Mark ChangeLog
[official-gcc.git] / gcc / flow.c
blob4063512abe97609a305f36d1077d9f9c6baa5124
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
168 /* This is the maximum number of times we process any given block if the
169 latest loop depth count is smaller than this number. Only used for the
170 failure strategy to avoid infinite loops in calculate_global_regs_live. */
171 #define MAX_LIVENESS_ROUNDS 20
173 /* Nonzero if the second flow pass has completed. */
174 int flow2_completed;
176 /* Maximum register number used in this function, plus one. */
178 int max_regno;
180 /* Indexed by n, giving various register information */
182 varray_type reg_n_info;
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 regset regs_live_at_setjmp;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
195 /* Set of registers that may be eliminable. These are handled specially
196 in updating regs_ever_live. */
198 static HARD_REG_SET elim_reg_set;
200 /* Holds information for tracking conditional register life information. */
201 struct reg_cond_life_info
203 /* A boolean expression of conditions under which a register is dead. */
204 rtx condition;
205 /* Conditions under which a register is dead at the basic block end. */
206 rtx orig_condition;
208 /* A boolean expression of conditions under which a register has been
209 stored into. */
210 rtx stores;
212 /* ??? Could store mask of bytes that are dead, so that we could finally
213 track lifetimes of multi-word registers accessed via subregs. */
216 /* For use in communicating between propagate_block and its subroutines.
217 Holds all information needed to compute life and def-use information. */
219 struct propagate_block_info
221 /* The basic block we're considering. */
222 basic_block bb;
224 /* Bit N is set if register N is conditionally or unconditionally live. */
225 regset reg_live;
227 /* Bit N is set if register N is set this insn. */
228 regset new_set;
230 /* Element N is the next insn that uses (hard or pseudo) register N
231 within the current basic block; or zero, if there is no such insn. */
232 rtx *reg_next_use;
234 /* Contains a list of all the MEMs we are tracking for dead store
235 elimination. */
236 rtx mem_set_list;
238 /* If non-null, record the set of registers set unconditionally in the
239 basic block. */
240 regset local_set;
242 /* If non-null, record the set of registers set conditionally in the
243 basic block. */
244 regset cond_local_set;
246 #ifdef HAVE_conditional_execution
247 /* Indexed by register number, holds a reg_cond_life_info for each
248 register that is not unconditionally live or dead. */
249 splay_tree reg_cond_dead;
251 /* Bit N is set if register N is in an expression in reg_cond_dead. */
252 regset reg_cond_reg;
253 #endif
255 /* The length of mem_set_list. */
256 int mem_set_list_len;
258 /* Nonzero if the value of CC0 is live. */
259 int cc0_live;
261 /* Flags controlling the set of information propagate_block collects. */
262 int flags;
263 /* Index of instruction being processed. */
264 int insn_num;
267 /* Number of dead insns removed. */
268 static int ndead;
270 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
271 where given register died. When the register is marked alive, we use the
272 information to compute amount of instructions life range cross.
273 (remember, we are walking backward). This can be computed as current
274 pbi->insn_num - reg_deaths[regno].
275 At the end of processing each basic block, the remaining live registers
276 are inspected and liferanges are increased same way so liverange of global
277 registers are computed correctly.
279 The array is maintained clear for dead registers, so it can be safely reused
280 for next basic block without expensive memset of the whole array after
281 reseting pbi->insn_num to 0. */
283 static int *reg_deaths;
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
289 /* Forward declarations */
290 static int verify_wide_reg_1 (rtx *, void *);
291 static void verify_wide_reg (int, basic_block);
292 static void verify_local_live_at_start (regset, basic_block);
293 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
294 static void notice_stack_pointer_modification (void);
295 static void mark_reg (rtx, void *);
296 static void mark_regs_live_at_end (regset);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 static int count_or_remove_death_notes_bb (basic_block, int);
332 static void allocate_bb_life_data (void);
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
338 first_insn_after_basic_block_note (basic_block block)
340 rtx insn;
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
351 return NEXT_INSN (insn);
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
357 void
358 life_analysis (FILE *file, int flags)
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
368 CLEAR_HARD_REG_SET (elim_reg_set);
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
425 if (flags & PROP_REG_INFO)
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
433 free (reg_deaths);
434 reg_deaths = NULL;
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
441 if (file)
442 dump_flow_info (file);
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
458 if (REG_P (x) && REGNO (x) == regno)
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
464 return 0;
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
470 static void
471 verify_wide_reg (int regno, basic_block bb)
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
475 while (1)
477 if (INSN_P (head))
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
489 if (dump_file)
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
494 fatal_error ("internal consistency failure");
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
503 if (reload_completed)
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
509 if (dump_file)
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
518 fatal_error ("internal consistency failure");
521 else
523 unsigned i;
524 reg_set_iterator rsi;
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
534 if (dump_file)
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
540 fatal_error ("internal consistency failure");
542 /* Verify that the now-live register is wider than word_mode. */
543 verify_wide_reg (i, bb);
548 /* Updates life information starting with the basic blocks set in BLOCKS.
549 If BLOCKS is null, consider it to be the universal set.
551 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
552 we are only expecting local modifications to basic blocks. If we find
553 extra registers live at the beginning of a block, then we either killed
554 useful data, or we have a broken split that wants data not provided.
555 If we find registers removed from live_at_start, that means we have
556 a broken peephole that is killing a register it shouldn't.
558 ??? This is not true in one situation -- when a pre-reload splitter
559 generates subregs of a multi-word pseudo, current life analysis will
560 lose the kill. So we _can_ have a pseudo go live. How irritating.
562 It is also not true when a peephole decides that it doesn't need one
563 or more of the inputs.
565 Including PROP_REG_INFO does not properly refresh regs_ever_live
566 unless the caller resets it to zero. */
569 update_life_info (sbitmap blocks, enum update_life_extent extent,
570 int prop_flags)
572 regset tmp;
573 unsigned i;
574 int stabilized_prop_flags = prop_flags;
575 basic_block bb;
577 tmp = ALLOC_REG_SET (&reg_obstack);
578 ndead = 0;
580 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
581 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
583 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
584 ? TV_LIFE_UPDATE : TV_LIFE);
586 /* Changes to the CFG are only allowed when
587 doing a global update for the entire CFG. */
588 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
589 || (extent != UPDATE_LIFE_LOCAL && !blocks));
591 /* For a global update, we go through the relaxation process again. */
592 if (extent != UPDATE_LIFE_LOCAL)
594 for ( ; ; )
596 int changed = 0;
598 calculate_global_regs_live (blocks, blocks,
599 prop_flags & (PROP_SCAN_DEAD_CODE
600 | PROP_SCAN_DEAD_STORES
601 | PROP_ALLOW_CFG_CHANGES));
603 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 break;
607 /* Removing dead code may allow the CFG to be simplified which
608 in turn may allow for further dead code detection / removal. */
609 FOR_EACH_BB_REVERSE (bb)
611 COPY_REG_SET (tmp, bb->global_live_at_end);
612 changed |= propagate_block (bb, tmp, NULL, NULL,
613 prop_flags & (PROP_SCAN_DEAD_CODE
614 | PROP_SCAN_DEAD_STORES
615 | PROP_KILL_DEAD_CODE));
618 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
619 subsequent propagate_block calls, since removing or acting as
620 removing dead code can affect global register liveness, which
621 is supposed to be finalized for this call after this loop. */
622 stabilized_prop_flags
623 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
624 | PROP_KILL_DEAD_CODE);
626 if (! changed)
627 break;
629 /* We repeat regardless of what cleanup_cfg says. If there were
630 instructions deleted above, that might have been only a
631 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
632 Further improvement may be possible. */
633 cleanup_cfg (CLEANUP_EXPENSIVE);
635 /* Zap the life information from the last round. If we don't
636 do this, we can wind up with registers that no longer appear
637 in the code being marked live at entry. */
638 FOR_EACH_BB (bb)
640 CLEAR_REG_SET (bb->global_live_at_start);
641 CLEAR_REG_SET (bb->global_live_at_end);
645 /* If asked, remove notes from the blocks we'll update. */
646 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
647 count_or_remove_death_notes (blocks, 1);
650 /* Clear log links in case we are asked to (re)compute them. */
651 if (prop_flags & PROP_LOG_LINKS)
652 clear_log_links (blocks);
654 if (blocks)
656 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
658 bb = BASIC_BLOCK (i);
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
663 if (extent == UPDATE_LIFE_LOCAL)
664 verify_local_live_at_start (tmp, bb);
667 else
669 FOR_EACH_BB_REVERSE (bb)
671 COPY_REG_SET (tmp, bb->global_live_at_end);
673 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
675 if (extent == UPDATE_LIFE_LOCAL)
676 verify_local_live_at_start (tmp, bb);
680 FREE_REG_SET (tmp);
682 if (prop_flags & PROP_REG_INFO)
684 reg_set_iterator rsi;
686 /* The only pseudos that are live at the beginning of the function
687 are those that were not set anywhere in the function. local-alloc
688 doesn't know how to handle these correctly, so mark them as not
689 local to any one basic block. */
690 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
691 FIRST_PSEUDO_REGISTER, i, rsi)
692 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
694 /* We have a problem with any pseudoreg that lives across the setjmp.
695 ANSI says that if a user variable does not change in value between
696 the setjmp and the longjmp, then the longjmp preserves it. This
697 includes longjmp from a place where the pseudo appears dead.
698 (In principle, the value still exists if it is in scope.)
699 If the pseudo goes in a hard reg, some other value may occupy
700 that hard reg where this pseudo is dead, thus clobbering the pseudo.
701 Conclusion: such a pseudo must not go in a hard reg. */
702 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
703 FIRST_PSEUDO_REGISTER, i, rsi)
705 if (regno_reg_rtx[i] != 0)
707 REG_LIVE_LENGTH (i) = -1;
708 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
712 if (reg_deaths)
714 free (reg_deaths);
715 reg_deaths = NULL;
717 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
718 ? TV_LIFE_UPDATE : TV_LIFE);
719 if (ndead && dump_file)
720 fprintf (dump_file, "deleted %i dead insns\n", ndead);
721 return ndead;
724 /* Update life information in all blocks where BB_DIRTY is set. */
727 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
729 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
730 int n = 0;
731 basic_block bb;
732 int retval = 0;
734 sbitmap_zero (update_life_blocks);
735 FOR_EACH_BB (bb)
737 if (bb->flags & BB_DIRTY)
739 SET_BIT (update_life_blocks, bb->index);
740 n++;
744 if (n)
745 retval = update_life_info (update_life_blocks, extent, prop_flags);
747 sbitmap_free (update_life_blocks);
748 return retval;
751 /* Free the variables allocated by find_basic_blocks. */
753 void
754 free_basic_block_vars (void)
756 if (basic_block_info)
758 clear_edges ();
759 basic_block_info = NULL;
761 n_basic_blocks = 0;
762 last_basic_block = 0;
764 ENTRY_BLOCK_PTR->aux = NULL;
765 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
766 EXIT_BLOCK_PTR->aux = NULL;
767 EXIT_BLOCK_PTR->global_live_at_start = NULL;
770 /* Delete any insns that copy a register to itself. */
773 delete_noop_moves (void)
775 rtx insn, next;
776 basic_block bb;
777 int nnoops = 0;
779 FOR_EACH_BB (bb)
781 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
783 next = NEXT_INSN (insn);
784 if (INSN_P (insn) && noop_move_p (insn))
786 rtx note;
788 /* If we're about to remove the first insn of a libcall
789 then move the libcall note to the next real insn and
790 update the retval note. */
791 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
792 && XEXP (note, 0) != insn)
794 rtx new_libcall_insn = next_real_insn (insn);
795 rtx retval_note = find_reg_note (XEXP (note, 0),
796 REG_RETVAL, NULL_RTX);
797 REG_NOTES (new_libcall_insn)
798 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
799 REG_NOTES (new_libcall_insn));
800 XEXP (retval_note, 0) = new_libcall_insn;
803 delete_insn_and_edges (insn);
804 nnoops++;
808 if (nnoops && dump_file)
809 fprintf (dump_file, "deleted %i noop moves", nnoops);
810 return nnoops;
813 /* Delete any jump tables never referenced. We can't delete them at the
814 time of removing tablejump insn as they are referenced by the preceding
815 insns computing the destination, so we delay deleting and garbagecollect
816 them once life information is computed. */
817 void
818 delete_dead_jumptables (void)
820 basic_block bb;
822 /* A dead jump table does not belong to any basic block. Scan insns
823 between two adjacent basic blocks. */
824 FOR_EACH_BB (bb)
826 rtx insn, next;
828 for (insn = NEXT_INSN (BB_END (bb));
829 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
830 insn = next)
832 next = NEXT_INSN (insn);
833 if (LABEL_P (insn)
834 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
835 && JUMP_P (next)
836 && (GET_CODE (PATTERN (next)) == ADDR_VEC
837 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
839 rtx label = insn, jump = next;
841 if (dump_file)
842 fprintf (dump_file, "Dead jumptable %i removed\n",
843 INSN_UID (insn));
845 next = NEXT_INSN (next);
846 delete_insn (jump);
847 delete_insn (label);
853 /* Determine if the stack pointer is constant over the life of the function.
854 Only useful before prologues have been emitted. */
856 static void
857 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
858 void *data ATTRIBUTE_UNUSED)
860 if (x == stack_pointer_rtx
861 /* The stack pointer is only modified indirectly as the result
862 of a push until later in flow. See the comments in rtl.texi
863 regarding Embedded Side-Effects on Addresses. */
864 || (MEM_P (x)
865 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
866 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
867 current_function_sp_is_unchanging = 0;
870 static void
871 notice_stack_pointer_modification (void)
873 basic_block bb;
874 rtx insn;
876 /* Assume that the stack pointer is unchanging if alloca hasn't
877 been used. */
878 current_function_sp_is_unchanging = !current_function_calls_alloca;
879 if (! current_function_sp_is_unchanging)
880 return;
882 FOR_EACH_BB (bb)
883 FOR_BB_INSNS (bb, insn)
885 if (INSN_P (insn))
887 /* Check if insn modifies the stack pointer. */
888 note_stores (PATTERN (insn),
889 notice_stack_pointer_modification_1,
890 NULL);
891 if (! current_function_sp_is_unchanging)
892 return;
897 /* Mark a register in SET. Hard registers in large modes get all
898 of their component registers set as well. */
900 static void
901 mark_reg (rtx reg, void *xset)
903 regset set = (regset) xset;
904 int regno = REGNO (reg);
906 gcc_assert (GET_MODE (reg) != BLKmode);
908 SET_REGNO_REG_SET (set, regno);
909 if (regno < FIRST_PSEUDO_REGISTER)
911 int n = hard_regno_nregs[regno][GET_MODE (reg)];
912 while (--n > 0)
913 SET_REGNO_REG_SET (set, regno + n);
917 /* Mark those regs which are needed at the end of the function as live
918 at the end of the last basic block. */
920 static void
921 mark_regs_live_at_end (regset set)
923 unsigned int i;
925 /* If exiting needs the right stack value, consider the stack pointer
926 live at the end of the function. */
927 if ((HAVE_epilogue && epilogue_completed)
928 || ! EXIT_IGNORE_STACK
929 || (! FRAME_POINTER_REQUIRED
930 && ! current_function_calls_alloca
931 && flag_omit_frame_pointer)
932 || current_function_sp_is_unchanging)
934 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
937 /* Mark the frame pointer if needed at the end of the function. If
938 we end up eliminating it, it will be removed from the live list
939 of each basic block by reload. */
941 if (! reload_completed || frame_pointer_needed)
943 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
944 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
945 /* If they are different, also mark the hard frame pointer as live. */
946 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
947 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
948 #endif
951 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
952 /* Many architectures have a GP register even without flag_pic.
953 Assume the pic register is not in use, or will be handled by
954 other means, if it is not fixed. */
955 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
956 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
957 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
958 #endif
960 /* Mark all global registers, and all registers used by the epilogue
961 as being live at the end of the function since they may be
962 referenced by our caller. */
963 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
964 if (global_regs[i] || EPILOGUE_USES (i))
965 SET_REGNO_REG_SET (set, i);
967 if (HAVE_epilogue && epilogue_completed)
969 /* Mark all call-saved registers that we actually used. */
970 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
971 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
972 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
973 SET_REGNO_REG_SET (set, i);
976 #ifdef EH_RETURN_DATA_REGNO
977 /* Mark the registers that will contain data for the handler. */
978 if (reload_completed && current_function_calls_eh_return)
979 for (i = 0; ; ++i)
981 unsigned regno = EH_RETURN_DATA_REGNO(i);
982 if (regno == INVALID_REGNUM)
983 break;
984 SET_REGNO_REG_SET (set, regno);
986 #endif
987 #ifdef EH_RETURN_STACKADJ_RTX
988 if ((! HAVE_epilogue || ! epilogue_completed)
989 && current_function_calls_eh_return)
991 rtx tmp = EH_RETURN_STACKADJ_RTX;
992 if (tmp && REG_P (tmp))
993 mark_reg (tmp, set);
995 #endif
996 #ifdef EH_RETURN_HANDLER_RTX
997 if ((! HAVE_epilogue || ! epilogue_completed)
998 && current_function_calls_eh_return)
1000 rtx tmp = EH_RETURN_HANDLER_RTX;
1001 if (tmp && REG_P (tmp))
1002 mark_reg (tmp, set);
1004 #endif
1006 /* Mark function return value. */
1007 diddle_return_value (mark_reg, set);
1010 /* Propagate global life info around the graph of basic blocks. Begin
1011 considering blocks with their corresponding bit set in BLOCKS_IN.
1012 If BLOCKS_IN is null, consider it the universal set.
1014 BLOCKS_OUT is set for every block that was changed. */
1016 static void
1017 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1019 basic_block *queue, *qhead, *qtail, *qend, bb;
1020 regset tmp, new_live_at_end, invalidated_by_call;
1021 regset registers_made_dead;
1022 bool failure_strategy_required = false;
1023 int *block_accesses;
1025 /* The registers that are modified within this in block. */
1026 regset *local_sets;
1028 /* The registers that are conditionally modified within this block.
1029 In other words, regs that are set only as part of a COND_EXEC. */
1030 regset *cond_local_sets;
1032 int i;
1034 /* Some passes used to forget clear aux field of basic block causing
1035 sick behavior here. */
1036 #ifdef ENABLE_CHECKING
1037 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1038 gcc_assert (!bb->aux);
1039 #endif
1041 tmp = ALLOC_REG_SET (&reg_obstack);
1042 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1043 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1044 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1046 /* Inconveniently, this is only readily available in hard reg set form. */
1047 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1048 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1049 SET_REGNO_REG_SET (invalidated_by_call, i);
1051 /* Allocate space for the sets of local properties. */
1052 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1053 sizeof (regset));
1054 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1055 sizeof (regset));
1057 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1058 because the `head == tail' style test for an empty queue doesn't
1059 work with a full queue. */
1060 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1061 qtail = queue;
1062 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1064 /* Queue the blocks set in the initial mask. Do this in reverse block
1065 number order so that we are more likely for the first round to do
1066 useful work. We use AUX non-null to flag that the block is queued. */
1067 if (blocks_in)
1069 FOR_EACH_BB (bb)
1070 if (TEST_BIT (blocks_in, bb->index))
1072 *--qhead = bb;
1073 bb->aux = bb;
1076 else
1078 FOR_EACH_BB (bb)
1080 *--qhead = bb;
1081 bb->aux = bb;
1085 block_accesses = xcalloc (last_basic_block, sizeof (int));
1087 /* We clean aux when we remove the initially-enqueued bbs, but we
1088 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1089 unconditionally. */
1090 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1092 if (blocks_out)
1093 sbitmap_zero (blocks_out);
1095 /* We work through the queue until there are no more blocks. What
1096 is live at the end of this block is precisely the union of what
1097 is live at the beginning of all its successors. So, we set its
1098 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1099 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1100 this block by walking through the instructions in this block in
1101 reverse order and updating as we go. If that changed
1102 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1103 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1105 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1106 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1107 must either be live at the end of the block, or used within the
1108 block. In the latter case, it will certainly never disappear
1109 from GLOBAL_LIVE_AT_START. In the former case, the register
1110 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1111 for one of the successor blocks. By induction, that cannot
1112 occur.
1114 ??? This reasoning doesn't work if we start from non-empty initial
1115 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1116 1) Updating may not terminate (endless oscillation).
1117 2) Even if it does (and it usually does), the resulting information
1118 may be inaccurate. Consider for example the following case:
1120 a = ...;
1121 while (...) {...} -- 'a' not mentioned at all
1122 ... = a;
1124 If the use of 'a' is deleted between two calculations of liveness
1125 information and the initial sets are not cleared, the information
1126 about a's liveness will get stuck inside the loop and the set will
1127 appear not to be dead.
1129 We do not attempt to solve 2) -- the information is conservatively
1130 correct (i.e. we never claim that something live is dead) and the
1131 amount of optimization opportunities missed due to this problem is
1132 not significant.
1134 1) is more serious. In order to fix it, we monitor the number of times
1135 each block is processed. Once one of the blocks has been processed more
1136 times than the maximum number of rounds, we use the following strategy:
1137 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1138 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1139 add the blocks with changed sets into the queue. Thus we are guaranteed
1140 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1141 in which case the original reasoning above is valid), but in general we
1142 only fix up a few offending registers.
1144 The maximum number of rounds for computing liveness is the largest of
1145 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1147 while (qhead != qtail)
1149 int rescan, changed;
1150 basic_block bb;
1151 edge e;
1152 edge_iterator ei;
1154 bb = *qhead++;
1155 if (qhead == qend)
1156 qhead = queue;
1157 bb->aux = NULL;
1159 /* Should we start using the failure strategy? */
1160 if (bb != ENTRY_BLOCK_PTR)
1162 int max_liveness_rounds =
1163 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1165 block_accesses[bb->index]++;
1166 if (block_accesses[bb->index] > max_liveness_rounds)
1167 failure_strategy_required = true;
1170 /* Begin by propagating live_at_start from the successor blocks. */
1171 CLEAR_REG_SET (new_live_at_end);
1173 if (EDGE_COUNT (bb->succs) > 0)
1174 FOR_EACH_EDGE (e, ei, bb->succs)
1176 basic_block sb = e->dest;
1178 /* Call-clobbered registers die across exception and
1179 call edges. */
1180 /* ??? Abnormal call edges ignored for the moment, as this gets
1181 confused by sibling call edges, which crashes reg-stack. */
1182 if (e->flags & EDGE_EH)
1183 bitmap_ior_and_compl_into (new_live_at_end,
1184 sb->global_live_at_start,
1185 invalidated_by_call);
1186 else
1187 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1189 /* If a target saves one register in another (instead of on
1190 the stack) the save register will need to be live for EH. */
1191 if (e->flags & EDGE_EH)
1192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193 if (EH_USES (i))
1194 SET_REGNO_REG_SET (new_live_at_end, i);
1196 else
1198 /* This might be a noreturn function that throws. And
1199 even if it isn't, getting the unwind info right helps
1200 debugging. */
1201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1202 if (EH_USES (i))
1203 SET_REGNO_REG_SET (new_live_at_end, i);
1206 /* The all-important stack pointer must always be live. */
1207 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1209 /* Before reload, there are a few registers that must be forced
1210 live everywhere -- which might not already be the case for
1211 blocks within infinite loops. */
1212 if (! reload_completed)
1214 /* Any reference to any pseudo before reload is a potential
1215 reference of the frame pointer. */
1216 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1218 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1219 /* Pseudos with argument area equivalences may require
1220 reloading via the argument pointer. */
1221 if (fixed_regs[ARG_POINTER_REGNUM])
1222 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1223 #endif
1225 /* Any constant, or pseudo with constant equivalences, may
1226 require reloading from memory using the pic register. */
1227 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1228 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1229 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1232 if (bb == ENTRY_BLOCK_PTR)
1234 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1235 continue;
1238 /* On our first pass through this block, we'll go ahead and continue.
1239 Recognize first pass by checking if local_set is NULL for this
1240 basic block. On subsequent passes, we get to skip out early if
1241 live_at_end wouldn't have changed. */
1243 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1245 local_sets[bb->index - (INVALID_BLOCK + 1)]
1246 = ALLOC_REG_SET (&reg_obstack);
1247 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1248 = ALLOC_REG_SET (&reg_obstack);
1249 rescan = 1;
1251 else
1253 /* If any bits were removed from live_at_end, we'll have to
1254 rescan the block. This wouldn't be necessary if we had
1255 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1256 local_live is really dependent on live_at_end. */
1257 rescan = bitmap_intersect_compl_p (bb->global_live_at_end,
1258 new_live_at_end);
1260 if (!rescan)
1262 regset cond_local_set;
1264 /* If any of the registers in the new live_at_end set are
1265 conditionally set in this basic block, we must rescan.
1266 This is because conditional lifetimes at the end of the
1267 block do not just take the live_at_end set into
1268 account, but also the liveness at the start of each
1269 successor block. We can miss changes in those sets if
1270 we only compare the new live_at_end against the
1271 previous one. */
1272 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1273 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1276 if (!rescan)
1278 regset local_set;
1280 /* Find the set of changed bits. Take this opportunity
1281 to notice that this set is empty and early out. */
1282 bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end);
1283 if (bitmap_empty_p (tmp))
1284 continue;
1286 /* If any of the changed bits overlap with local_sets[bb],
1287 we'll have to rescan the block. */
1288 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1289 rescan = bitmap_intersect_p (tmp, local_set);
1293 /* Let our caller know that BB changed enough to require its
1294 death notes updated. */
1295 if (blocks_out)
1296 SET_BIT (blocks_out, bb->index);
1298 if (! rescan)
1300 /* Add to live_at_start the set of all registers in
1301 new_live_at_end that aren't in the old live_at_end. */
1303 changed = bitmap_ior_and_compl_into (bb->global_live_at_start,
1304 new_live_at_end,
1305 bb->global_live_at_end);
1306 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1307 if (! changed)
1308 continue;
1310 else
1312 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1314 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1315 into live_at_start. */
1316 propagate_block (bb, new_live_at_end,
1317 local_sets[bb->index - (INVALID_BLOCK + 1)],
1318 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1319 flags);
1321 /* If live_at start didn't change, no need to go farther. */
1322 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1323 continue;
1325 if (failure_strategy_required)
1327 /* Get the list of registers that were removed from the
1328 bb->global_live_at_start set. */
1329 bitmap_and_compl (tmp, bb->global_live_at_start,
1330 new_live_at_end);
1331 if (!bitmap_empty_p (tmp))
1333 bool pbb_changed;
1334 basic_block pbb;
1336 /* It should not happen that one of registers we have
1337 removed last time is disappears again before any other
1338 register does. */
1339 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1340 gcc_assert (pbb_changed);
1342 /* Now remove the registers from all sets. */
1343 FOR_EACH_BB (pbb)
1345 pbb_changed = false;
1347 pbb_changed
1348 |= bitmap_and_compl_into (pbb->global_live_at_start,
1349 registers_made_dead);
1350 pbb_changed
1351 |= bitmap_and_compl_into (pbb->global_live_at_end,
1352 registers_made_dead);
1353 if (!pbb_changed)
1354 continue;
1356 /* Note the (possible) change. */
1357 if (blocks_out)
1358 SET_BIT (blocks_out, pbb->index);
1360 /* Makes sure to really rescan the block. */
1361 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1363 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1364 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1365 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1368 /* Add it to the queue. */
1369 if (pbb->aux == NULL)
1371 *qtail++ = pbb;
1372 if (qtail == qend)
1373 qtail = queue;
1374 pbb->aux = pbb;
1377 continue;
1379 } /* end of failure_strategy_required */
1381 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1384 /* Queue all predecessors of BB so that we may re-examine
1385 their live_at_end. */
1386 FOR_EACH_EDGE (e, ei, bb->preds)
1388 basic_block pb = e->src;
1389 if (pb->aux == NULL)
1391 *qtail++ = pb;
1392 if (qtail == qend)
1393 qtail = queue;
1394 pb->aux = pb;
1399 FREE_REG_SET (tmp);
1400 FREE_REG_SET (new_live_at_end);
1401 FREE_REG_SET (invalidated_by_call);
1402 FREE_REG_SET (registers_made_dead);
1404 if (blocks_out)
1406 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1408 basic_block bb = BASIC_BLOCK (i);
1409 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1410 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1413 else
1415 FOR_EACH_BB (bb)
1417 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1418 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1422 free (block_accesses);
1423 free (queue);
1424 free (cond_local_sets);
1425 free (local_sets);
1429 /* This structure is used to pass parameters to and from the
1430 the function find_regno_partial(). It is used to pass in the
1431 register number we are looking, as well as to return any rtx
1432 we find. */
1434 typedef struct {
1435 unsigned regno_to_find;
1436 rtx retval;
1437 } find_regno_partial_param;
1440 /* Find the rtx for the reg numbers specified in 'data' if it is
1441 part of an expression which only uses part of the register. Return
1442 it in the structure passed in. */
1443 static int
1444 find_regno_partial (rtx *ptr, void *data)
1446 find_regno_partial_param *param = (find_regno_partial_param *)data;
1447 unsigned reg = param->regno_to_find;
1448 param->retval = NULL_RTX;
1450 if (*ptr == NULL_RTX)
1451 return 0;
1453 switch (GET_CODE (*ptr))
1455 case ZERO_EXTRACT:
1456 case SIGN_EXTRACT:
1457 case STRICT_LOW_PART:
1458 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1460 param->retval = XEXP (*ptr, 0);
1461 return 1;
1463 break;
1465 case SUBREG:
1466 if (REG_P (SUBREG_REG (*ptr))
1467 && REGNO (SUBREG_REG (*ptr)) == reg)
1469 param->retval = SUBREG_REG (*ptr);
1470 return 1;
1472 break;
1474 default:
1475 break;
1478 return 0;
1481 /* Process all immediate successors of the entry block looking for pseudo
1482 registers which are live on entry. Find all of those whose first
1483 instance is a partial register reference of some kind, and initialize
1484 them to 0 after the entry block. This will prevent bit sets within
1485 registers whose value is unknown, and may contain some kind of sticky
1486 bits we don't want. */
1489 initialize_uninitialized_subregs (void)
1491 rtx insn;
1492 edge e;
1493 unsigned reg, did_something = 0;
1494 find_regno_partial_param param;
1495 edge_iterator ei;
1497 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1499 basic_block bb = e->dest;
1500 regset map = bb->global_live_at_start;
1501 reg_set_iterator rsi;
1503 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1505 int uid = REGNO_FIRST_UID (reg);
1506 rtx i;
1508 /* Find an insn which mentions the register we are looking for.
1509 Its preferable to have an instance of the register's rtl since
1510 there may be various flags set which we need to duplicate.
1511 If we can't find it, its probably an automatic whose initial
1512 value doesn't matter, or hopefully something we don't care about. */
1513 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1515 if (i != NULL_RTX)
1517 /* Found the insn, now get the REG rtx, if we can. */
1518 param.regno_to_find = reg;
1519 for_each_rtx (&i, find_regno_partial, &param);
1520 if (param.retval != NULL_RTX)
1522 start_sequence ();
1523 emit_move_insn (param.retval,
1524 CONST0_RTX (GET_MODE (param.retval)));
1525 insn = get_insns ();
1526 end_sequence ();
1527 insert_insn_on_edge (insn, e);
1528 did_something = 1;
1534 if (did_something)
1535 commit_edge_insertions ();
1536 return did_something;
1540 /* Subroutines of life analysis. */
1542 /* Allocate the permanent data structures that represent the results
1543 of life analysis. */
1545 static void
1546 allocate_bb_life_data (void)
1548 basic_block bb;
1550 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1552 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1553 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1556 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1559 void
1560 allocate_reg_life_data (void)
1562 int i;
1564 max_regno = max_reg_num ();
1565 gcc_assert (!reg_deaths);
1566 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1568 /* Recalculate the register space, in case it has grown. Old style
1569 vector oriented regsets would set regset_{size,bytes} here also. */
1570 allocate_reg_info (max_regno, FALSE, FALSE);
1572 /* Reset all the data we'll collect in propagate_block and its
1573 subroutines. */
1574 for (i = 0; i < max_regno; i++)
1576 REG_N_SETS (i) = 0;
1577 REG_N_REFS (i) = 0;
1578 REG_N_DEATHS (i) = 0;
1579 REG_N_CALLS_CROSSED (i) = 0;
1580 REG_N_THROWING_CALLS_CROSSED (i) = 0;
1581 REG_LIVE_LENGTH (i) = 0;
1582 REG_FREQ (i) = 0;
1583 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1587 /* Delete dead instructions for propagate_block. */
1589 static void
1590 propagate_block_delete_insn (rtx insn)
1592 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1594 /* If the insn referred to a label, and that label was attached to
1595 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1596 pretty much mandatory to delete it, because the ADDR_VEC may be
1597 referencing labels that no longer exist.
1599 INSN may reference a deleted label, particularly when a jump
1600 table has been optimized into a direct jump. There's no
1601 real good way to fix up the reference to the deleted label
1602 when the label is deleted, so we just allow it here. */
1604 if (inote && LABEL_P (inote))
1606 rtx label = XEXP (inote, 0);
1607 rtx next;
1609 /* The label may be forced if it has been put in the constant
1610 pool. If that is the only use we must discard the table
1611 jump following it, but not the label itself. */
1612 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1613 && (next = next_nonnote_insn (label)) != NULL
1614 && JUMP_P (next)
1615 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1616 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1618 rtx pat = PATTERN (next);
1619 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1620 int len = XVECLEN (pat, diff_vec_p);
1621 int i;
1623 for (i = 0; i < len; i++)
1624 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1626 delete_insn_and_edges (next);
1627 ndead++;
1631 delete_insn_and_edges (insn);
1632 ndead++;
1635 /* Delete dead libcalls for propagate_block. Return the insn
1636 before the libcall. */
1638 static rtx
1639 propagate_block_delete_libcall (rtx insn, rtx note)
1641 rtx first = XEXP (note, 0);
1642 rtx before = PREV_INSN (first);
1644 delete_insn_chain_and_edges (first, insn);
1645 ndead++;
1646 return before;
1649 /* Update the life-status of regs for one insn. Return the previous insn. */
1652 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1654 rtx prev = PREV_INSN (insn);
1655 int flags = pbi->flags;
1656 int insn_is_dead = 0;
1657 int libcall_is_dead = 0;
1658 rtx note;
1659 unsigned i;
1661 if (! INSN_P (insn))
1662 return prev;
1664 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1665 if (flags & PROP_SCAN_DEAD_CODE)
1667 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1668 libcall_is_dead = (insn_is_dead && note != 0
1669 && libcall_dead_p (pbi, note, insn));
1672 /* If an instruction consists of just dead store(s) on final pass,
1673 delete it. */
1674 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1676 /* If we're trying to delete a prologue or epilogue instruction
1677 that isn't flagged as possibly being dead, something is wrong.
1678 But if we are keeping the stack pointer depressed, we might well
1679 be deleting insns that are used to compute the amount to update
1680 it by, so they are fine. */
1681 if (reload_completed
1682 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1683 && (TYPE_RETURNS_STACK_DEPRESSED
1684 (TREE_TYPE (current_function_decl))))
1685 && (((HAVE_epilogue || HAVE_prologue)
1686 && prologue_epilogue_contains (insn))
1687 || (HAVE_sibcall_epilogue
1688 && sibcall_epilogue_contains (insn)))
1689 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1690 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1692 /* Record sets. Do this even for dead instructions, since they
1693 would have killed the values if they hadn't been deleted. */
1694 mark_set_regs (pbi, PATTERN (insn), insn);
1696 /* CC0 is now known to be dead. Either this insn used it,
1697 in which case it doesn't anymore, or clobbered it,
1698 so the next insn can't use it. */
1699 pbi->cc0_live = 0;
1701 if (libcall_is_dead)
1702 prev = propagate_block_delete_libcall (insn, note);
1703 else
1706 /* If INSN contains a RETVAL note and is dead, but the libcall
1707 as a whole is not dead, then we want to remove INSN, but
1708 not the whole libcall sequence.
1710 However, we need to also remove the dangling REG_LIBCALL
1711 note so that we do not have mis-matched LIBCALL/RETVAL
1712 notes. In theory we could find a new location for the
1713 REG_RETVAL note, but it hardly seems worth the effort.
1715 NOTE at this point will be the RETVAL note if it exists. */
1716 if (note)
1718 rtx libcall_note;
1720 libcall_note
1721 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1722 remove_note (XEXP (note, 0), libcall_note);
1725 /* Similarly if INSN contains a LIBCALL note, remove the
1726 dangling REG_RETVAL note. */
1727 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1728 if (note)
1730 rtx retval_note;
1732 retval_note
1733 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1734 remove_note (XEXP (note, 0), retval_note);
1737 /* Now delete INSN. */
1738 propagate_block_delete_insn (insn);
1741 return prev;
1744 /* See if this is an increment or decrement that can be merged into
1745 a following memory address. */
1746 #ifdef AUTO_INC_DEC
1748 rtx x = single_set (insn);
1750 /* Does this instruction increment or decrement a register? */
1751 if ((flags & PROP_AUTOINC)
1752 && x != 0
1753 && REG_P (SET_DEST (x))
1754 && (GET_CODE (SET_SRC (x)) == PLUS
1755 || GET_CODE (SET_SRC (x)) == MINUS)
1756 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1757 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1758 /* Ok, look for a following memory ref we can combine with.
1759 If one is found, change the memory ref to a PRE_INC
1760 or PRE_DEC, cancel this insn, and return 1.
1761 Return 0 if nothing has been done. */
1762 && try_pre_increment_1 (pbi, insn))
1763 return prev;
1765 #endif /* AUTO_INC_DEC */
1767 CLEAR_REG_SET (pbi->new_set);
1769 /* If this is not the final pass, and this insn is copying the value of
1770 a library call and it's dead, don't scan the insns that perform the
1771 library call, so that the call's arguments are not marked live. */
1772 if (libcall_is_dead)
1774 /* Record the death of the dest reg. */
1775 mark_set_regs (pbi, PATTERN (insn), insn);
1777 insn = XEXP (note, 0);
1778 return PREV_INSN (insn);
1780 else if (GET_CODE (PATTERN (insn)) == SET
1781 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1782 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1783 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1784 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1786 /* We have an insn to pop a constant amount off the stack.
1787 (Such insns use PLUS regardless of the direction of the stack,
1788 and any insn to adjust the stack by a constant is always a pop
1789 or part of a push.)
1790 These insns, if not dead stores, have no effect on life, though
1791 they do have an effect on the memory stores we are tracking. */
1792 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1793 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1794 concludes that the stack pointer is not modified. */
1795 mark_set_regs (pbi, PATTERN (insn), insn);
1797 else
1799 rtx note;
1800 /* Any regs live at the time of a call instruction must not go
1801 in a register clobbered by calls. Find all regs now live and
1802 record this for them. */
1804 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1806 reg_set_iterator rsi;
1807 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1808 REG_N_CALLS_CROSSED (i)++;
1809 if (can_throw_internal (insn))
1810 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1811 REG_N_THROWING_CALLS_CROSSED (i)++;
1814 /* Record sets. Do this even for dead instructions, since they
1815 would have killed the values if they hadn't been deleted. */
1816 mark_set_regs (pbi, PATTERN (insn), insn);
1818 if (CALL_P (insn))
1820 regset live_at_end;
1821 bool sibcall_p;
1822 rtx note, cond;
1823 int i;
1825 cond = NULL_RTX;
1826 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1827 cond = COND_EXEC_TEST (PATTERN (insn));
1829 /* Non-constant calls clobber memory, constant calls do not
1830 clobber memory, though they may clobber outgoing arguments
1831 on the stack. */
1832 if (! CONST_OR_PURE_CALL_P (insn))
1834 free_EXPR_LIST_list (&pbi->mem_set_list);
1835 pbi->mem_set_list_len = 0;
1837 else
1838 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1840 /* There may be extra registers to be clobbered. */
1841 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1842 note;
1843 note = XEXP (note, 1))
1844 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1845 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1846 cond, insn, pbi->flags);
1848 /* Calls change all call-used and global registers; sibcalls do not
1849 clobber anything that must be preserved at end-of-function,
1850 except for return values. */
1852 sibcall_p = SIBLING_CALL_P (insn);
1853 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1854 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1855 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1856 && ! (sibcall_p
1857 && REGNO_REG_SET_P (live_at_end, i)
1858 && ! refers_to_regno_p (i, i+1,
1859 current_function_return_rtx,
1860 (rtx *) 0)))
1862 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1863 /* We do not want REG_UNUSED notes for these registers. */
1864 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1865 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1869 /* If an insn doesn't use CC0, it becomes dead since we assume
1870 that every insn clobbers it. So show it dead here;
1871 mark_used_regs will set it live if it is referenced. */
1872 pbi->cc0_live = 0;
1874 /* Record uses. */
1875 if (! insn_is_dead)
1876 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1877 if ((flags & PROP_EQUAL_NOTES)
1878 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1879 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1880 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1882 /* Sometimes we may have inserted something before INSN (such as a move)
1883 when we make an auto-inc. So ensure we will scan those insns. */
1884 #ifdef AUTO_INC_DEC
1885 prev = PREV_INSN (insn);
1886 #endif
1888 if (! insn_is_dead && CALL_P (insn))
1890 int i;
1891 rtx note, cond;
1893 cond = NULL_RTX;
1894 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1895 cond = COND_EXEC_TEST (PATTERN (insn));
1897 /* Calls use their arguments, and may clobber memory which
1898 address involves some register. */
1899 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1900 note;
1901 note = XEXP (note, 1))
1902 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1903 of which mark_used_regs knows how to handle. */
1904 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1906 /* The stack ptr is used (honorarily) by a CALL insn. */
1907 if ((flags & PROP_REG_INFO)
1908 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1909 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1910 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1912 /* Calls may also reference any of the global registers,
1913 so they are made live. */
1914 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1915 if (global_regs[i])
1916 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1920 pbi->insn_num++;
1922 return prev;
1925 /* Initialize a propagate_block_info struct for public consumption.
1926 Note that the structure itself is opaque to this file, but that
1927 the user can use the regsets provided here. */
1929 struct propagate_block_info *
1930 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1931 regset cond_local_set, int flags)
1933 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1935 pbi->bb = bb;
1936 pbi->reg_live = live;
1937 pbi->mem_set_list = NULL_RTX;
1938 pbi->mem_set_list_len = 0;
1939 pbi->local_set = local_set;
1940 pbi->cond_local_set = cond_local_set;
1941 pbi->cc0_live = 0;
1942 pbi->flags = flags;
1943 pbi->insn_num = 0;
1945 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1946 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1947 else
1948 pbi->reg_next_use = NULL;
1950 pbi->new_set = BITMAP_ALLOC (NULL);
1952 #ifdef HAVE_conditional_execution
1953 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1954 free_reg_cond_life_info);
1955 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1957 /* If this block ends in a conditional branch, for each register
1958 live from one side of the branch and not the other, record the
1959 register as conditionally dead. */
1960 if (JUMP_P (BB_END (bb))
1961 && any_condjump_p (BB_END (bb)))
1963 regset diff = ALLOC_REG_SET (&reg_obstack);
1964 basic_block bb_true, bb_false;
1965 unsigned i;
1967 /* Identify the successor blocks. */
1968 bb_true = EDGE_SUCC (bb, 0)->dest;
1969 if (EDGE_COUNT (bb->succs) > 1)
1971 bb_false = EDGE_SUCC (bb, 1)->dest;
1973 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1975 basic_block t = bb_false;
1976 bb_false = bb_true;
1977 bb_true = t;
1979 else
1980 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1982 else
1984 /* This can happen with a conditional jump to the next insn. */
1985 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1987 /* Simplest way to do nothing. */
1988 bb_false = bb_true;
1991 /* Compute which register lead different lives in the successors. */
1992 bitmap_xor (diff, bb_true->global_live_at_start,
1993 bb_false->global_live_at_start);
1995 if (!bitmap_empty_p (diff))
1997 /* Extract the condition from the branch. */
1998 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1999 rtx cond_true = XEXP (set_src, 0);
2000 rtx reg = XEXP (cond_true, 0);
2001 enum rtx_code inv_cond;
2003 if (GET_CODE (reg) == SUBREG)
2004 reg = SUBREG_REG (reg);
2006 /* We can only track conditional lifetimes if the condition is
2007 in the form of a reversible comparison of a register against
2008 zero. If the condition is more complex than that, then it is
2009 safe not to record any information. */
2010 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2011 if (inv_cond != UNKNOWN
2012 && REG_P (reg)
2013 && XEXP (cond_true, 1) == const0_rtx)
2015 rtx cond_false
2016 = gen_rtx_fmt_ee (inv_cond,
2017 GET_MODE (cond_true), XEXP (cond_true, 0),
2018 XEXP (cond_true, 1));
2019 reg_set_iterator rsi;
2021 if (GET_CODE (XEXP (set_src, 1)) == PC)
2023 rtx t = cond_false;
2024 cond_false = cond_true;
2025 cond_true = t;
2028 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2030 /* For each such register, mark it conditionally dead. */
2031 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2033 struct reg_cond_life_info *rcli;
2034 rtx cond;
2036 rcli = xmalloc (sizeof (*rcli));
2038 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
2039 cond = cond_false;
2040 else
2041 cond = cond_true;
2042 rcli->condition = cond;
2043 rcli->stores = const0_rtx;
2044 rcli->orig_condition = cond;
2046 splay_tree_insert (pbi->reg_cond_dead, i,
2047 (splay_tree_value) rcli);
2052 FREE_REG_SET (diff);
2054 #endif
2056 /* If this block has no successors, any stores to the frame that aren't
2057 used later in the block are dead. So make a pass over the block
2058 recording any such that are made and show them dead at the end. We do
2059 a very conservative and simple job here. */
2060 if (optimize
2061 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2062 && (TYPE_RETURNS_STACK_DEPRESSED
2063 (TREE_TYPE (current_function_decl))))
2064 && (flags & PROP_SCAN_DEAD_STORES)
2065 && (EDGE_COUNT (bb->succs) == 0
2066 || (EDGE_COUNT (bb->succs) == 1
2067 && EDGE_SUCC (bb, 0)->dest == EXIT_BLOCK_PTR
2068 && ! current_function_calls_eh_return)))
2070 rtx insn, set;
2071 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2072 if (NONJUMP_INSN_P (insn)
2073 && (set = single_set (insn))
2074 && MEM_P (SET_DEST (set)))
2076 rtx mem = SET_DEST (set);
2077 rtx canon_mem = canon_rtx (mem);
2079 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2080 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2081 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2082 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2083 add_to_mem_set_list (pbi, canon_mem);
2087 return pbi;
2090 /* Release a propagate_block_info struct. */
2092 void
2093 free_propagate_block_info (struct propagate_block_info *pbi)
2095 free_EXPR_LIST_list (&pbi->mem_set_list);
2097 BITMAP_FREE (pbi->new_set);
2099 #ifdef HAVE_conditional_execution
2100 splay_tree_delete (pbi->reg_cond_dead);
2101 BITMAP_FREE (pbi->reg_cond_reg);
2102 #endif
2104 if (pbi->flags & PROP_REG_INFO)
2106 int num = pbi->insn_num;
2107 unsigned i;
2108 reg_set_iterator rsi;
2110 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2112 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2113 reg_deaths[i] = 0;
2116 if (pbi->reg_next_use)
2117 free (pbi->reg_next_use);
2119 free (pbi);
2122 /* Compute the registers live at the beginning of a basic block BB from
2123 those live at the end.
2125 When called, REG_LIVE contains those live at the end. On return, it
2126 contains those live at the beginning.
2128 LOCAL_SET, if non-null, will be set with all registers killed
2129 unconditionally by this basic block.
2130 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2131 killed conditionally by this basic block. If there is any unconditional
2132 set of a register, then the corresponding bit will be set in LOCAL_SET
2133 and cleared in COND_LOCAL_SET.
2134 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2135 case, the resulting set will be equal to the union of the two sets that
2136 would otherwise be computed.
2138 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2141 propagate_block (basic_block bb, regset live, regset local_set,
2142 regset cond_local_set, int flags)
2144 struct propagate_block_info *pbi;
2145 rtx insn, prev;
2146 int changed;
2148 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2150 if (flags & PROP_REG_INFO)
2152 unsigned i;
2153 reg_set_iterator rsi;
2155 /* Process the regs live at the end of the block.
2156 Mark them as not local to any one basic block. */
2157 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2158 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2161 /* Scan the block an insn at a time from end to beginning. */
2163 changed = 0;
2164 for (insn = BB_END (bb); ; insn = prev)
2166 /* If this is a call to `setjmp' et al, warn if any
2167 non-volatile datum is live. */
2168 if ((flags & PROP_REG_INFO)
2169 && CALL_P (insn)
2170 && find_reg_note (insn, REG_SETJMP, NULL))
2171 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2173 prev = propagate_one_insn (pbi, insn);
2174 if (!prev)
2175 changed |= insn != get_insns ();
2176 else
2177 changed |= NEXT_INSN (prev) != insn;
2179 if (insn == BB_HEAD (bb))
2180 break;
2183 free_propagate_block_info (pbi);
2185 return changed;
2188 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2189 (SET expressions whose destinations are registers dead after the insn).
2190 NEEDED is the regset that says which regs are alive after the insn.
2192 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2194 If X is the entire body of an insn, NOTES contains the reg notes
2195 pertaining to the insn. */
2197 static int
2198 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2199 rtx notes ATTRIBUTE_UNUSED)
2201 enum rtx_code code = GET_CODE (x);
2203 /* Don't eliminate insns that may trap. */
2204 if (flag_non_call_exceptions && may_trap_p (x))
2205 return 0;
2207 #ifdef AUTO_INC_DEC
2208 /* As flow is invoked after combine, we must take existing AUTO_INC
2209 expressions into account. */
2210 for (; notes; notes = XEXP (notes, 1))
2212 if (REG_NOTE_KIND (notes) == REG_INC)
2214 int regno = REGNO (XEXP (notes, 0));
2216 /* Don't delete insns to set global regs. */
2217 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2218 || REGNO_REG_SET_P (pbi->reg_live, regno))
2219 return 0;
2222 #endif
2224 /* If setting something that's a reg or part of one,
2225 see if that register's altered value will be live. */
2227 if (code == SET)
2229 rtx r = SET_DEST (x);
2231 #ifdef HAVE_cc0
2232 if (GET_CODE (r) == CC0)
2233 return ! pbi->cc0_live;
2234 #endif
2236 /* A SET that is a subroutine call cannot be dead. */
2237 if (GET_CODE (SET_SRC (x)) == CALL)
2239 if (! call_ok)
2240 return 0;
2243 /* Don't eliminate loads from volatile memory or volatile asms. */
2244 else if (volatile_refs_p (SET_SRC (x)))
2245 return 0;
2247 if (MEM_P (r))
2249 rtx temp, canon_r;
2251 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2252 return 0;
2254 canon_r = canon_rtx (r);
2256 /* Walk the set of memory locations we are currently tracking
2257 and see if one is an identical match to this memory location.
2258 If so, this memory write is dead (remember, we're walking
2259 backwards from the end of the block to the start). Since
2260 rtx_equal_p does not check the alias set or flags, we also
2261 must have the potential for them to conflict (anti_dependence). */
2262 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2263 if (anti_dependence (r, XEXP (temp, 0)))
2265 rtx mem = XEXP (temp, 0);
2267 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2268 && (GET_MODE_SIZE (GET_MODE (canon_r))
2269 <= GET_MODE_SIZE (GET_MODE (mem))))
2270 return 1;
2272 #ifdef AUTO_INC_DEC
2273 /* Check if memory reference matches an auto increment. Only
2274 post increment/decrement or modify are valid. */
2275 if (GET_MODE (mem) == GET_MODE (r)
2276 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2277 || GET_CODE (XEXP (mem, 0)) == POST_INC
2278 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2279 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2280 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2281 return 1;
2282 #endif
2285 else
2287 while (GET_CODE (r) == SUBREG
2288 || GET_CODE (r) == STRICT_LOW_PART
2289 || GET_CODE (r) == ZERO_EXTRACT)
2290 r = XEXP (r, 0);
2292 if (REG_P (r))
2294 int regno = REGNO (r);
2296 /* Obvious. */
2297 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2298 return 0;
2300 /* If this is a hard register, verify that subsequent
2301 words are not needed. */
2302 if (regno < FIRST_PSEUDO_REGISTER)
2304 int n = hard_regno_nregs[regno][GET_MODE (r)];
2306 while (--n > 0)
2307 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2308 return 0;
2311 /* Don't delete insns to set global regs. */
2312 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2313 return 0;
2315 /* Make sure insns to set the stack pointer aren't deleted. */
2316 if (regno == STACK_POINTER_REGNUM)
2317 return 0;
2319 /* ??? These bits might be redundant with the force live bits
2320 in calculate_global_regs_live. We would delete from
2321 sequential sets; whether this actually affects real code
2322 for anything but the stack pointer I don't know. */
2323 /* Make sure insns to set the frame pointer aren't deleted. */
2324 if (regno == FRAME_POINTER_REGNUM
2325 && (! reload_completed || frame_pointer_needed))
2326 return 0;
2327 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2328 if (regno == HARD_FRAME_POINTER_REGNUM
2329 && (! reload_completed || frame_pointer_needed))
2330 return 0;
2331 #endif
2333 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2334 /* Make sure insns to set arg pointer are never deleted
2335 (if the arg pointer isn't fixed, there will be a USE
2336 for it, so we can treat it normally). */
2337 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2338 return 0;
2339 #endif
2341 /* Otherwise, the set is dead. */
2342 return 1;
2347 /* If performing several activities, insn is dead if each activity
2348 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2349 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2350 worth keeping. */
2351 else if (code == PARALLEL)
2353 int i = XVECLEN (x, 0);
2355 for (i--; i >= 0; i--)
2356 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2357 && GET_CODE (XVECEXP (x, 0, i)) != USE
2358 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2359 return 0;
2361 return 1;
2364 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2365 is not necessarily true for hard registers until after reload. */
2366 else if (code == CLOBBER)
2368 if (REG_P (XEXP (x, 0))
2369 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2370 || reload_completed)
2371 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2372 return 1;
2375 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2376 Instances where it is still used are either (1) temporary and the USE
2377 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2378 or (3) hiding bugs elsewhere that are not properly representing data
2379 flow. */
2381 return 0;
2384 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2385 return 1 if the entire library call is dead.
2386 This is true if INSN copies a register (hard or pseudo)
2387 and if the hard return reg of the call insn is dead.
2388 (The caller should have tested the destination of the SET inside
2389 INSN already for death.)
2391 If this insn doesn't just copy a register, then we don't
2392 have an ordinary libcall. In that case, cse could not have
2393 managed to substitute the source for the dest later on,
2394 so we can assume the libcall is dead.
2396 PBI is the block info giving pseudoregs live before this insn.
2397 NOTE is the REG_RETVAL note of the insn. */
2399 static int
2400 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2402 rtx x = single_set (insn);
2404 if (x)
2406 rtx r = SET_SRC (x);
2408 if (REG_P (r) || GET_CODE (r) == SUBREG)
2410 rtx call = XEXP (note, 0);
2411 rtx call_pat;
2412 int i;
2414 /* Find the call insn. */
2415 while (call != insn && !CALL_P (call))
2416 call = NEXT_INSN (call);
2418 /* If there is none, do nothing special,
2419 since ordinary death handling can understand these insns. */
2420 if (call == insn)
2421 return 0;
2423 /* See if the hard reg holding the value is dead.
2424 If this is a PARALLEL, find the call within it. */
2425 call_pat = PATTERN (call);
2426 if (GET_CODE (call_pat) == PARALLEL)
2428 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2429 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2430 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2431 break;
2433 /* This may be a library call that is returning a value
2434 via invisible pointer. Do nothing special, since
2435 ordinary death handling can understand these insns. */
2436 if (i < 0)
2437 return 0;
2439 call_pat = XVECEXP (call_pat, 0, i);
2442 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2443 return 0;
2445 while ((insn = PREV_INSN (insn)) != call)
2447 if (! INSN_P (insn))
2448 continue;
2449 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2450 return 0;
2452 return 1;
2455 return 0;
2458 /* 1 if register REGNO was alive at a place where `setjmp' was called
2459 and was set more than once or is an argument.
2460 Such regs may be clobbered by `longjmp'. */
2463 regno_clobbered_at_setjmp (int regno)
2465 if (n_basic_blocks == 0)
2466 return 0;
2468 return ((REG_N_SETS (regno) > 1
2469 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2470 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2473 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2474 maximal list size; look for overlaps in mode and select the largest. */
2475 static void
2476 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2478 rtx i;
2480 /* We don't know how large a BLKmode store is, so we must not
2481 take them into consideration. */
2482 if (GET_MODE (mem) == BLKmode)
2483 return;
2485 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2487 rtx e = XEXP (i, 0);
2488 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2490 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2492 #ifdef AUTO_INC_DEC
2493 /* If we must store a copy of the mem, we can just modify
2494 the mode of the stored copy. */
2495 if (pbi->flags & PROP_AUTOINC)
2496 PUT_MODE (e, GET_MODE (mem));
2497 else
2498 #endif
2499 XEXP (i, 0) = mem;
2501 return;
2505 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2507 #ifdef AUTO_INC_DEC
2508 /* Store a copy of mem, otherwise the address may be
2509 scrogged by find_auto_inc. */
2510 if (pbi->flags & PROP_AUTOINC)
2511 mem = shallow_copy_rtx (mem);
2512 #endif
2513 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2514 pbi->mem_set_list_len++;
2518 /* INSN references memory, possibly using autoincrement addressing modes.
2519 Find any entries on the mem_set_list that need to be invalidated due
2520 to an address change. */
2522 static int
2523 invalidate_mems_from_autoinc (rtx *px, void *data)
2525 rtx x = *px;
2526 struct propagate_block_info *pbi = data;
2528 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2530 invalidate_mems_from_set (pbi, XEXP (x, 0));
2531 return -1;
2534 return 0;
2537 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2539 static void
2540 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2542 rtx temp = pbi->mem_set_list;
2543 rtx prev = NULL_RTX;
2544 rtx next;
2546 while (temp)
2548 next = XEXP (temp, 1);
2549 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2551 /* Splice this entry out of the list. */
2552 if (prev)
2553 XEXP (prev, 1) = next;
2554 else
2555 pbi->mem_set_list = next;
2556 free_EXPR_LIST_node (temp);
2557 pbi->mem_set_list_len--;
2559 else
2560 prev = temp;
2561 temp = next;
2565 /* Process the registers that are set within X. Their bits are set to
2566 1 in the regset DEAD, because they are dead prior to this insn.
2568 If INSN is nonzero, it is the insn being processed.
2570 FLAGS is the set of operations to perform. */
2572 static void
2573 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2575 rtx cond = NULL_RTX;
2576 rtx link;
2577 enum rtx_code code;
2578 int flags = pbi->flags;
2580 if (insn)
2581 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2583 if (REG_NOTE_KIND (link) == REG_INC)
2584 mark_set_1 (pbi, SET, XEXP (link, 0),
2585 (GET_CODE (x) == COND_EXEC
2586 ? COND_EXEC_TEST (x) : NULL_RTX),
2587 insn, flags);
2589 retry:
2590 switch (code = GET_CODE (x))
2592 case SET:
2593 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2594 flags |= PROP_ASM_SCAN;
2595 /* Fall through */
2596 case CLOBBER:
2597 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2598 return;
2600 case COND_EXEC:
2601 cond = COND_EXEC_TEST (x);
2602 x = COND_EXEC_CODE (x);
2603 goto retry;
2605 case PARALLEL:
2607 int i;
2609 /* We must scan forwards. If we have an asm, we need to set
2610 the PROP_ASM_SCAN flag before scanning the clobbers. */
2611 for (i = 0; i < XVECLEN (x, 0); i++)
2613 rtx sub = XVECEXP (x, 0, i);
2614 switch (code = GET_CODE (sub))
2616 case COND_EXEC:
2617 gcc_assert (!cond);
2619 cond = COND_EXEC_TEST (sub);
2620 sub = COND_EXEC_CODE (sub);
2621 if (GET_CODE (sub) == SET)
2622 goto mark_set;
2623 if (GET_CODE (sub) == CLOBBER)
2624 goto mark_clob;
2625 break;
2627 case SET:
2628 mark_set:
2629 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2630 flags |= PROP_ASM_SCAN;
2631 /* Fall through */
2632 case CLOBBER:
2633 mark_clob:
2634 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2635 break;
2637 case ASM_OPERANDS:
2638 flags |= PROP_ASM_SCAN;
2639 break;
2641 default:
2642 break;
2645 break;
2648 default:
2649 break;
2653 /* Process a single set, which appears in INSN. REG (which may not
2654 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2655 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2656 If the set is conditional (because it appear in a COND_EXEC), COND
2657 will be the condition. */
2659 static void
2660 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2662 int regno_first = -1, regno_last = -1;
2663 unsigned long not_dead = 0;
2664 int i;
2666 /* Modifying just one hardware register of a multi-reg value or just a
2667 byte field of a register does not mean the value from before this insn
2668 is now dead. Of course, if it was dead after it's unused now. */
2670 switch (GET_CODE (reg))
2672 case PARALLEL:
2673 /* Some targets place small structures in registers for return values of
2674 functions. We have to detect this case specially here to get correct
2675 flow information. */
2676 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2677 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2678 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2679 flags);
2680 return;
2682 case SIGN_EXTRACT:
2683 /* SIGN_EXTRACT cannot be an lvalue. */
2684 gcc_unreachable ();
2686 case ZERO_EXTRACT:
2687 case STRICT_LOW_PART:
2688 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2690 reg = XEXP (reg, 0);
2691 while (GET_CODE (reg) == SUBREG
2692 || GET_CODE (reg) == ZERO_EXTRACT
2693 || GET_CODE (reg) == STRICT_LOW_PART);
2694 if (MEM_P (reg))
2695 break;
2696 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2697 /* Fall through. */
2699 case REG:
2700 regno_last = regno_first = REGNO (reg);
2701 if (regno_first < FIRST_PSEUDO_REGISTER)
2702 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2703 break;
2705 case SUBREG:
2706 if (REG_P (SUBREG_REG (reg)))
2708 enum machine_mode outer_mode = GET_MODE (reg);
2709 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2711 /* Identify the range of registers affected. This is moderately
2712 tricky for hard registers. See alter_subreg. */
2714 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2715 if (regno_first < FIRST_PSEUDO_REGISTER)
2717 regno_first += subreg_regno_offset (regno_first, inner_mode,
2718 SUBREG_BYTE (reg),
2719 outer_mode);
2720 regno_last = (regno_first
2721 + hard_regno_nregs[regno_first][outer_mode] - 1);
2723 /* Since we've just adjusted the register number ranges, make
2724 sure REG matches. Otherwise some_was_live will be clear
2725 when it shouldn't have been, and we'll create incorrect
2726 REG_UNUSED notes. */
2727 reg = gen_rtx_REG (outer_mode, regno_first);
2729 else
2731 /* If the number of words in the subreg is less than the number
2732 of words in the full register, we have a well-defined partial
2733 set. Otherwise the high bits are undefined.
2735 This is only really applicable to pseudos, since we just took
2736 care of multi-word hard registers. */
2737 if (((GET_MODE_SIZE (outer_mode)
2738 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2739 < ((GET_MODE_SIZE (inner_mode)
2740 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2741 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2742 regno_first);
2744 reg = SUBREG_REG (reg);
2747 else
2748 reg = SUBREG_REG (reg);
2749 break;
2751 default:
2752 break;
2755 /* If this set is a MEM, then it kills any aliased writes.
2756 If this set is a REG, then it kills any MEMs which use the reg. */
2757 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2759 if (REG_P (reg))
2760 invalidate_mems_from_set (pbi, reg);
2762 /* If the memory reference had embedded side effects (autoincrement
2763 address modes) then we may need to kill some entries on the
2764 memory set list. */
2765 if (insn && MEM_P (reg))
2766 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2768 if (MEM_P (reg) && ! side_effects_p (reg)
2769 /* ??? With more effort we could track conditional memory life. */
2770 && ! cond)
2771 add_to_mem_set_list (pbi, canon_rtx (reg));
2774 if (REG_P (reg)
2775 && ! (regno_first == FRAME_POINTER_REGNUM
2776 && (! reload_completed || frame_pointer_needed))
2777 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2778 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2779 && (! reload_completed || frame_pointer_needed))
2780 #endif
2781 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2782 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2783 #endif
2786 int some_was_live = 0, some_was_dead = 0;
2788 for (i = regno_first; i <= regno_last; ++i)
2790 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2791 if (pbi->local_set)
2793 /* Order of the set operation matters here since both
2794 sets may be the same. */
2795 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2796 if (cond != NULL_RTX
2797 && ! REGNO_REG_SET_P (pbi->local_set, i))
2798 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2799 else
2800 SET_REGNO_REG_SET (pbi->local_set, i);
2802 if (code != CLOBBER)
2803 SET_REGNO_REG_SET (pbi->new_set, i);
2805 some_was_live |= needed_regno;
2806 some_was_dead |= ! needed_regno;
2809 #ifdef HAVE_conditional_execution
2810 /* Consider conditional death in deciding that the register needs
2811 a death note. */
2812 if (some_was_live && ! not_dead
2813 /* The stack pointer is never dead. Well, not strictly true,
2814 but it's very difficult to tell from here. Hopefully
2815 combine_stack_adjustments will fix up the most egregious
2816 errors. */
2817 && regno_first != STACK_POINTER_REGNUM)
2819 for (i = regno_first; i <= regno_last; ++i)
2820 if (! mark_regno_cond_dead (pbi, i, cond))
2821 not_dead |= ((unsigned long) 1) << (i - regno_first);
2823 #endif
2825 /* Additional data to record if this is the final pass. */
2826 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2827 | PROP_DEATH_NOTES | PROP_AUTOINC))
2829 rtx y;
2830 int blocknum = pbi->bb->index;
2832 y = NULL_RTX;
2833 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2835 y = pbi->reg_next_use[regno_first];
2837 /* The next use is no longer next, since a store intervenes. */
2838 for (i = regno_first; i <= regno_last; ++i)
2839 pbi->reg_next_use[i] = 0;
2842 if (flags & PROP_REG_INFO)
2844 for (i = regno_first; i <= regno_last; ++i)
2846 /* Count (weighted) references, stores, etc. This counts a
2847 register twice if it is modified, but that is correct. */
2848 REG_N_SETS (i) += 1;
2849 REG_N_REFS (i) += 1;
2850 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2852 /* The insns where a reg is live are normally counted
2853 elsewhere, but we want the count to include the insn
2854 where the reg is set, and the normal counting mechanism
2855 would not count it. */
2856 REG_LIVE_LENGTH (i) += 1;
2859 /* If this is a hard reg, record this function uses the reg. */
2860 if (regno_first < FIRST_PSEUDO_REGISTER)
2862 for (i = regno_first; i <= regno_last; i++)
2863 regs_ever_live[i] = 1;
2864 if (flags & PROP_ASM_SCAN)
2865 for (i = regno_first; i <= regno_last; i++)
2866 regs_asm_clobbered[i] = 1;
2868 else
2870 /* Keep track of which basic blocks each reg appears in. */
2871 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2872 REG_BASIC_BLOCK (regno_first) = blocknum;
2873 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2874 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2878 if (! some_was_dead)
2880 if (flags & PROP_LOG_LINKS)
2882 /* Make a logical link from the next following insn
2883 that uses this register, back to this insn.
2884 The following insns have already been processed.
2886 We don't build a LOG_LINK for hard registers containing
2887 in ASM_OPERANDs. If these registers get replaced,
2888 we might wind up changing the semantics of the insn,
2889 even if reload can make what appear to be valid
2890 assignments later.
2892 We don't build a LOG_LINK for global registers to
2893 or from a function call. We don't want to let
2894 combine think that it knows what is going on with
2895 global registers. */
2896 if (y && (BLOCK_NUM (y) == blocknum)
2897 && (regno_first >= FIRST_PSEUDO_REGISTER
2898 || (asm_noperands (PATTERN (y)) < 0
2899 && ! ((CALL_P (insn)
2900 || CALL_P (y))
2901 && global_regs[regno_first]))))
2902 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2905 else if (not_dead)
2907 else if (! some_was_live)
2909 if (flags & PROP_REG_INFO)
2910 REG_N_DEATHS (regno_first) += 1;
2912 if (flags & PROP_DEATH_NOTES)
2914 /* Note that dead stores have already been deleted
2915 when possible. If we get here, we have found a
2916 dead store that cannot be eliminated (because the
2917 same insn does something useful). Indicate this
2918 by marking the reg being set as dying here. */
2919 REG_NOTES (insn)
2920 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2923 else
2925 if (flags & PROP_DEATH_NOTES)
2927 /* This is a case where we have a multi-word hard register
2928 and some, but not all, of the words of the register are
2929 needed in subsequent insns. Write REG_UNUSED notes
2930 for those parts that were not needed. This case should
2931 be rare. */
2933 for (i = regno_first; i <= regno_last; ++i)
2934 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2935 REG_NOTES (insn)
2936 = alloc_EXPR_LIST (REG_UNUSED,
2937 regno_reg_rtx[i],
2938 REG_NOTES (insn));
2943 /* Mark the register as being dead. */
2944 if (some_was_live
2945 /* The stack pointer is never dead. Well, not strictly true,
2946 but it's very difficult to tell from here. Hopefully
2947 combine_stack_adjustments will fix up the most egregious
2948 errors. */
2949 && regno_first != STACK_POINTER_REGNUM)
2951 for (i = regno_first; i <= regno_last; ++i)
2952 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2954 if ((pbi->flags & PROP_REG_INFO)
2955 && REGNO_REG_SET_P (pbi->reg_live, i))
2957 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2958 reg_deaths[i] = 0;
2960 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2964 else if (REG_P (reg))
2966 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2967 pbi->reg_next_use[regno_first] = 0;
2969 if ((flags & PROP_REG_INFO) != 0
2970 && (flags & PROP_ASM_SCAN) != 0
2971 && regno_first < FIRST_PSEUDO_REGISTER)
2973 for (i = regno_first; i <= regno_last; i++)
2974 regs_asm_clobbered[i] = 1;
2978 /* If this is the last pass and this is a SCRATCH, show it will be dying
2979 here and count it. */
2980 else if (GET_CODE (reg) == SCRATCH)
2982 if (flags & PROP_DEATH_NOTES)
2983 REG_NOTES (insn)
2984 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2988 #ifdef HAVE_conditional_execution
2989 /* Mark REGNO conditionally dead.
2990 Return true if the register is now unconditionally dead. */
2992 static int
2993 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2995 /* If this is a store to a predicate register, the value of the
2996 predicate is changing, we don't know that the predicate as seen
2997 before is the same as that seen after. Flush all dependent
2998 conditions from reg_cond_dead. This will make all such
2999 conditionally live registers unconditionally live. */
3000 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3001 flush_reg_cond_reg (pbi, regno);
3003 /* If this is an unconditional store, remove any conditional
3004 life that may have existed. */
3005 if (cond == NULL_RTX)
3006 splay_tree_remove (pbi->reg_cond_dead, regno);
3007 else
3009 splay_tree_node node;
3010 struct reg_cond_life_info *rcli;
3011 rtx ncond;
3013 /* Otherwise this is a conditional set. Record that fact.
3014 It may have been conditionally used, or there may be a
3015 subsequent set with a complementary condition. */
3017 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3018 if (node == NULL)
3020 /* The register was unconditionally live previously.
3021 Record the current condition as the condition under
3022 which it is dead. */
3023 rcli = xmalloc (sizeof (*rcli));
3024 rcli->condition = cond;
3025 rcli->stores = cond;
3026 rcli->orig_condition = const0_rtx;
3027 splay_tree_insert (pbi->reg_cond_dead, regno,
3028 (splay_tree_value) rcli);
3030 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3032 /* Not unconditionally dead. */
3033 return 0;
3035 else
3037 /* The register was conditionally live previously.
3038 Add the new condition to the old. */
3039 rcli = (struct reg_cond_life_info *) node->value;
3040 ncond = rcli->condition;
3041 ncond = ior_reg_cond (ncond, cond, 1);
3042 if (rcli->stores == const0_rtx)
3043 rcli->stores = cond;
3044 else if (rcli->stores != const1_rtx)
3045 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3047 /* If the register is now unconditionally dead, remove the entry
3048 in the splay_tree. A register is unconditionally dead if the
3049 dead condition ncond is true. A register is also unconditionally
3050 dead if the sum of all conditional stores is an unconditional
3051 store (stores is true), and the dead condition is identically the
3052 same as the original dead condition initialized at the end of
3053 the block. This is a pointer compare, not an rtx_equal_p
3054 compare. */
3055 if (ncond == const1_rtx
3056 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3057 splay_tree_remove (pbi->reg_cond_dead, regno);
3058 else
3060 rcli->condition = ncond;
3062 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3064 /* Not unconditionally dead. */
3065 return 0;
3070 return 1;
3073 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3075 static void
3076 free_reg_cond_life_info (splay_tree_value value)
3078 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3079 free (rcli);
3082 /* Helper function for flush_reg_cond_reg. */
3084 static int
3085 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3087 struct reg_cond_life_info *rcli;
3088 int *xdata = (int *) data;
3089 unsigned int regno = xdata[0];
3091 /* Don't need to search if last flushed value was farther on in
3092 the in-order traversal. */
3093 if (xdata[1] >= (int) node->key)
3094 return 0;
3096 /* Splice out portions of the expression that refer to regno. */
3097 rcli = (struct reg_cond_life_info *) node->value;
3098 rcli->condition = elim_reg_cond (rcli->condition, regno);
3099 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3100 rcli->stores = elim_reg_cond (rcli->stores, regno);
3102 /* If the entire condition is now false, signal the node to be removed. */
3103 if (rcli->condition == const0_rtx)
3105 xdata[1] = node->key;
3106 return -1;
3108 else
3109 gcc_assert (rcli->condition != const1_rtx);
3111 return 0;
3114 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3116 static void
3117 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3119 int pair[2];
3121 pair[0] = regno;
3122 pair[1] = -1;
3123 while (splay_tree_foreach (pbi->reg_cond_dead,
3124 flush_reg_cond_reg_1, pair) == -1)
3125 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3127 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3130 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3131 For ior/and, the ADD flag determines whether we want to add the new
3132 condition X to the old one unconditionally. If it is zero, we will
3133 only return a new expression if X allows us to simplify part of
3134 OLD, otherwise we return NULL to the caller.
3135 If ADD is nonzero, we will return a new condition in all cases. The
3136 toplevel caller of one of these functions should always pass 1 for
3137 ADD. */
3139 static rtx
3140 ior_reg_cond (rtx old, rtx x, int add)
3142 rtx op0, op1;
3144 if (COMPARISON_P (old))
3146 if (COMPARISON_P (x)
3147 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3148 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3149 return const1_rtx;
3150 if (GET_CODE (x) == GET_CODE (old)
3151 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3152 return old;
3153 if (! add)
3154 return NULL;
3155 return gen_rtx_IOR (0, old, x);
3158 switch (GET_CODE (old))
3160 case IOR:
3161 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3162 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3163 if (op0 != NULL || op1 != NULL)
3165 if (op0 == const0_rtx)
3166 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3167 if (op1 == const0_rtx)
3168 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3169 if (op0 == const1_rtx || op1 == const1_rtx)
3170 return const1_rtx;
3171 if (op0 == NULL)
3172 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3173 else if (rtx_equal_p (x, op0))
3174 /* (x | A) | x ~ (x | A). */
3175 return old;
3176 if (op1 == NULL)
3177 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3178 else if (rtx_equal_p (x, op1))
3179 /* (A | x) | x ~ (A | x). */
3180 return old;
3181 return gen_rtx_IOR (0, op0, op1);
3183 if (! add)
3184 return NULL;
3185 return gen_rtx_IOR (0, old, x);
3187 case AND:
3188 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3189 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3190 if (op0 != NULL || op1 != NULL)
3192 if (op0 == const1_rtx)
3193 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3194 if (op1 == const1_rtx)
3195 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3196 if (op0 == const0_rtx || op1 == const0_rtx)
3197 return const0_rtx;
3198 if (op0 == NULL)
3199 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3200 else if (rtx_equal_p (x, op0))
3201 /* (x & A) | x ~ x. */
3202 return op0;
3203 if (op1 == NULL)
3204 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3205 else if (rtx_equal_p (x, op1))
3206 /* (A & x) | x ~ x. */
3207 return op1;
3208 return gen_rtx_AND (0, op0, op1);
3210 if (! add)
3211 return NULL;
3212 return gen_rtx_IOR (0, old, x);
3214 case NOT:
3215 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3216 if (op0 != NULL)
3217 return not_reg_cond (op0);
3218 if (! add)
3219 return NULL;
3220 return gen_rtx_IOR (0, old, x);
3222 default:
3223 gcc_unreachable ();
3227 static rtx
3228 not_reg_cond (rtx x)
3230 if (x == const0_rtx)
3231 return const1_rtx;
3232 else if (x == const1_rtx)
3233 return const0_rtx;
3234 if (GET_CODE (x) == NOT)
3235 return XEXP (x, 0);
3236 if (COMPARISON_P (x)
3237 && REG_P (XEXP (x, 0)))
3239 gcc_assert (XEXP (x, 1) == const0_rtx);
3241 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3242 VOIDmode, XEXP (x, 0), const0_rtx);
3244 return gen_rtx_NOT (0, x);
3247 static rtx
3248 and_reg_cond (rtx old, rtx x, int add)
3250 rtx op0, op1;
3252 if (COMPARISON_P (old))
3254 if (COMPARISON_P (x)
3255 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3256 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3257 return const0_rtx;
3258 if (GET_CODE (x) == GET_CODE (old)
3259 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3260 return old;
3261 if (! add)
3262 return NULL;
3263 return gen_rtx_AND (0, old, x);
3266 switch (GET_CODE (old))
3268 case IOR:
3269 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3270 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3271 if (op0 != NULL || op1 != NULL)
3273 if (op0 == const0_rtx)
3274 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3275 if (op1 == const0_rtx)
3276 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3277 if (op0 == const1_rtx || op1 == const1_rtx)
3278 return const1_rtx;
3279 if (op0 == NULL)
3280 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3281 else if (rtx_equal_p (x, op0))
3282 /* (x | A) & x ~ x. */
3283 return op0;
3284 if (op1 == NULL)
3285 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3286 else if (rtx_equal_p (x, op1))
3287 /* (A | x) & x ~ x. */
3288 return op1;
3289 return gen_rtx_IOR (0, op0, op1);
3291 if (! add)
3292 return NULL;
3293 return gen_rtx_AND (0, old, x);
3295 case AND:
3296 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3297 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3298 if (op0 != NULL || op1 != NULL)
3300 if (op0 == const1_rtx)
3301 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3302 if (op1 == const1_rtx)
3303 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3304 if (op0 == const0_rtx || op1 == const0_rtx)
3305 return const0_rtx;
3306 if (op0 == NULL)
3307 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3308 else if (rtx_equal_p (x, op0))
3309 /* (x & A) & x ~ (x & A). */
3310 return old;
3311 if (op1 == NULL)
3312 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3313 else if (rtx_equal_p (x, op1))
3314 /* (A & x) & x ~ (A & x). */
3315 return old;
3316 return gen_rtx_AND (0, op0, op1);
3318 if (! add)
3319 return NULL;
3320 return gen_rtx_AND (0, old, x);
3322 case NOT:
3323 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3324 if (op0 != NULL)
3325 return not_reg_cond (op0);
3326 if (! add)
3327 return NULL;
3328 return gen_rtx_AND (0, old, x);
3330 default:
3331 gcc_unreachable ();
3335 /* Given a condition X, remove references to reg REGNO and return the
3336 new condition. The removal will be done so that all conditions
3337 involving REGNO are considered to evaluate to false. This function
3338 is used when the value of REGNO changes. */
3340 static rtx
3341 elim_reg_cond (rtx x, unsigned int regno)
3343 rtx op0, op1;
3345 if (COMPARISON_P (x))
3347 if (REGNO (XEXP (x, 0)) == regno)
3348 return const0_rtx;
3349 return x;
3352 switch (GET_CODE (x))
3354 case AND:
3355 op0 = elim_reg_cond (XEXP (x, 0), regno);
3356 op1 = elim_reg_cond (XEXP (x, 1), regno);
3357 if (op0 == const0_rtx || op1 == const0_rtx)
3358 return const0_rtx;
3359 if (op0 == const1_rtx)
3360 return op1;
3361 if (op1 == const1_rtx)
3362 return op0;
3363 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3364 return x;
3365 return gen_rtx_AND (0, op0, op1);
3367 case IOR:
3368 op0 = elim_reg_cond (XEXP (x, 0), regno);
3369 op1 = elim_reg_cond (XEXP (x, 1), regno);
3370 if (op0 == const1_rtx || op1 == const1_rtx)
3371 return const1_rtx;
3372 if (op0 == const0_rtx)
3373 return op1;
3374 if (op1 == const0_rtx)
3375 return op0;
3376 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3377 return x;
3378 return gen_rtx_IOR (0, op0, op1);
3380 case NOT:
3381 op0 = elim_reg_cond (XEXP (x, 0), regno);
3382 if (op0 == const0_rtx)
3383 return const1_rtx;
3384 if (op0 == const1_rtx)
3385 return const0_rtx;
3386 if (op0 != XEXP (x, 0))
3387 return not_reg_cond (op0);
3388 return x;
3390 default:
3391 gcc_unreachable ();
3394 #endif /* HAVE_conditional_execution */
3396 #ifdef AUTO_INC_DEC
3398 /* Try to substitute the auto-inc expression INC as the address inside
3399 MEM which occurs in INSN. Currently, the address of MEM is an expression
3400 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3401 that has a single set whose source is a PLUS of INCR_REG and something
3402 else. */
3404 static void
3405 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3406 rtx mem, rtx incr, rtx incr_reg)
3408 int regno = REGNO (incr_reg);
3409 rtx set = single_set (incr);
3410 rtx q = SET_DEST (set);
3411 rtx y = SET_SRC (set);
3412 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3413 int changed;
3415 /* Make sure this reg appears only once in this insn. */
3416 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3417 return;
3419 if (dead_or_set_p (incr, incr_reg)
3420 /* Mustn't autoinc an eliminable register. */
3421 && (regno >= FIRST_PSEUDO_REGISTER
3422 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3424 /* This is the simple case. Try to make the auto-inc. If
3425 we can't, we are done. Otherwise, we will do any
3426 needed updates below. */
3427 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3428 return;
3430 else if (REG_P (q)
3431 /* PREV_INSN used here to check the semi-open interval
3432 [insn,incr). */
3433 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3434 /* We must also check for sets of q as q may be
3435 a call clobbered hard register and there may
3436 be a call between PREV_INSN (insn) and incr. */
3437 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3439 /* We have *p followed sometime later by q = p+size.
3440 Both p and q must be live afterward,
3441 and q is not used between INSN and its assignment.
3442 Change it to q = p, ...*q..., q = q+size.
3443 Then fall into the usual case. */
3444 rtx insns, temp;
3446 start_sequence ();
3447 emit_move_insn (q, incr_reg);
3448 insns = get_insns ();
3449 end_sequence ();
3451 /* If we can't make the auto-inc, or can't make the
3452 replacement into Y, exit. There's no point in making
3453 the change below if we can't do the auto-inc and doing
3454 so is not correct in the pre-inc case. */
3456 XEXP (inc, 0) = q;
3457 validate_change (insn, &XEXP (mem, 0), inc, 1);
3458 validate_change (incr, &XEXP (y, opnum), q, 1);
3459 if (! apply_change_group ())
3460 return;
3462 /* We now know we'll be doing this change, so emit the
3463 new insn(s) and do the updates. */
3464 emit_insn_before (insns, insn);
3466 if (BB_HEAD (pbi->bb) == insn)
3467 BB_HEAD (pbi->bb) = insns;
3469 /* INCR will become a NOTE and INSN won't contain a
3470 use of INCR_REG. If a use of INCR_REG was just placed in
3471 the insn before INSN, make that the next use.
3472 Otherwise, invalidate it. */
3473 if (NONJUMP_INSN_P (PREV_INSN (insn))
3474 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3475 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3476 pbi->reg_next_use[regno] = PREV_INSN (insn);
3477 else
3478 pbi->reg_next_use[regno] = 0;
3480 incr_reg = q;
3481 regno = REGNO (q);
3483 if ((pbi->flags & PROP_REG_INFO)
3484 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3485 reg_deaths[regno] = pbi->insn_num;
3487 /* REGNO is now used in INCR which is below INSN, but
3488 it previously wasn't live here. If we don't mark
3489 it as live, we'll put a REG_DEAD note for it
3490 on this insn, which is incorrect. */
3491 SET_REGNO_REG_SET (pbi->reg_live, regno);
3493 /* If there are any calls between INSN and INCR, show
3494 that REGNO now crosses them. */
3495 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3496 if (CALL_P (temp))
3498 REG_N_CALLS_CROSSED (regno)++;
3499 if (can_throw_internal (temp))
3500 REG_N_THROWING_CALLS_CROSSED (regno)++;
3503 /* Invalidate alias info for Q since we just changed its value. */
3504 clear_reg_alias_info (q);
3506 else
3507 return;
3509 /* If we haven't returned, it means we were able to make the
3510 auto-inc, so update the status. First, record that this insn
3511 has an implicit side effect. */
3513 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3515 /* Modify the old increment-insn to simply copy
3516 the already-incremented value of our register. */
3517 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3518 gcc_assert (changed);
3520 /* If that makes it a no-op (copying the register into itself) delete
3521 it so it won't appear to be a "use" and a "set" of this
3522 register. */
3523 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3525 /* If the original source was dead, it's dead now. */
3526 rtx note;
3528 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3530 remove_note (incr, note);
3531 if (XEXP (note, 0) != incr_reg)
3533 unsigned int regno = REGNO (XEXP (note, 0));
3535 if ((pbi->flags & PROP_REG_INFO)
3536 && REGNO_REG_SET_P (pbi->reg_live, regno))
3538 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3539 reg_deaths[regno] = 0;
3541 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3545 SET_INSN_DELETED (incr);
3548 if (regno >= FIRST_PSEUDO_REGISTER)
3550 /* Count an extra reference to the reg. When a reg is
3551 incremented, spilling it is worse, so we want to make
3552 that less likely. */
3553 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3555 /* Count the increment as a setting of the register,
3556 even though it isn't a SET in rtl. */
3557 REG_N_SETS (regno)++;
3561 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3562 reference. */
3564 static void
3565 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3567 rtx addr = XEXP (x, 0);
3568 HOST_WIDE_INT offset = 0;
3569 rtx set, y, incr, inc_val;
3570 int regno;
3571 int size = GET_MODE_SIZE (GET_MODE (x));
3573 if (JUMP_P (insn))
3574 return;
3576 /* Here we detect use of an index register which might be good for
3577 postincrement, postdecrement, preincrement, or predecrement. */
3579 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3580 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3582 if (!REG_P (addr))
3583 return;
3585 regno = REGNO (addr);
3587 /* Is the next use an increment that might make auto-increment? */
3588 incr = pbi->reg_next_use[regno];
3589 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3590 return;
3591 set = single_set (incr);
3592 if (set == 0 || GET_CODE (set) != SET)
3593 return;
3594 y = SET_SRC (set);
3596 if (GET_CODE (y) != PLUS)
3597 return;
3599 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3600 inc_val = XEXP (y, 1);
3601 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3602 inc_val = XEXP (y, 0);
3603 else
3604 return;
3606 if (GET_CODE (inc_val) == CONST_INT)
3608 if (HAVE_POST_INCREMENT
3609 && (INTVAL (inc_val) == size && offset == 0))
3610 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3611 incr, addr);
3612 else if (HAVE_POST_DECREMENT
3613 && (INTVAL (inc_val) == -size && offset == 0))
3614 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3615 incr, addr);
3616 else if (HAVE_PRE_INCREMENT
3617 && (INTVAL (inc_val) == size && offset == size))
3618 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3619 incr, addr);
3620 else if (HAVE_PRE_DECREMENT
3621 && (INTVAL (inc_val) == -size && offset == -size))
3622 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3623 incr, addr);
3624 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3625 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3626 gen_rtx_PLUS (Pmode,
3627 addr,
3628 inc_val)),
3629 insn, x, incr, addr);
3630 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3631 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3632 gen_rtx_PLUS (Pmode,
3633 addr,
3634 inc_val)),
3635 insn, x, incr, addr);
3637 else if (REG_P (inc_val)
3638 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3639 NEXT_INSN (incr)))
3642 if (HAVE_POST_MODIFY_REG && offset == 0)
3643 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3644 gen_rtx_PLUS (Pmode,
3645 addr,
3646 inc_val)),
3647 insn, x, incr, addr);
3651 #endif /* AUTO_INC_DEC */
3653 static void
3654 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3655 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3657 unsigned int regno_first, regno_last, i;
3658 int some_was_live, some_was_dead, some_not_set;
3660 regno_last = regno_first = REGNO (reg);
3661 if (regno_first < FIRST_PSEUDO_REGISTER)
3662 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3664 /* Find out if any of this register is live after this instruction. */
3665 some_was_live = some_was_dead = 0;
3666 for (i = regno_first; i <= regno_last; ++i)
3668 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3669 some_was_live |= needed_regno;
3670 some_was_dead |= ! needed_regno;
3673 /* Find out if any of the register was set this insn. */
3674 some_not_set = 0;
3675 for (i = regno_first; i <= regno_last; ++i)
3676 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3678 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3680 /* Record where each reg is used, so when the reg is set we know
3681 the next insn that uses it. */
3682 pbi->reg_next_use[regno_first] = insn;
3685 if (pbi->flags & PROP_REG_INFO)
3687 if (regno_first < FIRST_PSEUDO_REGISTER)
3689 /* If this is a register we are going to try to eliminate,
3690 don't mark it live here. If we are successful in
3691 eliminating it, it need not be live unless it is used for
3692 pseudos, in which case it will have been set live when it
3693 was allocated to the pseudos. If the register will not
3694 be eliminated, reload will set it live at that point.
3696 Otherwise, record that this function uses this register. */
3697 /* ??? The PPC backend tries to "eliminate" on the pic
3698 register to itself. This should be fixed. In the mean
3699 time, hack around it. */
3701 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3702 && (regno_first == FRAME_POINTER_REGNUM
3703 || regno_first == ARG_POINTER_REGNUM)))
3704 for (i = regno_first; i <= regno_last; ++i)
3705 regs_ever_live[i] = 1;
3707 else
3709 /* Keep track of which basic block each reg appears in. */
3711 int blocknum = pbi->bb->index;
3712 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3713 REG_BASIC_BLOCK (regno_first) = blocknum;
3714 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3715 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3717 /* Count (weighted) number of uses of each reg. */
3718 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3719 REG_N_REFS (regno_first)++;
3721 for (i = regno_first; i <= regno_last; ++i)
3722 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3724 gcc_assert (!reg_deaths[i]);
3725 reg_deaths[i] = pbi->insn_num;
3729 /* Record and count the insns in which a reg dies. If it is used in
3730 this insn and was dead below the insn then it dies in this insn.
3731 If it was set in this insn, we do not make a REG_DEAD note;
3732 likewise if we already made such a note. */
3733 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3734 && some_was_dead
3735 && some_not_set)
3737 /* Check for the case where the register dying partially
3738 overlaps the register set by this insn. */
3739 if (regno_first != regno_last)
3740 for (i = regno_first; i <= regno_last; ++i)
3741 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3743 /* If none of the words in X is needed, make a REG_DEAD note.
3744 Otherwise, we must make partial REG_DEAD notes. */
3745 if (! some_was_live)
3747 if ((pbi->flags & PROP_DEATH_NOTES)
3748 && ! find_regno_note (insn, REG_DEAD, regno_first))
3749 REG_NOTES (insn)
3750 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3752 if (pbi->flags & PROP_REG_INFO)
3753 REG_N_DEATHS (regno_first)++;
3755 else
3757 /* Don't make a REG_DEAD note for a part of a register
3758 that is set in the insn. */
3759 for (i = regno_first; i <= regno_last; ++i)
3760 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3761 && ! dead_or_set_regno_p (insn, i))
3762 REG_NOTES (insn)
3763 = alloc_EXPR_LIST (REG_DEAD,
3764 regno_reg_rtx[i],
3765 REG_NOTES (insn));
3769 /* Mark the register as being live. */
3770 for (i = regno_first; i <= regno_last; ++i)
3772 #ifdef HAVE_conditional_execution
3773 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3774 #endif
3776 SET_REGNO_REG_SET (pbi->reg_live, i);
3778 #ifdef HAVE_conditional_execution
3779 /* If this is a conditional use, record that fact. If it is later
3780 conditionally set, we'll know to kill the register. */
3781 if (cond != NULL_RTX)
3783 splay_tree_node node;
3784 struct reg_cond_life_info *rcli;
3785 rtx ncond;
3787 if (this_was_live)
3789 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3790 if (node == NULL)
3792 /* The register was unconditionally live previously.
3793 No need to do anything. */
3795 else
3797 /* The register was conditionally live previously.
3798 Subtract the new life cond from the old death cond. */
3799 rcli = (struct reg_cond_life_info *) node->value;
3800 ncond = rcli->condition;
3801 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3803 /* If the register is now unconditionally live,
3804 remove the entry in the splay_tree. */
3805 if (ncond == const0_rtx)
3806 splay_tree_remove (pbi->reg_cond_dead, i);
3807 else
3809 rcli->condition = ncond;
3810 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3811 REGNO (XEXP (cond, 0)));
3815 else
3817 /* The register was not previously live at all. Record
3818 the condition under which it is still dead. */
3819 rcli = xmalloc (sizeof (*rcli));
3820 rcli->condition = not_reg_cond (cond);
3821 rcli->stores = const0_rtx;
3822 rcli->orig_condition = const0_rtx;
3823 splay_tree_insert (pbi->reg_cond_dead, i,
3824 (splay_tree_value) rcli);
3826 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3829 else if (this_was_live)
3831 /* The register may have been conditionally live previously, but
3832 is now unconditionally live. Remove it from the conditionally
3833 dead list, so that a conditional set won't cause us to think
3834 it dead. */
3835 splay_tree_remove (pbi->reg_cond_dead, i);
3837 #endif
3841 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3842 This is done assuming the registers needed from X are those that
3843 have 1-bits in PBI->REG_LIVE.
3845 INSN is the containing instruction. If INSN is dead, this function
3846 is not called. */
3848 static void
3849 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3851 RTX_CODE code;
3852 int regno;
3853 int flags = pbi->flags;
3855 retry:
3856 if (!x)
3857 return;
3858 code = GET_CODE (x);
3859 switch (code)
3861 case LABEL_REF:
3862 case SYMBOL_REF:
3863 case CONST_INT:
3864 case CONST:
3865 case CONST_DOUBLE:
3866 case CONST_VECTOR:
3867 case PC:
3868 case ADDR_VEC:
3869 case ADDR_DIFF_VEC:
3870 return;
3872 #ifdef HAVE_cc0
3873 case CC0:
3874 pbi->cc0_live = 1;
3875 return;
3876 #endif
3878 case CLOBBER:
3879 /* If we are clobbering a MEM, mark any registers inside the address
3880 as being used. */
3881 if (MEM_P (XEXP (x, 0)))
3882 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3883 return;
3885 case MEM:
3886 /* Don't bother watching stores to mems if this is not the
3887 final pass. We'll not be deleting dead stores this round. */
3888 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3890 /* Invalidate the data for the last MEM stored, but only if MEM is
3891 something that can be stored into. */
3892 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3893 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3894 /* Needn't clear the memory set list. */
3896 else
3898 rtx temp = pbi->mem_set_list;
3899 rtx prev = NULL_RTX;
3900 rtx next;
3902 while (temp)
3904 next = XEXP (temp, 1);
3905 if (anti_dependence (XEXP (temp, 0), x))
3907 /* Splice temp out of the list. */
3908 if (prev)
3909 XEXP (prev, 1) = next;
3910 else
3911 pbi->mem_set_list = next;
3912 free_EXPR_LIST_node (temp);
3913 pbi->mem_set_list_len--;
3915 else
3916 prev = temp;
3917 temp = next;
3921 /* If the memory reference had embedded side effects (autoincrement
3922 address modes. Then we may need to kill some entries on the
3923 memory set list. */
3924 if (insn)
3925 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3928 #ifdef AUTO_INC_DEC
3929 if (flags & PROP_AUTOINC)
3930 find_auto_inc (pbi, x, insn);
3931 #endif
3932 break;
3934 case SUBREG:
3935 #ifdef CANNOT_CHANGE_MODE_CLASS
3936 if (flags & PROP_REG_INFO)
3937 record_subregs_of_mode (x);
3938 #endif
3940 /* While we're here, optimize this case. */
3941 x = SUBREG_REG (x);
3942 if (!REG_P (x))
3943 goto retry;
3944 /* Fall through. */
3946 case REG:
3947 /* See a register other than being set => mark it as needed. */
3948 mark_used_reg (pbi, x, cond, insn);
3949 return;
3951 case SET:
3953 rtx testreg = SET_DEST (x);
3954 int mark_dest = 0;
3956 /* If storing into MEM, don't show it as being used. But do
3957 show the address as being used. */
3958 if (MEM_P (testreg))
3960 #ifdef AUTO_INC_DEC
3961 if (flags & PROP_AUTOINC)
3962 find_auto_inc (pbi, testreg, insn);
3963 #endif
3964 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3965 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3966 return;
3969 /* Storing in STRICT_LOW_PART is like storing in a reg
3970 in that this SET might be dead, so ignore it in TESTREG.
3971 but in some other ways it is like using the reg.
3973 Storing in a SUBREG or a bit field is like storing the entire
3974 register in that if the register's value is not used
3975 then this SET is not needed. */
3976 while (GET_CODE (testreg) == STRICT_LOW_PART
3977 || GET_CODE (testreg) == ZERO_EXTRACT
3978 || GET_CODE (testreg) == SUBREG)
3980 #ifdef CANNOT_CHANGE_MODE_CLASS
3981 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3982 record_subregs_of_mode (testreg);
3983 #endif
3985 /* Modifying a single register in an alternate mode
3986 does not use any of the old value. But these other
3987 ways of storing in a register do use the old value. */
3988 if (GET_CODE (testreg) == SUBREG
3989 && !((REG_BYTES (SUBREG_REG (testreg))
3990 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3991 > (REG_BYTES (testreg)
3992 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3994 else
3995 mark_dest = 1;
3997 testreg = XEXP (testreg, 0);
4000 /* If this is a store into a register or group of registers,
4001 recursively scan the value being stored. */
4003 if ((GET_CODE (testreg) == PARALLEL
4004 && GET_MODE (testreg) == BLKmode)
4005 || (REG_P (testreg)
4006 && (regno = REGNO (testreg),
4007 ! (regno == FRAME_POINTER_REGNUM
4008 && (! reload_completed || frame_pointer_needed)))
4009 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4010 && ! (regno == HARD_FRAME_POINTER_REGNUM
4011 && (! reload_completed || frame_pointer_needed))
4012 #endif
4013 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4014 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4015 #endif
4018 if (mark_dest)
4019 mark_used_regs (pbi, SET_DEST (x), cond, insn);
4020 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4021 return;
4024 break;
4026 case ASM_OPERANDS:
4027 case UNSPEC_VOLATILE:
4028 case TRAP_IF:
4029 case ASM_INPUT:
4031 /* Traditional and volatile asm instructions must be considered to use
4032 and clobber all hard registers, all pseudo-registers and all of
4033 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4035 Consider for instance a volatile asm that changes the fpu rounding
4036 mode. An insn should not be moved across this even if it only uses
4037 pseudo-regs because it might give an incorrectly rounded result.
4039 ?!? Unfortunately, marking all hard registers as live causes massive
4040 problems for the register allocator and marking all pseudos as live
4041 creates mountains of uninitialized variable warnings.
4043 So for now, just clear the memory set list and mark any regs
4044 we can find in ASM_OPERANDS as used. */
4045 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4047 free_EXPR_LIST_list (&pbi->mem_set_list);
4048 pbi->mem_set_list_len = 0;
4051 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4052 We can not just fall through here since then we would be confused
4053 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4054 traditional asms unlike their normal usage. */
4055 if (code == ASM_OPERANDS)
4057 int j;
4059 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4060 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4062 break;
4065 case COND_EXEC:
4066 gcc_assert (!cond);
4068 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4070 cond = COND_EXEC_TEST (x);
4071 x = COND_EXEC_CODE (x);
4072 goto retry;
4074 default:
4075 break;
4078 /* Recursively scan the operands of this expression. */
4081 const char * const fmt = GET_RTX_FORMAT (code);
4082 int i;
4084 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4086 if (fmt[i] == 'e')
4088 /* Tail recursive case: save a function call level. */
4089 if (i == 0)
4091 x = XEXP (x, 0);
4092 goto retry;
4094 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4096 else if (fmt[i] == 'E')
4098 int j;
4099 for (j = 0; j < XVECLEN (x, i); j++)
4100 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4106 #ifdef AUTO_INC_DEC
4108 static int
4109 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4111 /* Find the next use of this reg. If in same basic block,
4112 make it do pre-increment or pre-decrement if appropriate. */
4113 rtx x = single_set (insn);
4114 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4115 * INTVAL (XEXP (SET_SRC (x), 1)));
4116 int regno = REGNO (SET_DEST (x));
4117 rtx y = pbi->reg_next_use[regno];
4118 if (y != 0
4119 && SET_DEST (x) != stack_pointer_rtx
4120 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4121 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4122 mode would be better. */
4123 && ! dead_or_set_p (y, SET_DEST (x))
4124 && try_pre_increment (y, SET_DEST (x), amount))
4126 /* We have found a suitable auto-increment and already changed
4127 insn Y to do it. So flush this increment instruction. */
4128 propagate_block_delete_insn (insn);
4130 /* Count a reference to this reg for the increment insn we are
4131 deleting. When a reg is incremented, spilling it is worse,
4132 so we want to make that less likely. */
4133 if (regno >= FIRST_PSEUDO_REGISTER)
4135 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4136 REG_N_SETS (regno)++;
4139 /* Flush any remembered memories depending on the value of
4140 the incremented register. */
4141 invalidate_mems_from_set (pbi, SET_DEST (x));
4143 return 1;
4145 return 0;
4148 /* Try to change INSN so that it does pre-increment or pre-decrement
4149 addressing on register REG in order to add AMOUNT to REG.
4150 AMOUNT is negative for pre-decrement.
4151 Returns 1 if the change could be made.
4152 This checks all about the validity of the result of modifying INSN. */
4154 static int
4155 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4157 rtx use;
4159 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4160 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4161 int pre_ok = 0;
4162 /* Nonzero if we can try to make a post-increment or post-decrement.
4163 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4164 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4165 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4166 int post_ok = 0;
4168 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4169 int do_post = 0;
4171 /* From the sign of increment, see which possibilities are conceivable
4172 on this target machine. */
4173 if (HAVE_PRE_INCREMENT && amount > 0)
4174 pre_ok = 1;
4175 if (HAVE_POST_INCREMENT && amount > 0)
4176 post_ok = 1;
4178 if (HAVE_PRE_DECREMENT && amount < 0)
4179 pre_ok = 1;
4180 if (HAVE_POST_DECREMENT && amount < 0)
4181 post_ok = 1;
4183 if (! (pre_ok || post_ok))
4184 return 0;
4186 /* It is not safe to add a side effect to a jump insn
4187 because if the incremented register is spilled and must be reloaded
4188 there would be no way to store the incremented value back in memory. */
4190 if (JUMP_P (insn))
4191 return 0;
4193 use = 0;
4194 if (pre_ok)
4195 use = find_use_as_address (PATTERN (insn), reg, 0);
4196 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4198 use = find_use_as_address (PATTERN (insn), reg, -amount);
4199 do_post = 1;
4202 if (use == 0 || use == (rtx) (size_t) 1)
4203 return 0;
4205 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4206 return 0;
4208 /* See if this combination of instruction and addressing mode exists. */
4209 if (! validate_change (insn, &XEXP (use, 0),
4210 gen_rtx_fmt_e (amount > 0
4211 ? (do_post ? POST_INC : PRE_INC)
4212 : (do_post ? POST_DEC : PRE_DEC),
4213 Pmode, reg), 0))
4214 return 0;
4216 /* Record that this insn now has an implicit side effect on X. */
4217 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4218 return 1;
4221 #endif /* AUTO_INC_DEC */
4223 /* Find the place in the rtx X where REG is used as a memory address.
4224 Return the MEM rtx that so uses it.
4225 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4226 (plus REG (const_int PLUSCONST)).
4228 If such an address does not appear, return 0.
4229 If REG appears more than once, or is used other than in such an address,
4230 return (rtx) 1. */
4233 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4235 enum rtx_code code = GET_CODE (x);
4236 const char * const fmt = GET_RTX_FORMAT (code);
4237 int i;
4238 rtx value = 0;
4239 rtx tem;
4241 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4242 return x;
4244 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4245 && XEXP (XEXP (x, 0), 0) == reg
4246 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4247 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4248 return x;
4250 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4252 /* If REG occurs inside a MEM used in a bit-field reference,
4253 that is unacceptable. */
4254 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4255 return (rtx) (size_t) 1;
4258 if (x == reg)
4259 return (rtx) (size_t) 1;
4261 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4263 if (fmt[i] == 'e')
4265 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4266 if (value == 0)
4267 value = tem;
4268 else if (tem != 0)
4269 return (rtx) (size_t) 1;
4271 else if (fmt[i] == 'E')
4273 int j;
4274 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4276 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4277 if (value == 0)
4278 value = tem;
4279 else if (tem != 0)
4280 return (rtx) (size_t) 1;
4285 return value;
4288 /* Write information about registers and basic blocks into FILE.
4289 This is part of making a debugging dump. */
4291 void
4292 dump_regset (regset r, FILE *outf)
4294 unsigned i;
4295 reg_set_iterator rsi;
4297 if (r == NULL)
4299 fputs (" (nil)", outf);
4300 return;
4303 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4305 fprintf (outf, " %d", i);
4306 if (i < FIRST_PSEUDO_REGISTER)
4307 fprintf (outf, " [%s]",
4308 reg_names[i]);
4312 /* Print a human-readable representation of R on the standard error
4313 stream. This function is designed to be used from within the
4314 debugger. */
4316 void
4317 debug_regset (regset r)
4319 dump_regset (r, stderr);
4320 putc ('\n', stderr);
4323 /* Recompute register set/reference counts immediately prior to register
4324 allocation.
4326 This avoids problems with set/reference counts changing to/from values
4327 which have special meanings to the register allocators.
4329 Additionally, the reference counts are the primary component used by the
4330 register allocators to prioritize pseudos for allocation to hard regs.
4331 More accurate reference counts generally lead to better register allocation.
4333 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4334 possibly other information which is used by the register allocators. */
4336 void
4337 recompute_reg_usage (void)
4339 allocate_reg_life_data ();
4340 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4341 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4342 solve this update the DEATH_NOTES here. */
4343 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4346 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4347 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4348 of the number of registers that died. */
4351 count_or_remove_death_notes (sbitmap blocks, int kill)
4353 int count = 0;
4354 int i;
4355 basic_block bb;
4357 /* This used to be a loop over all the blocks with a membership test
4358 inside the loop. That can be amazingly expensive on a large CFG
4359 when only a small number of bits are set in BLOCKs (for example,
4360 the calls from the scheduler typically have very few bits set).
4362 For extra credit, someone should convert BLOCKS to a bitmap rather
4363 than an sbitmap. */
4364 if (blocks)
4366 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4368 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4371 else
4373 FOR_EACH_BB (bb)
4375 count += count_or_remove_death_notes_bb (bb, kill);
4379 return count;
4382 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4383 block BB. Returns a count of the number of registers that died. */
4385 static int
4386 count_or_remove_death_notes_bb (basic_block bb, int kill)
4388 int count = 0;
4389 rtx insn;
4391 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4393 if (INSN_P (insn))
4395 rtx *pprev = &REG_NOTES (insn);
4396 rtx link = *pprev;
4398 while (link)
4400 switch (REG_NOTE_KIND (link))
4402 case REG_DEAD:
4403 if (REG_P (XEXP (link, 0)))
4405 rtx reg = XEXP (link, 0);
4406 int n;
4408 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4409 n = 1;
4410 else
4411 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4412 count += n;
4415 /* Fall through. */
4417 case REG_UNUSED:
4418 if (kill)
4420 rtx next = XEXP (link, 1);
4421 free_EXPR_LIST_node (link);
4422 *pprev = link = next;
4423 break;
4425 /* Fall through. */
4427 default:
4428 pprev = &XEXP (link, 1);
4429 link = *pprev;
4430 break;
4435 if (insn == BB_END (bb))
4436 break;
4439 return count;
4442 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4443 if blocks is NULL. */
4445 static void
4446 clear_log_links (sbitmap blocks)
4448 rtx insn;
4449 int i;
4451 if (!blocks)
4453 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4454 if (INSN_P (insn))
4455 free_INSN_LIST_list (&LOG_LINKS (insn));
4457 else
4458 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4460 basic_block bb = BASIC_BLOCK (i);
4462 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4463 insn = NEXT_INSN (insn))
4464 if (INSN_P (insn))
4465 free_INSN_LIST_list (&LOG_LINKS (insn));
4469 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4470 correspond to the hard registers, if any, set in that map. This
4471 could be done far more efficiently by having all sorts of special-cases
4472 with moving single words, but probably isn't worth the trouble. */
4474 void
4475 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4477 unsigned i;
4478 bitmap_iterator bi;
4480 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4482 if (i >= FIRST_PSEUDO_REGISTER)
4483 return;
4484 SET_HARD_REG_BIT (*to, i);