bound (tree ineq
, tree bound
)
7349 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
7351 if (TREE_CODE (bound
) == LT_EXPR
)
7352 a
= TREE_OPERAND (bound
, 0);
7353 else if (TREE_CODE (bound
) == GT_EXPR
)
7354 a
= TREE_OPERAND (bound
, 1);
7358 typea
= TREE_TYPE (a
);
7359 if (!INTEGRAL_TYPE_P (typea
)
7360 && !POINTER_TYPE_P (typea
))
7363 if (TREE_CODE (ineq
) == LT_EXPR
)
7365 a1
= TREE_OPERAND (ineq
, 1);
7366 y
= TREE_OPERAND (ineq
, 0);
7368 else if (TREE_CODE (ineq
) == GT_EXPR
)
7370 a1
= TREE_OPERAND (ineq
, 0);
7371 y
= TREE_OPERAND (ineq
, 1);
7376 if (TREE_TYPE (a1
) != typea
)
7379 if (POINTER_TYPE_P (typea
))
7381 /* Convert the pointer types into integer before taking the difference. */
7382 tree ta
= fold_convert (ssizetype
, a
);
7383 tree ta1
= fold_convert (ssizetype
, a1
);
7384 diff
= fold_binary (MINUS_EXPR
, ssizetype
, ta1
, ta
);
7387 diff
= fold_binary (MINUS_EXPR
, typea
, a1
, a
);
7389 if (!diff
|| !integer_onep (diff
))
7392 return fold_build2 (GE_EXPR
, type
, a
, y
);
7395 /* Fold a sum or difference of at least one multiplication.
7396 Returns the folded tree or NULL if no simplification could be made. */
7399 fold_plusminus_mult_expr (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
7401 tree arg00
, arg01
, arg10
, arg11
;
7402 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7404 /* (A * C) +- (B * C) -> (A+-B) * C.
7405 (A * C) +- A -> A * (C+-1).
7406 We are most concerned about the case where C is a constant,
7407 but other combinations show up during loop reduction. Since
7408 it is not difficult, try all four possibilities. */
7410 if (TREE_CODE (arg0
) == MULT_EXPR
)
7412 arg00
= TREE_OPERAND (arg0
, 0);
7413 arg01
= TREE_OPERAND (arg0
, 1);
7415 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7417 arg00
= build_one_cst (type
);
7422 /* We cannot generate constant 1 for fract. */
7423 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7426 arg01
= build_one_cst (type
);
7428 if (TREE_CODE (arg1
) == MULT_EXPR
)
7430 arg10
= TREE_OPERAND (arg1
, 0);
7431 arg11
= TREE_OPERAND (arg1
, 1);
7433 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7435 arg10
= build_one_cst (type
);
7440 /* We cannot generate constant 1 for fract. */
7441 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7444 arg11
= build_one_cst (type
);
7448 if (operand_equal_p (arg01
, arg11
, 0))
7449 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7450 else if (operand_equal_p (arg00
, arg10
, 0))
7451 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7452 else if (operand_equal_p (arg00
, arg11
, 0))
7453 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7454 else if (operand_equal_p (arg01
, arg10
, 0))
7455 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7457 /* No identical multiplicands; see if we can find a common
7458 power-of-two factor in non-power-of-two multiplies. This
7459 can help in multi-dimensional array access. */
7460 else if (host_integerp (arg01
, 0)
7461 && host_integerp (arg11
, 0))
7463 HOST_WIDE_INT int01
, int11
, tmp
;
7466 int01
= TREE_INT_CST_LOW (arg01
);
7467 int11
= TREE_INT_CST_LOW (arg11
);
7469 /* Move min of absolute values to int11. */
7470 if ((int01
>= 0 ? int01
: -int01
)
7471 < (int11
>= 0 ? int11
: -int11
))
7473 tmp
= int01
, int01
= int11
, int11
= tmp
;
7474 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7481 if (exact_log2 (abs (int11
)) > 0 && int01
% int11
== 0)
7483 alt0
= fold_build2 (MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7484 build_int_cst (TREE_TYPE (arg00
),
7489 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7494 return fold_build2 (MULT_EXPR
, type
,
7495 fold_build2 (code
, type
,
7496 fold_convert (type
, alt0
),
7497 fold_convert (type
, alt1
)),
7498 fold_convert (type
, same
));
7503 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7504 specified by EXPR into the buffer PTR of length LEN bytes.
7505 Return the number of bytes placed in the buffer, or zero
7509 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
)
7511 tree type
= TREE_TYPE (expr
);
7512 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7513 int byte
, offset
, word
, words
;
7514 unsigned char value
;
7516 if (total_bytes
> len
)
7518 words
= total_bytes
/ UNITS_PER_WORD
;
7520 for (byte
= 0; byte
< total_bytes
; byte
++)
7522 int bitpos
= byte
* BITS_PER_UNIT
;
7523 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
7524 value
= (unsigned char) (TREE_INT_CST_LOW (expr
) >> bitpos
);
7526 value
= (unsigned char) (TREE_INT_CST_HIGH (expr
)
7527 >> (bitpos
- HOST_BITS_PER_WIDE_INT
));
7529 if (total_bytes
> UNITS_PER_WORD
)
7531 word
= byte
/ UNITS_PER_WORD
;
7532 if (WORDS_BIG_ENDIAN
)
7533 word
= (words
- 1) - word
;
7534 offset
= word
* UNITS_PER_WORD
;
7535 if (BYTES_BIG_ENDIAN
)
7536 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7538 offset
+= byte
% UNITS_PER_WORD
;
7541 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7542 ptr
[offset
] = value
;
7548 /* Subroutine of native_encode_expr. Encode the REAL_CST
7549 specified by EXPR into the buffer PTR of length LEN bytes.
7550 Return the number of bytes placed in the buffer, or zero
7554 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
)
7556 tree type
= TREE_TYPE (expr
);
7557 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7558 int byte
, offset
, word
, words
, bitpos
;
7559 unsigned char value
;
7561 /* There are always 32 bits in each long, no matter the size of
7562 the hosts long. We handle floating point representations with
7566 if (total_bytes
> len
)
7568 words
= 32 / UNITS_PER_WORD
;
7570 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7572 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7573 bitpos
+= BITS_PER_UNIT
)
7575 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7576 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7578 if (UNITS_PER_WORD
< 4)
7580 word
= byte
/ UNITS_PER_WORD
;
7581 if (WORDS_BIG_ENDIAN
)
7582 word
= (words
- 1) - word
;
7583 offset
= word
* UNITS_PER_WORD
;
7584 if (BYTES_BIG_ENDIAN
)
7585 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7587 offset
+= byte
% UNITS_PER_WORD
;
7590 offset
= BYTES_BIG_ENDIAN
? 3 - byte
: byte
;
7591 ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)] = value
;
7596 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7597 specified by EXPR into the buffer PTR of length LEN bytes.
7598 Return the number of bytes placed in the buffer, or zero
7602 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
)
7607 part
= TREE_REALPART (expr
);
7608 rsize
= native_encode_expr (part
, ptr
, len
);
7611 part
= TREE_IMAGPART (expr
);
7612 isize
= native_encode_expr (part
, ptr
+rsize
, len
-rsize
);
7615 return rsize
+ isize
;
7619 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7620 specified by EXPR into the buffer PTR of length LEN bytes.
7621 Return the number of bytes placed in the buffer, or zero
7625 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
)
7627 int i
, size
, offset
, count
;
7628 tree itype
, elem
, elements
;
7631 elements
= TREE_VECTOR_CST_ELTS (expr
);
7632 count
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr
));
7633 itype
= TREE_TYPE (TREE_TYPE (expr
));
7634 size
= GET_MODE_SIZE (TYPE_MODE (itype
));
7635 for (i
= 0; i
< count
; i
++)
7639 elem
= TREE_VALUE (elements
);
7640 elements
= TREE_CHAIN (elements
);
7647 if (native_encode_expr (elem
, ptr
+offset
, len
-offset
) != size
)
7652 if (offset
+ size
> len
)
7654 memset (ptr
+offset
, 0, size
);
7662 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7663 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7664 buffer PTR of length LEN bytes. Return the number of bytes
7665 placed in the buffer, or zero upon failure. */
7668 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
)
7670 switch (TREE_CODE (expr
))
7673 return native_encode_int (expr
, ptr
, len
);
7676 return native_encode_real (expr
, ptr
, len
);
7679 return native_encode_complex (expr
, ptr
, len
);
7682 return native_encode_vector (expr
, ptr
, len
);
7690 /* Subroutine of native_interpret_expr. Interpret the contents of
7691 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7692 If the buffer cannot be interpreted, return NULL_TREE. */
7695 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7697 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7698 int byte
, offset
, word
, words
;
7699 unsigned char value
;
7700 unsigned int HOST_WIDE_INT lo
= 0;
7701 HOST_WIDE_INT hi
= 0;
7703 if (total_bytes
> len
)
7705 if (total_bytes
* BITS_PER_UNIT
> 2 * HOST_BITS_PER_WIDE_INT
)
7707 words
= total_bytes
/ UNITS_PER_WORD
;
7709 for (byte
= 0; byte
< total_bytes
; byte
++)
7711 int bitpos
= byte
* BITS_PER_UNIT
;
7712 if (total_bytes
> UNITS_PER_WORD
)
7714 word
= byte
/ UNITS_PER_WORD
;
7715 if (WORDS_BIG_ENDIAN
)
7716 word
= (words
- 1) - word
;
7717 offset
= word
* UNITS_PER_WORD
;
7718 if (BYTES_BIG_ENDIAN
)
7719 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7721 offset
+= byte
% UNITS_PER_WORD
;
7724 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7725 value
= ptr
[offset
];
7727 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
7728 lo
|= (unsigned HOST_WIDE_INT
) value
<< bitpos
;
7730 hi
|= (unsigned HOST_WIDE_INT
) value
7731 << (bitpos
- HOST_BITS_PER_WIDE_INT
);
7734 return build_int_cst_wide_type (type
, lo
, hi
);
7738 /* Subroutine of native_interpret_expr. Interpret the contents of
7739 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7740 If the buffer cannot be interpreted, return NULL_TREE. */
7743 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7745 enum machine_mode mode
= TYPE_MODE (type
);
7746 int total_bytes
= GET_MODE_SIZE (mode
);
7747 int byte
, offset
, word
, words
, bitpos
;
7748 unsigned char value
;
7749 /* There are always 32 bits in each long, no matter the size of
7750 the hosts long. We handle floating point representations with
7755 total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7756 if (total_bytes
> len
|| total_bytes
> 24)
7758 words
= 32 / UNITS_PER_WORD
;
7760 memset (tmp
, 0, sizeof (tmp
));
7761 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7762 bitpos
+= BITS_PER_UNIT
)
7764 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7765 if (UNITS_PER_WORD
< 4)
7767 word
= byte
/ UNITS_PER_WORD
;
7768 if (WORDS_BIG_ENDIAN
)
7769 word
= (words
- 1) - word
;
7770 offset
= word
* UNITS_PER_WORD
;
7771 if (BYTES_BIG_ENDIAN
)
7772 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7774 offset
+= byte
% UNITS_PER_WORD
;
7777 offset
= BYTES_BIG_ENDIAN
? 3 - byte
: byte
;
7778 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7780 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7783 real_from_target (&r
, tmp
, mode
);
7784 return build_real (type
, r
);
7788 /* Subroutine of native_interpret_expr. Interpret the contents of
7789 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7790 If the buffer cannot be interpreted, return NULL_TREE. */
7793 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7795 tree etype
, rpart
, ipart
;
7798 etype
= TREE_TYPE (type
);
7799 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7802 rpart
= native_interpret_expr (etype
, ptr
, size
);
7805 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7808 return build_complex (type
, rpart
, ipart
);
7812 /* Subroutine of native_interpret_expr. Interpret the contents of
7813 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7814 If the buffer cannot be interpreted, return NULL_TREE. */
7817 native_interpret_vector (tree type
, const unsigned char *ptr
, int len
)
7819 tree etype
, elem
, elements
;
7822 etype
= TREE_TYPE (type
);
7823 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7824 count
= TYPE_VECTOR_SUBPARTS (type
);
7825 if (size
* count
> len
)
7828 elements
= NULL_TREE
;
7829 for (i
= count
- 1; i
>= 0; i
--)
7831 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7834 elements
= tree_cons (NULL_TREE
, elem
, elements
);
7836 return build_vector (type
, elements
);
7840 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7841 the buffer PTR of length LEN as a constant of type TYPE. For
7842 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7843 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7844 return NULL_TREE. */
7847 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7849 switch (TREE_CODE (type
))
7854 return native_interpret_int (type
, ptr
, len
);
7857 return native_interpret_real (type
, ptr
, len
);
7860 return native_interpret_complex (type
, ptr
, len
);
7863 return native_interpret_vector (type
, ptr
, len
);
7871 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7872 TYPE at compile-time. If we're unable to perform the conversion
7873 return NULL_TREE. */
7876 fold_view_convert_expr (tree type
, tree expr
)
7878 /* We support up to 512-bit values (for V8DFmode). */
7879 unsigned char buffer
[64];
7882 /* Check that the host and target are sane. */
7883 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7886 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7890 return native_interpret_expr (type
, buffer
, len
);
7893 /* Build an expression for the address of T. Folds away INDIRECT_REF
7894 to avoid confusing the gimplify process. When IN_FOLD is true
7895 avoid modifications of T. */
7898 build_fold_addr_expr_with_type_1 (tree t
, tree ptrtype
, bool in_fold
)
7900 /* The size of the object is not relevant when talking about its address. */
7901 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7902 t
= TREE_OPERAND (t
, 0);
7904 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
7905 if (TREE_CODE (t
) == INDIRECT_REF
7906 || TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
7908 t
= TREE_OPERAND (t
, 0);
7910 if (TREE_TYPE (t
) != ptrtype
)
7911 t
= build1 (NOP_EXPR
, ptrtype
, t
);
7917 while (handled_component_p (base
))
7918 base
= TREE_OPERAND (base
, 0);
7921 TREE_ADDRESSABLE (base
) = 1;
7923 t
= build1 (ADDR_EXPR
, ptrtype
, t
);
7926 t
= build1 (ADDR_EXPR
, ptrtype
, t
);
7931 /* Build an expression for the address of T with type PTRTYPE. This
7932 function modifies the input parameter 'T' by sometimes setting the
7933 TREE_ADDRESSABLE flag. */
7936 build_fold_addr_expr_with_type (tree t
, tree ptrtype
)
7938 return build_fold_addr_expr_with_type_1 (t
, ptrtype
, false);
7941 /* Build an expression for the address of T. This function modifies
7942 the input parameter 'T' by sometimes setting the TREE_ADDRESSABLE
7943 flag. When called from fold functions, use fold_addr_expr instead. */
7946 build_fold_addr_expr (tree t
)
7948 return build_fold_addr_expr_with_type_1 (t
,
7949 build_pointer_type (TREE_TYPE (t
)),
7953 /* Same as build_fold_addr_expr, builds an expression for the address
7954 of T, but avoids touching the input node 't'. Fold functions
7955 should use this version. */
7958 fold_addr_expr (tree t
)
7960 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7962 return build_fold_addr_expr_with_type_1 (t
, ptrtype
, true);
7965 /* Fold a unary expression of code CODE and type TYPE with operand
7966 OP0. Return the folded expression if folding is successful.
7967 Otherwise, return NULL_TREE. */
7970 fold_unary (enum tree_code code
, tree type
, tree op0
)
7974 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7976 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7977 && TREE_CODE_LENGTH (code
) == 1);
7982 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
7983 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
)
7985 /* Don't use STRIP_NOPS, because signedness of argument type
7987 STRIP_SIGN_NOPS (arg0
);
7991 /* Strip any conversions that don't change the mode. This
7992 is safe for every expression, except for a comparison
7993 expression because its signedness is derived from its
7996 Note that this is done as an internal manipulation within
7997 the constant folder, in order to find the simplest
7998 representation of the arguments so that their form can be
7999 studied. In any cases, the appropriate type conversions
8000 should be put back in the tree that will get out of the
8006 if (TREE_CODE_CLASS (code
) == tcc_unary
)
8008 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
8009 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
8010 fold_build1 (code
, type
, TREE_OPERAND (arg0
, 1)));
8011 else if (TREE_CODE (arg0
) == COND_EXPR
)
8013 tree arg01
= TREE_OPERAND (arg0
, 1);
8014 tree arg02
= TREE_OPERAND (arg0
, 2);
8015 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
8016 arg01
= fold_build1 (code
, type
, arg01
);
8017 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
8018 arg02
= fold_build1 (code
, type
, arg02
);
8019 tem
= fold_build3 (COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
8022 /* If this was a conversion, and all we did was to move into
8023 inside the COND_EXPR, bring it back out. But leave it if
8024 it is a conversion from integer to integer and the
8025 result precision is no wider than a word since such a
8026 conversion is cheap and may be optimized away by combine,
8027 while it couldn't if it were outside the COND_EXPR. Then return
8028 so we don't get into an infinite recursion loop taking the
8029 conversion out and then back in. */
8031 if ((code
== NOP_EXPR
|| code
== CONVERT_EXPR
8032 || code
== NON_LVALUE_EXPR
)
8033 && TREE_CODE (tem
) == COND_EXPR
8034 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
8035 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
8036 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
8037 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
8038 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
8039 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
8040 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8042 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
8043 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
8044 || flag_syntax_only
))
8045 tem
= build1 (code
, type
,
8047 TREE_TYPE (TREE_OPERAND
8048 (TREE_OPERAND (tem
, 1), 0)),
8049 TREE_OPERAND (tem
, 0),
8050 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
8051 TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)));
8054 else if (COMPARISON_CLASS_P (arg0
))
8056 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
8058 arg0
= copy_node (arg0
);
8059 TREE_TYPE (arg0
) = type
;
8062 else if (TREE_CODE (type
) != INTEGER_TYPE
)
8063 return fold_build3 (COND_EXPR
, type
, arg0
,
8064 fold_build1 (code
, type
,
8066 fold_build1 (code
, type
,
8067 integer_zero_node
));
8076 case FIX_TRUNC_EXPR
:
8077 if (TREE_TYPE (op0
) == type
)
8080 /* If we have (type) (a CMP b) and type is an integral type, return
8081 new expression involving the new type. */
8082 if (COMPARISON_CLASS_P (op0
) && INTEGRAL_TYPE_P (type
))
8083 return fold_build2 (TREE_CODE (op0
), type
, TREE_OPERAND (op0
, 0),
8084 TREE_OPERAND (op0
, 1));
8086 /* Handle cases of two conversions in a row. */
8087 if (TREE_CODE (op0
) == NOP_EXPR
8088 || TREE_CODE (op0
) == CONVERT_EXPR
)
8090 tree inside_type
= TREE_TYPE (TREE_OPERAND (op0
, 0));
8091 tree inter_type
= TREE_TYPE (op0
);
8092 int inside_int
= INTEGRAL_TYPE_P (inside_type
);
8093 int inside_ptr
= POINTER_TYPE_P (inside_type
);
8094 int inside_float
= FLOAT_TYPE_P (inside_type
);
8095 int inside_vec
= TREE_CODE (inside_type
) == VECTOR_TYPE
;
8096 unsigned int inside_prec
= TYPE_PRECISION (inside_type
);
8097 int inside_unsignedp
= TYPE_UNSIGNED (inside_type
);
8098 int inter_int
= INTEGRAL_TYPE_P (inter_type
);
8099 int inter_ptr
= POINTER_TYPE_P (inter_type
);
8100 int inter_float
= FLOAT_TYPE_P (inter_type
);
8101 int inter_vec
= TREE_CODE (inter_type
) == VECTOR_TYPE
;
8102 unsigned int inter_prec
= TYPE_PRECISION (inter_type
);
8103 int inter_unsignedp
= TYPE_UNSIGNED (inter_type
);
8104 int final_int
= INTEGRAL_TYPE_P (type
);
8105 int final_ptr
= POINTER_TYPE_P (type
);
8106 int final_float
= FLOAT_TYPE_P (type
);
8107 int final_vec
= TREE_CODE (type
) == VECTOR_TYPE
;
8108 unsigned int final_prec
= TYPE_PRECISION (type
);
8109 int final_unsignedp
= TYPE_UNSIGNED (type
);
8111 /* In addition to the cases of two conversions in a row
8112 handled below, if we are converting something to its own
8113 type via an object of identical or wider precision, neither
8114 conversion is needed. */
8115 if (TYPE_MAIN_VARIANT (inside_type
) == TYPE_MAIN_VARIANT (type
)
8116 && (((inter_int
|| inter_ptr
) && final_int
)
8117 || (inter_float
&& final_float
))
8118 && inter_prec
>= final_prec
)
8119 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
8121 /* Likewise, if the intermediate and final types are either both
8122 float or both integer, we don't need the middle conversion if
8123 it is wider than the final type and doesn't change the signedness
8124 (for integers). Avoid this if the final type is a pointer
8125 since then we sometimes need the inner conversion. Likewise if
8126 the outer has a precision not equal to the size of its mode. */
8127 if ((((inter_int
|| inter_ptr
) && (inside_int
|| inside_ptr
))
8128 || (inter_float
&& inside_float
)
8129 || (inter_vec
&& inside_vec
))
8130 && inter_prec
>= inside_prec
8131 && (inter_float
|| inter_vec
8132 || inter_unsignedp
== inside_unsignedp
)
8133 && ! (final_prec
!= GET_MODE_BITSIZE (TYPE_MODE (type
))
8134 && TYPE_MODE (type
) == TYPE_MODE (inter_type
))
8136 && (! final_vec
|| inter_prec
== inside_prec
))
8137 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
8139 /* If we have a sign-extension of a zero-extended value, we can
8140 replace that by a single zero-extension. */
8141 if (inside_int
&& inter_int
&& final_int
8142 && inside_prec
< inter_prec
&& inter_prec
< final_prec
8143 && inside_unsignedp
&& !inter_unsignedp
)
8144 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
8146 /* Two conversions in a row are not needed unless:
8147 - some conversion is floating-point (overstrict for now), or
8148 - some conversion is a vector (overstrict for now), or
8149 - the intermediate type is narrower than both initial and
8151 - the intermediate type and innermost type differ in signedness,
8152 and the outermost type is wider than the intermediate, or
8153 - the initial type is a pointer type and the precisions of the
8154 intermediate and final types differ, or
8155 - the final type is a pointer type and the precisions of the
8156 initial and intermediate types differ.
8157 - the final type is a pointer type and the initial type not
8158 - the initial type is a pointer to an array and the final type
8160 if (! inside_float
&& ! inter_float
&& ! final_float
8161 && ! inside_vec
&& ! inter_vec
&& ! final_vec
8162 && (inter_prec
>= inside_prec
|| inter_prec
>= final_prec
)
8163 && ! (inside_int
&& inter_int
8164 && inter_unsignedp
!= inside_unsignedp
8165 && inter_prec
< final_prec
)
8166 && ((inter_unsignedp
&& inter_prec
> inside_prec
)
8167 == (final_unsignedp
&& final_prec
> inter_prec
))
8168 && ! (inside_ptr
&& inter_prec
!= final_prec
)
8169 && ! (final_ptr
&& inside_prec
!= inter_prec
)
8170 && ! (final_prec
!= GET_MODE_BITSIZE (TYPE_MODE (type
))
8171 && TYPE_MODE (type
) == TYPE_MODE (inter_type
))
8172 && final_ptr
== inside_ptr
8174 && TREE_CODE (TREE_TYPE (inside_type
)) == ARRAY_TYPE
8175 && TREE_CODE (TREE_TYPE (type
)) != ARRAY_TYPE
))
8176 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
8179 /* Handle (T *)&A.B.C for A being of type T and B and C
8180 living at offset zero. This occurs frequently in
8181 C++ upcasting and then accessing the base. */
8182 if (TREE_CODE (op0
) == ADDR_EXPR
8183 && POINTER_TYPE_P (type
)
8184 && handled_component_p (TREE_OPERAND (op0
, 0)))
8186 HOST_WIDE_INT bitsize
, bitpos
;
8188 enum machine_mode mode
;
8189 int unsignedp
, volatilep
;
8190 tree base
= TREE_OPERAND (op0
, 0);
8191 base
= get_inner_reference (base
, &bitsize
, &bitpos
, &offset
,
8192 &mode
, &unsignedp
, &volatilep
, false);
8193 /* If the reference was to a (constant) zero offset, we can use
8194 the address of the base if it has the same base type
8195 as the result type. */
8196 if (! offset
&& bitpos
== 0
8197 && TYPE_MAIN_VARIANT (TREE_TYPE (type
))
8198 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
8199 return fold_convert (type
, fold_addr_expr (base
));
8202 if ((TREE_CODE (op0
) == MODIFY_EXPR
8203 || TREE_CODE (op0
) == GIMPLE_MODIFY_STMT
)
8204 && TREE_CONSTANT (GENERIC_TREE_OPERAND (op0
, 1))
8205 /* Detect assigning a bitfield. */
8206 && !(TREE_CODE (GENERIC_TREE_OPERAND (op0
, 0)) == COMPONENT_REF
8208 (TREE_OPERAND (GENERIC_TREE_OPERAND (op0
, 0), 1))))
8210 /* Don't leave an assignment inside a conversion
8211 unless assigning a bitfield. */
8212 tem
= fold_build1 (code
, type
, GENERIC_TREE_OPERAND (op0
, 1));
8213 /* First do the assignment, then return converted constant. */
8214 tem
= build2 (COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
8215 TREE_NO_WARNING (tem
) = 1;
8216 TREE_USED (tem
) = 1;
8220 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8221 constants (if x has signed type, the sign bit cannot be set
8222 in c). This folds extension into the BIT_AND_EXPR. */
8223 if (INTEGRAL_TYPE_P (type
)
8224 && TREE_CODE (type
) != BOOLEAN_TYPE
8225 && TREE_CODE (op0
) == BIT_AND_EXPR
8226 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
8229 tree and0
= TREE_OPERAND (and, 0), and1
= TREE_OPERAND (and, 1);
8232 if (TYPE_UNSIGNED (TREE_TYPE (and))
8233 || (TYPE_PRECISION (type
)
8234 <= TYPE_PRECISION (TREE_TYPE (and))))
8236 else if (TYPE_PRECISION (TREE_TYPE (and1
))
8237 <= HOST_BITS_PER_WIDE_INT
8238 && host_integerp (and1
, 1))
8240 unsigned HOST_WIDE_INT cst
;
8242 cst
= tree_low_cst (and1
, 1);
8243 cst
&= (HOST_WIDE_INT
) -1
8244 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
8245 change
= (cst
== 0);
8246 #ifdef LOAD_EXTEND_OP
8248 && !flag_syntax_only
8249 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0
)))
8252 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
8253 and0
= fold_convert (uns
, and0
);
8254 and1
= fold_convert (uns
, and1
);
8260 tem
= force_fit_type_double (type
, TREE_INT_CST_LOW (and1
),
8261 TREE_INT_CST_HIGH (and1
), 0,
8262 TREE_OVERFLOW (and1
));
8263 return fold_build2 (BIT_AND_EXPR
, type
,
8264 fold_convert (type
, and0
), tem
);
8268 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8269 when one of the new casts will fold away. Conservatively we assume
8270 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8271 if (POINTER_TYPE_P (type
)
8272 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8273 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8274 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == NOP_EXPR
8275 || TREE_CODE (TREE_OPERAND (arg0
, 1)) == NOP_EXPR
))
8277 tree arg00
= TREE_OPERAND (arg0
, 0);
8278 tree arg01
= TREE_OPERAND (arg0
, 1);
8280 return fold_build2 (TREE_CODE (arg0
), type
, fold_convert (type
, arg00
),
8281 fold_convert (sizetype
, arg01
));
8284 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8285 of the same precision, and X is an integer type not narrower than
8286 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8287 if (INTEGRAL_TYPE_P (type
)
8288 && TREE_CODE (op0
) == BIT_NOT_EXPR
8289 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8290 && (TREE_CODE (TREE_OPERAND (op0
, 0)) == NOP_EXPR
8291 || TREE_CODE (TREE_OPERAND (op0
, 0)) == CONVERT_EXPR
)
8292 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8294 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8295 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8296 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8297 return fold_build1 (BIT_NOT_EXPR
, type
, fold_convert (type
, tem
));
8300 tem
= fold_convert_const (code
, type
, op0
);
8301 return tem
? tem
: NULL_TREE
;
8303 case FIXED_CONVERT_EXPR
:
8304 tem
= fold_convert_const (code
, type
, arg0
);
8305 return tem
? tem
: NULL_TREE
;
8307 case VIEW_CONVERT_EXPR
:
8308 if (TREE_TYPE (op0
) == type
)
8310 if (TREE_CODE (op0
) == VIEW_CONVERT_EXPR
)
8311 return fold_build1 (VIEW_CONVERT_EXPR
, type
, TREE_OPERAND (op0
, 0));
8312 return fold_view_convert_expr (type
, op0
);
8315 tem
= fold_negate_expr (arg0
);
8317 return fold_convert (type
, tem
);
8321 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
8322 return fold_abs_const (arg0
, type
);
8323 else if (TREE_CODE (arg0
) == NEGATE_EXPR
)
8324 return fold_build1 (ABS_EXPR
, type
, TREE_OPERAND (arg0
, 0));
8325 /* Convert fabs((double)float) into (double)fabsf(float). */
8326 else if (TREE_CODE (arg0
) == NOP_EXPR
8327 && TREE_CODE (type
) == REAL_TYPE
)
8329 tree targ0
= strip_float_extensions (arg0
);
8331 return fold_convert (type
, fold_build1 (ABS_EXPR
,
8335 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8336 else if (TREE_CODE (arg0
) == ABS_EXPR
)
8338 else if (tree_expr_nonnegative_p (arg0
))
8341 /* Strip sign ops from argument. */
8342 if (TREE_CODE (type
) == REAL_TYPE
)
8344 tem
= fold_strip_sign_ops (arg0
);
8346 return fold_build1 (ABS_EXPR
, type
, fold_convert (type
, tem
));
8351 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8352 return fold_convert (type
, arg0
);
8353 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8355 tree itype
= TREE_TYPE (type
);
8356 tree rpart
= fold_convert (itype
, TREE_OPERAND (arg0
, 0));
8357 tree ipart
= fold_convert (itype
, TREE_OPERAND (arg0
, 1));
8358 return fold_build2 (COMPLEX_EXPR
, type
, rpart
, negate_expr (ipart
));
8360 if (TREE_CODE (arg0
) == COMPLEX_CST
)
8362 tree itype
= TREE_TYPE (type
);
8363 tree rpart
= fold_convert (itype
, TREE_REALPART (arg0
));
8364 tree ipart
= fold_convert (itype
, TREE_IMAGPART (arg0
));
8365 return build_complex (type
, rpart
, negate_expr (ipart
));
8367 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8368 return fold_convert (type
, TREE_OPERAND (arg0
, 0));
8372 if (TREE_CODE (arg0
) == INTEGER_CST
)
8373 return fold_not_const (arg0
, type
);
8374 else if (TREE_CODE (arg0
) == BIT_NOT_EXPR
)
8375 return TREE_OPERAND (arg0
, 0);
8376 /* Convert ~ (-A) to A - 1. */
8377 else if (INTEGRAL_TYPE_P (type
) && TREE_CODE (arg0
) == NEGATE_EXPR
)
8378 return fold_build2 (MINUS_EXPR
, type
, TREE_OPERAND (arg0
, 0),
8379 build_int_cst (type
, 1));
8380 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8381 else if (INTEGRAL_TYPE_P (type
)
8382 && ((TREE_CODE (arg0
) == MINUS_EXPR
8383 && integer_onep (TREE_OPERAND (arg0
, 1)))
8384 || (TREE_CODE (arg0
) == PLUS_EXPR
8385 && integer_all_onesp (TREE_OPERAND (arg0
, 1)))))
8386 return fold_build1 (NEGATE_EXPR
, type
, TREE_OPERAND (arg0
, 0));
8387 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8388 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8389 && (tem
= fold_unary (BIT_NOT_EXPR
, type
,
8391 TREE_OPERAND (arg0
, 0)))))
8392 return fold_build2 (BIT_XOR_EXPR
, type
, tem
,
8393 fold_convert (type
, TREE_OPERAND (arg0
, 1)));
8394 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8395 && (tem
= fold_unary (BIT_NOT_EXPR
, type
,
8397 TREE_OPERAND (arg0
, 1)))))
8398 return fold_build2 (BIT_XOR_EXPR
, type
,
8399 fold_convert (type
, TREE_OPERAND (arg0
, 0)), tem
);
8403 case TRUTH_NOT_EXPR
:
8404 /* The argument to invert_truthvalue must have Boolean type. */
8405 if (TREE_CODE (TREE_TYPE (arg0
)) != BOOLEAN_TYPE
)
8406 arg0
= fold_convert (boolean_type_node
, arg0
);
8408 /* Note that the operand of this must be an int
8409 and its values must be 0 or 1.
8410 ("true" is a fixed value perhaps depending on the language,
8411 but we don't handle values other than 1 correctly yet.) */
8412 tem
= fold_truth_not_expr (arg0
);
8415 return fold_convert (type
, tem
);
8418 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8419 return fold_convert (type
, arg0
);
8420 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8421 return omit_one_operand (type
, TREE_OPERAND (arg0
, 0),
8422 TREE_OPERAND (arg0
, 1));
8423 if (TREE_CODE (arg0
) == COMPLEX_CST
)
8424 return fold_convert (type
, TREE_REALPART (arg0
));
8425 if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8427 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8428 tem
= fold_build2 (TREE_CODE (arg0
), itype
,
8429 fold_build1 (REALPART_EXPR
, itype
,
8430 TREE_OPERAND (arg0
, 0)),
8431 fold_build1 (REALPART_EXPR
, itype
,
8432 TREE_OPERAND (arg0
, 1)));
8433 return fold_convert (type
, tem
);
8435 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8437 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8438 tem
= fold_build1 (REALPART_EXPR
, itype
, TREE_OPERAND (arg0
, 0));
8439 return fold_convert (type
, tem
);
8441 if (TREE_CODE (arg0
) == CALL_EXPR
)
8443 tree fn
= get_callee_fndecl (arg0
);
8444 if (DECL_BUILT_IN_CLASS (fn
) == BUILT_IN_NORMAL
)
8445 switch (DECL_FUNCTION_CODE (fn
))
8447 CASE_FLT_FN (BUILT_IN_CEXPI
):
8448 fn
= mathfn_built_in (type
, BUILT_IN_COS
);
8450 return build_call_expr (fn
, 1, CALL_EXPR_ARG (arg0
, 0));
8460 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8461 return fold_convert (type
, integer_zero_node
);
8462 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8463 return omit_one_operand (type
, TREE_OPERAND (arg0
, 1),
8464 TREE_OPERAND (arg0
, 0));
8465 if (TREE_CODE (arg0
) == COMPLEX_CST
)
8466 return fold_convert (type
, TREE_IMAGPART (arg0
));
8467 if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8469 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8470 tem
= fold_build2 (TREE_CODE (arg0
), itype
,
8471 fold_build1 (IMAGPART_EXPR
, itype
,
8472 TREE_OPERAND (arg0
, 0)),
8473 fold_build1 (IMAGPART_EXPR
, itype
,
8474 TREE_OPERAND (arg0
, 1)));
8475 return fold_convert (type
, tem
);
8477 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8479 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8480 tem
= fold_build1 (IMAGPART_EXPR
, itype
, TREE_OPERAND (arg0
, 0));
8481 return fold_convert (type
, negate_expr (tem
));
8483 if (TREE_CODE (arg0
) == CALL_EXPR
)
8485 tree fn
= get_callee_fndecl (arg0
);
8486 if (DECL_BUILT_IN_CLASS (fn
) == BUILT_IN_NORMAL
)
8487 switch (DECL_FUNCTION_CODE (fn
))
8489 CASE_FLT_FN (BUILT_IN_CEXPI
):
8490 fn
= mathfn_built_in (type
, BUILT_IN_SIN
);
8492 return build_call_expr (fn
, 1, CALL_EXPR_ARG (arg0
, 0));
8503 } /* switch (code) */
8506 /* Fold a binary expression of code CODE and type TYPE with operands
8507 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8508 Return the folded expression if folding is successful. Otherwise,
8509 return NULL_TREE. */
8512 fold_minmax (enum tree_code code
, tree type
, tree op0
, tree op1
)
8514 enum tree_code compl_code
;
8516 if (code
== MIN_EXPR
)
8517 compl_code
= MAX_EXPR
;
8518 else if (code
== MAX_EXPR
)
8519 compl_code
= MIN_EXPR
;
8523 /* MIN (MAX (a, b), b) == b. */
8524 if (TREE_CODE (op0
) == compl_code
8525 && operand_equal_p (TREE_OPERAND (op0
, 1), op1
, 0))
8526 return omit_one_operand (type
, op1
, TREE_OPERAND (op0
, 0));
8528 /* MIN (MAX (b, a), b) == b. */
8529 if (TREE_CODE (op0
) == compl_code
8530 && operand_equal_p (TREE_OPERAND (op0
, 0), op1
, 0)
8531 && reorder_operands_p (TREE_OPERAND (op0
, 1), op1
))
8532 return omit_one_operand (type
, op1
, TREE_OPERAND (op0
, 1));
8534 /* MIN (a, MAX (a, b)) == a. */
8535 if (TREE_CODE (op1
) == compl_code
8536 && operand_equal_p (op0
, TREE_OPERAND (op1
, 0), 0)
8537 && reorder_operands_p (op0
, TREE_OPERAND (op1
, 1)))
8538 return omit_one_operand (type
, op0
, TREE_OPERAND (op1
, 1));
8540 /* MIN (a, MAX (b, a)) == a. */
8541 if (TREE_CODE (op1
) == compl_code
8542 && operand_equal_p (op0
, TREE_OPERAND (op1
, 1), 0)
8543 && reorder_operands_p (op0
, TREE_OPERAND (op1
, 0)))
8544 return omit_one_operand (type
, op0
, TREE_OPERAND (op1
, 0));
8549 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8550 by changing CODE to reduce the magnitude of constants involved in
8551 ARG0 of the comparison.
8552 Returns a canonicalized comparison tree if a simplification was
8553 possible, otherwise returns NULL_TREE.
8554 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8555 valid if signed overflow is undefined. */
8558 maybe_canonicalize_comparison_1 (enum tree_code code
, tree type
,
8559 tree arg0
, tree arg1
,
8560 bool *strict_overflow_p
)
8562 enum tree_code code0
= TREE_CODE (arg0
);
8563 tree t
, cst0
= NULL_TREE
;
8567 /* Match A +- CST code arg1 and CST code arg1. */
8568 if (!(((code0
== MINUS_EXPR
8569 || code0
== PLUS_EXPR
)
8570 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
8571 || code0
== INTEGER_CST
))
8574 /* Identify the constant in arg0 and its sign. */
8575 if (code0
== INTEGER_CST
)
8578 cst0
= TREE_OPERAND (arg0
, 1);
8579 sgn0
= tree_int_cst_sgn (cst0
);
8581 /* Overflowed constants and zero will cause problems. */
8582 if (integer_zerop (cst0
)
8583 || TREE_OVERFLOW (cst0
))
8586 /* See if we can reduce the magnitude of the constant in
8587 arg0 by changing the comparison code. */
8588 if (code0
== INTEGER_CST
)
8590 /* CST <= arg1 -> CST-1 < arg1. */
8591 if (code
== LE_EXPR
&& sgn0
== 1)
8593 /* -CST < arg1 -> -CST-1 <= arg1. */
8594 else if (code
== LT_EXPR
&& sgn0
== -1)
8596 /* CST > arg1 -> CST-1 >= arg1. */
8597 else if (code
== GT_EXPR
&& sgn0
== 1)
8599 /* -CST >= arg1 -> -CST-1 > arg1. */
8600 else if (code
== GE_EXPR
&& sgn0
== -1)
8604 /* arg1 code' CST' might be more canonical. */
8609 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8611 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8613 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8614 else if (code
== GT_EXPR
8615 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8617 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8618 else if (code
== LE_EXPR
8619 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8621 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8622 else if (code
== GE_EXPR
8623 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8627 *strict_overflow_p
= true;
8630 /* Now build the constant reduced in magnitude. */
8631 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8632 cst0
, build_int_cst (TREE_TYPE (cst0
), 1), 0);
8633 if (code0
!= INTEGER_CST
)
8634 t
= fold_build2 (code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8636 /* If swapping might yield to a more canonical form, do so. */
8638 return fold_build2 (swap_tree_comparison (code
), type
, arg1
, t
);
8640 return fold_build2 (code
, type
, t
, arg1
);
8643 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8644 overflow further. Try to decrease the magnitude of constants involved
8645 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8646 and put sole constants at the second argument position.
8647 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8650 maybe_canonicalize_comparison (enum tree_code code
, tree type
,
8651 tree arg0
, tree arg1
)
8654 bool strict_overflow_p
;
8655 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8656 "when reducing constant in comparison");
8658 /* In principle pointers also have undefined overflow behavior,
8659 but that causes problems elsewhere. */
8660 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8661 || POINTER_TYPE_P (TREE_TYPE (arg0
)))
8664 /* Try canonicalization by simplifying arg0. */
8665 strict_overflow_p
= false;
8666 t
= maybe_canonicalize_comparison_1 (code
, type
, arg0
, arg1
,
8667 &strict_overflow_p
);
8670 if (strict_overflow_p
)
8671 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8675 /* Try canonicalization by simplifying arg1 using the swapped
8677 code
= swap_tree_comparison (code
);
8678 strict_overflow_p
= false;
8679 t
= maybe_canonicalize_comparison_1 (code
, type
, arg1
, arg0
,
8680 &strict_overflow_p
);
8681 if (t
&& strict_overflow_p
)
8682 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8686 /* Subroutine of fold_binary. This routine performs all of the
8687 transformations that are common to the equality/inequality
8688 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8689 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8690 fold_binary should call fold_binary. Fold a comparison with
8691 tree code CODE and type TYPE with operands OP0 and OP1. Return
8692 the folded comparison or NULL_TREE. */
8695 fold_comparison (enum tree_code code
, tree type
, tree op0
, tree op1
)
8697 tree arg0
, arg1
, tem
;
8702 STRIP_SIGN_NOPS (arg0
);
8703 STRIP_SIGN_NOPS (arg1
);
8705 tem
= fold_relational_const (code
, type
, arg0
, arg1
);
8706 if (tem
!= NULL_TREE
)
8709 /* If one arg is a real or integer constant, put it last. */
8710 if (tree_swap_operands_p (arg0
, arg1
, true))
8711 return fold_build2 (swap_tree_comparison (code
), type
, op1
, op0
);
8713 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8714 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8715 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8716 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
8717 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
8718 && (TREE_CODE (arg1
) == INTEGER_CST
8719 && !TREE_OVERFLOW (arg1
)))
8721 tree const1
= TREE_OPERAND (arg0
, 1);
8723 tree variable
= TREE_OPERAND (arg0
, 0);
8726 lhs_add
= TREE_CODE (arg0
) != PLUS_EXPR
;
8728 lhs
= fold_build2 (lhs_add
? PLUS_EXPR
: MINUS_EXPR
,
8729 TREE_TYPE (arg1
), const2
, const1
);
8731 /* If the constant operation overflowed this can be
8732 simplified as a comparison against INT_MAX/INT_MIN. */
8733 if (TREE_CODE (lhs
) == INTEGER_CST
8734 && TREE_OVERFLOW (lhs
))
8736 int const1_sgn
= tree_int_cst_sgn (const1
);
8737 enum tree_code code2
= code
;
8739 /* Get the sign of the constant on the lhs if the
8740 operation were VARIABLE + CONST1. */
8741 if (TREE_CODE (arg0
) == MINUS_EXPR
)
8742 const1_sgn
= -const1_sgn
;
8744 /* The sign of the constant determines if we overflowed
8745 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8746 Canonicalize to the INT_MIN overflow by swapping the comparison
8748 if (const1_sgn
== -1)
8749 code2
= swap_tree_comparison (code
);
8751 /* We now can look at the canonicalized case
8752 VARIABLE + 1 CODE2 INT_MIN
8753 and decide on the result. */
8754 if (code2
== LT_EXPR
8756 || code2
== EQ_EXPR
)
8757 return omit_one_operand (type
, boolean_false_node
, variable
);
8758 else if (code2
== NE_EXPR
8760 || code2
== GT_EXPR
)
8761 return omit_one_operand (type
, boolean_true_node
, variable
);
8764 if (TREE_CODE (lhs
) == TREE_CODE (arg1
)
8765 && (TREE_CODE (lhs
) != INTEGER_CST
8766 || !TREE_OVERFLOW (lhs
)))
8768 fold_overflow_warning (("assuming signed overflow does not occur "
8769 "when changing X +- C1 cmp C2 to "
8771 WARN_STRICT_OVERFLOW_COMPARISON
);
8772 return fold_build2 (code
, type
, variable
, lhs
);
8776 /* For comparisons of pointers we can decompose it to a compile time
8777 comparison of the base objects and the offsets into the object.
8778 This requires at least one operand being an ADDR_EXPR to do more
8779 than the operand_equal_p test below. */
8780 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8781 && (TREE_CODE (arg0
) == ADDR_EXPR
8782 || TREE_CODE (arg1
) == ADDR_EXPR
))
8784 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8785 HOST_WIDE_INT bitsize
, bitpos0
= 0, bitpos1
= 0;
8786 enum machine_mode mode
;
8787 int volatilep
, unsignedp
;
8788 bool indirect_base0
= false;
8790 /* Get base and offset for the access. Strip ADDR_EXPR for
8791 get_inner_reference, but put it back by stripping INDIRECT_REF
8792 off the base object if possible. */
8794 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8796 base0
= get_inner_reference (TREE_OPERAND (arg0
, 0),
8797 &bitsize
, &bitpos0
, &offset0
, &mode
,
8798 &unsignedp
, &volatilep
, false);
8799 if (TREE_CODE (base0
) == INDIRECT_REF
)
8800 base0
= TREE_OPERAND (base0
, 0);
8802 indirect_base0
= true;
8806 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8808 base1
= get_inner_reference (TREE_OPERAND (arg1
, 0),
8809 &bitsize
, &bitpos1
, &offset1
, &mode
,
8810 &unsignedp
, &volatilep
, false);
8811 /* We have to make sure to have an indirect/non-indirect base1
8812 just the same as we did for base0. */
8813 if (TREE_CODE (base1
) == INDIRECT_REF
8815 base1
= TREE_OPERAND (base1
, 0);
8816 else if (!indirect_base0
)
8819 else if (indirect_base0
)
8822 /* If we have equivalent bases we might be able to simplify. */
8824 && operand_equal_p (base0
, base1
, 0))
8826 /* We can fold this expression to a constant if the non-constant
8827 offset parts are equal. */
8828 if (offset0
== offset1
8829 || (offset0
&& offset1
8830 && operand_equal_p (offset0
, offset1
, 0)))
8835 return build_int_cst (boolean_type_node
, bitpos0
== bitpos1
);
8837 return build_int_cst (boolean_type_node
, bitpos0
!= bitpos1
);
8839 return build_int_cst (boolean_type_node
, bitpos0
< bitpos1
);
8841 return build_int_cst (boolean_type_node
, bitpos0
<= bitpos1
);
8843 return build_int_cst (boolean_type_node
, bitpos0
>= bitpos1
);
8845 return build_int_cst (boolean_type_node
, bitpos0
> bitpos1
);
8849 /* We can simplify the comparison to a comparison of the variable
8850 offset parts if the constant offset parts are equal.
8851 Be careful to use signed size type here because otherwise we
8852 mess with array offsets in the wrong way. This is possible
8853 because pointer arithmetic is restricted to retain within an
8854 object and overflow on pointer differences is undefined as of
8855 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8856 else if (bitpos0
== bitpos1
)
8858 tree signed_size_type_node
;
8859 signed_size_type_node
= signed_type_for (size_type_node
);
8861 /* By converting to signed size type we cover middle-end pointer
8862 arithmetic which operates on unsigned pointer types of size
8863 type size and ARRAY_REF offsets which are properly sign or
8864 zero extended from their type in case it is narrower than
8866 if (offset0
== NULL_TREE
)
8867 offset0
= build_int_cst (signed_size_type_node
, 0);
8869 offset0
= fold_convert (signed_size_type_node
, offset0
);
8870 if (offset1
== NULL_TREE
)
8871 offset1
= build_int_cst (signed_size_type_node
, 0);
8873 offset1
= fold_convert (signed_size_type_node
, offset1
);
8875 return fold_build2 (code
, type
, offset0
, offset1
);
8880 /* If this is a comparison of two exprs that look like an ARRAY_REF of the
8881 same object, then we can fold this to a comparison of the two offsets in
8882 signed size type. This is possible because pointer arithmetic is
8883 restricted to retain within an object and overflow on pointer differences
8884 is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t.
8886 We check flag_wrapv directly because pointers types are unsigned,
8887 and therefore TYPE_OVERFLOW_WRAPS returns true for them. That is
8888 normally what we want to avoid certain odd overflow cases, but
8890 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8892 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (arg0
)))
8894 tree base0
, offset0
, base1
, offset1
;
8896 if (extract_array_ref (arg0
, &base0
, &offset0
)
8897 && extract_array_ref (arg1
, &base1
, &offset1
)
8898 && operand_equal_p (base0
, base1
, 0))
8900 tree signed_size_type_node
;
8901 signed_size_type_node
= signed_type_for (size_type_node
);
8903 /* By converting to signed size type we cover middle-end pointer
8904 arithmetic which operates on unsigned pointer types of size
8905 type size and ARRAY_REF offsets which are properly sign or
8906 zero extended from their type in case it is narrower than
8908 if (offset0
== NULL_TREE
)
8909 offset0
= build_int_cst (signed_size_type_node
, 0);
8911 offset0
= fold_convert (signed_size_type_node
, offset0
);
8912 if (offset1
== NULL_TREE
)
8913 offset1
= build_int_cst (signed_size_type_node
, 0);
8915 offset1
= fold_convert (signed_size_type_node
, offset1
);
8917 return fold_build2 (code
, type
, offset0
, offset1
);
8921 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8922 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8923 the resulting offset is smaller in absolute value than the
8925 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8926 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8927 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8928 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8929 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8930 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8931 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8933 tree const1
= TREE_OPERAND (arg0
, 1);
8934 tree const2
= TREE_OPERAND (arg1
, 1);
8935 tree variable1
= TREE_OPERAND (arg0
, 0);
8936 tree variable2
= TREE_OPERAND (arg1
, 0);
8938 const char * const warnmsg
= G_("assuming signed overflow does not "
8939 "occur when combining constants around "
8942 /* Put the constant on the side where it doesn't overflow and is
8943 of lower absolute value than before. */
8944 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8945 ? MINUS_EXPR
: PLUS_EXPR
,
8947 if (!TREE_OVERFLOW (cst
)
8948 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
))
8950 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8951 return fold_build2 (code
, type
,
8953 fold_build2 (TREE_CODE (arg1
), TREE_TYPE (arg1
),
8957 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8958 ? MINUS_EXPR
: PLUS_EXPR
,
8960 if (!TREE_OVERFLOW (cst
)
8961 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
))
8963 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8964 return fold_build2 (code
, type
,
8965 fold_build2 (TREE_CODE (arg0
), TREE_TYPE (arg0
),
8971 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
8972 signed arithmetic case. That form is created by the compiler
8973 often enough for folding it to be of value. One example is in
8974 computing loop trip counts after Operator Strength Reduction. */
8975 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8976 && TREE_CODE (arg0
) == MULT_EXPR
8977 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8978 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8979 && integer_zerop (arg1
))
8981 tree const1
= TREE_OPERAND (arg0
, 1);
8982 tree const2
= arg1
; /* zero */
8983 tree variable1
= TREE_OPERAND (arg0
, 0);
8984 enum tree_code cmp_code
= code
;
8986 gcc_assert (!integer_zerop (const1
));
8988 fold_overflow_warning (("assuming signed overflow does not occur when "
8989 "eliminating multiplication in comparison "
8991 WARN_STRICT_OVERFLOW_COMPARISON
);
8993 /* If const1 is negative we swap the sense of the comparison. */
8994 if (tree_int_cst_sgn (const1
) < 0)
8995 cmp_code
= swap_tree_comparison (cmp_code
);
8997 return fold_build2 (cmp_code
, type
, variable1
, const2
);
9000 tem
= maybe_canonicalize_comparison (code
, type
, op0
, op1
);
9004 if (FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9006 tree targ0
= strip_float_extensions (arg0
);
9007 tree targ1
= strip_float_extensions (arg1
);
9008 tree newtype
= TREE_TYPE (targ0
);
9010 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
9011 newtype
= TREE_TYPE (targ1
);
9013 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9014 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
9015 return fold_build2 (code
, type
, fold_convert (newtype
, targ0
),
9016 fold_convert (newtype
, targ1
));
9018 /* (-a) CMP (-b) -> b CMP a */
9019 if (TREE_CODE (arg0
) == NEGATE_EXPR
9020 && TREE_CODE (arg1
) == NEGATE_EXPR
)
9021 return fold_build2 (code
, type
, TREE_OPERAND (arg1
, 0),
9022 TREE_OPERAND (arg0
, 0));
9024 if (TREE_CODE (arg1
) == REAL_CST
)
9026 REAL_VALUE_TYPE cst
;
9027 cst
= TREE_REAL_CST (arg1
);
9029 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9030 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
9031 return fold_build2 (swap_tree_comparison (code
), type
,
9032 TREE_OPERAND (arg0
, 0),
9033 build_real (TREE_TYPE (arg1
),
9034 REAL_VALUE_NEGATE (cst
)));
9036 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9037 /* a CMP (-0) -> a CMP 0 */
9038 if (REAL_VALUE_MINUS_ZERO (cst
))
9039 return fold_build2 (code
, type
, arg0
,
9040 build_real (TREE_TYPE (arg1
), dconst0
));
9042 /* x != NaN is always true, other ops are always false. */
9043 if (REAL_VALUE_ISNAN (cst
)
9044 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
))))
9046 tem
= (code
== NE_EXPR
) ? integer_one_node
: integer_zero_node
;
9047 return omit_one_operand (type
, tem
, arg0
);
9050 /* Fold comparisons against infinity. */
9051 if (REAL_VALUE_ISINF (cst
))
9053 tem
= fold_inf_compare (code
, type
, arg0
, arg1
);
9054 if (tem
!= NULL_TREE
)
9059 /* If this is a comparison of a real constant with a PLUS_EXPR
9060 or a MINUS_EXPR of a real constant, we can convert it into a
9061 comparison with a revised real constant as long as no overflow
9062 occurs when unsafe_math_optimizations are enabled. */
9063 if (flag_unsafe_math_optimizations
9064 && TREE_CODE (arg1
) == REAL_CST
9065 && (TREE_CODE (arg0
) == PLUS_EXPR
9066 || TREE_CODE (arg0
) == MINUS_EXPR
)
9067 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
9068 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
9069 ? MINUS_EXPR
: PLUS_EXPR
,
9070 arg1
, TREE_OPERAND (arg0
, 1), 0))
9071 && !TREE_OVERFLOW (tem
))
9072 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
9074 /* Likewise, we can simplify a comparison of a real constant with
9075 a MINUS_EXPR whose first operand is also a real constant, i.e.
9076 (c1 - x) < c2 becomes x > c1-c2. */
9077 if (flag_unsafe_math_optimizations
9078 && TREE_CODE (arg1
) == REAL_CST
9079 && TREE_CODE (arg0
) == MINUS_EXPR
9080 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
9081 && 0 != (tem
= const_binop (MINUS_EXPR
, TREE_OPERAND (arg0
, 0),
9083 && !TREE_OVERFLOW (tem
))
9084 return fold_build2 (swap_tree_comparison (code
), type
,
9085 TREE_OPERAND (arg0
, 1), tem
);
9087 /* Fold comparisons against built-in math functions. */
9088 if (TREE_CODE (arg1
) == REAL_CST
9089 && flag_unsafe_math_optimizations
9090 && ! flag_errno_math
)
9092 enum built_in_function fcode
= builtin_mathfn_code (arg0
);
9094 if (fcode
!= END_BUILTINS
)
9096 tem
= fold_mathfn_compare (fcode
, code
, type
, arg0
, arg1
);
9097 if (tem
!= NULL_TREE
)
9103 if (TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
9104 && (TREE_CODE (arg0
) == NOP_EXPR
9105 || TREE_CODE (arg0
) == CONVERT_EXPR
))
9107 /* If we are widening one operand of an integer comparison,
9108 see if the other operand is similarly being widened. Perhaps we
9109 can do the comparison in the narrower type. */
9110 tem
= fold_widened_comparison (code
, type
, arg0
, arg1
);
9114 /* Or if we are changing signedness. */
9115 tem
= fold_sign_changed_comparison (code
, type
, arg0
, arg1
);
9120 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9121 constant, we can simplify it. */
9122 if (TREE_CODE (arg1
) == INTEGER_CST
9123 && (TREE_CODE (arg0
) == MIN_EXPR
9124 || TREE_CODE (arg0
) == MAX_EXPR
)
9125 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9127 tem
= optimize_minmax_comparison (code
, type
, op0
, op1
);
9132 /* Simplify comparison of something with itself. (For IEEE
9133 floating-point, we can only do some of these simplifications.) */
9134 if (operand_equal_p (arg0
, arg1
, 0))
9139 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9140 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9141 return constant_boolean_node (1, type
);
9146 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9147 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9148 return constant_boolean_node (1, type
);
9149 return fold_build2 (EQ_EXPR
, type
, arg0
, arg1
);
9152 /* For NE, we can only do this simplification if integer
9153 or we don't honor IEEE floating point NaNs. */
9154 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
9155 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9157 /* ... fall through ... */
9160 return constant_boolean_node (0, type
);
9166 /* If we are comparing an expression that just has comparisons
9167 of two integer values, arithmetic expressions of those comparisons,
9168 and constants, we can simplify it. There are only three cases
9169 to check: the two values can either be equal, the first can be
9170 greater, or the second can be greater. Fold the expression for
9171 those three values. Since each value must be 0 or 1, we have
9172 eight possibilities, each of which corresponds to the constant 0
9173 or 1 or one of the six possible comparisons.
9175 This handles common cases like (a > b) == 0 but also handles
9176 expressions like ((x > y) - (y > x)) > 0, which supposedly
9177 occur in macroized code. */
9179 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
9181 tree cval1
= 0, cval2
= 0;
9184 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
9185 /* Don't handle degenerate cases here; they should already
9186 have been handled anyway. */
9187 && cval1
!= 0 && cval2
!= 0
9188 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
9189 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
9190 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
9191 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
9192 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
9193 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
9194 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
9196 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
9197 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
9199 /* We can't just pass T to eval_subst in case cval1 or cval2
9200 was the same as ARG1. */
9203 = fold_build2 (code
, type
,
9204 eval_subst (arg0
, cval1
, maxval
,
9208 = fold_build2 (code
, type
,
9209 eval_subst (arg0
, cval1
, maxval
,
9213 = fold_build2 (code
, type
,
9214 eval_subst (arg0
, cval1
, minval
,
9218 /* All three of these results should be 0 or 1. Confirm they are.
9219 Then use those values to select the proper code to use. */
9221 if (TREE_CODE (high_result
) == INTEGER_CST
9222 && TREE_CODE (equal_result
) == INTEGER_CST
9223 && TREE_CODE (low_result
) == INTEGER_CST
)
9225 /* Make a 3-bit mask with the high-order bit being the
9226 value for `>', the next for '=', and the low for '<'. */
9227 switch ((integer_onep (high_result
) * 4)
9228 + (integer_onep (equal_result
) * 2)
9229 + integer_onep (low_result
))
9233 return omit_one_operand (type
, integer_zero_node
, arg0
);
9254 return omit_one_operand (type
, integer_one_node
, arg0
);
9258 return save_expr (build2 (code
, type
, cval1
, cval2
));
9259 return fold_build2 (code
, type
, cval1
, cval2
);
9264 /* Fold a comparison of the address of COMPONENT_REFs with the same
9265 type and component to a comparison of the address of the base
9266 object. In short, &x->a OP &y->a to x OP y and
9267 &x->a OP &y.a to x OP &y */
9268 if (TREE_CODE (arg0
) == ADDR_EXPR
9269 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == COMPONENT_REF
9270 && TREE_CODE (arg1
) == ADDR_EXPR
9271 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == COMPONENT_REF
)
9273 tree cref0
= TREE_OPERAND (arg0
, 0);
9274 tree cref1
= TREE_OPERAND (arg1
, 0);
9275 if (TREE_OPERAND (cref0
, 1) == TREE_OPERAND (cref1
, 1))
9277 tree op0
= TREE_OPERAND (cref0
, 0);
9278 tree op1
= TREE_OPERAND (cref1
, 0);
9279 return fold_build2 (code
, type
,
9280 fold_addr_expr (op0
),
9281 fold_addr_expr (op1
));
9285 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9286 into a single range test. */
9287 if ((TREE_CODE (arg0
) == TRUNC_DIV_EXPR
9288 || TREE_CODE (arg0
) == EXACT_DIV_EXPR
)
9289 && TREE_CODE (arg1
) == INTEGER_CST
9290 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9291 && !integer_zerop (TREE_OPERAND (arg0
, 1))
9292 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
9293 && !TREE_OVERFLOW (arg1
))
9295 tem
= fold_div_compare (code
, type
, arg0
, arg1
);
9296 if (tem
!= NULL_TREE
)
9300 /* Fold ~X op ~Y as Y op X. */
9301 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9302 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
9304 tree cmp_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
9305 return fold_build2 (code
, type
,
9306 fold_convert (cmp_type
, TREE_OPERAND (arg1
, 0)),
9307 TREE_OPERAND (arg0
, 0));
9310 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9311 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9312 && TREE_CODE (arg1
) == INTEGER_CST
)
9314 tree cmp_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
9315 return fold_build2 (swap_tree_comparison (code
), type
,
9316 TREE_OPERAND (arg0
, 0),
9317 fold_build1 (BIT_NOT_EXPR
, cmp_type
,
9318 fold_convert (cmp_type
, arg1
)));
9325 /* Subroutine of fold_binary. Optimize complex multiplications of the
9326 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9327 argument EXPR represents the expression "z" of type TYPE. */
9330 fold_mult_zconjz (tree type
, tree expr
)
9332 tree itype
= TREE_TYPE (type
);
9333 tree rpart
, ipart
, tem
;
9335 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
9337 rpart
= TREE_OPERAND (expr
, 0);
9338 ipart
= TREE_OPERAND (expr
, 1);
9340 else if (TREE_CODE (expr
) == COMPLEX_CST
)
9342 rpart
= TREE_REALPART (expr
);
9343 ipart
= TREE_IMAGPART (expr
);
9347 expr
= save_expr (expr
);
9348 rpart
= fold_build1 (REALPART_EXPR
, itype
, expr
);
9349 ipart
= fold_build1 (IMAGPART_EXPR
, itype
, expr
);
9352 rpart
= save_expr (rpart
);
9353 ipart
= save_expr (ipart
);
9354 tem
= fold_build2 (PLUS_EXPR
, itype
,
9355 fold_build2 (MULT_EXPR
, itype
, rpart
, rpart
),
9356 fold_build2 (MULT_EXPR
, itype
, ipart
, ipart
));
9357 return fold_build2 (COMPLEX_EXPR
, type
, tem
,
9358 fold_convert (itype
, integer_zero_node
));
9362 /* Fold a binary expression of code CODE and type TYPE with operands
9363 OP0 and OP1. Return the folded expression if folding is
9364 successful. Otherwise, return NULL_TREE. */
9367 fold_binary (enum tree_code code
, tree type
, tree op0
, tree op1
)
9369 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9370 tree arg0
, arg1
, tem
;
9371 tree t1
= NULL_TREE
;
9372 bool strict_overflow_p
;
9374 gcc_assert ((IS_EXPR_CODE_CLASS (kind
)
9375 || IS_GIMPLE_STMT_CODE_CLASS (kind
))
9376 && TREE_CODE_LENGTH (code
) == 2
9378 && op1
!= NULL_TREE
);
9383 /* Strip any conversions that don't change the mode. This is
9384 safe for every expression, except for a comparison expression
9385 because its signedness is derived from its operands. So, in
9386 the latter case, only strip conversions that don't change the
9389 Note that this is done as an internal manipulation within the
9390 constant folder, in order to find the simplest representation
9391 of the arguments so that their form can be studied. In any
9392 cases, the appropriate type conversions should be put back in
9393 the tree that will get out of the constant folder. */
9395 if (kind
== tcc_comparison
)
9397 STRIP_SIGN_NOPS (arg0
);
9398 STRIP_SIGN_NOPS (arg1
);
9406 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9407 constant but we can't do arithmetic on them. */
9408 if ((TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
9409 || (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
9410 || (TREE_CODE (arg0
) == FIXED_CST
&& TREE_CODE (arg1
) == FIXED_CST
)
9411 || (TREE_CODE (arg0
) == FIXED_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
9412 || (TREE_CODE (arg0
) == COMPLEX_CST
&& TREE_CODE (arg1
) == COMPLEX_CST
)
9413 || (TREE_CODE (arg0
) == VECTOR_CST
&& TREE_CODE (arg1
) == VECTOR_CST
))
9415 if (kind
== tcc_binary
)
9417 /* Make sure type and arg0 have the same saturating flag. */
9418 gcc_assert (TYPE_SATURATING (type
)
9419 == TYPE_SATURATING (TREE_TYPE (arg0
)));
9420 tem
= const_binop (code
, arg0
, arg1
, 0);
9422 else if (kind
== tcc_comparison
)
9423 tem
= fold_relational_const (code
, type
, arg0
, arg1
);
9427 if (tem
!= NULL_TREE
)
9429 if (TREE_TYPE (tem
) != type
)
9430 tem
= fold_convert (type
, tem
);
9435 /* If this is a commutative operation, and ARG0 is a constant, move it
9436 to ARG1 to reduce the number of tests below. */
9437 if (commutative_tree_code (code
)
9438 && tree_swap_operands_p (arg0
, arg1
, true))
9439 return fold_build2 (code
, type
, op1
, op0
);
9441 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9443 First check for cases where an arithmetic operation is applied to a
9444 compound, conditional, or comparison operation. Push the arithmetic
9445 operation inside the compound or conditional to see if any folding
9446 can then be done. Convert comparison to conditional for this purpose.
9447 The also optimizes non-constant cases that used to be done in
9450 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9451 one of the operands is a comparison and the other is a comparison, a
9452 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9453 code below would make the expression more complex. Change it to a
9454 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9455 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9457 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9458 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9459 && ((truth_value_p (TREE_CODE (arg0
))
9460 && (truth_value_p (TREE_CODE (arg1
))
9461 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9462 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9463 || (truth_value_p (TREE_CODE (arg1
))
9464 && (truth_value_p (TREE_CODE (arg0
))
9465 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9466 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9468 tem
= fold_build2 (code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9469 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9472 fold_convert (boolean_type_node
, arg0
),
9473 fold_convert (boolean_type_node
, arg1
));
9475 if (code
== EQ_EXPR
)
9476 tem
= invert_truthvalue (tem
);
9478 return fold_convert (type
, tem
);
9481 if (TREE_CODE_CLASS (code
) == tcc_binary
9482 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9484 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9485 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9486 fold_build2 (code
, type
,
9487 TREE_OPERAND (arg0
, 1), op1
));
9488 if (TREE_CODE (arg1
) == COMPOUND_EXPR
9489 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
9490 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9491 fold_build2 (code
, type
,
9492 op0
, TREE_OPERAND (arg1
, 1)));
9494 if (TREE_CODE (arg0
) == COND_EXPR
|| COMPARISON_CLASS_P (arg0
))
9496 tem
= fold_binary_op_with_conditional_arg (code
, type
, op0
, op1
,
9498 /*cond_first_p=*/1);
9499 if (tem
!= NULL_TREE
)
9503 if (TREE_CODE (arg1
) == COND_EXPR
|| COMPARISON_CLASS_P (arg1
))
9505 tem
= fold_binary_op_with_conditional_arg (code
, type
, op0
, op1
,
9507 /*cond_first_p=*/0);
9508 if (tem
!= NULL_TREE
)
9515 case POINTER_PLUS_EXPR
:
9516 /* 0 +p index -> (type)index */
9517 if (integer_zerop (arg0
))
9518 return non_lvalue (fold_convert (type
, arg1
));
9520 /* PTR +p 0 -> PTR */
9521 if (integer_zerop (arg1
))
9522 return non_lvalue (fold_convert (type
, arg0
));
9524 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9525 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9526 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9527 return fold_convert (type
, fold_build2 (PLUS_EXPR
, sizetype
,
9528 fold_convert (sizetype
, arg1
),
9529 fold_convert (sizetype
, arg0
)));
9531 /* index +p PTR -> PTR +p index */
9532 if (POINTER_TYPE_P (TREE_TYPE (arg1
))
9533 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9534 return fold_build2 (POINTER_PLUS_EXPR
, type
,
9535 fold_convert (type
, arg1
), fold_convert (sizetype
, arg0
));
9537 /* (PTR +p B) +p A -> PTR +p (B + A) */
9538 if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
9541 tree arg01
= fold_convert (sizetype
, TREE_OPERAND (arg0
, 1));
9542 tree arg00
= TREE_OPERAND (arg0
, 0);
9543 inner
= fold_build2 (PLUS_EXPR
, sizetype
, arg01
, fold_convert (sizetype
, arg1
));
9544 return fold_build2 (POINTER_PLUS_EXPR
, type
, arg00
, inner
);
9547 /* PTR_CST +p CST -> CST1 */
9548 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
9549 return fold_build2 (PLUS_EXPR
, type
, arg0
, fold_convert (type
, arg1
));
9551 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9552 of the array. Loop optimizer sometimes produce this type of
9554 if (TREE_CODE (arg0
) == ADDR_EXPR
)
9556 tem
= try_move_mult_to_index (arg0
, fold_convert (sizetype
, arg1
));
9558 return fold_convert (type
, tem
);
9563 /* PTR + INT -> (INT)(PTR p+ INT) */
9564 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
9565 && INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
9566 return fold_convert (type
, fold_build2 (POINTER_PLUS_EXPR
,
9569 fold_convert (sizetype
, arg1
)));
9570 /* INT + PTR -> (INT)(PTR p+ INT) */
9571 if (POINTER_TYPE_P (TREE_TYPE (arg1
))
9572 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9573 return fold_convert (type
, fold_build2 (POINTER_PLUS_EXPR
,
9576 fold_convert (sizetype
, arg0
)));
9577 /* A + (-B) -> A - B */
9578 if (TREE_CODE (arg1
) == NEGATE_EXPR
)
9579 return fold_build2 (MINUS_EXPR
, type
,
9580 fold_convert (type
, arg0
),
9581 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
9582 /* (-A) + B -> B - A */
9583 if (TREE_CODE (arg0
) == NEGATE_EXPR
9584 && reorder_operands_p (TREE_OPERAND (arg0
, 0), arg1
))
9585 return fold_build2 (MINUS_EXPR
, type
,
9586 fold_convert (type
, arg1
),
9587 fold_convert (type
, TREE_OPERAND (arg0
, 0)));
9589 if (INTEGRAL_TYPE_P (type
))
9591 /* Convert ~A + 1 to -A. */
9592 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9593 && integer_onep (arg1
))
9594 return fold_build1 (NEGATE_EXPR
, type
, TREE_OPERAND (arg0
, 0));
9597 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9598 && !TYPE_OVERFLOW_TRAPS (type
))
9600 tree tem
= TREE_OPERAND (arg0
, 0);
9603 if (operand_equal_p (tem
, arg1
, 0))
9605 t1
= build_int_cst_type (type
, -1);
9606 return omit_one_operand (type
, t1
, arg1
);
9611 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
9612 && !TYPE_OVERFLOW_TRAPS (type
))
9614 tree tem
= TREE_OPERAND (arg1
, 0);
9617 if (operand_equal_p (arg0
, tem
, 0))
9619 t1
= build_int_cst_type (type
, -1);
9620 return omit_one_operand (type
, t1
, arg0
);
9625 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9626 same or one. Make sure type is not saturating. */
9627 if ((TREE_CODE (arg0
) == MULT_EXPR
9628 || TREE_CODE (arg1
) == MULT_EXPR
)
9629 && !TYPE_SATURATING (type
)
9630 && (!FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
))
9632 tree tem
= fold_plusminus_mult_expr (code
, type
, arg0
, arg1
);
9637 if (! FLOAT_TYPE_P (type
))
9639 if (integer_zerop (arg1
))
9640 return non_lvalue (fold_convert (type
, arg0
));
9642 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9643 with a constant, and the two constants have no bits in common,
9644 we should treat this as a BIT_IOR_EXPR since this may produce more
9646 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9647 && TREE_CODE (arg1
) == BIT_AND_EXPR
9648 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9649 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
9650 && integer_zerop (const_binop (BIT_AND_EXPR
,
9651 TREE_OPERAND (arg0
, 1),
9652 TREE_OPERAND (arg1
, 1), 0)))
9654 code
= BIT_IOR_EXPR
;
9658 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9659 (plus (plus (mult) (mult)) (foo)) so that we can
9660 take advantage of the factoring cases below. */
9661 if (((TREE_CODE (arg0
) == PLUS_EXPR
9662 || TREE_CODE (arg0
) == MINUS_EXPR
)
9663 && TREE_CODE (arg1
) == MULT_EXPR
)
9664 || ((TREE_CODE (arg1
) == PLUS_EXPR
9665 || TREE_CODE (arg1
) == MINUS_EXPR
)
9666 && TREE_CODE (arg0
) == MULT_EXPR
))
9668 tree parg0
, parg1
, parg
, marg
;
9669 enum tree_code pcode
;
9671 if (TREE_CODE (arg1
) == MULT_EXPR
)
9672 parg
= arg0
, marg
= arg1
;
9674 parg
= arg1
, marg
= arg0
;
9675 pcode
= TREE_CODE (parg
);
9676 parg0
= TREE_OPERAND (parg
, 0);
9677 parg1
= TREE_OPERAND (parg
, 1);
9681 if (TREE_CODE (parg0
) == MULT_EXPR
9682 && TREE_CODE (parg1
) != MULT_EXPR
)
9683 return fold_build2 (pcode
, type
,
9684 fold_build2 (PLUS_EXPR
, type
,
9685 fold_convert (type
, parg0
),
9686 fold_convert (type
, marg
)),
9687 fold_convert (type
, parg1
));
9688 if (TREE_CODE (parg0
) != MULT_EXPR
9689 && TREE_CODE (parg1
) == MULT_EXPR
)
9690 return fold_build2 (PLUS_EXPR
, type
,
9691 fold_convert (type
, parg0
),
9692 fold_build2 (pcode
, type
,
9693 fold_convert (type
, marg
),
9700 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9701 if (fold_real_zero_addition_p (TREE_TYPE (arg0
), arg1
, 0))
9702 return non_lvalue (fold_convert (type
, arg0
));
9704 /* Likewise if the operands are reversed. */
9705 if (fold_real_zero_addition_p (TREE_TYPE (arg1
), arg0
, 0))
9706 return non_lvalue (fold_convert (type
, arg1
));
9708 /* Convert X + -C into X - C. */
9709 if (TREE_CODE (arg1
) == REAL_CST
9710 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
)))
9712 tem
= fold_negate_const (arg1
, type
);
9713 if (!TREE_OVERFLOW (arg1
) || !flag_trapping_math
)
9714 return fold_build2 (MINUS_EXPR
, type
,
9715 fold_convert (type
, arg0
),
9716 fold_convert (type
, tem
));
9719 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9720 to __complex__ ( x, y ). This is not the same for SNaNs or
9721 if signed zeros are involved. */
9722 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
9723 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
9724 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9726 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9727 tree arg0r
= fold_unary (REALPART_EXPR
, rtype
, arg0
);
9728 tree arg0i
= fold_unary (IMAGPART_EXPR
, rtype
, arg0
);
9729 bool arg0rz
= false, arg0iz
= false;
9730 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9731 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9733 tree arg1r
= fold_unary (REALPART_EXPR
, rtype
, arg1
);
9734 tree arg1i
= fold_unary (IMAGPART_EXPR
, rtype
, arg1
);
9735 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9737 tree rp
= arg1r
? arg1r
9738 : build1 (REALPART_EXPR
, rtype
, arg1
);
9739 tree ip
= arg0i
? arg0i
9740 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9741 return fold_build2 (COMPLEX_EXPR
, type
, rp
, ip
);
9743 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9745 tree rp
= arg0r
? arg0r
9746 : build1 (REALPART_EXPR
, rtype
, arg0
);
9747 tree ip
= arg1i
? arg1i
9748 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9749 return fold_build2 (COMPLEX_EXPR
, type
, rp
, ip
);
9754 if (flag_unsafe_math_optimizations
9755 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
9756 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
9757 && (tem
= distribute_real_division (code
, type
, arg0
, arg1
)))
9760 /* Convert x+x into x*2.0. */
9761 if (operand_equal_p (arg0
, arg1
, 0)
9762 && SCALAR_FLOAT_TYPE_P (type
))
9763 return fold_build2 (MULT_EXPR
, type
, arg0
,
9764 build_real (type
, dconst2
));
9766 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
9767 if (flag_unsafe_math_optimizations
9768 && TREE_CODE (arg1
) == PLUS_EXPR
9769 && TREE_CODE (arg0
) != MULT_EXPR
)
9771 tree tree10
= TREE_OPERAND (arg1
, 0);
9772 tree tree11
= TREE_OPERAND (arg1
, 1);
9773 if (TREE_CODE (tree11
) == MULT_EXPR
9774 && TREE_CODE (tree10
) == MULT_EXPR
)
9777 tree0
= fold_build2 (PLUS_EXPR
, type
, arg0
, tree10
);
9778 return fold_build2 (PLUS_EXPR
, type
, tree0
, tree11
);
9781 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
9782 if (flag_unsafe_math_optimizations
9783 && TREE_CODE (arg0
) == PLUS_EXPR
9784 && TREE_CODE (arg1
) != MULT_EXPR
)
9786 tree tree00
= TREE_OPERAND (arg0
, 0);
9787 tree tree01
= TREE_OPERAND (arg0
, 1);
9788 if (TREE_CODE (tree01
) == MULT_EXPR
9789 && TREE_CODE (tree00
) == MULT_EXPR
)
9792 tree0
= fold_build2 (PLUS_EXPR
, type
, tree01
, arg1
);
9793 return fold_build2 (PLUS_EXPR
, type
, tree00
, tree0
);
9799 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9800 is a rotate of A by C1 bits. */
9801 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9802 is a rotate of A by B bits. */
9804 enum tree_code code0
, code1
;
9805 code0
= TREE_CODE (arg0
);
9806 code1
= TREE_CODE (arg1
);
9807 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9808 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9809 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9810 TREE_OPERAND (arg1
, 0), 0)
9811 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
9813 tree tree01
, tree11
;
9814 enum tree_code code01
, code11
;
9816 tree01
= TREE_OPERAND (arg0
, 1);
9817 tree11
= TREE_OPERAND (arg1
, 1);
9818 STRIP_NOPS (tree01
);
9819 STRIP_NOPS (tree11
);
9820 code01
= TREE_CODE (tree01
);
9821 code11
= TREE_CODE (tree11
);
9822 if (code01
== INTEGER_CST
9823 && code11
== INTEGER_CST
9824 && TREE_INT_CST_HIGH (tree01
) == 0
9825 && TREE_INT_CST_HIGH (tree11
) == 0
9826 && ((TREE_INT_CST_LOW (tree01
) + TREE_INT_CST_LOW (tree11
))
9827 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
9828 return build2 (LROTATE_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9829 code0
== LSHIFT_EXPR
? tree01
: tree11
);
9830 else if (code11
== MINUS_EXPR
)
9832 tree tree110
, tree111
;
9833 tree110
= TREE_OPERAND (tree11
, 0);
9834 tree111
= TREE_OPERAND (tree11
, 1);
9835 STRIP_NOPS (tree110
);
9836 STRIP_NOPS (tree111
);
9837 if (TREE_CODE (tree110
) == INTEGER_CST
9838 && 0 == compare_tree_int (tree110
,
9840 (TREE_TYPE (TREE_OPERAND
9842 && operand_equal_p (tree01
, tree111
, 0))
9843 return build2 ((code0
== LSHIFT_EXPR
9846 type
, TREE_OPERAND (arg0
, 0), tree01
);
9848 else if (code01
== MINUS_EXPR
)
9850 tree tree010
, tree011
;
9851 tree010
= TREE_OPERAND (tree01
, 0);
9852 tree011
= TREE_OPERAND (tree01
, 1);
9853 STRIP_NOPS (tree010
);
9854 STRIP_NOPS (tree011
);
9855 if (TREE_CODE (tree010
) == INTEGER_CST
9856 && 0 == compare_tree_int (tree010
,
9858 (TREE_TYPE (TREE_OPERAND
9860 && operand_equal_p (tree11
, tree011
, 0))
9861 return build2 ((code0
!= LSHIFT_EXPR
9864 type
, TREE_OPERAND (arg0
, 0), tree11
);
9870 /* In most languages, can't associate operations on floats through
9871 parentheses. Rather than remember where the parentheses were, we
9872 don't associate floats at all, unless the user has specified
9873 -funsafe-math-optimizations.
9874 And, we need to make sure type is not saturating. */
9876 if ((! FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
)
9877 && !TYPE_SATURATING (type
))
9879 tree var0
, con0
, lit0
, minus_lit0
;
9880 tree var1
, con1
, lit1
, minus_lit1
;
9883 /* Split both trees into variables, constants, and literals. Then
9884 associate each group together, the constants with literals,
9885 then the result with variables. This increases the chances of
9886 literals being recombined later and of generating relocatable
9887 expressions for the sum of a constant and literal. */
9888 var0
= split_tree (arg0
, code
, &con0
, &lit0
, &minus_lit0
, 0);
9889 var1
= split_tree (arg1
, code
, &con1
, &lit1
, &minus_lit1
,
9890 code
== MINUS_EXPR
);
9892 /* With undefined overflow we can only associate constants
9893 with one variable. */
9894 if ((POINTER_TYPE_P (type
)
9895 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
9901 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9902 tmp0
= TREE_OPERAND (tmp0
, 0);
9903 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9904 tmp1
= TREE_OPERAND (tmp1
, 0);
9905 /* The only case we can still associate with two variables
9906 is if they are the same, modulo negation. */
9907 if (!operand_equal_p (tmp0
, tmp1
, 0))
9911 /* Only do something if we found more than two objects. Otherwise,
9912 nothing has changed and we risk infinite recursion. */
9914 && (2 < ((var0
!= 0) + (var1
!= 0)
9915 + (con0
!= 0) + (con1
!= 0)
9916 + (lit0
!= 0) + (lit1
!= 0)
9917 + (minus_lit0
!= 0) + (minus_lit1
!= 0))))
9919 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9920 if (code
== MINUS_EXPR
)
9923 var0
= associate_trees (var0
, var1
, code
, type
);
9924 con0
= associate_trees (con0
, con1
, code
, type
);
9925 lit0
= associate_trees (lit0
, lit1
, code
, type
);
9926 minus_lit0
= associate_trees (minus_lit0
, minus_lit1
, code
, type
);
9928 /* Preserve the MINUS_EXPR if the negative part of the literal is
9929 greater than the positive part. Otherwise, the multiplicative
9930 folding code (i.e extract_muldiv) may be fooled in case
9931 unsigned constants are subtracted, like in the following
9932 example: ((X*2 + 4) - 8U)/2. */
9933 if (minus_lit0
&& lit0
)
9935 if (TREE_CODE (lit0
) == INTEGER_CST
9936 && TREE_CODE (minus_lit0
) == INTEGER_CST
9937 && tree_int_cst_lt (lit0
, minus_lit0
))
9939 minus_lit0
= associate_trees (minus_lit0
, lit0
,
9945 lit0
= associate_trees (lit0
, minus_lit0
,
9953 return fold_convert (type
,
9954 associate_trees (var0
, minus_lit0
,
9958 con0
= associate_trees (con0
, minus_lit0
,
9960 return fold_convert (type
,
9961 associate_trees (var0
, con0
,
9966 con0
= associate_trees (con0
, lit0
, code
, type
);
9967 return fold_convert (type
, associate_trees (var0
, con0
,
9975 /* Pointer simplifications for subtraction, simple reassociations. */
9976 if (POINTER_TYPE_P (TREE_TYPE (arg1
)) && POINTER_TYPE_P (TREE_TYPE (arg0
)))
9978 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9979 if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
9980 && TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
9982 tree arg00
= fold_convert (type
, TREE_OPERAND (arg0
, 0));
9983 tree arg01
= fold_convert (type
, TREE_OPERAND (arg0
, 1));
9984 tree arg10
= fold_convert (type
, TREE_OPERAND (arg1
, 0));
9985 tree arg11
= fold_convert (type
, TREE_OPERAND (arg1
, 1));
9986 return fold_build2 (PLUS_EXPR
, type
,
9987 fold_build2 (MINUS_EXPR
, type
, arg00
, arg10
),
9988 fold_build2 (MINUS_EXPR
, type
, arg01
, arg11
));
9990 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
9991 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
9993 tree arg00
= fold_convert (type
, TREE_OPERAND (arg0
, 0));
9994 tree arg01
= fold_convert (type
, TREE_OPERAND (arg0
, 1));
9995 tree tmp
= fold_binary (MINUS_EXPR
, type
, arg00
, fold_convert (type
, arg1
));
9997 return fold_build2 (PLUS_EXPR
, type
, tmp
, arg01
);
10000 /* A - (-B) -> A + B */
10001 if (TREE_CODE (arg1
) == NEGATE_EXPR
)
10002 return fold_build2 (PLUS_EXPR
, type
, arg0
, TREE_OPERAND (arg1
, 0));
10003 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10004 if (TREE_CODE (arg0
) == NEGATE_EXPR
10005 && (FLOAT_TYPE_P (type
)
10006 || INTEGRAL_TYPE_P (type
))
10007 && negate_expr_p (arg1
)
10008 && reorder_operands_p (arg0
, arg1
))
10009 return fold_build2 (MINUS_EXPR
, type
, negate_expr (arg1
),
10010 TREE_OPERAND (arg0
, 0));
10011 /* Convert -A - 1 to ~A. */
10012 if (INTEGRAL_TYPE_P (type
)
10013 && TREE_CODE (arg0
) == NEGATE_EXPR
10014 && integer_onep (arg1
)
10015 && !TYPE_OVERFLOW_TRAPS (type
))
10016 return fold_build1 (BIT_NOT_EXPR
, type
,
10017 fold_convert (type
, TREE_OPERAND (arg0
, 0)));
10019 /* Convert -1 - A to ~A. */
10020 if (INTEGRAL_TYPE_P (type
)
10021 && integer_all_onesp (arg0
))
10022 return fold_build1 (BIT_NOT_EXPR
, type
, op1
);
10024 if (! FLOAT_TYPE_P (type
))
10026 if (integer_zerop (arg0
))
10027 return negate_expr (fold_convert (type
, arg1
));
10028 if (integer_zerop (arg1
))
10029 return non_lvalue (fold_convert (type
, arg0
));
10031 /* Fold A - (A & B) into ~B & A. */
10032 if (!TREE_SIDE_EFFECTS (arg0
)
10033 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10035 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0))
10037 tree arg10
= fold_convert (type
, TREE_OPERAND (arg1
, 0));
10038 return fold_build2 (BIT_AND_EXPR
, type
,
10039 fold_build1 (BIT_NOT_EXPR
, type
, arg10
),
10040 fold_convert (type
, arg0
));
10042 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10044 tree arg11
= fold_convert (type
, TREE_OPERAND (arg1
, 1));
10045 return fold_build2 (BIT_AND_EXPR
, type
,
10046 fold_build1 (BIT_NOT_EXPR
, type
, arg11
),
10047 fold_convert (type
, arg0
));
10051 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10052 any power of 2 minus 1. */
10053 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10054 && TREE_CODE (arg1
) == BIT_AND_EXPR
10055 && operand_equal_p (TREE_OPERAND (arg0
, 0),
10056 TREE_OPERAND (arg1
, 0), 0))
10058 tree mask0
= TREE_OPERAND (arg0
, 1);
10059 tree mask1
= TREE_OPERAND (arg1
, 1);
10060 tree tem
= fold_build1 (BIT_NOT_EXPR
, type
, mask0
);
10062 if (operand_equal_p (tem
, mask1
, 0))
10064 tem
= fold_build2 (BIT_XOR_EXPR
, type
,
10065 TREE_OPERAND (arg0
, 0), mask1
);
10066 return fold_build2 (MINUS_EXPR
, type
, tem
, mask1
);
10071 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10072 else if (fold_real_zero_addition_p (TREE_TYPE (arg0
), arg1
, 1))
10073 return non_lvalue (fold_convert (type
, arg0
));
10075 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10076 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10077 (-ARG1 + ARG0) reduces to -ARG1. */
10078 else if (fold_real_zero_addition_p (TREE_TYPE (arg1
), arg0
, 0))
10079 return negate_expr (fold_convert (type
, arg1
));
10081 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10082 __complex__ ( x, -y ). This is not the same for SNaNs or if
10083 signed zeros are involved. */
10084 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10085 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
10086 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10088 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10089 tree arg0r
= fold_unary (REALPART_EXPR
, rtype
, arg0
);
10090 tree arg0i
= fold_unary (IMAGPART_EXPR
, rtype
, arg0
);
10091 bool arg0rz
= false, arg0iz
= false;
10092 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10093 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10095 tree arg1r
= fold_unary (REALPART_EXPR
, rtype
, arg1
);
10096 tree arg1i
= fold_unary (IMAGPART_EXPR
, rtype
, arg1
);
10097 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10099 tree rp
= fold_build1 (NEGATE_EXPR
, rtype
,
10101 : build1 (REALPART_EXPR
, rtype
, arg1
));
10102 tree ip
= arg0i
? arg0i
10103 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10104 return fold_build2 (COMPLEX_EXPR
, type
, rp
, ip
);
10106 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10108 tree rp
= arg0r
? arg0r
10109 : build1 (REALPART_EXPR
, rtype
, arg0
);
10110 tree ip
= fold_build1 (NEGATE_EXPR
, rtype
,
10112 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
10113 return fold_build2 (COMPLEX_EXPR
, type
, rp
, ip
);
10118 /* Fold &x - &x. This can happen from &x.foo - &x.
10119 This is unsafe for certain floats even in non-IEEE formats.
10120 In IEEE, it is unsafe because it does wrong for NaNs.
10121 Also note that operand_equal_p is always false if an operand
10124 if ((! FLOAT_TYPE_P (type
)
10125 || (flag_unsafe_math_optimizations
10126 && !HONOR_NANS (TYPE_MODE (type
))
10127 && !HONOR_INFINITIES (TYPE_MODE (type
))))
10128 && operand_equal_p (arg0
, arg1
, 0))
10129 return fold_convert (type
, integer_zero_node
);
10131 /* A - B -> A + (-B) if B is easily negatable. */
10132 if (negate_expr_p (arg1
)
10133 && ((FLOAT_TYPE_P (type
)
10134 /* Avoid this transformation if B is a positive REAL_CST. */
10135 && (TREE_CODE (arg1
) != REAL_CST
10136 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
))))
10137 || INTEGRAL_TYPE_P (type
)))
10138 return fold_build2 (PLUS_EXPR
, type
,
10139 fold_convert (type
, arg0
),
10140 fold_convert (type
, negate_expr (arg1
)));
10142 /* Try folding difference of addresses. */
10144 HOST_WIDE_INT diff
;
10146 if ((TREE_CODE (arg0
) == ADDR_EXPR
10147 || TREE_CODE (arg1
) == ADDR_EXPR
)
10148 && ptr_difference_const (arg0
, arg1
, &diff
))
10149 return build_int_cst_type (type
, diff
);
10152 /* Fold &a[i] - &a[j] to i-j. */
10153 if (TREE_CODE (arg0
) == ADDR_EXPR
10154 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
10155 && TREE_CODE (arg1
) == ADDR_EXPR
10156 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
10158 tree aref0
= TREE_OPERAND (arg0
, 0);
10159 tree aref1
= TREE_OPERAND (arg1
, 0);
10160 if (operand_equal_p (TREE_OPERAND (aref0
, 0),
10161 TREE_OPERAND (aref1
, 0), 0))
10163 tree op0
= fold_convert (type
, TREE_OPERAND (aref0
, 1));
10164 tree op1
= fold_convert (type
, TREE_OPERAND (aref1
, 1));
10165 tree esz
= array_ref_element_size (aref0
);
10166 tree diff
= build2 (MINUS_EXPR
, type
, op0
, op1
);
10167 return fold_build2 (MULT_EXPR
, type
, diff
,
10168 fold_convert (type
, esz
));
10173 if (flag_unsafe_math_optimizations
10174 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
10175 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
10176 && (tem
= distribute_real_division (code
, type
, arg0
, arg1
)))
10179 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10180 same or one. Make sure type is not saturating. */
10181 if ((TREE_CODE (arg0
) == MULT_EXPR
10182 || TREE_CODE (arg1
) == MULT_EXPR
)
10183 && !TYPE_SATURATING (type
)
10184 && (!FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
))
10186 tree tem
= fold_plusminus_mult_expr (code
, type
, arg0
, arg1
);
10194 /* (-A) * (-B) -> A * B */
10195 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10196 return fold_build2 (MULT_EXPR
, type
,
10197 fold_convert (type
, TREE_OPERAND (arg0
, 0)),
10198 fold_convert (type
, negate_expr (arg1
)));
10199 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10200 return fold_build2 (MULT_EXPR
, type
,
10201 fold_convert (type
, negate_expr (arg0
)),
10202 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
10204 if (! FLOAT_TYPE_P (type
))
10206 if (integer_zerop (arg1
))
10207 return omit_one_operand (type
, arg1
, arg0
);
10208 if (integer_onep (arg1
))
10209 return non_lvalue (fold_convert (type
, arg0
));
10210 /* Transform x * -1 into -x. */
10211 if (integer_all_onesp (arg1
))
10212 return fold_convert (type
, negate_expr (arg0
));
10213 /* Transform x * -C into -x * C if x is easily negatable. */
10214 if (TREE_CODE (arg1
) == INTEGER_CST
10215 && tree_int_cst_sgn (arg1
) == -1
10216 && negate_expr_p (arg0
)
10217 && (tem
= negate_expr (arg1
)) != arg1
10218 && !TREE_OVERFLOW (tem
))
10219 return fold_build2 (MULT_EXPR
, type
,
10220 negate_expr (arg0
), tem
);
10222 /* (a * (1 << b)) is (a << b) */
10223 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10224 && integer_onep (TREE_OPERAND (arg1
, 0)))
10225 return fold_build2 (LSHIFT_EXPR
, type
, arg0
,
10226 TREE_OPERAND (arg1
, 1));
10227 if (TREE_CODE (arg0
) == LSHIFT_EXPR
10228 && integer_onep (TREE_OPERAND (arg0
, 0)))
10229 return fold_build2 (LSHIFT_EXPR
, type
, arg1
,
10230 TREE_OPERAND (arg0
, 1));
10232 strict_overflow_p
= false;
10233 if (TREE_CODE (arg1
) == INTEGER_CST
10234 && 0 != (tem
= extract_muldiv (op0
,
10235 fold_convert (type
, arg1
),
10237 &strict_overflow_p
)))
10239 if (strict_overflow_p
)
10240 fold_overflow_warning (("assuming signed overflow does not "
10241 "occur when simplifying "
10243 WARN_STRICT_OVERFLOW_MISC
);
10244 return fold_convert (type
, tem
);
10247 /* Optimize z * conj(z) for integer complex numbers. */
10248 if (TREE_CODE (arg0
) == CONJ_EXPR
10249 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10250 return fold_mult_zconjz (type
, arg1
);
10251 if (TREE_CODE (arg1
) == CONJ_EXPR
10252 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10253 return fold_mult_zconjz (type
, arg0
);
10257 /* Maybe fold x * 0 to 0. The expressions aren't the same
10258 when x is NaN, since x * 0 is also NaN. Nor are they the
10259 same in modes with signed zeros, since multiplying a
10260 negative value by 0 gives -0, not +0. */
10261 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
10262 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
10263 && real_zerop (arg1
))
10264 return omit_one_operand (type
, arg1
, arg0
);
10265 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
10266 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10267 && real_onep (arg1
))
10268 return non_lvalue (fold_convert (type
, arg0
));
10270 /* Transform x * -1.0 into -x. */
10271 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10272 && real_minus_onep (arg1
))
10273 return fold_convert (type
, negate_expr (arg0
));
10275 /* Convert (C1/X)*C2 into (C1*C2)/X. */
10276 if (flag_unsafe_math_optimizations
10277 && TREE_CODE (arg0
) == RDIV_EXPR
10278 && TREE_CODE (arg1
) == REAL_CST
10279 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
)
10281 tree tem
= const_binop (MULT_EXPR
, TREE_OPERAND (arg0
, 0),
10284 return fold_build2 (RDIV_EXPR
, type
, tem
,
10285 TREE_OPERAND (arg0
, 1));
10288 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10289 if (operand_equal_p (arg0
, arg1
, 0))
10291 tree tem
= fold_strip_sign_ops (arg0
);
10292 if (tem
!= NULL_TREE
)
10294 tem
= fold_convert (type
, tem
);
10295 return fold_build2 (MULT_EXPR
, type
, tem
, tem
);
10299 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10300 This is not the same for NaNs or if signed zeros are
10302 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
10303 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
10304 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10305 && TREE_CODE (arg1
) == COMPLEX_CST
10306 && real_zerop (TREE_REALPART (arg1
)))
10308 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10309 if (real_onep (TREE_IMAGPART (arg1
)))
10310 return fold_build2 (COMPLEX_EXPR
, type
,
10311 negate_expr (fold_build1 (IMAGPART_EXPR
,
10313 fold_build1 (REALPART_EXPR
, rtype
, arg0
));
10314 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10315 return fold_build2 (COMPLEX_EXPR
, type
,
10316 fold_build1 (IMAGPART_EXPR
, rtype
, arg0
),
10317 negate_expr (fold_build1 (REALPART_EXPR
,
10321 /* Optimize z * conj(z) for floating point complex numbers.
10322 Guarded by flag_unsafe_math_optimizations as non-finite
10323 imaginary components don't produce scalar results. */
10324 if (flag_unsafe_math_optimizations
10325 && TREE_CODE (arg0
) == CONJ_EXPR
10326 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10327 return fold_mult_zconjz (type
, arg1
);
10328 if (flag_unsafe_math_optimizations
10329 && TREE_CODE (arg1
) == CONJ_EXPR
10330 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10331 return fold_mult_zconjz (type
, arg0
);
10333 if (flag_unsafe_math_optimizations
)
10335 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
10336 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
10338 /* Optimizations of root(...)*root(...). */
10339 if (fcode0
== fcode1
&& BUILTIN_ROOT_P (fcode0
))
10342 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
10343 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
10345 /* Optimize sqrt(x)*sqrt(x) as x. */
10346 if (BUILTIN_SQRT_P (fcode0
)
10347 && operand_equal_p (arg00
, arg10
, 0)
10348 && ! HONOR_SNANS (TYPE_MODE (type
)))
10351 /* Optimize root(x)*root(y) as root(x*y). */
10352 rootfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10353 arg
= fold_build2 (MULT_EXPR
, type
, arg00
, arg10
);
10354 return build_call_expr (rootfn
, 1, arg
);
10357 /* Optimize expN(x)*expN(y) as expN(x+y). */
10358 if (fcode0
== fcode1
&& BUILTIN_EXPONENT_P (fcode0
))
10360 tree expfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10361 tree arg
= fold_build2 (PLUS_EXPR
, type
,
10362 CALL_EXPR_ARG (arg0
, 0),
10363 CALL_EXPR_ARG (arg1
, 0));
10364 return build_call_expr (expfn
, 1, arg
);
10367 /* Optimizations of pow(...)*pow(...). */
10368 if ((fcode0
== BUILT_IN_POW
&& fcode1
== BUILT_IN_POW
)
10369 || (fcode0
== BUILT_IN_POWF
&& fcode1
== BUILT_IN_POWF
)
10370 || (fcode0
== BUILT_IN_POWL
&& fcode1
== BUILT_IN_POWL
))
10372 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
10373 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
10374 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
10375 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
10377 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10378 if (operand_equal_p (arg01
, arg11
, 0))
10380 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10381 tree arg
= fold_build2 (MULT_EXPR
, type
, arg00
, arg10
);
10382 return build_call_expr (powfn
, 2, arg
, arg01
);
10385 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10386 if (operand_equal_p (arg00
, arg10
, 0))
10388 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10389 tree arg
= fold_build2 (PLUS_EXPR
, type
, arg01
, arg11
);
10390 return build_call_expr (powfn
, 2, arg00
, arg
);
10394 /* Optimize tan(x)*cos(x) as sin(x). */
10395 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_COS
)
10396 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_COSF
)
10397 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_COSL
)
10398 || (fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_TAN
)
10399 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_TANF
)
10400 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_TANL
))
10401 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
10402 CALL_EXPR_ARG (arg1
, 0), 0))
10404 tree sinfn
= mathfn_built_in (type
, BUILT_IN_SIN
);
10406 if (sinfn
!= NULL_TREE
)
10407 return build_call_expr (sinfn
, 1, CALL_EXPR_ARG (arg0
, 0));
10410 /* Optimize x*pow(x,c) as pow(x,c+1). */
10411 if (fcode1
== BUILT_IN_POW
10412 || fcode1
== BUILT_IN_POWF
10413 || fcode1
== BUILT_IN_POWL
)
10415 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
10416 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
10417 if (TREE_CODE (arg11
) == REAL_CST
10418 && !TREE_OVERFLOW (arg11
)
10419 && operand_equal_p (arg0
, arg10
, 0))
10421 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
10425 c
= TREE_REAL_CST (arg11
);
10426 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
10427 arg
= build_real (type
, c
);
10428 return build_call_expr (powfn
, 2, arg0
, arg
);
10432 /* Optimize pow(x,c)*x as pow(x,c+1). */
10433 if (fcode0
== BUILT_IN_POW
10434 || fcode0
== BUILT_IN_POWF
10435 || fcode0
== BUILT_IN_POWL
)
10437 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
10438 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
10439 if (TREE_CODE (arg01
) == REAL_CST
10440 && !TREE_OVERFLOW (arg01
)
10441 && operand_equal_p (arg1
, arg00
, 0))
10443 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10447 c
= TREE_REAL_CST (arg01
);
10448 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
10449 arg
= build_real (type
, c
);
10450 return build_call_expr (powfn
, 2, arg1
, arg
);
10454 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10455 if (! optimize_size
10456 && operand_equal_p (arg0
, arg1
, 0))
10458 tree powfn
= mathfn_built_in (type
, BUILT_IN_POW
);
10462 tree arg
= build_real (type
, dconst2
);
10463 return build_call_expr (powfn
, 2, arg0
, arg
);
10472 if (integer_all_onesp (arg1
))
10473 return omit_one_operand (type
, arg1
, arg0
);
10474 if (integer_zerop (arg1
))
10475 return non_lvalue (fold_convert (type
, arg0
));
10476 if (operand_equal_p (arg0
, arg1
, 0))
10477 return non_lvalue (fold_convert (type
, arg0
));
10479 /* ~X | X is -1. */
10480 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10481 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10483 t1
= build_int_cst_type (type
, -1);
10484 return omit_one_operand (type
, t1
, arg1
);
10487 /* X | ~X is -1. */
10488 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
10489 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10491 t1
= build_int_cst_type (type
, -1);
10492 return omit_one_operand (type
, t1
, arg0
);
10495 /* Canonicalize (X & C1) | C2. */
10496 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10497 && TREE_CODE (arg1
) == INTEGER_CST
10498 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10500 unsigned HOST_WIDE_INT hi1
, lo1
, hi2
, lo2
, mlo
, mhi
;
10501 int width
= TYPE_PRECISION (type
);
10502 hi1
= TREE_INT_CST_HIGH (TREE_OPERAND (arg0
, 1));
10503 lo1
= TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1));
10504 hi2
= TREE_INT_CST_HIGH (arg1
);
10505 lo2
= TREE_INT_CST_LOW (arg1
);
10507 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10508 if ((hi1
& hi2
) == hi1
&& (lo1
& lo2
) == lo1
)
10509 return omit_one_operand (type
, arg1
, TREE_OPERAND (arg0
, 0));
10511 if (width
> HOST_BITS_PER_WIDE_INT
)
10513 mhi
= (unsigned HOST_WIDE_INT
) -1
10514 >> (2 * HOST_BITS_PER_WIDE_INT
- width
);
10520 mlo
= (unsigned HOST_WIDE_INT
) -1
10521 >> (HOST_BITS_PER_WIDE_INT
- width
);
10524 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10525 if ((~(hi1
| hi2
) & mhi
) == 0 && (~(lo1
| lo2
) & mlo
) == 0)
10526 return fold_build2 (BIT_IOR_EXPR
, type
,
10527 TREE_OPERAND (arg0
, 0), arg1
);
10529 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
10532 if ((hi1
& ~hi2
) != hi1
|| (lo1
& ~lo2
) != lo1
)
10533 return fold_build2 (BIT_IOR_EXPR
, type
,
10534 fold_build2 (BIT_AND_EXPR
, type
,
10535 TREE_OPERAND (arg0
, 0),
10536 build_int_cst_wide (type
,
10542 /* (X & Y) | Y is (X, Y). */
10543 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10544 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
10545 return omit_one_operand (type
, arg1
, TREE_OPERAND (arg0
, 0));
10546 /* (X & Y) | X is (Y, X). */
10547 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10548 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10549 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
10550 return omit_one_operand (type
, arg1
, TREE_OPERAND (arg0
, 1));
10551 /* X | (X & Y) is (Y, X). */
10552 if (TREE_CODE (arg1
) == BIT_AND_EXPR
10553 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0)
10554 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 1)))
10555 return omit_one_operand (type
, arg0
, TREE_OPERAND (arg1
, 1));
10556 /* X | (Y & X) is (Y, X). */
10557 if (TREE_CODE (arg1
) == BIT_AND_EXPR
10558 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
10559 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
10560 return omit_one_operand (type
, arg0
, TREE_OPERAND (arg1
, 0));
10562 t1
= distribute_bit_expr (code
, type
, arg0
, arg1
);
10563 if (t1
!= NULL_TREE
)
10566 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10568 This results in more efficient code for machines without a NAND
10569 instruction. Combine will canonicalize to the first form
10570 which will allow use of NAND instructions provided by the
10571 backend if they exist. */
10572 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10573 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
10575 return fold_build1 (BIT_NOT_EXPR
, type
,
10576 build2 (BIT_AND_EXPR
, type
,
10577 TREE_OPERAND (arg0
, 0),
10578 TREE_OPERAND (arg1
, 0)));
10581 /* See if this can be simplified into a rotate first. If that
10582 is unsuccessful continue in the association code. */
10586 if (integer_zerop (arg1
))
10587 return non_lvalue (fold_convert (type
, arg0
));
10588 if (integer_all_onesp (arg1
))
10589 return fold_build1 (BIT_NOT_EXPR
, type
, op0
);
10590 if (operand_equal_p (arg0
, arg1
, 0))
10591 return omit_one_operand (type
, integer_zero_node
, arg0
);
10593 /* ~X ^ X is -1. */
10594 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10595 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10597 t1
= build_int_cst_type (type
, -1);
10598 return omit_one_operand (type
, t1
, arg1
);
10601 /* X ^ ~X is -1. */
10602 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
10603 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10605 t1
= build_int_cst_type (type
, -1);
10606 return omit_one_operand (type
, t1
, arg0
);
10609 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10610 with a constant, and the two constants have no bits in common,
10611 we should treat this as a BIT_IOR_EXPR since this may produce more
10612 simplifications. */
10613 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10614 && TREE_CODE (arg1
) == BIT_AND_EXPR
10615 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10616 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
10617 && integer_zerop (const_binop (BIT_AND_EXPR
,
10618 TREE_OPERAND (arg0
, 1),
10619 TREE_OPERAND (arg1
, 1), 0)))
10621 code
= BIT_IOR_EXPR
;
10625 /* (X | Y) ^ X -> Y & ~ X*/
10626 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
10627 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10629 tree t2
= TREE_OPERAND (arg0
, 1);
10630 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg1
),
10632 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
10633 fold_convert (type
, t1
));
10637 /* (Y | X) ^ X -> Y & ~ X*/
10638 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
10639 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
10641 tree t2
= TREE_OPERAND (arg0
, 0);
10642 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg1
),
10644 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
10645 fold_convert (type
, t1
));
10649 /* X ^ (X | Y) -> Y & ~ X*/
10650 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
10651 && operand_equal_p (TREE_OPERAND (arg1
, 0), arg0
, 0))
10653 tree t2
= TREE_OPERAND (arg1
, 1);
10654 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg0
),
10656 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
10657 fold_convert (type
, t1
));
10661 /* X ^ (Y | X) -> Y & ~ X*/
10662 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
10663 && operand_equal_p (TREE_OPERAND (arg1
, 1), arg0
, 0))
10665 tree t2
= TREE_OPERAND (arg1
, 0);
10666 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg0
),
10668 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
10669 fold_convert (type
, t1
));
10673 /* Convert ~X ^ ~Y to X ^ Y. */
10674 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10675 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
10676 return fold_build2 (code
, type
,
10677 fold_convert (type
, TREE_OPERAND (arg0
, 0)),
10678 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
10680 /* Convert ~X ^ C to X ^ ~C. */
10681 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10682 && TREE_CODE (arg1
) == INTEGER_CST
)
10683 return fold_build2 (code
, type
,
10684 fold_convert (type
, TREE_OPERAND (arg0
, 0)),
10685 fold_build1 (BIT_NOT_EXPR
, type
, arg1
));
10687 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10688 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10689 && integer_onep (TREE_OPERAND (arg0
, 1))
10690 && integer_onep (arg1
))
10691 return fold_build2 (EQ_EXPR
, type
, arg0
,
10692 build_int_cst (TREE_TYPE (arg0
), 0));
10694 /* Fold (X & Y) ^ Y as ~X & Y. */
10695 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10696 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
10698 tem
= fold_convert (type
, TREE_OPERAND (arg0
, 0));
10699 return fold_build2 (BIT_AND_EXPR
, type
,
10700 fold_build1 (BIT_NOT_EXPR
, type
, tem
),
10701 fold_convert (type
, arg1
));
10703 /* Fold (X & Y) ^ X as ~Y & X. */
10704 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10705 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10706 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
10708 tem
= fold_convert (type
, TREE_OPERAND (arg0
, 1));
10709 return fold_build2 (BIT_AND_EXPR
, type
,
10710 fold_build1 (BIT_NOT_EXPR
, type
, tem
),
10711 fold_convert (type
, arg1
));
10713 /* Fold X ^ (X & Y) as X & ~Y. */
10714 if (TREE_CODE (arg1
) == BIT_AND_EXPR
10715 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10717 tem
= fold_convert (type
, TREE_OPERAND (arg1
, 1));
10718 return fold_build2 (BIT_AND_EXPR
, type
,
10719 fold_convert (type
, arg0
),
10720 fold_build1 (BIT_NOT_EXPR
, type
, tem
));
10722 /* Fold X ^ (Y & X) as ~Y & X. */
10723 if (TREE_CODE (arg1
) == BIT_AND_EXPR
10724 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
10725 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
10727 tem
= fold_convert (type
, TREE_OPERAND (arg1
, 0));
10728 return fold_build2 (BIT_AND_EXPR
, type
,
10729 fold_build1 (BIT_NOT_EXPR
, type
, tem
),
10730 fold_convert (type
, arg0
));
10733 /* See if this can be simplified into a rotate first. If that
10734 is unsuccessful continue in the association code. */
10738 if (integer_all_onesp (arg1
))
10739 return non_lvalue (fold_convert (type
, arg0
));
10740 if (integer_zerop (arg1
))
10741 return omit_one_operand (type
, arg1
, arg0
);
10742 if (operand_equal_p (arg0
, arg1
, 0))
10743 return non_lvalue (fold_convert (type
, arg0
));
10745 /* ~X & X is always zero. */
10746 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10747 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10748 return omit_one_operand (type
, integer_zero_node
, arg1
);
10750 /* X & ~X is always zero. */
10751 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
10752 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10753 return omit_one_operand (type
, integer_zero_node
, arg0
);
10755 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
10756 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
10757 && TREE_CODE (arg1
) == INTEGER_CST
10758 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10759 return fold_build2 (BIT_IOR_EXPR
, type
,
10760 fold_build2 (BIT_AND_EXPR
, type
,
10761 TREE_OPERAND (arg0
, 0), arg1
),
10762 fold_build2 (BIT_AND_EXPR
, type
,
10763 TREE_OPERAND (arg0
, 1), arg1
));
10765 /* (X | Y) & Y is (X, Y). */
10766 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
10767 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
10768 return omit_one_operand (type
, arg1
, TREE_OPERAND (arg0
, 0));
10769 /* (X | Y) & X is (Y, X). */
10770 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
10771 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10772 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
10773 return omit_one_operand (type
, arg1
, TREE_OPERAND (arg0
, 1));
10774 /* X & (X | Y) is (Y, X). */
10775 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
10776 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0)
10777 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 1)))
10778 return omit_one_operand (type
, arg0
, TREE_OPERAND (arg1
, 1));
10779 /* X & (Y | X) is (Y, X). */
10780 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
10781 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
10782 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
10783 return omit_one_operand (type
, arg0
, TREE_OPERAND (arg1
, 0));
10785 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10786 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10787 && integer_onep (TREE_OPERAND (arg0
, 1))
10788 && integer_onep (arg1
))
10790 tem
= TREE_OPERAND (arg0
, 0);
10791 return fold_build2 (EQ_EXPR
, type
,
10792 fold_build2 (BIT_AND_EXPR
, TREE_TYPE (tem
), tem
,
10793 build_int_cst (TREE_TYPE (tem
), 1)),
10794 build_int_cst (TREE_TYPE (tem
), 0));
10796 /* Fold ~X & 1 as (X & 1) == 0. */
10797 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10798 && integer_onep (arg1
))
10800 tem
= TREE_OPERAND (arg0
, 0);
10801 return fold_build2 (EQ_EXPR
, type
,
10802 fold_build2 (BIT_AND_EXPR
, TREE_TYPE (tem
), tem
,
10803 build_int_cst (TREE_TYPE (tem
), 1)),
10804 build_int_cst (TREE_TYPE (tem
), 0));
10807 /* Fold (X ^ Y) & Y as ~X & Y. */
10808 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10809 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
10811 tem
= fold_convert (type
, TREE_OPERAND (arg0
, 0));
10812 return fold_build2 (BIT_AND_EXPR
, type
,
10813 fold_build1 (BIT_NOT_EXPR
, type
, tem
),
10814 fold_convert (type
, arg1
));
10816 /* Fold (X ^ Y) & X as ~Y & X. */
10817 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10818 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10819 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
10821 tem
= fold_convert (type
, TREE_OPERAND (arg0
, 1));
10822 return fold_build2 (BIT_AND_EXPR
, type
,
10823 fold_build1 (BIT_NOT_EXPR
, type
, tem
),
10824 fold_convert (type
, arg1
));
10826 /* Fold X & (X ^ Y) as X & ~Y. */
10827 if (TREE_CODE (arg1
) == BIT_XOR_EXPR
10828 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10830 tem
= fold_convert (type
, TREE_OPERAND (arg1
, 1));
10831 return fold_build2 (BIT_AND_EXPR
, type
,
10832 fold_convert (type
, arg0
),
10833 fold_build1 (BIT_NOT_EXPR
, type
, tem
));
10835 /* Fold X & (Y ^ X) as ~Y & X. */
10836 if (TREE_CODE (arg1
) == BIT_XOR_EXPR
10837 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
10838 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
10840 tem
= fold_convert (type
, TREE_OPERAND (arg1
, 0));
10841 return fold_build2 (BIT_AND_EXPR
, type
,
10842 fold_build1 (BIT_NOT_EXPR
, type
, tem
),
10843 fold_convert (type
, arg0
));
10846 t1
= distribute_bit_expr (code
, type
, arg0
, arg1
);
10847 if (t1
!= NULL_TREE
)
10849 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10850 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10851 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10854 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10856 if (prec
< BITS_PER_WORD
&& prec
< HOST_BITS_PER_WIDE_INT
10857 && (~TREE_INT_CST_LOW (arg1
)
10858 & (((HOST_WIDE_INT
) 1 << prec
) - 1)) == 0)
10859 return fold_convert (type
, TREE_OPERAND (arg0
, 0));
10862 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
10864 This results in more efficient code for machines without a NOR
10865 instruction. Combine will canonicalize to the first form
10866 which will allow use of NOR instructions provided by the
10867 backend if they exist. */
10868 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10869 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
10871 return fold_build1 (BIT_NOT_EXPR
, type
,
10872 build2 (BIT_IOR_EXPR
, type
,
10873 TREE_OPERAND (arg0
, 0),
10874 TREE_OPERAND (arg1
, 0)));
10880 /* Don't touch a floating-point divide by zero unless the mode
10881 of the constant can represent infinity. */
10882 if (TREE_CODE (arg1
) == REAL_CST
10883 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10884 && real_zerop (arg1
))
10887 /* Optimize A / A to 1.0 if we don't care about
10888 NaNs or Infinities. Skip the transformation
10889 for non-real operands. */
10890 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10891 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
10892 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0
)))
10893 && operand_equal_p (arg0
, arg1
, 0))
10895 tree r
= build_real (TREE_TYPE (arg0
), dconst1
);
10897 return omit_two_operands (type
, r
, arg0
, arg1
);
10900 /* The complex version of the above A / A optimization. */
10901 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10902 && operand_equal_p (arg0
, arg1
, 0))
10904 tree elem_type
= TREE_TYPE (TREE_TYPE (arg0
));
10905 if (! HONOR_NANS (TYPE_MODE (elem_type
))
10906 && ! HONOR_INFINITIES (TYPE_MODE (elem_type
)))
10908 tree r
= build_real (elem_type
, dconst1
);
10909 /* omit_two_operands will call fold_convert for us. */
10910 return omit_two_operands (type
, r
, arg0
, arg1
);
10914 /* (-A) / (-B) -> A / B */
10915 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10916 return fold_build2 (RDIV_EXPR
, type
,
10917 TREE_OPERAND (arg0
, 0),
10918 negate_expr (arg1
));
10919 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10920 return fold_build2 (RDIV_EXPR
, type
,
10921 negate_expr (arg0
),
10922 TREE_OPERAND (arg1
, 0));
10924 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
10925 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10926 && real_onep (arg1
))
10927 return non_lvalue (fold_convert (type
, arg0
));
10929 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
10930 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
10931 && real_minus_onep (arg1
))
10932 return non_lvalue (fold_convert (type
, negate_expr (arg0
)));
10934 /* If ARG1 is a constant, we can convert this to a multiply by the
10935 reciprocal. This does not have the same rounding properties,
10936 so only do this if -funsafe-math-optimizations. We can actually
10937 always safely do it if ARG1 is a power of two, but it's hard to
10938 tell if it is or not in a portable manner. */
10939 if (TREE_CODE (arg1
) == REAL_CST
)
10941 if (flag_unsafe_math_optimizations
10942 && 0 != (tem
= const_binop (code
, build_real (type
, dconst1
),
10944 return fold_build2 (MULT_EXPR
, type
, arg0
, tem
);
10945 /* Find the reciprocal if optimizing and the result is exact. */
10949 r
= TREE_REAL_CST (arg1
);
10950 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0
)), &r
))
10952 tem
= build_real (type
, r
);
10953 return fold_build2 (MULT_EXPR
, type
,
10954 fold_convert (type
, arg0
), tem
);
10958 /* Convert A/B/C to A/(B*C). */
10959 if (flag_unsafe_math_optimizations
10960 && TREE_CODE (arg0
) == RDIV_EXPR
)
10961 return fold_build2 (RDIV_EXPR
, type
, TREE_OPERAND (arg0
, 0),
10962 fold_build2 (MULT_EXPR
, type
,
10963 TREE_OPERAND (arg0
, 1), arg1
));
10965 /* Convert A/(B/C) to (A/B)*C. */
10966 if (flag_unsafe_math_optimizations
10967 && TREE_CODE (arg1
) == RDIV_EXPR
)
10968 return fold_build2 (MULT_EXPR
, type
,
10969 fold_build2 (RDIV_EXPR
, type
, arg0
,
10970 TREE_OPERAND (arg1
, 0)),
10971 TREE_OPERAND (arg1
, 1));
10973 /* Convert C1/(X*C2) into (C1/C2)/X. */
10974 if (flag_unsafe_math_optimizations
10975 && TREE_CODE (arg1
) == MULT_EXPR
10976 && TREE_CODE (arg0
) == REAL_CST
10977 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
10979 tree tem
= const_binop (RDIV_EXPR
, arg0
,
10980 TREE_OPERAND (arg1
, 1), 0);
10982 return fold_build2 (RDIV_EXPR
, type
, tem
,
10983 TREE_OPERAND (arg1
, 0));
10986 if (flag_unsafe_math_optimizations
)
10988 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
10989 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
10991 /* Optimize sin(x)/cos(x) as tan(x). */
10992 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_COS
)
10993 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_COSF
)
10994 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_COSL
))
10995 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
10996 CALL_EXPR_ARG (arg1
, 0), 0))
10998 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
11000 if (tanfn
!= NULL_TREE
)
11001 return build_call_expr (tanfn
, 1, CALL_EXPR_ARG (arg0
, 0));
11004 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11005 if (((fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_SIN
)
11006 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_SINF
)
11007 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_SINL
))
11008 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
11009 CALL_EXPR_ARG (arg1
, 0), 0))
11011 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
11013 if (tanfn
!= NULL_TREE
)
11015 tree tmp
= build_call_expr (tanfn
, 1, CALL_EXPR_ARG (arg0
, 0));
11016 return fold_build2 (RDIV_EXPR
, type
,
11017 build_real (type
, dconst1
), tmp
);
11021 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11022 NaNs or Infinities. */
11023 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_TAN
)
11024 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_TANF
)
11025 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_TANL
)))
11027 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11028 tree arg01
= CALL_EXPR_ARG (arg1
, 0);
11030 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00
)))
11031 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00
)))
11032 && operand_equal_p (arg00
, arg01
, 0))
11034 tree cosfn
= mathfn_built_in (type
, BUILT_IN_COS
);
11036 if (cosfn
!= NULL_TREE
)
11037 return build_call_expr (cosfn
, 1, arg00
);
11041 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11042 NaNs or Infinities. */
11043 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_SIN
)
11044 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_SINF
)
11045 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_SINL
)))
11047 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11048 tree arg01
= CALL_EXPR_ARG (arg1
, 0);
11050 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00
)))
11051 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00
)))
11052 && operand_equal_p (arg00
, arg01
, 0))
11054 tree cosfn
= mathfn_built_in (type
, BUILT_IN_COS
);
11056 if (cosfn
!= NULL_TREE
)
11058 tree tmp
= build_call_expr (cosfn
, 1, arg00
);
11059 return fold_build2 (RDIV_EXPR
, type
,
11060 build_real (type
, dconst1
),
11066 /* Optimize pow(x,c)/x as pow(x,c-1). */
11067 if (fcode0
== BUILT_IN_POW
11068 || fcode0
== BUILT_IN_POWF
11069 || fcode0
== BUILT_IN_POWL
)
11071 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11072 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
11073 if (TREE_CODE (arg01
) == REAL_CST
11074 && !TREE_OVERFLOW (arg01
)
11075 && operand_equal_p (arg1
, arg00
, 0))
11077 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11081 c
= TREE_REAL_CST (arg01
);
11082 real_arithmetic (&c
, MINUS_EXPR
, &c
, &dconst1
);
11083 arg
= build_real (type
, c
);
11084 return build_call_expr (powfn
, 2, arg1
, arg
);
11088 /* Optimize a/root(b/c) into a*root(c/b). */
11089 if (BUILTIN_ROOT_P (fcode1
))
11091 tree rootarg
= CALL_EXPR_ARG (arg1
, 0);
11093 if (TREE_CODE (rootarg
) == RDIV_EXPR
)
11095 tree rootfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11096 tree b
= TREE_OPERAND (rootarg
, 0);
11097 tree c
= TREE_OPERAND (rootarg
, 1);
11099 tree tmp
= fold_build2 (RDIV_EXPR
, type
, c
, b
);
11101 tmp
= build_call_expr (rootfn
, 1, tmp
);
11102 return fold_build2 (MULT_EXPR
, type
, arg0
, tmp
);
11106 /* Optimize x/expN(y) into x*expN(-y). */
11107 if (BUILTIN_EXPONENT_P (fcode1
))
11109 tree expfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11110 tree arg
= negate_expr (CALL_EXPR_ARG (arg1
, 0));
11111 arg1
= build_call_expr (expfn
, 1, fold_convert (type
, arg
));
11112 return fold_build2 (MULT_EXPR
, type
, arg0
, arg1
);
11115 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11116 if (fcode1
== BUILT_IN_POW
11117 || fcode1
== BUILT_IN_POWF
11118 || fcode1
== BUILT_IN_POWL
)
11120 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11121 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
11122 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
11123 tree neg11
= fold_convert (type
, negate_expr (arg11
));
11124 arg1
= build_call_expr (powfn
, 2, arg10
, neg11
);
11125 return fold_build2 (MULT_EXPR
, type
, arg0
, arg1
);
11130 case TRUNC_DIV_EXPR
:
11131 case FLOOR_DIV_EXPR
:
11132 /* Simplify A / (B << N) where A and B are positive and B is
11133 a power of 2, to A >> (N + log2(B)). */
11134 strict_overflow_p
= false;
11135 if (TREE_CODE (arg1
) == LSHIFT_EXPR
11136 && (TYPE_UNSIGNED (type
)
11137 || tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
)))
11139 tree sval
= TREE_OPERAND (arg1
, 0);
11140 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
11142 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
11143 unsigned long pow2
= exact_log2 (TREE_INT_CST_LOW (sval
));
11145 if (strict_overflow_p
)
11146 fold_overflow_warning (("assuming signed overflow does not "
11147 "occur when simplifying A / (B << N)"),
11148 WARN_STRICT_OVERFLOW_MISC
);
11150 sh_cnt
= fold_build2 (PLUS_EXPR
, TREE_TYPE (sh_cnt
),
11151 sh_cnt
, build_int_cst (NULL_TREE
, pow2
));
11152 return fold_build2 (RSHIFT_EXPR
, type
,
11153 fold_convert (type
, arg0
), sh_cnt
);
11158 case ROUND_DIV_EXPR
:
11159 case CEIL_DIV_EXPR
:
11160 case EXACT_DIV_EXPR
:
11161 if (integer_onep (arg1
))
11162 return non_lvalue (fold_convert (type
, arg0
));
11163 if (integer_zerop (arg1
))
11165 /* X / -1 is -X. */
11166 if (!TYPE_UNSIGNED (type
)
11167 && TREE_CODE (arg1
) == INTEGER_CST
11168 && TREE_INT_CST_LOW (arg1
) == (unsigned HOST_WIDE_INT
) -1
11169 && TREE_INT_CST_HIGH (arg1
) == -1)
11170 return fold_convert (type
, negate_expr (arg0
));
11172 /* Convert -A / -B to A / B when the type is signed and overflow is
11174 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
11175 && TREE_CODE (arg0
) == NEGATE_EXPR
11176 && negate_expr_p (arg1
))
11178 if (INTEGRAL_TYPE_P (type
))
11179 fold_overflow_warning (("assuming signed overflow does not occur "
11180 "when distributing negation across "
11182 WARN_STRICT_OVERFLOW_MISC
);
11183 return fold_build2 (code
, type
,
11184 fold_convert (type
, TREE_OPERAND (arg0
, 0)),
11185 negate_expr (arg1
));
11187 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
11188 && TREE_CODE (arg1
) == NEGATE_EXPR
11189 && negate_expr_p (arg0
))
11191 if (INTEGRAL_TYPE_P (type
))
11192 fold_overflow_warning (("assuming signed overflow does not occur "
11193 "when distributing negation across "
11195 WARN_STRICT_OVERFLOW_MISC
);
11196 return fold_build2 (code
, type
, negate_expr (arg0
),
11197 TREE_OPERAND (arg1
, 0));
11200 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11201 operation, EXACT_DIV_EXPR.
11203 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11204 At one time others generated faster code, it's not clear if they do
11205 after the last round to changes to the DIV code in expmed.c. */
11206 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
11207 && multiple_of_p (type
, arg0
, arg1
))
11208 return fold_build2 (EXACT_DIV_EXPR
, type
, arg0
, arg1
);
11210 strict_overflow_p
= false;
11211 if (TREE_CODE (arg1
) == INTEGER_CST
11212 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
11213 &strict_overflow_p
)))
11215 if (strict_overflow_p
)
11216 fold_overflow_warning (("assuming signed overflow does not occur "
11217 "when simplifying division"),
11218 WARN_STRICT_OVERFLOW_MISC
);
11219 return fold_convert (type
, tem
);
11224 case CEIL_MOD_EXPR
:
11225 case FLOOR_MOD_EXPR
:
11226 case ROUND_MOD_EXPR
:
11227 case TRUNC_MOD_EXPR
:
11228 /* X % 1 is always zero, but be sure to preserve any side
11230 if (integer_onep (arg1
))
11231 return omit_one_operand (type
, integer_zero_node
, arg0
);
11233 /* X % 0, return X % 0 unchanged so that we can get the
11234 proper warnings and errors. */
11235 if (integer_zerop (arg1
))
11238 /* 0 % X is always zero, but be sure to preserve any side
11239 effects in X. Place this after checking for X == 0. */
11240 if (integer_zerop (arg0
))
11241 return omit_one_operand (type
, integer_zero_node
, arg1
);
11243 /* X % -1 is zero. */
11244 if (!TYPE_UNSIGNED (type
)
11245 && TREE_CODE (arg1
) == INTEGER_CST
11246 && TREE_INT_CST_LOW (arg1
) == (unsigned HOST_WIDE_INT
) -1
11247 && TREE_INT_CST_HIGH (arg1
) == -1)
11248 return omit_one_operand (type
, integer_zero_node
, arg0
);
11250 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11251 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11252 strict_overflow_p
= false;
11253 if ((code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
)
11254 && (TYPE_UNSIGNED (type
)
11255 || tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
)))
11258 /* Also optimize A % (C << N) where C is a power of 2,
11259 to A & ((C << N) - 1). */
11260 if (TREE_CODE (arg1
) == LSHIFT_EXPR
)
11261 c
= TREE_OPERAND (arg1
, 0);
11263 if (integer_pow2p (c
) && tree_int_cst_sgn (c
) > 0)
11265 tree mask
= fold_build2 (MINUS_EXPR
, TREE_TYPE (arg1
), arg1
,
11266 build_int_cst (TREE_TYPE (arg1
), 1));
11267 if (strict_overflow_p
)
11268 fold_overflow_warning (("assuming signed overflow does not "
11269 "occur when simplifying "
11270 "X % (power of two)"),
11271 WARN_STRICT_OVERFLOW_MISC
);
11272 return fold_build2 (BIT_AND_EXPR
, type
,
11273 fold_convert (type
, arg0
),
11274 fold_convert (type
, mask
));
11278 /* X % -C is the same as X % C. */
11279 if (code
== TRUNC_MOD_EXPR
11280 && !TYPE_UNSIGNED (type
)
11281 && TREE_CODE (arg1
) == INTEGER_CST
11282 && !TREE_OVERFLOW (arg1
)
11283 && TREE_INT_CST_HIGH (arg1
) < 0
11284 && !TYPE_OVERFLOW_TRAPS (type
)
11285 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11286 && !sign_bit_p (arg1
, arg1
))
11287 return fold_build2 (code
, type
, fold_convert (type
, arg0
),
11288 fold_convert (type
, negate_expr (arg1
)));
11290 /* X % -Y is the same as X % Y. */
11291 if (code
== TRUNC_MOD_EXPR
11292 && !TYPE_UNSIGNED (type
)
11293 && TREE_CODE (arg1
) == NEGATE_EXPR
11294 && !TYPE_OVERFLOW_TRAPS (type
))
11295 return fold_build2 (code
, type
, fold_convert (type
, arg0
),
11296 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
11298 if (TREE_CODE (arg1
) == INTEGER_CST
11299 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
11300 &strict_overflow_p
)))
11302 if (strict_overflow_p
)
11303 fold_overflow_warning (("assuming signed overflow does not occur "
11304 "when simplifying modulos"),
11305 WARN_STRICT_OVERFLOW_MISC
);
11306 return fold_convert (type
, tem
);
11313 if (integer_all_onesp (arg0
))
11314 return omit_one_operand (type
, arg0
, arg1
);
11318 /* Optimize -1 >> x for arithmetic right shifts. */
11319 if (integer_all_onesp (arg0
) && !TYPE_UNSIGNED (type
))
11320 return omit_one_operand (type
, arg0
, arg1
);
11321 /* ... fall through ... */
11325 if (integer_zerop (arg1
))
11326 return non_lvalue (fold_convert (type
, arg0
));
11327 if (integer_zerop (arg0
))
11328 return omit_one_operand (type
, arg0
, arg1
);
11330 /* Since negative shift count is not well-defined,
11331 don't try to compute it in the compiler. */
11332 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
11335 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11336 if (TREE_CODE (op0
) == code
&& host_integerp (arg1
, false)
11337 && TREE_INT_CST_LOW (arg1
) < TYPE_PRECISION (type
)
11338 && host_integerp (TREE_OPERAND (arg0
, 1), false)
11339 && TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)) < TYPE_PRECISION (type
))
11341 HOST_WIDE_INT low
= (TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1))
11342 + TREE_INT_CST_LOW (arg1
));
11344 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11345 being well defined. */
11346 if (low
>= TYPE_PRECISION (type
))
11348 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
11349 low
= low
% TYPE_PRECISION (type
);
11350 else if (TYPE_UNSIGNED (type
) || code
== LSHIFT_EXPR
)
11351 return build_int_cst (type
, 0);
11353 low
= TYPE_PRECISION (type
) - 1;
11356 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0),
11357 build_int_cst (type
, low
));
11360 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11361 into x & ((unsigned)-1 >> c) for unsigned types. */
11362 if (((code
== LSHIFT_EXPR
&& TREE_CODE (arg0
) == RSHIFT_EXPR
)
11363 || (TYPE_UNSIGNED (type
)
11364 && code
== RSHIFT_EXPR
&& TREE_CODE (arg0
) == LSHIFT_EXPR
))
11365 && host_integerp (arg1
, false)
11366 && TREE_INT_CST_LOW (arg1
) < TYPE_PRECISION (type
)
11367 && host_integerp (TREE_OPERAND (arg0
, 1), false)
11368 && TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)) < TYPE_PRECISION (type
))
11370 HOST_WIDE_INT low0
= TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1));
11371 HOST_WIDE_INT low1
= TREE_INT_CST_LOW (arg1
);
11377 arg00
= fold_convert (type
, TREE_OPERAND (arg0
, 0));
11379 lshift
= build_int_cst (type
, -1);
11380 lshift
= int_const_binop (code
, lshift
, arg1
, 0);
11382 return fold_build2 (BIT_AND_EXPR
, type
, arg00
, lshift
);
11386 /* Rewrite an LROTATE_EXPR by a constant into an
11387 RROTATE_EXPR by a new constant. */
11388 if (code
== LROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
)
11390 tree tem
= build_int_cst (TREE_TYPE (arg1
),
11391 GET_MODE_BITSIZE (TYPE_MODE (type
)));
11392 tem
= const_binop (MINUS_EXPR
, tem
, arg1
, 0);
11393 return fold_build2 (RROTATE_EXPR
, type
, arg0
, tem
);
11396 /* If we have a rotate of a bit operation with the rotate count and
11397 the second operand of the bit operation both constant,
11398 permute the two operations. */
11399 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
11400 && (TREE_CODE (arg0
) == BIT_AND_EXPR
11401 || TREE_CODE (arg0
) == BIT_IOR_EXPR
11402 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
11403 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11404 return fold_build2 (TREE_CODE (arg0
), type
,
11405 fold_build2 (code
, type
,
11406 TREE_OPERAND (arg0
, 0), arg1
),
11407 fold_build2 (code
, type
,
11408 TREE_OPERAND (arg0
, 1), arg1
));
11410 /* Two consecutive rotates adding up to the width of the mode can
11412 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
11413 && TREE_CODE (arg0
) == RROTATE_EXPR
11414 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
11415 && TREE_INT_CST_HIGH (arg1
) == 0
11416 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0
, 1)) == 0
11417 && ((TREE_INT_CST_LOW (arg1
)
11418 + TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)))
11419 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type
))))
11420 return TREE_OPERAND (arg0
, 0);
11425 if (operand_equal_p (arg0
, arg1
, 0))
11426 return omit_one_operand (type
, arg0
, arg1
);
11427 if (INTEGRAL_TYPE_P (type
)
11428 && operand_equal_p (arg1
, TYPE_MIN_VALUE (type
), OEP_ONLY_CONST
))
11429 return omit_one_operand (type
, arg1
, arg0
);
11430 tem
= fold_minmax (MIN_EXPR
, type
, arg0
, arg1
);
11436 if (operand_equal_p (arg0
, arg1
, 0))
11437 return omit_one_operand (type
, arg0
, arg1
);
11438 if (INTEGRAL_TYPE_P (type
)
11439 && TYPE_MAX_VALUE (type
)
11440 && operand_equal_p (arg1
, TYPE_MAX_VALUE (type
), OEP_ONLY_CONST
))
11441 return omit_one_operand (type
, arg1
, arg0
);
11442 tem
= fold_minmax (MAX_EXPR
, type
, arg0
, arg1
);
11447 case TRUTH_ANDIF_EXPR
:
11448 /* Note that the operands of this must be ints
11449 and their values must be 0 or 1.
11450 ("true" is a fixed value perhaps depending on the language.) */
11451 /* If first arg is constant zero, return it. */
11452 if (integer_zerop (arg0
))
11453 return fold_convert (type
, arg0
);
11454 case TRUTH_AND_EXPR
:
11455 /* If either arg is constant true, drop it. */
11456 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
11457 return non_lvalue (fold_convert (type
, arg1
));
11458 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
11459 /* Preserve sequence points. */
11460 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
11461 return non_lvalue (fold_convert (type
, arg0
));
11462 /* If second arg is constant zero, result is zero, but first arg
11463 must be evaluated. */
11464 if (integer_zerop (arg1
))
11465 return omit_one_operand (type
, arg1
, arg0
);
11466 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11467 case will be handled here. */
11468 if (integer_zerop (arg0
))
11469 return omit_one_operand (type
, arg0
, arg1
);
11471 /* !X && X is always false. */
11472 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11473 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11474 return omit_one_operand (type
, integer_zero_node
, arg1
);
11475 /* X && !X is always false. */
11476 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
11477 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11478 return omit_one_operand (type
, integer_zero_node
, arg0
);
11480 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11481 means A >= Y && A != MAX, but in this case we know that
11484 if (!TREE_SIDE_EFFECTS (arg0
)
11485 && !TREE_SIDE_EFFECTS (arg1
))
11487 tem
= fold_to_nonsharp_ineq_using_bound (arg0
, arg1
);
11488 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
11489 return fold_build2 (code
, type
, tem
, arg1
);
11491 tem
= fold_to_nonsharp_ineq_using_bound (arg1
, arg0
);
11492 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
11493 return fold_build2 (code
, type
, arg0
, tem
);
11497 /* We only do these simplifications if we are optimizing. */
11501 /* Check for things like (A || B) && (A || C). We can convert this
11502 to A || (B && C). Note that either operator can be any of the four
11503 truth and/or operations and the transformation will still be
11504 valid. Also note that we only care about order for the
11505 ANDIF and ORIF operators. If B contains side effects, this
11506 might change the truth-value of A. */
11507 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
11508 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
11509 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
11510 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
11511 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
11512 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
11514 tree a00
= TREE_OPERAND (arg0
, 0);
11515 tree a01
= TREE_OPERAND (arg0
, 1);
11516 tree a10
= TREE_OPERAND (arg1
, 0);
11517 tree a11
= TREE_OPERAND (arg1
, 1);
11518 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
11519 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
11520 && (code
== TRUTH_AND_EXPR
11521 || code
== TRUTH_OR_EXPR
));
11523 if (operand_equal_p (a00
, a10
, 0))
11524 return fold_build2 (TREE_CODE (arg0
), type
, a00
,
11525 fold_build2 (code
, type
, a01
, a11
));
11526 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
11527 return fold_build2 (TREE_CODE (arg0
), type
, a00
,
11528 fold_build2 (code
, type
, a01
, a10
));
11529 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
11530 return fold_build2 (TREE_CODE (arg0
), type
, a01
,
11531 fold_build2 (code
, type
, a00
, a11
));
11533 /* This case if tricky because we must either have commutative
11534 operators or else A10 must not have side-effects. */
11536 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
11537 && operand_equal_p (a01
, a11
, 0))
11538 return fold_build2 (TREE_CODE (arg0
), type
,
11539 fold_build2 (code
, type
, a00
, a10
),
11543 /* See if we can build a range comparison. */
11544 if (0 != (tem
= fold_range_test (code
, type
, op0
, op1
)))
11547 /* Check for the possibility of merging component references. If our
11548 lhs is another similar operation, try to merge its rhs with our
11549 rhs. Then try to merge our lhs and rhs. */
11550 if (TREE_CODE (arg0
) == code
11551 && 0 != (tem
= fold_truthop (code
, type
,
11552 TREE_OPERAND (arg0
, 1), arg1
)))
11553 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
11555 if ((tem
= fold_truthop (code
, type
, arg0
, arg1
)) != 0)
11560 case TRUTH_ORIF_EXPR
:
11561 /* Note that the operands of this must be ints
11562 and their values must be 0 or true.
11563 ("true" is a fixed value perhaps depending on the language.) */
11564 /* If first arg is constant true, return it. */
11565 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
11566 return fold_convert (type
, arg0
);
11567 case TRUTH_OR_EXPR
:
11568 /* If either arg is constant zero, drop it. */
11569 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
11570 return non_lvalue (fold_convert (type
, arg1
));
11571 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
11572 /* Preserve sequence points. */
11573 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
11574 return non_lvalue (fold_convert (type
, arg0
));
11575 /* If second arg is constant true, result is true, but we must
11576 evaluate first arg. */
11577 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
11578 return omit_one_operand (type
, arg1
, arg0
);
11579 /* Likewise for first arg, but note this only occurs here for
11581 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
11582 return omit_one_operand (type
, arg0
, arg1
);
11584 /* !X || X is always true. */
11585 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11586 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11587 return omit_one_operand (type
, integer_one_node
, arg1
);
11588 /* X || !X is always true. */
11589 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
11590 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11591 return omit_one_operand (type
, integer_one_node
, arg0
);
11595 case TRUTH_XOR_EXPR
:
11596 /* If the second arg is constant zero, drop it. */
11597 if (integer_zerop (arg1
))
11598 return non_lvalue (fold_convert (type
, arg0
));
11599 /* If the second arg is constant true, this is a logical inversion. */
11600 if (integer_onep (arg1
))
11602 /* Only call invert_truthvalue if operand is a truth value. */
11603 if (TREE_CODE (TREE_TYPE (arg0
)) != BOOLEAN_TYPE
)
11604 tem
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (arg0
), arg0
);
11606 tem
= invert_truthvalue (arg0
);
11607 return non_lvalue (fold_convert (type
, tem
));
11609 /* Identical arguments cancel to zero. */
11610 if (operand_equal_p (arg0
, arg1
, 0))
11611 return omit_one_operand (type
, integer_zero_node
, arg0
);
11613 /* !X ^ X is always true. */
11614 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11615 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11616 return omit_one_operand (type
, integer_one_node
, arg1
);
11618 /* X ^ !X is always true. */
11619 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
11620 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11621 return omit_one_operand (type
, integer_one_node
, arg0
);
11627 tem
= fold_comparison (code
, type
, op0
, op1
);
11628 if (tem
!= NULL_TREE
)
11631 /* bool_var != 0 becomes bool_var. */
11632 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
11633 && code
== NE_EXPR
)
11634 return non_lvalue (fold_convert (type
, arg0
));
11636 /* bool_var == 1 becomes bool_var. */
11637 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
11638 && code
== EQ_EXPR
)
11639 return non_lvalue (fold_convert (type
, arg0
));
11641 /* bool_var != 1 becomes !bool_var. */
11642 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
11643 && code
== NE_EXPR
)
11644 return fold_build1 (TRUTH_NOT_EXPR
, type
, arg0
);
11646 /* bool_var == 0 becomes !bool_var. */
11647 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
11648 && code
== EQ_EXPR
)
11649 return fold_build1 (TRUTH_NOT_EXPR
, type
, arg0
);
11651 /* If this is an equality comparison of the address of two non-weak,
11652 unaliased symbols neither of which are extern (since we do not
11653 have access to attributes for externs), then we know the result. */
11654 if (TREE_CODE (arg0
) == ADDR_EXPR
11655 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0
, 0))
11656 && ! DECL_WEAK (TREE_OPERAND (arg0
, 0))
11657 && ! lookup_attribute ("alias",
11658 DECL_ATTRIBUTES (TREE_OPERAND (arg0
, 0)))
11659 && ! DECL_EXTERNAL (TREE_OPERAND (arg0
, 0))
11660 && TREE_CODE (arg1
) == ADDR_EXPR
11661 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1
, 0))
11662 && ! DECL_WEAK (TREE_OPERAND (arg1
, 0))
11663 && ! lookup_attribute ("alias",
11664 DECL_ATTRIBUTES (TREE_OPERAND (arg1
, 0)))
11665 && ! DECL_EXTERNAL (TREE_OPERAND (arg1
, 0)))
11667 /* We know that we're looking at the address of two
11668 non-weak, unaliased, static _DECL nodes.
11670 It is both wasteful and incorrect to call operand_equal_p
11671 to compare the two ADDR_EXPR nodes. It is wasteful in that
11672 all we need to do is test pointer equality for the arguments
11673 to the two ADDR_EXPR nodes. It is incorrect to use
11674 operand_equal_p as that function is NOT equivalent to a
11675 C equality test. It can in fact return false for two
11676 objects which would test as equal using the C equality
11678 bool equal
= TREE_OPERAND (arg0
, 0) == TREE_OPERAND (arg1
, 0);
11679 return constant_boolean_node (equal
11680 ? code
== EQ_EXPR
: code
!= EQ_EXPR
,
11684 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
11685 a MINUS_EXPR of a constant, we can convert it into a comparison with
11686 a revised constant as long as no overflow occurs. */
11687 if (TREE_CODE (arg1
) == INTEGER_CST
11688 && (TREE_CODE (arg0
) == PLUS_EXPR
11689 || TREE_CODE (arg0
) == MINUS_EXPR
)
11690 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
11691 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
11692 ? MINUS_EXPR
: PLUS_EXPR
,
11693 fold_convert (TREE_TYPE (arg0
), arg1
),
11694 TREE_OPERAND (arg0
, 1), 0))
11695 && !TREE_OVERFLOW (tem
))
11696 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
11698 /* Similarly for a NEGATE_EXPR. */
11699 if (TREE_CODE (arg0
) == NEGATE_EXPR
11700 && TREE_CODE (arg1
) == INTEGER_CST
11701 && 0 != (tem
= negate_expr (arg1
))
11702 && TREE_CODE (tem
) == INTEGER_CST
11703 && !TREE_OVERFLOW (tem
))
11704 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
11706 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11707 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11708 && TREE_CODE (arg1
) == INTEGER_CST
11709 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11710 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0),
11711 fold_build2 (BIT_XOR_EXPR
, TREE_TYPE (arg0
),
11712 fold_convert (TREE_TYPE (arg0
), arg1
),
11713 TREE_OPERAND (arg0
, 1)));
11715 /* Transform comparisons of the form X +- C CMP X. */
11716 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
11717 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11718 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
11719 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
11720 || POINTER_TYPE_P (TREE_TYPE (arg0
))))
11722 tree cst
= TREE_OPERAND (arg0
, 1);
11724 if (code
== EQ_EXPR
11725 && !integer_zerop (cst
))
11726 return omit_two_operands (type
, boolean_false_node
,
11727 TREE_OPERAND (arg0
, 0), arg1
);
11729 return omit_two_operands (type
, boolean_true_node
,
11730 TREE_OPERAND (arg0
, 0), arg1
);
11733 /* If we have X - Y == 0, we can convert that to X == Y and similarly
11734 for !=. Don't do this for ordered comparisons due to overflow. */
11735 if (TREE_CODE (arg0
) == MINUS_EXPR
11736 && integer_zerop (arg1
))
11737 return fold_build2 (code
, type
,
11738 TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
11740 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11741 if (TREE_CODE (arg0
) == ABS_EXPR
11742 && (integer_zerop (arg1
) || real_zerop (arg1
)))
11743 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), arg1
);
11745 /* If this is an EQ or NE comparison with zero and ARG0 is
11746 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11747 two operations, but the latter can be done in one less insn
11748 on machines that have only two-operand insns or on which a
11749 constant cannot be the first operand. */
11750 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11751 && integer_zerop (arg1
))
11753 tree arg00
= TREE_OPERAND (arg0
, 0);
11754 tree arg01
= TREE_OPERAND (arg0
, 1);
11755 if (TREE_CODE (arg00
) == LSHIFT_EXPR
11756 && integer_onep (TREE_OPERAND (arg00
, 0)))
11758 fold_build2 (code
, type
,
11759 build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
11760 build2 (RSHIFT_EXPR
, TREE_TYPE (arg00
),
11761 arg01
, TREE_OPERAND (arg00
, 1)),
11762 fold_convert (TREE_TYPE (arg0
),
11763 integer_one_node
)),
11765 else if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == LSHIFT_EXPR
11766 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0
, 1), 0)))
11768 fold_build2 (code
, type
,
11769 build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
11770 build2 (RSHIFT_EXPR
, TREE_TYPE (arg01
),
11771 arg00
, TREE_OPERAND (arg01
, 1)),
11772 fold_convert (TREE_TYPE (arg0
),
11773 integer_one_node
)),
11777 /* If this is an NE or EQ comparison of zero against the result of a
11778 signed MOD operation whose second operand is a power of 2, make
11779 the MOD operation unsigned since it is simpler and equivalent. */
11780 if (integer_zerop (arg1
)
11781 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
11782 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
11783 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
11784 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
11785 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
11786 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
11788 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
11789 tree newmod
= fold_build2 (TREE_CODE (arg0
), newtype
,
11790 fold_convert (newtype
,
11791 TREE_OPERAND (arg0
, 0)),
11792 fold_convert (newtype
,
11793 TREE_OPERAND (arg0
, 1)));
11795 return fold_build2 (code
, type
, newmod
,
11796 fold_convert (newtype
, arg1
));
11799 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11800 C1 is a valid shift constant, and C2 is a power of two, i.e.
11802 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11803 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
11804 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
11806 && integer_pow2p (TREE_OPERAND (arg0
, 1))
11807 && integer_zerop (arg1
))
11809 tree itype
= TREE_TYPE (arg0
);
11810 unsigned HOST_WIDE_INT prec
= TYPE_PRECISION (itype
);
11811 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
11813 /* Check for a valid shift count. */
11814 if (TREE_INT_CST_HIGH (arg001
) == 0
11815 && TREE_INT_CST_LOW (arg001
) < prec
)
11817 tree arg01
= TREE_OPERAND (arg0
, 1);
11818 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
11819 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
11820 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11821 can be rewritten as (X & (C2 << C1)) != 0. */
11822 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
11824 tem
= fold_build2 (LSHIFT_EXPR
, itype
, arg01
, arg001
);
11825 tem
= fold_build2 (BIT_AND_EXPR
, itype
, arg000
, tem
);
11826 return fold_build2 (code
, type
, tem
, arg1
);
11828 /* Otherwise, for signed (arithmetic) shifts,
11829 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11830 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11831 else if (!TYPE_UNSIGNED (itype
))
11832 return fold_build2 (code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
11833 arg000
, build_int_cst (itype
, 0));
11834 /* Otherwise, of unsigned (logical) shifts,
11835 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11836 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11838 return omit_one_operand (type
,
11839 code
== EQ_EXPR
? integer_one_node
11840 : integer_zero_node
,
11845 /* If this is an NE comparison of zero with an AND of one, remove the
11846 comparison since the AND will give the correct value. */
11847 if (code
== NE_EXPR
11848 && integer_zerop (arg1
)
11849 && TREE_CODE (arg0
) == BIT_AND_EXPR
11850 && integer_onep (TREE_OPERAND (arg0
, 1)))
11851 return fold_convert (type
, arg0
);
11853 /* If we have (A & C) == C where C is a power of 2, convert this into
11854 (A & C) != 0. Similarly for NE_EXPR. */
11855 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11856 && integer_pow2p (TREE_OPERAND (arg0
, 1))
11857 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11858 return fold_build2 (code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
11859 arg0
, fold_convert (TREE_TYPE (arg0
),
11860 integer_zero_node
));
11862 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
11863 bit, then fold the expression into A < 0 or A >= 0. */
11864 tem
= fold_single_bit_test_into_sign_test (code
, arg0
, arg1
, type
);
11868 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
11869 Similarly for NE_EXPR. */
11870 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11871 && TREE_CODE (arg1
) == INTEGER_CST
11872 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11874 tree notc
= fold_build1 (BIT_NOT_EXPR
,
11875 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
11876 TREE_OPERAND (arg0
, 1));
11877 tree dandnotc
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
11879 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
11880 if (integer_nonzerop (dandnotc
))
11881 return omit_one_operand (type
, rslt
, arg0
);
11884 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
11885 Similarly for NE_EXPR. */
11886 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11887 && TREE_CODE (arg1
) == INTEGER_CST
11888 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11890 tree notd
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg1
), arg1
);
11891 tree candnotd
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
11892 TREE_OPERAND (arg0
, 1), notd
);
11893 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
11894 if (integer_nonzerop (candnotd
))
11895 return omit_one_operand (type
, rslt
, arg0
);
11898 /* If this is a comparison of a field, we may be able to simplify it. */
11899 if ((TREE_CODE (arg0
) == COMPONENT_REF
11900 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
11901 /* Handle the constant case even without -O
11902 to make sure the warnings are given. */
11903 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
11905 t1
= optimize_bit_field_compare (code
, type
, arg0
, arg1
);
11910 /* Optimize comparisons of strlen vs zero to a compare of the
11911 first character of the string vs zero. To wit,
11912 strlen(ptr) == 0 => *ptr == 0
11913 strlen(ptr) != 0 => *ptr != 0
11914 Other cases should reduce to one of these two (or a constant)
11915 due to the return value of strlen being unsigned. */
11916 if (TREE_CODE (arg0
) == CALL_EXPR
11917 && integer_zerop (arg1
))
11919 tree fndecl
= get_callee_fndecl (arg0
);
11922 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
11923 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
11924 && call_expr_nargs (arg0
) == 1
11925 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
11927 tree iref
= build_fold_indirect_ref (CALL_EXPR_ARG (arg0
, 0));
11928 return fold_build2 (code
, type
, iref
,
11929 build_int_cst (TREE_TYPE (iref
), 0));
11933 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11934 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11935 if (TREE_CODE (arg0
) == RSHIFT_EXPR
11936 && integer_zerop (arg1
)
11937 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11939 tree arg00
= TREE_OPERAND (arg0
, 0);
11940 tree arg01
= TREE_OPERAND (arg0
, 1);
11941 tree itype
= TREE_TYPE (arg00
);
11942 if (TREE_INT_CST_HIGH (arg01
) == 0
11943 && TREE_INT_CST_LOW (arg01
)
11944 == (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (itype
) - 1))
11946 if (TYPE_UNSIGNED (itype
))
11948 itype
= signed_type_for (itype
);
11949 arg00
= fold_convert (itype
, arg00
);
11951 return fold_build2 (code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
11952 type
, arg00
, build_int_cst (itype
, 0));
11956 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
11957 if (integer_zerop (arg1
)
11958 && TREE_CODE (arg0
) == BIT_XOR_EXPR
)
11959 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0),
11960 TREE_OPERAND (arg0
, 1));
11962 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
11963 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11964 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11965 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0),
11966 build_int_cst (TREE_TYPE (arg1
), 0));
11967 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
11968 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11969 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11970 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11971 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 1),
11972 build_int_cst (TREE_TYPE (arg1
), 0));
11974 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
11975 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11976 && TREE_CODE (arg1
) == INTEGER_CST
11977 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11978 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0),
11979 fold_build2 (BIT_XOR_EXPR
, TREE_TYPE (arg1
),
11980 TREE_OPERAND (arg0
, 1), arg1
));
11982 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11983 (X & C) == 0 when C is a single bit. */
11984 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11985 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
11986 && integer_zerop (arg1
)
11987 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
11989 tem
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
11990 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
11991 TREE_OPERAND (arg0
, 1));
11992 return fold_build2 (code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
11996 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11997 constant C is a power of two, i.e. a single bit. */
11998 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11999 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
12000 && integer_zerop (arg1
)
12001 && integer_pow2p (TREE_OPERAND (arg0
, 1))
12002 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
12003 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
12005 tree arg00
= TREE_OPERAND (arg0
, 0);
12006 return fold_build2 (code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
12007 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
12010 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12011 when is C is a power of two, i.e. a single bit. */
12012 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12013 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
12014 && integer_zerop (arg1
)
12015 && integer_pow2p (TREE_OPERAND (arg0
, 1))
12016 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
12017 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
12019 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
12020 tem
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (arg000
),
12021 arg000
, TREE_OPERAND (arg0
, 1));
12022 return fold_build2 (code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
12023 tem
, build_int_cst (TREE_TYPE (tem
), 0));
12026 if (integer_zerop (arg1
)
12027 && tree_expr_nonzero_p (arg0
))
12029 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
12030 return omit_one_operand (type
, res
, arg0
);
12033 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12034 if (TREE_CODE (arg0
) == NEGATE_EXPR
12035 && TREE_CODE (arg1
) == NEGATE_EXPR
)
12036 return fold_build2 (code
, type
,
12037 TREE_OPERAND (arg0
, 0),
12038 TREE_OPERAND (arg1
, 0));
12040 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12041 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12042 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
12044 tree arg00
= TREE_OPERAND (arg0
, 0);
12045 tree arg01
= TREE_OPERAND (arg0
, 1);
12046 tree arg10
= TREE_OPERAND (arg1
, 0);
12047 tree arg11
= TREE_OPERAND (arg1
, 1);
12048 tree itype
= TREE_TYPE (arg0
);
12050 if (operand_equal_p (arg01
, arg11
, 0))
12051 return fold_build2 (code
, type
,
12052 fold_build2 (BIT_AND_EXPR
, itype
,
12053 fold_build2 (BIT_XOR_EXPR
, itype
,
12056 build_int_cst (itype
, 0));
12058 if (operand_equal_p (arg01
, arg10
, 0))
12059 return fold_build2 (code
, type
,
12060 fold_build2 (BIT_AND_EXPR
, itype
,
12061 fold_build2 (BIT_XOR_EXPR
, itype
,
12064 build_int_cst (itype
, 0));
12066 if (operand_equal_p (arg00
, arg11
, 0))
12067 return fold_build2 (code
, type
,
12068 fold_build2 (BIT_AND_EXPR
, itype
,
12069 fold_build2 (BIT_XOR_EXPR
, itype
,
12072 build_int_cst (itype
, 0));
12074 if (operand_equal_p (arg00
, arg10
, 0))
12075 return fold_build2 (code
, type
,
12076 fold_build2 (BIT_AND_EXPR
, itype
,
12077 fold_build2 (BIT_XOR_EXPR
, itype
,
12080 build_int_cst (itype
, 0));
12083 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12084 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
12086 tree arg00
= TREE_OPERAND (arg0
, 0);
12087 tree arg01
= TREE_OPERAND (arg0
, 1);
12088 tree arg10
= TREE_OPERAND (arg1
, 0);
12089 tree arg11
= TREE_OPERAND (arg1
, 1);
12090 tree itype
= TREE_TYPE (arg0
);
12092 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12093 operand_equal_p guarantees no side-effects so we don't need
12094 to use omit_one_operand on Z. */
12095 if (operand_equal_p (arg01
, arg11
, 0))
12096 return fold_build2 (code
, type
, arg00
, arg10
);
12097 if (operand_equal_p (arg01
, arg10
, 0))
12098 return fold_build2 (code
, type
, arg00
, arg11
);
12099 if (operand_equal_p (arg00
, arg11
, 0))
12100 return fold_build2 (code
, type
, arg01
, arg10
);
12101 if (operand_equal_p (arg00
, arg10
, 0))
12102 return fold_build2 (code
, type
, arg01
, arg11
);
12104 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12105 if (TREE_CODE (arg01
) == INTEGER_CST
12106 && TREE_CODE (arg11
) == INTEGER_CST
)
12107 return fold_build2 (code
, type
,
12108 fold_build2 (BIT_XOR_EXPR
, itype
, arg00
,
12109 fold_build2 (BIT_XOR_EXPR
, itype
,
12114 /* Attempt to simplify equality/inequality comparisons of complex
12115 values. Only lower the comparison if the result is known or
12116 can be simplified to a single scalar comparison. */
12117 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
12118 || TREE_CODE (arg0
) == COMPLEX_CST
)
12119 && (TREE_CODE (arg1
) == COMPLEX_EXPR
12120 || TREE_CODE (arg1
) == COMPLEX_CST
))
12122 tree real0
, imag0
, real1
, imag1
;
12125 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
12127 real0
= TREE_OPERAND (arg0
, 0);
12128 imag0
= TREE_OPERAND (arg0
, 1);
12132 real0
= TREE_REALPART (arg0
);
12133 imag0
= TREE_IMAGPART (arg0
);
12136 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
12138 real1
= TREE_OPERAND (arg1
, 0);
12139 imag1
= TREE_OPERAND (arg1
, 1);
12143 real1
= TREE_REALPART (arg1
);
12144 imag1
= TREE_IMAGPART (arg1
);
12147 rcond
= fold_binary (code
, type
, real0
, real1
);
12148 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
12150 if (integer_zerop (rcond
))
12152 if (code
== EQ_EXPR
)
12153 return omit_two_operands (type
, boolean_false_node
,
12155 return fold_build2 (NE_EXPR
, type
, imag0
, imag1
);
12159 if (code
== NE_EXPR
)
12160 return omit_two_operands (type
, boolean_true_node
,
12162 return fold_build2 (EQ_EXPR
, type
, imag0
, imag1
);
12166 icond
= fold_binary (code
, type
, imag0
, imag1
);
12167 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
12169 if (integer_zerop (icond
))
12171 if (code
== EQ_EXPR
)
12172 return omit_two_operands (type
, boolean_false_node
,
12174 return fold_build2 (NE_EXPR
, type
, real0
, real1
);
12178 if (code
== NE_EXPR
)
12179 return omit_two_operands (type
, boolean_true_node
,
12181 return fold_build2 (EQ_EXPR
, type
, real0
, real1
);
12192 tem
= fold_comparison (code
, type
, op0
, op1
);
12193 if (tem
!= NULL_TREE
)
12196 /* Transform comparisons of the form X +- C CMP X. */
12197 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
12198 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
12199 && ((TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
12200 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
))))
12201 || (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
12202 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))))
12204 tree arg01
= TREE_OPERAND (arg0
, 1);
12205 enum tree_code code0
= TREE_CODE (arg0
);
12208 if (TREE_CODE (arg01
) == REAL_CST
)
12209 is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
12211 is_positive
= tree_int_cst_sgn (arg01
);
12213 /* (X - c) > X becomes false. */
12214 if (code
== GT_EXPR
12215 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
12216 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
12218 if (TREE_CODE (arg01
) == INTEGER_CST
12219 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12220 fold_overflow_warning (("assuming signed overflow does not "
12221 "occur when assuming that (X - c) > X "
12222 "is always false"),
12223 WARN_STRICT_OVERFLOW_ALL
);
12224 return constant_boolean_node (0, type
);
12227 /* Likewise (X + c) < X becomes false. */
12228 if (code
== LT_EXPR
12229 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
12230 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
12232 if (TREE_CODE (arg01
) == INTEGER_CST
12233 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12234 fold_overflow_warning (("assuming signed overflow does not "
12235 "occur when assuming that "
12236 "(X + c) < X is always false"),
12237 WARN_STRICT_OVERFLOW_ALL
);
12238 return constant_boolean_node (0, type
);
12241 /* Convert (X - c) <= X to true. */
12242 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
)))
12244 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
12245 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
12247 if (TREE_CODE (arg01
) == INTEGER_CST
12248 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12249 fold_overflow_warning (("assuming signed overflow does not "
12250 "occur when assuming that "
12251 "(X - c) <= X is always true"),
12252 WARN_STRICT_OVERFLOW_ALL
);
12253 return constant_boolean_node (1, type
);
12256 /* Convert (X + c) >= X to true. */
12257 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
)))
12259 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
12260 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
12262 if (TREE_CODE (arg01
) == INTEGER_CST
12263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12264 fold_overflow_warning (("assuming signed overflow does not "
12265 "occur when assuming that "
12266 "(X + c) >= X is always true"),
12267 WARN_STRICT_OVERFLOW_ALL
);
12268 return constant_boolean_node (1, type
);
12271 if (TREE_CODE (arg01
) == INTEGER_CST
)
12273 /* Convert X + c > X and X - c < X to true for integers. */
12274 if (code
== GT_EXPR
12275 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
12276 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
12278 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12279 fold_overflow_warning (("assuming signed overflow does "
12280 "not occur when assuming that "
12281 "(X + c) > X is always true"),
12282 WARN_STRICT_OVERFLOW_ALL
);
12283 return constant_boolean_node (1, type
);
12286 if (code
== LT_EXPR
12287 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
12288 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
12290 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12291 fold_overflow_warning (("assuming signed overflow does "
12292 "not occur when assuming that "
12293 "(X - c) < X is always true"),
12294 WARN_STRICT_OVERFLOW_ALL
);
12295 return constant_boolean_node (1, type
);
12298 /* Convert X + c <= X and X - c >= X to false for integers. */
12299 if (code
== LE_EXPR
12300 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
12301 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
12303 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12304 fold_overflow_warning (("assuming signed overflow does "
12305 "not occur when assuming that "
12306 "(X + c) <= X is always false"),
12307 WARN_STRICT_OVERFLOW_ALL
);
12308 return constant_boolean_node (0, type
);
12311 if (code
== GE_EXPR
12312 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
12313 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
12315 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12316 fold_overflow_warning (("assuming signed overflow does "
12317 "not occur when assuming that "
12318 "(X - c) >= X is always false"),
12319 WARN_STRICT_OVERFLOW_ALL
);
12320 return constant_boolean_node (0, type
);
12325 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
12326 This transformation affects the cases which are handled in later
12327 optimizations involving comparisons with non-negative constants. */
12328 if (TREE_CODE (arg1
) == INTEGER_CST
12329 && TREE_CODE (arg0
) != INTEGER_CST
12330 && tree_int_cst_sgn (arg1
) > 0)
12332 if (code
== GE_EXPR
)
12334 arg1
= const_binop (MINUS_EXPR
, arg1
,
12335 build_int_cst (TREE_TYPE (arg1
), 1), 0);
12336 return fold_build2 (GT_EXPR
, type
, arg0
,
12337 fold_convert (TREE_TYPE (arg0
), arg1
));
12339 if (code
== LT_EXPR
)
12341 arg1
= const_binop (MINUS_EXPR
, arg1
,
12342 build_int_cst (TREE_TYPE (arg1
), 1), 0);
12343 return fold_build2 (LE_EXPR
, type
, arg0
,
12344 fold_convert (TREE_TYPE (arg0
), arg1
));
12348 /* Comparisons with the highest or lowest possible integer of
12349 the specified precision will have known values. */
12351 tree arg1_type
= TREE_TYPE (arg1
);
12352 unsigned int width
= TYPE_PRECISION (arg1_type
);
12354 if (TREE_CODE (arg1
) == INTEGER_CST
12355 && !TREE_OVERFLOW (arg1
)
12356 && width
<= 2 * HOST_BITS_PER_WIDE_INT
12357 && (INTEGRAL_TYPE_P (arg1_type
) || POINTER_TYPE_P (arg1_type
)))
12359 HOST_WIDE_INT signed_max_hi
;
12360 unsigned HOST_WIDE_INT signed_max_lo
;
12361 unsigned HOST_WIDE_INT max_hi
, max_lo
, min_hi
, min_lo
;
12363 if (width
<= HOST_BITS_PER_WIDE_INT
)
12365 signed_max_lo
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))
12370 if (TYPE_UNSIGNED (arg1_type
))
12372 max_lo
= ((unsigned HOST_WIDE_INT
) 2 << (width
- 1)) - 1;
12378 max_lo
= signed_max_lo
;
12379 min_lo
= ((unsigned HOST_WIDE_INT
) -1 << (width
- 1));
12385 width
-= HOST_BITS_PER_WIDE_INT
;
12386 signed_max_lo
= -1;
12387 signed_max_hi
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))
12392 if (TYPE_UNSIGNED (arg1_type
))
12394 max_hi
= ((unsigned HOST_WIDE_INT
) 2 << (width
- 1)) - 1;
12399 max_hi
= signed_max_hi
;
12400 min_hi
= ((unsigned HOST_WIDE_INT
) -1 << (width
- 1));
12404 if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
) == max_hi
12405 && TREE_INT_CST_LOW (arg1
) == max_lo
)
12409 return omit_one_operand (type
, integer_zero_node
, arg0
);
12412 return fold_build2 (EQ_EXPR
, type
, op0
, op1
);
12415 return omit_one_operand (type
, integer_one_node
, arg0
);
12418 return fold_build2 (NE_EXPR
, type
, op0
, op1
);
12420 /* The GE_EXPR and LT_EXPR cases above are not normally
12421 reached because of previous transformations. */
12426 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
12428 && TREE_INT_CST_LOW (arg1
) == max_lo
- 1)
12432 arg1
= const_binop (PLUS_EXPR
, arg1
,
12433 build_int_cst (TREE_TYPE (arg1
), 1), 0);
12434 return fold_build2 (EQ_EXPR
, type
,
12435 fold_convert (TREE_TYPE (arg1
), arg0
),
12438 arg1
= const_binop (PLUS_EXPR
, arg1
,
12439 build_int_cst (TREE_TYPE (arg1
), 1), 0);
12440 return fold_build2 (NE_EXPR
, type
,
12441 fold_convert (TREE_TYPE (arg1
), arg0
),
12446 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
12448 && TREE_INT_CST_LOW (arg1
) == min_lo
)
12452 return omit_one_operand (type
, integer_zero_node
, arg0
);
12455 return fold_build2 (EQ_EXPR
, type
, op0
, op1
);
12458 return omit_one_operand (type
, integer_one_node
, arg0
);
12461 return fold_build2 (NE_EXPR
, type
, op0
, op1
);
12466 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
12468 && TREE_INT_CST_LOW (arg1
) == min_lo
+ 1)
12472 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
, 0);
12473 return fold_build2 (NE_EXPR
, type
,
12474 fold_convert (TREE_TYPE (arg1
), arg0
),
12477 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
, 0);
12478 return fold_build2 (EQ_EXPR
, type
,
12479 fold_convert (TREE_TYPE (arg1
), arg0
),
12485 else if (TREE_INT_CST_HIGH (arg1
) == signed_max_hi
12486 && TREE_INT_CST_LOW (arg1
) == signed_max_lo
12487 && TYPE_UNSIGNED (arg1_type
)
12488 /* We will flip the signedness of the comparison operator
12489 associated with the mode of arg1, so the sign bit is
12490 specified by this mode. Check that arg1 is the signed
12491 max associated with this sign bit. */
12492 && width
== GET_MODE_BITSIZE (TYPE_MODE (arg1_type
))
12493 /* signed_type does not work on pointer types. */
12494 && INTEGRAL_TYPE_P (arg1_type
))
12496 /* The following case also applies to X < signed_max+1
12497 and X >= signed_max+1 because previous transformations. */
12498 if (code
== LE_EXPR
|| code
== GT_EXPR
)
12501 st
= signed_type_for (TREE_TYPE (arg1
));
12502 return fold_build2 (code
== LE_EXPR
? GE_EXPR
: LT_EXPR
,
12503 type
, fold_convert (st
, arg0
),
12504 build_int_cst (st
, 0));
12510 /* If we are comparing an ABS_EXPR with a constant, we can
12511 convert all the cases into explicit comparisons, but they may
12512 well not be faster than doing the ABS and one comparison.
12513 But ABS (X) <= C is a range comparison, which becomes a subtraction
12514 and a comparison, and is probably faster. */
12515 if (code
== LE_EXPR
12516 && TREE_CODE (arg1
) == INTEGER_CST
12517 && TREE_CODE (arg0
) == ABS_EXPR
12518 && ! TREE_SIDE_EFFECTS (arg0
)
12519 && (0 != (tem
= negate_expr (arg1
)))
12520 && TREE_CODE (tem
) == INTEGER_CST
12521 && !TREE_OVERFLOW (tem
))
12522 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
12523 build2 (GE_EXPR
, type
,
12524 TREE_OPERAND (arg0
, 0), tem
),
12525 build2 (LE_EXPR
, type
,
12526 TREE_OPERAND (arg0
, 0), arg1
));
12528 /* Convert ABS_EXPR<x> >= 0 to true. */
12529 strict_overflow_p
= false;
12530 if (code
== GE_EXPR
12531 && (integer_zerop (arg1
)
12532 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
12533 && real_zerop (arg1
)))
12534 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
12536 if (strict_overflow_p
)
12537 fold_overflow_warning (("assuming signed overflow does not occur "
12538 "when simplifying comparison of "
12539 "absolute value and zero"),
12540 WARN_STRICT_OVERFLOW_CONDITIONAL
);
12541 return omit_one_operand (type
, integer_one_node
, arg0
);
12544 /* Convert ABS_EXPR<x> < 0 to false. */
12545 strict_overflow_p
= false;
12546 if (code
== LT_EXPR
12547 && (integer_zerop (arg1
) || real_zerop (arg1
))
12548 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
12550 if (strict_overflow_p
)
12551 fold_overflow_warning (("assuming signed overflow does not occur "
12552 "when simplifying comparison of "
12553 "absolute value and zero"),
12554 WARN_STRICT_OVERFLOW_CONDITIONAL
);
12555 return omit_one_operand (type
, integer_zero_node
, arg0
);
12558 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12559 and similarly for >= into !=. */
12560 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
12561 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
12562 && TREE_CODE (arg1
) == LSHIFT_EXPR
12563 && integer_onep (TREE_OPERAND (arg1
, 0)))
12564 return build2 (code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
12565 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
12566 TREE_OPERAND (arg1
, 1)),
12567 build_int_cst (TREE_TYPE (arg0
), 0));
12569 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
12570 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
12571 && (TREE_CODE (arg1
) == NOP_EXPR
12572 || TREE_CODE (arg1
) == CONVERT_EXPR
)
12573 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
12574 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
12576 build2 (code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
12577 fold_convert (TREE_TYPE (arg0
),
12578 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
12579 TREE_OPERAND (TREE_OPERAND (arg1
, 0),
12581 build_int_cst (TREE_TYPE (arg0
), 0));
12585 case UNORDERED_EXPR
:
12593 if (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
12595 t1
= fold_relational_const (code
, type
, arg0
, arg1
);
12596 if (t1
!= NULL_TREE
)
12600 /* If the first operand is NaN, the result is constant. */
12601 if (TREE_CODE (arg0
) == REAL_CST
12602 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0
))
12603 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
12605 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
12606 ? integer_zero_node
12607 : integer_one_node
;
12608 return omit_one_operand (type
, t1
, arg1
);
12611 /* If the second operand is NaN, the result is constant. */
12612 if (TREE_CODE (arg1
) == REAL_CST
12613 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
12614 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
12616 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
12617 ? integer_zero_node
12618 : integer_one_node
;
12619 return omit_one_operand (type
, t1
, arg0
);
12622 /* Simplify unordered comparison of something with itself. */
12623 if ((code
== UNLE_EXPR
|| code
== UNGE_EXPR
|| code
== UNEQ_EXPR
)
12624 && operand_equal_p (arg0
, arg1
, 0))
12625 return constant_boolean_node (1, type
);
12627 if (code
== LTGT_EXPR
12628 && !flag_trapping_math
12629 && operand_equal_p (arg0
, arg1
, 0))
12630 return constant_boolean_node (0, type
);
12632 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12634 tree targ0
= strip_float_extensions (arg0
);
12635 tree targ1
= strip_float_extensions (arg1
);
12636 tree newtype
= TREE_TYPE (targ0
);
12638 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
12639 newtype
= TREE_TYPE (targ1
);
12641 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
12642 return fold_build2 (code
, type
, fold_convert (newtype
, targ0
),
12643 fold_convert (newtype
, targ1
));
12648 case COMPOUND_EXPR
:
12649 /* When pedantic, a compound expression can be neither an lvalue
12650 nor an integer constant expression. */
12651 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
12653 /* Don't let (0, 0) be null pointer constant. */
12654 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
12655 : fold_convert (type
, arg1
);
12656 return pedantic_non_lvalue (tem
);
12659 if ((TREE_CODE (arg0
) == REAL_CST
12660 && TREE_CODE (arg1
) == REAL_CST
)
12661 || (TREE_CODE (arg0
) == INTEGER_CST
12662 && TREE_CODE (arg1
) == INTEGER_CST
))
12663 return build_complex (type
, arg0
, arg1
);
12667 /* An ASSERT_EXPR should never be passed to fold_binary. */
12668 gcc_unreachable ();
12672 } /* switch (code) */
12675 /* Callback for walk_tree, looking for LABEL_EXPR.
12676 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
12677 Do not check the sub-tree of GOTO_EXPR. */
12680 contains_label_1 (tree
*tp
,
12681 int *walk_subtrees
,
12682 void *data ATTRIBUTE_UNUSED
)
12684 switch (TREE_CODE (*tp
))
12689 *walk_subtrees
= 0;
12696 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
12697 accessible from outside the sub-tree. Returns NULL_TREE if no
12698 addressable label is found. */
12701 contains_label_p (tree st
)
12703 return (walk_tree (&st
, contains_label_1
, NULL
, NULL
) != NULL_TREE
);
12706 /* Fold a ternary expression of code CODE and type TYPE with operands
12707 OP0, OP1, and OP2. Return the folded expression if folding is
12708 successful. Otherwise, return NULL_TREE. */
12711 fold_ternary (enum tree_code code
, tree type
, tree op0
, tree op1
, tree op2
)
12714 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
12715 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
12717 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
12718 && TREE_CODE_LENGTH (code
) == 3);
12720 /* Strip any conversions that don't change the mode. This is safe
12721 for every expression, except for a comparison expression because
12722 its signedness is derived from its operands. So, in the latter
12723 case, only strip conversions that don't change the signedness.
12725 Note that this is done as an internal manipulation within the
12726 constant folder, in order to find the simplest representation of
12727 the arguments so that their form can be studied. In any cases,
12728 the appropriate type conversions should be put back in the tree
12729 that will get out of the constant folder. */
12744 case COMPONENT_REF
:
12745 if (TREE_CODE (arg0
) == CONSTRUCTOR
12746 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
12748 unsigned HOST_WIDE_INT idx
;
12750 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
12757 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12758 so all simple results must be passed through pedantic_non_lvalue. */
12759 if (TREE_CODE (arg0
) == INTEGER_CST
)
12761 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
12762 tem
= integer_zerop (arg0
) ? op2
: op1
;
12763 /* Only optimize constant conditions when the selected branch
12764 has the same type as the COND_EXPR. This avoids optimizing
12765 away "c ? x : throw", where the throw has a void type.
12766 Avoid throwing away that operand which contains label. */
12767 if ((!TREE_SIDE_EFFECTS (unused_op
)
12768 || !contains_label_p (unused_op
))
12769 && (! VOID_TYPE_P (TREE_TYPE (tem
))
12770 || VOID_TYPE_P (type
)))
12771 return pedantic_non_lvalue (tem
);
12774 if (operand_equal_p (arg1
, op2
, 0))
12775 return pedantic_omit_one_operand (type
, arg1
, arg0
);
12777 /* If we have A op B ? A : C, we may be able to convert this to a
12778 simpler expression, depending on the operation and the values
12779 of B and C. Signed zeros prevent all of these transformations,
12780 for reasons given above each one.
12782 Also try swapping the arguments and inverting the conditional. */
12783 if (COMPARISON_CLASS_P (arg0
)
12784 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
12785 arg1
, TREE_OPERAND (arg0
, 1))
12786 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
12788 tem
= fold_cond_expr_with_comparison (type
, arg0
, op1
, op2
);
12793 if (COMPARISON_CLASS_P (arg0
)
12794 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
12796 TREE_OPERAND (arg0
, 1))
12797 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2
))))
12799 tem
= fold_truth_not_expr (arg0
);
12800 if (tem
&& COMPARISON_CLASS_P (tem
))
12802 tem
= fold_cond_expr_with_comparison (type
, tem
, op2
, op1
);
12808 /* If the second operand is simpler than the third, swap them
12809 since that produces better jump optimization results. */
12810 if (truth_value_p (TREE_CODE (arg0
))
12811 && tree_swap_operands_p (op1
, op2
, false))
12813 /* See if this can be inverted. If it can't, possibly because
12814 it was a floating-point inequality comparison, don't do
12816 tem
= fold_truth_not_expr (arg0
);
12818 return fold_build3 (code
, type
, tem
, op2
, op1
);
12821 /* Convert A ? 1 : 0 to simply A. */
12822 if (integer_onep (op1
)
12823 && integer_zerop (op2
)
12824 /* If we try to convert OP0 to our type, the
12825 call to fold will try to move the conversion inside
12826 a COND, which will recurse. In that case, the COND_EXPR
12827 is probably the best choice, so leave it alone. */
12828 && type
== TREE_TYPE (arg0
))
12829 return pedantic_non_lvalue (arg0
);
12831 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12832 over COND_EXPR in cases such as floating point comparisons. */
12833 if (integer_zerop (op1
)
12834 && integer_onep (op2
)
12835 && truth_value_p (TREE_CODE (arg0
)))
12836 return pedantic_non_lvalue (fold_convert (type
,
12837 invert_truthvalue (arg0
)));
12839 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12840 if (TREE_CODE (arg0
) == LT_EXPR
12841 && integer_zerop (TREE_OPERAND (arg0
, 1))
12842 && integer_zerop (op2
)
12843 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
12845 /* sign_bit_p only checks ARG1 bits within A's precision.
12846 If <sign bit of A> has wider type than A, bits outside
12847 of A's precision in <sign bit of A> need to be checked.
12848 If they are all 0, this optimization needs to be done
12849 in unsigned A's type, if they are all 1 in signed A's type,
12850 otherwise this can't be done. */
12851 if (TYPE_PRECISION (TREE_TYPE (tem
))
12852 < TYPE_PRECISION (TREE_TYPE (arg1
))
12853 && TYPE_PRECISION (TREE_TYPE (tem
))
12854 < TYPE_PRECISION (type
))
12856 unsigned HOST_WIDE_INT mask_lo
;
12857 HOST_WIDE_INT mask_hi
;
12858 int inner_width
, outer_width
;
12861 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
12862 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
12863 if (outer_width
> TYPE_PRECISION (type
))
12864 outer_width
= TYPE_PRECISION (type
);
12866 if (outer_width
> HOST_BITS_PER_WIDE_INT
)
12868 mask_hi
= ((unsigned HOST_WIDE_INT
) -1
12869 >> (2 * HOST_BITS_PER_WIDE_INT
- outer_width
));
12875 mask_lo
= ((unsigned HOST_WIDE_INT
) -1
12876 >> (HOST_BITS_PER_WIDE_INT
- outer_width
));
12878 if (inner_width
> HOST_BITS_PER_WIDE_INT
)
12880 mask_hi
&= ~((unsigned HOST_WIDE_INT
) -1
12881 >> (HOST_BITS_PER_WIDE_INT
- inner_width
));
12885 mask_lo
&= ~((unsigned HOST_WIDE_INT
) -1
12886 >> (HOST_BITS_PER_WIDE_INT
- inner_width
));
12888 if ((TREE_INT_CST_HIGH (arg1
) & mask_hi
) == mask_hi
12889 && (TREE_INT_CST_LOW (arg1
) & mask_lo
) == mask_lo
)
12891 tem_type
= signed_type_for (TREE_TYPE (tem
));
12892 tem
= fold_convert (tem_type
, tem
);
12894 else if ((TREE_INT_CST_HIGH (arg1
) & mask_hi
) == 0
12895 && (TREE_INT_CST_LOW (arg1
) & mask_lo
) == 0)
12897 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
12898 tem
= fold_convert (tem_type
, tem
);
12905 return fold_convert (type
,
12906 fold_build2 (BIT_AND_EXPR
,
12907 TREE_TYPE (tem
), tem
,
12908 fold_convert (TREE_TYPE (tem
),
12912 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12913 already handled above. */
12914 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12915 && integer_onep (TREE_OPERAND (arg0
, 1))
12916 && integer_zerop (op2
)
12917 && integer_pow2p (arg1
))
12919 tree tem
= TREE_OPERAND (arg0
, 0);
12921 if (TREE_CODE (tem
) == RSHIFT_EXPR
12922 && TREE_CODE (TREE_OPERAND (tem
, 1)) == INTEGER_CST
12923 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
) ==
12924 TREE_INT_CST_LOW (TREE_OPERAND (tem
, 1)))
12925 return fold_build2 (BIT_AND_EXPR
, type
,
12926 TREE_OPERAND (tem
, 0), arg1
);
12929 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12930 is probably obsolete because the first operand should be a
12931 truth value (that's why we have the two cases above), but let's
12932 leave it in until we can confirm this for all front-ends. */
12933 if (integer_zerop (op2
)
12934 && TREE_CODE (arg0
) == NE_EXPR
12935 && integer_zerop (TREE_OPERAND (arg0
, 1))
12936 && integer_pow2p (arg1
)
12937 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
12938 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
12939 arg1
, OEP_ONLY_CONST
))
12940 return pedantic_non_lvalue (fold_convert (type
,
12941 TREE_OPERAND (arg0
, 0)));
12943 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12944 if (integer_zerop (op2
)
12945 && truth_value_p (TREE_CODE (arg0
))
12946 && truth_value_p (TREE_CODE (arg1
)))
12947 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
12948 fold_convert (type
, arg0
),
12951 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12952 if (integer_onep (op2
)
12953 && truth_value_p (TREE_CODE (arg0
))
12954 && truth_value_p (TREE_CODE (arg1
)))
12956 /* Only perform transformation if ARG0 is easily inverted. */
12957 tem
= fold_truth_not_expr (arg0
);
12959 return fold_build2 (TRUTH_ORIF_EXPR
, type
,
12960 fold_convert (type
, tem
),
12964 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12965 if (integer_zerop (arg1
)
12966 && truth_value_p (TREE_CODE (arg0
))
12967 && truth_value_p (TREE_CODE (op2
)))
12969 /* Only perform transformation if ARG0 is easily inverted. */
12970 tem
= fold_truth_not_expr (arg0
);
12972 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
12973 fold_convert (type
, tem
),
12977 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12978 if (integer_onep (arg1
)
12979 && truth_value_p (TREE_CODE (arg0
))
12980 && truth_value_p (TREE_CODE (op2
)))
12981 return fold_build2 (TRUTH_ORIF_EXPR
, type
,
12982 fold_convert (type
, arg0
),
12988 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12989 of fold_ternary on them. */
12990 gcc_unreachable ();
12992 case BIT_FIELD_REF
:
12993 if ((TREE_CODE (arg0
) == VECTOR_CST
12994 || (TREE_CODE (arg0
) == CONSTRUCTOR
&& TREE_CONSTANT (arg0
)))
12995 && type
== TREE_TYPE (TREE_TYPE (arg0
))
12996 && host_integerp (arg1
, 1)
12997 && host_integerp (op2
, 1))
12999 unsigned HOST_WIDE_INT width
= tree_low_cst (arg1
, 1);
13000 unsigned HOST_WIDE_INT idx
= tree_low_cst (op2
, 1);
13003 && simple_cst_equal (arg1
, TYPE_SIZE (type
)) == 1
13004 && (idx
% width
) == 0
13005 && (idx
= idx
/ width
)
13006 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
13008 tree elements
= NULL_TREE
;
13010 if (TREE_CODE (arg0
) == VECTOR_CST
)
13011 elements
= TREE_VECTOR_CST_ELTS (arg0
);
13014 unsigned HOST_WIDE_INT idx
;
13017 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0
), idx
, value
)
13018 elements
= tree_cons (NULL_TREE
, value
, elements
);
13020 while (idx
-- > 0 && elements
)
13021 elements
= TREE_CHAIN (elements
);
13023 return TREE_VALUE (elements
);
13025 return fold_convert (type
, integer_zero_node
);
13032 } /* switch (code) */
13035 /* Perform constant folding and related simplification of EXPR.
13036 The related simplifications include x*1 => x, x*0 => 0, etc.,
13037 and application of the associative law.
13038 NOP_EXPR conversions may be removed freely (as long as we
13039 are careful not to change the type of the overall expression).
13040 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13041 but we can constant-fold them if they have constant operands. */
13043 #ifdef ENABLE_FOLD_CHECKING
13044 # define fold(x) fold_1 (x)
13045 static tree
fold_1 (tree
);
13051 const tree t
= expr
;
13052 enum tree_code code
= TREE_CODE (t
);
13053 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
13056 /* Return right away if a constant. */
13057 if (kind
== tcc_constant
)
13060 /* CALL_EXPR-like objects with variable numbers of operands are
13061 treated specially. */
13062 if (kind
== tcc_vl_exp
)
13064 if (code
== CALL_EXPR
)
13066 tem
= fold_call_expr (expr
, false);
13067 return tem
? tem
: expr
;
13072 if (IS_EXPR_CODE_CLASS (kind
)
13073 || IS_GIMPLE_STMT_CODE_CLASS (kind
))
13075 tree type
= TREE_TYPE (t
);
13076 tree op0
, op1
, op2
;
13078 switch (TREE_CODE_LENGTH (code
))
13081 op0
= TREE_OPERAND (t
, 0);
13082 tem
= fold_unary (code
, type
, op0
);
13083 return tem
? tem
: expr
;
13085 op0
= TREE_OPERAND (t
, 0);
13086 op1
= TREE_OPERAND (t
, 1);
13087 tem
= fold_binary (code
, type
, op0
, op1
);
13088 return tem
? tem
: expr
;
13090 op0
= TREE_OPERAND (t
, 0);
13091 op1
= TREE_OPERAND (t
, 1);
13092 op2
= TREE_OPERAND (t
, 2);
13093 tem
= fold_ternary (code
, type
, op0
, op1
, op2
);
13094 return tem
? tem
: expr
;
13103 return fold (DECL_INITIAL (t
));
13107 } /* switch (code) */
13110 #ifdef ENABLE_FOLD_CHECKING
13113 static void fold_checksum_tree (tree
, struct md5_ctx
*, htab_t
);
13114 static void fold_check_failed (tree
, tree
);
13115 void print_fold_checksum (tree
);
13117 /* When --enable-checking=fold, compute a digest of expr before
13118 and after actual fold call to see if fold did not accidentally
13119 change original expr. */
13125 struct md5_ctx ctx
;
13126 unsigned char checksum_before
[16], checksum_after
[16];
13129 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13130 md5_init_ctx (&ctx
);
13131 fold_checksum_tree (expr
, &ctx
, ht
);
13132 md5_finish_ctx (&ctx
, checksum_before
);
13135 ret
= fold_1 (expr
);
13137 md5_init_ctx (&ctx
);
13138 fold_checksum_tree (expr
, &ctx
, ht
);
13139 md5_finish_ctx (&ctx
, checksum_after
);
13142 if (memcmp (checksum_before
, checksum_after
, 16))
13143 fold_check_failed (expr
, ret
);
13149 print_fold_checksum (tree expr
)
13151 struct md5_ctx ctx
;
13152 unsigned char checksum
[16], cnt
;
13155 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13156 md5_init_ctx (&ctx
);
13157 fold_checksum_tree (expr
, &ctx
, ht
);
13158 md5_finish_ctx (&ctx
, checksum
);
13160 for (cnt
= 0; cnt
< 16; ++cnt
)
13161 fprintf (stderr
, "%02x", checksum
[cnt
]);
13162 putc ('\n', stderr
);
13166 fold_check_failed (tree expr ATTRIBUTE_UNUSED
, tree ret ATTRIBUTE_UNUSED
)
13168 internal_error ("fold check: original tree changed by fold");
13172 fold_checksum_tree (tree expr
, struct md5_ctx
*ctx
, htab_t ht
)
13175 enum tree_code code
;
13176 struct tree_function_decl buf
;
13181 gcc_assert ((sizeof (struct tree_exp
) + 5 * sizeof (tree
)
13182 <= sizeof (struct tree_function_decl
))
13183 && sizeof (struct tree_type
) <= sizeof (struct tree_function_decl
));
13186 slot
= htab_find_slot (ht
, expr
, INSERT
);
13190 code
= TREE_CODE (expr
);
13191 if (TREE_CODE_CLASS (code
) == tcc_declaration
13192 && DECL_ASSEMBLER_NAME_SET_P (expr
))
13194 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13195 memcpy ((char *) &buf
, expr
, tree_size (expr
));
13196 expr
= (tree
) &buf
;
13197 SET_DECL_ASSEMBLER_NAME (expr
, NULL
);
13199 else if (TREE_CODE_CLASS (code
) == tcc_type
13200 && (TYPE_POINTER_TO (expr
) || TYPE_REFERENCE_TO (expr
)
13201 || TYPE_CACHED_VALUES_P (expr
)
13202 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)))
13204 /* Allow these fields to be modified. */
13205 memcpy ((char *) &buf
, expr
, tree_size (expr
));
13206 expr
= (tree
) &buf
;
13207 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
) = 0;
13208 TYPE_POINTER_TO (expr
) = NULL
;
13209 TYPE_REFERENCE_TO (expr
) = NULL
;
13210 if (TYPE_CACHED_VALUES_P (expr
))
13212 TYPE_CACHED_VALUES_P (expr
) = 0;
13213 TYPE_CACHED_VALUES (expr
) = NULL
;
13216 md5_process_bytes (expr
, tree_size (expr
), ctx
);
13217 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
13218 if (TREE_CODE_CLASS (code
) != tcc_type
13219 && TREE_CODE_CLASS (code
) != tcc_declaration
13220 && code
!= TREE_LIST
13221 && code
!= SSA_NAME
)
13222 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
13223 switch (TREE_CODE_CLASS (code
))
13229 md5_process_bytes (TREE_STRING_POINTER (expr
),
13230 TREE_STRING_LENGTH (expr
), ctx
);
13233 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
13234 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
13237 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr
), ctx
, ht
);
13243 case tcc_exceptional
:
13247 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
13248 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
13249 expr
= TREE_CHAIN (expr
);
13250 goto recursive_label
;
13253 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
13254 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
13260 case tcc_expression
:
13261 case tcc_reference
:
13262 case tcc_comparison
:
13265 case tcc_statement
:
13267 len
= TREE_OPERAND_LENGTH (expr
);
13268 for (i
= 0; i
< len
; ++i
)
13269 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
13271 case tcc_declaration
:
13272 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
13273 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
13274 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
13276 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
13277 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
13278 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
13279 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
13280 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
13282 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_WITH_VIS
))
13283 fold_checksum_tree (DECL_SECTION_NAME (expr
), ctx
, ht
);
13285 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
13287 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
13288 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
13289 fold_checksum_tree (DECL_ARGUMENT_FLD (expr
), ctx
, ht
);
13293 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
13294 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
13295 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
13296 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
13297 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
13298 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
13299 if (INTEGRAL_TYPE_P (expr
)
13300 || SCALAR_FLOAT_TYPE_P (expr
))
13302 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
13303 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
13305 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
13306 if (TREE_CODE (expr
) == RECORD_TYPE
13307 || TREE_CODE (expr
) == UNION_TYPE
13308 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
13309 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
13310 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
13317 /* Helper function for outputting the checksum of a tree T. When
13318 debugging with gdb, you can "define mynext" to be "next" followed
13319 by "call debug_fold_checksum (op0)", then just trace down till the
13323 debug_fold_checksum (tree t
)
13326 unsigned char checksum
[16];
13327 struct md5_ctx ctx
;
13328 htab_t ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13330 md5_init_ctx (&ctx
);
13331 fold_checksum_tree (t
, &ctx
, ht
);
13332 md5_finish_ctx (&ctx
, checksum
);
13335 for (i
= 0; i
< 16; i
++)
13336 fprintf (stderr
, "%d ", checksum
[i
]);
13338 fprintf (stderr
, "\n");
13343 /* Fold a unary tree expression with code CODE of type TYPE with an
13344 operand OP0. Return a folded expression if successful. Otherwise,
13345 return a tree expression with code CODE of type TYPE with an
13349 fold_build1_stat (enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
13352 #ifdef ENABLE_FOLD_CHECKING
13353 unsigned char checksum_before
[16], checksum_after
[16];
13354 struct md5_ctx ctx
;
13357 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13358 md5_init_ctx (&ctx
);
13359 fold_checksum_tree (op0
, &ctx
, ht
);
13360 md5_finish_ctx (&ctx
, checksum_before
);
13364 tem
= fold_unary (code
, type
, op0
);
13366 tem
= build1_stat (code
, type
, op0 PASS_MEM_STAT
);
13368 #ifdef ENABLE_FOLD_CHECKING
13369 md5_init_ctx (&ctx
);
13370 fold_checksum_tree (op0
, &ctx
, ht
);
13371 md5_finish_ctx (&ctx
, checksum_after
);
13374 if (memcmp (checksum_before
, checksum_after
, 16))
13375 fold_check_failed (op0
, tem
);
13380 /* Fold a binary tree expression with code CODE of type TYPE with
13381 operands OP0 and OP1. Return a folded expression if successful.
13382 Otherwise, return a tree expression with code CODE of type TYPE
13383 with operands OP0 and OP1. */
13386 fold_build2_stat (enum tree_code code
, tree type
, tree op0
, tree op1
13390 #ifdef ENABLE_FOLD_CHECKING
13391 unsigned char checksum_before_op0
[16],
13392 checksum_before_op1
[16],
13393 checksum_after_op0
[16],
13394 checksum_after_op1
[16];
13395 struct md5_ctx ctx
;
13398 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13399 md5_init_ctx (&ctx
);
13400 fold_checksum_tree (op0
, &ctx
, ht
);
13401 md5_finish_ctx (&ctx
, checksum_before_op0
);
13404 md5_init_ctx (&ctx
);
13405 fold_checksum_tree (op1
, &ctx
, ht
);
13406 md5_finish_ctx (&ctx
, checksum_before_op1
);
13410 tem
= fold_binary (code
, type
, op0
, op1
);
13412 tem
= build2_stat (code
, type
, op0
, op1 PASS_MEM_STAT
);
13414 #ifdef ENABLE_FOLD_CHECKING
13415 md5_init_ctx (&ctx
);
13416 fold_checksum_tree (op0
, &ctx
, ht
);
13417 md5_finish_ctx (&ctx
, checksum_after_op0
);
13420 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
13421 fold_check_failed (op0
, tem
);
13423 md5_init_ctx (&ctx
);
13424 fold_checksum_tree (op1
, &ctx
, ht
);
13425 md5_finish_ctx (&ctx
, checksum_after_op1
);
13428 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
13429 fold_check_failed (op1
, tem
);
13434 /* Fold a ternary tree expression with code CODE of type TYPE with
13435 operands OP0, OP1, and OP2. Return a folded expression if
13436 successful. Otherwise, return a tree expression with code CODE of
13437 type TYPE with operands OP0, OP1, and OP2. */
13440 fold_build3_stat (enum tree_code code
, tree type
, tree op0
, tree op1
, tree op2
13444 #ifdef ENABLE_FOLD_CHECKING
13445 unsigned char checksum_before_op0
[16],
13446 checksum_before_op1
[16],
13447 checksum_before_op2
[16],
13448 checksum_after_op0
[16],
13449 checksum_after_op1
[16],
13450 checksum_after_op2
[16];
13451 struct md5_ctx ctx
;
13454 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13455 md5_init_ctx (&ctx
);
13456 fold_checksum_tree (op0
, &ctx
, ht
);
13457 md5_finish_ctx (&ctx
, checksum_before_op0
);
13460 md5_init_ctx (&ctx
);
13461 fold_checksum_tree (op1
, &ctx
, ht
);
13462 md5_finish_ctx (&ctx
, checksum_before_op1
);
13465 md5_init_ctx (&ctx
);
13466 fold_checksum_tree (op2
, &ctx
, ht
);
13467 md5_finish_ctx (&ctx
, checksum_before_op2
);
13471 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
13472 tem
= fold_ternary (code
, type
, op0
, op1
, op2
);
13474 tem
= build3_stat (code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
13476 #ifdef ENABLE_FOLD_CHECKING
13477 md5_init_ctx (&ctx
);
13478 fold_checksum_tree (op0
, &ctx
, ht
);
13479 md5_finish_ctx (&ctx
, checksum_after_op0
);
13482 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
13483 fold_check_failed (op0
, tem
);
13485 md5_init_ctx (&ctx
);
13486 fold_checksum_tree (op1
, &ctx
, ht
);
13487 md5_finish_ctx (&ctx
, checksum_after_op1
);
13490 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
13491 fold_check_failed (op1
, tem
);
13493 md5_init_ctx (&ctx
);
13494 fold_checksum_tree (op2
, &ctx
, ht
);
13495 md5_finish_ctx (&ctx
, checksum_after_op2
);
13498 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
13499 fold_check_failed (op2
, tem
);
13504 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13505 arguments in ARGARRAY, and a null static chain.
13506 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13507 of type TYPE from the given operands as constructed by build_call_array. */
13510 fold_build_call_array (tree type
, tree fn
, int nargs
, tree
*argarray
)
13513 #ifdef ENABLE_FOLD_CHECKING
13514 unsigned char checksum_before_fn
[16],
13515 checksum_before_arglist
[16],
13516 checksum_after_fn
[16],
13517 checksum_after_arglist
[16];
13518 struct md5_ctx ctx
;
13522 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
13523 md5_init_ctx (&ctx
);
13524 fold_checksum_tree (fn
, &ctx
, ht
);
13525 md5_finish_ctx (&ctx
, checksum_before_fn
);
13528 md5_init_ctx (&ctx
);
13529 for (i
= 0; i
< nargs
; i
++)
13530 fold_checksum_tree (argarray
[i
], &ctx
, ht
);
13531 md5_finish_ctx (&ctx
, checksum_before_arglist
);
13535 tem
= fold_builtin_call_array (type
, fn
, nargs
, argarray
);
13537 #ifdef ENABLE_FOLD_CHECKING
13538 md5_init_ctx (&ctx
);
13539 fold_checksum_tree (fn
, &ctx
, ht
);
13540 md5_finish_ctx (&ctx
, checksum_after_fn
);
13543 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
13544 fold_check_failed (fn
, tem
);
13546 md5_init_ctx (&ctx
);
13547 for (i
= 0; i
< nargs
; i
++)
13548 fold_checksum_tree (argarray
[i
], &ctx
, ht
);
13549 md5_finish_ctx (&ctx
, checksum_after_arglist
);
13552 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
13553 fold_check_failed (NULL_TREE
, tem
);
13558 /* Perform constant folding and related simplification of initializer
13559 expression EXPR. These behave identically to "fold_buildN" but ignore
13560 potential run-time traps and exceptions that fold must preserve. */
13562 #define START_FOLD_INIT \
13563 int saved_signaling_nans = flag_signaling_nans;\
13564 int saved_trapping_math = flag_trapping_math;\
13565 int saved_rounding_math = flag_rounding_math;\
13566 int saved_trapv = flag_trapv;\
13567 int saved_folding_initializer = folding_initializer;\
13568 flag_signaling_nans = 0;\
13569 flag_trapping_math = 0;\
13570 flag_rounding_math = 0;\
13572 folding_initializer = 1;
13574 #define END_FOLD_INIT \
13575 flag_signaling_nans = saved_signaling_nans;\
13576 flag_trapping_math = saved_trapping_math;\
13577 flag_rounding_math = saved_rounding_math;\
13578 flag_trapv = saved_trapv;\
13579 folding_initializer = saved_folding_initializer;
13582 fold_build1_initializer (enum tree_code code
, tree type
, tree op
)
13587 result
= fold_build1 (code
, type
, op
);
13594 fold_build2_initializer (enum tree_code code
, tree type
, tree op0
, tree op1
)
13599 result
= fold_build2 (code
, type
, op0
, op1
);
13606 fold_build3_initializer (enum tree_code code
, tree type
, tree op0
, tree op1
,
13612 result
= fold_build3 (code
, type
, op0
, op1
, op2
);
13619 fold_build_call_array_initializer (tree type
, tree fn
,
13620 int nargs
, tree
*argarray
)
13625 result
= fold_build_call_array (type
, fn
, nargs
, argarray
);
13631 #undef START_FOLD_INIT
13632 #undef END_FOLD_INIT
13634 /* Determine if first argument is a multiple of second argument. Return 0 if
13635 it is not, or we cannot easily determined it to be.
13637 An example of the sort of thing we care about (at this point; this routine
13638 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13639 fold cases do now) is discovering that
13641 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13647 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13649 This code also handles discovering that
13651 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13653 is a multiple of 8 so we don't have to worry about dealing with a
13654 possible remainder.
13656 Note that we *look* inside a SAVE_EXPR only to determine how it was
13657 calculated; it is not safe for fold to do much of anything else with the
13658 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13659 at run time. For example, the latter example above *cannot* be implemented
13660 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13661 evaluation time of the original SAVE_EXPR is not necessarily the same at
13662 the time the new expression is evaluated. The only optimization of this
13663 sort that would be valid is changing
13665 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13669 SAVE_EXPR (I) * SAVE_EXPR (J)
13671 (where the same SAVE_EXPR (J) is used in the original and the
13672 transformed version). */
13675 multiple_of_p (tree type
, tree top
, tree bottom
)
13677 if (operand_equal_p (top
, bottom
, 0))
13680 if (TREE_CODE (type
) != INTEGER_TYPE
)
13683 switch (TREE_CODE (top
))
13686 /* Bitwise and provides a power of two multiple. If the mask is
13687 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13688 if (!integer_pow2p (bottom
))
13693 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
13694 || multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
13698 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
13699 && multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
13702 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
13706 op1
= TREE_OPERAND (top
, 1);
13707 /* const_binop may not detect overflow correctly,
13708 so check for it explicitly here. */
13709 if (TYPE_PRECISION (TREE_TYPE (size_one_node
))
13710 > TREE_INT_CST_LOW (op1
)
13711 && TREE_INT_CST_HIGH (op1
) == 0
13712 && 0 != (t1
= fold_convert (type
,
13713 const_binop (LSHIFT_EXPR
,
13716 && !TREE_OVERFLOW (t1
))
13717 return multiple_of_p (type
, t1
, bottom
);
13722 /* Can't handle conversions from non-integral or wider integral type. */
13723 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
13724 || (TYPE_PRECISION (type
)
13725 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
13728 /* .. fall through ... */
13731 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
13734 if (TREE_CODE (bottom
) != INTEGER_CST
13735 || integer_zerop (bottom
)
13736 || (TYPE_UNSIGNED (type
)
13737 && (tree_int_cst_sgn (top
) < 0
13738 || tree_int_cst_sgn (bottom
) < 0)))
13740 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR
,
13748 /* Return true if `t' is known to be non-negative. If the return
13749 value is based on the assumption that signed overflow is undefined,
13750 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13751 *STRICT_OVERFLOW_P. */
13754 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
13756 if (t
== error_mark_node
)
13759 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13762 switch (TREE_CODE (t
))
13765 /* Query VRP to see if it has recorded any information about
13766 the range of this object. */
13767 return ssa_name_nonnegative_p (t
);
13770 /* We can't return 1 if flag_wrapv is set because
13771 ABS_EXPR<INT_MIN> = INT_MIN. */
13772 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13774 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
)))
13776 *strict_overflow_p
= true;
13782 return tree_int_cst_sgn (t
) >= 0;
13785 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
13788 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
13790 case POINTER_PLUS_EXPR
:
13792 if (FLOAT_TYPE_P (TREE_TYPE (t
)))
13793 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13795 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
13796 strict_overflow_p
));
13798 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13799 both unsigned and at least 2 bits shorter than the result. */
13800 if (TREE_CODE (TREE_TYPE (t
)) == INTEGER_TYPE
13801 && TREE_CODE (TREE_OPERAND (t
, 0)) == NOP_EXPR
13802 && TREE_CODE (TREE_OPERAND (t
, 1)) == NOP_EXPR
)
13804 tree inner1
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
13805 tree inner2
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0));
13806 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
13807 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
13809 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
13810 TYPE_PRECISION (inner2
)) + 1;
13811 return prec
< TYPE_PRECISION (TREE_TYPE (t
));
13817 if (FLOAT_TYPE_P (TREE_TYPE (t
)))
13819 /* x * x for floating point x is always non-negative. */
13820 if (operand_equal_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1), 0))
13822 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13824 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
13825 strict_overflow_p
));
13828 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13829 both unsigned and their total bits is shorter than the result. */
13830 if (TREE_CODE (TREE_TYPE (t
)) == INTEGER_TYPE
13831 && TREE_CODE (TREE_OPERAND (t
, 0)) == NOP_EXPR
13832 && TREE_CODE (TREE_OPERAND (t
, 1)) == NOP_EXPR
)
13834 tree inner1
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
13835 tree inner2
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0));
13836 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
13837 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
13838 return TYPE_PRECISION (inner1
) + TYPE_PRECISION (inner2
)
13839 < TYPE_PRECISION (TREE_TYPE (t
));
13845 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13847 || tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
13848 strict_overflow_p
));
13854 case TRUNC_DIV_EXPR
:
13855 case CEIL_DIV_EXPR
:
13856 case FLOOR_DIV_EXPR
:
13857 case ROUND_DIV_EXPR
:
13858 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13860 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
13861 strict_overflow_p
));
13863 case TRUNC_MOD_EXPR
:
13864 case CEIL_MOD_EXPR
:
13865 case FLOOR_MOD_EXPR
:
13866 case ROUND_MOD_EXPR
:
13868 case NON_LVALUE_EXPR
:
13870 case FIX_TRUNC_EXPR
:
13871 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13872 strict_overflow_p
);
13874 case COMPOUND_EXPR
:
13876 case GIMPLE_MODIFY_STMT
:
13877 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t
, 1),
13878 strict_overflow_p
);
13881 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t
, 1)),
13882 strict_overflow_p
);
13885 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
13887 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 2),
13888 strict_overflow_p
));
13892 tree inner_type
= TREE_TYPE (TREE_OPERAND (t
, 0));
13893 tree outer_type
= TREE_TYPE (t
);
13895 if (TREE_CODE (outer_type
) == REAL_TYPE
)
13897 if (TREE_CODE (inner_type
) == REAL_TYPE
)
13898 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13899 strict_overflow_p
);
13900 if (TREE_CODE (inner_type
) == INTEGER_TYPE
)
13902 if (TYPE_UNSIGNED (inner_type
))
13904 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
13905 strict_overflow_p
);
13908 else if (TREE_CODE (outer_type
) == INTEGER_TYPE
)
13910 if (TREE_CODE (inner_type
) == REAL_TYPE
)
13911 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
,0),
13912 strict_overflow_p
);
13913 if (TREE_CODE (inner_type
) == INTEGER_TYPE
)
13914 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
13915 && TYPE_UNSIGNED (inner_type
);
13922 tree temp
= TARGET_EXPR_SLOT (t
);
13923 t
= TARGET_EXPR_INITIAL (t
);
13925 /* If the initializer is non-void, then it's a normal expression
13926 that will be assigned to the slot. */
13927 if (!VOID_TYPE_P (t
))
13928 return tree_expr_nonnegative_warnv_p (t
, strict_overflow_p
);
13930 /* Otherwise, the initializer sets the slot in some way. One common
13931 way is an assignment statement at the end of the initializer. */
13934 if (TREE_CODE (t
) == BIND_EXPR
)
13935 t
= expr_last (BIND_EXPR_BODY (t
));
13936 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13937 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13938 t
= expr_last (TREE_OPERAND (t
, 0));
13939 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13944 if ((TREE_CODE (t
) == MODIFY_EXPR
13945 || TREE_CODE (t
) == GIMPLE_MODIFY_STMT
)
13946 && GENERIC_TREE_OPERAND (t
, 0) == temp
)
13947 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t
, 1),
13948 strict_overflow_p
);
13955 tree fndecl
= get_callee_fndecl (t
);
13956 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
13957 switch (DECL_FUNCTION_CODE (fndecl
))
13959 CASE_FLT_FN (BUILT_IN_ACOS
):
13960 CASE_FLT_FN (BUILT_IN_ACOSH
):
13961 CASE_FLT_FN (BUILT_IN_CABS
):
13962 CASE_FLT_FN (BUILT_IN_COSH
):
13963 CASE_FLT_FN (BUILT_IN_ERFC
):
13964 CASE_FLT_FN (BUILT_IN_EXP
):
13965 CASE_FLT_FN (BUILT_IN_EXP10
):
13966 CASE_FLT_FN (BUILT_IN_EXP2
):
13967 CASE_FLT_FN (BUILT_IN_FABS
):
13968 CASE_FLT_FN (BUILT_IN_FDIM
):
13969 CASE_FLT_FN (BUILT_IN_HYPOT
):
13970 CASE_FLT_FN (BUILT_IN_POW10
):
13971 CASE_INT_FN (BUILT_IN_FFS
):
13972 CASE_INT_FN (BUILT_IN_PARITY
):
13973 CASE_INT_FN (BUILT_IN_POPCOUNT
):
13974 case BUILT_IN_BSWAP32
:
13975 case BUILT_IN_BSWAP64
:
13979 CASE_FLT_FN (BUILT_IN_SQRT
):
13980 /* sqrt(-0.0) is -0.0. */
13981 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t
))))
13983 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 0),
13984 strict_overflow_p
);
13986 CASE_FLT_FN (BUILT_IN_ASINH
):
13987 CASE_FLT_FN (BUILT_IN_ATAN
):
13988 CASE_FLT_FN (BUILT_IN_ATANH
):
13989 CASE_FLT_FN (BUILT_IN_CBRT
):
13990 CASE_FLT_FN (BUILT_IN_CEIL
):
13991 CASE_FLT_FN (BUILT_IN_ERF
):
13992 CASE_FLT_FN (BUILT_IN_EXPM1
):
13993 CASE_FLT_FN (BUILT_IN_FLOOR
):
13994 CASE_FLT_FN (BUILT_IN_FMOD
):
13995 CASE_FLT_FN (BUILT_IN_FREXP
):
13996 CASE_FLT_FN (BUILT_IN_LCEIL
):
13997 CASE_FLT_FN (BUILT_IN_LDEXP
):
13998 CASE_FLT_FN (BUILT_IN_LFLOOR
):
13999 CASE_FLT_FN (BUILT_IN_LLCEIL
):
14000 CASE_FLT_FN (BUILT_IN_LLFLOOR
):
14001 CASE_FLT_FN (BUILT_IN_LLRINT
):
14002 CASE_FLT_FN (BUILT_IN_LLROUND
):
14003 CASE_FLT_FN (BUILT_IN_LRINT
):
14004 CASE_FLT_FN (BUILT_IN_LROUND
):
14005 CASE_FLT_FN (BUILT_IN_MODF
):
14006 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
14007 CASE_FLT_FN (BUILT_IN_RINT
):
14008 CASE_FLT_FN (BUILT_IN_ROUND
):
14009 CASE_FLT_FN (BUILT_IN_SCALB
):
14010 CASE_FLT_FN (BUILT_IN_SCALBLN
):
14011 CASE_FLT_FN (BUILT_IN_SCALBN
):
14012 CASE_FLT_FN (BUILT_IN_SIGNBIT
):
14013 CASE_FLT_FN (BUILT_IN_SIGNIFICAND
):
14014 CASE_FLT_FN (BUILT_IN_SINH
):
14015 CASE_FLT_FN (BUILT_IN_TANH
):
14016 CASE_FLT_FN (BUILT_IN_TRUNC
):
14017 /* True if the 1st argument is nonnegative. */
14018 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 0),
14019 strict_overflow_p
);
14021 CASE_FLT_FN (BUILT_IN_FMAX
):
14022 /* True if the 1st OR 2nd arguments are nonnegative. */
14023 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 0),
14025 || (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 1),
14026 strict_overflow_p
)));
14028 CASE_FLT_FN (BUILT_IN_FMIN
):
14029 /* True if the 1st AND 2nd arguments are nonnegative. */
14030 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 0),
14032 && (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 1),
14033 strict_overflow_p
)));
14035 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
14036 /* True if the 2nd argument is nonnegative. */
14037 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 1),
14038 strict_overflow_p
);
14040 CASE_FLT_FN (BUILT_IN_POWI
):
14041 /* True if the 1st argument is nonnegative or the second
14042 argument is an even integer. */
14043 if (TREE_CODE (CALL_EXPR_ARG (t
, 1)) == INTEGER_CST
)
14045 tree arg1
= CALL_EXPR_ARG (t
, 1);
14046 if ((TREE_INT_CST_LOW (arg1
) & 1) == 0)
14049 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 0),
14050 strict_overflow_p
);
14052 CASE_FLT_FN (BUILT_IN_POW
):
14053 /* True if the 1st argument is nonnegative or the second
14054 argument is an even integer valued real. */
14055 if (TREE_CODE (CALL_EXPR_ARG (t
, 1)) == REAL_CST
)
14060 c
= TREE_REAL_CST (CALL_EXPR_ARG (t
, 1));
14061 n
= real_to_integer (&c
);
14064 REAL_VALUE_TYPE cint
;
14065 real_from_integer (&cint
, VOIDmode
, n
,
14066 n
< 0 ? -1 : 0, 0);
14067 if (real_identical (&c
, &cint
))
14071 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t
, 0),
14072 strict_overflow_p
);
14079 /* ... fall through ... */
14083 tree type
= TREE_TYPE (t
);
14084 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
14085 && truth_value_p (TREE_CODE (t
)))
14086 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14087 have a signed:1 type (where the value is -1 and 0). */
14092 /* We don't know sign of `t', so be conservative and return false. */
14096 /* Return true if `t' is known to be non-negative. Handle warnings
14097 about undefined signed overflow. */
14100 tree_expr_nonnegative_p (tree t
)
14102 bool ret
, strict_overflow_p
;
14104 strict_overflow_p
= false;
14105 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
14106 if (strict_overflow_p
)
14107 fold_overflow_warning (("assuming signed overflow does not occur when "
14108 "determining that expression is always "
14110 WARN_STRICT_OVERFLOW_MISC
);
14114 /* Return true when T is an address and is known to be nonzero.
14115 For floating point we further ensure that T is not denormal.
14116 Similar logic is present in nonzero_address in rtlanal.h.
14118 If the return value is based on the assumption that signed overflow
14119 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14120 change *STRICT_OVERFLOW_P. */
14123 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
14125 tree type
= TREE_TYPE (t
);
14126 bool sub_strict_overflow_p
;
14128 /* Doing something useful for floating point would need more work. */
14129 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
14132 switch (TREE_CODE (t
))
14135 /* Query VRP to see if it has recorded any information about
14136 the range of this object. */
14137 return ssa_name_nonzero_p (t
);
14140 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14141 strict_overflow_p
);
14144 return !integer_zerop (t
);
14146 case POINTER_PLUS_EXPR
:
14148 if (TYPE_OVERFLOW_UNDEFINED (type
))
14150 /* With the presence of negative values it is hard
14151 to say something. */
14152 sub_strict_overflow_p
= false;
14153 if (!tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
14154 &sub_strict_overflow_p
)
14155 || !tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
14156 &sub_strict_overflow_p
))
14158 /* One of operands must be positive and the other non-negative. */
14159 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14160 overflows, on a twos-complement machine the sum of two
14161 nonnegative numbers can never be zero. */
14162 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14164 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14165 strict_overflow_p
));
14170 if (TYPE_OVERFLOW_UNDEFINED (type
))
14172 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14174 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14175 strict_overflow_p
))
14177 *strict_overflow_p
= true;
14185 tree inner_type
= TREE_TYPE (TREE_OPERAND (t
, 0));
14186 tree outer_type
= TREE_TYPE (t
);
14188 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
14189 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14190 strict_overflow_p
));
14196 tree base
= get_base_address (TREE_OPERAND (t
, 0));
14201 /* Weak declarations may link to NULL. */
14202 if (VAR_OR_FUNCTION_DECL_P (base
))
14203 return !DECL_WEAK (base
);
14205 /* Constants are never weak. */
14206 if (CONSTANT_CLASS_P (base
))
14213 sub_strict_overflow_p
= false;
14214 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14215 &sub_strict_overflow_p
)
14216 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
14217 &sub_strict_overflow_p
))
14219 if (sub_strict_overflow_p
)
14220 *strict_overflow_p
= true;
14226 sub_strict_overflow_p
= false;
14227 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14228 &sub_strict_overflow_p
)
14229 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14230 &sub_strict_overflow_p
))
14232 if (sub_strict_overflow_p
)
14233 *strict_overflow_p
= true;
14238 sub_strict_overflow_p
= false;
14239 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14240 &sub_strict_overflow_p
))
14242 if (sub_strict_overflow_p
)
14243 *strict_overflow_p
= true;
14245 /* When both operands are nonzero, then MAX must be too. */
14246 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14247 strict_overflow_p
))
14250 /* MAX where operand 0 is positive is positive. */
14251 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
14252 strict_overflow_p
);
14254 /* MAX where operand 1 is positive is positive. */
14255 else if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14256 &sub_strict_overflow_p
)
14257 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
14258 &sub_strict_overflow_p
))
14260 if (sub_strict_overflow_p
)
14261 *strict_overflow_p
= true;
14266 case COMPOUND_EXPR
:
14268 case GIMPLE_MODIFY_STMT
:
14270 return tree_expr_nonzero_warnv_p (GENERIC_TREE_OPERAND (t
, 1),
14271 strict_overflow_p
);
14274 case NON_LVALUE_EXPR
:
14275 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14276 strict_overflow_p
);
14279 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
14281 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
14282 strict_overflow_p
));
14285 return alloca_call_p (t
);
14293 /* Return true when T is an address and is known to be nonzero.
14294 Handle warnings about undefined signed overflow. */
14297 tree_expr_nonzero_p (tree t
)
14299 bool ret
, strict_overflow_p
;
14301 strict_overflow_p
= false;
14302 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
14303 if (strict_overflow_p
)
14304 fold_overflow_warning (("assuming signed overflow does not occur when "
14305 "determining that expression is always "
14307 WARN_STRICT_OVERFLOW_MISC
);
14311 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14312 attempt to fold the expression to a constant without modifying TYPE,
14315 If the expression could be simplified to a constant, then return
14316 the constant. If the expression would not be simplified to a
14317 constant, then return NULL_TREE. */
14320 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
14322 tree tem
= fold_binary (code
, type
, op0
, op1
);
14323 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
14326 /* Given the components of a unary expression CODE, TYPE and OP0,
14327 attempt to fold the expression to a constant without modifying
14330 If the expression could be simplified to a constant, then return
14331 the constant. If the expression would not be simplified to a
14332 constant, then return NULL_TREE. */
14335 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
14337 tree tem
= fold_unary (code
, type
, op0
);
14338 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
14341 /* If EXP represents referencing an element in a constant string
14342 (either via pointer arithmetic or array indexing), return the
14343 tree representing the value accessed, otherwise return NULL. */
14346 fold_read_from_constant_string (tree exp
)
14348 if ((TREE_CODE (exp
) == INDIRECT_REF
14349 || TREE_CODE (exp
) == ARRAY_REF
)
14350 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
14352 tree exp1
= TREE_OPERAND (exp
, 0);
14356 if (TREE_CODE (exp
) == INDIRECT_REF
)
14357 string
= string_constant (exp1
, &index
);
14360 tree low_bound
= array_ref_low_bound (exp
);
14361 index
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
14363 /* Optimize the special-case of a zero lower bound.
14365 We convert the low_bound to sizetype to avoid some problems
14366 with constant folding. (E.g. suppose the lower bound is 1,
14367 and its mode is QI. Without the conversion,l (ARRAY
14368 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14369 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
14370 if (! integer_zerop (low_bound
))
14371 index
= size_diffop (index
, fold_convert (sizetype
, low_bound
));
14377 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
14378 && TREE_CODE (string
) == STRING_CST
14379 && TREE_CODE (index
) == INTEGER_CST
14380 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
14381 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))))
14383 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))) == 1))
14384 return build_int_cst_type (TREE_TYPE (exp
),
14385 (TREE_STRING_POINTER (string
)
14386 [TREE_INT_CST_LOW (index
)]));
14391 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14392 an integer constant, real, or fixed-point constant.
14394 TYPE is the type of the result. */
14397 fold_negate_const (tree arg0
, tree type
)
14399 tree t
= NULL_TREE
;
14401 switch (TREE_CODE (arg0
))
14405 unsigned HOST_WIDE_INT low
;
14406 HOST_WIDE_INT high
;
14407 int overflow
= neg_double (TREE_INT_CST_LOW (arg0
),
14408 TREE_INT_CST_HIGH (arg0
),
14410 t
= force_fit_type_double (type
, low
, high
, 1,
14411 (overflow
| TREE_OVERFLOW (arg0
))
14412 && !TYPE_UNSIGNED (type
));
14417 t
= build_real (type
, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0
)));
14422 FIXED_VALUE_TYPE f
;
14423 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
14424 &(TREE_FIXED_CST (arg0
)), NULL
,
14425 TYPE_SATURATING (type
));
14426 t
= build_fixed (type
, f
);
14427 /* Propagate overflow flags. */
14428 if (overflow_p
| TREE_OVERFLOW (arg0
))
14430 TREE_OVERFLOW (t
) = 1;
14431 TREE_CONSTANT_OVERFLOW (t
) = 1;
14433 else if (TREE_CONSTANT_OVERFLOW (arg0
))
14434 TREE_CONSTANT_OVERFLOW (t
) = 1;
14439 gcc_unreachable ();
14445 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14446 an integer constant or real constant.
14448 TYPE is the type of the result. */
14451 fold_abs_const (tree arg0
, tree type
)
14453 tree t
= NULL_TREE
;
14455 switch (TREE_CODE (arg0
))
14458 /* If the value is unsigned, then the absolute value is
14459 the same as the ordinary value. */
14460 if (TYPE_UNSIGNED (type
))
14462 /* Similarly, if the value is non-negative. */
14463 else if (INT_CST_LT (integer_minus_one_node
, arg0
))
14465 /* If the value is negative, then the absolute value is
14469 unsigned HOST_WIDE_INT low
;
14470 HOST_WIDE_INT high
;
14471 int overflow
= neg_double (TREE_INT_CST_LOW (arg0
),
14472 TREE_INT_CST_HIGH (arg0
),
14474 t
= force_fit_type_double (type
, low
, high
, -1,
14475 overflow
| TREE_OVERFLOW (arg0
));
14480 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
14481 t
= build_real (type
, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0
)));
14487 gcc_unreachable ();
14493 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14494 constant. TYPE is the type of the result. */
14497 fold_not_const (tree arg0
, tree type
)
14499 tree t
= NULL_TREE
;
14501 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
14503 t
= force_fit_type_double (type
, ~TREE_INT_CST_LOW (arg0
),
14504 ~TREE_INT_CST_HIGH (arg0
), 0,
14505 TREE_OVERFLOW (arg0
));
14510 /* Given CODE, a relational operator, the target type, TYPE and two
14511 constant operands OP0 and OP1, return the result of the
14512 relational operation. If the result is not a compile time
14513 constant, then return NULL_TREE. */
14516 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
14518 int result
, invert
;
14520 /* From here on, the only cases we handle are when the result is
14521 known to be a constant. */
14523 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
14525 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
14526 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
14528 /* Handle the cases where either operand is a NaN. */
14529 if (real_isnan (c0
) || real_isnan (c1
))
14539 case UNORDERED_EXPR
:
14553 if (flag_trapping_math
)
14559 gcc_unreachable ();
14562 return constant_boolean_node (result
, type
);
14565 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
14568 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
14570 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
14571 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
14572 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
14575 /* Handle equality/inequality of complex constants. */
14576 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
14578 tree rcond
= fold_relational_const (code
, type
,
14579 TREE_REALPART (op0
),
14580 TREE_REALPART (op1
));
14581 tree icond
= fold_relational_const (code
, type
,
14582 TREE_IMAGPART (op0
),
14583 TREE_IMAGPART (op1
));
14584 if (code
== EQ_EXPR
)
14585 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
14586 else if (code
== NE_EXPR
)
14587 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
14592 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14594 To compute GT, swap the arguments and do LT.
14595 To compute GE, do LT and invert the result.
14596 To compute LE, swap the arguments, do LT and invert the result.
14597 To compute NE, do EQ and invert the result.
14599 Therefore, the code below must handle only EQ and LT. */
14601 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14606 code
= swap_tree_comparison (code
);
14609 /* Note that it is safe to invert for real values here because we
14610 have already handled the one case that it matters. */
14613 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14616 code
= invert_tree_comparison (code
, false);
14619 /* Compute a result for LT or EQ if args permit;
14620 Otherwise return T. */
14621 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14623 if (code
== EQ_EXPR
)
14624 result
= tree_int_cst_equal (op0
, op1
);
14625 else if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
14626 result
= INT_CST_LT_UNSIGNED (op0
, op1
);
14628 result
= INT_CST_LT (op0
, op1
);
14635 return constant_boolean_node (result
, type
);
14638 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14639 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14643 fold_build_cleanup_point_expr (tree type
, tree expr
)
14645 /* If the expression does not have side effects then we don't have to wrap
14646 it with a cleanup point expression. */
14647 if (!TREE_SIDE_EFFECTS (expr
))
14650 /* If the expression is a return, check to see if the expression inside the
14651 return has no side effects or the right hand side of the modify expression
14652 inside the return. If either don't have side effects set we don't need to
14653 wrap the expression in a cleanup point expression. Note we don't check the
14654 left hand side of the modify because it should always be a return decl. */
14655 if (TREE_CODE (expr
) == RETURN_EXPR
)
14657 tree op
= TREE_OPERAND (expr
, 0);
14658 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14660 op
= TREE_OPERAND (op
, 1);
14661 if (!TREE_SIDE_EFFECTS (op
))
14665 return build1 (CLEANUP_POINT_EXPR
, type
, expr
);
14668 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14669 of an indirection through OP0, or NULL_TREE if no simplification is
14673 fold_indirect_ref_1 (tree type
, tree op0
)
14679 subtype
= TREE_TYPE (sub
);
14680 if (!POINTER_TYPE_P (subtype
))
14683 if (TREE_CODE (sub
) == ADDR_EXPR
)
14685 tree op
= TREE_OPERAND (sub
, 0);
14686 tree optype
= TREE_TYPE (op
);
14687 /* *&CONST_DECL -> to the value of the const decl. */
14688 if (TREE_CODE (op
) == CONST_DECL
)
14689 return DECL_INITIAL (op
);
14690 /* *&p => p; make sure to handle *&"str"[cst] here. */
14691 if (type
== optype
)
14693 tree fop
= fold_read_from_constant_string (op
);
14699 /* *(foo *)&fooarray => fooarray[0] */
14700 else if (TREE_CODE (optype
) == ARRAY_TYPE
14701 && type
== TREE_TYPE (optype
))
14703 tree type_domain
= TYPE_DOMAIN (optype
);
14704 tree min_val
= size_zero_node
;
14705 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14706 min_val
= TYPE_MIN_VALUE (type_domain
);
14707 return build4 (ARRAY_REF
, type
, op
, min_val
, NULL_TREE
, NULL_TREE
);
14709 /* *(foo *)&complexfoo => __real__ complexfoo */
14710 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14711 && type
== TREE_TYPE (optype
))
14712 return fold_build1 (REALPART_EXPR
, type
, op
);
14713 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14714 else if (TREE_CODE (optype
) == VECTOR_TYPE
14715 && type
== TREE_TYPE (optype
))
14717 tree part_width
= TYPE_SIZE (type
);
14718 tree index
= bitsize_int (0);
14719 return fold_build3 (BIT_FIELD_REF
, type
, op
, part_width
, index
);
14723 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14724 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14725 && TREE_CODE (TREE_OPERAND (sub
, 1)) == INTEGER_CST
)
14727 tree op00
= TREE_OPERAND (sub
, 0);
14728 tree op01
= TREE_OPERAND (sub
, 1);
14732 op00type
= TREE_TYPE (op00
);
14733 if (TREE_CODE (op00
) == ADDR_EXPR
14734 && TREE_CODE (TREE_TYPE (op00type
)) == COMPLEX_TYPE
14735 && type
== TREE_TYPE (TREE_TYPE (op00type
)))
14737 tree size
= TYPE_SIZE_UNIT (type
);
14738 if (tree_int_cst_equal (size
, op01
))
14739 return fold_build1 (IMAGPART_EXPR
, type
, TREE_OPERAND (op00
, 0));
14743 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14744 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14745 && type
== TREE_TYPE (TREE_TYPE (subtype
)))
14748 tree min_val
= size_zero_node
;
14749 sub
= build_fold_indirect_ref (sub
);
14750 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14751 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14752 min_val
= TYPE_MIN_VALUE (type_domain
);
14753 return build4 (ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
, NULL_TREE
);
14759 /* Builds an expression for an indirection through T, simplifying some
14763 build_fold_indirect_ref (tree t
)
14765 tree type
= TREE_TYPE (TREE_TYPE (t
));
14766 tree sub
= fold_indirect_ref_1 (type
, t
);
14771 return build1 (INDIRECT_REF
, type
, t
);
14774 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14777 fold_indirect_ref (tree t
)
14779 tree sub
= fold_indirect_ref_1 (TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14787 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14788 whose result is ignored. The type of the returned tree need not be
14789 the same as the original expression. */
14792 fold_ignored_result (tree t
)
14794 if (!TREE_SIDE_EFFECTS (t
))
14795 return integer_zero_node
;
14798 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14801 t
= TREE_OPERAND (t
, 0);
14805 case tcc_comparison
:
14806 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14807 t
= TREE_OPERAND (t
, 0);
14808 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14809 t
= TREE_OPERAND (t
, 1);
14814 case tcc_expression
:
14815 switch (TREE_CODE (t
))
14817 case COMPOUND_EXPR
:
14818 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14820 t
= TREE_OPERAND (t
, 0);
14824 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14825 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14827 t
= TREE_OPERAND (t
, 0);
14840 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
14841 This can only be applied to objects of a sizetype. */
14844 round_up (tree value
, int divisor
)
14846 tree div
= NULL_TREE
;
14848 gcc_assert (divisor
> 0);
14852 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14853 have to do anything. Only do this when we are not given a const,
14854 because in that case, this check is more expensive than just
14856 if (TREE_CODE (value
) != INTEGER_CST
)
14858 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14860 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14864 /* If divisor is a power of two, simplify this to bit manipulation. */
14865 if (divisor
== (divisor
& -divisor
))
14867 if (TREE_CODE (value
) == INTEGER_CST
)
14869 unsigned HOST_WIDE_INT low
= TREE_INT_CST_LOW (value
);
14870 unsigned HOST_WIDE_INT high
;
14873 if ((low
& (divisor
- 1)) == 0)
14876 overflow_p
= TREE_OVERFLOW (value
);
14877 high
= TREE_INT_CST_HIGH (value
);
14878 low
&= ~(divisor
- 1);
14887 return force_fit_type_double (TREE_TYPE (value
), low
, high
,
14894 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14895 value
= size_binop (PLUS_EXPR
, value
, t
);
14896 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14897 value
= size_binop (BIT_AND_EXPR
, value
, t
);
14903 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14904 value
= size_binop (CEIL_DIV_EXPR
, value
, div
);
14905 value
= size_binop (MULT_EXPR
, value
, div
);
14911 /* Likewise, but round down. */
14914 round_down (tree value
, int divisor
)
14916 tree div
= NULL_TREE
;
14918 gcc_assert (divisor
> 0);
14922 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14923 have to do anything. Only do this when we are not given a const,
14924 because in that case, this check is more expensive than just
14926 if (TREE_CODE (value
) != INTEGER_CST
)
14928 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14930 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14934 /* If divisor is a power of two, simplify this to bit manipulation. */
14935 if (divisor
== (divisor
& -divisor
))
14939 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14940 value
= size_binop (BIT_AND_EXPR
, value
, t
);
14945 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14946 value
= size_binop (FLOOR_DIV_EXPR
, value
, div
);
14947 value
= size_binop (MULT_EXPR
, value
, div
);
14953 /* Returns the pointer to the base of the object addressed by EXP and
14954 extracts the information about the offset of the access, storing it
14955 to PBITPOS and POFFSET. */
14958 split_address_to_core_and_offset (tree exp
,
14959 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
14962 enum machine_mode mode
;
14963 int unsignedp
, volatilep
;
14964 HOST_WIDE_INT bitsize
;
14966 if (TREE_CODE (exp
) == ADDR_EXPR
)
14968 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14969 poffset
, &mode
, &unsignedp
, &volatilep
,
14971 core
= fold_addr_expr (core
);
14977 *poffset
= NULL_TREE
;
14983 /* Returns true if addresses of E1 and E2 differ by a constant, false
14984 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14987 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
14990 HOST_WIDE_INT bitpos1
, bitpos2
;
14991 tree toffset1
, toffset2
, tdiff
, type
;
14993 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14994 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14996 if (bitpos1
% BITS_PER_UNIT
!= 0
14997 || bitpos2
% BITS_PER_UNIT
!= 0
14998 || !operand_equal_p (core1
, core2
, 0))
15001 if (toffset1
&& toffset2
)
15003 type
= TREE_TYPE (toffset1
);
15004 if (type
!= TREE_TYPE (toffset2
))
15005 toffset2
= fold_convert (type
, toffset2
);
15007 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
15008 if (!cst_and_fits_in_hwi (tdiff
))
15011 *diff
= int_cst_value (tdiff
);
15013 else if (toffset1
|| toffset2
)
15015 /* If only one of the offsets is non-constant, the difference cannot
15022 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
15026 /* Simplify the floating point expression EXP when the sign of the
15027 result is not significant. Return NULL_TREE if no simplification
15031 fold_strip_sign_ops (tree exp
)
15035 switch (TREE_CODE (exp
))
15039 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
15040 return arg0
? arg0
: TREE_OPERAND (exp
, 0);
15044 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp
))))
15046 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
15047 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
15048 if (arg0
!= NULL_TREE
|| arg1
!= NULL_TREE
)
15049 return fold_build2 (TREE_CODE (exp
), TREE_TYPE (exp
),
15050 arg0
? arg0
: TREE_OPERAND (exp
, 0),
15051 arg1
? arg1
: TREE_OPERAND (exp
, 1));
15054 case COMPOUND_EXPR
:
15055 arg0
= TREE_OPERAND (exp
, 0);
15056 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
15058 return fold_build2 (COMPOUND_EXPR
, TREE_TYPE (exp
), arg0
, arg1
);
15062 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
15063 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 2));
15065 return fold_build3 (COND_EXPR
, TREE_TYPE (exp
), TREE_OPERAND (exp
, 0),
15066 arg0
? arg0
: TREE_OPERAND (exp
, 1),
15067 arg1
? arg1
: TREE_OPERAND (exp
, 2));
15072 const enum built_in_function fcode
= builtin_mathfn_code (exp
);
15075 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
15076 /* Strip copysign function call, return the 1st argument. */
15077 arg0
= CALL_EXPR_ARG (exp
, 0);
15078 arg1
= CALL_EXPR_ARG (exp
, 1);
15079 return omit_one_operand (TREE_TYPE (exp
), arg0
, arg1
);
15082 /* Strip sign ops from the argument of "odd" math functions. */
15083 if (negate_mathfn_p (fcode
))
15085 arg0
= fold_strip_sign_ops (CALL_EXPR_ARG (exp
, 0));
15087 return build_call_expr (get_callee_fndecl (exp
), 1, arg0
);