Mark ChangeLog
[official-gcc.git] / gcc / cse.c
blobc12cd9e5c58c83aaf858912d07d1dd5edc5afc05
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
75 Registers and "quantity numbers":
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
110 Constants and quantity numbers
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
130 Other expressions:
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
198 Related expressions:
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
210 static int max_qty;
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
215 static int next_qty;
217 /* Per-qty information tracking.
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
222 `mode' contains the machine mode of this quantity.
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
242 struct qty_table_elem
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
258 /* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260 struct change_cc_mode_args
262 rtx insn;
263 rtx newreg;
266 #ifdef HAVE_cc0
267 /* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
271 Instead, we store below the value last assigned to CC0. If it should
272 happen to be a constant, it is stored in preference to the actual
273 assigned value. In case it is a constant, we store the mode in which
274 the constant should be interpreted. */
276 static rtx prev_insn_cc0;
277 static enum machine_mode prev_insn_cc0_mode;
279 /* Previous actual insn. 0 if at first insn of basic block. */
281 static rtx prev_insn;
282 #endif
284 /* Insn being scanned. */
286 static rtx this_insn;
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
292 Or -1 if this register is at the end of the chain.
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
299 int next, prev;
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
305 struct cse_reg_info
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
328 /* A table of cse_reg_info indexed by register numbers. */
329 struct cse_reg_info *cse_reg_info_table;
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
337 /* The timestamp at the beginning of the current run of
338 cse_basic_block. We increment this variable at the beginning of
339 the current run of cse_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
350 static HARD_REG_SET hard_regs_in_table;
352 /* CUID of insn that starts the basic block currently being cse-processed. */
354 static int cse_basic_block_start;
356 /* CUID of insn that ends the basic block currently being cse-processed. */
358 static int cse_basic_block_end;
360 /* Vector mapping INSN_UIDs to cuids.
361 The cuids are like uids but increase monotonically always.
362 We use them to see whether a reg is used outside a given basic block. */
364 static int *uid_cuid;
366 /* Highest UID in UID_CUID. */
367 static int max_uid;
369 /* Get the cuid of an insn. */
371 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
373 /* Nonzero if this pass has made changes, and therefore it's
374 worthwhile to run the garbage collector. */
376 static int cse_altered;
378 /* Nonzero if cse has altered conditional jump insns
379 in such a way that jump optimization should be redone. */
381 static int cse_jumps_altered;
383 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
384 REG_LABEL, we have to rerun jump after CSE to put in the note. */
385 static int recorded_label_ref;
387 /* canon_hash stores 1 in do_not_record
388 if it notices a reference to CC0, PC, or some other volatile
389 subexpression. */
391 static int do_not_record;
393 /* canon_hash stores 1 in hash_arg_in_memory
394 if it notices a reference to memory within the expression being hashed. */
396 static int hash_arg_in_memory;
398 /* The hash table contains buckets which are chains of `struct table_elt's,
399 each recording one expression's information.
400 That expression is in the `exp' field.
402 The canon_exp field contains a canonical (from the point of view of
403 alias analysis) version of the `exp' field.
405 Those elements with the same hash code are chained in both directions
406 through the `next_same_hash' and `prev_same_hash' fields.
408 Each set of expressions with equivalent values
409 are on a two-way chain through the `next_same_value'
410 and `prev_same_value' fields, and all point with
411 the `first_same_value' field at the first element in
412 that chain. The chain is in order of increasing cost.
413 Each element's cost value is in its `cost' field.
415 The `in_memory' field is nonzero for elements that
416 involve any reference to memory. These elements are removed
417 whenever a write is done to an unidentified location in memory.
418 To be safe, we assume that a memory address is unidentified unless
419 the address is either a symbol constant or a constant plus
420 the frame pointer or argument pointer.
422 The `related_value' field is used to connect related expressions
423 (that differ by adding an integer).
424 The related expressions are chained in a circular fashion.
425 `related_value' is zero for expressions for which this
426 chain is not useful.
428 The `cost' field stores the cost of this element's expression.
429 The `regcost' field stores the value returned by approx_reg_cost for
430 this element's expression.
432 The `is_const' flag is set if the element is a constant (including
433 a fixed address).
435 The `flag' field is used as a temporary during some search routines.
437 The `mode' field is usually the same as GET_MODE (`exp'), but
438 if `exp' is a CONST_INT and has no machine mode then the `mode'
439 field is the mode it was being used as. Each constant is
440 recorded separately for each mode it is used with. */
442 struct table_elt
444 rtx exp;
445 rtx canon_exp;
446 struct table_elt *next_same_hash;
447 struct table_elt *prev_same_hash;
448 struct table_elt *next_same_value;
449 struct table_elt *prev_same_value;
450 struct table_elt *first_same_value;
451 struct table_elt *related_value;
452 int cost;
453 int regcost;
454 /* The size of this field should match the size
455 of the mode field of struct rtx_def (see rtl.h). */
456 ENUM_BITFIELD(machine_mode) mode : 8;
457 char in_memory;
458 char is_const;
459 char flag;
462 /* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
465 #define HASH_SHIFT 5
466 #define HASH_SIZE (1 << HASH_SHIFT)
467 #define HASH_MASK (HASH_SIZE - 1)
469 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
472 #define HASH(X, M) \
473 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
477 /* Like HASH, but without side-effects. */
478 #define SAFE_HASH(X, M) \
479 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
480 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
481 : safe_hash (X, M)) & HASH_MASK)
483 /* Determine whether register number N is considered a fixed register for the
484 purpose of approximating register costs.
485 It is desirable to replace other regs with fixed regs, to reduce need for
486 non-fixed hard regs.
487 A reg wins if it is either the frame pointer or designated as fixed. */
488 #define FIXED_REGNO_P(N) \
489 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
490 || fixed_regs[N] || global_regs[N])
492 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
493 hard registers and pointers into the frame are the cheapest with a cost
494 of 0. Next come pseudos with a cost of one and other hard registers with
495 a cost of 2. Aside from these special cases, call `rtx_cost'. */
497 #define CHEAP_REGNO(N) \
498 (REGNO_PTR_FRAME_P(N) \
499 || (HARD_REGISTER_NUM_P (N) \
500 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
502 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
503 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
505 /* Get the number of times this register has been updated in this
506 basic block. */
508 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
510 /* Get the point at which REG was recorded in the table. */
512 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
514 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
515 SUBREG). */
517 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
519 /* Get the quantity number for REG. */
521 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
523 /* Determine if the quantity number for register X represents a valid index
524 into the qty_table. */
526 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
528 static struct table_elt *table[HASH_SIZE];
530 /* Chain of `struct table_elt's made so far for this function
531 but currently removed from the table. */
533 static struct table_elt *free_element_chain;
535 /* Set to the cost of a constant pool reference if one was found for a
536 symbolic constant. If this was found, it means we should try to
537 convert constants into constant pool entries if they don't fit in
538 the insn. */
540 static int constant_pool_entries_cost;
541 static int constant_pool_entries_regcost;
543 /* This data describes a block that will be processed by cse_basic_block. */
545 struct cse_basic_block_data
547 /* Lowest CUID value of insns in block. */
548 int low_cuid;
549 /* Highest CUID value of insns in block. */
550 int high_cuid;
551 /* Total number of SETs in block. */
552 int nsets;
553 /* Last insn in the block. */
554 rtx last;
555 /* Size of current branch path, if any. */
556 int path_size;
557 /* Current branch path, indicating which branches will be taken. */
558 struct branch_path
560 /* The branch insn. */
561 rtx branch;
562 /* Whether it should be taken or not. AROUND is the same as taken
563 except that it is used when the destination label is not preceded
564 by a BARRIER. */
565 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
566 } *path;
569 static bool fixed_base_plus_p (rtx x);
570 static int notreg_cost (rtx, enum rtx_code);
571 static int approx_reg_cost_1 (rtx *, void *);
572 static int approx_reg_cost (rtx);
573 static int preferable (int, int, int, int);
574 static void new_basic_block (void);
575 static void make_new_qty (unsigned int, enum machine_mode);
576 static void make_regs_eqv (unsigned int, unsigned int);
577 static void delete_reg_equiv (unsigned int);
578 static int mention_regs (rtx);
579 static int insert_regs (rtx, struct table_elt *, int);
580 static void remove_from_table (struct table_elt *, unsigned);
581 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
582 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
583 static rtx lookup_as_function (rtx, enum rtx_code);
584 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
585 enum machine_mode);
586 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
587 static void invalidate (rtx, enum machine_mode);
588 static int cse_rtx_varies_p (rtx, int);
589 static void remove_invalid_refs (unsigned int);
590 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
591 enum machine_mode);
592 static void rehash_using_reg (rtx);
593 static void invalidate_memory (void);
594 static void invalidate_for_call (void);
595 static rtx use_related_value (rtx, struct table_elt *);
597 static inline unsigned canon_hash (rtx, enum machine_mode);
598 static inline unsigned safe_hash (rtx, enum machine_mode);
599 static unsigned hash_rtx_string (const char *);
601 static rtx canon_reg (rtx, rtx);
602 static void find_best_addr (rtx, rtx *, enum machine_mode);
603 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
604 enum machine_mode *,
605 enum machine_mode *);
606 static rtx fold_rtx (rtx, rtx);
607 static rtx equiv_constant (rtx);
608 static void record_jump_equiv (rtx, int);
609 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
610 int);
611 static void cse_insn (rtx, rtx);
612 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
613 int, int);
614 static int addr_affects_sp_p (rtx);
615 static void invalidate_from_clobbers (rtx);
616 static rtx cse_process_notes (rtx, rtx);
617 static void invalidate_skipped_set (rtx, rtx, void *);
618 static void invalidate_skipped_block (rtx);
619 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
620 static void count_reg_usage (rtx, int *, int);
621 static int check_for_label_ref (rtx *, void *);
622 extern void dump_class (struct table_elt*);
623 static void get_cse_reg_info_1 (unsigned int regno);
624 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
625 static int check_dependence (rtx *, void *);
627 static void flush_hash_table (void);
628 static bool insn_live_p (rtx, int *);
629 static bool set_live_p (rtx, rtx, int *);
630 static bool dead_libcall_p (rtx, int *);
631 static int cse_change_cc_mode (rtx *, void *);
632 static void cse_change_cc_mode_insn (rtx, rtx);
633 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
634 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
637 #undef RTL_HOOKS_GEN_LOWPART
638 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
640 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
642 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
643 virtual regs here because the simplify_*_operation routines are called
644 by integrate.c, which is called before virtual register instantiation. */
646 static bool
647 fixed_base_plus_p (rtx x)
649 switch (GET_CODE (x))
651 case REG:
652 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
653 return true;
654 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
655 return true;
656 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
657 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
658 return true;
659 return false;
661 case PLUS:
662 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
663 return false;
664 return fixed_base_plus_p (XEXP (x, 0));
666 default:
667 return false;
671 /* Dump the expressions in the equivalence class indicated by CLASSP.
672 This function is used only for debugging. */
673 void
674 dump_class (struct table_elt *classp)
676 struct table_elt *elt;
678 fprintf (stderr, "Equivalence chain for ");
679 print_rtl (stderr, classp->exp);
680 fprintf (stderr, ": \n");
682 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
684 print_rtl (stderr, elt->exp);
685 fprintf (stderr, "\n");
689 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
691 static int
692 approx_reg_cost_1 (rtx *xp, void *data)
694 rtx x = *xp;
695 int *cost_p = data;
697 if (x && REG_P (x))
699 unsigned int regno = REGNO (x);
701 if (! CHEAP_REGNO (regno))
703 if (regno < FIRST_PSEUDO_REGISTER)
705 if (SMALL_REGISTER_CLASSES)
706 return 1;
707 *cost_p += 2;
709 else
710 *cost_p += 1;
714 return 0;
717 /* Return an estimate of the cost of the registers used in an rtx.
718 This is mostly the number of different REG expressions in the rtx;
719 however for some exceptions like fixed registers we use a cost of
720 0. If any other hard register reference occurs, return MAX_COST. */
722 static int
723 approx_reg_cost (rtx x)
725 int cost = 0;
727 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
728 return MAX_COST;
730 return cost;
733 /* Returns a canonical version of X for the address, from the point of view,
734 that all multiplications are represented as MULT instead of the multiply
735 by a power of 2 being represented as ASHIFT. */
737 static rtx
738 canon_for_address (rtx x)
740 enum rtx_code code;
741 enum machine_mode mode;
742 rtx new = 0;
743 int i;
744 const char *fmt;
746 if (!x)
747 return x;
749 code = GET_CODE (x);
750 mode = GET_MODE (x);
752 switch (code)
754 case ASHIFT:
755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
756 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
757 && INTVAL (XEXP (x, 1)) >= 0)
759 new = canon_for_address (XEXP (x, 0));
760 new = gen_rtx_MULT (mode, new,
761 gen_int_mode ((HOST_WIDE_INT) 1
762 << INTVAL (XEXP (x, 1)),
763 mode));
765 break;
766 default:
767 break;
770 if (new)
771 return new;
773 /* Now recursively process each operand of this operation. */
774 fmt = GET_RTX_FORMAT (code);
775 for (i = 0; i < GET_RTX_LENGTH (code); i++)
776 if (fmt[i] == 'e')
778 new = canon_for_address (XEXP (x, i));
779 XEXP (x, i) = new;
781 return x;
784 /* Return a negative value if an rtx A, whose costs are given by COST_A
785 and REGCOST_A, is more desirable than an rtx B.
786 Return a positive value if A is less desirable, or 0 if the two are
787 equally good. */
788 static int
789 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
791 /* First, get rid of cases involving expressions that are entirely
792 unwanted. */
793 if (cost_a != cost_b)
795 if (cost_a == MAX_COST)
796 return 1;
797 if (cost_b == MAX_COST)
798 return -1;
801 /* Avoid extending lifetimes of hardregs. */
802 if (regcost_a != regcost_b)
804 if (regcost_a == MAX_COST)
805 return 1;
806 if (regcost_b == MAX_COST)
807 return -1;
810 /* Normal operation costs take precedence. */
811 if (cost_a != cost_b)
812 return cost_a - cost_b;
813 /* Only if these are identical consider effects on register pressure. */
814 if (regcost_a != regcost_b)
815 return regcost_a - regcost_b;
816 return 0;
819 /* Internal function, to compute cost when X is not a register; called
820 from COST macro to keep it simple. */
822 static int
823 notreg_cost (rtx x, enum rtx_code outer)
825 return ((GET_CODE (x) == SUBREG
826 && REG_P (SUBREG_REG (x))
827 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
828 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
829 && (GET_MODE_SIZE (GET_MODE (x))
830 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
831 && subreg_lowpart_p (x)
832 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
833 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
835 : rtx_cost (x, outer) * 2);
839 /* Initialize CSE_REG_INFO_TABLE. */
841 static void
842 init_cse_reg_info (unsigned int nregs)
844 /* Do we need to grow the table? */
845 if (nregs > cse_reg_info_table_size)
847 unsigned int new_size;
849 if (cse_reg_info_table_size < 2048)
851 /* Compute a new size that is a power of 2 and no smaller
852 than the large of NREGS and 64. */
853 new_size = (cse_reg_info_table_size
854 ? cse_reg_info_table_size : 64);
856 while (new_size < nregs)
857 new_size *= 2;
859 else
861 /* If we need a big table, allocate just enough to hold
862 NREGS registers. */
863 new_size = nregs;
866 /* Reallocate the table with NEW_SIZE entries. */
867 if (cse_reg_info_table)
868 free (cse_reg_info_table);
869 cse_reg_info_table = xmalloc (sizeof (struct cse_reg_info)
870 * new_size);
871 cse_reg_info_table_size = new_size;
872 cse_reg_info_table_first_uninitialized = 0;
875 /* Do we have all of the first NREGS entries initialized? */
876 if (cse_reg_info_table_first_uninitialized < nregs)
878 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
879 unsigned int i;
881 /* Put the old timestamp on newly allocated entries so that they
882 will all be considered out of date. We do not touch those
883 entries beyond the first NREGS entries to be nice to the
884 virtual memory. */
885 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
886 cse_reg_info_table[i].timestamp = old_timestamp;
888 cse_reg_info_table_first_uninitialized = nregs;
892 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
894 static void
895 get_cse_reg_info_1 (unsigned int regno)
897 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
898 entry will be considered to have been initialized. */
899 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
901 /* Initialize the rest of the entry. */
902 cse_reg_info_table[regno].reg_tick = 1;
903 cse_reg_info_table[regno].reg_in_table = -1;
904 cse_reg_info_table[regno].subreg_ticked = -1;
905 cse_reg_info_table[regno].reg_qty = -regno - 1;
908 /* Find a cse_reg_info entry for REGNO. */
910 static inline struct cse_reg_info *
911 get_cse_reg_info (unsigned int regno)
913 struct cse_reg_info *p = &cse_reg_info_table[regno];
915 /* If this entry has not been initialized, go ahead and initialize
916 it. */
917 if (p->timestamp != cse_reg_info_timestamp)
918 get_cse_reg_info_1 (regno);
920 return p;
923 /* Clear the hash table and initialize each register with its own quantity,
924 for a new basic block. */
926 static void
927 new_basic_block (void)
929 int i;
931 next_qty = 0;
933 /* Invalidate cse_reg_info_table. */
934 cse_reg_info_timestamp++;
936 /* Clear out hash table state for this pass. */
937 CLEAR_HARD_REG_SET (hard_regs_in_table);
939 /* The per-quantity values used to be initialized here, but it is
940 much faster to initialize each as it is made in `make_new_qty'. */
942 for (i = 0; i < HASH_SIZE; i++)
944 struct table_elt *first;
946 first = table[i];
947 if (first != NULL)
949 struct table_elt *last = first;
951 table[i] = NULL;
953 while (last->next_same_hash != NULL)
954 last = last->next_same_hash;
956 /* Now relink this hash entire chain into
957 the free element list. */
959 last->next_same_hash = free_element_chain;
960 free_element_chain = first;
964 #ifdef HAVE_cc0
965 prev_insn = 0;
966 prev_insn_cc0 = 0;
967 #endif
970 /* Say that register REG contains a quantity in mode MODE not in any
971 register before and initialize that quantity. */
973 static void
974 make_new_qty (unsigned int reg, enum machine_mode mode)
976 int q;
977 struct qty_table_elem *ent;
978 struct reg_eqv_elem *eqv;
980 gcc_assert (next_qty < max_qty);
982 q = REG_QTY (reg) = next_qty++;
983 ent = &qty_table[q];
984 ent->first_reg = reg;
985 ent->last_reg = reg;
986 ent->mode = mode;
987 ent->const_rtx = ent->const_insn = NULL_RTX;
988 ent->comparison_code = UNKNOWN;
990 eqv = &reg_eqv_table[reg];
991 eqv->next = eqv->prev = -1;
994 /* Make reg NEW equivalent to reg OLD.
995 OLD is not changing; NEW is. */
997 static void
998 make_regs_eqv (unsigned int new, unsigned int old)
1000 unsigned int lastr, firstr;
1001 int q = REG_QTY (old);
1002 struct qty_table_elem *ent;
1004 ent = &qty_table[q];
1006 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1007 gcc_assert (REGNO_QTY_VALID_P (old));
1009 REG_QTY (new) = q;
1010 firstr = ent->first_reg;
1011 lastr = ent->last_reg;
1013 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1014 hard regs. Among pseudos, if NEW will live longer than any other reg
1015 of the same qty, and that is beyond the current basic block,
1016 make it the new canonical replacement for this qty. */
1017 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1018 /* Certain fixed registers might be of the class NO_REGS. This means
1019 that not only can they not be allocated by the compiler, but
1020 they cannot be used in substitutions or canonicalizations
1021 either. */
1022 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1023 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1024 || (new >= FIRST_PSEUDO_REGISTER
1025 && (firstr < FIRST_PSEUDO_REGISTER
1026 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1027 || (uid_cuid[REGNO_FIRST_UID (new)]
1028 < cse_basic_block_start))
1029 && (uid_cuid[REGNO_LAST_UID (new)]
1030 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1032 reg_eqv_table[firstr].prev = new;
1033 reg_eqv_table[new].next = firstr;
1034 reg_eqv_table[new].prev = -1;
1035 ent->first_reg = new;
1037 else
1039 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1040 Otherwise, insert before any non-fixed hard regs that are at the
1041 end. Registers of class NO_REGS cannot be used as an
1042 equivalent for anything. */
1043 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1044 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1045 && new >= FIRST_PSEUDO_REGISTER)
1046 lastr = reg_eqv_table[lastr].prev;
1047 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1048 if (reg_eqv_table[lastr].next >= 0)
1049 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1050 else
1051 qty_table[q].last_reg = new;
1052 reg_eqv_table[lastr].next = new;
1053 reg_eqv_table[new].prev = lastr;
1057 /* Remove REG from its equivalence class. */
1059 static void
1060 delete_reg_equiv (unsigned int reg)
1062 struct qty_table_elem *ent;
1063 int q = REG_QTY (reg);
1064 int p, n;
1066 /* If invalid, do nothing. */
1067 if (! REGNO_QTY_VALID_P (reg))
1068 return;
1070 ent = &qty_table[q];
1072 p = reg_eqv_table[reg].prev;
1073 n = reg_eqv_table[reg].next;
1075 if (n != -1)
1076 reg_eqv_table[n].prev = p;
1077 else
1078 ent->last_reg = p;
1079 if (p != -1)
1080 reg_eqv_table[p].next = n;
1081 else
1082 ent->first_reg = n;
1084 REG_QTY (reg) = -reg - 1;
1087 /* Remove any invalid expressions from the hash table
1088 that refer to any of the registers contained in expression X.
1090 Make sure that newly inserted references to those registers
1091 as subexpressions will be considered valid.
1093 mention_regs is not called when a register itself
1094 is being stored in the table.
1096 Return 1 if we have done something that may have changed the hash code
1097 of X. */
1099 static int
1100 mention_regs (rtx x)
1102 enum rtx_code code;
1103 int i, j;
1104 const char *fmt;
1105 int changed = 0;
1107 if (x == 0)
1108 return 0;
1110 code = GET_CODE (x);
1111 if (code == REG)
1113 unsigned int regno = REGNO (x);
1114 unsigned int endregno
1115 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1116 : hard_regno_nregs[regno][GET_MODE (x)]);
1117 unsigned int i;
1119 for (i = regno; i < endregno; i++)
1121 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1122 remove_invalid_refs (i);
1124 REG_IN_TABLE (i) = REG_TICK (i);
1125 SUBREG_TICKED (i) = -1;
1128 return 0;
1131 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1132 pseudo if they don't use overlapping words. We handle only pseudos
1133 here for simplicity. */
1134 if (code == SUBREG && REG_P (SUBREG_REG (x))
1135 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1137 unsigned int i = REGNO (SUBREG_REG (x));
1139 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1141 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1142 the last store to this register really stored into this
1143 subreg, then remove the memory of this subreg.
1144 Otherwise, remove any memory of the entire register and
1145 all its subregs from the table. */
1146 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1147 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1148 remove_invalid_refs (i);
1149 else
1150 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1153 REG_IN_TABLE (i) = REG_TICK (i);
1154 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1155 return 0;
1158 /* If X is a comparison or a COMPARE and either operand is a register
1159 that does not have a quantity, give it one. This is so that a later
1160 call to record_jump_equiv won't cause X to be assigned a different
1161 hash code and not found in the table after that call.
1163 It is not necessary to do this here, since rehash_using_reg can
1164 fix up the table later, but doing this here eliminates the need to
1165 call that expensive function in the most common case where the only
1166 use of the register is in the comparison. */
1168 if (code == COMPARE || COMPARISON_P (x))
1170 if (REG_P (XEXP (x, 0))
1171 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1172 if (insert_regs (XEXP (x, 0), NULL, 0))
1174 rehash_using_reg (XEXP (x, 0));
1175 changed = 1;
1178 if (REG_P (XEXP (x, 1))
1179 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1180 if (insert_regs (XEXP (x, 1), NULL, 0))
1182 rehash_using_reg (XEXP (x, 1));
1183 changed = 1;
1187 fmt = GET_RTX_FORMAT (code);
1188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1189 if (fmt[i] == 'e')
1190 changed |= mention_regs (XEXP (x, i));
1191 else if (fmt[i] == 'E')
1192 for (j = 0; j < XVECLEN (x, i); j++)
1193 changed |= mention_regs (XVECEXP (x, i, j));
1195 return changed;
1198 /* Update the register quantities for inserting X into the hash table
1199 with a value equivalent to CLASSP.
1200 (If the class does not contain a REG, it is irrelevant.)
1201 If MODIFIED is nonzero, X is a destination; it is being modified.
1202 Note that delete_reg_equiv should be called on a register
1203 before insert_regs is done on that register with MODIFIED != 0.
1205 Nonzero value means that elements of reg_qty have changed
1206 so X's hash code may be different. */
1208 static int
1209 insert_regs (rtx x, struct table_elt *classp, int modified)
1211 if (REG_P (x))
1213 unsigned int regno = REGNO (x);
1214 int qty_valid;
1216 /* If REGNO is in the equivalence table already but is of the
1217 wrong mode for that equivalence, don't do anything here. */
1219 qty_valid = REGNO_QTY_VALID_P (regno);
1220 if (qty_valid)
1222 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1224 if (ent->mode != GET_MODE (x))
1225 return 0;
1228 if (modified || ! qty_valid)
1230 if (classp)
1231 for (classp = classp->first_same_value;
1232 classp != 0;
1233 classp = classp->next_same_value)
1234 if (REG_P (classp->exp)
1235 && GET_MODE (classp->exp) == GET_MODE (x))
1237 unsigned c_regno = REGNO (classp->exp);
1239 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1241 /* Suppose that 5 is hard reg and 100 and 101 are
1242 pseudos. Consider
1244 (set (reg:si 100) (reg:si 5))
1245 (set (reg:si 5) (reg:si 100))
1246 (set (reg:di 101) (reg:di 5))
1248 We would now set REG_QTY (101) = REG_QTY (5), but the
1249 entry for 5 is in SImode. When we use this later in
1250 copy propagation, we get the register in wrong mode. */
1251 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1252 continue;
1254 make_regs_eqv (regno, c_regno);
1255 return 1;
1258 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1259 than REG_IN_TABLE to find out if there was only a single preceding
1260 invalidation - for the SUBREG - or another one, which would be
1261 for the full register. However, if we find here that REG_TICK
1262 indicates that the register is invalid, it means that it has
1263 been invalidated in a separate operation. The SUBREG might be used
1264 now (then this is a recursive call), or we might use the full REG
1265 now and a SUBREG of it later. So bump up REG_TICK so that
1266 mention_regs will do the right thing. */
1267 if (! modified
1268 && REG_IN_TABLE (regno) >= 0
1269 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1270 REG_TICK (regno)++;
1271 make_new_qty (regno, GET_MODE (x));
1272 return 1;
1275 return 0;
1278 /* If X is a SUBREG, we will likely be inserting the inner register in the
1279 table. If that register doesn't have an assigned quantity number at
1280 this point but does later, the insertion that we will be doing now will
1281 not be accessible because its hash code will have changed. So assign
1282 a quantity number now. */
1284 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1285 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1287 insert_regs (SUBREG_REG (x), NULL, 0);
1288 mention_regs (x);
1289 return 1;
1291 else
1292 return mention_regs (x);
1295 /* Look in or update the hash table. */
1297 /* Remove table element ELT from use in the table.
1298 HASH is its hash code, made using the HASH macro.
1299 It's an argument because often that is known in advance
1300 and we save much time not recomputing it. */
1302 static void
1303 remove_from_table (struct table_elt *elt, unsigned int hash)
1305 if (elt == 0)
1306 return;
1308 /* Mark this element as removed. See cse_insn. */
1309 elt->first_same_value = 0;
1311 /* Remove the table element from its equivalence class. */
1314 struct table_elt *prev = elt->prev_same_value;
1315 struct table_elt *next = elt->next_same_value;
1317 if (next)
1318 next->prev_same_value = prev;
1320 if (prev)
1321 prev->next_same_value = next;
1322 else
1324 struct table_elt *newfirst = next;
1325 while (next)
1327 next->first_same_value = newfirst;
1328 next = next->next_same_value;
1333 /* Remove the table element from its hash bucket. */
1336 struct table_elt *prev = elt->prev_same_hash;
1337 struct table_elt *next = elt->next_same_hash;
1339 if (next)
1340 next->prev_same_hash = prev;
1342 if (prev)
1343 prev->next_same_hash = next;
1344 else if (table[hash] == elt)
1345 table[hash] = next;
1346 else
1348 /* This entry is not in the proper hash bucket. This can happen
1349 when two classes were merged by `merge_equiv_classes'. Search
1350 for the hash bucket that it heads. This happens only very
1351 rarely, so the cost is acceptable. */
1352 for (hash = 0; hash < HASH_SIZE; hash++)
1353 if (table[hash] == elt)
1354 table[hash] = next;
1358 /* Remove the table element from its related-value circular chain. */
1360 if (elt->related_value != 0 && elt->related_value != elt)
1362 struct table_elt *p = elt->related_value;
1364 while (p->related_value != elt)
1365 p = p->related_value;
1366 p->related_value = elt->related_value;
1367 if (p->related_value == p)
1368 p->related_value = 0;
1371 /* Now add it to the free element chain. */
1372 elt->next_same_hash = free_element_chain;
1373 free_element_chain = elt;
1376 /* Look up X in the hash table and return its table element,
1377 or 0 if X is not in the table.
1379 MODE is the machine-mode of X, or if X is an integer constant
1380 with VOIDmode then MODE is the mode with which X will be used.
1382 Here we are satisfied to find an expression whose tree structure
1383 looks like X. */
1385 static struct table_elt *
1386 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1388 struct table_elt *p;
1390 for (p = table[hash]; p; p = p->next_same_hash)
1391 if (mode == p->mode && ((x == p->exp && REG_P (x))
1392 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1393 return p;
1395 return 0;
1398 /* Like `lookup' but don't care whether the table element uses invalid regs.
1399 Also ignore discrepancies in the machine mode of a register. */
1401 static struct table_elt *
1402 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1404 struct table_elt *p;
1406 if (REG_P (x))
1408 unsigned int regno = REGNO (x);
1410 /* Don't check the machine mode when comparing registers;
1411 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1412 for (p = table[hash]; p; p = p->next_same_hash)
1413 if (REG_P (p->exp)
1414 && REGNO (p->exp) == regno)
1415 return p;
1417 else
1419 for (p = table[hash]; p; p = p->next_same_hash)
1420 if (mode == p->mode
1421 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1422 return p;
1425 return 0;
1428 /* Look for an expression equivalent to X and with code CODE.
1429 If one is found, return that expression. */
1431 static rtx
1432 lookup_as_function (rtx x, enum rtx_code code)
1434 struct table_elt *p
1435 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1437 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1438 long as we are narrowing. So if we looked in vain for a mode narrower
1439 than word_mode before, look for word_mode now. */
1440 if (p == 0 && code == CONST_INT
1441 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1443 x = copy_rtx (x);
1444 PUT_MODE (x, word_mode);
1445 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1448 if (p == 0)
1449 return 0;
1451 for (p = p->first_same_value; p; p = p->next_same_value)
1452 if (GET_CODE (p->exp) == code
1453 /* Make sure this is a valid entry in the table. */
1454 && exp_equiv_p (p->exp, p->exp, 1, false))
1455 return p->exp;
1457 return 0;
1460 /* Insert X in the hash table, assuming HASH is its hash code
1461 and CLASSP is an element of the class it should go in
1462 (or 0 if a new class should be made).
1463 It is inserted at the proper position to keep the class in
1464 the order cheapest first.
1466 MODE is the machine-mode of X, or if X is an integer constant
1467 with VOIDmode then MODE is the mode with which X will be used.
1469 For elements of equal cheapness, the most recent one
1470 goes in front, except that the first element in the list
1471 remains first unless a cheaper element is added. The order of
1472 pseudo-registers does not matter, as canon_reg will be called to
1473 find the cheapest when a register is retrieved from the table.
1475 The in_memory field in the hash table element is set to 0.
1476 The caller must set it nonzero if appropriate.
1478 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1479 and if insert_regs returns a nonzero value
1480 you must then recompute its hash code before calling here.
1482 If necessary, update table showing constant values of quantities. */
1484 #define CHEAPER(X, Y) \
1485 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1487 static struct table_elt *
1488 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1490 struct table_elt *elt;
1492 /* If X is a register and we haven't made a quantity for it,
1493 something is wrong. */
1494 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1496 /* If X is a hard register, show it is being put in the table. */
1497 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1499 unsigned int regno = REGNO (x);
1500 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1501 unsigned int i;
1503 for (i = regno; i < endregno; i++)
1504 SET_HARD_REG_BIT (hard_regs_in_table, i);
1507 /* Put an element for X into the right hash bucket. */
1509 elt = free_element_chain;
1510 if (elt)
1511 free_element_chain = elt->next_same_hash;
1512 else
1513 elt = xmalloc (sizeof (struct table_elt));
1515 elt->exp = x;
1516 elt->canon_exp = NULL_RTX;
1517 elt->cost = COST (x);
1518 elt->regcost = approx_reg_cost (x);
1519 elt->next_same_value = 0;
1520 elt->prev_same_value = 0;
1521 elt->next_same_hash = table[hash];
1522 elt->prev_same_hash = 0;
1523 elt->related_value = 0;
1524 elt->in_memory = 0;
1525 elt->mode = mode;
1526 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1528 if (table[hash])
1529 table[hash]->prev_same_hash = elt;
1530 table[hash] = elt;
1532 /* Put it into the proper value-class. */
1533 if (classp)
1535 classp = classp->first_same_value;
1536 if (CHEAPER (elt, classp))
1537 /* Insert at the head of the class. */
1539 struct table_elt *p;
1540 elt->next_same_value = classp;
1541 classp->prev_same_value = elt;
1542 elt->first_same_value = elt;
1544 for (p = classp; p; p = p->next_same_value)
1545 p->first_same_value = elt;
1547 else
1549 /* Insert not at head of the class. */
1550 /* Put it after the last element cheaper than X. */
1551 struct table_elt *p, *next;
1553 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1554 p = next);
1556 /* Put it after P and before NEXT. */
1557 elt->next_same_value = next;
1558 if (next)
1559 next->prev_same_value = elt;
1561 elt->prev_same_value = p;
1562 p->next_same_value = elt;
1563 elt->first_same_value = classp;
1566 else
1567 elt->first_same_value = elt;
1569 /* If this is a constant being set equivalent to a register or a register
1570 being set equivalent to a constant, note the constant equivalence.
1572 If this is a constant, it cannot be equivalent to a different constant,
1573 and a constant is the only thing that can be cheaper than a register. So
1574 we know the register is the head of the class (before the constant was
1575 inserted).
1577 If this is a register that is not already known equivalent to a
1578 constant, we must check the entire class.
1580 If this is a register that is already known equivalent to an insn,
1581 update the qtys `const_insn' to show that `this_insn' is the latest
1582 insn making that quantity equivalent to the constant. */
1584 if (elt->is_const && classp && REG_P (classp->exp)
1585 && !REG_P (x))
1587 int exp_q = REG_QTY (REGNO (classp->exp));
1588 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1590 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1591 exp_ent->const_insn = this_insn;
1594 else if (REG_P (x)
1595 && classp
1596 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1597 && ! elt->is_const)
1599 struct table_elt *p;
1601 for (p = classp; p != 0; p = p->next_same_value)
1603 if (p->is_const && !REG_P (p->exp))
1605 int x_q = REG_QTY (REGNO (x));
1606 struct qty_table_elem *x_ent = &qty_table[x_q];
1608 x_ent->const_rtx
1609 = gen_lowpart (GET_MODE (x), p->exp);
1610 x_ent->const_insn = this_insn;
1611 break;
1616 else if (REG_P (x)
1617 && qty_table[REG_QTY (REGNO (x))].const_rtx
1618 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1619 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1621 /* If this is a constant with symbolic value,
1622 and it has a term with an explicit integer value,
1623 link it up with related expressions. */
1624 if (GET_CODE (x) == CONST)
1626 rtx subexp = get_related_value (x);
1627 unsigned subhash;
1628 struct table_elt *subelt, *subelt_prev;
1630 if (subexp != 0)
1632 /* Get the integer-free subexpression in the hash table. */
1633 subhash = SAFE_HASH (subexp, mode);
1634 subelt = lookup (subexp, subhash, mode);
1635 if (subelt == 0)
1636 subelt = insert (subexp, NULL, subhash, mode);
1637 /* Initialize SUBELT's circular chain if it has none. */
1638 if (subelt->related_value == 0)
1639 subelt->related_value = subelt;
1640 /* Find the element in the circular chain that precedes SUBELT. */
1641 subelt_prev = subelt;
1642 while (subelt_prev->related_value != subelt)
1643 subelt_prev = subelt_prev->related_value;
1644 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1645 This way the element that follows SUBELT is the oldest one. */
1646 elt->related_value = subelt_prev->related_value;
1647 subelt_prev->related_value = elt;
1651 return elt;
1654 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1655 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1656 the two classes equivalent.
1658 CLASS1 will be the surviving class; CLASS2 should not be used after this
1659 call.
1661 Any invalid entries in CLASS2 will not be copied. */
1663 static void
1664 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1666 struct table_elt *elt, *next, *new;
1668 /* Ensure we start with the head of the classes. */
1669 class1 = class1->first_same_value;
1670 class2 = class2->first_same_value;
1672 /* If they were already equal, forget it. */
1673 if (class1 == class2)
1674 return;
1676 for (elt = class2; elt; elt = next)
1678 unsigned int hash;
1679 rtx exp = elt->exp;
1680 enum machine_mode mode = elt->mode;
1682 next = elt->next_same_value;
1684 /* Remove old entry, make a new one in CLASS1's class.
1685 Don't do this for invalid entries as we cannot find their
1686 hash code (it also isn't necessary). */
1687 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1689 bool need_rehash = false;
1691 hash_arg_in_memory = 0;
1692 hash = HASH (exp, mode);
1694 if (REG_P (exp))
1696 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1697 delete_reg_equiv (REGNO (exp));
1700 remove_from_table (elt, hash);
1702 if (insert_regs (exp, class1, 0) || need_rehash)
1704 rehash_using_reg (exp);
1705 hash = HASH (exp, mode);
1707 new = insert (exp, class1, hash, mode);
1708 new->in_memory = hash_arg_in_memory;
1713 /* Flush the entire hash table. */
1715 static void
1716 flush_hash_table (void)
1718 int i;
1719 struct table_elt *p;
1721 for (i = 0; i < HASH_SIZE; i++)
1722 for (p = table[i]; p; p = table[i])
1724 /* Note that invalidate can remove elements
1725 after P in the current hash chain. */
1726 if (REG_P (p->exp))
1727 invalidate (p->exp, p->mode);
1728 else
1729 remove_from_table (p, i);
1733 /* Function called for each rtx to check whether true dependence exist. */
1734 struct check_dependence_data
1736 enum machine_mode mode;
1737 rtx exp;
1738 rtx addr;
1741 static int
1742 check_dependence (rtx *x, void *data)
1744 struct check_dependence_data *d = (struct check_dependence_data *) data;
1745 if (*x && MEM_P (*x))
1746 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1747 cse_rtx_varies_p);
1748 else
1749 return 0;
1752 /* Remove from the hash table, or mark as invalid, all expressions whose
1753 values could be altered by storing in X. X is a register, a subreg, or
1754 a memory reference with nonvarying address (because, when a memory
1755 reference with a varying address is stored in, all memory references are
1756 removed by invalidate_memory so specific invalidation is superfluous).
1757 FULL_MODE, if not VOIDmode, indicates that this much should be
1758 invalidated instead of just the amount indicated by the mode of X. This
1759 is only used for bitfield stores into memory.
1761 A nonvarying address may be just a register or just a symbol reference,
1762 or it may be either of those plus a numeric offset. */
1764 static void
1765 invalidate (rtx x, enum machine_mode full_mode)
1767 int i;
1768 struct table_elt *p;
1769 rtx addr;
1771 switch (GET_CODE (x))
1773 case REG:
1775 /* If X is a register, dependencies on its contents are recorded
1776 through the qty number mechanism. Just change the qty number of
1777 the register, mark it as invalid for expressions that refer to it,
1778 and remove it itself. */
1779 unsigned int regno = REGNO (x);
1780 unsigned int hash = HASH (x, GET_MODE (x));
1782 /* Remove REGNO from any quantity list it might be on and indicate
1783 that its value might have changed. If it is a pseudo, remove its
1784 entry from the hash table.
1786 For a hard register, we do the first two actions above for any
1787 additional hard registers corresponding to X. Then, if any of these
1788 registers are in the table, we must remove any REG entries that
1789 overlap these registers. */
1791 delete_reg_equiv (regno);
1792 REG_TICK (regno)++;
1793 SUBREG_TICKED (regno) = -1;
1795 if (regno >= FIRST_PSEUDO_REGISTER)
1797 /* Because a register can be referenced in more than one mode,
1798 we might have to remove more than one table entry. */
1799 struct table_elt *elt;
1801 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1802 remove_from_table (elt, hash);
1804 else
1806 HOST_WIDE_INT in_table
1807 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1808 unsigned int endregno
1809 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1810 unsigned int tregno, tendregno, rn;
1811 struct table_elt *p, *next;
1813 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1815 for (rn = regno + 1; rn < endregno; rn++)
1817 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1818 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1819 delete_reg_equiv (rn);
1820 REG_TICK (rn)++;
1821 SUBREG_TICKED (rn) = -1;
1824 if (in_table)
1825 for (hash = 0; hash < HASH_SIZE; hash++)
1826 for (p = table[hash]; p; p = next)
1828 next = p->next_same_hash;
1830 if (!REG_P (p->exp)
1831 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1832 continue;
1834 tregno = REGNO (p->exp);
1835 tendregno
1836 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1837 if (tendregno > regno && tregno < endregno)
1838 remove_from_table (p, hash);
1842 return;
1844 case SUBREG:
1845 invalidate (SUBREG_REG (x), VOIDmode);
1846 return;
1848 case PARALLEL:
1849 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1850 invalidate (XVECEXP (x, 0, i), VOIDmode);
1851 return;
1853 case EXPR_LIST:
1854 /* This is part of a disjoint return value; extract the location in
1855 question ignoring the offset. */
1856 invalidate (XEXP (x, 0), VOIDmode);
1857 return;
1859 case MEM:
1860 addr = canon_rtx (get_addr (XEXP (x, 0)));
1861 /* Calculate the canonical version of X here so that
1862 true_dependence doesn't generate new RTL for X on each call. */
1863 x = canon_rtx (x);
1865 /* Remove all hash table elements that refer to overlapping pieces of
1866 memory. */
1867 if (full_mode == VOIDmode)
1868 full_mode = GET_MODE (x);
1870 for (i = 0; i < HASH_SIZE; i++)
1872 struct table_elt *next;
1874 for (p = table[i]; p; p = next)
1876 next = p->next_same_hash;
1877 if (p->in_memory)
1879 struct check_dependence_data d;
1881 /* Just canonicalize the expression once;
1882 otherwise each time we call invalidate
1883 true_dependence will canonicalize the
1884 expression again. */
1885 if (!p->canon_exp)
1886 p->canon_exp = canon_rtx (p->exp);
1887 d.exp = x;
1888 d.addr = addr;
1889 d.mode = full_mode;
1890 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1891 remove_from_table (p, i);
1895 return;
1897 default:
1898 gcc_unreachable ();
1902 /* Remove all expressions that refer to register REGNO,
1903 since they are already invalid, and we are about to
1904 mark that register valid again and don't want the old
1905 expressions to reappear as valid. */
1907 static void
1908 remove_invalid_refs (unsigned int regno)
1910 unsigned int i;
1911 struct table_elt *p, *next;
1913 for (i = 0; i < HASH_SIZE; i++)
1914 for (p = table[i]; p; p = next)
1916 next = p->next_same_hash;
1917 if (!REG_P (p->exp)
1918 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1919 remove_from_table (p, i);
1923 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1924 and mode MODE. */
1925 static void
1926 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1927 enum machine_mode mode)
1929 unsigned int i;
1930 struct table_elt *p, *next;
1931 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1933 for (i = 0; i < HASH_SIZE; i++)
1934 for (p = table[i]; p; p = next)
1936 rtx exp = p->exp;
1937 next = p->next_same_hash;
1939 if (!REG_P (exp)
1940 && (GET_CODE (exp) != SUBREG
1941 || !REG_P (SUBREG_REG (exp))
1942 || REGNO (SUBREG_REG (exp)) != regno
1943 || (((SUBREG_BYTE (exp)
1944 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1945 && SUBREG_BYTE (exp) <= end))
1946 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1947 remove_from_table (p, i);
1951 /* Recompute the hash codes of any valid entries in the hash table that
1952 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1954 This is called when we make a jump equivalence. */
1956 static void
1957 rehash_using_reg (rtx x)
1959 unsigned int i;
1960 struct table_elt *p, *next;
1961 unsigned hash;
1963 if (GET_CODE (x) == SUBREG)
1964 x = SUBREG_REG (x);
1966 /* If X is not a register or if the register is known not to be in any
1967 valid entries in the table, we have no work to do. */
1969 if (!REG_P (x)
1970 || REG_IN_TABLE (REGNO (x)) < 0
1971 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1972 return;
1974 /* Scan all hash chains looking for valid entries that mention X.
1975 If we find one and it is in the wrong hash chain, move it. */
1977 for (i = 0; i < HASH_SIZE; i++)
1978 for (p = table[i]; p; p = next)
1980 next = p->next_same_hash;
1981 if (reg_mentioned_p (x, p->exp)
1982 && exp_equiv_p (p->exp, p->exp, 1, false)
1983 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1985 if (p->next_same_hash)
1986 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1988 if (p->prev_same_hash)
1989 p->prev_same_hash->next_same_hash = p->next_same_hash;
1990 else
1991 table[i] = p->next_same_hash;
1993 p->next_same_hash = table[hash];
1994 p->prev_same_hash = 0;
1995 if (table[hash])
1996 table[hash]->prev_same_hash = p;
1997 table[hash] = p;
2002 /* Remove from the hash table any expression that is a call-clobbered
2003 register. Also update their TICK values. */
2005 static void
2006 invalidate_for_call (void)
2008 unsigned int regno, endregno;
2009 unsigned int i;
2010 unsigned hash;
2011 struct table_elt *p, *next;
2012 int in_table = 0;
2014 /* Go through all the hard registers. For each that is clobbered in
2015 a CALL_INSN, remove the register from quantity chains and update
2016 reg_tick if defined. Also see if any of these registers is currently
2017 in the table. */
2019 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2020 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2022 delete_reg_equiv (regno);
2023 if (REG_TICK (regno) >= 0)
2025 REG_TICK (regno)++;
2026 SUBREG_TICKED (regno) = -1;
2029 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2032 /* In the case where we have no call-clobbered hard registers in the
2033 table, we are done. Otherwise, scan the table and remove any
2034 entry that overlaps a call-clobbered register. */
2036 if (in_table)
2037 for (hash = 0; hash < HASH_SIZE; hash++)
2038 for (p = table[hash]; p; p = next)
2040 next = p->next_same_hash;
2042 if (!REG_P (p->exp)
2043 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2044 continue;
2046 regno = REGNO (p->exp);
2047 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2049 for (i = regno; i < endregno; i++)
2050 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2052 remove_from_table (p, hash);
2053 break;
2058 /* Given an expression X of type CONST,
2059 and ELT which is its table entry (or 0 if it
2060 is not in the hash table),
2061 return an alternate expression for X as a register plus integer.
2062 If none can be found, return 0. */
2064 static rtx
2065 use_related_value (rtx x, struct table_elt *elt)
2067 struct table_elt *relt = 0;
2068 struct table_elt *p, *q;
2069 HOST_WIDE_INT offset;
2071 /* First, is there anything related known?
2072 If we have a table element, we can tell from that.
2073 Otherwise, must look it up. */
2075 if (elt != 0 && elt->related_value != 0)
2076 relt = elt;
2077 else if (elt == 0 && GET_CODE (x) == CONST)
2079 rtx subexp = get_related_value (x);
2080 if (subexp != 0)
2081 relt = lookup (subexp,
2082 SAFE_HASH (subexp, GET_MODE (subexp)),
2083 GET_MODE (subexp));
2086 if (relt == 0)
2087 return 0;
2089 /* Search all related table entries for one that has an
2090 equivalent register. */
2092 p = relt;
2093 while (1)
2095 /* This loop is strange in that it is executed in two different cases.
2096 The first is when X is already in the table. Then it is searching
2097 the RELATED_VALUE list of X's class (RELT). The second case is when
2098 X is not in the table. Then RELT points to a class for the related
2099 value.
2101 Ensure that, whatever case we are in, that we ignore classes that have
2102 the same value as X. */
2104 if (rtx_equal_p (x, p->exp))
2105 q = 0;
2106 else
2107 for (q = p->first_same_value; q; q = q->next_same_value)
2108 if (REG_P (q->exp))
2109 break;
2111 if (q)
2112 break;
2114 p = p->related_value;
2116 /* We went all the way around, so there is nothing to be found.
2117 Alternatively, perhaps RELT was in the table for some other reason
2118 and it has no related values recorded. */
2119 if (p == relt || p == 0)
2120 break;
2123 if (q == 0)
2124 return 0;
2126 offset = (get_integer_term (x) - get_integer_term (p->exp));
2127 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2128 return plus_constant (q->exp, offset);
2131 /* Hash a string. Just add its bytes up. */
2132 static inline unsigned
2133 hash_rtx_string (const char *ps)
2135 unsigned hash = 0;
2136 const unsigned char *p = (const unsigned char *) ps;
2138 if (p)
2139 while (*p)
2140 hash += *p++;
2142 return hash;
2145 /* Hash an rtx. We are careful to make sure the value is never negative.
2146 Equivalent registers hash identically.
2147 MODE is used in hashing for CONST_INTs only;
2148 otherwise the mode of X is used.
2150 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2152 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2153 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2155 Note that cse_insn knows that the hash code of a MEM expression
2156 is just (int) MEM plus the hash code of the address. */
2158 unsigned
2159 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2160 int *hash_arg_in_memory_p, bool have_reg_qty)
2162 int i, j;
2163 unsigned hash = 0;
2164 enum rtx_code code;
2165 const char *fmt;
2167 /* Used to turn recursion into iteration. We can't rely on GCC's
2168 tail-recursion elimination since we need to keep accumulating values
2169 in HASH. */
2170 repeat:
2171 if (x == 0)
2172 return hash;
2174 code = GET_CODE (x);
2175 switch (code)
2177 case REG:
2179 unsigned int regno = REGNO (x);
2181 if (!reload_completed)
2183 /* On some machines, we can't record any non-fixed hard register,
2184 because extending its life will cause reload problems. We
2185 consider ap, fp, sp, gp to be fixed for this purpose.
2187 We also consider CCmode registers to be fixed for this purpose;
2188 failure to do so leads to failure to simplify 0<100 type of
2189 conditionals.
2191 On all machines, we can't record any global registers.
2192 Nor should we record any register that is in a small
2193 class, as defined by CLASS_LIKELY_SPILLED_P. */
2194 bool record;
2196 if (regno >= FIRST_PSEUDO_REGISTER)
2197 record = true;
2198 else if (x == frame_pointer_rtx
2199 || x == hard_frame_pointer_rtx
2200 || x == arg_pointer_rtx
2201 || x == stack_pointer_rtx
2202 || x == pic_offset_table_rtx)
2203 record = true;
2204 else if (global_regs[regno])
2205 record = false;
2206 else if (fixed_regs[regno])
2207 record = true;
2208 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2209 record = true;
2210 else if (SMALL_REGISTER_CLASSES)
2211 record = false;
2212 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2213 record = false;
2214 else
2215 record = true;
2217 if (!record)
2219 *do_not_record_p = 1;
2220 return 0;
2224 hash += ((unsigned int) REG << 7);
2225 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2226 return hash;
2229 /* We handle SUBREG of a REG specially because the underlying
2230 reg changes its hash value with every value change; we don't
2231 want to have to forget unrelated subregs when one subreg changes. */
2232 case SUBREG:
2234 if (REG_P (SUBREG_REG (x)))
2236 hash += (((unsigned int) SUBREG << 7)
2237 + REGNO (SUBREG_REG (x))
2238 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2239 return hash;
2241 break;
2244 case CONST_INT:
2245 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2246 + (unsigned int) INTVAL (x));
2247 return hash;
2249 case CONST_DOUBLE:
2250 /* This is like the general case, except that it only counts
2251 the integers representing the constant. */
2252 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2253 if (GET_MODE (x) != VOIDmode)
2254 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2255 else
2256 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2257 + (unsigned int) CONST_DOUBLE_HIGH (x));
2258 return hash;
2260 case CONST_VECTOR:
2262 int units;
2263 rtx elt;
2265 units = CONST_VECTOR_NUNITS (x);
2267 for (i = 0; i < units; ++i)
2269 elt = CONST_VECTOR_ELT (x, i);
2270 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2271 hash_arg_in_memory_p, have_reg_qty);
2274 return hash;
2277 /* Assume there is only one rtx object for any given label. */
2278 case LABEL_REF:
2279 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2280 differences and differences between each stage's debugging dumps. */
2281 hash += (((unsigned int) LABEL_REF << 7)
2282 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2283 return hash;
2285 case SYMBOL_REF:
2287 /* Don't hash on the symbol's address to avoid bootstrap differences.
2288 Different hash values may cause expressions to be recorded in
2289 different orders and thus different registers to be used in the
2290 final assembler. This also avoids differences in the dump files
2291 between various stages. */
2292 unsigned int h = 0;
2293 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2295 while (*p)
2296 h += (h << 7) + *p++; /* ??? revisit */
2298 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2299 return hash;
2302 case MEM:
2303 /* We don't record if marked volatile or if BLKmode since we don't
2304 know the size of the move. */
2305 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2307 *do_not_record_p = 1;
2308 return 0;
2310 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2311 *hash_arg_in_memory_p = 1;
2313 /* Now that we have already found this special case,
2314 might as well speed it up as much as possible. */
2315 hash += (unsigned) MEM;
2316 x = XEXP (x, 0);
2317 goto repeat;
2319 case USE:
2320 /* A USE that mentions non-volatile memory needs special
2321 handling since the MEM may be BLKmode which normally
2322 prevents an entry from being made. Pure calls are
2323 marked by a USE which mentions BLKmode memory.
2324 See calls.c:emit_call_1. */
2325 if (MEM_P (XEXP (x, 0))
2326 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2328 hash += (unsigned) USE;
2329 x = XEXP (x, 0);
2331 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2332 *hash_arg_in_memory_p = 1;
2334 /* Now that we have already found this special case,
2335 might as well speed it up as much as possible. */
2336 hash += (unsigned) MEM;
2337 x = XEXP (x, 0);
2338 goto repeat;
2340 break;
2342 case PRE_DEC:
2343 case PRE_INC:
2344 case POST_DEC:
2345 case POST_INC:
2346 case PRE_MODIFY:
2347 case POST_MODIFY:
2348 case PC:
2349 case CC0:
2350 case CALL:
2351 case UNSPEC_VOLATILE:
2352 *do_not_record_p = 1;
2353 return 0;
2355 case ASM_OPERANDS:
2356 if (MEM_VOLATILE_P (x))
2358 *do_not_record_p = 1;
2359 return 0;
2361 else
2363 /* We don't want to take the filename and line into account. */
2364 hash += (unsigned) code + (unsigned) GET_MODE (x)
2365 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2366 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2367 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2369 if (ASM_OPERANDS_INPUT_LENGTH (x))
2371 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2373 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2374 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2375 do_not_record_p, hash_arg_in_memory_p,
2376 have_reg_qty)
2377 + hash_rtx_string
2378 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2381 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2382 x = ASM_OPERANDS_INPUT (x, 0);
2383 mode = GET_MODE (x);
2384 goto repeat;
2387 return hash;
2389 break;
2391 default:
2392 break;
2395 i = GET_RTX_LENGTH (code) - 1;
2396 hash += (unsigned) code + (unsigned) GET_MODE (x);
2397 fmt = GET_RTX_FORMAT (code);
2398 for (; i >= 0; i--)
2400 switch (fmt[i])
2402 case 'e':
2403 /* If we are about to do the last recursive call
2404 needed at this level, change it into iteration.
2405 This function is called enough to be worth it. */
2406 if (i == 0)
2408 x = XEXP (x, i);
2409 goto repeat;
2412 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2413 hash_arg_in_memory_p, have_reg_qty);
2414 break;
2416 case 'E':
2417 for (j = 0; j < XVECLEN (x, i); j++)
2418 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2419 hash_arg_in_memory_p, have_reg_qty);
2420 break;
2422 case 's':
2423 hash += hash_rtx_string (XSTR (x, i));
2424 break;
2426 case 'i':
2427 hash += (unsigned int) XINT (x, i);
2428 break;
2430 case '0': case 't':
2431 /* Unused. */
2432 break;
2434 default:
2435 gcc_unreachable ();
2439 return hash;
2442 /* Hash an rtx X for cse via hash_rtx.
2443 Stores 1 in do_not_record if any subexpression is volatile.
2444 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2445 does not have the RTX_UNCHANGING_P bit set. */
2447 static inline unsigned
2448 canon_hash (rtx x, enum machine_mode mode)
2450 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2453 /* Like canon_hash but with no side effects, i.e. do_not_record
2454 and hash_arg_in_memory are not changed. */
2456 static inline unsigned
2457 safe_hash (rtx x, enum machine_mode mode)
2459 int dummy_do_not_record;
2460 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2463 /* Return 1 iff X and Y would canonicalize into the same thing,
2464 without actually constructing the canonicalization of either one.
2465 If VALIDATE is nonzero,
2466 we assume X is an expression being processed from the rtl
2467 and Y was found in the hash table. We check register refs
2468 in Y for being marked as valid.
2470 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2473 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2475 int i, j;
2476 enum rtx_code code;
2477 const char *fmt;
2479 /* Note: it is incorrect to assume an expression is equivalent to itself
2480 if VALIDATE is nonzero. */
2481 if (x == y && !validate)
2482 return 1;
2484 if (x == 0 || y == 0)
2485 return x == y;
2487 code = GET_CODE (x);
2488 if (code != GET_CODE (y))
2489 return 0;
2491 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2492 if (GET_MODE (x) != GET_MODE (y))
2493 return 0;
2495 switch (code)
2497 case PC:
2498 case CC0:
2499 case CONST_INT:
2500 return x == y;
2502 case LABEL_REF:
2503 return XEXP (x, 0) == XEXP (y, 0);
2505 case SYMBOL_REF:
2506 return XSTR (x, 0) == XSTR (y, 0);
2508 case REG:
2509 if (for_gcse)
2510 return REGNO (x) == REGNO (y);
2511 else
2513 unsigned int regno = REGNO (y);
2514 unsigned int i;
2515 unsigned int endregno
2516 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2517 : hard_regno_nregs[regno][GET_MODE (y)]);
2519 /* If the quantities are not the same, the expressions are not
2520 equivalent. If there are and we are not to validate, they
2521 are equivalent. Otherwise, ensure all regs are up-to-date. */
2523 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2524 return 0;
2526 if (! validate)
2527 return 1;
2529 for (i = regno; i < endregno; i++)
2530 if (REG_IN_TABLE (i) != REG_TICK (i))
2531 return 0;
2533 return 1;
2536 case MEM:
2537 if (for_gcse)
2539 /* Can't merge two expressions in different alias sets, since we
2540 can decide that the expression is transparent in a block when
2541 it isn't, due to it being set with the different alias set. */
2542 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2543 return 0;
2545 /* A volatile mem should not be considered equivalent to any
2546 other. */
2547 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2548 return 0;
2550 break;
2552 /* For commutative operations, check both orders. */
2553 case PLUS:
2554 case MULT:
2555 case AND:
2556 case IOR:
2557 case XOR:
2558 case NE:
2559 case EQ:
2560 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2561 validate, for_gcse)
2562 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2563 validate, for_gcse))
2564 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2565 validate, for_gcse)
2566 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2567 validate, for_gcse)));
2569 case ASM_OPERANDS:
2570 /* We don't use the generic code below because we want to
2571 disregard filename and line numbers. */
2573 /* A volatile asm isn't equivalent to any other. */
2574 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2575 return 0;
2577 if (GET_MODE (x) != GET_MODE (y)
2578 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2579 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2580 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2581 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2582 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2583 return 0;
2585 if (ASM_OPERANDS_INPUT_LENGTH (x))
2587 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2588 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2589 ASM_OPERANDS_INPUT (y, i),
2590 validate, for_gcse)
2591 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2592 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2593 return 0;
2596 return 1;
2598 default:
2599 break;
2602 /* Compare the elements. If any pair of corresponding elements
2603 fail to match, return 0 for the whole thing. */
2605 fmt = GET_RTX_FORMAT (code);
2606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2608 switch (fmt[i])
2610 case 'e':
2611 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2612 validate, for_gcse))
2613 return 0;
2614 break;
2616 case 'E':
2617 if (XVECLEN (x, i) != XVECLEN (y, i))
2618 return 0;
2619 for (j = 0; j < XVECLEN (x, i); j++)
2620 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2621 validate, for_gcse))
2622 return 0;
2623 break;
2625 case 's':
2626 if (strcmp (XSTR (x, i), XSTR (y, i)))
2627 return 0;
2628 break;
2630 case 'i':
2631 if (XINT (x, i) != XINT (y, i))
2632 return 0;
2633 break;
2635 case 'w':
2636 if (XWINT (x, i) != XWINT (y, i))
2637 return 0;
2638 break;
2640 case '0':
2641 case 't':
2642 break;
2644 default:
2645 gcc_unreachable ();
2649 return 1;
2652 /* Return 1 if X has a value that can vary even between two
2653 executions of the program. 0 means X can be compared reliably
2654 against certain constants or near-constants. */
2656 static int
2657 cse_rtx_varies_p (rtx x, int from_alias)
2659 /* We need not check for X and the equivalence class being of the same
2660 mode because if X is equivalent to a constant in some mode, it
2661 doesn't vary in any mode. */
2663 if (REG_P (x)
2664 && REGNO_QTY_VALID_P (REGNO (x)))
2666 int x_q = REG_QTY (REGNO (x));
2667 struct qty_table_elem *x_ent = &qty_table[x_q];
2669 if (GET_MODE (x) == x_ent->mode
2670 && x_ent->const_rtx != NULL_RTX)
2671 return 0;
2674 if (GET_CODE (x) == PLUS
2675 && GET_CODE (XEXP (x, 1)) == CONST_INT
2676 && REG_P (XEXP (x, 0))
2677 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2679 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2680 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2682 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2683 && x0_ent->const_rtx != NULL_RTX)
2684 return 0;
2687 /* This can happen as the result of virtual register instantiation, if
2688 the initial constant is too large to be a valid address. This gives
2689 us a three instruction sequence, load large offset into a register,
2690 load fp minus a constant into a register, then a MEM which is the
2691 sum of the two `constant' registers. */
2692 if (GET_CODE (x) == PLUS
2693 && REG_P (XEXP (x, 0))
2694 && REG_P (XEXP (x, 1))
2695 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2696 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2698 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2699 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2700 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2701 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2703 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2704 && x0_ent->const_rtx != NULL_RTX
2705 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2706 && x1_ent->const_rtx != NULL_RTX)
2707 return 0;
2710 return rtx_varies_p (x, from_alias);
2713 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2714 the result if necessary. INSN is as for canon_reg. */
2716 static void
2717 validate_canon_reg (rtx *xloc, rtx insn)
2719 rtx new = canon_reg (*xloc, insn);
2720 int insn_code;
2722 /* If replacing pseudo with hard reg or vice versa, ensure the
2723 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2724 if (insn != 0 && new != 0
2725 && REG_P (new) && REG_P (*xloc)
2726 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2727 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2728 || GET_MODE (new) != GET_MODE (*xloc)
2729 || (insn_code = recog_memoized (insn)) < 0
2730 || insn_data[insn_code].n_dups > 0))
2731 validate_change (insn, xloc, new, 1);
2732 else
2733 *xloc = new;
2736 /* Canonicalize an expression:
2737 replace each register reference inside it
2738 with the "oldest" equivalent register.
2740 If INSN is nonzero and we are replacing a pseudo with a hard register
2741 or vice versa, validate_change is used to ensure that INSN remains valid
2742 after we make our substitution. The calls are made with IN_GROUP nonzero
2743 so apply_change_group must be called upon the outermost return from this
2744 function (unless INSN is zero). The result of apply_change_group can
2745 generally be discarded since the changes we are making are optional. */
2747 static rtx
2748 canon_reg (rtx x, rtx insn)
2750 int i;
2751 enum rtx_code code;
2752 const char *fmt;
2754 if (x == 0)
2755 return x;
2757 code = GET_CODE (x);
2758 switch (code)
2760 case PC:
2761 case CC0:
2762 case CONST:
2763 case CONST_INT:
2764 case CONST_DOUBLE:
2765 case CONST_VECTOR:
2766 case SYMBOL_REF:
2767 case LABEL_REF:
2768 case ADDR_VEC:
2769 case ADDR_DIFF_VEC:
2770 return x;
2772 case REG:
2774 int first;
2775 int q;
2776 struct qty_table_elem *ent;
2778 /* Never replace a hard reg, because hard regs can appear
2779 in more than one machine mode, and we must preserve the mode
2780 of each occurrence. Also, some hard regs appear in
2781 MEMs that are shared and mustn't be altered. Don't try to
2782 replace any reg that maps to a reg of class NO_REGS. */
2783 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2784 || ! REGNO_QTY_VALID_P (REGNO (x)))
2785 return x;
2787 q = REG_QTY (REGNO (x));
2788 ent = &qty_table[q];
2789 first = ent->first_reg;
2790 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2791 : REGNO_REG_CLASS (first) == NO_REGS ? x
2792 : gen_rtx_REG (ent->mode, first));
2795 default:
2796 break;
2799 fmt = GET_RTX_FORMAT (code);
2800 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2802 int j;
2804 if (fmt[i] == 'e')
2805 validate_canon_reg (&XEXP (x, i), insn);
2806 else if (fmt[i] == 'E')
2807 for (j = 0; j < XVECLEN (x, i); j++)
2808 validate_canon_reg (&XVECEXP (x, i, j), insn);
2811 return x;
2814 /* LOC is a location within INSN that is an operand address (the contents of
2815 a MEM). Find the best equivalent address to use that is valid for this
2816 insn.
2818 On most CISC machines, complicated address modes are costly, and rtx_cost
2819 is a good approximation for that cost. However, most RISC machines have
2820 only a few (usually only one) memory reference formats. If an address is
2821 valid at all, it is often just as cheap as any other address. Hence, for
2822 RISC machines, we use `address_cost' to compare the costs of various
2823 addresses. For two addresses of equal cost, choose the one with the
2824 highest `rtx_cost' value as that has the potential of eliminating the
2825 most insns. For equal costs, we choose the first in the equivalence
2826 class. Note that we ignore the fact that pseudo registers are cheaper than
2827 hard registers here because we would also prefer the pseudo registers. */
2829 static void
2830 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2832 struct table_elt *elt;
2833 rtx addr = *loc;
2834 struct table_elt *p;
2835 int found_better = 1;
2836 int save_do_not_record = do_not_record;
2837 int save_hash_arg_in_memory = hash_arg_in_memory;
2838 int addr_volatile;
2839 int regno;
2840 unsigned hash;
2842 /* Do not try to replace constant addresses or addresses of local and
2843 argument slots. These MEM expressions are made only once and inserted
2844 in many instructions, as well as being used to control symbol table
2845 output. It is not safe to clobber them.
2847 There are some uncommon cases where the address is already in a register
2848 for some reason, but we cannot take advantage of that because we have
2849 no easy way to unshare the MEM. In addition, looking up all stack
2850 addresses is costly. */
2851 if ((GET_CODE (addr) == PLUS
2852 && REG_P (XEXP (addr, 0))
2853 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2854 && (regno = REGNO (XEXP (addr, 0)),
2855 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2856 || regno == ARG_POINTER_REGNUM))
2857 || (REG_P (addr)
2858 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2859 || regno == HARD_FRAME_POINTER_REGNUM
2860 || regno == ARG_POINTER_REGNUM))
2861 || CONSTANT_ADDRESS_P (addr))
2862 return;
2864 /* If this address is not simply a register, try to fold it. This will
2865 sometimes simplify the expression. Many simplifications
2866 will not be valid, but some, usually applying the associative rule, will
2867 be valid and produce better code. */
2868 if (!REG_P (addr))
2870 rtx folded = fold_rtx (addr, NULL_RTX);
2871 if (folded != addr)
2873 int addr_folded_cost = address_cost (folded, mode);
2874 int addr_cost = address_cost (addr, mode);
2876 if ((addr_folded_cost < addr_cost
2877 || (addr_folded_cost == addr_cost
2878 /* ??? The rtx_cost comparison is left over from an older
2879 version of this code. It is probably no longer helpful.*/
2880 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2881 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2882 && validate_change (insn, loc, folded, 0))
2883 addr = folded;
2887 /* If this address is not in the hash table, we can't look for equivalences
2888 of the whole address. Also, ignore if volatile. */
2890 do_not_record = 0;
2891 hash = HASH (addr, Pmode);
2892 addr_volatile = do_not_record;
2893 do_not_record = save_do_not_record;
2894 hash_arg_in_memory = save_hash_arg_in_memory;
2896 if (addr_volatile)
2897 return;
2899 elt = lookup (addr, hash, Pmode);
2901 if (elt)
2903 /* We need to find the best (under the criteria documented above) entry
2904 in the class that is valid. We use the `flag' field to indicate
2905 choices that were invalid and iterate until we can't find a better
2906 one that hasn't already been tried. */
2908 for (p = elt->first_same_value; p; p = p->next_same_value)
2909 p->flag = 0;
2911 while (found_better)
2913 int best_addr_cost = address_cost (*loc, mode);
2914 int best_rtx_cost = (elt->cost + 1) >> 1;
2915 int exp_cost;
2916 struct table_elt *best_elt = elt;
2918 found_better = 0;
2919 for (p = elt->first_same_value; p; p = p->next_same_value)
2920 if (! p->flag)
2922 if ((REG_P (p->exp)
2923 || exp_equiv_p (p->exp, p->exp, 1, false))
2924 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2925 || (exp_cost == best_addr_cost
2926 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2928 found_better = 1;
2929 best_addr_cost = exp_cost;
2930 best_rtx_cost = (p->cost + 1) >> 1;
2931 best_elt = p;
2935 if (found_better)
2937 if (validate_change (insn, loc,
2938 canon_reg (copy_rtx (best_elt->exp),
2939 NULL_RTX), 0))
2940 return;
2941 else
2942 best_elt->flag = 1;
2947 /* If the address is a binary operation with the first operand a register
2948 and the second a constant, do the same as above, but looking for
2949 equivalences of the register. Then try to simplify before checking for
2950 the best address to use. This catches a few cases: First is when we
2951 have REG+const and the register is another REG+const. We can often merge
2952 the constants and eliminate one insn and one register. It may also be
2953 that a machine has a cheap REG+REG+const. Finally, this improves the
2954 code on the Alpha for unaligned byte stores. */
2956 if (flag_expensive_optimizations
2957 && ARITHMETIC_P (*loc)
2958 && REG_P (XEXP (*loc, 0)))
2960 rtx op1 = XEXP (*loc, 1);
2962 do_not_record = 0;
2963 hash = HASH (XEXP (*loc, 0), Pmode);
2964 do_not_record = save_do_not_record;
2965 hash_arg_in_memory = save_hash_arg_in_memory;
2967 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2968 if (elt == 0)
2969 return;
2971 /* We need to find the best (under the criteria documented above) entry
2972 in the class that is valid. We use the `flag' field to indicate
2973 choices that were invalid and iterate until we can't find a better
2974 one that hasn't already been tried. */
2976 for (p = elt->first_same_value; p; p = p->next_same_value)
2977 p->flag = 0;
2979 while (found_better)
2981 int best_addr_cost = address_cost (*loc, mode);
2982 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2983 struct table_elt *best_elt = elt;
2984 rtx best_rtx = *loc;
2985 int count;
2987 /* This is at worst case an O(n^2) algorithm, so limit our search
2988 to the first 32 elements on the list. This avoids trouble
2989 compiling code with very long basic blocks that can easily
2990 call simplify_gen_binary so many times that we run out of
2991 memory. */
2993 found_better = 0;
2994 for (p = elt->first_same_value, count = 0;
2995 p && count < 32;
2996 p = p->next_same_value, count++)
2997 if (! p->flag
2998 && (REG_P (p->exp)
2999 || exp_equiv_p (p->exp, p->exp, 1, false)))
3001 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3002 p->exp, op1);
3003 int new_cost;
3005 /* Get the canonical version of the address so we can accept
3006 more. */
3007 new = canon_for_address (new);
3009 new_cost = address_cost (new, mode);
3011 if (new_cost < best_addr_cost
3012 || (new_cost == best_addr_cost
3013 && (COST (new) + 1) >> 1 > best_rtx_cost))
3015 found_better = 1;
3016 best_addr_cost = new_cost;
3017 best_rtx_cost = (COST (new) + 1) >> 1;
3018 best_elt = p;
3019 best_rtx = new;
3023 if (found_better)
3025 if (validate_change (insn, loc,
3026 canon_reg (copy_rtx (best_rtx),
3027 NULL_RTX), 0))
3028 return;
3029 else
3030 best_elt->flag = 1;
3036 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3037 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3038 what values are being compared.
3040 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3041 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3042 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3043 compared to produce cc0.
3045 The return value is the comparison operator and is either the code of
3046 A or the code corresponding to the inverse of the comparison. */
3048 static enum rtx_code
3049 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3050 enum machine_mode *pmode1, enum machine_mode *pmode2)
3052 rtx arg1, arg2;
3054 arg1 = *parg1, arg2 = *parg2;
3056 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3058 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3060 /* Set nonzero when we find something of interest. */
3061 rtx x = 0;
3062 int reverse_code = 0;
3063 struct table_elt *p = 0;
3065 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3066 On machines with CC0, this is the only case that can occur, since
3067 fold_rtx will return the COMPARE or item being compared with zero
3068 when given CC0. */
3070 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3071 x = arg1;
3073 /* If ARG1 is a comparison operator and CODE is testing for
3074 STORE_FLAG_VALUE, get the inner arguments. */
3076 else if (COMPARISON_P (arg1))
3078 #ifdef FLOAT_STORE_FLAG_VALUE
3079 REAL_VALUE_TYPE fsfv;
3080 #endif
3082 if (code == NE
3083 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3084 && code == LT && STORE_FLAG_VALUE == -1)
3085 #ifdef FLOAT_STORE_FLAG_VALUE
3086 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3087 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3088 REAL_VALUE_NEGATIVE (fsfv)))
3089 #endif
3091 x = arg1;
3092 else if (code == EQ
3093 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3094 && code == GE && STORE_FLAG_VALUE == -1)
3095 #ifdef FLOAT_STORE_FLAG_VALUE
3096 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3097 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3098 REAL_VALUE_NEGATIVE (fsfv)))
3099 #endif
3101 x = arg1, reverse_code = 1;
3104 /* ??? We could also check for
3106 (ne (and (eq (...) (const_int 1))) (const_int 0))
3108 and related forms, but let's wait until we see them occurring. */
3110 if (x == 0)
3111 /* Look up ARG1 in the hash table and see if it has an equivalence
3112 that lets us see what is being compared. */
3113 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3114 if (p)
3116 p = p->first_same_value;
3118 /* If what we compare is already known to be constant, that is as
3119 good as it gets.
3120 We need to break the loop in this case, because otherwise we
3121 can have an infinite loop when looking at a reg that is known
3122 to be a constant which is the same as a comparison of a reg
3123 against zero which appears later in the insn stream, which in
3124 turn is constant and the same as the comparison of the first reg
3125 against zero... */
3126 if (p->is_const)
3127 break;
3130 for (; p; p = p->next_same_value)
3132 enum machine_mode inner_mode = GET_MODE (p->exp);
3133 #ifdef FLOAT_STORE_FLAG_VALUE
3134 REAL_VALUE_TYPE fsfv;
3135 #endif
3137 /* If the entry isn't valid, skip it. */
3138 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3139 continue;
3141 if (GET_CODE (p->exp) == COMPARE
3142 /* Another possibility is that this machine has a compare insn
3143 that includes the comparison code. In that case, ARG1 would
3144 be equivalent to a comparison operation that would set ARG1 to
3145 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3146 ORIG_CODE is the actual comparison being done; if it is an EQ,
3147 we must reverse ORIG_CODE. On machine with a negative value
3148 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3149 || ((code == NE
3150 || (code == LT
3151 && GET_MODE_CLASS (inner_mode) == MODE_INT
3152 && (GET_MODE_BITSIZE (inner_mode)
3153 <= HOST_BITS_PER_WIDE_INT)
3154 && (STORE_FLAG_VALUE
3155 & ((HOST_WIDE_INT) 1
3156 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3157 #ifdef FLOAT_STORE_FLAG_VALUE
3158 || (code == LT
3159 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3160 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3161 REAL_VALUE_NEGATIVE (fsfv)))
3162 #endif
3164 && COMPARISON_P (p->exp)))
3166 x = p->exp;
3167 break;
3169 else if ((code == EQ
3170 || (code == GE
3171 && GET_MODE_CLASS (inner_mode) == MODE_INT
3172 && (GET_MODE_BITSIZE (inner_mode)
3173 <= HOST_BITS_PER_WIDE_INT)
3174 && (STORE_FLAG_VALUE
3175 & ((HOST_WIDE_INT) 1
3176 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3177 #ifdef FLOAT_STORE_FLAG_VALUE
3178 || (code == GE
3179 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3180 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3181 REAL_VALUE_NEGATIVE (fsfv)))
3182 #endif
3184 && COMPARISON_P (p->exp))
3186 reverse_code = 1;
3187 x = p->exp;
3188 break;
3191 /* If this non-trapping address, e.g. fp + constant, the
3192 equivalent is a better operand since it may let us predict
3193 the value of the comparison. */
3194 else if (!rtx_addr_can_trap_p (p->exp))
3196 arg1 = p->exp;
3197 continue;
3201 /* If we didn't find a useful equivalence for ARG1, we are done.
3202 Otherwise, set up for the next iteration. */
3203 if (x == 0)
3204 break;
3206 /* If we need to reverse the comparison, make sure that that is
3207 possible -- we can't necessarily infer the value of GE from LT
3208 with floating-point operands. */
3209 if (reverse_code)
3211 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3212 if (reversed == UNKNOWN)
3213 break;
3214 else
3215 code = reversed;
3217 else if (COMPARISON_P (x))
3218 code = GET_CODE (x);
3219 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3222 /* Return our results. Return the modes from before fold_rtx
3223 because fold_rtx might produce const_int, and then it's too late. */
3224 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3225 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3227 return code;
3230 /* If X is a nontrivial arithmetic operation on an argument
3231 for which a constant value can be determined, return
3232 the result of operating on that value, as a constant.
3233 Otherwise, return X, possibly with one or more operands
3234 modified by recursive calls to this function.
3236 If X is a register whose contents are known, we do NOT
3237 return those contents here. equiv_constant is called to
3238 perform that task.
3240 INSN is the insn that we may be modifying. If it is 0, make a copy
3241 of X before modifying it. */
3243 static rtx
3244 fold_rtx (rtx x, rtx insn)
3246 enum rtx_code code;
3247 enum machine_mode mode;
3248 const char *fmt;
3249 int i;
3250 rtx new = 0;
3251 int copied = 0;
3252 int must_swap = 0;
3254 /* Folded equivalents of first two operands of X. */
3255 rtx folded_arg0;
3256 rtx folded_arg1;
3258 /* Constant equivalents of first three operands of X;
3259 0 when no such equivalent is known. */
3260 rtx const_arg0;
3261 rtx const_arg1;
3262 rtx const_arg2;
3264 /* The mode of the first operand of X. We need this for sign and zero
3265 extends. */
3266 enum machine_mode mode_arg0;
3268 if (x == 0)
3269 return x;
3271 mode = GET_MODE (x);
3272 code = GET_CODE (x);
3273 switch (code)
3275 case CONST:
3276 case CONST_INT:
3277 case CONST_DOUBLE:
3278 case CONST_VECTOR:
3279 case SYMBOL_REF:
3280 case LABEL_REF:
3281 case REG:
3282 case PC:
3283 /* No use simplifying an EXPR_LIST
3284 since they are used only for lists of args
3285 in a function call's REG_EQUAL note. */
3286 case EXPR_LIST:
3287 return x;
3289 #ifdef HAVE_cc0
3290 case CC0:
3291 return prev_insn_cc0;
3292 #endif
3294 case SUBREG:
3295 /* See if we previously assigned a constant value to this SUBREG. */
3296 if ((new = lookup_as_function (x, CONST_INT)) != 0
3297 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3298 return new;
3300 /* If this is a paradoxical SUBREG, we have no idea what value the
3301 extra bits would have. However, if the operand is equivalent
3302 to a SUBREG whose operand is the same as our mode, and all the
3303 modes are within a word, we can just use the inner operand
3304 because these SUBREGs just say how to treat the register.
3306 Similarly if we find an integer constant. */
3308 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3310 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3311 struct table_elt *elt;
3313 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3314 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3315 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3316 imode)) != 0)
3317 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3319 if (CONSTANT_P (elt->exp)
3320 && GET_MODE (elt->exp) == VOIDmode)
3321 return elt->exp;
3323 if (GET_CODE (elt->exp) == SUBREG
3324 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3325 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3326 return copy_rtx (SUBREG_REG (elt->exp));
3329 return x;
3332 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3333 We might be able to if the SUBREG is extracting a single word in an
3334 integral mode or extracting the low part. */
3336 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3337 const_arg0 = equiv_constant (folded_arg0);
3338 if (const_arg0)
3339 folded_arg0 = const_arg0;
3341 if (folded_arg0 != SUBREG_REG (x))
3343 new = simplify_subreg (mode, folded_arg0,
3344 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3345 if (new)
3346 return new;
3349 if (REG_P (folded_arg0)
3350 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3352 struct table_elt *elt;
3354 elt = lookup (folded_arg0,
3355 HASH (folded_arg0, GET_MODE (folded_arg0)),
3356 GET_MODE (folded_arg0));
3358 if (elt)
3359 elt = elt->first_same_value;
3361 if (subreg_lowpart_p (x))
3362 /* If this is a narrowing SUBREG and our operand is a REG, see
3363 if we can find an equivalence for REG that is an arithmetic
3364 operation in a wider mode where both operands are paradoxical
3365 SUBREGs from objects of our result mode. In that case, we
3366 couldn-t report an equivalent value for that operation, since we
3367 don't know what the extra bits will be. But we can find an
3368 equivalence for this SUBREG by folding that operation in the
3369 narrow mode. This allows us to fold arithmetic in narrow modes
3370 when the machine only supports word-sized arithmetic.
3372 Also look for a case where we have a SUBREG whose operand
3373 is the same as our result. If both modes are smaller
3374 than a word, we are simply interpreting a register in
3375 different modes and we can use the inner value. */
3377 for (; elt; elt = elt->next_same_value)
3379 enum rtx_code eltcode = GET_CODE (elt->exp);
3381 /* Just check for unary and binary operations. */
3382 if (UNARY_P (elt->exp)
3383 && eltcode != SIGN_EXTEND
3384 && eltcode != ZERO_EXTEND
3385 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3386 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3387 && (GET_MODE_CLASS (mode)
3388 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3390 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3392 if (!REG_P (op0) && ! CONSTANT_P (op0))
3393 op0 = fold_rtx (op0, NULL_RTX);
3395 op0 = equiv_constant (op0);
3396 if (op0)
3397 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3398 op0, mode);
3400 else if (ARITHMETIC_P (elt->exp)
3401 && eltcode != DIV && eltcode != MOD
3402 && eltcode != UDIV && eltcode != UMOD
3403 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3404 && eltcode != ROTATE && eltcode != ROTATERT
3405 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3406 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3407 == mode))
3408 || CONSTANT_P (XEXP (elt->exp, 0)))
3409 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3410 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3411 == mode))
3412 || CONSTANT_P (XEXP (elt->exp, 1))))
3414 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3415 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3417 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3418 op0 = fold_rtx (op0, NULL_RTX);
3420 if (op0)
3421 op0 = equiv_constant (op0);
3423 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3424 op1 = fold_rtx (op1, NULL_RTX);
3426 if (op1)
3427 op1 = equiv_constant (op1);
3429 /* If we are looking for the low SImode part of
3430 (ashift:DI c (const_int 32)), it doesn't work
3431 to compute that in SImode, because a 32-bit shift
3432 in SImode is unpredictable. We know the value is 0. */
3433 if (op0 && op1
3434 && GET_CODE (elt->exp) == ASHIFT
3435 && GET_CODE (op1) == CONST_INT
3436 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3438 if (INTVAL (op1)
3439 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3440 /* If the count fits in the inner mode's width,
3441 but exceeds the outer mode's width,
3442 the value will get truncated to 0
3443 by the subreg. */
3444 new = CONST0_RTX (mode);
3445 else
3446 /* If the count exceeds even the inner mode's width,
3447 don't fold this expression. */
3448 new = 0;
3450 else if (op0 && op1)
3451 new = simplify_binary_operation (GET_CODE (elt->exp), mode, op0, op1);
3454 else if (GET_CODE (elt->exp) == SUBREG
3455 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3456 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3457 <= UNITS_PER_WORD)
3458 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3459 new = copy_rtx (SUBREG_REG (elt->exp));
3461 if (new)
3462 return new;
3464 else
3465 /* A SUBREG resulting from a zero extension may fold to zero if
3466 it extracts higher bits than the ZERO_EXTEND's source bits.
3467 FIXME: if combine tried to, er, combine these instructions,
3468 this transformation may be moved to simplify_subreg. */
3469 for (; elt; elt = elt->next_same_value)
3471 if (GET_CODE (elt->exp) == ZERO_EXTEND
3472 && subreg_lsb (x)
3473 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3474 return CONST0_RTX (mode);
3478 return x;
3480 case NOT:
3481 case NEG:
3482 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3483 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3484 new = lookup_as_function (XEXP (x, 0), code);
3485 if (new)
3486 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3487 break;
3489 case MEM:
3490 /* If we are not actually processing an insn, don't try to find the
3491 best address. Not only don't we care, but we could modify the
3492 MEM in an invalid way since we have no insn to validate against. */
3493 if (insn != 0)
3494 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3497 /* Even if we don't fold in the insn itself,
3498 we can safely do so here, in hopes of getting a constant. */
3499 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3500 rtx base = 0;
3501 HOST_WIDE_INT offset = 0;
3503 if (REG_P (addr)
3504 && REGNO_QTY_VALID_P (REGNO (addr)))
3506 int addr_q = REG_QTY (REGNO (addr));
3507 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3509 if (GET_MODE (addr) == addr_ent->mode
3510 && addr_ent->const_rtx != NULL_RTX)
3511 addr = addr_ent->const_rtx;
3514 /* Call target hook to avoid the effects of -fpic etc.... */
3515 addr = targetm.delegitimize_address (addr);
3517 /* If address is constant, split it into a base and integer offset. */
3518 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3519 base = addr;
3520 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3521 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3523 base = XEXP (XEXP (addr, 0), 0);
3524 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3526 else if (GET_CODE (addr) == LO_SUM
3527 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3528 base = XEXP (addr, 1);
3530 /* If this is a constant pool reference, we can fold it into its
3531 constant to allow better value tracking. */
3532 if (base && GET_CODE (base) == SYMBOL_REF
3533 && CONSTANT_POOL_ADDRESS_P (base))
3535 rtx constant = get_pool_constant (base);
3536 enum machine_mode const_mode = get_pool_mode (base);
3537 rtx new;
3539 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3541 constant_pool_entries_cost = COST (constant);
3542 constant_pool_entries_regcost = approx_reg_cost (constant);
3545 /* If we are loading the full constant, we have an equivalence. */
3546 if (offset == 0 && mode == const_mode)
3547 return constant;
3549 /* If this actually isn't a constant (weird!), we can't do
3550 anything. Otherwise, handle the two most common cases:
3551 extracting a word from a multi-word constant, and extracting
3552 the low-order bits. Other cases don't seem common enough to
3553 worry about. */
3554 if (! CONSTANT_P (constant))
3555 return x;
3557 if (GET_MODE_CLASS (mode) == MODE_INT
3558 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3559 && offset % UNITS_PER_WORD == 0
3560 && (new = operand_subword (constant,
3561 offset / UNITS_PER_WORD,
3562 0, const_mode)) != 0)
3563 return new;
3565 if (((BYTES_BIG_ENDIAN
3566 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3567 || (! BYTES_BIG_ENDIAN && offset == 0))
3568 && (new = gen_lowpart (mode, constant)) != 0)
3569 return new;
3572 /* If this is a reference to a label at a known position in a jump
3573 table, we also know its value. */
3574 if (base && GET_CODE (base) == LABEL_REF)
3576 rtx label = XEXP (base, 0);
3577 rtx table_insn = NEXT_INSN (label);
3579 if (table_insn && JUMP_P (table_insn)
3580 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3582 rtx table = PATTERN (table_insn);
3584 if (offset >= 0
3585 && (offset / GET_MODE_SIZE (GET_MODE (table))
3586 < XVECLEN (table, 0)))
3588 rtx label = XVECEXP
3589 (table, 0, offset / GET_MODE_SIZE (GET_MODE (table)));
3590 rtx set;
3592 /* If we have an insn that loads the label from
3593 the jumptable into a reg, we don't want to set
3594 the reg to the label, because this may cause a
3595 reference to the label to remain after the
3596 label is removed in some very obscure cases (PR
3597 middle-end/18628). */
3598 if (!insn)
3599 return label;
3601 set = single_set (insn);
3603 if (! set || SET_SRC (set) != x)
3604 return x;
3606 /* If it's a jump, it's safe to reference the label. */
3607 if (SET_DEST (set) == pc_rtx)
3608 return label;
3610 return x;
3613 if (table_insn && JUMP_P (table_insn)
3614 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3616 rtx table = PATTERN (table_insn);
3618 if (offset >= 0
3619 && (offset / GET_MODE_SIZE (GET_MODE (table))
3620 < XVECLEN (table, 1)))
3622 offset /= GET_MODE_SIZE (GET_MODE (table));
3623 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3624 XEXP (table, 0));
3626 if (GET_MODE (table) != Pmode)
3627 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3629 /* Indicate this is a constant. This isn't a
3630 valid form of CONST, but it will only be used
3631 to fold the next insns and then discarded, so
3632 it should be safe.
3634 Note this expression must be explicitly discarded,
3635 by cse_insn, else it may end up in a REG_EQUAL note
3636 and "escape" to cause problems elsewhere. */
3637 return gen_rtx_CONST (GET_MODE (new), new);
3642 return x;
3645 #ifdef NO_FUNCTION_CSE
3646 case CALL:
3647 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3648 return x;
3649 break;
3650 #endif
3652 case ASM_OPERANDS:
3653 if (insn)
3655 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3656 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3657 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3659 break;
3661 default:
3662 break;
3665 const_arg0 = 0;
3666 const_arg1 = 0;
3667 const_arg2 = 0;
3668 mode_arg0 = VOIDmode;
3670 /* Try folding our operands.
3671 Then see which ones have constant values known. */
3673 fmt = GET_RTX_FORMAT (code);
3674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3675 if (fmt[i] == 'e')
3677 rtx arg = XEXP (x, i);
3678 rtx folded_arg = arg, const_arg = 0;
3679 enum machine_mode mode_arg = GET_MODE (arg);
3680 rtx cheap_arg, expensive_arg;
3681 rtx replacements[2];
3682 int j;
3683 int old_cost = COST_IN (XEXP (x, i), code);
3685 /* Most arguments are cheap, so handle them specially. */
3686 switch (GET_CODE (arg))
3688 case REG:
3689 /* This is the same as calling equiv_constant; it is duplicated
3690 here for speed. */
3691 if (REGNO_QTY_VALID_P (REGNO (arg)))
3693 int arg_q = REG_QTY (REGNO (arg));
3694 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3696 if (arg_ent->const_rtx != NULL_RTX
3697 && !REG_P (arg_ent->const_rtx)
3698 && GET_CODE (arg_ent->const_rtx) != PLUS)
3699 const_arg
3700 = gen_lowpart (GET_MODE (arg),
3701 arg_ent->const_rtx);
3703 break;
3705 case CONST:
3706 case CONST_INT:
3707 case SYMBOL_REF:
3708 case LABEL_REF:
3709 case CONST_DOUBLE:
3710 case CONST_VECTOR:
3711 const_arg = arg;
3712 break;
3714 #ifdef HAVE_cc0
3715 case CC0:
3716 folded_arg = prev_insn_cc0;
3717 mode_arg = prev_insn_cc0_mode;
3718 const_arg = equiv_constant (folded_arg);
3719 break;
3720 #endif
3722 default:
3723 folded_arg = fold_rtx (arg, insn);
3724 const_arg = equiv_constant (folded_arg);
3727 /* For the first three operands, see if the operand
3728 is constant or equivalent to a constant. */
3729 switch (i)
3731 case 0:
3732 folded_arg0 = folded_arg;
3733 const_arg0 = const_arg;
3734 mode_arg0 = mode_arg;
3735 break;
3736 case 1:
3737 folded_arg1 = folded_arg;
3738 const_arg1 = const_arg;
3739 break;
3740 case 2:
3741 const_arg2 = const_arg;
3742 break;
3745 /* Pick the least expensive of the folded argument and an
3746 equivalent constant argument. */
3747 if (const_arg == 0 || const_arg == folded_arg
3748 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3749 cheap_arg = folded_arg, expensive_arg = const_arg;
3750 else
3751 cheap_arg = const_arg, expensive_arg = folded_arg;
3753 /* Try to replace the operand with the cheapest of the two
3754 possibilities. If it doesn't work and this is either of the first
3755 two operands of a commutative operation, try swapping them.
3756 If THAT fails, try the more expensive, provided it is cheaper
3757 than what is already there. */
3759 if (cheap_arg == XEXP (x, i))
3760 continue;
3762 if (insn == 0 && ! copied)
3764 x = copy_rtx (x);
3765 copied = 1;
3768 /* Order the replacements from cheapest to most expensive. */
3769 replacements[0] = cheap_arg;
3770 replacements[1] = expensive_arg;
3772 for (j = 0; j < 2 && replacements[j]; j++)
3774 int new_cost = COST_IN (replacements[j], code);
3776 /* Stop if what existed before was cheaper. Prefer constants
3777 in the case of a tie. */
3778 if (new_cost > old_cost
3779 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3780 break;
3782 /* It's not safe to substitute the operand of a conversion
3783 operator with a constant, as the conversion's identity
3784 depends upon the mode of it's operand. This optimization
3785 is handled by the call to simplify_unary_operation. */
3786 if (GET_RTX_CLASS (code) == RTX_UNARY
3787 && GET_MODE (replacements[j]) != mode_arg0
3788 && (code == ZERO_EXTEND
3789 || code == SIGN_EXTEND
3790 || code == TRUNCATE
3791 || code == FLOAT_TRUNCATE
3792 || code == FLOAT_EXTEND
3793 || code == FLOAT
3794 || code == FIX
3795 || code == UNSIGNED_FLOAT
3796 || code == UNSIGNED_FIX))
3797 continue;
3799 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3800 break;
3802 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3803 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3805 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3806 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3808 if (apply_change_group ())
3810 /* Swap them back to be invalid so that this loop can
3811 continue and flag them to be swapped back later. */
3812 rtx tem;
3814 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3815 XEXP (x, 1) = tem;
3816 must_swap = 1;
3817 break;
3823 else
3825 if (fmt[i] == 'E')
3826 /* Don't try to fold inside of a vector of expressions.
3827 Doing nothing is harmless. */
3831 /* If a commutative operation, place a constant integer as the second
3832 operand unless the first operand is also a constant integer. Otherwise,
3833 place any constant second unless the first operand is also a constant. */
3835 if (COMMUTATIVE_P (x))
3837 if (must_swap
3838 || swap_commutative_operands_p (const_arg0 ? const_arg0
3839 : XEXP (x, 0),
3840 const_arg1 ? const_arg1
3841 : XEXP (x, 1)))
3843 rtx tem = XEXP (x, 0);
3845 if (insn == 0 && ! copied)
3847 x = copy_rtx (x);
3848 copied = 1;
3851 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3852 validate_change (insn, &XEXP (x, 1), tem, 1);
3853 if (apply_change_group ())
3855 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3856 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3861 /* If X is an arithmetic operation, see if we can simplify it. */
3863 switch (GET_RTX_CLASS (code))
3865 case RTX_UNARY:
3867 int is_const = 0;
3869 /* We can't simplify extension ops unless we know the
3870 original mode. */
3871 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3872 && mode_arg0 == VOIDmode)
3873 break;
3875 /* If we had a CONST, strip it off and put it back later if we
3876 fold. */
3877 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3878 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3880 new = simplify_unary_operation (code, mode,
3881 const_arg0 ? const_arg0 : folded_arg0,
3882 mode_arg0);
3883 /* NEG of PLUS could be converted into MINUS, but that causes
3884 expressions of the form
3885 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3886 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3887 FIXME: those ports should be fixed. */
3888 if (new != 0 && is_const
3889 && GET_CODE (new) == PLUS
3890 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3891 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3892 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3893 new = gen_rtx_CONST (mode, new);
3895 break;
3897 case RTX_COMPARE:
3898 case RTX_COMM_COMPARE:
3899 /* See what items are actually being compared and set FOLDED_ARG[01]
3900 to those values and CODE to the actual comparison code. If any are
3901 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3902 do anything if both operands are already known to be constant. */
3904 /* ??? Vector mode comparisons are not supported yet. */
3905 if (VECTOR_MODE_P (mode))
3906 break;
3908 if (const_arg0 == 0 || const_arg1 == 0)
3910 struct table_elt *p0, *p1;
3911 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3912 enum machine_mode mode_arg1;
3914 #ifdef FLOAT_STORE_FLAG_VALUE
3915 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3917 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3918 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3919 false_rtx = CONST0_RTX (mode);
3921 #endif
3923 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3924 &mode_arg0, &mode_arg1);
3926 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3927 what kinds of things are being compared, so we can't do
3928 anything with this comparison. */
3930 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3931 break;
3933 const_arg0 = equiv_constant (folded_arg0);
3934 const_arg1 = equiv_constant (folded_arg1);
3936 /* If we do not now have two constants being compared, see
3937 if we can nevertheless deduce some things about the
3938 comparison. */
3939 if (const_arg0 == 0 || const_arg1 == 0)
3941 /* Some addresses are known to be nonzero. We don't know
3942 their sign, but equality comparisons are known. */
3943 if (const_arg1 == const0_rtx
3944 && nonzero_address_p (folded_arg0))
3946 if (code == EQ)
3947 return false_rtx;
3948 else if (code == NE)
3949 return true_rtx;
3952 /* See if the two operands are the same. */
3954 if (folded_arg0 == folded_arg1
3955 || (REG_P (folded_arg0)
3956 && REG_P (folded_arg1)
3957 && (REG_QTY (REGNO (folded_arg0))
3958 == REG_QTY (REGNO (folded_arg1))))
3959 || ((p0 = lookup (folded_arg0,
3960 SAFE_HASH (folded_arg0, mode_arg0),
3961 mode_arg0))
3962 && (p1 = lookup (folded_arg1,
3963 SAFE_HASH (folded_arg1, mode_arg0),
3964 mode_arg0))
3965 && p0->first_same_value == p1->first_same_value))
3967 /* Sadly two equal NaNs are not equivalent. */
3968 if (!HONOR_NANS (mode_arg0))
3969 return ((code == EQ || code == LE || code == GE
3970 || code == LEU || code == GEU || code == UNEQ
3971 || code == UNLE || code == UNGE
3972 || code == ORDERED)
3973 ? true_rtx : false_rtx);
3974 /* Take care for the FP compares we can resolve. */
3975 if (code == UNEQ || code == UNLE || code == UNGE)
3976 return true_rtx;
3977 if (code == LTGT || code == LT || code == GT)
3978 return false_rtx;
3981 /* If FOLDED_ARG0 is a register, see if the comparison we are
3982 doing now is either the same as we did before or the reverse
3983 (we only check the reverse if not floating-point). */
3984 else if (REG_P (folded_arg0))
3986 int qty = REG_QTY (REGNO (folded_arg0));
3988 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3990 struct qty_table_elem *ent = &qty_table[qty];
3992 if ((comparison_dominates_p (ent->comparison_code, code)
3993 || (! FLOAT_MODE_P (mode_arg0)
3994 && comparison_dominates_p (ent->comparison_code,
3995 reverse_condition (code))))
3996 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3997 || (const_arg1
3998 && rtx_equal_p (ent->comparison_const,
3999 const_arg1))
4000 || (REG_P (folded_arg1)
4001 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4002 return (comparison_dominates_p (ent->comparison_code, code)
4003 ? true_rtx : false_rtx);
4009 /* If we are comparing against zero, see if the first operand is
4010 equivalent to an IOR with a constant. If so, we may be able to
4011 determine the result of this comparison. */
4013 if (const_arg1 == const0_rtx)
4015 rtx y = lookup_as_function (folded_arg0, IOR);
4016 rtx inner_const;
4018 if (y != 0
4019 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4020 && GET_CODE (inner_const) == CONST_INT
4021 && INTVAL (inner_const) != 0)
4023 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4024 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4025 && (INTVAL (inner_const)
4026 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4027 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4029 #ifdef FLOAT_STORE_FLAG_VALUE
4030 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4032 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4033 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4034 false_rtx = CONST0_RTX (mode);
4036 #endif
4038 switch (code)
4040 case EQ:
4041 return false_rtx;
4042 case NE:
4043 return true_rtx;
4044 case LT: case LE:
4045 if (has_sign)
4046 return true_rtx;
4047 break;
4048 case GT: case GE:
4049 if (has_sign)
4050 return false_rtx;
4051 break;
4052 default:
4053 break;
4059 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4060 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4061 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4063 break;
4065 case RTX_BIN_ARITH:
4066 case RTX_COMM_ARITH:
4067 switch (code)
4069 case PLUS:
4070 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4071 with that LABEL_REF as its second operand. If so, the result is
4072 the first operand of that MINUS. This handles switches with an
4073 ADDR_DIFF_VEC table. */
4074 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4076 rtx y
4077 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4078 : lookup_as_function (folded_arg0, MINUS);
4080 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4081 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4082 return XEXP (y, 0);
4084 /* Now try for a CONST of a MINUS like the above. */
4085 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4086 : lookup_as_function (folded_arg0, CONST))) != 0
4087 && GET_CODE (XEXP (y, 0)) == MINUS
4088 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4089 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4090 return XEXP (XEXP (y, 0), 0);
4093 /* Likewise if the operands are in the other order. */
4094 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4096 rtx y
4097 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4098 : lookup_as_function (folded_arg1, MINUS);
4100 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4101 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4102 return XEXP (y, 0);
4104 /* Now try for a CONST of a MINUS like the above. */
4105 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4106 : lookup_as_function (folded_arg1, CONST))) != 0
4107 && GET_CODE (XEXP (y, 0)) == MINUS
4108 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4109 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4110 return XEXP (XEXP (y, 0), 0);
4113 /* If second operand is a register equivalent to a negative
4114 CONST_INT, see if we can find a register equivalent to the
4115 positive constant. Make a MINUS if so. Don't do this for
4116 a non-negative constant since we might then alternate between
4117 choosing positive and negative constants. Having the positive
4118 constant previously-used is the more common case. Be sure
4119 the resulting constant is non-negative; if const_arg1 were
4120 the smallest negative number this would overflow: depending
4121 on the mode, this would either just be the same value (and
4122 hence not save anything) or be incorrect. */
4123 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4124 && INTVAL (const_arg1) < 0
4125 /* This used to test
4127 -INTVAL (const_arg1) >= 0
4129 But The Sun V5.0 compilers mis-compiled that test. So
4130 instead we test for the problematic value in a more direct
4131 manner and hope the Sun compilers get it correct. */
4132 && INTVAL (const_arg1) !=
4133 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4134 && REG_P (folded_arg1))
4136 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4137 struct table_elt *p
4138 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4140 if (p)
4141 for (p = p->first_same_value; p; p = p->next_same_value)
4142 if (REG_P (p->exp))
4143 return simplify_gen_binary (MINUS, mode, folded_arg0,
4144 canon_reg (p->exp, NULL_RTX));
4146 goto from_plus;
4148 case MINUS:
4149 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4150 If so, produce (PLUS Z C2-C). */
4151 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4153 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4154 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4155 return fold_rtx (plus_constant (copy_rtx (y),
4156 -INTVAL (const_arg1)),
4157 NULL_RTX);
4160 /* Fall through. */
4162 from_plus:
4163 case SMIN: case SMAX: case UMIN: case UMAX:
4164 case IOR: case AND: case XOR:
4165 case MULT:
4166 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4167 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4168 is known to be of similar form, we may be able to replace the
4169 operation with a combined operation. This may eliminate the
4170 intermediate operation if every use is simplified in this way.
4171 Note that the similar optimization done by combine.c only works
4172 if the intermediate operation's result has only one reference. */
4174 if (REG_P (folded_arg0)
4175 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4177 int is_shift
4178 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4179 rtx y = lookup_as_function (folded_arg0, code);
4180 rtx inner_const;
4181 enum rtx_code associate_code;
4182 rtx new_const;
4184 if (y == 0
4185 || 0 == (inner_const
4186 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4187 || GET_CODE (inner_const) != CONST_INT
4188 /* If we have compiled a statement like
4189 "if (x == (x & mask1))", and now are looking at
4190 "x & mask2", we will have a case where the first operand
4191 of Y is the same as our first operand. Unless we detect
4192 this case, an infinite loop will result. */
4193 || XEXP (y, 0) == folded_arg0)
4194 break;
4196 /* Don't associate these operations if they are a PLUS with the
4197 same constant and it is a power of two. These might be doable
4198 with a pre- or post-increment. Similarly for two subtracts of
4199 identical powers of two with post decrement. */
4201 if (code == PLUS && const_arg1 == inner_const
4202 && ((HAVE_PRE_INCREMENT
4203 && exact_log2 (INTVAL (const_arg1)) >= 0)
4204 || (HAVE_POST_INCREMENT
4205 && exact_log2 (INTVAL (const_arg1)) >= 0)
4206 || (HAVE_PRE_DECREMENT
4207 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4208 || (HAVE_POST_DECREMENT
4209 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4210 break;
4212 /* Compute the code used to compose the constants. For example,
4213 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4215 associate_code = (is_shift || code == MINUS ? PLUS : code);
4217 new_const = simplify_binary_operation (associate_code, mode,
4218 const_arg1, inner_const);
4220 if (new_const == 0)
4221 break;
4223 /* If we are associating shift operations, don't let this
4224 produce a shift of the size of the object or larger.
4225 This could occur when we follow a sign-extend by a right
4226 shift on a machine that does a sign-extend as a pair
4227 of shifts. */
4229 if (is_shift && GET_CODE (new_const) == CONST_INT
4230 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4232 /* As an exception, we can turn an ASHIFTRT of this
4233 form into a shift of the number of bits - 1. */
4234 if (code == ASHIFTRT)
4235 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4236 else
4237 break;
4240 y = copy_rtx (XEXP (y, 0));
4242 /* If Y contains our first operand (the most common way this
4243 can happen is if Y is a MEM), we would do into an infinite
4244 loop if we tried to fold it. So don't in that case. */
4246 if (! reg_mentioned_p (folded_arg0, y))
4247 y = fold_rtx (y, insn);
4249 return simplify_gen_binary (code, mode, y, new_const);
4251 break;
4253 case DIV: case UDIV:
4254 /* ??? The associative optimization performed immediately above is
4255 also possible for DIV and UDIV using associate_code of MULT.
4256 However, we would need extra code to verify that the
4257 multiplication does not overflow, that is, there is no overflow
4258 in the calculation of new_const. */
4259 break;
4261 default:
4262 break;
4265 new = simplify_binary_operation (code, mode,
4266 const_arg0 ? const_arg0 : folded_arg0,
4267 const_arg1 ? const_arg1 : folded_arg1);
4268 break;
4270 case RTX_OBJ:
4271 /* (lo_sum (high X) X) is simply X. */
4272 if (code == LO_SUM && const_arg0 != 0
4273 && GET_CODE (const_arg0) == HIGH
4274 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4275 return const_arg1;
4276 break;
4278 case RTX_TERNARY:
4279 case RTX_BITFIELD_OPS:
4280 new = simplify_ternary_operation (code, mode, mode_arg0,
4281 const_arg0 ? const_arg0 : folded_arg0,
4282 const_arg1 ? const_arg1 : folded_arg1,
4283 const_arg2 ? const_arg2 : XEXP (x, 2));
4284 break;
4286 default:
4287 break;
4290 return new ? new : x;
4293 /* Return a constant value currently equivalent to X.
4294 Return 0 if we don't know one. */
4296 static rtx
4297 equiv_constant (rtx x)
4299 if (REG_P (x)
4300 && REGNO_QTY_VALID_P (REGNO (x)))
4302 int x_q = REG_QTY (REGNO (x));
4303 struct qty_table_elem *x_ent = &qty_table[x_q];
4305 if (x_ent->const_rtx)
4306 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4309 if (x == 0 || CONSTANT_P (x))
4310 return x;
4312 /* If X is a MEM, try to fold it outside the context of any insn to see if
4313 it might be equivalent to a constant. That handles the case where it
4314 is a constant-pool reference. Then try to look it up in the hash table
4315 in case it is something whose value we have seen before. */
4317 if (MEM_P (x))
4319 struct table_elt *elt;
4321 x = fold_rtx (x, NULL_RTX);
4322 if (CONSTANT_P (x))
4323 return x;
4325 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4326 if (elt == 0)
4327 return 0;
4329 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4330 if (elt->is_const && CONSTANT_P (elt->exp))
4331 return elt->exp;
4334 return 0;
4337 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4338 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4339 least-significant part of X.
4340 MODE specifies how big a part of X to return.
4342 If the requested operation cannot be done, 0 is returned.
4344 This is similar to gen_lowpart_general in emit-rtl.c. */
4347 gen_lowpart_if_possible (enum machine_mode mode, rtx x)
4349 rtx result = gen_lowpart_common (mode, x);
4351 if (result)
4352 return result;
4353 else if (MEM_P (x))
4355 /* This is the only other case we handle. */
4356 int offset = 0;
4357 rtx new;
4359 if (WORDS_BIG_ENDIAN)
4360 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4361 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4362 if (BYTES_BIG_ENDIAN)
4363 /* Adjust the address so that the address-after-the-data is
4364 unchanged. */
4365 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4366 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4368 new = adjust_address_nv (x, mode, offset);
4369 if (! memory_address_p (mode, XEXP (new, 0)))
4370 return 0;
4372 return new;
4374 else
4375 return 0;
4378 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4379 branch. It will be zero if not.
4381 In certain cases, this can cause us to add an equivalence. For example,
4382 if we are following the taken case of
4383 if (i == 2)
4384 we can add the fact that `i' and '2' are now equivalent.
4386 In any case, we can record that this comparison was passed. If the same
4387 comparison is seen later, we will know its value. */
4389 static void
4390 record_jump_equiv (rtx insn, int taken)
4392 int cond_known_true;
4393 rtx op0, op1;
4394 rtx set;
4395 enum machine_mode mode, mode0, mode1;
4396 int reversed_nonequality = 0;
4397 enum rtx_code code;
4399 /* Ensure this is the right kind of insn. */
4400 if (! any_condjump_p (insn))
4401 return;
4402 set = pc_set (insn);
4404 /* See if this jump condition is known true or false. */
4405 if (taken)
4406 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4407 else
4408 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4410 /* Get the type of comparison being done and the operands being compared.
4411 If we had to reverse a non-equality condition, record that fact so we
4412 know that it isn't valid for floating-point. */
4413 code = GET_CODE (XEXP (SET_SRC (set), 0));
4414 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4415 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4417 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4418 if (! cond_known_true)
4420 code = reversed_comparison_code_parts (code, op0, op1, insn);
4422 /* Don't remember if we can't find the inverse. */
4423 if (code == UNKNOWN)
4424 return;
4427 /* The mode is the mode of the non-constant. */
4428 mode = mode0;
4429 if (mode1 != VOIDmode)
4430 mode = mode1;
4432 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4435 /* Yet another form of subreg creation. In this case, we want something in
4436 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4438 static rtx
4439 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4441 enum machine_mode op_mode = GET_MODE (op);
4442 if (op_mode == mode || op_mode == VOIDmode)
4443 return op;
4444 return lowpart_subreg (mode, op, op_mode);
4447 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4448 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4449 Make any useful entries we can with that information. Called from
4450 above function and called recursively. */
4452 static void
4453 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4454 rtx op1, int reversed_nonequality)
4456 unsigned op0_hash, op1_hash;
4457 int op0_in_memory, op1_in_memory;
4458 struct table_elt *op0_elt, *op1_elt;
4460 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4461 we know that they are also equal in the smaller mode (this is also
4462 true for all smaller modes whether or not there is a SUBREG, but
4463 is not worth testing for with no SUBREG). */
4465 /* Note that GET_MODE (op0) may not equal MODE. */
4466 if (code == EQ && GET_CODE (op0) == SUBREG
4467 && (GET_MODE_SIZE (GET_MODE (op0))
4468 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4470 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4471 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4472 if (tem)
4473 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4474 reversed_nonequality);
4477 if (code == EQ && GET_CODE (op1) == SUBREG
4478 && (GET_MODE_SIZE (GET_MODE (op1))
4479 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4481 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4482 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4483 if (tem)
4484 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4485 reversed_nonequality);
4488 /* Similarly, if this is an NE comparison, and either is a SUBREG
4489 making a smaller mode, we know the whole thing is also NE. */
4491 /* Note that GET_MODE (op0) may not equal MODE;
4492 if we test MODE instead, we can get an infinite recursion
4493 alternating between two modes each wider than MODE. */
4495 if (code == NE && GET_CODE (op0) == SUBREG
4496 && subreg_lowpart_p (op0)
4497 && (GET_MODE_SIZE (GET_MODE (op0))
4498 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4500 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4501 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4502 if (tem)
4503 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4504 reversed_nonequality);
4507 if (code == NE && GET_CODE (op1) == SUBREG
4508 && subreg_lowpart_p (op1)
4509 && (GET_MODE_SIZE (GET_MODE (op1))
4510 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4512 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4513 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4514 if (tem)
4515 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4516 reversed_nonequality);
4519 /* Hash both operands. */
4521 do_not_record = 0;
4522 hash_arg_in_memory = 0;
4523 op0_hash = HASH (op0, mode);
4524 op0_in_memory = hash_arg_in_memory;
4526 if (do_not_record)
4527 return;
4529 do_not_record = 0;
4530 hash_arg_in_memory = 0;
4531 op1_hash = HASH (op1, mode);
4532 op1_in_memory = hash_arg_in_memory;
4534 if (do_not_record)
4535 return;
4537 /* Look up both operands. */
4538 op0_elt = lookup (op0, op0_hash, mode);
4539 op1_elt = lookup (op1, op1_hash, mode);
4541 /* If both operands are already equivalent or if they are not in the
4542 table but are identical, do nothing. */
4543 if ((op0_elt != 0 && op1_elt != 0
4544 && op0_elt->first_same_value == op1_elt->first_same_value)
4545 || op0 == op1 || rtx_equal_p (op0, op1))
4546 return;
4548 /* If we aren't setting two things equal all we can do is save this
4549 comparison. Similarly if this is floating-point. In the latter
4550 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4551 If we record the equality, we might inadvertently delete code
4552 whose intent was to change -0 to +0. */
4554 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4556 struct qty_table_elem *ent;
4557 int qty;
4559 /* If we reversed a floating-point comparison, if OP0 is not a
4560 register, or if OP1 is neither a register or constant, we can't
4561 do anything. */
4563 if (!REG_P (op1))
4564 op1 = equiv_constant (op1);
4566 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4567 || !REG_P (op0) || op1 == 0)
4568 return;
4570 /* Put OP0 in the hash table if it isn't already. This gives it a
4571 new quantity number. */
4572 if (op0_elt == 0)
4574 if (insert_regs (op0, NULL, 0))
4576 rehash_using_reg (op0);
4577 op0_hash = HASH (op0, mode);
4579 /* If OP0 is contained in OP1, this changes its hash code
4580 as well. Faster to rehash than to check, except
4581 for the simple case of a constant. */
4582 if (! CONSTANT_P (op1))
4583 op1_hash = HASH (op1,mode);
4586 op0_elt = insert (op0, NULL, op0_hash, mode);
4587 op0_elt->in_memory = op0_in_memory;
4590 qty = REG_QTY (REGNO (op0));
4591 ent = &qty_table[qty];
4593 ent->comparison_code = code;
4594 if (REG_P (op1))
4596 /* Look it up again--in case op0 and op1 are the same. */
4597 op1_elt = lookup (op1, op1_hash, mode);
4599 /* Put OP1 in the hash table so it gets a new quantity number. */
4600 if (op1_elt == 0)
4602 if (insert_regs (op1, NULL, 0))
4604 rehash_using_reg (op1);
4605 op1_hash = HASH (op1, mode);
4608 op1_elt = insert (op1, NULL, op1_hash, mode);
4609 op1_elt->in_memory = op1_in_memory;
4612 ent->comparison_const = NULL_RTX;
4613 ent->comparison_qty = REG_QTY (REGNO (op1));
4615 else
4617 ent->comparison_const = op1;
4618 ent->comparison_qty = -1;
4621 return;
4624 /* If either side is still missing an equivalence, make it now,
4625 then merge the equivalences. */
4627 if (op0_elt == 0)
4629 if (insert_regs (op0, NULL, 0))
4631 rehash_using_reg (op0);
4632 op0_hash = HASH (op0, mode);
4635 op0_elt = insert (op0, NULL, op0_hash, mode);
4636 op0_elt->in_memory = op0_in_memory;
4639 if (op1_elt == 0)
4641 if (insert_regs (op1, NULL, 0))
4643 rehash_using_reg (op1);
4644 op1_hash = HASH (op1, mode);
4647 op1_elt = insert (op1, NULL, op1_hash, mode);
4648 op1_elt->in_memory = op1_in_memory;
4651 merge_equiv_classes (op0_elt, op1_elt);
4654 /* CSE processing for one instruction.
4655 First simplify sources and addresses of all assignments
4656 in the instruction, using previously-computed equivalents values.
4657 Then install the new sources and destinations in the table
4658 of available values.
4660 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4661 the insn. It means that INSN is inside libcall block. In this
4662 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4664 /* Data on one SET contained in the instruction. */
4666 struct set
4668 /* The SET rtx itself. */
4669 rtx rtl;
4670 /* The SET_SRC of the rtx (the original value, if it is changing). */
4671 rtx src;
4672 /* The hash-table element for the SET_SRC of the SET. */
4673 struct table_elt *src_elt;
4674 /* Hash value for the SET_SRC. */
4675 unsigned src_hash;
4676 /* Hash value for the SET_DEST. */
4677 unsigned dest_hash;
4678 /* The SET_DEST, with SUBREG, etc., stripped. */
4679 rtx inner_dest;
4680 /* Nonzero if the SET_SRC is in memory. */
4681 char src_in_memory;
4682 /* Nonzero if the SET_SRC contains something
4683 whose value cannot be predicted and understood. */
4684 char src_volatile;
4685 /* Original machine mode, in case it becomes a CONST_INT.
4686 The size of this field should match the size of the mode
4687 field of struct rtx_def (see rtl.h). */
4688 ENUM_BITFIELD(machine_mode) mode : 8;
4689 /* A constant equivalent for SET_SRC, if any. */
4690 rtx src_const;
4691 /* Original SET_SRC value used for libcall notes. */
4692 rtx orig_src;
4693 /* Hash value of constant equivalent for SET_SRC. */
4694 unsigned src_const_hash;
4695 /* Table entry for constant equivalent for SET_SRC, if any. */
4696 struct table_elt *src_const_elt;
4699 static void
4700 cse_insn (rtx insn, rtx libcall_insn)
4702 rtx x = PATTERN (insn);
4703 int i;
4704 rtx tem;
4705 int n_sets = 0;
4707 #ifdef HAVE_cc0
4708 /* Records what this insn does to set CC0. */
4709 rtx this_insn_cc0 = 0;
4710 enum machine_mode this_insn_cc0_mode = VOIDmode;
4711 #endif
4713 rtx src_eqv = 0;
4714 struct table_elt *src_eqv_elt = 0;
4715 int src_eqv_volatile = 0;
4716 int src_eqv_in_memory = 0;
4717 unsigned src_eqv_hash = 0;
4719 struct set *sets = (struct set *) 0;
4721 this_insn = insn;
4723 /* Find all the SETs and CLOBBERs in this instruction.
4724 Record all the SETs in the array `set' and count them.
4725 Also determine whether there is a CLOBBER that invalidates
4726 all memory references, or all references at varying addresses. */
4728 if (CALL_P (insn))
4730 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4732 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4733 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4734 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4738 if (GET_CODE (x) == SET)
4740 sets = alloca (sizeof (struct set));
4741 sets[0].rtl = x;
4743 /* Ignore SETs that are unconditional jumps.
4744 They never need cse processing, so this does not hurt.
4745 The reason is not efficiency but rather
4746 so that we can test at the end for instructions
4747 that have been simplified to unconditional jumps
4748 and not be misled by unchanged instructions
4749 that were unconditional jumps to begin with. */
4750 if (SET_DEST (x) == pc_rtx
4751 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4754 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4755 The hard function value register is used only once, to copy to
4756 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4757 Ensure we invalidate the destination register. On the 80386 no
4758 other code would invalidate it since it is a fixed_reg.
4759 We need not check the return of apply_change_group; see canon_reg. */
4761 else if (GET_CODE (SET_SRC (x)) == CALL)
4763 canon_reg (SET_SRC (x), insn);
4764 apply_change_group ();
4765 fold_rtx (SET_SRC (x), insn);
4766 invalidate (SET_DEST (x), VOIDmode);
4768 else
4769 n_sets = 1;
4771 else if (GET_CODE (x) == PARALLEL)
4773 int lim = XVECLEN (x, 0);
4775 sets = alloca (lim * sizeof (struct set));
4777 /* Find all regs explicitly clobbered in this insn,
4778 and ensure they are not replaced with any other regs
4779 elsewhere in this insn.
4780 When a reg that is clobbered is also used for input,
4781 we should presume that that is for a reason,
4782 and we should not substitute some other register
4783 which is not supposed to be clobbered.
4784 Therefore, this loop cannot be merged into the one below
4785 because a CALL may precede a CLOBBER and refer to the
4786 value clobbered. We must not let a canonicalization do
4787 anything in that case. */
4788 for (i = 0; i < lim; i++)
4790 rtx y = XVECEXP (x, 0, i);
4791 if (GET_CODE (y) == CLOBBER)
4793 rtx clobbered = XEXP (y, 0);
4795 if (REG_P (clobbered)
4796 || GET_CODE (clobbered) == SUBREG)
4797 invalidate (clobbered, VOIDmode);
4798 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4799 || GET_CODE (clobbered) == ZERO_EXTRACT)
4800 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4804 for (i = 0; i < lim; i++)
4806 rtx y = XVECEXP (x, 0, i);
4807 if (GET_CODE (y) == SET)
4809 /* As above, we ignore unconditional jumps and call-insns and
4810 ignore the result of apply_change_group. */
4811 if (GET_CODE (SET_SRC (y)) == CALL)
4813 canon_reg (SET_SRC (y), insn);
4814 apply_change_group ();
4815 fold_rtx (SET_SRC (y), insn);
4816 invalidate (SET_DEST (y), VOIDmode);
4818 else if (SET_DEST (y) == pc_rtx
4819 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4821 else
4822 sets[n_sets++].rtl = y;
4824 else if (GET_CODE (y) == CLOBBER)
4826 /* If we clobber memory, canon the address.
4827 This does nothing when a register is clobbered
4828 because we have already invalidated the reg. */
4829 if (MEM_P (XEXP (y, 0)))
4830 canon_reg (XEXP (y, 0), NULL_RTX);
4832 else if (GET_CODE (y) == USE
4833 && ! (REG_P (XEXP (y, 0))
4834 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4835 canon_reg (y, NULL_RTX);
4836 else if (GET_CODE (y) == CALL)
4838 /* The result of apply_change_group can be ignored; see
4839 canon_reg. */
4840 canon_reg (y, insn);
4841 apply_change_group ();
4842 fold_rtx (y, insn);
4846 else if (GET_CODE (x) == CLOBBER)
4848 if (MEM_P (XEXP (x, 0)))
4849 canon_reg (XEXP (x, 0), NULL_RTX);
4852 /* Canonicalize a USE of a pseudo register or memory location. */
4853 else if (GET_CODE (x) == USE
4854 && ! (REG_P (XEXP (x, 0))
4855 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4856 canon_reg (XEXP (x, 0), NULL_RTX);
4857 else if (GET_CODE (x) == CALL)
4859 /* The result of apply_change_group can be ignored; see canon_reg. */
4860 canon_reg (x, insn);
4861 apply_change_group ();
4862 fold_rtx (x, insn);
4865 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4866 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4867 is handled specially for this case, and if it isn't set, then there will
4868 be no equivalence for the destination. */
4869 if (n_sets == 1 && REG_NOTES (insn) != 0
4870 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4871 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4872 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4874 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4875 XEXP (tem, 0) = src_eqv;
4878 /* Canonicalize sources and addresses of destinations.
4879 We do this in a separate pass to avoid problems when a MATCH_DUP is
4880 present in the insn pattern. In that case, we want to ensure that
4881 we don't break the duplicate nature of the pattern. So we will replace
4882 both operands at the same time. Otherwise, we would fail to find an
4883 equivalent substitution in the loop calling validate_change below.
4885 We used to suppress canonicalization of DEST if it appears in SRC,
4886 but we don't do this any more. */
4888 for (i = 0; i < n_sets; i++)
4890 rtx dest = SET_DEST (sets[i].rtl);
4891 rtx src = SET_SRC (sets[i].rtl);
4892 rtx new = canon_reg (src, insn);
4893 int insn_code;
4895 sets[i].orig_src = src;
4896 if ((REG_P (new) && REG_P (src)
4897 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4898 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4899 || (insn_code = recog_memoized (insn)) < 0
4900 || insn_data[insn_code].n_dups > 0)
4901 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4902 else
4903 SET_SRC (sets[i].rtl) = new;
4905 if (GET_CODE (dest) == ZERO_EXTRACT)
4907 validate_change (insn, &XEXP (dest, 1),
4908 canon_reg (XEXP (dest, 1), insn), 1);
4909 validate_change (insn, &XEXP (dest, 2),
4910 canon_reg (XEXP (dest, 2), insn), 1);
4913 while (GET_CODE (dest) == SUBREG
4914 || GET_CODE (dest) == ZERO_EXTRACT
4915 || GET_CODE (dest) == STRICT_LOW_PART)
4916 dest = XEXP (dest, 0);
4918 if (MEM_P (dest))
4919 canon_reg (dest, insn);
4922 /* Now that we have done all the replacements, we can apply the change
4923 group and see if they all work. Note that this will cause some
4924 canonicalizations that would have worked individually not to be applied
4925 because some other canonicalization didn't work, but this should not
4926 occur often.
4928 The result of apply_change_group can be ignored; see canon_reg. */
4930 apply_change_group ();
4932 /* Set sets[i].src_elt to the class each source belongs to.
4933 Detect assignments from or to volatile things
4934 and set set[i] to zero so they will be ignored
4935 in the rest of this function.
4937 Nothing in this loop changes the hash table or the register chains. */
4939 for (i = 0; i < n_sets; i++)
4941 rtx src, dest;
4942 rtx src_folded;
4943 struct table_elt *elt = 0, *p;
4944 enum machine_mode mode;
4945 rtx src_eqv_here;
4946 rtx src_const = 0;
4947 rtx src_related = 0;
4948 struct table_elt *src_const_elt = 0;
4949 int src_cost = MAX_COST;
4950 int src_eqv_cost = MAX_COST;
4951 int src_folded_cost = MAX_COST;
4952 int src_related_cost = MAX_COST;
4953 int src_elt_cost = MAX_COST;
4954 int src_regcost = MAX_COST;
4955 int src_eqv_regcost = MAX_COST;
4956 int src_folded_regcost = MAX_COST;
4957 int src_related_regcost = MAX_COST;
4958 int src_elt_regcost = MAX_COST;
4959 /* Set nonzero if we need to call force_const_mem on with the
4960 contents of src_folded before using it. */
4961 int src_folded_force_flag = 0;
4963 dest = SET_DEST (sets[i].rtl);
4964 src = SET_SRC (sets[i].rtl);
4966 /* If SRC is a constant that has no machine mode,
4967 hash it with the destination's machine mode.
4968 This way we can keep different modes separate. */
4970 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4971 sets[i].mode = mode;
4973 if (src_eqv)
4975 enum machine_mode eqvmode = mode;
4976 if (GET_CODE (dest) == STRICT_LOW_PART)
4977 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4978 do_not_record = 0;
4979 hash_arg_in_memory = 0;
4980 src_eqv_hash = HASH (src_eqv, eqvmode);
4982 /* Find the equivalence class for the equivalent expression. */
4984 if (!do_not_record)
4985 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4987 src_eqv_volatile = do_not_record;
4988 src_eqv_in_memory = hash_arg_in_memory;
4991 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4992 value of the INNER register, not the destination. So it is not
4993 a valid substitution for the source. But save it for later. */
4994 if (GET_CODE (dest) == STRICT_LOW_PART)
4995 src_eqv_here = 0;
4996 else
4997 src_eqv_here = src_eqv;
4999 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5000 simplified result, which may not necessarily be valid. */
5001 src_folded = fold_rtx (src, insn);
5003 #if 0
5004 /* ??? This caused bad code to be generated for the m68k port with -O2.
5005 Suppose src is (CONST_INT -1), and that after truncation src_folded
5006 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5007 At the end we will add src and src_const to the same equivalence
5008 class. We now have 3 and -1 on the same equivalence class. This
5009 causes later instructions to be mis-optimized. */
5010 /* If storing a constant in a bitfield, pre-truncate the constant
5011 so we will be able to record it later. */
5012 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5014 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5016 if (GET_CODE (src) == CONST_INT
5017 && GET_CODE (width) == CONST_INT
5018 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5019 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5020 src_folded
5021 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5022 << INTVAL (width)) - 1));
5024 #endif
5026 /* Compute SRC's hash code, and also notice if it
5027 should not be recorded at all. In that case,
5028 prevent any further processing of this assignment. */
5029 do_not_record = 0;
5030 hash_arg_in_memory = 0;
5032 sets[i].src = src;
5033 sets[i].src_hash = HASH (src, mode);
5034 sets[i].src_volatile = do_not_record;
5035 sets[i].src_in_memory = hash_arg_in_memory;
5037 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5038 a pseudo, do not record SRC. Using SRC as a replacement for
5039 anything else will be incorrect in that situation. Note that
5040 this usually occurs only for stack slots, in which case all the
5041 RTL would be referring to SRC, so we don't lose any optimization
5042 opportunities by not having SRC in the hash table. */
5044 if (MEM_P (src)
5045 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5046 && REG_P (dest)
5047 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5048 sets[i].src_volatile = 1;
5050 #if 0
5051 /* It is no longer clear why we used to do this, but it doesn't
5052 appear to still be needed. So let's try without it since this
5053 code hurts cse'ing widened ops. */
5054 /* If source is a paradoxical subreg (such as QI treated as an SI),
5055 treat it as volatile. It may do the work of an SI in one context
5056 where the extra bits are not being used, but cannot replace an SI
5057 in general. */
5058 if (GET_CODE (src) == SUBREG
5059 && (GET_MODE_SIZE (GET_MODE (src))
5060 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5061 sets[i].src_volatile = 1;
5062 #endif
5064 /* Locate all possible equivalent forms for SRC. Try to replace
5065 SRC in the insn with each cheaper equivalent.
5067 We have the following types of equivalents: SRC itself, a folded
5068 version, a value given in a REG_EQUAL note, or a value related
5069 to a constant.
5071 Each of these equivalents may be part of an additional class
5072 of equivalents (if more than one is in the table, they must be in
5073 the same class; we check for this).
5075 If the source is volatile, we don't do any table lookups.
5077 We note any constant equivalent for possible later use in a
5078 REG_NOTE. */
5080 if (!sets[i].src_volatile)
5081 elt = lookup (src, sets[i].src_hash, mode);
5083 sets[i].src_elt = elt;
5085 if (elt && src_eqv_here && src_eqv_elt)
5087 if (elt->first_same_value != src_eqv_elt->first_same_value)
5089 /* The REG_EQUAL is indicating that two formerly distinct
5090 classes are now equivalent. So merge them. */
5091 merge_equiv_classes (elt, src_eqv_elt);
5092 src_eqv_hash = HASH (src_eqv, elt->mode);
5093 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5096 src_eqv_here = 0;
5099 else if (src_eqv_elt)
5100 elt = src_eqv_elt;
5102 /* Try to find a constant somewhere and record it in `src_const'.
5103 Record its table element, if any, in `src_const_elt'. Look in
5104 any known equivalences first. (If the constant is not in the
5105 table, also set `sets[i].src_const_hash'). */
5106 if (elt)
5107 for (p = elt->first_same_value; p; p = p->next_same_value)
5108 if (p->is_const)
5110 src_const = p->exp;
5111 src_const_elt = elt;
5112 break;
5115 if (src_const == 0
5116 && (CONSTANT_P (src_folded)
5117 /* Consider (minus (label_ref L1) (label_ref L2)) as
5118 "constant" here so we will record it. This allows us
5119 to fold switch statements when an ADDR_DIFF_VEC is used. */
5120 || (GET_CODE (src_folded) == MINUS
5121 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5122 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5123 src_const = src_folded, src_const_elt = elt;
5124 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5125 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5127 /* If we don't know if the constant is in the table, get its
5128 hash code and look it up. */
5129 if (src_const && src_const_elt == 0)
5131 sets[i].src_const_hash = HASH (src_const, mode);
5132 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5135 sets[i].src_const = src_const;
5136 sets[i].src_const_elt = src_const_elt;
5138 /* If the constant and our source are both in the table, mark them as
5139 equivalent. Otherwise, if a constant is in the table but the source
5140 isn't, set ELT to it. */
5141 if (src_const_elt && elt
5142 && src_const_elt->first_same_value != elt->first_same_value)
5143 merge_equiv_classes (elt, src_const_elt);
5144 else if (src_const_elt && elt == 0)
5145 elt = src_const_elt;
5147 /* See if there is a register linearly related to a constant
5148 equivalent of SRC. */
5149 if (src_const
5150 && (GET_CODE (src_const) == CONST
5151 || (src_const_elt && src_const_elt->related_value != 0)))
5153 src_related = use_related_value (src_const, src_const_elt);
5154 if (src_related)
5156 struct table_elt *src_related_elt
5157 = lookup (src_related, HASH (src_related, mode), mode);
5158 if (src_related_elt && elt)
5160 if (elt->first_same_value
5161 != src_related_elt->first_same_value)
5162 /* This can occur when we previously saw a CONST
5163 involving a SYMBOL_REF and then see the SYMBOL_REF
5164 twice. Merge the involved classes. */
5165 merge_equiv_classes (elt, src_related_elt);
5167 src_related = 0;
5168 src_related_elt = 0;
5170 else if (src_related_elt && elt == 0)
5171 elt = src_related_elt;
5175 /* See if we have a CONST_INT that is already in a register in a
5176 wider mode. */
5178 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5179 && GET_MODE_CLASS (mode) == MODE_INT
5180 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5182 enum machine_mode wider_mode;
5184 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5185 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5186 && src_related == 0;
5187 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5189 struct table_elt *const_elt
5190 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5192 if (const_elt == 0)
5193 continue;
5195 for (const_elt = const_elt->first_same_value;
5196 const_elt; const_elt = const_elt->next_same_value)
5197 if (REG_P (const_elt->exp))
5199 src_related = gen_lowpart (mode,
5200 const_elt->exp);
5201 break;
5206 /* Another possibility is that we have an AND with a constant in
5207 a mode narrower than a word. If so, it might have been generated
5208 as part of an "if" which would narrow the AND. If we already
5209 have done the AND in a wider mode, we can use a SUBREG of that
5210 value. */
5212 if (flag_expensive_optimizations && ! src_related
5213 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5214 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5216 enum machine_mode tmode;
5217 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5219 for (tmode = GET_MODE_WIDER_MODE (mode);
5220 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5221 tmode = GET_MODE_WIDER_MODE (tmode))
5223 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5224 struct table_elt *larger_elt;
5226 if (inner)
5228 PUT_MODE (new_and, tmode);
5229 XEXP (new_and, 0) = inner;
5230 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5231 if (larger_elt == 0)
5232 continue;
5234 for (larger_elt = larger_elt->first_same_value;
5235 larger_elt; larger_elt = larger_elt->next_same_value)
5236 if (REG_P (larger_elt->exp))
5238 src_related
5239 = gen_lowpart (mode, larger_elt->exp);
5240 break;
5243 if (src_related)
5244 break;
5249 #ifdef LOAD_EXTEND_OP
5250 /* See if a MEM has already been loaded with a widening operation;
5251 if it has, we can use a subreg of that. Many CISC machines
5252 also have such operations, but this is only likely to be
5253 beneficial on these machines. */
5255 if (flag_expensive_optimizations && src_related == 0
5256 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5257 && GET_MODE_CLASS (mode) == MODE_INT
5258 && MEM_P (src) && ! do_not_record
5259 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5261 struct rtx_def memory_extend_buf;
5262 rtx memory_extend_rtx = &memory_extend_buf;
5263 enum machine_mode tmode;
5265 /* Set what we are trying to extend and the operation it might
5266 have been extended with. */
5267 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5268 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5269 XEXP (memory_extend_rtx, 0) = src;
5271 for (tmode = GET_MODE_WIDER_MODE (mode);
5272 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5273 tmode = GET_MODE_WIDER_MODE (tmode))
5275 struct table_elt *larger_elt;
5277 PUT_MODE (memory_extend_rtx, tmode);
5278 larger_elt = lookup (memory_extend_rtx,
5279 HASH (memory_extend_rtx, tmode), tmode);
5280 if (larger_elt == 0)
5281 continue;
5283 for (larger_elt = larger_elt->first_same_value;
5284 larger_elt; larger_elt = larger_elt->next_same_value)
5285 if (REG_P (larger_elt->exp))
5287 src_related = gen_lowpart (mode,
5288 larger_elt->exp);
5289 break;
5292 if (src_related)
5293 break;
5296 #endif /* LOAD_EXTEND_OP */
5298 if (src == src_folded)
5299 src_folded = 0;
5301 /* At this point, ELT, if nonzero, points to a class of expressions
5302 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5303 and SRC_RELATED, if nonzero, each contain additional equivalent
5304 expressions. Prune these latter expressions by deleting expressions
5305 already in the equivalence class.
5307 Check for an equivalent identical to the destination. If found,
5308 this is the preferred equivalent since it will likely lead to
5309 elimination of the insn. Indicate this by placing it in
5310 `src_related'. */
5312 if (elt)
5313 elt = elt->first_same_value;
5314 for (p = elt; p; p = p->next_same_value)
5316 enum rtx_code code = GET_CODE (p->exp);
5318 /* If the expression is not valid, ignore it. Then we do not
5319 have to check for validity below. In most cases, we can use
5320 `rtx_equal_p', since canonicalization has already been done. */
5321 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5322 continue;
5324 /* Also skip paradoxical subregs, unless that's what we're
5325 looking for. */
5326 if (code == SUBREG
5327 && (GET_MODE_SIZE (GET_MODE (p->exp))
5328 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5329 && ! (src != 0
5330 && GET_CODE (src) == SUBREG
5331 && GET_MODE (src) == GET_MODE (p->exp)
5332 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5333 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5334 continue;
5336 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5337 src = 0;
5338 else if (src_folded && GET_CODE (src_folded) == code
5339 && rtx_equal_p (src_folded, p->exp))
5340 src_folded = 0;
5341 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5342 && rtx_equal_p (src_eqv_here, p->exp))
5343 src_eqv_here = 0;
5344 else if (src_related && GET_CODE (src_related) == code
5345 && rtx_equal_p (src_related, p->exp))
5346 src_related = 0;
5348 /* This is the same as the destination of the insns, we want
5349 to prefer it. Copy it to src_related. The code below will
5350 then give it a negative cost. */
5351 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5352 src_related = dest;
5355 /* Find the cheapest valid equivalent, trying all the available
5356 possibilities. Prefer items not in the hash table to ones
5357 that are when they are equal cost. Note that we can never
5358 worsen an insn as the current contents will also succeed.
5359 If we find an equivalent identical to the destination, use it as best,
5360 since this insn will probably be eliminated in that case. */
5361 if (src)
5363 if (rtx_equal_p (src, dest))
5364 src_cost = src_regcost = -1;
5365 else
5367 src_cost = COST (src);
5368 src_regcost = approx_reg_cost (src);
5372 if (src_eqv_here)
5374 if (rtx_equal_p (src_eqv_here, dest))
5375 src_eqv_cost = src_eqv_regcost = -1;
5376 else
5378 src_eqv_cost = COST (src_eqv_here);
5379 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5383 if (src_folded)
5385 if (rtx_equal_p (src_folded, dest))
5386 src_folded_cost = src_folded_regcost = -1;
5387 else
5389 src_folded_cost = COST (src_folded);
5390 src_folded_regcost = approx_reg_cost (src_folded);
5394 if (src_related)
5396 if (rtx_equal_p (src_related, dest))
5397 src_related_cost = src_related_regcost = -1;
5398 else
5400 src_related_cost = COST (src_related);
5401 src_related_regcost = approx_reg_cost (src_related);
5405 /* If this was an indirect jump insn, a known label will really be
5406 cheaper even though it looks more expensive. */
5407 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5408 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5410 /* Terminate loop when replacement made. This must terminate since
5411 the current contents will be tested and will always be valid. */
5412 while (1)
5414 rtx trial;
5416 /* Skip invalid entries. */
5417 while (elt && !REG_P (elt->exp)
5418 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5419 elt = elt->next_same_value;
5421 /* A paradoxical subreg would be bad here: it'll be the right
5422 size, but later may be adjusted so that the upper bits aren't
5423 what we want. So reject it. */
5424 if (elt != 0
5425 && GET_CODE (elt->exp) == SUBREG
5426 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5427 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5428 /* It is okay, though, if the rtx we're trying to match
5429 will ignore any of the bits we can't predict. */
5430 && ! (src != 0
5431 && GET_CODE (src) == SUBREG
5432 && GET_MODE (src) == GET_MODE (elt->exp)
5433 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5434 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5436 elt = elt->next_same_value;
5437 continue;
5440 if (elt)
5442 src_elt_cost = elt->cost;
5443 src_elt_regcost = elt->regcost;
5446 /* Find cheapest and skip it for the next time. For items
5447 of equal cost, use this order:
5448 src_folded, src, src_eqv, src_related and hash table entry. */
5449 if (src_folded
5450 && preferable (src_folded_cost, src_folded_regcost,
5451 src_cost, src_regcost) <= 0
5452 && preferable (src_folded_cost, src_folded_regcost,
5453 src_eqv_cost, src_eqv_regcost) <= 0
5454 && preferable (src_folded_cost, src_folded_regcost,
5455 src_related_cost, src_related_regcost) <= 0
5456 && preferable (src_folded_cost, src_folded_regcost,
5457 src_elt_cost, src_elt_regcost) <= 0)
5459 trial = src_folded, src_folded_cost = MAX_COST;
5460 if (src_folded_force_flag)
5462 rtx forced = force_const_mem (mode, trial);
5463 if (forced)
5464 trial = forced;
5467 else if (src
5468 && preferable (src_cost, src_regcost,
5469 src_eqv_cost, src_eqv_regcost) <= 0
5470 && preferable (src_cost, src_regcost,
5471 src_related_cost, src_related_regcost) <= 0
5472 && preferable (src_cost, src_regcost,
5473 src_elt_cost, src_elt_regcost) <= 0)
5474 trial = src, src_cost = MAX_COST;
5475 else if (src_eqv_here
5476 && preferable (src_eqv_cost, src_eqv_regcost,
5477 src_related_cost, src_related_regcost) <= 0
5478 && preferable (src_eqv_cost, src_eqv_regcost,
5479 src_elt_cost, src_elt_regcost) <= 0)
5480 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5481 else if (src_related
5482 && preferable (src_related_cost, src_related_regcost,
5483 src_elt_cost, src_elt_regcost) <= 0)
5484 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5485 else
5487 trial = copy_rtx (elt->exp);
5488 elt = elt->next_same_value;
5489 src_elt_cost = MAX_COST;
5492 /* We don't normally have an insn matching (set (pc) (pc)), so
5493 check for this separately here. We will delete such an
5494 insn below.
5496 For other cases such as a table jump or conditional jump
5497 where we know the ultimate target, go ahead and replace the
5498 operand. While that may not make a valid insn, we will
5499 reemit the jump below (and also insert any necessary
5500 barriers). */
5501 if (n_sets == 1 && dest == pc_rtx
5502 && (trial == pc_rtx
5503 || (GET_CODE (trial) == LABEL_REF
5504 && ! condjump_p (insn))))
5506 /* Don't substitute non-local labels, this confuses CFG. */
5507 if (GET_CODE (trial) == LABEL_REF
5508 && LABEL_REF_NONLOCAL_P (trial))
5509 continue;
5511 SET_SRC (sets[i].rtl) = trial;
5512 cse_jumps_altered = 1;
5513 break;
5516 /* Look for a substitution that makes a valid insn. */
5517 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5519 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5521 /* If we just made a substitution inside a libcall, then we
5522 need to make the same substitution in any notes attached
5523 to the RETVAL insn. */
5524 if (libcall_insn
5525 && (REG_P (sets[i].orig_src)
5526 || GET_CODE (sets[i].orig_src) == SUBREG
5527 || MEM_P (sets[i].orig_src)))
5529 rtx note = find_reg_equal_equiv_note (libcall_insn);
5530 if (note != 0)
5531 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5532 sets[i].orig_src,
5533 copy_rtx (new));
5536 /* The result of apply_change_group can be ignored; see
5537 canon_reg. */
5539 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5540 apply_change_group ();
5541 break;
5544 /* If we previously found constant pool entries for
5545 constants and this is a constant, try making a
5546 pool entry. Put it in src_folded unless we already have done
5547 this since that is where it likely came from. */
5549 else if (constant_pool_entries_cost
5550 && CONSTANT_P (trial)
5551 /* Reject cases that will abort in decode_rtx_const.
5552 On the alpha when simplifying a switch, we get
5553 (const (truncate (minus (label_ref) (label_ref)))). */
5554 && ! (GET_CODE (trial) == CONST
5555 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5556 /* Likewise on IA-64, except without the truncate. */
5557 && ! (GET_CODE (trial) == CONST
5558 && GET_CODE (XEXP (trial, 0)) == MINUS
5559 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5560 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5561 && (src_folded == 0
5562 || (!MEM_P (src_folded)
5563 && ! src_folded_force_flag))
5564 && GET_MODE_CLASS (mode) != MODE_CC
5565 && mode != VOIDmode)
5567 src_folded_force_flag = 1;
5568 src_folded = trial;
5569 src_folded_cost = constant_pool_entries_cost;
5570 src_folded_regcost = constant_pool_entries_regcost;
5574 src = SET_SRC (sets[i].rtl);
5576 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5577 However, there is an important exception: If both are registers
5578 that are not the head of their equivalence class, replace SET_SRC
5579 with the head of the class. If we do not do this, we will have
5580 both registers live over a portion of the basic block. This way,
5581 their lifetimes will likely abut instead of overlapping. */
5582 if (REG_P (dest)
5583 && REGNO_QTY_VALID_P (REGNO (dest)))
5585 int dest_q = REG_QTY (REGNO (dest));
5586 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5588 if (dest_ent->mode == GET_MODE (dest)
5589 && dest_ent->first_reg != REGNO (dest)
5590 && REG_P (src) && REGNO (src) == REGNO (dest)
5591 /* Don't do this if the original insn had a hard reg as
5592 SET_SRC or SET_DEST. */
5593 && (!REG_P (sets[i].src)
5594 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5595 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5596 /* We can't call canon_reg here because it won't do anything if
5597 SRC is a hard register. */
5599 int src_q = REG_QTY (REGNO (src));
5600 struct qty_table_elem *src_ent = &qty_table[src_q];
5601 int first = src_ent->first_reg;
5602 rtx new_src
5603 = (first >= FIRST_PSEUDO_REGISTER
5604 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5606 /* We must use validate-change even for this, because this
5607 might be a special no-op instruction, suitable only to
5608 tag notes onto. */
5609 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5611 src = new_src;
5612 /* If we had a constant that is cheaper than what we are now
5613 setting SRC to, use that constant. We ignored it when we
5614 thought we could make this into a no-op. */
5615 if (src_const && COST (src_const) < COST (src)
5616 && validate_change (insn, &SET_SRC (sets[i].rtl),
5617 src_const, 0))
5618 src = src_const;
5623 /* If we made a change, recompute SRC values. */
5624 if (src != sets[i].src)
5626 cse_altered = 1;
5627 do_not_record = 0;
5628 hash_arg_in_memory = 0;
5629 sets[i].src = src;
5630 sets[i].src_hash = HASH (src, mode);
5631 sets[i].src_volatile = do_not_record;
5632 sets[i].src_in_memory = hash_arg_in_memory;
5633 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5636 /* If this is a single SET, we are setting a register, and we have an
5637 equivalent constant, we want to add a REG_NOTE. We don't want
5638 to write a REG_EQUAL note for a constant pseudo since verifying that
5639 that pseudo hasn't been eliminated is a pain. Such a note also
5640 won't help anything.
5642 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5643 which can be created for a reference to a compile time computable
5644 entry in a jump table. */
5646 if (n_sets == 1 && src_const && REG_P (dest)
5647 && !REG_P (src_const)
5648 && ! (GET_CODE (src_const) == CONST
5649 && GET_CODE (XEXP (src_const, 0)) == MINUS
5650 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5651 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5653 /* We only want a REG_EQUAL note if src_const != src. */
5654 if (! rtx_equal_p (src, src_const))
5656 /* Make sure that the rtx is not shared. */
5657 src_const = copy_rtx (src_const);
5659 /* Record the actual constant value in a REG_EQUAL note,
5660 making a new one if one does not already exist. */
5661 set_unique_reg_note (insn, REG_EQUAL, src_const);
5665 /* Now deal with the destination. */
5666 do_not_record = 0;
5668 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5669 while (GET_CODE (dest) == SUBREG
5670 || GET_CODE (dest) == ZERO_EXTRACT
5671 || GET_CODE (dest) == STRICT_LOW_PART)
5672 dest = XEXP (dest, 0);
5674 sets[i].inner_dest = dest;
5676 if (MEM_P (dest))
5678 #ifdef PUSH_ROUNDING
5679 /* Stack pushes invalidate the stack pointer. */
5680 rtx addr = XEXP (dest, 0);
5681 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5682 && XEXP (addr, 0) == stack_pointer_rtx)
5683 invalidate (stack_pointer_rtx, Pmode);
5684 #endif
5685 dest = fold_rtx (dest, insn);
5688 /* Compute the hash code of the destination now,
5689 before the effects of this instruction are recorded,
5690 since the register values used in the address computation
5691 are those before this instruction. */
5692 sets[i].dest_hash = HASH (dest, mode);
5694 /* Don't enter a bit-field in the hash table
5695 because the value in it after the store
5696 may not equal what was stored, due to truncation. */
5698 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5700 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5702 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5703 && GET_CODE (width) == CONST_INT
5704 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5705 && ! (INTVAL (src_const)
5706 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5707 /* Exception: if the value is constant,
5708 and it won't be truncated, record it. */
5710 else
5712 /* This is chosen so that the destination will be invalidated
5713 but no new value will be recorded.
5714 We must invalidate because sometimes constant
5715 values can be recorded for bitfields. */
5716 sets[i].src_elt = 0;
5717 sets[i].src_volatile = 1;
5718 src_eqv = 0;
5719 src_eqv_elt = 0;
5723 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5724 the insn. */
5725 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5727 /* One less use of the label this insn used to jump to. */
5728 delete_insn (insn);
5729 cse_jumps_altered = 1;
5730 /* No more processing for this set. */
5731 sets[i].rtl = 0;
5734 /* If this SET is now setting PC to a label, we know it used to
5735 be a conditional or computed branch. */
5736 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5737 && !LABEL_REF_NONLOCAL_P (src))
5739 /* Now emit a BARRIER after the unconditional jump. */
5740 if (NEXT_INSN (insn) == 0
5741 || !BARRIER_P (NEXT_INSN (insn)))
5742 emit_barrier_after (insn);
5744 /* We reemit the jump in as many cases as possible just in
5745 case the form of an unconditional jump is significantly
5746 different than a computed jump or conditional jump.
5748 If this insn has multiple sets, then reemitting the
5749 jump is nontrivial. So instead we just force rerecognition
5750 and hope for the best. */
5751 if (n_sets == 1)
5753 rtx new, note;
5755 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5756 JUMP_LABEL (new) = XEXP (src, 0);
5757 LABEL_NUSES (XEXP (src, 0))++;
5759 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5760 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5761 if (note)
5763 XEXP (note, 1) = NULL_RTX;
5764 REG_NOTES (new) = note;
5767 delete_insn (insn);
5768 insn = new;
5770 /* Now emit a BARRIER after the unconditional jump. */
5771 if (NEXT_INSN (insn) == 0
5772 || !BARRIER_P (NEXT_INSN (insn)))
5773 emit_barrier_after (insn);
5775 else
5776 INSN_CODE (insn) = -1;
5778 /* Do not bother deleting any unreachable code,
5779 let jump/flow do that. */
5781 cse_jumps_altered = 1;
5782 sets[i].rtl = 0;
5785 /* If destination is volatile, invalidate it and then do no further
5786 processing for this assignment. */
5788 else if (do_not_record)
5790 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5791 invalidate (dest, VOIDmode);
5792 else if (MEM_P (dest))
5793 invalidate (dest, VOIDmode);
5794 else if (GET_CODE (dest) == STRICT_LOW_PART
5795 || GET_CODE (dest) == ZERO_EXTRACT)
5796 invalidate (XEXP (dest, 0), GET_MODE (dest));
5797 sets[i].rtl = 0;
5800 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5801 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5803 #ifdef HAVE_cc0
5804 /* If setting CC0, record what it was set to, or a constant, if it
5805 is equivalent to a constant. If it is being set to a floating-point
5806 value, make a COMPARE with the appropriate constant of 0. If we
5807 don't do this, later code can interpret this as a test against
5808 const0_rtx, which can cause problems if we try to put it into an
5809 insn as a floating-point operand. */
5810 if (dest == cc0_rtx)
5812 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5813 this_insn_cc0_mode = mode;
5814 if (FLOAT_MODE_P (mode))
5815 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5816 CONST0_RTX (mode));
5818 #endif
5821 /* Now enter all non-volatile source expressions in the hash table
5822 if they are not already present.
5823 Record their equivalence classes in src_elt.
5824 This way we can insert the corresponding destinations into
5825 the same classes even if the actual sources are no longer in them
5826 (having been invalidated). */
5828 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5829 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5831 struct table_elt *elt;
5832 struct table_elt *classp = sets[0].src_elt;
5833 rtx dest = SET_DEST (sets[0].rtl);
5834 enum machine_mode eqvmode = GET_MODE (dest);
5836 if (GET_CODE (dest) == STRICT_LOW_PART)
5838 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5839 classp = 0;
5841 if (insert_regs (src_eqv, classp, 0))
5843 rehash_using_reg (src_eqv);
5844 src_eqv_hash = HASH (src_eqv, eqvmode);
5846 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5847 elt->in_memory = src_eqv_in_memory;
5848 src_eqv_elt = elt;
5850 /* Check to see if src_eqv_elt is the same as a set source which
5851 does not yet have an elt, and if so set the elt of the set source
5852 to src_eqv_elt. */
5853 for (i = 0; i < n_sets; i++)
5854 if (sets[i].rtl && sets[i].src_elt == 0
5855 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5856 sets[i].src_elt = src_eqv_elt;
5859 for (i = 0; i < n_sets; i++)
5860 if (sets[i].rtl && ! sets[i].src_volatile
5861 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5863 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5865 /* REG_EQUAL in setting a STRICT_LOW_PART
5866 gives an equivalent for the entire destination register,
5867 not just for the subreg being stored in now.
5868 This is a more interesting equivalence, so we arrange later
5869 to treat the entire reg as the destination. */
5870 sets[i].src_elt = src_eqv_elt;
5871 sets[i].src_hash = src_eqv_hash;
5873 else
5875 /* Insert source and constant equivalent into hash table, if not
5876 already present. */
5877 struct table_elt *classp = src_eqv_elt;
5878 rtx src = sets[i].src;
5879 rtx dest = SET_DEST (sets[i].rtl);
5880 enum machine_mode mode
5881 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5883 /* It's possible that we have a source value known to be
5884 constant but don't have a REG_EQUAL note on the insn.
5885 Lack of a note will mean src_eqv_elt will be NULL. This
5886 can happen where we've generated a SUBREG to access a
5887 CONST_INT that is already in a register in a wider mode.
5888 Ensure that the source expression is put in the proper
5889 constant class. */
5890 if (!classp)
5891 classp = sets[i].src_const_elt;
5893 if (sets[i].src_elt == 0)
5895 /* Don't put a hard register source into the table if this is
5896 the last insn of a libcall. In this case, we only need
5897 to put src_eqv_elt in src_elt. */
5898 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5900 struct table_elt *elt;
5902 /* Note that these insert_regs calls cannot remove
5903 any of the src_elt's, because they would have failed to
5904 match if not still valid. */
5905 if (insert_regs (src, classp, 0))
5907 rehash_using_reg (src);
5908 sets[i].src_hash = HASH (src, mode);
5910 elt = insert (src, classp, sets[i].src_hash, mode);
5911 elt->in_memory = sets[i].src_in_memory;
5912 sets[i].src_elt = classp = elt;
5914 else
5915 sets[i].src_elt = classp;
5917 if (sets[i].src_const && sets[i].src_const_elt == 0
5918 && src != sets[i].src_const
5919 && ! rtx_equal_p (sets[i].src_const, src))
5920 sets[i].src_elt = insert (sets[i].src_const, classp,
5921 sets[i].src_const_hash, mode);
5924 else if (sets[i].src_elt == 0)
5925 /* If we did not insert the source into the hash table (e.g., it was
5926 volatile), note the equivalence class for the REG_EQUAL value, if any,
5927 so that the destination goes into that class. */
5928 sets[i].src_elt = src_eqv_elt;
5930 invalidate_from_clobbers (x);
5932 /* Some registers are invalidated by subroutine calls. Memory is
5933 invalidated by non-constant calls. */
5935 if (CALL_P (insn))
5937 if (! CONST_OR_PURE_CALL_P (insn))
5938 invalidate_memory ();
5939 invalidate_for_call ();
5942 /* Now invalidate everything set by this instruction.
5943 If a SUBREG or other funny destination is being set,
5944 sets[i].rtl is still nonzero, so here we invalidate the reg
5945 a part of which is being set. */
5947 for (i = 0; i < n_sets; i++)
5948 if (sets[i].rtl)
5950 /* We can't use the inner dest, because the mode associated with
5951 a ZERO_EXTRACT is significant. */
5952 rtx dest = SET_DEST (sets[i].rtl);
5954 /* Needed for registers to remove the register from its
5955 previous quantity's chain.
5956 Needed for memory if this is a nonvarying address, unless
5957 we have just done an invalidate_memory that covers even those. */
5958 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5959 invalidate (dest, VOIDmode);
5960 else if (MEM_P (dest))
5961 invalidate (dest, VOIDmode);
5962 else if (GET_CODE (dest) == STRICT_LOW_PART
5963 || GET_CODE (dest) == ZERO_EXTRACT)
5964 invalidate (XEXP (dest, 0), GET_MODE (dest));
5967 /* A volatile ASM invalidates everything. */
5968 if (NONJUMP_INSN_P (insn)
5969 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5970 && MEM_VOLATILE_P (PATTERN (insn)))
5971 flush_hash_table ();
5973 /* Make sure registers mentioned in destinations
5974 are safe for use in an expression to be inserted.
5975 This removes from the hash table
5976 any invalid entry that refers to one of these registers.
5978 We don't care about the return value from mention_regs because
5979 we are going to hash the SET_DEST values unconditionally. */
5981 for (i = 0; i < n_sets; i++)
5983 if (sets[i].rtl)
5985 rtx x = SET_DEST (sets[i].rtl);
5987 if (!REG_P (x))
5988 mention_regs (x);
5989 else
5991 /* We used to rely on all references to a register becoming
5992 inaccessible when a register changes to a new quantity,
5993 since that changes the hash code. However, that is not
5994 safe, since after HASH_SIZE new quantities we get a
5995 hash 'collision' of a register with its own invalid
5996 entries. And since SUBREGs have been changed not to
5997 change their hash code with the hash code of the register,
5998 it wouldn't work any longer at all. So we have to check
5999 for any invalid references lying around now.
6000 This code is similar to the REG case in mention_regs,
6001 but it knows that reg_tick has been incremented, and
6002 it leaves reg_in_table as -1 . */
6003 unsigned int regno = REGNO (x);
6004 unsigned int endregno
6005 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6006 : hard_regno_nregs[regno][GET_MODE (x)]);
6007 unsigned int i;
6009 for (i = regno; i < endregno; i++)
6011 if (REG_IN_TABLE (i) >= 0)
6013 remove_invalid_refs (i);
6014 REG_IN_TABLE (i) = -1;
6021 /* We may have just removed some of the src_elt's from the hash table.
6022 So replace each one with the current head of the same class. */
6024 for (i = 0; i < n_sets; i++)
6025 if (sets[i].rtl)
6027 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6028 /* If elt was removed, find current head of same class,
6029 or 0 if nothing remains of that class. */
6031 struct table_elt *elt = sets[i].src_elt;
6033 while (elt && elt->prev_same_value)
6034 elt = elt->prev_same_value;
6036 while (elt && elt->first_same_value == 0)
6037 elt = elt->next_same_value;
6038 sets[i].src_elt = elt ? elt->first_same_value : 0;
6042 /* Now insert the destinations into their equivalence classes. */
6044 for (i = 0; i < n_sets; i++)
6045 if (sets[i].rtl)
6047 rtx dest = SET_DEST (sets[i].rtl);
6048 struct table_elt *elt;
6050 /* Don't record value if we are not supposed to risk allocating
6051 floating-point values in registers that might be wider than
6052 memory. */
6053 if ((flag_float_store
6054 && MEM_P (dest)
6055 && FLOAT_MODE_P (GET_MODE (dest)))
6056 /* Don't record BLKmode values, because we don't know the
6057 size of it, and can't be sure that other BLKmode values
6058 have the same or smaller size. */
6059 || GET_MODE (dest) == BLKmode
6060 /* Don't record values of destinations set inside a libcall block
6061 since we might delete the libcall. Things should have been set
6062 up so we won't want to reuse such a value, but we play it safe
6063 here. */
6064 || libcall_insn
6065 /* If we didn't put a REG_EQUAL value or a source into the hash
6066 table, there is no point is recording DEST. */
6067 || sets[i].src_elt == 0
6068 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6069 or SIGN_EXTEND, don't record DEST since it can cause
6070 some tracking to be wrong.
6072 ??? Think about this more later. */
6073 || (GET_CODE (dest) == SUBREG
6074 && (GET_MODE_SIZE (GET_MODE (dest))
6075 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6076 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6077 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6078 continue;
6080 /* STRICT_LOW_PART isn't part of the value BEING set,
6081 and neither is the SUBREG inside it.
6082 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6083 if (GET_CODE (dest) == STRICT_LOW_PART)
6084 dest = SUBREG_REG (XEXP (dest, 0));
6086 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6087 /* Registers must also be inserted into chains for quantities. */
6088 if (insert_regs (dest, sets[i].src_elt, 1))
6090 /* If `insert_regs' changes something, the hash code must be
6091 recalculated. */
6092 rehash_using_reg (dest);
6093 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6096 elt = insert (dest, sets[i].src_elt,
6097 sets[i].dest_hash, GET_MODE (dest));
6099 elt->in_memory = (MEM_P (sets[i].inner_dest)
6100 && !MEM_READONLY_P (sets[i].inner_dest));
6102 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6103 narrower than M2, and both M1 and M2 are the same number of words,
6104 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6105 make that equivalence as well.
6107 However, BAR may have equivalences for which gen_lowpart
6108 will produce a simpler value than gen_lowpart applied to
6109 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6110 BAR's equivalences. If we don't get a simplified form, make
6111 the SUBREG. It will not be used in an equivalence, but will
6112 cause two similar assignments to be detected.
6114 Note the loop below will find SUBREG_REG (DEST) since we have
6115 already entered SRC and DEST of the SET in the table. */
6117 if (GET_CODE (dest) == SUBREG
6118 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6119 / UNITS_PER_WORD)
6120 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6121 && (GET_MODE_SIZE (GET_MODE (dest))
6122 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6123 && sets[i].src_elt != 0)
6125 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6126 struct table_elt *elt, *classp = 0;
6128 for (elt = sets[i].src_elt->first_same_value; elt;
6129 elt = elt->next_same_value)
6131 rtx new_src = 0;
6132 unsigned src_hash;
6133 struct table_elt *src_elt;
6134 int byte = 0;
6136 /* Ignore invalid entries. */
6137 if (!REG_P (elt->exp)
6138 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6139 continue;
6141 /* We may have already been playing subreg games. If the
6142 mode is already correct for the destination, use it. */
6143 if (GET_MODE (elt->exp) == new_mode)
6144 new_src = elt->exp;
6145 else
6147 /* Calculate big endian correction for the SUBREG_BYTE.
6148 We have already checked that M1 (GET_MODE (dest))
6149 is not narrower than M2 (new_mode). */
6150 if (BYTES_BIG_ENDIAN)
6151 byte = (GET_MODE_SIZE (GET_MODE (dest))
6152 - GET_MODE_SIZE (new_mode));
6154 new_src = simplify_gen_subreg (new_mode, elt->exp,
6155 GET_MODE (dest), byte);
6158 /* The call to simplify_gen_subreg fails if the value
6159 is VOIDmode, yet we can't do any simplification, e.g.
6160 for EXPR_LISTs denoting function call results.
6161 It is invalid to construct a SUBREG with a VOIDmode
6162 SUBREG_REG, hence a zero new_src means we can't do
6163 this substitution. */
6164 if (! new_src)
6165 continue;
6167 src_hash = HASH (new_src, new_mode);
6168 src_elt = lookup (new_src, src_hash, new_mode);
6170 /* Put the new source in the hash table is if isn't
6171 already. */
6172 if (src_elt == 0)
6174 if (insert_regs (new_src, classp, 0))
6176 rehash_using_reg (new_src);
6177 src_hash = HASH (new_src, new_mode);
6179 src_elt = insert (new_src, classp, src_hash, new_mode);
6180 src_elt->in_memory = elt->in_memory;
6182 else if (classp && classp != src_elt->first_same_value)
6183 /* Show that two things that we've seen before are
6184 actually the same. */
6185 merge_equiv_classes (src_elt, classp);
6187 classp = src_elt->first_same_value;
6188 /* Ignore invalid entries. */
6189 while (classp
6190 && !REG_P (classp->exp)
6191 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6192 classp = classp->next_same_value;
6197 /* Special handling for (set REG0 REG1) where REG0 is the
6198 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6199 be used in the sequel, so (if easily done) change this insn to
6200 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6201 that computed their value. Then REG1 will become a dead store
6202 and won't cloud the situation for later optimizations.
6204 Do not make this change if REG1 is a hard register, because it will
6205 then be used in the sequel and we may be changing a two-operand insn
6206 into a three-operand insn.
6208 Also do not do this if we are operating on a copy of INSN.
6210 Also don't do this if INSN ends a libcall; this would cause an unrelated
6211 register to be set in the middle of a libcall, and we then get bad code
6212 if the libcall is deleted. */
6214 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6215 && NEXT_INSN (PREV_INSN (insn)) == insn
6216 && REG_P (SET_SRC (sets[0].rtl))
6217 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6218 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6220 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6221 struct qty_table_elem *src_ent = &qty_table[src_q];
6223 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6224 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6226 rtx prev = insn;
6227 /* Scan for the previous nonnote insn, but stop at a basic
6228 block boundary. */
6231 prev = PREV_INSN (prev);
6233 while (prev && NOTE_P (prev)
6234 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6236 /* Do not swap the registers around if the previous instruction
6237 attaches a REG_EQUIV note to REG1.
6239 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6240 from the pseudo that originally shadowed an incoming argument
6241 to another register. Some uses of REG_EQUIV might rely on it
6242 being attached to REG1 rather than REG2.
6244 This section previously turned the REG_EQUIV into a REG_EQUAL
6245 note. We cannot do that because REG_EQUIV may provide an
6246 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6248 if (prev != 0 && NONJUMP_INSN_P (prev)
6249 && GET_CODE (PATTERN (prev)) == SET
6250 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6251 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6253 rtx dest = SET_DEST (sets[0].rtl);
6254 rtx src = SET_SRC (sets[0].rtl);
6255 rtx note;
6257 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6258 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6259 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6260 apply_change_group ();
6262 /* If INSN has a REG_EQUAL note, and this note mentions
6263 REG0, then we must delete it, because the value in
6264 REG0 has changed. If the note's value is REG1, we must
6265 also delete it because that is now this insn's dest. */
6266 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6267 if (note != 0
6268 && (reg_mentioned_p (dest, XEXP (note, 0))
6269 || rtx_equal_p (src, XEXP (note, 0))))
6270 remove_note (insn, note);
6275 /* If this is a conditional jump insn, record any known equivalences due to
6276 the condition being tested. */
6278 if (JUMP_P (insn)
6279 && n_sets == 1 && GET_CODE (x) == SET
6280 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6281 record_jump_equiv (insn, 0);
6283 #ifdef HAVE_cc0
6284 /* If the previous insn set CC0 and this insn no longer references CC0,
6285 delete the previous insn. Here we use the fact that nothing expects CC0
6286 to be valid over an insn, which is true until the final pass. */
6287 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6288 && (tem = single_set (prev_insn)) != 0
6289 && SET_DEST (tem) == cc0_rtx
6290 && ! reg_mentioned_p (cc0_rtx, x))
6291 delete_insn (prev_insn);
6293 prev_insn_cc0 = this_insn_cc0;
6294 prev_insn_cc0_mode = this_insn_cc0_mode;
6295 prev_insn = insn;
6296 #endif
6299 /* Remove from the hash table all expressions that reference memory. */
6301 static void
6302 invalidate_memory (void)
6304 int i;
6305 struct table_elt *p, *next;
6307 for (i = 0; i < HASH_SIZE; i++)
6308 for (p = table[i]; p; p = next)
6310 next = p->next_same_hash;
6311 if (p->in_memory)
6312 remove_from_table (p, i);
6316 /* If ADDR is an address that implicitly affects the stack pointer, return
6317 1 and update the register tables to show the effect. Else, return 0. */
6319 static int
6320 addr_affects_sp_p (rtx addr)
6322 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6323 && REG_P (XEXP (addr, 0))
6324 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6326 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6328 REG_TICK (STACK_POINTER_REGNUM)++;
6329 /* Is it possible to use a subreg of SP? */
6330 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6333 /* This should be *very* rare. */
6334 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6335 invalidate (stack_pointer_rtx, VOIDmode);
6337 return 1;
6340 return 0;
6343 /* Perform invalidation on the basis of everything about an insn
6344 except for invalidating the actual places that are SET in it.
6345 This includes the places CLOBBERed, and anything that might
6346 alias with something that is SET or CLOBBERed.
6348 X is the pattern of the insn. */
6350 static void
6351 invalidate_from_clobbers (rtx x)
6353 if (GET_CODE (x) == CLOBBER)
6355 rtx ref = XEXP (x, 0);
6356 if (ref)
6358 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6359 || MEM_P (ref))
6360 invalidate (ref, VOIDmode);
6361 else if (GET_CODE (ref) == STRICT_LOW_PART
6362 || GET_CODE (ref) == ZERO_EXTRACT)
6363 invalidate (XEXP (ref, 0), GET_MODE (ref));
6366 else if (GET_CODE (x) == PARALLEL)
6368 int i;
6369 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6371 rtx y = XVECEXP (x, 0, i);
6372 if (GET_CODE (y) == CLOBBER)
6374 rtx ref = XEXP (y, 0);
6375 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6376 || MEM_P (ref))
6377 invalidate (ref, VOIDmode);
6378 else if (GET_CODE (ref) == STRICT_LOW_PART
6379 || GET_CODE (ref) == ZERO_EXTRACT)
6380 invalidate (XEXP (ref, 0), GET_MODE (ref));
6386 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6387 and replace any registers in them with either an equivalent constant
6388 or the canonical form of the register. If we are inside an address,
6389 only do this if the address remains valid.
6391 OBJECT is 0 except when within a MEM in which case it is the MEM.
6393 Return the replacement for X. */
6395 static rtx
6396 cse_process_notes (rtx x, rtx object)
6398 enum rtx_code code = GET_CODE (x);
6399 const char *fmt = GET_RTX_FORMAT (code);
6400 int i;
6402 switch (code)
6404 case CONST_INT:
6405 case CONST:
6406 case SYMBOL_REF:
6407 case LABEL_REF:
6408 case CONST_DOUBLE:
6409 case CONST_VECTOR:
6410 case PC:
6411 case CC0:
6412 case LO_SUM:
6413 return x;
6415 case MEM:
6416 validate_change (x, &XEXP (x, 0),
6417 cse_process_notes (XEXP (x, 0), x), 0);
6418 return x;
6420 case EXPR_LIST:
6421 case INSN_LIST:
6422 if (REG_NOTE_KIND (x) == REG_EQUAL)
6423 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6424 if (XEXP (x, 1))
6425 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6426 return x;
6428 case SIGN_EXTEND:
6429 case ZERO_EXTEND:
6430 case SUBREG:
6432 rtx new = cse_process_notes (XEXP (x, 0), object);
6433 /* We don't substitute VOIDmode constants into these rtx,
6434 since they would impede folding. */
6435 if (GET_MODE (new) != VOIDmode)
6436 validate_change (object, &XEXP (x, 0), new, 0);
6437 return x;
6440 case REG:
6441 i = REG_QTY (REGNO (x));
6443 /* Return a constant or a constant register. */
6444 if (REGNO_QTY_VALID_P (REGNO (x)))
6446 struct qty_table_elem *ent = &qty_table[i];
6448 if (ent->const_rtx != NULL_RTX
6449 && (CONSTANT_P (ent->const_rtx)
6450 || REG_P (ent->const_rtx)))
6452 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6453 if (new)
6454 return new;
6458 /* Otherwise, canonicalize this register. */
6459 return canon_reg (x, NULL_RTX);
6461 default:
6462 break;
6465 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6466 if (fmt[i] == 'e')
6467 validate_change (object, &XEXP (x, i),
6468 cse_process_notes (XEXP (x, i), object), 0);
6470 return x;
6473 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6474 since they are done elsewhere. This function is called via note_stores. */
6476 static void
6477 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6479 enum rtx_code code = GET_CODE (dest);
6481 if (code == MEM
6482 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6483 /* There are times when an address can appear varying and be a PLUS
6484 during this scan when it would be a fixed address were we to know
6485 the proper equivalences. So invalidate all memory if there is
6486 a BLKmode or nonscalar memory reference or a reference to a
6487 variable address. */
6488 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6489 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6491 invalidate_memory ();
6492 return;
6495 if (GET_CODE (set) == CLOBBER
6496 || CC0_P (dest)
6497 || dest == pc_rtx)
6498 return;
6500 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6501 invalidate (XEXP (dest, 0), GET_MODE (dest));
6502 else if (code == REG || code == SUBREG || code == MEM)
6503 invalidate (dest, VOIDmode);
6506 /* Invalidate all insns from START up to the end of the function or the
6507 next label. This called when we wish to CSE around a block that is
6508 conditionally executed. */
6510 static void
6511 invalidate_skipped_block (rtx start)
6513 rtx insn;
6515 for (insn = start; insn && !LABEL_P (insn);
6516 insn = NEXT_INSN (insn))
6518 if (! INSN_P (insn))
6519 continue;
6521 if (CALL_P (insn))
6523 if (! CONST_OR_PURE_CALL_P (insn))
6524 invalidate_memory ();
6525 invalidate_for_call ();
6528 invalidate_from_clobbers (PATTERN (insn));
6529 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6533 /* Find the end of INSN's basic block and return its range,
6534 the total number of SETs in all the insns of the block, the last insn of the
6535 block, and the branch path.
6537 The branch path indicates which branches should be followed. If a nonzero
6538 path size is specified, the block should be rescanned and a different set
6539 of branches will be taken. The branch path is only used if
6540 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6542 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6543 used to describe the block. It is filled in with the information about
6544 the current block. The incoming structure's branch path, if any, is used
6545 to construct the output branch path. */
6547 static void
6548 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6549 int follow_jumps, int skip_blocks)
6551 rtx p = insn, q;
6552 int nsets = 0;
6553 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6554 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6555 int path_size = data->path_size;
6556 int path_entry = 0;
6557 int i;
6559 /* Update the previous branch path, if any. If the last branch was
6560 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6561 If it was previously PATH_NOT_TAKEN,
6562 shorten the path by one and look at the previous branch. We know that
6563 at least one branch must have been taken if PATH_SIZE is nonzero. */
6564 while (path_size > 0)
6566 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6568 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6569 break;
6571 else
6572 path_size--;
6575 /* If the first instruction is marked with QImode, that means we've
6576 already processed this block. Our caller will look at DATA->LAST
6577 to figure out where to go next. We want to return the next block
6578 in the instruction stream, not some branched-to block somewhere
6579 else. We accomplish this by pretending our called forbid us to
6580 follow jumps, or skip blocks. */
6581 if (GET_MODE (insn) == QImode)
6582 follow_jumps = skip_blocks = 0;
6584 /* Scan to end of this basic block. */
6585 while (p && !LABEL_P (p))
6587 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6588 the regs restored by the longjmp come from
6589 a later time than the setjmp. */
6590 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6591 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6592 break;
6594 /* A PARALLEL can have lots of SETs in it,
6595 especially if it is really an ASM_OPERANDS. */
6596 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6597 nsets += XVECLEN (PATTERN (p), 0);
6598 else if (!NOTE_P (p))
6599 nsets += 1;
6601 /* Ignore insns made by CSE; they cannot affect the boundaries of
6602 the basic block. */
6604 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6605 high_cuid = INSN_CUID (p);
6606 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6607 low_cuid = INSN_CUID (p);
6609 /* See if this insn is in our branch path. If it is and we are to
6610 take it, do so. */
6611 if (path_entry < path_size && data->path[path_entry].branch == p)
6613 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6614 p = JUMP_LABEL (p);
6616 /* Point to next entry in path, if any. */
6617 path_entry++;
6620 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6621 was specified, we haven't reached our maximum path length, there are
6622 insns following the target of the jump, this is the only use of the
6623 jump label, and the target label is preceded by a BARRIER.
6625 Alternatively, we can follow the jump if it branches around a
6626 block of code and there are no other branches into the block.
6627 In this case invalidate_skipped_block will be called to invalidate any
6628 registers set in the block when following the jump. */
6630 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6631 && JUMP_P (p)
6632 && GET_CODE (PATTERN (p)) == SET
6633 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6634 && JUMP_LABEL (p) != 0
6635 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6636 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6638 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6639 if ((!NOTE_P (q)
6640 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6641 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6642 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6643 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6644 break;
6646 /* If we ran into a BARRIER, this code is an extension of the
6647 basic block when the branch is taken. */
6648 if (follow_jumps && q != 0 && BARRIER_P (q))
6650 /* Don't allow ourself to keep walking around an
6651 always-executed loop. */
6652 if (next_real_insn (q) == next)
6654 p = NEXT_INSN (p);
6655 continue;
6658 /* Similarly, don't put a branch in our path more than once. */
6659 for (i = 0; i < path_entry; i++)
6660 if (data->path[i].branch == p)
6661 break;
6663 if (i != path_entry)
6664 break;
6666 data->path[path_entry].branch = p;
6667 data->path[path_entry++].status = PATH_TAKEN;
6669 /* This branch now ends our path. It was possible that we
6670 didn't see this branch the last time around (when the
6671 insn in front of the target was a JUMP_INSN that was
6672 turned into a no-op). */
6673 path_size = path_entry;
6675 p = JUMP_LABEL (p);
6676 /* Mark block so we won't scan it again later. */
6677 PUT_MODE (NEXT_INSN (p), QImode);
6679 /* Detect a branch around a block of code. */
6680 else if (skip_blocks && q != 0 && !LABEL_P (q))
6682 rtx tmp;
6684 if (next_real_insn (q) == next)
6686 p = NEXT_INSN (p);
6687 continue;
6690 for (i = 0; i < path_entry; i++)
6691 if (data->path[i].branch == p)
6692 break;
6694 if (i != path_entry)
6695 break;
6697 /* This is no_labels_between_p (p, q) with an added check for
6698 reaching the end of a function (in case Q precedes P). */
6699 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6700 if (LABEL_P (tmp))
6701 break;
6703 if (tmp == q)
6705 data->path[path_entry].branch = p;
6706 data->path[path_entry++].status = PATH_AROUND;
6708 path_size = path_entry;
6710 p = JUMP_LABEL (p);
6711 /* Mark block so we won't scan it again later. */
6712 PUT_MODE (NEXT_INSN (p), QImode);
6716 p = NEXT_INSN (p);
6719 data->low_cuid = low_cuid;
6720 data->high_cuid = high_cuid;
6721 data->nsets = nsets;
6722 data->last = p;
6724 /* If all jumps in the path are not taken, set our path length to zero
6725 so a rescan won't be done. */
6726 for (i = path_size - 1; i >= 0; i--)
6727 if (data->path[i].status != PATH_NOT_TAKEN)
6728 break;
6730 if (i == -1)
6731 data->path_size = 0;
6732 else
6733 data->path_size = path_size;
6735 /* End the current branch path. */
6736 data->path[path_size].branch = 0;
6739 /* Perform cse on the instructions of a function.
6740 F is the first instruction.
6741 NREGS is one plus the highest pseudo-reg number used in the instruction.
6743 Returns 1 if jump_optimize should be redone due to simplifications
6744 in conditional jump instructions. */
6747 cse_main (rtx f, int nregs, FILE *file)
6749 struct cse_basic_block_data val;
6750 rtx insn = f;
6751 int i;
6753 init_cse_reg_info (nregs);
6755 val.path = xmalloc (sizeof (struct branch_path)
6756 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6758 cse_jumps_altered = 0;
6759 recorded_label_ref = 0;
6760 constant_pool_entries_cost = 0;
6761 constant_pool_entries_regcost = 0;
6762 val.path_size = 0;
6763 rtl_hooks = cse_rtl_hooks;
6765 init_recog ();
6766 init_alias_analysis ();
6768 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
6770 /* Find the largest uid. */
6772 max_uid = get_max_uid ();
6773 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
6775 /* Compute the mapping from uids to cuids.
6776 CUIDs are numbers assigned to insns, like uids,
6777 except that cuids increase monotonically through the code.
6778 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6779 between two insns is not affected by -g. */
6781 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6783 if (!NOTE_P (insn)
6784 || NOTE_LINE_NUMBER (insn) < 0)
6785 INSN_CUID (insn) = ++i;
6786 else
6787 /* Give a line number note the same cuid as preceding insn. */
6788 INSN_CUID (insn) = i;
6791 /* Loop over basic blocks.
6792 Compute the maximum number of qty's needed for each basic block
6793 (which is 2 for each SET). */
6794 insn = f;
6795 while (insn)
6797 cse_altered = 0;
6798 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6799 flag_cse_skip_blocks);
6801 /* If this basic block was already processed or has no sets, skip it. */
6802 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6804 PUT_MODE (insn, VOIDmode);
6805 insn = (val.last ? NEXT_INSN (val.last) : 0);
6806 val.path_size = 0;
6807 continue;
6810 cse_basic_block_start = val.low_cuid;
6811 cse_basic_block_end = val.high_cuid;
6812 max_qty = val.nsets * 2;
6814 if (file)
6815 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
6816 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6817 val.nsets);
6819 /* Make MAX_QTY bigger to give us room to optimize
6820 past the end of this basic block, if that should prove useful. */
6821 if (max_qty < 500)
6822 max_qty = 500;
6824 /* If this basic block is being extended by following certain jumps,
6825 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6826 Otherwise, we start after this basic block. */
6827 if (val.path_size > 0)
6828 cse_basic_block (insn, val.last, val.path);
6829 else
6831 int old_cse_jumps_altered = cse_jumps_altered;
6832 rtx temp;
6834 /* When cse changes a conditional jump to an unconditional
6835 jump, we want to reprocess the block, since it will give
6836 us a new branch path to investigate. */
6837 cse_jumps_altered = 0;
6838 temp = cse_basic_block (insn, val.last, val.path);
6839 if (cse_jumps_altered == 0
6840 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6841 insn = temp;
6843 cse_jumps_altered |= old_cse_jumps_altered;
6846 if (cse_altered)
6847 ggc_collect ();
6849 #ifdef USE_C_ALLOCA
6850 alloca (0);
6851 #endif
6854 /* Clean up. */
6855 end_alias_analysis ();
6856 free (uid_cuid);
6857 free (reg_eqv_table);
6858 free (val.path);
6859 rtl_hooks = general_rtl_hooks;
6861 return cse_jumps_altered || recorded_label_ref;
6864 /* Process a single basic block. FROM and TO and the limits of the basic
6865 block. NEXT_BRANCH points to the branch path when following jumps or
6866 a null path when not following jumps. */
6868 static rtx
6869 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6871 rtx insn;
6872 int to_usage = 0;
6873 rtx libcall_insn = NULL_RTX;
6874 int num_insns = 0;
6875 int no_conflict = 0;
6877 /* Allocate the space needed by qty_table. */
6878 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
6880 new_basic_block ();
6882 /* TO might be a label. If so, protect it from being deleted. */
6883 if (to != 0 && LABEL_P (to))
6884 ++LABEL_NUSES (to);
6886 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6888 enum rtx_code code = GET_CODE (insn);
6890 /* If we have processed 1,000 insns, flush the hash table to
6891 avoid extreme quadratic behavior. We must not include NOTEs
6892 in the count since there may be more of them when generating
6893 debugging information. If we clear the table at different
6894 times, code generated with -g -O might be different than code
6895 generated with -O but not -g.
6897 ??? This is a real kludge and needs to be done some other way.
6898 Perhaps for 2.9. */
6899 if (code != NOTE && num_insns++ > 1000)
6901 flush_hash_table ();
6902 num_insns = 0;
6905 /* See if this is a branch that is part of the path. If so, and it is
6906 to be taken, do so. */
6907 if (next_branch->branch == insn)
6909 enum taken status = next_branch++->status;
6910 if (status != PATH_NOT_TAKEN)
6912 if (status == PATH_TAKEN)
6913 record_jump_equiv (insn, 1);
6914 else
6915 invalidate_skipped_block (NEXT_INSN (insn));
6917 /* Set the last insn as the jump insn; it doesn't affect cc0.
6918 Then follow this branch. */
6919 #ifdef HAVE_cc0
6920 prev_insn_cc0 = 0;
6921 prev_insn = insn;
6922 #endif
6923 insn = JUMP_LABEL (insn);
6924 continue;
6928 if (GET_MODE (insn) == QImode)
6929 PUT_MODE (insn, VOIDmode);
6931 if (GET_RTX_CLASS (code) == RTX_INSN)
6933 rtx p;
6935 /* Process notes first so we have all notes in canonical forms when
6936 looking for duplicate operations. */
6938 if (REG_NOTES (insn))
6939 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6941 /* Track when we are inside in LIBCALL block. Inside such a block,
6942 we do not want to record destinations. The last insn of a
6943 LIBCALL block is not considered to be part of the block, since
6944 its destination is the result of the block and hence should be
6945 recorded. */
6947 if (REG_NOTES (insn) != 0)
6949 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6950 libcall_insn = XEXP (p, 0);
6951 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6953 /* Keep libcall_insn for the last SET insn of a no-conflict
6954 block to prevent changing the destination. */
6955 if (! no_conflict)
6956 libcall_insn = 0;
6957 else
6958 no_conflict = -1;
6960 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6961 no_conflict = 1;
6964 cse_insn (insn, libcall_insn);
6966 if (no_conflict == -1)
6968 libcall_insn = 0;
6969 no_conflict = 0;
6972 /* If we haven't already found an insn where we added a LABEL_REF,
6973 check this one. */
6974 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6975 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6976 (void *) insn))
6977 recorded_label_ref = 1;
6980 /* If INSN is now an unconditional jump, skip to the end of our
6981 basic block by pretending that we just did the last insn in the
6982 basic block. If we are jumping to the end of our block, show
6983 that we can have one usage of TO. */
6985 if (any_uncondjump_p (insn))
6987 if (to == 0)
6989 free (qty_table);
6990 return 0;
6993 if (JUMP_LABEL (insn) == to)
6994 to_usage = 1;
6996 /* Maybe TO was deleted because the jump is unconditional.
6997 If so, there is nothing left in this basic block. */
6998 /* ??? Perhaps it would be smarter to set TO
6999 to whatever follows this insn,
7000 and pretend the basic block had always ended here. */
7001 if (INSN_DELETED_P (to))
7002 break;
7004 insn = PREV_INSN (to);
7007 /* See if it is ok to keep on going past the label
7008 which used to end our basic block. Remember that we incremented
7009 the count of that label, so we decrement it here. If we made
7010 a jump unconditional, TO_USAGE will be one; in that case, we don't
7011 want to count the use in that jump. */
7013 if (to != 0 && NEXT_INSN (insn) == to
7014 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7016 struct cse_basic_block_data val;
7017 rtx prev;
7019 insn = NEXT_INSN (to);
7021 /* If TO was the last insn in the function, we are done. */
7022 if (insn == 0)
7024 free (qty_table);
7025 return 0;
7028 /* If TO was preceded by a BARRIER we are done with this block
7029 because it has no continuation. */
7030 prev = prev_nonnote_insn (to);
7031 if (prev && BARRIER_P (prev))
7033 free (qty_table);
7034 return insn;
7037 /* Find the end of the following block. Note that we won't be
7038 following branches in this case. */
7039 to_usage = 0;
7040 val.path_size = 0;
7041 val.path = xmalloc (sizeof (struct branch_path)
7042 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
7043 cse_end_of_basic_block (insn, &val, 0, 0);
7044 free (val.path);
7046 /* If the tables we allocated have enough space left
7047 to handle all the SETs in the next basic block,
7048 continue through it. Otherwise, return,
7049 and that block will be scanned individually. */
7050 if (val.nsets * 2 + next_qty > max_qty)
7051 break;
7053 cse_basic_block_start = val.low_cuid;
7054 cse_basic_block_end = val.high_cuid;
7055 to = val.last;
7057 /* Prevent TO from being deleted if it is a label. */
7058 if (to != 0 && LABEL_P (to))
7059 ++LABEL_NUSES (to);
7061 /* Back up so we process the first insn in the extension. */
7062 insn = PREV_INSN (insn);
7066 gcc_assert (next_qty <= max_qty);
7068 free (qty_table);
7070 return to ? NEXT_INSN (to) : 0;
7073 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7074 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7076 static int
7077 check_for_label_ref (rtx *rtl, void *data)
7079 rtx insn = (rtx) data;
7081 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7082 we must rerun jump since it needs to place the note. If this is a
7083 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7084 since no REG_LABEL will be added. */
7085 return (GET_CODE (*rtl) == LABEL_REF
7086 && ! LABEL_REF_NONLOCAL_P (*rtl)
7087 && LABEL_P (XEXP (*rtl, 0))
7088 && INSN_UID (XEXP (*rtl, 0)) != 0
7089 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7092 /* Count the number of times registers are used (not set) in X.
7093 COUNTS is an array in which we accumulate the count, INCR is how much
7094 we count each register usage. */
7096 static void
7097 count_reg_usage (rtx x, int *counts, int incr)
7099 enum rtx_code code;
7100 rtx note;
7101 const char *fmt;
7102 int i, j;
7104 if (x == 0)
7105 return;
7107 switch (code = GET_CODE (x))
7109 case REG:
7110 counts[REGNO (x)] += incr;
7111 return;
7113 case PC:
7114 case CC0:
7115 case CONST:
7116 case CONST_INT:
7117 case CONST_DOUBLE:
7118 case CONST_VECTOR:
7119 case SYMBOL_REF:
7120 case LABEL_REF:
7121 return;
7123 case CLOBBER:
7124 /* If we are clobbering a MEM, mark any registers inside the address
7125 as being used. */
7126 if (MEM_P (XEXP (x, 0)))
7127 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7128 return;
7130 case SET:
7131 /* Unless we are setting a REG, count everything in SET_DEST. */
7132 if (!REG_P (SET_DEST (x)))
7133 count_reg_usage (SET_DEST (x), counts, incr);
7134 count_reg_usage (SET_SRC (x), counts, incr);
7135 return;
7137 case CALL_INSN:
7138 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
7139 /* Fall through. */
7141 case INSN:
7142 case JUMP_INSN:
7143 count_reg_usage (PATTERN (x), counts, incr);
7145 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7146 use them. */
7148 note = find_reg_equal_equiv_note (x);
7149 if (note)
7151 rtx eqv = XEXP (note, 0);
7153 if (GET_CODE (eqv) == EXPR_LIST)
7154 /* This REG_EQUAL note describes the result of a function call.
7155 Process all the arguments. */
7158 count_reg_usage (XEXP (eqv, 0), counts, incr);
7159 eqv = XEXP (eqv, 1);
7161 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7162 else
7163 count_reg_usage (eqv, counts, incr);
7165 return;
7167 case EXPR_LIST:
7168 if (REG_NOTE_KIND (x) == REG_EQUAL
7169 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7170 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7171 involving registers in the address. */
7172 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7173 count_reg_usage (XEXP (x, 0), counts, incr);
7175 count_reg_usage (XEXP (x, 1), counts, incr);
7176 return;
7178 case ASM_OPERANDS:
7179 /* Iterate over just the inputs, not the constraints as well. */
7180 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7181 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
7182 return;
7184 case INSN_LIST:
7185 gcc_unreachable ();
7187 default:
7188 break;
7191 fmt = GET_RTX_FORMAT (code);
7192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7194 if (fmt[i] == 'e')
7195 count_reg_usage (XEXP (x, i), counts, incr);
7196 else if (fmt[i] == 'E')
7197 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7198 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7202 /* Return true if set is live. */
7203 static bool
7204 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7205 int *counts)
7207 #ifdef HAVE_cc0
7208 rtx tem;
7209 #endif
7211 if (set_noop_p (set))
7214 #ifdef HAVE_cc0
7215 else if (GET_CODE (SET_DEST (set)) == CC0
7216 && !side_effects_p (SET_SRC (set))
7217 && ((tem = next_nonnote_insn (insn)) == 0
7218 || !INSN_P (tem)
7219 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7220 return false;
7221 #endif
7222 else if (!REG_P (SET_DEST (set))
7223 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7224 || counts[REGNO (SET_DEST (set))] != 0
7225 || side_effects_p (SET_SRC (set)))
7226 return true;
7227 return false;
7230 /* Return true if insn is live. */
7232 static bool
7233 insn_live_p (rtx insn, int *counts)
7235 int i;
7236 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7237 return true;
7238 else if (GET_CODE (PATTERN (insn)) == SET)
7239 return set_live_p (PATTERN (insn), insn, counts);
7240 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7242 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7244 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7246 if (GET_CODE (elt) == SET)
7248 if (set_live_p (elt, insn, counts))
7249 return true;
7251 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7252 return true;
7254 return false;
7256 else
7257 return true;
7260 /* Return true if libcall is dead as a whole. */
7262 static bool
7263 dead_libcall_p (rtx insn, int *counts)
7265 rtx note, set, new;
7267 /* See if there's a REG_EQUAL note on this insn and try to
7268 replace the source with the REG_EQUAL expression.
7270 We assume that insns with REG_RETVALs can only be reg->reg
7271 copies at this point. */
7272 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7273 if (!note)
7274 return false;
7276 set = single_set (insn);
7277 if (!set)
7278 return false;
7280 new = simplify_rtx (XEXP (note, 0));
7281 if (!new)
7282 new = XEXP (note, 0);
7284 /* While changing insn, we must update the counts accordingly. */
7285 count_reg_usage (insn, counts, -1);
7287 if (validate_change (insn, &SET_SRC (set), new, 0))
7289 count_reg_usage (insn, counts, 1);
7290 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7291 remove_note (insn, note);
7292 return true;
7295 if (CONSTANT_P (new))
7297 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7298 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7300 count_reg_usage (insn, counts, 1);
7301 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7302 remove_note (insn, note);
7303 return true;
7307 count_reg_usage (insn, counts, 1);
7308 return false;
7311 /* Scan all the insns and delete any that are dead; i.e., they store a register
7312 that is never used or they copy a register to itself.
7314 This is used to remove insns made obviously dead by cse, loop or other
7315 optimizations. It improves the heuristics in loop since it won't try to
7316 move dead invariants out of loops or make givs for dead quantities. The
7317 remaining passes of the compilation are also sped up. */
7320 delete_trivially_dead_insns (rtx insns, int nreg)
7322 int *counts;
7323 rtx insn, prev;
7324 int in_libcall = 0, dead_libcall = 0;
7325 int ndead = 0;
7327 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7328 /* First count the number of times each register is used. */
7329 counts = xcalloc (nreg, sizeof (int));
7330 for (insn = insns; insn; insn = NEXT_INSN (insn))
7331 if (INSN_P (insn))
7332 count_reg_usage (insn, counts, 1);
7334 /* Go from the last insn to the first and delete insns that only set unused
7335 registers or copy a register to itself. As we delete an insn, remove
7336 usage counts for registers it uses.
7338 The first jump optimization pass may leave a real insn as the last
7339 insn in the function. We must not skip that insn or we may end
7340 up deleting code that is not really dead. */
7341 for (insn = get_last_insn (); insn; insn = prev)
7343 int live_insn = 0;
7345 prev = PREV_INSN (insn);
7346 if (!INSN_P (insn))
7347 continue;
7349 /* Don't delete any insns that are part of a libcall block unless
7350 we can delete the whole libcall block.
7352 Flow or loop might get confused if we did that. Remember
7353 that we are scanning backwards. */
7354 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7356 in_libcall = 1;
7357 live_insn = 1;
7358 dead_libcall = dead_libcall_p (insn, counts);
7360 else if (in_libcall)
7361 live_insn = ! dead_libcall;
7362 else
7363 live_insn = insn_live_p (insn, counts);
7365 /* If this is a dead insn, delete it and show registers in it aren't
7366 being used. */
7368 if (! live_insn)
7370 count_reg_usage (insn, counts, -1);
7371 delete_insn_and_edges (insn);
7372 ndead++;
7375 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7377 in_libcall = 0;
7378 dead_libcall = 0;
7382 if (dump_file && ndead)
7383 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7384 ndead);
7385 /* Clean up. */
7386 free (counts);
7387 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7388 return ndead;
7391 /* This function is called via for_each_rtx. The argument, NEWREG, is
7392 a condition code register with the desired mode. If we are looking
7393 at the same register in a different mode, replace it with
7394 NEWREG. */
7396 static int
7397 cse_change_cc_mode (rtx *loc, void *data)
7399 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7401 if (*loc
7402 && REG_P (*loc)
7403 && REGNO (*loc) == REGNO (args->newreg)
7404 && GET_MODE (*loc) != GET_MODE (args->newreg))
7406 validate_change (args->insn, loc, args->newreg, 1);
7408 return -1;
7410 return 0;
7413 /* Change the mode of any reference to the register REGNO (NEWREG) to
7414 GET_MODE (NEWREG) in INSN. */
7416 static void
7417 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7419 struct change_cc_mode_args args;
7420 int success;
7422 if (!INSN_P (insn))
7423 return;
7425 args.insn = insn;
7426 args.newreg = newreg;
7428 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7429 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7431 /* If the following assertion was triggered, there is most probably
7432 something wrong with the cc_modes_compatible back end function.
7433 CC modes only can be considered compatible if the insn - with the mode
7434 replaced by any of the compatible modes - can still be recognized. */
7435 success = apply_change_group ();
7436 gcc_assert (success);
7439 /* Change the mode of any reference to the register REGNO (NEWREG) to
7440 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7441 any instruction which modifies NEWREG. */
7443 static void
7444 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7446 rtx insn;
7448 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7450 if (! INSN_P (insn))
7451 continue;
7453 if (reg_set_p (newreg, insn))
7454 return;
7456 cse_change_cc_mode_insn (insn, newreg);
7460 /* BB is a basic block which finishes with CC_REG as a condition code
7461 register which is set to CC_SRC. Look through the successors of BB
7462 to find blocks which have a single predecessor (i.e., this one),
7463 and look through those blocks for an assignment to CC_REG which is
7464 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7465 permitted to change the mode of CC_SRC to a compatible mode. This
7466 returns VOIDmode if no equivalent assignments were found.
7467 Otherwise it returns the mode which CC_SRC should wind up with.
7469 The main complexity in this function is handling the mode issues.
7470 We may have more than one duplicate which we can eliminate, and we
7471 try to find a mode which will work for multiple duplicates. */
7473 static enum machine_mode
7474 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7476 bool found_equiv;
7477 enum machine_mode mode;
7478 unsigned int insn_count;
7479 edge e;
7480 rtx insns[2];
7481 enum machine_mode modes[2];
7482 rtx last_insns[2];
7483 unsigned int i;
7484 rtx newreg;
7485 edge_iterator ei;
7487 /* We expect to have two successors. Look at both before picking
7488 the final mode for the comparison. If we have more successors
7489 (i.e., some sort of table jump, although that seems unlikely),
7490 then we require all beyond the first two to use the same
7491 mode. */
7493 found_equiv = false;
7494 mode = GET_MODE (cc_src);
7495 insn_count = 0;
7496 FOR_EACH_EDGE (e, ei, bb->succs)
7498 rtx insn;
7499 rtx end;
7501 if (e->flags & EDGE_COMPLEX)
7502 continue;
7504 if (EDGE_COUNT (e->dest->preds) != 1
7505 || e->dest == EXIT_BLOCK_PTR)
7506 continue;
7508 end = NEXT_INSN (BB_END (e->dest));
7509 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7511 rtx set;
7513 if (! INSN_P (insn))
7514 continue;
7516 /* If CC_SRC is modified, we have to stop looking for
7517 something which uses it. */
7518 if (modified_in_p (cc_src, insn))
7519 break;
7521 /* Check whether INSN sets CC_REG to CC_SRC. */
7522 set = single_set (insn);
7523 if (set
7524 && REG_P (SET_DEST (set))
7525 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7527 bool found;
7528 enum machine_mode set_mode;
7529 enum machine_mode comp_mode;
7531 found = false;
7532 set_mode = GET_MODE (SET_SRC (set));
7533 comp_mode = set_mode;
7534 if (rtx_equal_p (cc_src, SET_SRC (set)))
7535 found = true;
7536 else if (GET_CODE (cc_src) == COMPARE
7537 && GET_CODE (SET_SRC (set)) == COMPARE
7538 && mode != set_mode
7539 && rtx_equal_p (XEXP (cc_src, 0),
7540 XEXP (SET_SRC (set), 0))
7541 && rtx_equal_p (XEXP (cc_src, 1),
7542 XEXP (SET_SRC (set), 1)))
7545 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7546 if (comp_mode != VOIDmode
7547 && (can_change_mode || comp_mode == mode))
7548 found = true;
7551 if (found)
7553 found_equiv = true;
7554 if (insn_count < ARRAY_SIZE (insns))
7556 insns[insn_count] = insn;
7557 modes[insn_count] = set_mode;
7558 last_insns[insn_count] = end;
7559 ++insn_count;
7561 if (mode != comp_mode)
7563 gcc_assert (can_change_mode);
7564 mode = comp_mode;
7566 /* The modified insn will be re-recognized later. */
7567 PUT_MODE (cc_src, mode);
7570 else
7572 if (set_mode != mode)
7574 /* We found a matching expression in the
7575 wrong mode, but we don't have room to
7576 store it in the array. Punt. This case
7577 should be rare. */
7578 break;
7580 /* INSN sets CC_REG to a value equal to CC_SRC
7581 with the right mode. We can simply delete
7582 it. */
7583 delete_insn (insn);
7586 /* We found an instruction to delete. Keep looking,
7587 in the hopes of finding a three-way jump. */
7588 continue;
7591 /* We found an instruction which sets the condition
7592 code, so don't look any farther. */
7593 break;
7596 /* If INSN sets CC_REG in some other way, don't look any
7597 farther. */
7598 if (reg_set_p (cc_reg, insn))
7599 break;
7602 /* If we fell off the bottom of the block, we can keep looking
7603 through successors. We pass CAN_CHANGE_MODE as false because
7604 we aren't prepared to handle compatibility between the
7605 further blocks and this block. */
7606 if (insn == end)
7608 enum machine_mode submode;
7610 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7611 if (submode != VOIDmode)
7613 gcc_assert (submode == mode);
7614 found_equiv = true;
7615 can_change_mode = false;
7620 if (! found_equiv)
7621 return VOIDmode;
7623 /* Now INSN_COUNT is the number of instructions we found which set
7624 CC_REG to a value equivalent to CC_SRC. The instructions are in
7625 INSNS. The modes used by those instructions are in MODES. */
7627 newreg = NULL_RTX;
7628 for (i = 0; i < insn_count; ++i)
7630 if (modes[i] != mode)
7632 /* We need to change the mode of CC_REG in INSNS[i] and
7633 subsequent instructions. */
7634 if (! newreg)
7636 if (GET_MODE (cc_reg) == mode)
7637 newreg = cc_reg;
7638 else
7639 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7641 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7642 newreg);
7645 delete_insn (insns[i]);
7648 return mode;
7651 /* If we have a fixed condition code register (or two), walk through
7652 the instructions and try to eliminate duplicate assignments. */
7654 void
7655 cse_condition_code_reg (void)
7657 unsigned int cc_regno_1;
7658 unsigned int cc_regno_2;
7659 rtx cc_reg_1;
7660 rtx cc_reg_2;
7661 basic_block bb;
7663 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7664 return;
7666 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7667 if (cc_regno_2 != INVALID_REGNUM)
7668 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7669 else
7670 cc_reg_2 = NULL_RTX;
7672 FOR_EACH_BB (bb)
7674 rtx last_insn;
7675 rtx cc_reg;
7676 rtx insn;
7677 rtx cc_src_insn;
7678 rtx cc_src;
7679 enum machine_mode mode;
7680 enum machine_mode orig_mode;
7682 /* Look for blocks which end with a conditional jump based on a
7683 condition code register. Then look for the instruction which
7684 sets the condition code register. Then look through the
7685 successor blocks for instructions which set the condition
7686 code register to the same value. There are other possible
7687 uses of the condition code register, but these are by far the
7688 most common and the ones which we are most likely to be able
7689 to optimize. */
7691 last_insn = BB_END (bb);
7692 if (!JUMP_P (last_insn))
7693 continue;
7695 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7696 cc_reg = cc_reg_1;
7697 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7698 cc_reg = cc_reg_2;
7699 else
7700 continue;
7702 cc_src_insn = NULL_RTX;
7703 cc_src = NULL_RTX;
7704 for (insn = PREV_INSN (last_insn);
7705 insn && insn != PREV_INSN (BB_HEAD (bb));
7706 insn = PREV_INSN (insn))
7708 rtx set;
7710 if (! INSN_P (insn))
7711 continue;
7712 set = single_set (insn);
7713 if (set
7714 && REG_P (SET_DEST (set))
7715 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7717 cc_src_insn = insn;
7718 cc_src = SET_SRC (set);
7719 break;
7721 else if (reg_set_p (cc_reg, insn))
7722 break;
7725 if (! cc_src_insn)
7726 continue;
7728 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7729 continue;
7731 /* Now CC_REG is a condition code register used for a
7732 conditional jump at the end of the block, and CC_SRC, in
7733 CC_SRC_INSN, is the value to which that condition code
7734 register is set, and CC_SRC is still meaningful at the end of
7735 the basic block. */
7737 orig_mode = GET_MODE (cc_src);
7738 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7739 if (mode != VOIDmode)
7741 gcc_assert (mode == GET_MODE (cc_src));
7742 if (mode != orig_mode)
7744 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7746 cse_change_cc_mode_insn (cc_src_insn, newreg);
7748 /* Do the same in the following insns that use the
7749 current value of CC_REG within BB. */
7750 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7751 NEXT_INSN (last_insn),
7752 newreg);