1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "hard-reg-set.h"
32 #include "insn-config.h"
42 #include "alloc-pool.h"
45 static bool cselib_record_memory
;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t
get_value_hash (const void *);
48 static struct elt_list
*new_elt_list (struct elt_list
*, cselib_val
*);
49 static struct elt_loc_list
*new_elt_loc_list (struct elt_loc_list
*, rtx
);
50 static void unchain_one_value (cselib_val
*);
51 static void unchain_one_elt_list (struct elt_list
**);
52 static void unchain_one_elt_loc_list (struct elt_loc_list
**);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx
wrap_constant (enum machine_mode
, rtx
);
57 static unsigned int cselib_hash_rtx (rtx
, int);
58 static cselib_val
*new_cselib_val (unsigned int, enum machine_mode
);
59 static void add_mem_for_addr (cselib_val
*, cselib_val
*, rtx
);
60 static cselib_val
*cselib_lookup_mem (rtx
, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode
);
62 static void cselib_invalidate_mem (rtx
);
63 static void cselib_record_set (rtx
, cselib_val
*, cselib_val
*);
64 static void cselib_record_sets (rtx
);
66 /* There are three ways in which cselib can look up an rtx:
67 - for a REG, the reg_values table (which is indexed by regno) is used
68 - for a MEM, we recursively look up its address and then follow the
69 addr_list of that value
70 - for everything else, we compute a hash value and go through the hash
71 table. Since different rtx's can still have the same hash value,
72 this involves walking the table entries for a given value and comparing
73 the locations of the entries with the rtx we are looking up. */
75 /* A table that enables us to look up elts by their value. */
76 static htab_t cselib_hash_table
;
78 /* This is a global so we don't have to pass this through every function.
79 It is used in new_elt_loc_list to set SETTING_INSN. */
80 static rtx cselib_current_insn
;
81 static bool cselib_current_insn_in_libcall
;
83 /* Every new unknown value gets a unique number. */
84 static unsigned int next_unknown_value
;
86 /* The number of registers we had when the varrays were last resized. */
87 static unsigned int cselib_nregs
;
89 /* Count values without known locations. Whenever this grows too big, we
90 remove these useless values from the table. */
91 static int n_useless_values
;
93 /* Number of useless values before we remove them from the hash table. */
94 #define MAX_USELESS_VALUES 32
96 /* This table maps from register number to values. It does not
97 contain pointers to cselib_val structures, but rather elt_lists.
98 The purpose is to be able to refer to the same register in
99 different modes. The first element of the list defines the mode in
100 which the register was set; if the mode is unknown or the value is
101 no longer valid in that mode, ELT will be NULL for the first
103 static struct elt_list
**reg_values
;
104 static unsigned int reg_values_size
;
105 #define REG_VALUES(i) reg_values[i]
107 /* The largest number of hard regs used by any entry added to the
108 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
109 static unsigned int max_value_regs
;
111 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
112 in cselib_clear_table() for fast emptying. */
113 static unsigned int *used_regs
;
114 static unsigned int n_used_regs
;
116 /* We pass this to cselib_invalidate_mem to invalidate all of
117 memory for a non-const call instruction. */
118 static GTY(()) rtx callmem
;
120 /* Set by discard_useless_locs if it deleted the last location of any
122 static int values_became_useless
;
124 /* Used as stop element of the containing_mem list so we can check
125 presence in the list by checking the next pointer. */
126 static cselib_val dummy_val
;
128 /* Used to list all values that contain memory reference.
129 May or may not contain the useless values - the list is compacted
130 each time memory is invalidated. */
131 static cselib_val
*first_containing_mem
= &dummy_val
;
132 static alloc_pool elt_loc_list_pool
, elt_list_pool
, cselib_val_pool
, value_pool
;
134 /* If nonnull, cselib will call this function before freeing useless
135 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
136 void (*cselib_discard_hook
) (cselib_val
*);
139 /* Allocate a struct elt_list and fill in its two elements with the
142 static inline struct elt_list
*
143 new_elt_list (struct elt_list
*next
, cselib_val
*elt
)
146 el
= pool_alloc (elt_list_pool
);
152 /* Allocate a struct elt_loc_list and fill in its two elements with the
155 static inline struct elt_loc_list
*
156 new_elt_loc_list (struct elt_loc_list
*next
, rtx loc
)
158 struct elt_loc_list
*el
;
159 el
= pool_alloc (elt_loc_list_pool
);
162 el
->setting_insn
= cselib_current_insn
;
163 el
->in_libcall
= cselib_current_insn_in_libcall
;
167 /* The elt_list at *PL is no longer needed. Unchain it and free its
171 unchain_one_elt_list (struct elt_list
**pl
)
173 struct elt_list
*l
= *pl
;
176 pool_free (elt_list_pool
, l
);
179 /* Likewise for elt_loc_lists. */
182 unchain_one_elt_loc_list (struct elt_loc_list
**pl
)
184 struct elt_loc_list
*l
= *pl
;
187 pool_free (elt_loc_list_pool
, l
);
190 /* Likewise for cselib_vals. This also frees the addr_list associated with
194 unchain_one_value (cselib_val
*v
)
197 unchain_one_elt_list (&v
->addr_list
);
199 pool_free (cselib_val_pool
, v
);
202 /* Remove all entries from the hash table. Also used during
203 initialization. If CLEAR_ALL isn't set, then only clear the entries
204 which are known to have been used. */
207 cselib_clear_table (void)
211 for (i
= 0; i
< n_used_regs
; i
++)
212 REG_VALUES (used_regs
[i
]) = 0;
218 htab_empty (cselib_hash_table
);
220 n_useless_values
= 0;
222 next_unknown_value
= 0;
224 first_containing_mem
= &dummy_val
;
227 /* The equality test for our hash table. The first argument ENTRY is a table
228 element (i.e. a cselib_val), while the second arg X is an rtx. We know
229 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
230 CONST of an appropriate mode. */
233 entry_and_rtx_equal_p (const void *entry
, const void *x_arg
)
235 struct elt_loc_list
*l
;
236 const cselib_val
*const v
= (const cselib_val
*) entry
;
238 enum machine_mode mode
= GET_MODE (x
);
240 gcc_assert (GET_CODE (x
) != CONST_INT
241 && (mode
!= VOIDmode
|| GET_CODE (x
) != CONST_DOUBLE
));
243 if (mode
!= GET_MODE (v
->val_rtx
))
246 /* Unwrap X if necessary. */
247 if (GET_CODE (x
) == CONST
248 && (GET_CODE (XEXP (x
, 0)) == CONST_INT
249 || GET_CODE (XEXP (x
, 0)) == CONST_DOUBLE
))
252 /* We don't guarantee that distinct rtx's have different hash values,
253 so we need to do a comparison. */
254 for (l
= v
->locs
; l
; l
= l
->next
)
255 if (rtx_equal_for_cselib_p (l
->loc
, x
))
261 /* The hash function for our hash table. The value is always computed with
262 cselib_hash_rtx when adding an element; this function just extracts the
263 hash value from a cselib_val structure. */
266 get_value_hash (const void *entry
)
268 const cselib_val
*const v
= (const cselib_val
*) entry
;
272 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
273 only return true for values which point to a cselib_val whose value
274 element has been set to zero, which implies the cselib_val will be
278 references_value_p (const_rtx x
, int only_useless
)
280 const enum rtx_code code
= GET_CODE (x
);
281 const char *fmt
= GET_RTX_FORMAT (code
);
284 if (GET_CODE (x
) == VALUE
285 && (! only_useless
|| CSELIB_VAL_PTR (x
)->locs
== 0))
288 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
290 if (fmt
[i
] == 'e' && references_value_p (XEXP (x
, i
), only_useless
))
292 else if (fmt
[i
] == 'E')
293 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
294 if (references_value_p (XVECEXP (x
, i
, j
), only_useless
))
301 /* For all locations found in X, delete locations that reference useless
302 values (i.e. values without any location). Called through
306 discard_useless_locs (void **x
, void *info ATTRIBUTE_UNUSED
)
308 cselib_val
*v
= (cselib_val
*)*x
;
309 struct elt_loc_list
**p
= &v
->locs
;
310 int had_locs
= v
->locs
!= 0;
314 if (references_value_p ((*p
)->loc
, 1))
315 unchain_one_elt_loc_list (p
);
320 if (had_locs
&& v
->locs
== 0)
323 values_became_useless
= 1;
328 /* If X is a value with no locations, remove it from the hashtable. */
331 discard_useless_values (void **x
, void *info ATTRIBUTE_UNUSED
)
333 cselib_val
*v
= (cselib_val
*)*x
;
337 if (cselib_discard_hook
)
338 cselib_discard_hook (v
);
340 CSELIB_VAL_PTR (v
->val_rtx
) = NULL
;
341 htab_clear_slot (cselib_hash_table
, x
);
342 unchain_one_value (v
);
349 /* Clean out useless values (i.e. those which no longer have locations
350 associated with them) from the hash table. */
353 remove_useless_values (void)
356 /* First pass: eliminate locations that reference the value. That in
357 turn can make more values useless. */
360 values_became_useless
= 0;
361 htab_traverse (cselib_hash_table
, discard_useless_locs
, 0);
363 while (values_became_useless
);
365 /* Second pass: actually remove the values. */
367 p
= &first_containing_mem
;
368 for (v
= *p
; v
!= &dummy_val
; v
= v
->next_containing_mem
)
372 p
= &(*p
)->next_containing_mem
;
376 htab_traverse (cselib_hash_table
, discard_useless_values
, 0);
378 gcc_assert (!n_useless_values
);
381 /* Return the mode in which a register was last set. If X is not a
382 register, return its mode. If the mode in which the register was
383 set is not known, or the value was already clobbered, return
387 cselib_reg_set_mode (const_rtx x
)
392 if (REG_VALUES (REGNO (x
)) == NULL
393 || REG_VALUES (REGNO (x
))->elt
== NULL
)
396 return GET_MODE (REG_VALUES (REGNO (x
))->elt
->val_rtx
);
399 /* Return nonzero if we can prove that X and Y contain the same value, taking
400 our gathered information into account. */
403 rtx_equal_for_cselib_p (rtx x
, rtx y
)
409 if (REG_P (x
) || MEM_P (x
))
411 cselib_val
*e
= cselib_lookup (x
, GET_MODE (x
), 0);
417 if (REG_P (y
) || MEM_P (y
))
419 cselib_val
*e
= cselib_lookup (y
, GET_MODE (y
), 0);
428 if (GET_CODE (x
) == VALUE
&& GET_CODE (y
) == VALUE
)
429 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
431 if (GET_CODE (x
) == VALUE
)
433 cselib_val
*e
= CSELIB_VAL_PTR (x
);
434 struct elt_loc_list
*l
;
436 for (l
= e
->locs
; l
; l
= l
->next
)
440 /* Avoid infinite recursion. */
441 if (REG_P (t
) || MEM_P (t
))
443 else if (rtx_equal_for_cselib_p (t
, y
))
450 if (GET_CODE (y
) == VALUE
)
452 cselib_val
*e
= CSELIB_VAL_PTR (y
);
453 struct elt_loc_list
*l
;
455 for (l
= e
->locs
; l
; l
= l
->next
)
459 if (REG_P (t
) || MEM_P (t
))
461 else if (rtx_equal_for_cselib_p (x
, t
))
468 if (GET_CODE (x
) != GET_CODE (y
) || GET_MODE (x
) != GET_MODE (y
))
471 /* These won't be handled correctly by the code below. */
472 switch (GET_CODE (x
))
478 return XEXP (x
, 0) == XEXP (y
, 0);
485 fmt
= GET_RTX_FORMAT (code
);
487 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
494 if (XWINT (x
, i
) != XWINT (y
, i
))
500 if (XINT (x
, i
) != XINT (y
, i
))
506 /* Two vectors must have the same length. */
507 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
510 /* And the corresponding elements must match. */
511 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
512 if (! rtx_equal_for_cselib_p (XVECEXP (x
, i
, j
),
519 && targetm
.commutative_p (x
, UNKNOWN
)
520 && rtx_equal_for_cselib_p (XEXP (x
, 1), XEXP (y
, 0))
521 && rtx_equal_for_cselib_p (XEXP (x
, 0), XEXP (y
, 1)))
523 if (! rtx_equal_for_cselib_p (XEXP (x
, i
), XEXP (y
, i
)))
529 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
534 /* These are just backpointers, so they don't matter. */
541 /* It is believed that rtx's at this level will never
542 contain anything but integers and other rtx's,
543 except for within LABEL_REFs and SYMBOL_REFs. */
551 /* We need to pass down the mode of constants through the hash table
552 functions. For that purpose, wrap them in a CONST of the appropriate
555 wrap_constant (enum machine_mode mode
, rtx x
)
557 if (GET_CODE (x
) != CONST_INT
558 && (GET_CODE (x
) != CONST_DOUBLE
|| GET_MODE (x
) != VOIDmode
))
560 gcc_assert (mode
!= VOIDmode
);
561 return gen_rtx_CONST (mode
, x
);
564 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
565 For registers and memory locations, we look up their cselib_val structure
566 and return its VALUE element.
567 Possible reasons for return 0 are: the object is volatile, or we couldn't
568 find a register or memory location in the table and CREATE is zero. If
569 CREATE is nonzero, table elts are created for regs and mem.
570 N.B. this hash function returns the same hash value for RTXes that
571 differ only in the order of operands, thus it is suitable for comparisons
572 that take commutativity into account.
573 If we wanted to also support associative rules, we'd have to use a different
574 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
575 We used to have a MODE argument for hashing for CONST_INTs, but that
576 didn't make sense, since it caused spurious hash differences between
577 (set (reg:SI 1) (const_int))
578 (plus:SI (reg:SI 2) (reg:SI 1))
580 (plus:SI (reg:SI 2) (const_int))
581 If the mode is important in any context, it must be checked specifically
582 in a comparison anyway, since relying on hash differences is unsafe. */
585 cselib_hash_rtx (rtx x
, int create
)
591 unsigned int hash
= 0;
594 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
600 e
= cselib_lookup (x
, GET_MODE (x
), create
);
607 hash
+= ((unsigned) CONST_INT
<< 7) + INTVAL (x
);
608 return hash
? hash
: (unsigned int) CONST_INT
;
611 /* This is like the general case, except that it only counts
612 the integers representing the constant. */
613 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
614 if (GET_MODE (x
) != VOIDmode
)
615 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
617 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
618 + (unsigned) CONST_DOUBLE_HIGH (x
));
619 return hash
? hash
: (unsigned int) CONST_DOUBLE
;
626 units
= CONST_VECTOR_NUNITS (x
);
628 for (i
= 0; i
< units
; ++i
)
630 elt
= CONST_VECTOR_ELT (x
, i
);
631 hash
+= cselib_hash_rtx (elt
, 0);
637 /* Assume there is only one rtx object for any given label. */
639 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
640 differences and differences between each stage's debugging dumps. */
641 hash
+= (((unsigned int) LABEL_REF
<< 7)
642 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
643 return hash
? hash
: (unsigned int) LABEL_REF
;
647 /* Don't hash on the symbol's address to avoid bootstrap differences.
648 Different hash values may cause expressions to be recorded in
649 different orders and thus different registers to be used in the
650 final assembler. This also avoids differences in the dump files
651 between various stages. */
653 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
656 h
+= (h
<< 7) + *p
++; /* ??? revisit */
658 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
659 return hash
? hash
: (unsigned int) SYMBOL_REF
;
671 case UNSPEC_VOLATILE
:
675 if (MEM_VOLATILE_P (x
))
684 i
= GET_RTX_LENGTH (code
) - 1;
685 fmt
= GET_RTX_FORMAT (code
);
692 rtx tem
= XEXP (x
, i
);
693 unsigned int tem_hash
= cselib_hash_rtx (tem
, create
);
702 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
704 unsigned int tem_hash
705 = cselib_hash_rtx (XVECEXP (x
, i
, j
), create
);
716 const unsigned char *p
= (const unsigned char *) XSTR (x
, i
);
738 return hash
? hash
: 1 + (unsigned int) GET_CODE (x
);
741 /* Create a new value structure for VALUE and initialize it. The mode of the
744 static inline cselib_val
*
745 new_cselib_val (unsigned int value
, enum machine_mode mode
)
747 cselib_val
*e
= pool_alloc (cselib_val_pool
);
752 /* We use an alloc pool to allocate this RTL construct because it
753 accounts for about 8% of the overall memory usage. We know
754 precisely when we can have VALUE RTXen (when cselib is active)
755 so we don't need to put them in garbage collected memory.
756 ??? Why should a VALUE be an RTX in the first place? */
757 e
->val_rtx
= pool_alloc (value_pool
);
758 memset (e
->val_rtx
, 0, RTX_HDR_SIZE
);
759 PUT_CODE (e
->val_rtx
, VALUE
);
760 PUT_MODE (e
->val_rtx
, mode
);
761 CSELIB_VAL_PTR (e
->val_rtx
) = e
;
764 e
->next_containing_mem
= 0;
768 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
769 contains the data at this address. X is a MEM that represents the
770 value. Update the two value structures to represent this situation. */
773 add_mem_for_addr (cselib_val
*addr_elt
, cselib_val
*mem_elt
, rtx x
)
775 struct elt_loc_list
*l
;
777 /* Avoid duplicates. */
778 for (l
= mem_elt
->locs
; l
; l
= l
->next
)
780 && CSELIB_VAL_PTR (XEXP (l
->loc
, 0)) == addr_elt
)
783 addr_elt
->addr_list
= new_elt_list (addr_elt
->addr_list
, mem_elt
);
785 = new_elt_loc_list (mem_elt
->locs
,
786 replace_equiv_address_nv (x
, addr_elt
->val_rtx
));
787 if (mem_elt
->next_containing_mem
== NULL
)
789 mem_elt
->next_containing_mem
= first_containing_mem
;
790 first_containing_mem
= mem_elt
;
794 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
795 If CREATE, make a new one if we haven't seen it before. */
798 cselib_lookup_mem (rtx x
, int create
)
800 enum machine_mode mode
= GET_MODE (x
);
806 if (MEM_VOLATILE_P (x
) || mode
== BLKmode
807 || !cselib_record_memory
808 || (FLOAT_MODE_P (mode
) && flag_float_store
))
811 /* Look up the value for the address. */
812 addr
= cselib_lookup (XEXP (x
, 0), mode
, create
);
816 /* Find a value that describes a value of our mode at that address. */
817 for (l
= addr
->addr_list
; l
; l
= l
->next
)
818 if (GET_MODE (l
->elt
->val_rtx
) == mode
)
824 mem_elt
= new_cselib_val (++next_unknown_value
, mode
);
825 add_mem_for_addr (addr
, mem_elt
, x
);
826 slot
= htab_find_slot_with_hash (cselib_hash_table
, wrap_constant (mode
, x
),
827 mem_elt
->value
, INSERT
);
832 /* Search thru the possible substitutions in P. We prefer a non reg
833 substitution because this allows us to expand the tree further. If
834 we find, just a reg, take the lowest regno. There may be several
835 non-reg results, we just take the first one because they will all
836 expand to the same place. */
839 expand_loc (struct elt_loc_list
*p
, bitmap regs_active
, int max_depth
)
841 rtx reg_result
= NULL
;
842 unsigned int regno
= UINT_MAX
;
843 struct elt_loc_list
*p_in
= p
;
845 for (; p
; p
= p
-> next
)
847 /* Avoid infinite recursion trying to expand a reg into a
850 && (REGNO (p
->loc
) < regno
)
851 && !bitmap_bit_p (regs_active
, REGNO (p
->loc
)))
854 regno
= REGNO (p
->loc
);
856 /* Avoid infinite recursion and do not try to expand the
858 else if (GET_CODE (p
->loc
) == VALUE
859 && CSELIB_VAL_PTR (p
->loc
)->locs
== p_in
)
861 else if (!REG_P (p
->loc
))
866 print_inline_rtx (dump_file
, p
->loc
, 0);
867 fprintf (dump_file
, "\n");
869 result
= cselib_expand_value_rtx (p
->loc
, regs_active
, max_depth
- 1);
876 if (regno
!= UINT_MAX
)
880 fprintf (dump_file
, "r%d\n", regno
);
882 result
= cselib_expand_value_rtx (reg_result
, regs_active
, max_depth
- 1);
891 print_inline_rtx (dump_file
, reg_result
, 0);
892 fprintf (dump_file
, "\n");
895 fprintf (dump_file
, "NULL\n");
901 /* Forward substitute and expand an expression out to its roots.
902 This is the opposite of common subexpression. Because local value
903 numbering is such a weak optimization, the expanded expression is
904 pretty much unique (not from a pointer equals point of view but
905 from a tree shape point of view.
907 This function returns NULL if the expansion fails. The expansion
908 will fail if there is no value number for one of the operands or if
909 one of the operands has been overwritten between the current insn
910 and the beginning of the basic block. For instance x has no
916 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
917 It is clear on return. */
920 cselib_expand_value_rtx (rtx orig
, bitmap regs_active
, int max_depth
)
925 const char *format_ptr
;
927 code
= GET_CODE (orig
);
929 /* For the context of dse, if we end up expand into a huge tree, we
930 will not have a useful address, so we might as well just give up
939 struct elt_list
*l
= REG_VALUES (REGNO (orig
));
941 if (l
&& l
->elt
== NULL
)
943 for (; l
; l
= l
->next
)
944 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (orig
))
947 int regno
= REGNO (orig
);
949 /* The only thing that we are not willing to do (this
950 is requirement of dse and if others potential uses
951 need this function we should add a parm to control
952 it) is that we will not substitute the
953 STACK_POINTER_REGNUM, FRAME_POINTER or the
956 These expansions confuses the code that notices that
957 stores into the frame go dead at the end of the
958 function and that the frame is not effected by calls
959 to subroutines. If you allow the
960 STACK_POINTER_REGNUM substitution, then dse will
961 think that parameter pushing also goes dead which is
962 wrong. If you allow the FRAME_POINTER or the
963 HARD_FRAME_POINTER then you lose the opportunity to
964 make the frame assumptions. */
965 if (regno
== STACK_POINTER_REGNUM
966 || regno
== FRAME_POINTER_REGNUM
967 || regno
== HARD_FRAME_POINTER_REGNUM
)
970 bitmap_set_bit (regs_active
, regno
);
973 fprintf (dump_file
, "expanding: r%d into: ", regno
);
975 result
= expand_loc (l
->elt
->locs
, regs_active
, max_depth
);
976 bitmap_clear_bit (regs_active
, regno
);
993 /* SCRATCH must be shared because they represent distinct values. */
996 if (REG_P (XEXP (orig
, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0))))
1001 if (shared_const_p (orig
))
1010 fprintf (dump_file
, "expanding value %s into: ", GET_MODE_NAME (GET_MODE (orig
)));
1012 result
= expand_loc (CSELIB_VAL_PTR (orig
)->locs
, regs_active
, max_depth
);
1014 && GET_CODE (result
) == CONST_INT
1015 && GET_MODE (orig
) != VOIDmode
)
1017 result
= gen_rtx_CONST (GET_MODE (orig
), result
);
1019 fprintf (dump_file
, " wrapping const_int result in const to preserve mode %s\n",
1020 GET_MODE_NAME (GET_MODE (orig
)));
1028 /* Copy the various flags, fields, and other information. We assume
1029 that all fields need copying, and then clear the fields that should
1030 not be copied. That is the sensible default behavior, and forces
1031 us to explicitly document why we are *not* copying a flag. */
1032 copy
= shallow_copy_rtx (orig
);
1034 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
1036 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
1037 switch (*format_ptr
++)
1040 if (XEXP (orig
, i
) != NULL
)
1042 rtx result
= cselib_expand_value_rtx (XEXP (orig
, i
), regs_active
, max_depth
- 1);
1045 XEXP (copy
, i
) = result
;
1051 if (XVEC (orig
, i
) != NULL
)
1053 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
1054 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
1056 rtx result
= cselib_expand_value_rtx (XVECEXP (orig
, i
, j
), regs_active
, max_depth
- 1);
1059 XVECEXP (copy
, i
, j
) = result
;
1073 /* These are left unchanged. */
1080 scopy
= simplify_rtx (copy
);
1086 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1087 with VALUE expressions. This way, it becomes independent of changes
1088 to registers and memory.
1089 X isn't actually modified; if modifications are needed, new rtl is
1090 allocated. However, the return value can share rtl with X. */
1093 cselib_subst_to_values (rtx x
)
1095 enum rtx_code code
= GET_CODE (x
);
1096 const char *fmt
= GET_RTX_FORMAT (code
);
1105 l
= REG_VALUES (REGNO (x
));
1106 if (l
&& l
->elt
== NULL
)
1108 for (; l
; l
= l
->next
)
1109 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (x
))
1110 return l
->elt
->val_rtx
;
1115 e
= cselib_lookup_mem (x
, 0);
1118 /* This happens for autoincrements. Assign a value that doesn't
1120 e
= new_cselib_val (++next_unknown_value
, GET_MODE (x
));
1135 e
= new_cselib_val (++next_unknown_value
, GET_MODE (x
));
1142 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1146 rtx t
= cselib_subst_to_values (XEXP (x
, i
));
1148 if (t
!= XEXP (x
, i
) && x
== copy
)
1149 copy
= shallow_copy_rtx (x
);
1153 else if (fmt
[i
] == 'E')
1157 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1159 rtx t
= cselib_subst_to_values (XVECEXP (x
, i
, j
));
1161 if (t
!= XVECEXP (x
, i
, j
) && XVEC (x
, i
) == XVEC (copy
, i
))
1164 copy
= shallow_copy_rtx (x
);
1166 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (x
, i
));
1167 for (k
= 0; k
< j
; k
++)
1168 XVECEXP (copy
, i
, k
) = XVECEXP (x
, i
, k
);
1171 XVECEXP (copy
, i
, j
) = t
;
1179 /* Look up the rtl expression X in our tables and return the value it has.
1180 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1181 we create a new one if possible, using mode MODE if X doesn't have a mode
1182 (i.e. because it's a constant). */
1185 cselib_lookup (rtx x
, enum machine_mode mode
, int create
)
1189 unsigned int hashval
;
1191 if (GET_MODE (x
) != VOIDmode
)
1192 mode
= GET_MODE (x
);
1194 if (GET_CODE (x
) == VALUE
)
1195 return CSELIB_VAL_PTR (x
);
1200 unsigned int i
= REGNO (x
);
1203 if (l
&& l
->elt
== NULL
)
1205 for (; l
; l
= l
->next
)
1206 if (mode
== GET_MODE (l
->elt
->val_rtx
))
1212 if (i
< FIRST_PSEUDO_REGISTER
)
1214 unsigned int n
= hard_regno_nregs
[i
][mode
];
1216 if (n
> max_value_regs
)
1220 e
= new_cselib_val (++next_unknown_value
, GET_MODE (x
));
1221 e
->locs
= new_elt_loc_list (e
->locs
, x
);
1222 if (REG_VALUES (i
) == 0)
1224 /* Maintain the invariant that the first entry of
1225 REG_VALUES, if present, must be the value used to set the
1226 register, or NULL. */
1227 used_regs
[n_used_regs
++] = i
;
1228 REG_VALUES (i
) = new_elt_list (REG_VALUES (i
), NULL
);
1230 REG_VALUES (i
)->next
= new_elt_list (REG_VALUES (i
)->next
, e
);
1231 slot
= htab_find_slot_with_hash (cselib_hash_table
, x
, e
->value
, INSERT
);
1237 return cselib_lookup_mem (x
, create
);
1239 hashval
= cselib_hash_rtx (x
, create
);
1240 /* Can't even create if hashing is not possible. */
1244 slot
= htab_find_slot_with_hash (cselib_hash_table
, wrap_constant (mode
, x
),
1245 hashval
, create
? INSERT
: NO_INSERT
);
1249 e
= (cselib_val
*) *slot
;
1253 e
= new_cselib_val (hashval
, mode
);
1255 /* We have to fill the slot before calling cselib_subst_to_values:
1256 the hash table is inconsistent until we do so, and
1257 cselib_subst_to_values will need to do lookups. */
1259 e
->locs
= new_elt_loc_list (e
->locs
, cselib_subst_to_values (x
));
1263 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1264 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1265 is used to determine how many hard registers are being changed. If MODE
1266 is VOIDmode, then only REGNO is being changed; this is used when
1267 invalidating call clobbered registers across a call. */
1270 cselib_invalidate_regno (unsigned int regno
, enum machine_mode mode
)
1272 unsigned int endregno
;
1275 /* If we see pseudos after reload, something is _wrong_. */
1276 gcc_assert (!reload_completed
|| regno
< FIRST_PSEUDO_REGISTER
1277 || reg_renumber
[regno
] < 0);
1279 /* Determine the range of registers that must be invalidated. For
1280 pseudos, only REGNO is affected. For hard regs, we must take MODE
1281 into account, and we must also invalidate lower register numbers
1282 if they contain values that overlap REGNO. */
1283 if (regno
< FIRST_PSEUDO_REGISTER
)
1285 gcc_assert (mode
!= VOIDmode
);
1287 if (regno
< max_value_regs
)
1290 i
= regno
- max_value_regs
;
1292 endregno
= end_hard_regno (mode
, regno
);
1297 endregno
= regno
+ 1;
1300 for (; i
< endregno
; i
++)
1302 struct elt_list
**l
= ®_VALUES (i
);
1304 /* Go through all known values for this reg; if it overlaps the range
1305 we're invalidating, remove the value. */
1308 cselib_val
*v
= (*l
)->elt
;
1309 struct elt_loc_list
**p
;
1310 unsigned int this_last
= i
;
1312 if (i
< FIRST_PSEUDO_REGISTER
&& v
!= NULL
)
1313 this_last
= end_hard_regno (GET_MODE (v
->val_rtx
), i
) - 1;
1315 if (this_last
< regno
|| v
== NULL
)
1321 /* We have an overlap. */
1322 if (*l
== REG_VALUES (i
))
1324 /* Maintain the invariant that the first entry of
1325 REG_VALUES, if present, must be the value used to set
1326 the register, or NULL. This is also nice because
1327 then we won't push the same regno onto user_regs
1333 unchain_one_elt_list (l
);
1335 /* Now, we clear the mapping from value to reg. It must exist, so
1336 this code will crash intentionally if it doesn't. */
1337 for (p
= &v
->locs
; ; p
= &(*p
)->next
)
1341 if (REG_P (x
) && REGNO (x
) == i
)
1343 unchain_one_elt_loc_list (p
);
1353 /* Return 1 if X has a value that can vary even between two
1354 executions of the program. 0 means X can be compared reliably
1355 against certain constants or near-constants. */
1358 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED
, bool from_alias ATTRIBUTE_UNUSED
)
1360 /* We actually don't need to verify very hard. This is because
1361 if X has actually changed, we invalidate the memory anyway,
1362 so assume that all common memory addresses are
1367 /* Invalidate any locations in the table which are changed because of a
1368 store to MEM_RTX. If this is called because of a non-const call
1369 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1372 cselib_invalidate_mem (rtx mem_rtx
)
1374 cselib_val
**vp
, *v
, *next
;
1378 mem_addr
= canon_rtx (get_addr (XEXP (mem_rtx
, 0)));
1379 mem_rtx
= canon_rtx (mem_rtx
);
1381 vp
= &first_containing_mem
;
1382 for (v
= *vp
; v
!= &dummy_val
; v
= next
)
1384 bool has_mem
= false;
1385 struct elt_loc_list
**p
= &v
->locs
;
1386 int had_locs
= v
->locs
!= 0;
1392 struct elt_list
**mem_chain
;
1394 /* MEMs may occur in locations only at the top level; below
1395 that every MEM or REG is substituted by its VALUE. */
1401 if (num_mems
< PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS
)
1402 && ! canon_true_dependence (mem_rtx
, GET_MODE (mem_rtx
), mem_addr
,
1403 x
, cselib_rtx_varies_p
))
1411 /* This one overlaps. */
1412 /* We must have a mapping from this MEM's address to the
1413 value (E). Remove that, too. */
1414 addr
= cselib_lookup (XEXP (x
, 0), VOIDmode
, 0);
1415 mem_chain
= &addr
->addr_list
;
1418 if ((*mem_chain
)->elt
== v
)
1420 unchain_one_elt_list (mem_chain
);
1424 mem_chain
= &(*mem_chain
)->next
;
1427 unchain_one_elt_loc_list (p
);
1430 if (had_locs
&& v
->locs
== 0)
1433 next
= v
->next_containing_mem
;
1437 vp
= &(*vp
)->next_containing_mem
;
1440 v
->next_containing_mem
= NULL
;
1445 /* Invalidate DEST, which is being assigned to or clobbered. */
1448 cselib_invalidate_rtx (rtx dest
)
1450 while (GET_CODE (dest
) == SUBREG
1451 || GET_CODE (dest
) == ZERO_EXTRACT
1452 || GET_CODE (dest
) == STRICT_LOW_PART
)
1453 dest
= XEXP (dest
, 0);
1456 cselib_invalidate_regno (REGNO (dest
), GET_MODE (dest
));
1457 else if (MEM_P (dest
))
1458 cselib_invalidate_mem (dest
);
1460 /* Some machines don't define AUTO_INC_DEC, but they still use push
1461 instructions. We need to catch that case here in order to
1462 invalidate the stack pointer correctly. Note that invalidating
1463 the stack pointer is different from invalidating DEST. */
1464 if (push_operand (dest
, GET_MODE (dest
)))
1465 cselib_invalidate_rtx (stack_pointer_rtx
);
1468 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1471 cselib_invalidate_rtx_note_stores (rtx dest
, const_rtx ignore ATTRIBUTE_UNUSED
,
1472 void *data ATTRIBUTE_UNUSED
)
1474 cselib_invalidate_rtx (dest
);
1477 /* Record the result of a SET instruction. DEST is being set; the source
1478 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1479 describes its address. */
1482 cselib_record_set (rtx dest
, cselib_val
*src_elt
, cselib_val
*dest_addr_elt
)
1484 int dreg
= REG_P (dest
) ? (int) REGNO (dest
) : -1;
1486 if (src_elt
== 0 || side_effects_p (dest
))
1491 if (dreg
< FIRST_PSEUDO_REGISTER
)
1493 unsigned int n
= hard_regno_nregs
[dreg
][GET_MODE (dest
)];
1495 if (n
> max_value_regs
)
1499 if (REG_VALUES (dreg
) == 0)
1501 used_regs
[n_used_regs
++] = dreg
;
1502 REG_VALUES (dreg
) = new_elt_list (REG_VALUES (dreg
), src_elt
);
1506 /* The register should have been invalidated. */
1507 gcc_assert (REG_VALUES (dreg
)->elt
== 0);
1508 REG_VALUES (dreg
)->elt
= src_elt
;
1511 if (src_elt
->locs
== 0)
1513 src_elt
->locs
= new_elt_loc_list (src_elt
->locs
, dest
);
1515 else if (MEM_P (dest
) && dest_addr_elt
!= 0
1516 && cselib_record_memory
)
1518 if (src_elt
->locs
== 0)
1520 add_mem_for_addr (dest_addr_elt
, src_elt
, dest
);
1524 /* Describe a single set that is part of an insn. */
1529 cselib_val
*src_elt
;
1530 cselib_val
*dest_addr_elt
;
1533 /* There is no good way to determine how many elements there can be
1534 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1535 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1537 /* Record the effects of any sets in INSN. */
1539 cselib_record_sets (rtx insn
)
1543 struct set sets
[MAX_SETS
];
1544 rtx body
= PATTERN (insn
);
1547 body
= PATTERN (insn
);
1548 if (GET_CODE (body
) == COND_EXEC
)
1550 cond
= COND_EXEC_TEST (body
);
1551 body
= COND_EXEC_CODE (body
);
1554 /* Find all sets. */
1555 if (GET_CODE (body
) == SET
)
1557 sets
[0].src
= SET_SRC (body
);
1558 sets
[0].dest
= SET_DEST (body
);
1561 else if (GET_CODE (body
) == PARALLEL
)
1563 /* Look through the PARALLEL and record the values being
1564 set, if possible. Also handle any CLOBBERs. */
1565 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
1567 rtx x
= XVECEXP (body
, 0, i
);
1569 if (GET_CODE (x
) == SET
)
1571 sets
[n_sets
].src
= SET_SRC (x
);
1572 sets
[n_sets
].dest
= SET_DEST (x
);
1578 /* Look up the values that are read. Do this before invalidating the
1579 locations that are written. */
1580 for (i
= 0; i
< n_sets
; i
++)
1582 rtx dest
= sets
[i
].dest
;
1584 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1585 the low part after invalidating any knowledge about larger modes. */
1586 if (GET_CODE (sets
[i
].dest
) == STRICT_LOW_PART
)
1587 sets
[i
].dest
= dest
= XEXP (dest
, 0);
1589 /* We don't know how to record anything but REG or MEM. */
1591 || (MEM_P (dest
) && cselib_record_memory
))
1593 rtx src
= sets
[i
].src
;
1595 src
= gen_rtx_IF_THEN_ELSE (GET_MODE (src
), cond
, src
, dest
);
1596 sets
[i
].src_elt
= cselib_lookup (src
, GET_MODE (dest
), 1);
1598 sets
[i
].dest_addr_elt
= cselib_lookup (XEXP (dest
, 0), Pmode
, 1);
1600 sets
[i
].dest_addr_elt
= 0;
1604 /* Invalidate all locations written by this insn. Note that the elts we
1605 looked up in the previous loop aren't affected, just some of their
1606 locations may go away. */
1607 note_stores (body
, cselib_invalidate_rtx_note_stores
, NULL
);
1609 /* If this is an asm, look for duplicate sets. This can happen when the
1610 user uses the same value as an output multiple times. This is valid
1611 if the outputs are not actually used thereafter. Treat this case as
1612 if the value isn't actually set. We do this by smashing the destination
1613 to pc_rtx, so that we won't record the value later. */
1614 if (n_sets
>= 2 && asm_noperands (body
) >= 0)
1616 for (i
= 0; i
< n_sets
; i
++)
1618 rtx dest
= sets
[i
].dest
;
1619 if (REG_P (dest
) || MEM_P (dest
))
1622 for (j
= i
+ 1; j
< n_sets
; j
++)
1623 if (rtx_equal_p (dest
, sets
[j
].dest
))
1625 sets
[i
].dest
= pc_rtx
;
1626 sets
[j
].dest
= pc_rtx
;
1632 /* Now enter the equivalences in our tables. */
1633 for (i
= 0; i
< n_sets
; i
++)
1635 rtx dest
= sets
[i
].dest
;
1637 || (MEM_P (dest
) && cselib_record_memory
))
1638 cselib_record_set (dest
, sets
[i
].src_elt
, sets
[i
].dest_addr_elt
);
1642 /* Record the effects of INSN. */
1645 cselib_process_insn (rtx insn
)
1650 if (find_reg_note (insn
, REG_LIBCALL
, NULL
))
1651 cselib_current_insn_in_libcall
= true;
1652 cselib_current_insn
= insn
;
1654 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1657 && find_reg_note (insn
, REG_SETJMP
, NULL
))
1658 || (NONJUMP_INSN_P (insn
)
1659 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
1660 && MEM_VOLATILE_P (PATTERN (insn
))))
1662 if (find_reg_note (insn
, REG_RETVAL
, NULL
))
1663 cselib_current_insn_in_libcall
= false;
1664 cselib_clear_table ();
1668 if (! INSN_P (insn
))
1670 if (find_reg_note (insn
, REG_RETVAL
, NULL
))
1671 cselib_current_insn_in_libcall
= false;
1672 cselib_current_insn
= 0;
1676 /* If this is a call instruction, forget anything stored in a
1677 call clobbered register, or, if this is not a const call, in
1681 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1682 if (call_used_regs
[i
]
1683 || (REG_VALUES (i
) && REG_VALUES (i
)->elt
1684 && HARD_REGNO_CALL_PART_CLOBBERED (i
,
1685 GET_MODE (REG_VALUES (i
)->elt
->val_rtx
))))
1686 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
1688 if (! CONST_OR_PURE_CALL_P (insn
))
1689 cselib_invalidate_mem (callmem
);
1692 cselib_record_sets (insn
);
1695 /* Clobber any registers which appear in REG_INC notes. We
1696 could keep track of the changes to their values, but it is
1697 unlikely to help. */
1698 for (x
= REG_NOTES (insn
); x
; x
= XEXP (x
, 1))
1699 if (REG_NOTE_KIND (x
) == REG_INC
)
1700 cselib_invalidate_rtx (XEXP (x
, 0));
1703 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1704 after we have processed the insn. */
1706 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
1707 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
1708 cselib_invalidate_rtx (XEXP (XEXP (x
, 0), 0));
1710 if (find_reg_note (insn
, REG_RETVAL
, NULL
))
1711 cselib_current_insn_in_libcall
= false;
1712 cselib_current_insn
= 0;
1714 if (n_useless_values
> MAX_USELESS_VALUES
1715 /* remove_useless_values is linear in the hash table size. Avoid
1716 quadratic behavior for very large hashtables with very few
1717 useless elements. */
1718 && (unsigned int)n_useless_values
> cselib_hash_table
->n_elements
/ 4)
1719 remove_useless_values ();
1722 /* Initialize cselib for one pass. The caller must also call
1723 init_alias_analysis. */
1726 cselib_init (bool record_memory
)
1728 elt_list_pool
= create_alloc_pool ("elt_list",
1729 sizeof (struct elt_list
), 10);
1730 elt_loc_list_pool
= create_alloc_pool ("elt_loc_list",
1731 sizeof (struct elt_loc_list
), 10);
1732 cselib_val_pool
= create_alloc_pool ("cselib_val_list",
1733 sizeof (cselib_val
), 10);
1734 value_pool
= create_alloc_pool ("value", RTX_CODE_SIZE (VALUE
), 100);
1735 cselib_record_memory
= record_memory
;
1737 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
1738 see canon_true_dependence. This is only created once. */
1740 callmem
= gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
));
1742 cselib_nregs
= max_reg_num ();
1744 /* We preserve reg_values to allow expensive clearing of the whole thing.
1745 Reallocate it however if it happens to be too large. */
1746 if (!reg_values
|| reg_values_size
< cselib_nregs
1747 || (reg_values_size
> 10 && reg_values_size
> cselib_nregs
* 4))
1751 /* Some space for newly emit instructions so we don't end up
1752 reallocating in between passes. */
1753 reg_values_size
= cselib_nregs
+ (63 + cselib_nregs
) / 16;
1754 reg_values
= XCNEWVEC (struct elt_list
*, reg_values_size
);
1756 used_regs
= XNEWVEC (unsigned int, cselib_nregs
);
1758 cselib_hash_table
= htab_create (31, get_value_hash
,
1759 entry_and_rtx_equal_p
, NULL
);
1760 cselib_current_insn_in_libcall
= false;
1763 /* Called when the current user is done with cselib. */
1766 cselib_finish (void)
1768 cselib_discard_hook
= NULL
;
1769 free_alloc_pool (elt_list_pool
);
1770 free_alloc_pool (elt_loc_list_pool
);
1771 free_alloc_pool (cselib_val_pool
);
1772 free_alloc_pool (value_pool
);
1773 cselib_clear_table ();
1774 htab_delete (cselib_hash_table
);
1777 cselib_hash_table
= 0;
1778 n_useless_values
= 0;
1779 next_unknown_value
= 0;
1782 #include "gt-cselib.h"