* gcj.texi (Compatibility): Add Limitations and Extensions section.
[official-gcc.git] / gcc / stor-layout.c
blobdd37d955190384e29d3087050b4bf5a80ba18240
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "toplev.h"
32 #include "ggc.h"
33 #include "target.h"
34 #include "langhooks.h"
36 /* Set to one when set_sizetype has been called. */
37 static int sizetype_set;
39 /* List of types created before set_sizetype has been called. We do not
40 make this a GGC root since we want these nodes to be reclaimed. */
41 static tree early_type_list;
43 /* Data type for the expressions representing sizes of data types.
44 It is the first integer type laid out. */
45 tree sizetype_tab[(int) TYPE_KIND_LAST];
47 /* If nonzero, this is an upper limit on alignment of structure fields.
48 The value is measured in bits. */
49 unsigned int maximum_field_alignment;
51 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
52 May be overridden by front-ends. */
53 unsigned int set_alignment = 0;
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
56 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
57 called only by a front end. */
58 static int reference_types_internal = 0;
60 static void finalize_record_size PARAMS ((record_layout_info));
61 static void finalize_type_size PARAMS ((tree));
62 static void place_union_field PARAMS ((record_layout_info, tree));
63 static unsigned int update_alignment_for_field
64 PARAMS ((record_layout_info, tree,
65 unsigned int));
66 extern void debug_rli PARAMS ((record_layout_info));
68 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
70 static GTY(()) tree pending_sizes;
72 /* Nonzero means cannot safely call expand_expr now,
73 so put variable sizes onto `pending_sizes' instead. */
75 int immediate_size_expand;
77 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
78 by front end. */
80 void
81 internal_reference_types ()
83 reference_types_internal = 1;
86 /* Get a list of all the objects put on the pending sizes list. */
88 tree
89 get_pending_sizes ()
91 tree chain = pending_sizes;
92 tree t;
94 /* Put each SAVE_EXPR into the current function. */
95 for (t = chain; t; t = TREE_CHAIN (t))
96 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
98 pending_sizes = 0;
99 return chain;
102 /* Return nonzero if EXPR is present on the pending sizes list. */
105 is_pending_size (expr)
106 tree expr;
108 tree t;
110 for (t = pending_sizes; t; t = TREE_CHAIN (t))
111 if (TREE_VALUE (t) == expr)
112 return 1;
113 return 0;
116 /* Add EXPR to the pending sizes list. */
118 void
119 put_pending_size (expr)
120 tree expr;
122 /* Strip any simple arithmetic from EXPR to see if it has an underlying
123 SAVE_EXPR. */
124 while (TREE_CODE_CLASS (TREE_CODE (expr)) == '1'
125 || (TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
126 && TREE_CONSTANT (TREE_OPERAND (expr, 1))))
127 expr = TREE_OPERAND (expr, 0);
129 if (TREE_CODE (expr) == SAVE_EXPR)
130 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
133 /* Put a chain of objects into the pending sizes list, which must be
134 empty. */
136 void
137 put_pending_sizes (chain)
138 tree chain;
140 if (pending_sizes)
141 abort ();
143 pending_sizes = chain;
146 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
147 to serve as the actual size-expression for a type or decl. */
149 tree
150 variable_size (size)
151 tree size;
153 /* If the language-processor is to take responsibility for variable-sized
154 items (e.g., languages which have elaboration procedures like Ada),
155 just return SIZE unchanged. Likewise for self-referential sizes and
156 constant sizes. */
157 if (TREE_CONSTANT (size)
158 || (*lang_hooks.decls.global_bindings_p) () < 0
159 || contains_placeholder_p (size))
160 return size;
162 size = save_expr (size);
164 /* If an array with a variable number of elements is declared, and
165 the elements require destruction, we will emit a cleanup for the
166 array. That cleanup is run both on normal exit from the block
167 and in the exception-handler for the block. Normally, when code
168 is used in both ordinary code and in an exception handler it is
169 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
170 not wish to do that here; the array-size is the same in both
171 places. */
172 if (TREE_CODE (size) == SAVE_EXPR)
173 SAVE_EXPR_PERSISTENT_P (size) = 1;
175 if ((*lang_hooks.decls.global_bindings_p) ())
177 if (TREE_CONSTANT (size))
178 error ("type size can't be explicitly evaluated");
179 else
180 error ("variable-size type declared outside of any function");
182 return size_one_node;
185 if (immediate_size_expand)
186 /* NULL_RTX is not defined; neither is the rtx type.
187 Also, we would like to pass const0_rtx here, but don't have it. */
188 expand_expr (size, expand_expr (integer_zero_node, NULL_RTX, VOIDmode, 0),
189 VOIDmode, 0);
190 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
191 /* The front-end doesn't want us to keep a list of the expressions
192 that determine sizes for variable size objects. */
194 else
195 put_pending_size (size);
197 return size;
200 #ifndef MAX_FIXED_MODE_SIZE
201 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
202 #endif
204 /* Return the machine mode to use for a nonscalar of SIZE bits.
205 The mode must be in class CLASS, and have exactly that many bits.
206 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
207 be used. */
209 enum machine_mode
210 mode_for_size (size, class, limit)
211 unsigned int size;
212 enum mode_class class;
213 int limit;
215 enum machine_mode mode;
217 if (limit && size > MAX_FIXED_MODE_SIZE)
218 return BLKmode;
220 /* Get the first mode which has this size, in the specified class. */
221 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
222 mode = GET_MODE_WIDER_MODE (mode))
223 if (GET_MODE_BITSIZE (mode) == size)
224 return mode;
226 return BLKmode;
229 /* Similar, except passed a tree node. */
231 enum machine_mode
232 mode_for_size_tree (size, class, limit)
233 tree size;
234 enum mode_class class;
235 int limit;
237 if (TREE_CODE (size) != INTEGER_CST
238 /* What we really want to say here is that the size can fit in a
239 host integer, but we know there's no way we'd find a mode for
240 this many bits, so there's no point in doing the precise test. */
241 || compare_tree_int (size, 1000) > 0)
242 return BLKmode;
243 else
244 return mode_for_size (TREE_INT_CST_LOW (size), class, limit);
247 /* Similar, but never return BLKmode; return the narrowest mode that
248 contains at least the requested number of bits. */
250 enum machine_mode
251 smallest_mode_for_size (size, class)
252 unsigned int size;
253 enum mode_class class;
255 enum machine_mode mode;
257 /* Get the first mode which has at least this size, in the
258 specified class. */
259 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
260 mode = GET_MODE_WIDER_MODE (mode))
261 if (GET_MODE_BITSIZE (mode) >= size)
262 return mode;
264 abort ();
267 /* Find an integer mode of the exact same size, or BLKmode on failure. */
269 enum machine_mode
270 int_mode_for_mode (mode)
271 enum machine_mode mode;
273 switch (GET_MODE_CLASS (mode))
275 case MODE_INT:
276 case MODE_PARTIAL_INT:
277 break;
279 case MODE_COMPLEX_INT:
280 case MODE_COMPLEX_FLOAT:
281 case MODE_FLOAT:
282 case MODE_VECTOR_INT:
283 case MODE_VECTOR_FLOAT:
284 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
285 break;
287 case MODE_RANDOM:
288 if (mode == BLKmode)
289 break;
291 /* ... fall through ... */
293 case MODE_CC:
294 default:
295 abort ();
298 return mode;
301 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
302 This can only be applied to objects of a sizetype. */
304 tree
305 round_up (value, divisor)
306 tree value;
307 int divisor;
309 tree arg = size_int_type (divisor, TREE_TYPE (value));
311 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
314 /* Likewise, but round down. */
316 tree
317 round_down (value, divisor)
318 tree value;
319 int divisor;
321 tree arg = size_int_type (divisor, TREE_TYPE (value));
323 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
326 /* Set the size, mode and alignment of a ..._DECL node.
327 TYPE_DECL does need this for C++.
328 Note that LABEL_DECL and CONST_DECL nodes do not need this,
329 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
330 Don't call layout_decl for them.
332 KNOWN_ALIGN is the amount of alignment we can assume this
333 decl has with no special effort. It is relevant only for FIELD_DECLs
334 and depends on the previous fields.
335 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
336 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
337 the record will be aligned to suit. */
339 void
340 layout_decl (decl, known_align)
341 tree decl;
342 unsigned int known_align;
344 tree type = TREE_TYPE (decl);
345 enum tree_code code = TREE_CODE (decl);
347 if (code == CONST_DECL)
348 return;
349 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
350 && code != TYPE_DECL && code != FIELD_DECL)
351 abort ();
353 if (type == error_mark_node)
354 type = void_type_node;
356 /* Usually the size and mode come from the data type without change,
357 however, the front-end may set the explicit width of the field, so its
358 size may not be the same as the size of its type. This happens with
359 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
360 also happens with other fields. For example, the C++ front-end creates
361 zero-sized fields corresponding to empty base classes, and depends on
362 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
363 size in bytes from the size in bits. If we have already set the mode,
364 don't set it again since we can be called twice for FIELD_DECLs. */
366 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
367 if (DECL_MODE (decl) == VOIDmode)
368 DECL_MODE (decl) = TYPE_MODE (type);
370 if (DECL_SIZE (decl) == 0)
372 DECL_SIZE (decl) = TYPE_SIZE (type);
373 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
375 else
376 DECL_SIZE_UNIT (decl)
377 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
378 bitsize_unit_node));
380 /* Force alignment required for the data type.
381 But if the decl itself wants greater alignment, don't override that.
382 Likewise, if the decl is packed, don't override it. */
383 if (! (code == FIELD_DECL && DECL_BIT_FIELD (decl))
384 && (DECL_ALIGN (decl) == 0
385 || (! (code == FIELD_DECL && DECL_PACKED (decl))
386 && TYPE_ALIGN (type) > DECL_ALIGN (decl))))
388 DECL_ALIGN (decl) = TYPE_ALIGN (type);
389 DECL_USER_ALIGN (decl) = 0;
392 /* For fields, set the bit field type and update the alignment. */
393 if (code == FIELD_DECL)
395 DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
396 if (maximum_field_alignment != 0)
397 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
399 /* If the field is of variable size, we can't misalign it since we
400 have no way to make a temporary to align the result. But this
401 isn't an issue if the decl is not addressable. Likewise if it
402 is of unknown size. */
403 else if (DECL_PACKED (decl)
404 && (DECL_NONADDRESSABLE_P (decl)
405 || DECL_SIZE_UNIT (decl) == 0
406 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
408 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
409 DECL_USER_ALIGN (decl) = 0;
413 /* See if we can use an ordinary integer mode for a bit-field.
414 Conditions are: a fixed size that is correct for another mode
415 and occupying a complete byte or bytes on proper boundary. */
416 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
417 && TYPE_SIZE (type) != 0
418 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
419 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
421 enum machine_mode xmode
422 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
424 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
426 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
427 DECL_ALIGN (decl));
428 DECL_MODE (decl) = xmode;
429 DECL_BIT_FIELD (decl) = 0;
433 /* Turn off DECL_BIT_FIELD if we won't need it set. */
434 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
435 && TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
436 && known_align >= TYPE_ALIGN (type)
437 && DECL_ALIGN (decl) >= TYPE_ALIGN (type)
438 && DECL_SIZE_UNIT (decl) != 0)
439 DECL_BIT_FIELD (decl) = 0;
441 /* Evaluate nonconstant size only once, either now or as soon as safe. */
442 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
443 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
444 if (DECL_SIZE_UNIT (decl) != 0
445 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
446 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
448 /* If requested, warn about definitions of large data objects. */
449 if (warn_larger_than
450 && (code == VAR_DECL || code == PARM_DECL)
451 && ! DECL_EXTERNAL (decl))
453 tree size = DECL_SIZE_UNIT (decl);
455 if (size != 0 && TREE_CODE (size) == INTEGER_CST
456 && compare_tree_int (size, larger_than_size) > 0)
458 unsigned int size_as_int = TREE_INT_CST_LOW (size);
460 if (compare_tree_int (size, size_as_int) == 0)
461 warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
462 else
463 warning_with_decl (decl, "size of `%s' is larger than %d bytes",
464 larger_than_size);
469 /* Hook for a front-end function that can modify the record layout as needed
470 immediately before it is finalized. */
472 void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;
474 void
475 set_lang_adjust_rli (f)
476 void (*f) PARAMS ((record_layout_info));
478 lang_adjust_rli = f;
481 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
482 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
483 is to be passed to all other layout functions for this record. It is the
484 responsibility of the caller to call `free' for the storage returned.
485 Note that garbage collection is not permitted until we finish laying
486 out the record. */
488 record_layout_info
489 start_record_layout (t)
490 tree t;
492 record_layout_info rli
493 = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));
495 rli->t = t;
497 /* If the type has a minimum specified alignment (via an attribute
498 declaration, for example) use it -- otherwise, start with a
499 one-byte alignment. */
500 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
501 rli->unpacked_align = rli->unpadded_align = rli->record_align;
502 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
504 #ifdef STRUCTURE_SIZE_BOUNDARY
505 /* Packed structures don't need to have minimum size. */
506 if (! TYPE_PACKED (t))
507 rli->record_align = MAX (rli->record_align, STRUCTURE_SIZE_BOUNDARY);
508 #endif
510 rli->offset = size_zero_node;
511 rli->bitpos = bitsize_zero_node;
512 rli->prev_field = 0;
513 rli->pending_statics = 0;
514 rli->packed_maybe_necessary = 0;
516 return rli;
519 /* These four routines perform computations that convert between
520 the offset/bitpos forms and byte and bit offsets. */
522 tree
523 bit_from_pos (offset, bitpos)
524 tree offset, bitpos;
526 return size_binop (PLUS_EXPR, bitpos,
527 size_binop (MULT_EXPR, convert (bitsizetype, offset),
528 bitsize_unit_node));
531 tree
532 byte_from_pos (offset, bitpos)
533 tree offset, bitpos;
535 return size_binop (PLUS_EXPR, offset,
536 convert (sizetype,
537 size_binop (TRUNC_DIV_EXPR, bitpos,
538 bitsize_unit_node)));
541 void
542 pos_from_byte (poffset, pbitpos, off_align, pos)
543 tree *poffset, *pbitpos;
544 unsigned int off_align;
545 tree pos;
547 *poffset
548 = size_binop (MULT_EXPR,
549 convert (sizetype,
550 size_binop (FLOOR_DIV_EXPR, pos,
551 bitsize_int (off_align
552 / BITS_PER_UNIT))),
553 size_int (off_align / BITS_PER_UNIT));
554 *pbitpos = size_binop (MULT_EXPR,
555 size_binop (FLOOR_MOD_EXPR, pos,
556 bitsize_int (off_align / BITS_PER_UNIT)),
557 bitsize_unit_node);
560 void
561 pos_from_bit (poffset, pbitpos, off_align, pos)
562 tree *poffset, *pbitpos;
563 unsigned int off_align;
564 tree pos;
566 *poffset = size_binop (MULT_EXPR,
567 convert (sizetype,
568 size_binop (FLOOR_DIV_EXPR, pos,
569 bitsize_int (off_align))),
570 size_int (off_align / BITS_PER_UNIT));
571 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
574 /* Given a pointer to bit and byte offsets and an offset alignment,
575 normalize the offsets so they are within the alignment. */
577 void
578 normalize_offset (poffset, pbitpos, off_align)
579 tree *poffset, *pbitpos;
580 unsigned int off_align;
582 /* If the bit position is now larger than it should be, adjust it
583 downwards. */
584 if (compare_tree_int (*pbitpos, off_align) >= 0)
586 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
587 bitsize_int (off_align));
589 *poffset
590 = size_binop (PLUS_EXPR, *poffset,
591 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
592 size_int (off_align / BITS_PER_UNIT)));
594 *pbitpos
595 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
599 /* Print debugging information about the information in RLI. */
601 void
602 debug_rli (rli)
603 record_layout_info rli;
605 print_node_brief (stderr, "type", rli->t, 0);
606 print_node_brief (stderr, "\noffset", rli->offset, 0);
607 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
609 fprintf (stderr, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
610 rli->record_align, rli->unpacked_align, rli->unpadded_align,
611 rli->offset_align);
612 if (rli->packed_maybe_necessary)
613 fprintf (stderr, "packed may be necessary\n");
615 if (rli->pending_statics)
617 fprintf (stderr, "pending statics:\n");
618 debug_tree (rli->pending_statics);
622 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
623 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
625 void
626 normalize_rli (rli)
627 record_layout_info rli;
629 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
632 /* Returns the size in bytes allocated so far. */
634 tree
635 rli_size_unit_so_far (rli)
636 record_layout_info rli;
638 return byte_from_pos (rli->offset, rli->bitpos);
641 /* Returns the size in bits allocated so far. */
643 tree
644 rli_size_so_far (rli)
645 record_layout_info rli;
647 return bit_from_pos (rli->offset, rli->bitpos);
650 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
651 the next available location is given by KNOWN_ALIGN. Update the
652 variable alignment fields in RLI, and return the alignment to give
653 the FIELD. */
655 static unsigned int
656 update_alignment_for_field (rli, field, known_align)
657 record_layout_info rli;
658 tree field;
659 unsigned int known_align;
661 /* The alignment required for FIELD. */
662 unsigned int desired_align;
663 /* The type of this field. */
664 tree type = TREE_TYPE (field);
665 /* True if the field was explicitly aligned by the user. */
666 bool user_align;
668 /* Lay out the field so we know what alignment it needs. For a
669 packed field, use the alignment as specified, disregarding what
670 the type would want. */
671 desired_align = DECL_ALIGN (field);
672 user_align = DECL_USER_ALIGN (field);
673 layout_decl (field, known_align);
674 if (! DECL_PACKED (field))
676 desired_align = DECL_ALIGN (field);
677 user_align = DECL_USER_ALIGN (field);
680 /* Some targets (i.e. i386, VMS) limit struct field alignment
681 to a lower boundary than alignment of variables unless
682 it was overridden by attribute aligned. */
683 #ifdef BIGGEST_FIELD_ALIGNMENT
684 if (!user_align)
685 desired_align
686 = MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
687 #endif
689 #ifdef ADJUST_FIELD_ALIGN
690 if (!user_align)
691 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
692 #endif
694 /* Record must have at least as much alignment as any field.
695 Otherwise, the alignment of the field within the record is
696 meaningless. */
697 if ((* targetm.ms_bitfield_layout_p) (rli->t)
698 && type != error_mark_node
699 && DECL_BIT_FIELD_TYPE (field)
700 && ! integer_zerop (TYPE_SIZE (type)))
702 /* Here, the alignment of the underlying type of a bitfield can
703 affect the alignment of a record; even a zero-sized field
704 can do this. The alignment should be to the alignment of
705 the type, except that for zero-size bitfields this only
706 applies if there was an immediately prior, nonzero-size
707 bitfield. (That's the way it is, experimentally.) */
708 if (! integer_zerop (DECL_SIZE (field))
709 ? ! DECL_PACKED (field)
710 : (rli->prev_field
711 && DECL_BIT_FIELD_TYPE (rli->prev_field)
712 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
714 unsigned int type_align = TYPE_ALIGN (type);
715 type_align = MAX (type_align, desired_align);
716 if (maximum_field_alignment != 0)
717 type_align = MIN (type_align, maximum_field_alignment);
718 rli->record_align = MAX (rli->record_align, type_align);
719 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
720 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
722 else
723 desired_align = 1;
725 else
726 #ifdef PCC_BITFIELD_TYPE_MATTERS
727 if (PCC_BITFIELD_TYPE_MATTERS && type != error_mark_node
728 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
729 && DECL_BIT_FIELD_TYPE (field)
730 && ! integer_zerop (TYPE_SIZE (type)))
732 /* For these machines, a zero-length field does not
733 affect the alignment of the structure as a whole.
734 It does, however, affect the alignment of the next field
735 within the structure. */
736 if (! integer_zerop (DECL_SIZE (field)))
737 rli->record_align = MAX (rli->record_align, desired_align);
738 else if (! DECL_PACKED (field))
739 desired_align = TYPE_ALIGN (type);
741 /* A named bit field of declared type `int'
742 forces the entire structure to have `int' alignment. */
743 if (DECL_NAME (field) != 0)
745 unsigned int type_align = TYPE_ALIGN (type);
747 #ifdef ADJUST_FIELD_ALIGN
748 if (! TYPE_USER_ALIGN (type))
749 type_align = ADJUST_FIELD_ALIGN (field, type_align);
750 #endif
752 if (maximum_field_alignment != 0)
753 type_align = MIN (type_align, maximum_field_alignment);
754 else if (DECL_PACKED (field))
755 type_align = MIN (type_align, BITS_PER_UNIT);
757 rli->record_align = MAX (rli->record_align, type_align);
758 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
759 if (warn_packed)
760 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
761 user_align |= TYPE_USER_ALIGN (type);
764 else
765 #endif
767 rli->record_align = MAX (rli->record_align, desired_align);
768 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
769 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
772 TYPE_USER_ALIGN (rli->t) |= user_align;
774 return desired_align;
777 /* Called from place_field to handle unions. */
779 static void
780 place_union_field (rli, field)
781 record_layout_info rli;
782 tree field;
784 update_alignment_for_field (rli, field, /*known_align=*/0);
786 DECL_FIELD_OFFSET (field) = size_zero_node;
787 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
788 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
790 /* We assume the union's size will be a multiple of a byte so we don't
791 bother with BITPOS. */
792 if (TREE_CODE (rli->t) == UNION_TYPE)
793 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
794 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
795 rli->offset = fold (build (COND_EXPR, sizetype,
796 DECL_QUALIFIER (field),
797 DECL_SIZE_UNIT (field), rli->offset));
800 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
801 is a FIELD_DECL to be added after those fields already present in
802 T. (FIELD is not actually added to the TYPE_FIELDS list here;
803 callers that desire that behavior must manually perform that step.) */
805 void
806 place_field (rli, field)
807 record_layout_info rli;
808 tree field;
810 /* The alignment required for FIELD. */
811 unsigned int desired_align;
812 /* The alignment FIELD would have if we just dropped it into the
813 record as it presently stands. */
814 unsigned int known_align;
815 unsigned int actual_align;
816 /* The type of this field. */
817 tree type = TREE_TYPE (field);
819 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
820 return;
822 /* If FIELD is static, then treat it like a separate variable, not
823 really like a structure field. If it is a FUNCTION_DECL, it's a
824 method. In both cases, all we do is lay out the decl, and we do
825 it *after* the record is laid out. */
826 if (TREE_CODE (field) == VAR_DECL)
828 rli->pending_statics = tree_cons (NULL_TREE, field,
829 rli->pending_statics);
830 return;
833 /* Enumerators and enum types which are local to this class need not
834 be laid out. Likewise for initialized constant fields. */
835 else if (TREE_CODE (field) != FIELD_DECL)
836 return;
838 /* Unions are laid out very differently than records, so split
839 that code off to another function. */
840 else if (TREE_CODE (rli->t) != RECORD_TYPE)
842 place_union_field (rli, field);
843 return;
846 /* Work out the known alignment so far. Note that A & (-A) is the
847 value of the least-significant bit in A that is one. */
848 if (! integer_zerop (rli->bitpos))
849 known_align = (tree_low_cst (rli->bitpos, 1)
850 & - tree_low_cst (rli->bitpos, 1));
851 else if (integer_zerop (rli->offset))
852 known_align = BIGGEST_ALIGNMENT;
853 else if (host_integerp (rli->offset, 1))
854 known_align = (BITS_PER_UNIT
855 * (tree_low_cst (rli->offset, 1)
856 & - tree_low_cst (rli->offset, 1)));
857 else
858 known_align = rli->offset_align;
860 desired_align = update_alignment_for_field (rli, field, known_align);
862 if (warn_packed && DECL_PACKED (field))
864 if (known_align > TYPE_ALIGN (type))
866 if (TYPE_ALIGN (type) > desired_align)
868 if (STRICT_ALIGNMENT)
869 warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
870 else
871 warning_with_decl (field, "packed attribute is unnecessary for `%s'");
874 else
875 rli->packed_maybe_necessary = 1;
878 /* Does this field automatically have alignment it needs by virtue
879 of the fields that precede it and the record's own alignment? */
880 if (known_align < desired_align)
882 /* No, we need to skip space before this field.
883 Bump the cumulative size to multiple of field alignment. */
885 if (warn_padded)
886 warning_with_decl (field, "padding struct to align `%s'");
888 /* If the alignment is still within offset_align, just align
889 the bit position. */
890 if (desired_align < rli->offset_align)
891 rli->bitpos = round_up (rli->bitpos, desired_align);
892 else
894 /* First adjust OFFSET by the partial bits, then align. */
895 rli->offset
896 = size_binop (PLUS_EXPR, rli->offset,
897 convert (sizetype,
898 size_binop (CEIL_DIV_EXPR, rli->bitpos,
899 bitsize_unit_node)));
900 rli->bitpos = bitsize_zero_node;
902 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
905 if (! TREE_CONSTANT (rli->offset))
906 rli->offset_align = desired_align;
910 /* Handle compatibility with PCC. Note that if the record has any
911 variable-sized fields, we need not worry about compatibility. */
912 #ifdef PCC_BITFIELD_TYPE_MATTERS
913 if (PCC_BITFIELD_TYPE_MATTERS
914 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
915 && TREE_CODE (field) == FIELD_DECL
916 && type != error_mark_node
917 && DECL_BIT_FIELD (field)
918 && ! DECL_PACKED (field)
919 && maximum_field_alignment == 0
920 && ! integer_zerop (DECL_SIZE (field))
921 && host_integerp (DECL_SIZE (field), 1)
922 && host_integerp (rli->offset, 1)
923 && host_integerp (TYPE_SIZE (type), 1))
925 unsigned int type_align = TYPE_ALIGN (type);
926 tree dsize = DECL_SIZE (field);
927 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
928 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
929 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
931 #ifdef ADJUST_FIELD_ALIGN
932 if (! TYPE_USER_ALIGN (type))
933 type_align = ADJUST_FIELD_ALIGN (field, type_align);
934 #endif
936 /* A bit field may not span more units of alignment of its type
937 than its type itself. Advance to next boundary if necessary. */
938 if ((((offset * BITS_PER_UNIT + bit_offset + field_size +
939 type_align - 1)
940 / type_align)
941 - (offset * BITS_PER_UNIT + bit_offset) / type_align)
942 > tree_low_cst (TYPE_SIZE (type), 1) / type_align)
943 rli->bitpos = round_up (rli->bitpos, type_align);
945 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
947 #endif
949 #ifdef BITFIELD_NBYTES_LIMITED
950 if (BITFIELD_NBYTES_LIMITED
951 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
952 && TREE_CODE (field) == FIELD_DECL
953 && type != error_mark_node
954 && DECL_BIT_FIELD_TYPE (field)
955 && ! DECL_PACKED (field)
956 && ! integer_zerop (DECL_SIZE (field))
957 && host_integerp (DECL_SIZE (field), 1)
958 && host_integerp (rli->offset, 1)
959 && host_integerp (TYPE_SIZE (type), 1))
961 unsigned int type_align = TYPE_ALIGN (type);
962 tree dsize = DECL_SIZE (field);
963 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
964 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
965 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
967 #ifdef ADJUST_FIELD_ALIGN
968 if (! TYPE_USER_ALIGN (type))
969 type_align = ADJUST_FIELD_ALIGN (field, type_align);
970 #endif
972 if (maximum_field_alignment != 0)
973 type_align = MIN (type_align, maximum_field_alignment);
974 /* ??? This test is opposite the test in the containing if
975 statement, so this code is unreachable currently. */
976 else if (DECL_PACKED (field))
977 type_align = MIN (type_align, BITS_PER_UNIT);
979 /* A bit field may not span the unit of alignment of its type.
980 Advance to next boundary if necessary. */
981 /* ??? This code should match the code above for the
982 PCC_BITFIELD_TYPE_MATTERS case. */
983 if ((offset * BITS_PER_UNIT + bit_offset) / type_align
984 != ((offset * BITS_PER_UNIT + bit_offset + field_size - 1)
985 / type_align))
986 rli->bitpos = round_up (rli->bitpos, type_align);
988 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
990 #endif
992 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
993 A subtlety:
994 When a bit field is inserted into a packed record, the whole
995 size of the underlying type is used by one or more same-size
996 adjacent bitfields. (That is, if its long:3, 32 bits is
997 used in the record, and any additional adjacent long bitfields are
998 packed into the same chunk of 32 bits. However, if the size
999 changes, a new field of that size is allocated.) In an unpacked
1000 record, this is the same as using alignment, but not eqivalent
1001 when packing.
1003 Note: for compatability, we use the type size, not the type alignment
1004 to determine alignment, since that matches the documentation */
1006 if ((* targetm.ms_bitfield_layout_p) (rli->t)
1007 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1008 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1010 /* At this point, either the prior or current are bitfields,
1011 (possibly both), and we're dealing with MS packing. */
1012 tree prev_saved = rli->prev_field;
1014 /* Is the prior field a bitfield? If so, handle "runs" of same
1015 type size fields. */
1016 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1018 /* If both are bitfields, nonzero, and the same size, this is
1019 the middle of a run. Zero declared size fields are special
1020 and handled as "end of run". (Note: it's nonzero declared
1021 size, but equal type sizes!) (Since we know that both
1022 the current and previous fields are bitfields by the
1023 time we check it, DECL_SIZE must be present for both.) */
1024 if (DECL_BIT_FIELD_TYPE (field)
1025 && !integer_zerop (DECL_SIZE (field))
1026 && !integer_zerop (DECL_SIZE (rli->prev_field))
1027 && simple_cst_equal (TYPE_SIZE (type),
1028 TYPE_SIZE (TREE_TYPE (rli->prev_field))) )
1030 /* We're in the middle of a run of equal type size fields; make
1031 sure we realign if we run out of bits. (Not decl size,
1032 type size!) */
1033 int bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
1034 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1036 if (rli->remaining_in_alignment < bitsize)
1038 /* out of bits; bump up to next 'word'. */
1039 rli->bitpos = size_binop (PLUS_EXPR,
1040 type_size,
1041 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1042 rli->prev_field = field;
1043 rli->remaining_in_alignment = TREE_INT_CST_LOW (type_size);
1045 rli->remaining_in_alignment -= bitsize;
1047 else
1049 /* End of a run: if leaving a run of bitfields of the same type
1050 size, we have to "use up" the rest of the bits of the type
1051 size.
1053 Compute the new position as the sum of the size for the prior
1054 type and where we first started working on that type.
1055 Note: since the beginning of the field was aligned then
1056 of course the end will be too. No round needed. */
1058 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1060 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1061 rli->bitpos = size_binop (PLUS_EXPR,
1062 type_size,
1063 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1065 else
1067 /* We "use up" size zero fields; the code below should behave
1068 as if the prior field was not a bitfield. */
1069 prev_saved = NULL;
1072 /* Cause a new bitfield to be captured, either this time (if
1073 currently a bitfield) or next time we see one. */
1074 if (!DECL_BIT_FIELD_TYPE(field)
1075 || integer_zerop (DECL_SIZE (field)))
1077 rli->prev_field = NULL;
1080 normalize_rli (rli);
1083 /* If we're starting a new run of same size type bitfields
1084 (or a run of non-bitfields), set up the "first of the run"
1085 fields.
1087 That is, if the current field is not a bitfield, or if there
1088 was a prior bitfield the type sizes differ, or if there wasn't
1089 a prior bitfield the size of the current field is nonzero.
1091 Note: we must be sure to test ONLY the type size if there was
1092 a prior bitfield and ONLY for the current field being zero if
1093 there wasn't. */
1095 if (!DECL_BIT_FIELD_TYPE (field)
1096 || ( prev_saved != NULL
1097 ? !simple_cst_equal (TYPE_SIZE (type),
1098 TYPE_SIZE (TREE_TYPE (prev_saved)))
1099 : !integer_zerop (DECL_SIZE (field)) ))
1101 unsigned int type_align = 8; /* Never below 8 for compatability */
1103 /* (When not a bitfield), we could be seeing a flex array (with
1104 no DECL_SIZE). Since we won't be using remaining_in_alignment
1105 until we see a bitfield (and come by here again) we just skip
1106 calculating it. */
1108 if (DECL_SIZE (field) != NULL)
1109 rli->remaining_in_alignment
1110 = TREE_INT_CST_LOW (TYPE_SIZE(TREE_TYPE(field)))
1111 - TREE_INT_CST_LOW (DECL_SIZE (field));
1113 /* Now align (conventionally) for the new type. */
1114 if (!DECL_PACKED(field))
1115 type_align = MAX(TYPE_ALIGN (type), type_align);
1117 if (prev_saved
1118 && DECL_BIT_FIELD_TYPE (prev_saved)
1119 /* If the previous bit-field is zero-sized, we've already
1120 accounted for its alignment needs (or ignored it, if
1121 appropriate) while placing it. */
1122 && ! integer_zerop (DECL_SIZE (prev_saved)))
1123 type_align = MAX (type_align,
1124 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1126 if (maximum_field_alignment != 0)
1127 type_align = MIN (type_align, maximum_field_alignment);
1129 rli->bitpos = round_up (rli->bitpos, type_align);
1130 /* If we really aligned, don't allow subsequent bitfields
1131 to undo that. */
1132 rli->prev_field = NULL;
1136 /* Offset so far becomes the position of this field after normalizing. */
1137 normalize_rli (rli);
1138 DECL_FIELD_OFFSET (field) = rli->offset;
1139 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1140 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1142 /* If this field ended up more aligned than we thought it would be (we
1143 approximate this by seeing if its position changed), lay out the field
1144 again; perhaps we can use an integral mode for it now. */
1145 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1146 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1147 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1148 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1149 actual_align = BIGGEST_ALIGNMENT;
1150 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1151 actual_align = (BITS_PER_UNIT
1152 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1153 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1154 else
1155 actual_align = DECL_OFFSET_ALIGN (field);
1157 if (known_align != actual_align)
1158 layout_decl (field, actual_align);
1160 /* Only the MS bitfields use this. */
1161 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1162 rli->prev_field = field;
1164 /* Now add size of this field to the size of the record. If the size is
1165 not constant, treat the field as being a multiple of bytes and just
1166 adjust the offset, resetting the bit position. Otherwise, apportion the
1167 size amongst the bit position and offset. First handle the case of an
1168 unspecified size, which can happen when we have an invalid nested struct
1169 definition, such as struct j { struct j { int i; } }. The error message
1170 is printed in finish_struct. */
1171 if (DECL_SIZE (field) == 0)
1172 /* Do nothing. */;
1173 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1174 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1176 rli->offset
1177 = size_binop (PLUS_EXPR, rli->offset,
1178 convert (sizetype,
1179 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1180 bitsize_unit_node)));
1181 rli->offset
1182 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1183 rli->bitpos = bitsize_zero_node;
1184 rli->offset_align = MIN (rli->offset_align, DECL_ALIGN (field));
1186 else
1188 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1189 normalize_rli (rli);
1193 /* Assuming that all the fields have been laid out, this function uses
1194 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1195 inidicated by RLI. */
1197 static void
1198 finalize_record_size (rli)
1199 record_layout_info rli;
1201 tree unpadded_size, unpadded_size_unit;
1203 /* Now we want just byte and bit offsets, so set the offset alignment
1204 to be a byte and then normalize. */
1205 rli->offset_align = BITS_PER_UNIT;
1206 normalize_rli (rli);
1208 /* Determine the desired alignment. */
1209 #ifdef ROUND_TYPE_ALIGN
1210 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1211 rli->record_align);
1212 #else
1213 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1214 #endif
1216 /* Compute the size so far. Be sure to allow for extra bits in the
1217 size in bytes. We have guaranteed above that it will be no more
1218 than a single byte. */
1219 unpadded_size = rli_size_so_far (rli);
1220 unpadded_size_unit = rli_size_unit_so_far (rli);
1221 if (! integer_zerop (rli->bitpos))
1222 unpadded_size_unit
1223 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1225 /* Record the un-rounded size in the binfo node. But first we check
1226 the size of TYPE_BINFO to make sure that BINFO_SIZE is available. */
1227 if (TYPE_BINFO (rli->t) && TREE_VEC_LENGTH (TYPE_BINFO (rli->t)) > 6)
1229 TYPE_BINFO_SIZE (rli->t) = unpadded_size;
1230 TYPE_BINFO_SIZE_UNIT (rli->t) = unpadded_size_unit;
1233 /* Round the size up to be a multiple of the required alignment */
1234 #ifdef ROUND_TYPE_SIZE
1235 TYPE_SIZE (rli->t) = ROUND_TYPE_SIZE (rli->t, unpadded_size,
1236 TYPE_ALIGN (rli->t));
1237 TYPE_SIZE_UNIT (rli->t)
1238 = ROUND_TYPE_SIZE_UNIT (rli->t, unpadded_size_unit,
1239 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1240 #else
1241 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1242 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1243 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1244 #endif
1246 if (warn_padded && TREE_CONSTANT (unpadded_size)
1247 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1248 warning ("padding struct size to alignment boundary");
1250 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1251 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1252 && TREE_CONSTANT (unpadded_size))
1254 tree unpacked_size;
1256 #ifdef ROUND_TYPE_ALIGN
1257 rli->unpacked_align
1258 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1259 #else
1260 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1261 #endif
1263 #ifdef ROUND_TYPE_SIZE
1264 unpacked_size = ROUND_TYPE_SIZE (rli->t, TYPE_SIZE (rli->t),
1265 rli->unpacked_align);
1266 #else
1267 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1268 #endif
1270 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1272 TYPE_PACKED (rli->t) = 0;
1274 if (TYPE_NAME (rli->t))
1276 const char *name;
1278 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1279 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1280 else
1281 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1283 if (STRICT_ALIGNMENT)
1284 warning ("packed attribute causes inefficient alignment for `%s'", name);
1285 else
1286 warning ("packed attribute is unnecessary for `%s'", name);
1288 else
1290 if (STRICT_ALIGNMENT)
1291 warning ("packed attribute causes inefficient alignment");
1292 else
1293 warning ("packed attribute is unnecessary");
1299 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1301 void
1302 compute_record_mode (type)
1303 tree type;
1305 tree field;
1306 enum machine_mode mode = VOIDmode;
1308 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1309 However, if possible, we use a mode that fits in a register
1310 instead, in order to allow for better optimization down the
1311 line. */
1312 TYPE_MODE (type) = BLKmode;
1314 if (! host_integerp (TYPE_SIZE (type), 1))
1315 return;
1317 /* A record which has any BLKmode members must itself be
1318 BLKmode; it can't go in a register. Unless the member is
1319 BLKmode only because it isn't aligned. */
1320 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1322 unsigned HOST_WIDE_INT bitpos;
1324 if (TREE_CODE (field) != FIELD_DECL)
1325 continue;
1327 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1328 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1329 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1330 || ! host_integerp (bit_position (field), 1)
1331 || DECL_SIZE (field) == 0
1332 || ! host_integerp (DECL_SIZE (field), 1))
1333 return;
1335 bitpos = int_bit_position (field);
1337 /* Must be BLKmode if any field crosses a word boundary,
1338 since extract_bit_field can't handle that in registers. */
1339 if (bitpos / BITS_PER_WORD
1340 != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
1341 / BITS_PER_WORD)
1342 /* But there is no problem if the field is entire words. */
1343 && tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD != 0)
1344 return;
1346 /* If this field is the whole struct, remember its mode so
1347 that, say, we can put a double in a class into a DF
1348 register instead of forcing it to live in the stack. */
1349 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1350 mode = DECL_MODE (field);
1352 #ifdef MEMBER_TYPE_FORCES_BLK
1353 /* With some targets, eg. c4x, it is sub-optimal
1354 to access an aligned BLKmode structure as a scalar. */
1356 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1357 return;
1358 #endif /* MEMBER_TYPE_FORCES_BLK */
1361 /* If we only have one real field; use its mode. This only applies to
1362 RECORD_TYPE. This does not apply to unions. */
1363 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1364 TYPE_MODE (type) = mode;
1365 else
1366 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1368 /* If structure's known alignment is less than what the scalar
1369 mode would need, and it matters, then stick with BLKmode. */
1370 if (TYPE_MODE (type) != BLKmode
1371 && STRICT_ALIGNMENT
1372 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1373 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1375 /* If this is the only reason this type is BLKmode, then
1376 don't force containing types to be BLKmode. */
1377 TYPE_NO_FORCE_BLK (type) = 1;
1378 TYPE_MODE (type) = BLKmode;
1382 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1383 out. */
1385 static void
1386 finalize_type_size (type)
1387 tree type;
1389 /* Normally, use the alignment corresponding to the mode chosen.
1390 However, where strict alignment is not required, avoid
1391 over-aligning structures, since most compilers do not do this
1392 alignment. */
1394 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1395 && (STRICT_ALIGNMENT
1396 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1397 && TREE_CODE (type) != QUAL_UNION_TYPE
1398 && TREE_CODE (type) != ARRAY_TYPE)))
1400 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1401 TYPE_USER_ALIGN (type) = 0;
1404 /* Do machine-dependent extra alignment. */
1405 #ifdef ROUND_TYPE_ALIGN
1406 TYPE_ALIGN (type)
1407 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1408 #endif
1410 /* If we failed to find a simple way to calculate the unit size
1411 of the type, find it by division. */
1412 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1413 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1414 result will fit in sizetype. We will get more efficient code using
1415 sizetype, so we force a conversion. */
1416 TYPE_SIZE_UNIT (type)
1417 = convert (sizetype,
1418 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1419 bitsize_unit_node));
1421 if (TYPE_SIZE (type) != 0)
1423 #ifdef ROUND_TYPE_SIZE
1424 TYPE_SIZE (type)
1425 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1426 TYPE_SIZE_UNIT (type)
1427 = ROUND_TYPE_SIZE_UNIT (type, TYPE_SIZE_UNIT (type),
1428 TYPE_ALIGN (type) / BITS_PER_UNIT);
1429 #else
1430 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1431 TYPE_SIZE_UNIT (type)
1432 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1433 #endif
1436 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1437 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1438 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1439 if (TYPE_SIZE_UNIT (type) != 0
1440 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1441 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1443 /* Also layout any other variants of the type. */
1444 if (TYPE_NEXT_VARIANT (type)
1445 || type != TYPE_MAIN_VARIANT (type))
1447 tree variant;
1448 /* Record layout info of this variant. */
1449 tree size = TYPE_SIZE (type);
1450 tree size_unit = TYPE_SIZE_UNIT (type);
1451 unsigned int align = TYPE_ALIGN (type);
1452 unsigned int user_align = TYPE_USER_ALIGN (type);
1453 enum machine_mode mode = TYPE_MODE (type);
1455 /* Copy it into all variants. */
1456 for (variant = TYPE_MAIN_VARIANT (type);
1457 variant != 0;
1458 variant = TYPE_NEXT_VARIANT (variant))
1460 TYPE_SIZE (variant) = size;
1461 TYPE_SIZE_UNIT (variant) = size_unit;
1462 TYPE_ALIGN (variant) = align;
1463 TYPE_USER_ALIGN (variant) = user_align;
1464 TYPE_MODE (variant) = mode;
1469 /* Do all of the work required to layout the type indicated by RLI,
1470 once the fields have been laid out. This function will call `free'
1471 for RLI, unless FREE_P is false. Passing a value other than false
1472 for FREE_P is bad practice; this option only exists to support the
1473 G++ 3.2 ABI. */
1475 void
1476 finish_record_layout (rli, free_p)
1477 record_layout_info rli;
1478 int free_p;
1480 /* Compute the final size. */
1481 finalize_record_size (rli);
1483 /* Compute the TYPE_MODE for the record. */
1484 compute_record_mode (rli->t);
1486 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1487 finalize_type_size (rli->t);
1489 /* Lay out any static members. This is done now because their type
1490 may use the record's type. */
1491 while (rli->pending_statics)
1493 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1494 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1497 /* Clean up. */
1498 if (free_p)
1499 free (rli);
1502 /* Calculate the mode, size, and alignment for TYPE.
1503 For an array type, calculate the element separation as well.
1504 Record TYPE on the chain of permanent or temporary types
1505 so that dbxout will find out about it.
1507 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1508 layout_type does nothing on such a type.
1510 If the type is incomplete, its TYPE_SIZE remains zero. */
1512 void
1513 layout_type (type)
1514 tree type;
1516 if (type == 0)
1517 abort ();
1519 /* Do nothing if type has been laid out before. */
1520 if (TYPE_SIZE (type))
1521 return;
1523 switch (TREE_CODE (type))
1525 case LANG_TYPE:
1526 /* This kind of type is the responsibility
1527 of the language-specific code. */
1528 abort ();
1530 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1531 if (TYPE_PRECISION (type) == 0)
1532 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1534 /* ... fall through ... */
1536 case INTEGER_TYPE:
1537 case ENUMERAL_TYPE:
1538 case CHAR_TYPE:
1539 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1540 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1541 TREE_UNSIGNED (type) = 1;
1543 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1544 MODE_INT);
1545 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1546 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1547 break;
1549 case REAL_TYPE:
1550 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1551 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1552 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1553 break;
1555 case COMPLEX_TYPE:
1556 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1557 TYPE_MODE (type)
1558 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1559 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1560 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1562 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1563 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1564 break;
1566 case VECTOR_TYPE:
1568 tree subtype;
1570 subtype = TREE_TYPE (type);
1571 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1572 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1573 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1575 break;
1577 case VOID_TYPE:
1578 /* This is an incomplete type and so doesn't have a size. */
1579 TYPE_ALIGN (type) = 1;
1580 TYPE_USER_ALIGN (type) = 0;
1581 TYPE_MODE (type) = VOIDmode;
1582 break;
1584 case OFFSET_TYPE:
1585 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1586 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1587 /* A pointer might be MODE_PARTIAL_INT,
1588 but ptrdiff_t must be integral. */
1589 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1590 break;
1592 case FUNCTION_TYPE:
1593 case METHOD_TYPE:
1594 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1595 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1596 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1597 break;
1599 case POINTER_TYPE:
1600 case REFERENCE_TYPE:
1602 int nbits = ((TREE_CODE (type) == REFERENCE_TYPE
1603 && reference_types_internal)
1604 ? GET_MODE_BITSIZE (Pmode) : POINTER_SIZE);
1606 TYPE_MODE (type) = nbits == POINTER_SIZE ? ptr_mode : Pmode;
1607 TYPE_SIZE (type) = bitsize_int (nbits);
1608 TYPE_SIZE_UNIT (type) = size_int (nbits / BITS_PER_UNIT);
1609 TREE_UNSIGNED (type) = 1;
1610 TYPE_PRECISION (type) = nbits;
1612 break;
1614 case ARRAY_TYPE:
1616 tree index = TYPE_DOMAIN (type);
1617 tree element = TREE_TYPE (type);
1619 build_pointer_type (element);
1621 /* We need to know both bounds in order to compute the size. */
1622 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1623 && TYPE_SIZE (element))
1625 tree ub = TYPE_MAX_VALUE (index);
1626 tree lb = TYPE_MIN_VALUE (index);
1627 tree length;
1628 tree element_size;
1630 /* The initial subtraction should happen in the original type so
1631 that (possible) negative values are handled appropriately. */
1632 length = size_binop (PLUS_EXPR, size_one_node,
1633 convert (sizetype,
1634 fold (build (MINUS_EXPR,
1635 TREE_TYPE (lb),
1636 ub, lb))));
1638 /* Special handling for arrays of bits (for Chill). */
1639 element_size = TYPE_SIZE (element);
1640 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1641 && (integer_zerop (TYPE_MAX_VALUE (element))
1642 || integer_onep (TYPE_MAX_VALUE (element)))
1643 && host_integerp (TYPE_MIN_VALUE (element), 1))
1645 HOST_WIDE_INT maxvalue
1646 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1647 HOST_WIDE_INT minvalue
1648 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1650 if (maxvalue - minvalue == 1
1651 && (maxvalue == 1 || maxvalue == 0))
1652 element_size = integer_one_node;
1655 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1656 convert (bitsizetype, length));
1658 /* If we know the size of the element, calculate the total
1659 size directly, rather than do some division thing below.
1660 This optimization helps Fortran assumed-size arrays
1661 (where the size of the array is determined at runtime)
1662 substantially.
1663 Note that we can't do this in the case where the size of
1664 the elements is one bit since TYPE_SIZE_UNIT cannot be
1665 set correctly in that case. */
1666 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1667 TYPE_SIZE_UNIT (type)
1668 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1671 /* Now round the alignment and size,
1672 using machine-dependent criteria if any. */
1674 #ifdef ROUND_TYPE_ALIGN
1675 TYPE_ALIGN (type)
1676 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1677 #else
1678 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1679 #endif
1680 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1682 #ifdef ROUND_TYPE_SIZE
1683 if (TYPE_SIZE (type) != 0)
1685 tree tmp
1686 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1688 /* If the rounding changed the size of the type, remove any
1689 pre-calculated TYPE_SIZE_UNIT. */
1690 if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
1691 TYPE_SIZE_UNIT (type) = NULL;
1693 TYPE_SIZE (type) = tmp;
1695 #endif
1697 TYPE_MODE (type) = BLKmode;
1698 if (TYPE_SIZE (type) != 0
1699 #ifdef MEMBER_TYPE_FORCES_BLK
1700 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1701 #endif
1702 /* BLKmode elements force BLKmode aggregate;
1703 else extract/store fields may lose. */
1704 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1705 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1707 /* One-element arrays get the component type's mode. */
1708 if (simple_cst_equal (TYPE_SIZE (type),
1709 TYPE_SIZE (TREE_TYPE (type))))
1710 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1711 else
1712 TYPE_MODE (type)
1713 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1715 if (TYPE_MODE (type) != BLKmode
1716 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1717 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1718 && TYPE_MODE (type) != BLKmode)
1720 TYPE_NO_FORCE_BLK (type) = 1;
1721 TYPE_MODE (type) = BLKmode;
1724 break;
1727 case RECORD_TYPE:
1728 case UNION_TYPE:
1729 case QUAL_UNION_TYPE:
1731 tree field;
1732 record_layout_info rli;
1734 /* Initialize the layout information. */
1735 rli = start_record_layout (type);
1737 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1738 in the reverse order in building the COND_EXPR that denotes
1739 its size. We reverse them again later. */
1740 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1741 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1743 /* Place all the fields. */
1744 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1745 place_field (rli, field);
1747 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1748 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1750 if (lang_adjust_rli)
1751 (*lang_adjust_rli) (rli);
1753 /* Finish laying out the record. */
1754 finish_record_layout (rli, /*free_p=*/true);
1756 break;
1758 case SET_TYPE: /* Used by Chill and Pascal. */
1759 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1760 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1761 abort ();
1762 else
1764 #ifndef SET_WORD_SIZE
1765 #define SET_WORD_SIZE BITS_PER_WORD
1766 #endif
1767 unsigned int alignment
1768 = set_alignment ? set_alignment : SET_WORD_SIZE;
1769 int size_in_bits
1770 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1771 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
1772 int rounded_size
1773 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1775 if (rounded_size > (int) alignment)
1776 TYPE_MODE (type) = BLKmode;
1777 else
1778 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1780 TYPE_SIZE (type) = bitsize_int (rounded_size);
1781 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1782 TYPE_ALIGN (type) = alignment;
1783 TYPE_USER_ALIGN (type) = 0;
1784 TYPE_PRECISION (type) = size_in_bits;
1786 break;
1788 case FILE_TYPE:
1789 /* The size may vary in different languages, so the language front end
1790 should fill in the size. */
1791 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1792 TYPE_USER_ALIGN (type) = 0;
1793 TYPE_MODE (type) = BLKmode;
1794 break;
1796 default:
1797 abort ();
1800 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1801 records and unions, finish_record_layout already called this
1802 function. */
1803 if (TREE_CODE (type) != RECORD_TYPE
1804 && TREE_CODE (type) != UNION_TYPE
1805 && TREE_CODE (type) != QUAL_UNION_TYPE)
1806 finalize_type_size (type);
1808 /* If this type is created before sizetype has been permanently set,
1809 record it so set_sizetype can fix it up. */
1810 if (! sizetype_set)
1811 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1813 /* If an alias set has been set for this aggregate when it was incomplete,
1814 force it into alias set 0.
1815 This is too conservative, but we cannot call record_component_aliases
1816 here because some frontends still change the aggregates after
1817 layout_type. */
1818 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1819 TYPE_ALIAS_SET (type) = 0;
1822 /* Create and return a type for signed integers of PRECISION bits. */
1824 tree
1825 make_signed_type (precision)
1826 int precision;
1828 tree type = make_node (INTEGER_TYPE);
1830 TYPE_PRECISION (type) = precision;
1832 fixup_signed_type (type);
1833 return type;
1836 /* Create and return a type for unsigned integers of PRECISION bits. */
1838 tree
1839 make_unsigned_type (precision)
1840 int precision;
1842 tree type = make_node (INTEGER_TYPE);
1844 TYPE_PRECISION (type) = precision;
1846 fixup_unsigned_type (type);
1847 return type;
1850 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1851 value to enable integer types to be created. */
1853 void
1854 initialize_sizetypes ()
1856 tree t = make_node (INTEGER_TYPE);
1858 /* Set this so we do something reasonable for the build_int_2 calls
1859 below. */
1860 integer_type_node = t;
1862 TYPE_MODE (t) = SImode;
1863 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1864 TYPE_USER_ALIGN (t) = 0;
1865 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1866 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1867 TREE_UNSIGNED (t) = 1;
1868 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1869 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1870 TYPE_IS_SIZETYPE (t) = 1;
1872 /* 1000 avoids problems with possible overflow and is certainly
1873 larger than any size value we'd want to be storing. */
1874 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1876 /* These two must be different nodes because of the caching done in
1877 size_int_wide. */
1878 sizetype = t;
1879 bitsizetype = copy_node (t);
1880 integer_type_node = 0;
1883 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1884 Also update the type of any standard type's sizes made so far. */
1886 void
1887 set_sizetype (type)
1888 tree type;
1890 int oprecision = TYPE_PRECISION (type);
1891 /* The *bitsizetype types use a precision that avoids overflows when
1892 calculating signed sizes / offsets in bits. However, when
1893 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1894 precision. */
1895 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1896 2 * HOST_BITS_PER_WIDE_INT);
1897 unsigned int i;
1898 tree t;
1900 if (sizetype_set)
1901 abort ();
1903 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1904 sizetype = copy_node (type);
1905 TYPE_DOMAIN (sizetype) = type;
1906 TYPE_IS_SIZETYPE (sizetype) = 1;
1907 bitsizetype = make_node (INTEGER_TYPE);
1908 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1909 TYPE_PRECISION (bitsizetype) = precision;
1910 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1912 if (TREE_UNSIGNED (type))
1913 fixup_unsigned_type (bitsizetype);
1914 else
1915 fixup_signed_type (bitsizetype);
1917 layout_type (bitsizetype);
1919 if (TREE_UNSIGNED (type))
1921 usizetype = sizetype;
1922 ubitsizetype = bitsizetype;
1923 ssizetype = copy_node (make_signed_type (oprecision));
1924 sbitsizetype = copy_node (make_signed_type (precision));
1926 else
1928 ssizetype = sizetype;
1929 sbitsizetype = bitsizetype;
1930 usizetype = copy_node (make_unsigned_type (oprecision));
1931 ubitsizetype = copy_node (make_unsigned_type (precision));
1934 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1936 /* Show is a sizetype, is a main type, and has no pointers to it. */
1937 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1939 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1940 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1941 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1942 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1943 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1946 /* Go down each of the types we already made and set the proper type
1947 for the sizes in them. */
1948 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1950 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
1951 abort ();
1953 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
1954 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
1957 early_type_list = 0;
1958 sizetype_set = 1;
1961 /* Set the extreme values of TYPE based on its precision in bits,
1962 then lay it out. Used when make_signed_type won't do
1963 because the tree code is not INTEGER_TYPE.
1964 E.g. for Pascal, when the -fsigned-char option is given. */
1966 void
1967 fixup_signed_type (type)
1968 tree type;
1970 int precision = TYPE_PRECISION (type);
1972 /* We can not represent properly constants greater then
1973 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1974 as they are used by i386 vector extensions and friends. */
1975 if (precision > HOST_BITS_PER_WIDE_INT * 2)
1976 precision = HOST_BITS_PER_WIDE_INT * 2;
1978 TYPE_MIN_VALUE (type)
1979 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1980 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1981 (((HOST_WIDE_INT) (-1)
1982 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1983 ? precision - HOST_BITS_PER_WIDE_INT - 1
1984 : 0))));
1985 TYPE_MAX_VALUE (type)
1986 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1987 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
1988 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1989 ? (((HOST_WIDE_INT) 1
1990 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
1991 : 0));
1993 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
1994 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
1996 /* Lay out the type: set its alignment, size, etc. */
1997 layout_type (type);
2000 /* Set the extreme values of TYPE based on its precision in bits,
2001 then lay it out. This is used both in `make_unsigned_type'
2002 and for enumeral types. */
2004 void
2005 fixup_unsigned_type (type)
2006 tree type;
2008 int precision = TYPE_PRECISION (type);
2010 /* We can not represent properly constants greater then
2011 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2012 as they are used by i386 vector extensions and friends. */
2013 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2014 precision = HOST_BITS_PER_WIDE_INT * 2;
2016 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
2017 TYPE_MAX_VALUE (type)
2018 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
2019 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
2020 precision - HOST_BITS_PER_WIDE_INT > 0
2021 ? ((unsigned HOST_WIDE_INT) ~0
2022 >> (HOST_BITS_PER_WIDE_INT
2023 - (precision - HOST_BITS_PER_WIDE_INT)))
2024 : 0);
2025 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2026 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2028 /* Lay out the type: set its alignment, size, etc. */
2029 layout_type (type);
2032 /* Find the best machine mode to use when referencing a bit field of length
2033 BITSIZE bits starting at BITPOS.
2035 The underlying object is known to be aligned to a boundary of ALIGN bits.
2036 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2037 larger than LARGEST_MODE (usually SImode).
2039 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2040 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2041 mode meeting these conditions.
2043 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2044 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2045 all the conditions. */
2047 enum machine_mode
2048 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
2049 int bitsize, bitpos;
2050 unsigned int align;
2051 enum machine_mode largest_mode;
2052 int volatilep;
2054 enum machine_mode mode;
2055 unsigned int unit = 0;
2057 /* Find the narrowest integer mode that contains the bit field. */
2058 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2059 mode = GET_MODE_WIDER_MODE (mode))
2061 unit = GET_MODE_BITSIZE (mode);
2062 if ((bitpos % unit) + bitsize <= unit)
2063 break;
2066 if (mode == VOIDmode
2067 /* It is tempting to omit the following line
2068 if STRICT_ALIGNMENT is true.
2069 But that is incorrect, since if the bitfield uses part of 3 bytes
2070 and we use a 4-byte mode, we could get a spurious segv
2071 if the extra 4th byte is past the end of memory.
2072 (Though at least one Unix compiler ignores this problem:
2073 that on the Sequent 386 machine. */
2074 || MIN (unit, BIGGEST_ALIGNMENT) > align
2075 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2076 return VOIDmode;
2078 if (SLOW_BYTE_ACCESS && ! volatilep)
2080 enum machine_mode wide_mode = VOIDmode, tmode;
2082 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2083 tmode = GET_MODE_WIDER_MODE (tmode))
2085 unit = GET_MODE_BITSIZE (tmode);
2086 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2087 && unit <= BITS_PER_WORD
2088 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2089 && (largest_mode == VOIDmode
2090 || unit <= GET_MODE_BITSIZE (largest_mode)))
2091 wide_mode = tmode;
2094 if (wide_mode != VOIDmode)
2095 return wide_mode;
2098 return mode;
2101 #include "gt-stor-layout.h"