* gcj.texi (Compatibility): Add Limitations and Extensions section.
[official-gcc.git] / gcc / reload1.c
blobea703f162eaca88a9e638e0537f39677252e1b48
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "tree.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 #ifndef REGISTER_MOVE_COST
81 #define REGISTER_MOVE_COST(m, x, y) 2
82 #endif
84 #ifndef LOCAL_REGNO
85 #define LOCAL_REGNO(REGNO) 0
86 #endif
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static char *reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Element N is the constant value to which pseudo reg N is equivalent,
101 or zero if pseudo reg N is not equivalent to a constant.
102 find_reloads looks at this in order to replace pseudo reg N
103 with the constant it stands for. */
104 rtx *reg_equiv_constant;
106 /* Element N is a memory location to which pseudo reg N is equivalent,
107 prior to any register elimination (such as frame pointer to stack
108 pointer). Depending on whether or not it is a valid address, this value
109 is transferred to either reg_equiv_address or reg_equiv_mem. */
110 rtx *reg_equiv_memory_loc;
112 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
113 This is used when the address is not valid as a memory address
114 (because its displacement is too big for the machine.) */
115 rtx *reg_equiv_address;
117 /* Element N is the memory slot to which pseudo reg N is equivalent,
118 or zero if pseudo reg N is not equivalent to a memory slot. */
119 rtx *reg_equiv_mem;
121 /* Widest width in which each pseudo reg is referred to (via subreg). */
122 static unsigned int *reg_max_ref_width;
124 /* Element N is the list of insns that initialized reg N from its equivalent
125 constant or memory slot. */
126 static rtx *reg_equiv_init;
128 /* Vector to remember old contents of reg_renumber before spilling. */
129 static short *reg_old_renumber;
131 /* During reload_as_needed, element N contains the last pseudo regno reloaded
132 into hard register N. If that pseudo reg occupied more than one register,
133 reg_reloaded_contents points to that pseudo for each spill register in
134 use; all of these must remain set for an inheritance to occur. */
135 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
137 /* During reload_as_needed, element N contains the insn for which
138 hard register N was last used. Its contents are significant only
139 when reg_reloaded_valid is set for this register. */
140 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
142 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
143 static HARD_REG_SET reg_reloaded_valid;
144 /* Indicate if the register was dead at the end of the reload.
145 This is only valid if reg_reloaded_contents is set and valid. */
146 static HARD_REG_SET reg_reloaded_dead;
148 /* Number of spill-regs so far; number of valid elements of spill_regs. */
149 static int n_spills;
151 /* In parallel with spill_regs, contains REG rtx's for those regs.
152 Holds the last rtx used for any given reg, or 0 if it has never
153 been used for spilling yet. This rtx is reused, provided it has
154 the proper mode. */
155 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
157 /* In parallel with spill_regs, contains nonzero for a spill reg
158 that was stored after the last time it was used.
159 The precise value is the insn generated to do the store. */
160 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
162 /* This is the register that was stored with spill_reg_store. This is a
163 copy of reload_out / reload_out_reg when the value was stored; if
164 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
165 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
167 /* This table is the inverse mapping of spill_regs:
168 indexed by hard reg number,
169 it contains the position of that reg in spill_regs,
170 or -1 for something that is not in spill_regs.
172 ?!? This is no longer accurate. */
173 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
175 /* This reg set indicates registers that can't be used as spill registers for
176 the currently processed insn. These are the hard registers which are live
177 during the insn, but not allocated to pseudos, as well as fixed
178 registers. */
179 static HARD_REG_SET bad_spill_regs;
181 /* These are the hard registers that can't be used as spill register for any
182 insn. This includes registers used for user variables and registers that
183 we can't eliminate. A register that appears in this set also can't be used
184 to retry register allocation. */
185 static HARD_REG_SET bad_spill_regs_global;
187 /* Describes order of use of registers for reloading
188 of spilled pseudo-registers. `n_spills' is the number of
189 elements that are actually valid; new ones are added at the end.
191 Both spill_regs and spill_reg_order are used on two occasions:
192 once during find_reload_regs, where they keep track of the spill registers
193 for a single insn, but also during reload_as_needed where they show all
194 the registers ever used by reload. For the latter case, the information
195 is calculated during finish_spills. */
196 static short spill_regs[FIRST_PSEUDO_REGISTER];
198 /* This vector of reg sets indicates, for each pseudo, which hard registers
199 may not be used for retrying global allocation because the register was
200 formerly spilled from one of them. If we allowed reallocating a pseudo to
201 a register that it was already allocated to, reload might not
202 terminate. */
203 static HARD_REG_SET *pseudo_previous_regs;
205 /* This vector of reg sets indicates, for each pseudo, which hard
206 registers may not be used for retrying global allocation because they
207 are used as spill registers during one of the insns in which the
208 pseudo is live. */
209 static HARD_REG_SET *pseudo_forbidden_regs;
211 /* All hard regs that have been used as spill registers for any insn are
212 marked in this set. */
213 static HARD_REG_SET used_spill_regs;
215 /* Index of last register assigned as a spill register. We allocate in
216 a round-robin fashion. */
217 static int last_spill_reg;
219 /* Nonzero if indirect addressing is supported on the machine; this means
220 that spilling (REG n) does not require reloading it into a register in
221 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
222 value indicates the level of indirect addressing supported, e.g., two
223 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
224 a hard register. */
225 static char spill_indirect_levels;
227 /* Nonzero if indirect addressing is supported when the innermost MEM is
228 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
229 which these are valid is the same as spill_indirect_levels, above. */
230 char indirect_symref_ok;
232 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
233 char double_reg_address_ok;
235 /* Record the stack slot for each spilled hard register. */
236 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
238 /* Width allocated so far for that stack slot. */
239 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
241 /* Record which pseudos needed to be spilled. */
242 static regset_head spilled_pseudos;
244 /* Used for communication between order_regs_for_reload and count_pseudo.
245 Used to avoid counting one pseudo twice. */
246 static regset_head pseudos_counted;
248 /* First uid used by insns created by reload in this function.
249 Used in find_equiv_reg. */
250 int reload_first_uid;
252 /* Flag set by local-alloc or global-alloc if anything is live in
253 a call-clobbered reg across calls. */
254 int caller_save_needed;
256 /* Set to 1 while reload_as_needed is operating.
257 Required by some machines to handle any generated moves differently. */
258 int reload_in_progress = 0;
260 /* These arrays record the insn_code of insns that may be needed to
261 perform input and output reloads of special objects. They provide a
262 place to pass a scratch register. */
263 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
264 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
266 /* This obstack is used for allocation of rtl during register elimination.
267 The allocated storage can be freed once find_reloads has processed the
268 insn. */
269 struct obstack reload_obstack;
271 /* Points to the beginning of the reload_obstack. All insn_chain structures
272 are allocated first. */
273 char *reload_startobj;
275 /* The point after all insn_chain structures. Used to quickly deallocate
276 memory allocated in copy_reloads during calculate_needs_all_insns. */
277 char *reload_firstobj;
279 /* This points before all local rtl generated by register elimination.
280 Used to quickly free all memory after processing one insn. */
281 static char *reload_insn_firstobj;
283 /* List of insn_chain instructions, one for every insn that reload needs to
284 examine. */
285 struct insn_chain *reload_insn_chain;
287 #ifdef TREE_CODE
288 extern tree current_function_decl;
289 #else
290 extern union tree_node *current_function_decl;
291 #endif
293 /* List of all insns needing reloads. */
294 static struct insn_chain *insns_need_reload;
296 /* This structure is used to record information about register eliminations.
297 Each array entry describes one possible way of eliminating a register
298 in favor of another. If there is more than one way of eliminating a
299 particular register, the most preferred should be specified first. */
301 struct elim_table
303 int from; /* Register number to be eliminated. */
304 int to; /* Register number used as replacement. */
305 int initial_offset; /* Initial difference between values. */
306 int can_eliminate; /* Non-zero if this elimination can be done. */
307 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
308 insns made by reload. */
309 int offset; /* Current offset between the two regs. */
310 int previous_offset; /* Offset at end of previous insn. */
311 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
312 rtx from_rtx; /* REG rtx for the register to be eliminated.
313 We cannot simply compare the number since
314 we might then spuriously replace a hard
315 register corresponding to a pseudo
316 assigned to the reg to be eliminated. */
317 rtx to_rtx; /* REG rtx for the replacement. */
320 static struct elim_table *reg_eliminate = 0;
322 /* This is an intermediate structure to initialize the table. It has
323 exactly the members provided by ELIMINABLE_REGS. */
324 static const struct elim_table_1
326 const int from;
327 const int to;
328 } reg_eliminate_1[] =
330 /* If a set of eliminable registers was specified, define the table from it.
331 Otherwise, default to the normal case of the frame pointer being
332 replaced by the stack pointer. */
334 #ifdef ELIMINABLE_REGS
335 ELIMINABLE_REGS;
336 #else
337 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
338 #endif
340 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
342 /* Record the number of pending eliminations that have an offset not equal
343 to their initial offset. If nonzero, we use a new copy of each
344 replacement result in any insns encountered. */
345 int num_not_at_initial_offset;
347 /* Count the number of registers that we may be able to eliminate. */
348 static int num_eliminable;
349 /* And the number of registers that are equivalent to a constant that
350 can be eliminated to frame_pointer / arg_pointer + constant. */
351 static int num_eliminable_invariants;
353 /* For each label, we record the offset of each elimination. If we reach
354 a label by more than one path and an offset differs, we cannot do the
355 elimination. This information is indexed by the number of the label.
356 The first table is an array of flags that records whether we have yet
357 encountered a label and the second table is an array of arrays, one
358 entry in the latter array for each elimination. */
360 static char *offsets_known_at;
361 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
363 /* Number of labels in the current function. */
365 static int num_labels;
367 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
368 enum machine_mode,
369 rtx));
370 static void maybe_fix_stack_asms PARAMS ((void));
371 static void copy_reloads PARAMS ((struct insn_chain *));
372 static void calculate_needs_all_insns PARAMS ((int));
373 static int find_reg PARAMS ((struct insn_chain *, int));
374 static void find_reload_regs PARAMS ((struct insn_chain *));
375 static void select_reload_regs PARAMS ((void));
376 static void delete_caller_save_insns PARAMS ((void));
378 static void spill_failure PARAMS ((rtx, enum reg_class));
379 static void count_spilled_pseudo PARAMS ((int, int, int));
380 static void delete_dead_insn PARAMS ((rtx));
381 static void alter_reg PARAMS ((int, int));
382 static void set_label_offsets PARAMS ((rtx, rtx, int));
383 static void check_eliminable_occurrences PARAMS ((rtx));
384 static void elimination_effects PARAMS ((rtx, enum machine_mode));
385 static int eliminate_regs_in_insn PARAMS ((rtx, int));
386 static void update_eliminable_offsets PARAMS ((void));
387 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
388 static void set_initial_elim_offsets PARAMS ((void));
389 static void verify_initial_elim_offsets PARAMS ((void));
390 static void set_initial_label_offsets PARAMS ((void));
391 static void set_offsets_for_label PARAMS ((rtx));
392 static void init_elim_table PARAMS ((void));
393 static void update_eliminables PARAMS ((HARD_REG_SET *));
394 static void spill_hard_reg PARAMS ((unsigned int, int));
395 static int finish_spills PARAMS ((int));
396 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
397 static void scan_paradoxical_subregs PARAMS ((rtx));
398 static void count_pseudo PARAMS ((int));
399 static void order_regs_for_reload PARAMS ((struct insn_chain *));
400 static void reload_as_needed PARAMS ((int));
401 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
402 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
403 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
404 enum reload_type,
405 enum machine_mode));
406 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
407 enum reload_type,
408 enum machine_mode));
409 static int reload_reg_free_p PARAMS ((unsigned int, int,
410 enum reload_type));
411 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
412 enum reload_type,
413 rtx, rtx, int, int));
414 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
415 enum reload_type, rtx, rtx,
416 int, int));
417 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
418 enum reload_type));
419 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
420 int));
421 static int conflicts_with_override PARAMS ((rtx));
422 static void failed_reload PARAMS ((rtx, int));
423 static int set_reload_reg PARAMS ((int, int));
424 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
425 static void choose_reload_regs PARAMS ((struct insn_chain *));
426 static void merge_assigned_reloads PARAMS ((rtx));
427 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
428 struct reload *, rtx, int));
429 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, int));
431 static void do_input_reload PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_output_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void emit_reload_insns PARAMS ((struct insn_chain *));
436 static void delete_output_reload PARAMS ((rtx, int, int));
437 static void delete_address_reloads PARAMS ((rtx, rtx));
438 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
439 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
440 static void reload_cse_regs_1 PARAMS ((rtx));
441 static int reload_cse_noop_set_p PARAMS ((rtx));
442 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
443 static int reload_cse_simplify_operands PARAMS ((rtx, rtx));
444 static void reload_combine PARAMS ((void));
445 static void reload_combine_note_use PARAMS ((rtx *, rtx));
446 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
447 static void reload_cse_move2add PARAMS ((rtx));
448 static void move2add_note_store PARAMS ((rtx, rtx, void *));
449 #ifdef AUTO_INC_DEC
450 static void add_auto_inc_notes PARAMS ((rtx, rtx));
451 #endif
452 static void copy_eh_notes PARAMS ((rtx, rtx));
453 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
454 HOST_WIDE_INT));
455 static void failed_reload PARAMS ((rtx, int));
456 static int set_reload_reg PARAMS ((int, int));
457 static void reload_cse_simplify PARAMS ((rtx, rtx));
458 void fixup_abnormal_edges PARAMS ((void));
459 extern void dump_needs PARAMS ((struct insn_chain *));
461 /* Initialize the reload pass once per compilation. */
463 void
464 init_reload ()
466 int i;
468 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
469 Set spill_indirect_levels to the number of levels such addressing is
470 permitted, zero if it is not permitted at all. */
472 rtx tem
473 = gen_rtx_MEM (Pmode,
474 gen_rtx_PLUS (Pmode,
475 gen_rtx_REG (Pmode,
476 LAST_VIRTUAL_REGISTER + 1),
477 GEN_INT (4)));
478 spill_indirect_levels = 0;
480 while (memory_address_p (QImode, tem))
482 spill_indirect_levels++;
483 tem = gen_rtx_MEM (Pmode, tem);
486 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
488 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
489 indirect_symref_ok = memory_address_p (QImode, tem);
491 /* See if reg+reg is a valid (and offsettable) address. */
493 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
495 tem = gen_rtx_PLUS (Pmode,
496 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
497 gen_rtx_REG (Pmode, i));
499 /* This way, we make sure that reg+reg is an offsettable address. */
500 tem = plus_constant (tem, 4);
502 if (memory_address_p (QImode, tem))
504 double_reg_address_ok = 1;
505 break;
509 /* Initialize obstack for our rtl allocation. */
510 gcc_obstack_init (&reload_obstack);
511 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
513 INIT_REG_SET (&spilled_pseudos);
514 INIT_REG_SET (&pseudos_counted);
517 /* List of insn chains that are currently unused. */
518 static struct insn_chain *unused_insn_chains = 0;
520 /* Allocate an empty insn_chain structure. */
521 struct insn_chain *
522 new_insn_chain ()
524 struct insn_chain *c;
526 if (unused_insn_chains == 0)
528 c = (struct insn_chain *)
529 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
530 INIT_REG_SET (&c->live_throughout);
531 INIT_REG_SET (&c->dead_or_set);
533 else
535 c = unused_insn_chains;
536 unused_insn_chains = c->next;
538 c->is_caller_save_insn = 0;
539 c->need_operand_change = 0;
540 c->need_reload = 0;
541 c->need_elim = 0;
542 return c;
545 /* Small utility function to set all regs in hard reg set TO which are
546 allocated to pseudos in regset FROM. */
548 void
549 compute_use_by_pseudos (to, from)
550 HARD_REG_SET *to;
551 regset from;
553 unsigned int regno;
555 EXECUTE_IF_SET_IN_REG_SET
556 (from, FIRST_PSEUDO_REGISTER, regno,
558 int r = reg_renumber[regno];
559 int nregs;
561 if (r < 0)
563 /* reload_combine uses the information from
564 BASIC_BLOCK->global_live_at_start, which might still
565 contain registers that have not actually been allocated
566 since they have an equivalence. */
567 if (! reload_completed)
568 abort ();
570 else
572 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
573 while (nregs-- > 0)
574 SET_HARD_REG_BIT (*to, r + nregs);
579 /* Replace all pseudos found in LOC with their corresponding
580 equivalences. */
582 static void
583 replace_pseudos_in_call_usage (loc, mem_mode, usage)
584 rtx *loc;
585 enum machine_mode mem_mode;
586 rtx usage;
588 rtx x = *loc;
589 enum rtx_code code;
590 const char *fmt;
591 int i, j;
593 if (! x)
594 return;
596 code = GET_CODE (x);
597 if (code == REG)
599 unsigned int regno = REGNO (x);
601 if (regno < FIRST_PSEUDO_REGISTER)
602 return;
604 x = eliminate_regs (x, mem_mode, usage);
605 if (x != *loc)
607 *loc = x;
608 replace_pseudos_in_call_usage (loc, mem_mode, usage);
609 return;
612 if (reg_equiv_constant[regno])
613 *loc = reg_equiv_constant[regno];
614 else if (reg_equiv_mem[regno])
615 *loc = reg_equiv_mem[regno];
616 else if (reg_equiv_address[regno])
617 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
618 else if (GET_CODE (regno_reg_rtx[regno]) != REG
619 || REGNO (regno_reg_rtx[regno]) != regno)
620 *loc = regno_reg_rtx[regno];
621 else
622 abort ();
624 return;
626 else if (code == MEM)
628 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
629 return;
632 /* Process each of our operands recursively. */
633 fmt = GET_RTX_FORMAT (code);
634 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
635 if (*fmt == 'e')
636 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
637 else if (*fmt == 'E')
638 for (j = 0; j < XVECLEN (x, i); j++)
639 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
643 /* Global variables used by reload and its subroutines. */
645 /* Set during calculate_needs if an insn needs register elimination. */
646 static int something_needs_elimination;
647 /* Set during calculate_needs if an insn needs an operand changed. */
648 int something_needs_operands_changed;
650 /* Nonzero means we couldn't get enough spill regs. */
651 static int failure;
653 /* Main entry point for the reload pass.
655 FIRST is the first insn of the function being compiled.
657 GLOBAL nonzero means we were called from global_alloc
658 and should attempt to reallocate any pseudoregs that we
659 displace from hard regs we will use for reloads.
660 If GLOBAL is zero, we do not have enough information to do that,
661 so any pseudo reg that is spilled must go to the stack.
663 Return value is nonzero if reload failed
664 and we must not do any more for this function. */
667 reload (first, global)
668 rtx first;
669 int global;
671 int i;
672 rtx insn;
673 struct elim_table *ep;
674 basic_block bb;
676 /* The two pointers used to track the true location of the memory used
677 for label offsets. */
678 char *real_known_ptr = NULL;
679 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
681 /* Make sure even insns with volatile mem refs are recognizable. */
682 init_recog ();
684 failure = 0;
686 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
688 /* Make sure that the last insn in the chain
689 is not something that needs reloading. */
690 emit_note (NULL, NOTE_INSN_DELETED);
692 /* Enable find_equiv_reg to distinguish insns made by reload. */
693 reload_first_uid = get_max_uid ();
695 #ifdef SECONDARY_MEMORY_NEEDED
696 /* Initialize the secondary memory table. */
697 clear_secondary_mem ();
698 #endif
700 /* We don't have a stack slot for any spill reg yet. */
701 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
702 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
704 /* Initialize the save area information for caller-save, in case some
705 are needed. */
706 init_save_areas ();
708 /* Compute which hard registers are now in use
709 as homes for pseudo registers.
710 This is done here rather than (eg) in global_alloc
711 because this point is reached even if not optimizing. */
712 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
713 mark_home_live (i);
715 /* A function that receives a nonlocal goto must save all call-saved
716 registers. */
717 if (current_function_has_nonlocal_label)
718 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
719 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
720 regs_ever_live[i] = 1;
722 /* Find all the pseudo registers that didn't get hard regs
723 but do have known equivalent constants or memory slots.
724 These include parameters (known equivalent to parameter slots)
725 and cse'd or loop-moved constant memory addresses.
727 Record constant equivalents in reg_equiv_constant
728 so they will be substituted by find_reloads.
729 Record memory equivalents in reg_mem_equiv so they can
730 be substituted eventually by altering the REG-rtx's. */
732 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
733 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
734 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
735 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
737 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
738 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
739 pseudo_forbidden_regs
740 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
741 pseudo_previous_regs
742 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
744 CLEAR_HARD_REG_SET (bad_spill_regs_global);
746 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
747 Also find all paradoxical subregs and find largest such for each pseudo.
748 On machines with small register classes, record hard registers that
749 are used for user variables. These can never be used for spills.
750 Also look for a "constant" REG_SETJMP. This means that all
751 caller-saved registers must be marked live. */
753 num_eliminable_invariants = 0;
754 for (insn = first; insn; insn = NEXT_INSN (insn))
756 rtx set = single_set (insn);
758 /* We may introduce USEs that we want to remove at the end, so
759 we'll mark them with QImode. Make sure there are no
760 previously-marked insns left by say regmove. */
761 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
762 && GET_MODE (insn) != VOIDmode)
763 PUT_MODE (insn, VOIDmode);
765 if (GET_CODE (insn) == CALL_INSN
766 && find_reg_note (insn, REG_SETJMP, NULL))
767 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
768 if (! call_used_regs[i])
769 regs_ever_live[i] = 1;
771 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
773 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
774 if (note
775 #ifdef LEGITIMATE_PIC_OPERAND_P
776 && (! function_invariant_p (XEXP (note, 0))
777 || ! flag_pic
778 /* A function invariant is often CONSTANT_P but may
779 include a register. We promise to only pass
780 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
781 || (CONSTANT_P (XEXP (note, 0))
782 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
783 #endif
786 rtx x = XEXP (note, 0);
787 i = REGNO (SET_DEST (set));
788 if (i > LAST_VIRTUAL_REGISTER)
790 /* It can happen that a REG_EQUIV note contains a MEM
791 that is not a legitimate memory operand. As later
792 stages of reload assume that all addresses found
793 in the reg_equiv_* arrays were originally legitimate,
794 we ignore such REG_EQUIV notes. */
795 if (memory_operand (x, VOIDmode))
797 /* Always unshare the equivalence, so we can
798 substitute into this insn without touching the
799 equivalence. */
800 reg_equiv_memory_loc[i] = copy_rtx (x);
802 else if (function_invariant_p (x))
804 if (GET_CODE (x) == PLUS)
806 /* This is PLUS of frame pointer and a constant,
807 and might be shared. Unshare it. */
808 reg_equiv_constant[i] = copy_rtx (x);
809 num_eliminable_invariants++;
811 else if (x == frame_pointer_rtx
812 || x == arg_pointer_rtx)
814 reg_equiv_constant[i] = x;
815 num_eliminable_invariants++;
817 else if (LEGITIMATE_CONSTANT_P (x))
818 reg_equiv_constant[i] = x;
819 else
820 reg_equiv_memory_loc[i]
821 = force_const_mem (GET_MODE (SET_DEST (set)), x);
823 else
824 continue;
826 /* If this register is being made equivalent to a MEM
827 and the MEM is not SET_SRC, the equivalencing insn
828 is one with the MEM as a SET_DEST and it occurs later.
829 So don't mark this insn now. */
830 if (GET_CODE (x) != MEM
831 || rtx_equal_p (SET_SRC (set), x))
832 reg_equiv_init[i]
833 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
838 /* If this insn is setting a MEM from a register equivalent to it,
839 this is the equivalencing insn. */
840 else if (set && GET_CODE (SET_DEST (set)) == MEM
841 && GET_CODE (SET_SRC (set)) == REG
842 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
843 && rtx_equal_p (SET_DEST (set),
844 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
845 reg_equiv_init[REGNO (SET_SRC (set))]
846 = gen_rtx_INSN_LIST (VOIDmode, insn,
847 reg_equiv_init[REGNO (SET_SRC (set))]);
849 if (INSN_P (insn))
850 scan_paradoxical_subregs (PATTERN (insn));
853 init_elim_table ();
855 num_labels = max_label_num () - get_first_label_num ();
857 /* Allocate the tables used to store offset information at labels. */
858 /* We used to use alloca here, but the size of what it would try to
859 allocate would occasionally cause it to exceed the stack limit and
860 cause a core dump. */
861 real_known_ptr = xmalloc (num_labels);
862 real_at_ptr
863 = (int (*)[NUM_ELIMINABLE_REGS])
864 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
866 offsets_known_at = real_known_ptr - get_first_label_num ();
867 offsets_at
868 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
870 /* Alter each pseudo-reg rtx to contain its hard reg number.
871 Assign stack slots to the pseudos that lack hard regs or equivalents.
872 Do not touch virtual registers. */
874 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
875 alter_reg (i, -1);
877 /* If we have some registers we think can be eliminated, scan all insns to
878 see if there is an insn that sets one of these registers to something
879 other than itself plus a constant. If so, the register cannot be
880 eliminated. Doing this scan here eliminates an extra pass through the
881 main reload loop in the most common case where register elimination
882 cannot be done. */
883 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
884 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
885 || GET_CODE (insn) == CALL_INSN)
886 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
888 maybe_fix_stack_asms ();
890 insns_need_reload = 0;
891 something_needs_elimination = 0;
893 /* Initialize to -1, which means take the first spill register. */
894 last_spill_reg = -1;
896 /* Spill any hard regs that we know we can't eliminate. */
897 CLEAR_HARD_REG_SET (used_spill_regs);
898 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
899 if (! ep->can_eliminate)
900 spill_hard_reg (ep->from, 1);
902 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
903 if (frame_pointer_needed)
904 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
905 #endif
906 finish_spills (global);
908 /* From now on, we may need to generate moves differently. We may also
909 allow modifications of insns which cause them to not be recognized.
910 Any such modifications will be cleaned up during reload itself. */
911 reload_in_progress = 1;
913 /* This loop scans the entire function each go-round
914 and repeats until one repetition spills no additional hard regs. */
915 for (;;)
917 int something_changed;
918 int did_spill;
920 HOST_WIDE_INT starting_frame_size;
922 /* Round size of stack frame to stack_alignment_needed. This must be done
923 here because the stack size may be a part of the offset computation
924 for register elimination, and there might have been new stack slots
925 created in the last iteration of this loop. */
926 if (cfun->stack_alignment_needed)
927 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
929 starting_frame_size = get_frame_size ();
931 set_initial_elim_offsets ();
932 set_initial_label_offsets ();
934 /* For each pseudo register that has an equivalent location defined,
935 try to eliminate any eliminable registers (such as the frame pointer)
936 assuming initial offsets for the replacement register, which
937 is the normal case.
939 If the resulting location is directly addressable, substitute
940 the MEM we just got directly for the old REG.
942 If it is not addressable but is a constant or the sum of a hard reg
943 and constant, it is probably not addressable because the constant is
944 out of range, in that case record the address; we will generate
945 hairy code to compute the address in a register each time it is
946 needed. Similarly if it is a hard register, but one that is not
947 valid as an address register.
949 If the location is not addressable, but does not have one of the
950 above forms, assign a stack slot. We have to do this to avoid the
951 potential of producing lots of reloads if, e.g., a location involves
952 a pseudo that didn't get a hard register and has an equivalent memory
953 location that also involves a pseudo that didn't get a hard register.
955 Perhaps at some point we will improve reload_when_needed handling
956 so this problem goes away. But that's very hairy. */
958 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
959 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
961 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
963 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
964 XEXP (x, 0)))
965 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
966 else if (CONSTANT_P (XEXP (x, 0))
967 || (GET_CODE (XEXP (x, 0)) == REG
968 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
969 || (GET_CODE (XEXP (x, 0)) == PLUS
970 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
971 && (REGNO (XEXP (XEXP (x, 0), 0))
972 < FIRST_PSEUDO_REGISTER)
973 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
974 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
975 else
977 /* Make a new stack slot. Then indicate that something
978 changed so we go back and recompute offsets for
979 eliminable registers because the allocation of memory
980 below might change some offset. reg_equiv_{mem,address}
981 will be set up for this pseudo on the next pass around
982 the loop. */
983 reg_equiv_memory_loc[i] = 0;
984 reg_equiv_init[i] = 0;
985 alter_reg (i, -1);
989 if (caller_save_needed)
990 setup_save_areas ();
992 /* If we allocated another stack slot, redo elimination bookkeeping. */
993 if (starting_frame_size != get_frame_size ())
994 continue;
996 if (caller_save_needed)
998 save_call_clobbered_regs ();
999 /* That might have allocated new insn_chain structures. */
1000 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1003 calculate_needs_all_insns (global);
1005 CLEAR_REG_SET (&spilled_pseudos);
1006 did_spill = 0;
1008 something_changed = 0;
1010 /* If we allocated any new memory locations, make another pass
1011 since it might have changed elimination offsets. */
1012 if (starting_frame_size != get_frame_size ())
1013 something_changed = 1;
1016 HARD_REG_SET to_spill;
1017 CLEAR_HARD_REG_SET (to_spill);
1018 update_eliminables (&to_spill);
1019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1020 if (TEST_HARD_REG_BIT (to_spill, i))
1022 spill_hard_reg (i, 1);
1023 did_spill = 1;
1025 /* Regardless of the state of spills, if we previously had
1026 a register that we thought we could eliminate, but no can
1027 not eliminate, we must run another pass.
1029 Consider pseudos which have an entry in reg_equiv_* which
1030 reference an eliminable register. We must make another pass
1031 to update reg_equiv_* so that we do not substitute in the
1032 old value from when we thought the elimination could be
1033 performed. */
1034 something_changed = 1;
1038 select_reload_regs ();
1039 if (failure)
1040 goto failed;
1042 if (insns_need_reload != 0 || did_spill)
1043 something_changed |= finish_spills (global);
1045 if (! something_changed)
1046 break;
1048 if (caller_save_needed)
1049 delete_caller_save_insns ();
1051 obstack_free (&reload_obstack, reload_firstobj);
1054 /* If global-alloc was run, notify it of any register eliminations we have
1055 done. */
1056 if (global)
1057 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1058 if (ep->can_eliminate)
1059 mark_elimination (ep->from, ep->to);
1061 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1062 If that insn didn't set the register (i.e., it copied the register to
1063 memory), just delete that insn instead of the equivalencing insn plus
1064 anything now dead. If we call delete_dead_insn on that insn, we may
1065 delete the insn that actually sets the register if the register dies
1066 there and that is incorrect. */
1068 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1070 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1072 rtx list;
1073 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1075 rtx equiv_insn = XEXP (list, 0);
1077 /* If we already deleted the insn or if it may trap, we can't
1078 delete it. The latter case shouldn't happen, but can
1079 if an insn has a variable address, gets a REG_EH_REGION
1080 note added to it, and then gets converted into an load
1081 from a constant address. */
1082 if (GET_CODE (equiv_insn) == NOTE
1083 || can_throw_internal (equiv_insn))
1085 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1086 delete_dead_insn (equiv_insn);
1087 else
1089 PUT_CODE (equiv_insn, NOTE);
1090 NOTE_SOURCE_FILE (equiv_insn) = 0;
1091 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1097 /* Use the reload registers where necessary
1098 by generating move instructions to move the must-be-register
1099 values into or out of the reload registers. */
1101 if (insns_need_reload != 0 || something_needs_elimination
1102 || something_needs_operands_changed)
1104 HOST_WIDE_INT old_frame_size = get_frame_size ();
1106 reload_as_needed (global);
1108 if (old_frame_size != get_frame_size ())
1109 abort ();
1111 if (num_eliminable)
1112 verify_initial_elim_offsets ();
1115 /* If we were able to eliminate the frame pointer, show that it is no
1116 longer live at the start of any basic block. If it ls live by
1117 virtue of being in a pseudo, that pseudo will be marked live
1118 and hence the frame pointer will be known to be live via that
1119 pseudo. */
1121 if (! frame_pointer_needed)
1122 FOR_EACH_BB (bb)
1123 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1124 HARD_FRAME_POINTER_REGNUM);
1126 /* Come here (with failure set nonzero) if we can't get enough spill regs
1127 and we decide not to abort about it. */
1128 failed:
1130 CLEAR_REG_SET (&spilled_pseudos);
1131 reload_in_progress = 0;
1133 /* Now eliminate all pseudo regs by modifying them into
1134 their equivalent memory references.
1135 The REG-rtx's for the pseudos are modified in place,
1136 so all insns that used to refer to them now refer to memory.
1138 For a reg that has a reg_equiv_address, all those insns
1139 were changed by reloading so that no insns refer to it any longer;
1140 but the DECL_RTL of a variable decl may refer to it,
1141 and if so this causes the debugging info to mention the variable. */
1143 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1145 rtx addr = 0;
1147 if (reg_equiv_mem[i])
1148 addr = XEXP (reg_equiv_mem[i], 0);
1150 if (reg_equiv_address[i])
1151 addr = reg_equiv_address[i];
1153 if (addr)
1155 if (reg_renumber[i] < 0)
1157 rtx reg = regno_reg_rtx[i];
1159 REG_USERVAR_P (reg) = 0;
1160 PUT_CODE (reg, MEM);
1161 XEXP (reg, 0) = addr;
1162 if (reg_equiv_memory_loc[i])
1163 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1164 else
1166 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1167 = MEM_SCALAR_P (reg) = 0;
1168 MEM_ATTRS (reg) = 0;
1171 else if (reg_equiv_mem[i])
1172 XEXP (reg_equiv_mem[i], 0) = addr;
1176 /* We must set reload_completed now since the cleanup_subreg_operands call
1177 below will re-recognize each insn and reload may have generated insns
1178 which are only valid during and after reload. */
1179 reload_completed = 1;
1181 /* Make a pass over all the insns and delete all USEs which we inserted
1182 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1183 notes. Delete all CLOBBER insns, except those that refer to the return
1184 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1185 from misarranging variable-array code, and simplify (subreg (reg))
1186 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1187 are no longer useful or accurate. Strip and regenerate REG_INC notes
1188 that may have been moved around. */
1190 for (insn = first; insn; insn = NEXT_INSN (insn))
1191 if (INSN_P (insn))
1193 rtx *pnote;
1195 if (GET_CODE (insn) == CALL_INSN)
1196 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1197 VOIDmode,
1198 CALL_INSN_FUNCTION_USAGE (insn));
1200 if ((GET_CODE (PATTERN (insn)) == USE
1201 /* We mark with QImode USEs introduced by reload itself. */
1202 && (GET_MODE (insn) == QImode
1203 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1204 || (GET_CODE (PATTERN (insn)) == CLOBBER
1205 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1206 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1207 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1208 && XEXP (XEXP (PATTERN (insn), 0), 0)
1209 != stack_pointer_rtx))
1210 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1211 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1213 delete_insn (insn);
1214 continue;
1217 pnote = &REG_NOTES (insn);
1218 while (*pnote != 0)
1220 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1221 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1222 || REG_NOTE_KIND (*pnote) == REG_INC
1223 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1224 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1225 *pnote = XEXP (*pnote, 1);
1226 else
1227 pnote = &XEXP (*pnote, 1);
1230 #ifdef AUTO_INC_DEC
1231 add_auto_inc_notes (insn, PATTERN (insn));
1232 #endif
1234 /* And simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1238 /* If we are doing stack checking, give a warning if this function's
1239 frame size is larger than we expect. */
1240 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1242 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1243 static int verbose_warned = 0;
1245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1246 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1247 size += UNITS_PER_WORD;
1249 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1251 warning ("frame size too large for reliable stack checking");
1252 if (! verbose_warned)
1254 warning ("try reducing the number of local variables");
1255 verbose_warned = 1;
1260 /* Indicate that we no longer have known memory locations or constants. */
1261 if (reg_equiv_constant)
1262 free (reg_equiv_constant);
1263 reg_equiv_constant = 0;
1264 if (reg_equiv_memory_loc)
1265 free (reg_equiv_memory_loc);
1266 reg_equiv_memory_loc = 0;
1268 if (real_known_ptr)
1269 free (real_known_ptr);
1270 if (real_at_ptr)
1271 free (real_at_ptr);
1273 free (reg_equiv_mem);
1274 free (reg_equiv_init);
1275 free (reg_equiv_address);
1276 free (reg_max_ref_width);
1277 free (reg_old_renumber);
1278 free (pseudo_previous_regs);
1279 free (pseudo_forbidden_regs);
1281 CLEAR_HARD_REG_SET (used_spill_regs);
1282 for (i = 0; i < n_spills; i++)
1283 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1285 /* Free all the insn_chain structures at once. */
1286 obstack_free (&reload_obstack, reload_startobj);
1287 unused_insn_chains = 0;
1288 fixup_abnormal_edges ();
1290 /* Replacing pseudos with their memory equivalents might have
1291 created shared rtx. Subsequent passes would get confused
1292 by this, so unshare everything here. */
1293 unshare_all_rtl_again (first);
1295 return failure;
1298 /* Yet another special case. Unfortunately, reg-stack forces people to
1299 write incorrect clobbers in asm statements. These clobbers must not
1300 cause the register to appear in bad_spill_regs, otherwise we'll call
1301 fatal_insn later. We clear the corresponding regnos in the live
1302 register sets to avoid this.
1303 The whole thing is rather sick, I'm afraid. */
1305 static void
1306 maybe_fix_stack_asms ()
1308 #ifdef STACK_REGS
1309 const char *constraints[MAX_RECOG_OPERANDS];
1310 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1311 struct insn_chain *chain;
1313 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1315 int i, noperands;
1316 HARD_REG_SET clobbered, allowed;
1317 rtx pat;
1319 if (! INSN_P (chain->insn)
1320 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1321 continue;
1322 pat = PATTERN (chain->insn);
1323 if (GET_CODE (pat) != PARALLEL)
1324 continue;
1326 CLEAR_HARD_REG_SET (clobbered);
1327 CLEAR_HARD_REG_SET (allowed);
1329 /* First, make a mask of all stack regs that are clobbered. */
1330 for (i = 0; i < XVECLEN (pat, 0); i++)
1332 rtx t = XVECEXP (pat, 0, i);
1333 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1334 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1337 /* Get the operand values and constraints out of the insn. */
1338 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1339 constraints, operand_mode);
1341 /* For every operand, see what registers are allowed. */
1342 for (i = 0; i < noperands; i++)
1344 const char *p = constraints[i];
1345 /* For every alternative, we compute the class of registers allowed
1346 for reloading in CLS, and merge its contents into the reg set
1347 ALLOWED. */
1348 int cls = (int) NO_REGS;
1350 for (;;)
1352 char c = *p++;
1354 if (c == '\0' || c == ',' || c == '#')
1356 /* End of one alternative - mark the regs in the current
1357 class, and reset the class. */
1358 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1359 cls = NO_REGS;
1360 if (c == '#')
1361 do {
1362 c = *p++;
1363 } while (c != '\0' && c != ',');
1364 if (c == '\0')
1365 break;
1366 continue;
1369 switch (c)
1371 case '=': case '+': case '*': case '%': case '?': case '!':
1372 case '0': case '1': case '2': case '3': case '4': case 'm':
1373 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1374 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1375 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1376 case 'P':
1377 break;
1379 case 'p':
1380 cls = (int) reg_class_subunion[cls]
1381 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1382 break;
1384 case 'g':
1385 case 'r':
1386 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1387 break;
1389 default:
1390 if (EXTRA_ADDRESS_CONSTRAINT (c))
1391 cls = (int) reg_class_subunion[cls]
1392 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1393 else
1394 cls = (int) reg_class_subunion[cls]
1395 [(int) REG_CLASS_FROM_LETTER (c)];
1399 /* Those of the registers which are clobbered, but allowed by the
1400 constraints, must be usable as reload registers. So clear them
1401 out of the life information. */
1402 AND_HARD_REG_SET (allowed, clobbered);
1403 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1404 if (TEST_HARD_REG_BIT (allowed, i))
1406 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1407 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1411 #endif
1414 /* Copy the global variables n_reloads and rld into the corresponding elts
1415 of CHAIN. */
1416 static void
1417 copy_reloads (chain)
1418 struct insn_chain *chain;
1420 chain->n_reloads = n_reloads;
1421 chain->rld
1422 = (struct reload *) obstack_alloc (&reload_obstack,
1423 n_reloads * sizeof (struct reload));
1424 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1425 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1428 /* Walk the chain of insns, and determine for each whether it needs reloads
1429 and/or eliminations. Build the corresponding insns_need_reload list, and
1430 set something_needs_elimination as appropriate. */
1431 static void
1432 calculate_needs_all_insns (global)
1433 int global;
1435 struct insn_chain **pprev_reload = &insns_need_reload;
1436 struct insn_chain *chain, *next = 0;
1438 something_needs_elimination = 0;
1440 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1441 for (chain = reload_insn_chain; chain != 0; chain = next)
1443 rtx insn = chain->insn;
1445 next = chain->next;
1447 /* Clear out the shortcuts. */
1448 chain->n_reloads = 0;
1449 chain->need_elim = 0;
1450 chain->need_reload = 0;
1451 chain->need_operand_change = 0;
1453 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1454 include REG_LABEL), we need to see what effects this has on the
1455 known offsets at labels. */
1457 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1458 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1459 set_label_offsets (insn, insn, 0);
1461 if (INSN_P (insn))
1463 rtx old_body = PATTERN (insn);
1464 int old_code = INSN_CODE (insn);
1465 rtx old_notes = REG_NOTES (insn);
1466 int did_elimination = 0;
1467 int operands_changed = 0;
1468 rtx set = single_set (insn);
1470 /* Skip insns that only set an equivalence. */
1471 if (set && GET_CODE (SET_DEST (set)) == REG
1472 && reg_renumber[REGNO (SET_DEST (set))] < 0
1473 && reg_equiv_constant[REGNO (SET_DEST (set))])
1474 continue;
1476 /* If needed, eliminate any eliminable registers. */
1477 if (num_eliminable || num_eliminable_invariants)
1478 did_elimination = eliminate_regs_in_insn (insn, 0);
1480 /* Analyze the instruction. */
1481 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1482 global, spill_reg_order);
1484 /* If a no-op set needs more than one reload, this is likely
1485 to be something that needs input address reloads. We
1486 can't get rid of this cleanly later, and it is of no use
1487 anyway, so discard it now.
1488 We only do this when expensive_optimizations is enabled,
1489 since this complements reload inheritance / output
1490 reload deletion, and it can make debugging harder. */
1491 if (flag_expensive_optimizations && n_reloads > 1)
1493 rtx set = single_set (insn);
1494 if (set
1495 && SET_SRC (set) == SET_DEST (set)
1496 && GET_CODE (SET_SRC (set)) == REG
1497 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1499 delete_insn (insn);
1500 /* Delete it from the reload chain */
1501 if (chain->prev)
1502 chain->prev->next = next;
1503 else
1504 reload_insn_chain = next;
1505 if (next)
1506 next->prev = chain->prev;
1507 chain->next = unused_insn_chains;
1508 unused_insn_chains = chain;
1509 continue;
1512 if (num_eliminable)
1513 update_eliminable_offsets ();
1515 /* Remember for later shortcuts which insns had any reloads or
1516 register eliminations. */
1517 chain->need_elim = did_elimination;
1518 chain->need_reload = n_reloads > 0;
1519 chain->need_operand_change = operands_changed;
1521 /* Discard any register replacements done. */
1522 if (did_elimination)
1524 obstack_free (&reload_obstack, reload_insn_firstobj);
1525 PATTERN (insn) = old_body;
1526 INSN_CODE (insn) = old_code;
1527 REG_NOTES (insn) = old_notes;
1528 something_needs_elimination = 1;
1531 something_needs_operands_changed |= operands_changed;
1533 if (n_reloads != 0)
1535 copy_reloads (chain);
1536 *pprev_reload = chain;
1537 pprev_reload = &chain->next_need_reload;
1541 *pprev_reload = 0;
1544 /* Comparison function for qsort to decide which of two reloads
1545 should be handled first. *P1 and *P2 are the reload numbers. */
1547 static int
1548 reload_reg_class_lower (r1p, r2p)
1549 const PTR r1p;
1550 const PTR r2p;
1552 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1553 int t;
1555 /* Consider required reloads before optional ones. */
1556 t = rld[r1].optional - rld[r2].optional;
1557 if (t != 0)
1558 return t;
1560 /* Count all solitary classes before non-solitary ones. */
1561 t = ((reg_class_size[(int) rld[r2].class] == 1)
1562 - (reg_class_size[(int) rld[r1].class] == 1));
1563 if (t != 0)
1564 return t;
1566 /* Aside from solitaires, consider all multi-reg groups first. */
1567 t = rld[r2].nregs - rld[r1].nregs;
1568 if (t != 0)
1569 return t;
1571 /* Consider reloads in order of increasing reg-class number. */
1572 t = (int) rld[r1].class - (int) rld[r2].class;
1573 if (t != 0)
1574 return t;
1576 /* If reloads are equally urgent, sort by reload number,
1577 so that the results of qsort leave nothing to chance. */
1578 return r1 - r2;
1581 /* The cost of spilling each hard reg. */
1582 static int spill_cost[FIRST_PSEUDO_REGISTER];
1584 /* When spilling multiple hard registers, we use SPILL_COST for the first
1585 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1586 only the first hard reg for a multi-reg pseudo. */
1587 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1589 /* Update the spill cost arrays, considering that pseudo REG is live. */
1591 static void
1592 count_pseudo (reg)
1593 int reg;
1595 int freq = REG_FREQ (reg);
1596 int r = reg_renumber[reg];
1597 int nregs;
1599 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1600 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1601 return;
1603 SET_REGNO_REG_SET (&pseudos_counted, reg);
1605 if (r < 0)
1606 abort ();
1608 spill_add_cost[r] += freq;
1610 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1611 while (nregs-- > 0)
1612 spill_cost[r + nregs] += freq;
1615 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1616 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1618 static void
1619 order_regs_for_reload (chain)
1620 struct insn_chain *chain;
1622 int i;
1623 HARD_REG_SET used_by_pseudos;
1624 HARD_REG_SET used_by_pseudos2;
1626 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1628 memset (spill_cost, 0, sizeof spill_cost);
1629 memset (spill_add_cost, 0, sizeof spill_add_cost);
1631 /* Count number of uses of each hard reg by pseudo regs allocated to it
1632 and then order them by decreasing use. First exclude hard registers
1633 that are live in or across this insn. */
1635 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1636 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1637 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1638 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1640 /* Now find out which pseudos are allocated to it, and update
1641 hard_reg_n_uses. */
1642 CLEAR_REG_SET (&pseudos_counted);
1644 EXECUTE_IF_SET_IN_REG_SET
1645 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1647 count_pseudo (i);
1649 EXECUTE_IF_SET_IN_REG_SET
1650 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1652 count_pseudo (i);
1654 CLEAR_REG_SET (&pseudos_counted);
1657 /* Vector of reload-numbers showing the order in which the reloads should
1658 be processed. */
1659 static short reload_order[MAX_RELOADS];
1661 /* This is used to keep track of the spill regs used in one insn. */
1662 static HARD_REG_SET used_spill_regs_local;
1664 /* We decided to spill hard register SPILLED, which has a size of
1665 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1666 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1667 update SPILL_COST/SPILL_ADD_COST. */
1669 static void
1670 count_spilled_pseudo (spilled, spilled_nregs, reg)
1671 int spilled, spilled_nregs, reg;
1673 int r = reg_renumber[reg];
1674 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1676 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1677 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1678 return;
1680 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1682 spill_add_cost[r] -= REG_FREQ (reg);
1683 while (nregs-- > 0)
1684 spill_cost[r + nregs] -= REG_FREQ (reg);
1687 /* Find reload register to use for reload number ORDER. */
1689 static int
1690 find_reg (chain, order)
1691 struct insn_chain *chain;
1692 int order;
1694 int rnum = reload_order[order];
1695 struct reload *rl = rld + rnum;
1696 int best_cost = INT_MAX;
1697 int best_reg = -1;
1698 unsigned int i, j;
1699 int k;
1700 HARD_REG_SET not_usable;
1701 HARD_REG_SET used_by_other_reload;
1703 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1704 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1705 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1707 CLEAR_HARD_REG_SET (used_by_other_reload);
1708 for (k = 0; k < order; k++)
1710 int other = reload_order[k];
1712 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1713 for (j = 0; j < rld[other].nregs; j++)
1714 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1719 unsigned int regno = i;
1721 if (! TEST_HARD_REG_BIT (not_usable, regno)
1722 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1723 && HARD_REGNO_MODE_OK (regno, rl->mode))
1725 int this_cost = spill_cost[regno];
1726 int ok = 1;
1727 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1729 for (j = 1; j < this_nregs; j++)
1731 this_cost += spill_add_cost[regno + j];
1732 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1733 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1734 ok = 0;
1736 if (! ok)
1737 continue;
1738 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1739 this_cost--;
1740 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1741 this_cost--;
1742 if (this_cost < best_cost
1743 /* Among registers with equal cost, prefer caller-saved ones, or
1744 use REG_ALLOC_ORDER if it is defined. */
1745 || (this_cost == best_cost
1746 #ifdef REG_ALLOC_ORDER
1747 && (inv_reg_alloc_order[regno]
1748 < inv_reg_alloc_order[best_reg])
1749 #else
1750 && call_used_regs[regno]
1751 && ! call_used_regs[best_reg]
1752 #endif
1755 best_reg = regno;
1756 best_cost = this_cost;
1760 if (best_reg == -1)
1761 return 0;
1763 if (rtl_dump_file)
1764 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1766 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1767 rl->regno = best_reg;
1769 EXECUTE_IF_SET_IN_REG_SET
1770 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1772 count_spilled_pseudo (best_reg, rl->nregs, j);
1775 EXECUTE_IF_SET_IN_REG_SET
1776 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1778 count_spilled_pseudo (best_reg, rl->nregs, j);
1781 for (i = 0; i < rl->nregs; i++)
1783 if (spill_cost[best_reg + i] != 0
1784 || spill_add_cost[best_reg + i] != 0)
1785 abort ();
1786 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1788 return 1;
1791 /* Find more reload regs to satisfy the remaining need of an insn, which
1792 is given by CHAIN.
1793 Do it by ascending class number, since otherwise a reg
1794 might be spilled for a big class and might fail to count
1795 for a smaller class even though it belongs to that class. */
1797 static void
1798 find_reload_regs (chain)
1799 struct insn_chain *chain;
1801 int i;
1803 /* In order to be certain of getting the registers we need,
1804 we must sort the reloads into order of increasing register class.
1805 Then our grabbing of reload registers will parallel the process
1806 that provided the reload registers. */
1807 for (i = 0; i < chain->n_reloads; i++)
1809 /* Show whether this reload already has a hard reg. */
1810 if (chain->rld[i].reg_rtx)
1812 int regno = REGNO (chain->rld[i].reg_rtx);
1813 chain->rld[i].regno = regno;
1814 chain->rld[i].nregs
1815 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1817 else
1818 chain->rld[i].regno = -1;
1819 reload_order[i] = i;
1822 n_reloads = chain->n_reloads;
1823 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1825 CLEAR_HARD_REG_SET (used_spill_regs_local);
1827 if (rtl_dump_file)
1828 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1830 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1832 /* Compute the order of preference for hard registers to spill. */
1834 order_regs_for_reload (chain);
1836 for (i = 0; i < n_reloads; i++)
1838 int r = reload_order[i];
1840 /* Ignore reloads that got marked inoperative. */
1841 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1842 && ! rld[r].optional
1843 && rld[r].regno == -1)
1844 if (! find_reg (chain, i))
1846 spill_failure (chain->insn, rld[r].class);
1847 failure = 1;
1848 return;
1852 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1853 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1855 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1858 static void
1859 select_reload_regs ()
1861 struct insn_chain *chain;
1863 /* Try to satisfy the needs for each insn. */
1864 for (chain = insns_need_reload; chain != 0;
1865 chain = chain->next_need_reload)
1866 find_reload_regs (chain);
1869 /* Delete all insns that were inserted by emit_caller_save_insns during
1870 this iteration. */
1871 static void
1872 delete_caller_save_insns ()
1874 struct insn_chain *c = reload_insn_chain;
1876 while (c != 0)
1878 while (c != 0 && c->is_caller_save_insn)
1880 struct insn_chain *next = c->next;
1881 rtx insn = c->insn;
1883 if (c == reload_insn_chain)
1884 reload_insn_chain = next;
1885 delete_insn (insn);
1887 if (next)
1888 next->prev = c->prev;
1889 if (c->prev)
1890 c->prev->next = next;
1891 c->next = unused_insn_chains;
1892 unused_insn_chains = c;
1893 c = next;
1895 if (c != 0)
1896 c = c->next;
1900 /* Handle the failure to find a register to spill.
1901 INSN should be one of the insns which needed this particular spill reg. */
1903 static void
1904 spill_failure (insn, class)
1905 rtx insn;
1906 enum reg_class class;
1908 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1909 if (asm_noperands (PATTERN (insn)) >= 0)
1910 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1911 reg_class_names[class]);
1912 else
1914 error ("unable to find a register to spill in class `%s'",
1915 reg_class_names[class]);
1916 fatal_insn ("this is the insn:", insn);
1920 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1921 data that is dead in INSN. */
1923 static void
1924 delete_dead_insn (insn)
1925 rtx insn;
1927 rtx prev = prev_real_insn (insn);
1928 rtx prev_dest;
1930 /* If the previous insn sets a register that dies in our insn, delete it
1931 too. */
1932 if (prev && GET_CODE (PATTERN (prev)) == SET
1933 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1934 && reg_mentioned_p (prev_dest, PATTERN (insn))
1935 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1936 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1937 delete_dead_insn (prev);
1939 PUT_CODE (insn, NOTE);
1940 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1941 NOTE_SOURCE_FILE (insn) = 0;
1944 /* Modify the home of pseudo-reg I.
1945 The new home is present in reg_renumber[I].
1947 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1948 or it may be -1, meaning there is none or it is not relevant.
1949 This is used so that all pseudos spilled from a given hard reg
1950 can share one stack slot. */
1952 static void
1953 alter_reg (i, from_reg)
1954 int i;
1955 int from_reg;
1957 /* When outputting an inline function, this can happen
1958 for a reg that isn't actually used. */
1959 if (regno_reg_rtx[i] == 0)
1960 return;
1962 /* If the reg got changed to a MEM at rtl-generation time,
1963 ignore it. */
1964 if (GET_CODE (regno_reg_rtx[i]) != REG)
1965 return;
1967 /* Modify the reg-rtx to contain the new hard reg
1968 number or else to contain its pseudo reg number. */
1969 REGNO (regno_reg_rtx[i])
1970 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1972 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1973 allocate a stack slot for it. */
1975 if (reg_renumber[i] < 0
1976 && REG_N_REFS (i) > 0
1977 && reg_equiv_constant[i] == 0
1978 && reg_equiv_memory_loc[i] == 0)
1980 rtx x;
1981 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1982 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1983 int adjust = 0;
1985 /* Each pseudo reg has an inherent size which comes from its own mode,
1986 and a total size which provides room for paradoxical subregs
1987 which refer to the pseudo reg in wider modes.
1989 We can use a slot already allocated if it provides both
1990 enough inherent space and enough total space.
1991 Otherwise, we allocate a new slot, making sure that it has no less
1992 inherent space, and no less total space, then the previous slot. */
1993 if (from_reg == -1)
1995 /* No known place to spill from => no slot to reuse. */
1996 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1997 inherent_size == total_size ? 0 : -1);
1998 if (BYTES_BIG_ENDIAN)
1999 /* Cancel the big-endian correction done in assign_stack_local.
2000 Get the address of the beginning of the slot.
2001 This is so we can do a big-endian correction unconditionally
2002 below. */
2003 adjust = inherent_size - total_size;
2005 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2007 /* Nothing can alias this slot except this pseudo. */
2008 set_mem_alias_set (x, new_alias_set ());
2011 /* Reuse a stack slot if possible. */
2012 else if (spill_stack_slot[from_reg] != 0
2013 && spill_stack_slot_width[from_reg] >= total_size
2014 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2015 >= inherent_size))
2016 x = spill_stack_slot[from_reg];
2018 /* Allocate a bigger slot. */
2019 else
2021 /* Compute maximum size needed, both for inherent size
2022 and for total size. */
2023 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2024 rtx stack_slot;
2026 if (spill_stack_slot[from_reg])
2028 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2029 > inherent_size)
2030 mode = GET_MODE (spill_stack_slot[from_reg]);
2031 if (spill_stack_slot_width[from_reg] > total_size)
2032 total_size = spill_stack_slot_width[from_reg];
2035 /* Make a slot with that size. */
2036 x = assign_stack_local (mode, total_size,
2037 inherent_size == total_size ? 0 : -1);
2038 stack_slot = x;
2040 /* All pseudos mapped to this slot can alias each other. */
2041 if (spill_stack_slot[from_reg])
2042 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2043 else
2044 set_mem_alias_set (x, new_alias_set ());
2046 if (BYTES_BIG_ENDIAN)
2048 /* Cancel the big-endian correction done in assign_stack_local.
2049 Get the address of the beginning of the slot.
2050 This is so we can do a big-endian correction unconditionally
2051 below. */
2052 adjust = GET_MODE_SIZE (mode) - total_size;
2053 if (adjust)
2054 stack_slot
2055 = adjust_address_nv (x, mode_for_size (total_size
2056 * BITS_PER_UNIT,
2057 MODE_INT, 1),
2058 adjust);
2061 spill_stack_slot[from_reg] = stack_slot;
2062 spill_stack_slot_width[from_reg] = total_size;
2065 /* On a big endian machine, the "address" of the slot
2066 is the address of the low part that fits its inherent mode. */
2067 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2068 adjust += (total_size - inherent_size);
2070 /* If we have any adjustment to make, or if the stack slot is the
2071 wrong mode, make a new stack slot. */
2072 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2074 /* If we have a decl for the original register, set it for the
2075 memory. If this is a shared MEM, make a copy. */
2076 if (REGNO_DECL (i))
2078 rtx decl = DECL_RTL_IF_SET (REGNO_DECL (i));
2080 /* We can do this only for the DECLs home pseudo, not for
2081 any copies of it, since otherwise when the stack slot
2082 is reused, nonoverlapping_memrefs_p might think they
2083 cannot overlap. */
2084 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2086 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2087 x = copy_rtx (x);
2089 set_mem_expr (x, REGNO_DECL (i));
2093 /* Save the stack slot for later. */
2094 reg_equiv_memory_loc[i] = x;
2098 /* Mark the slots in regs_ever_live for the hard regs
2099 used by pseudo-reg number REGNO. */
2101 void
2102 mark_home_live (regno)
2103 int regno;
2105 int i, lim;
2107 i = reg_renumber[regno];
2108 if (i < 0)
2109 return;
2110 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2111 while (i < lim)
2112 regs_ever_live[i++] = 1;
2115 /* This function handles the tracking of elimination offsets around branches.
2117 X is a piece of RTL being scanned.
2119 INSN is the insn that it came from, if any.
2121 INITIAL_P is nonzero if we are to set the offset to be the initial
2122 offset and zero if we are setting the offset of the label to be the
2123 current offset. */
2125 static void
2126 set_label_offsets (x, insn, initial_p)
2127 rtx x;
2128 rtx insn;
2129 int initial_p;
2131 enum rtx_code code = GET_CODE (x);
2132 rtx tem;
2133 unsigned int i;
2134 struct elim_table *p;
2136 switch (code)
2138 case LABEL_REF:
2139 if (LABEL_REF_NONLOCAL_P (x))
2140 return;
2142 x = XEXP (x, 0);
2144 /* ... fall through ... */
2146 case CODE_LABEL:
2147 /* If we know nothing about this label, set the desired offsets. Note
2148 that this sets the offset at a label to be the offset before a label
2149 if we don't know anything about the label. This is not correct for
2150 the label after a BARRIER, but is the best guess we can make. If
2151 we guessed wrong, we will suppress an elimination that might have
2152 been possible had we been able to guess correctly. */
2154 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2156 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2157 offsets_at[CODE_LABEL_NUMBER (x)][i]
2158 = (initial_p ? reg_eliminate[i].initial_offset
2159 : reg_eliminate[i].offset);
2160 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2163 /* Otherwise, if this is the definition of a label and it is
2164 preceded by a BARRIER, set our offsets to the known offset of
2165 that label. */
2167 else if (x == insn
2168 && (tem = prev_nonnote_insn (insn)) != 0
2169 && GET_CODE (tem) == BARRIER)
2170 set_offsets_for_label (insn);
2171 else
2172 /* If neither of the above cases is true, compare each offset
2173 with those previously recorded and suppress any eliminations
2174 where the offsets disagree. */
2176 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2178 != (initial_p ? reg_eliminate[i].initial_offset
2179 : reg_eliminate[i].offset))
2180 reg_eliminate[i].can_eliminate = 0;
2182 return;
2184 case JUMP_INSN:
2185 set_label_offsets (PATTERN (insn), insn, initial_p);
2187 /* ... fall through ... */
2189 case INSN:
2190 case CALL_INSN:
2191 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2192 and hence must have all eliminations at their initial offsets. */
2193 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2194 if (REG_NOTE_KIND (tem) == REG_LABEL)
2195 set_label_offsets (XEXP (tem, 0), insn, 1);
2196 return;
2198 case PARALLEL:
2199 case ADDR_VEC:
2200 case ADDR_DIFF_VEC:
2201 /* Each of the labels in the parallel or address vector must be
2202 at their initial offsets. We want the first field for PARALLEL
2203 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2205 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2206 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2207 insn, initial_p);
2208 return;
2210 case SET:
2211 /* We only care about setting PC. If the source is not RETURN,
2212 IF_THEN_ELSE, or a label, disable any eliminations not at
2213 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2214 isn't one of those possibilities. For branches to a label,
2215 call ourselves recursively.
2217 Note that this can disable elimination unnecessarily when we have
2218 a non-local goto since it will look like a non-constant jump to
2219 someplace in the current function. This isn't a significant
2220 problem since such jumps will normally be when all elimination
2221 pairs are back to their initial offsets. */
2223 if (SET_DEST (x) != pc_rtx)
2224 return;
2226 switch (GET_CODE (SET_SRC (x)))
2228 case PC:
2229 case RETURN:
2230 return;
2232 case LABEL_REF:
2233 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2234 return;
2236 case IF_THEN_ELSE:
2237 tem = XEXP (SET_SRC (x), 1);
2238 if (GET_CODE (tem) == LABEL_REF)
2239 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2240 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2241 break;
2243 tem = XEXP (SET_SRC (x), 2);
2244 if (GET_CODE (tem) == LABEL_REF)
2245 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2246 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2247 break;
2248 return;
2250 default:
2251 break;
2254 /* If we reach here, all eliminations must be at their initial
2255 offset because we are doing a jump to a variable address. */
2256 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2257 if (p->offset != p->initial_offset)
2258 p->can_eliminate = 0;
2259 break;
2261 default:
2262 break;
2266 /* Scan X and replace any eliminable registers (such as fp) with a
2267 replacement (such as sp), plus an offset.
2269 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2270 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2271 MEM, we are allowed to replace a sum of a register and the constant zero
2272 with the register, which we cannot do outside a MEM. In addition, we need
2273 to record the fact that a register is referenced outside a MEM.
2275 If INSN is an insn, it is the insn containing X. If we replace a REG
2276 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2277 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2278 the REG is being modified.
2280 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2281 That's used when we eliminate in expressions stored in notes.
2282 This means, do not set ref_outside_mem even if the reference
2283 is outside of MEMs.
2285 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2286 replacements done assuming all offsets are at their initial values. If
2287 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2288 encounter, return the actual location so that find_reloads will do
2289 the proper thing. */
2292 eliminate_regs (x, mem_mode, insn)
2293 rtx x;
2294 enum machine_mode mem_mode;
2295 rtx insn;
2297 enum rtx_code code = GET_CODE (x);
2298 struct elim_table *ep;
2299 int regno;
2300 rtx new;
2301 int i, j;
2302 const char *fmt;
2303 int copied = 0;
2305 if (! current_function_decl)
2306 return x;
2308 switch (code)
2310 case CONST_INT:
2311 case CONST_DOUBLE:
2312 case CONST_VECTOR:
2313 case CONST:
2314 case SYMBOL_REF:
2315 case CODE_LABEL:
2316 case PC:
2317 case CC0:
2318 case ASM_INPUT:
2319 case ADDR_VEC:
2320 case ADDR_DIFF_VEC:
2321 case RETURN:
2322 return x;
2324 case ADDRESSOF:
2325 /* This is only for the benefit of the debugging backends, which call
2326 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2327 removed after CSE. */
2328 new = eliminate_regs (XEXP (x, 0), 0, insn);
2329 if (GET_CODE (new) == MEM)
2330 return XEXP (new, 0);
2331 return x;
2333 case REG:
2334 regno = REGNO (x);
2336 /* First handle the case where we encounter a bare register that
2337 is eliminable. Replace it with a PLUS. */
2338 if (regno < FIRST_PSEUDO_REGISTER)
2340 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2341 ep++)
2342 if (ep->from_rtx == x && ep->can_eliminate)
2343 return plus_constant (ep->to_rtx, ep->previous_offset);
2346 else if (reg_renumber && reg_renumber[regno] < 0
2347 && reg_equiv_constant && reg_equiv_constant[regno]
2348 && ! CONSTANT_P (reg_equiv_constant[regno]))
2349 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2350 mem_mode, insn);
2351 return x;
2353 /* You might think handling MINUS in a manner similar to PLUS is a
2354 good idea. It is not. It has been tried multiple times and every
2355 time the change has had to have been reverted.
2357 Other parts of reload know a PLUS is special (gen_reload for example)
2358 and require special code to handle code a reloaded PLUS operand.
2360 Also consider backends where the flags register is clobbered by a
2361 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2362 lea instruction comes to mind). If we try to reload a MINUS, we
2363 may kill the flags register that was holding a useful value.
2365 So, please before trying to handle MINUS, consider reload as a
2366 whole instead of this little section as well as the backend issues. */
2367 case PLUS:
2368 /* If this is the sum of an eliminable register and a constant, rework
2369 the sum. */
2370 if (GET_CODE (XEXP (x, 0)) == REG
2371 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2372 && CONSTANT_P (XEXP (x, 1)))
2374 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2375 ep++)
2376 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2378 /* The only time we want to replace a PLUS with a REG (this
2379 occurs when the constant operand of the PLUS is the negative
2380 of the offset) is when we are inside a MEM. We won't want
2381 to do so at other times because that would change the
2382 structure of the insn in a way that reload can't handle.
2383 We special-case the commonest situation in
2384 eliminate_regs_in_insn, so just replace a PLUS with a
2385 PLUS here, unless inside a MEM. */
2386 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2387 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2388 return ep->to_rtx;
2389 else
2390 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2391 plus_constant (XEXP (x, 1),
2392 ep->previous_offset));
2395 /* If the register is not eliminable, we are done since the other
2396 operand is a constant. */
2397 return x;
2400 /* If this is part of an address, we want to bring any constant to the
2401 outermost PLUS. We will do this by doing register replacement in
2402 our operands and seeing if a constant shows up in one of them.
2404 Note that there is no risk of modifying the structure of the insn,
2405 since we only get called for its operands, thus we are either
2406 modifying the address inside a MEM, or something like an address
2407 operand of a load-address insn. */
2410 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2411 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2413 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2415 /* If one side is a PLUS and the other side is a pseudo that
2416 didn't get a hard register but has a reg_equiv_constant,
2417 we must replace the constant here since it may no longer
2418 be in the position of any operand. */
2419 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2420 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2421 && reg_renumber[REGNO (new1)] < 0
2422 && reg_equiv_constant != 0
2423 && reg_equiv_constant[REGNO (new1)] != 0)
2424 new1 = reg_equiv_constant[REGNO (new1)];
2425 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2426 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2427 && reg_renumber[REGNO (new0)] < 0
2428 && reg_equiv_constant[REGNO (new0)] != 0)
2429 new0 = reg_equiv_constant[REGNO (new0)];
2431 new = form_sum (new0, new1);
2433 /* As above, if we are not inside a MEM we do not want to
2434 turn a PLUS into something else. We might try to do so here
2435 for an addition of 0 if we aren't optimizing. */
2436 if (! mem_mode && GET_CODE (new) != PLUS)
2437 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2438 else
2439 return new;
2442 return x;
2444 case MULT:
2445 /* If this is the product of an eliminable register and a
2446 constant, apply the distribute law and move the constant out
2447 so that we have (plus (mult ..) ..). This is needed in order
2448 to keep load-address insns valid. This case is pathological.
2449 We ignore the possibility of overflow here. */
2450 if (GET_CODE (XEXP (x, 0)) == REG
2451 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2452 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2454 ep++)
2455 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2457 if (! mem_mode
2458 /* Refs inside notes don't count for this purpose. */
2459 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2460 || GET_CODE (insn) == INSN_LIST)))
2461 ep->ref_outside_mem = 1;
2463 return
2464 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2465 ep->previous_offset * INTVAL (XEXP (x, 1)));
2468 /* ... fall through ... */
2470 case CALL:
2471 case COMPARE:
2472 /* See comments before PLUS about handling MINUS. */
2473 case MINUS:
2474 case DIV: case UDIV:
2475 case MOD: case UMOD:
2476 case AND: case IOR: case XOR:
2477 case ROTATERT: case ROTATE:
2478 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2479 case NE: case EQ:
2480 case GE: case GT: case GEU: case GTU:
2481 case LE: case LT: case LEU: case LTU:
2483 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2484 rtx new1
2485 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2487 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2488 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2490 return x;
2492 case EXPR_LIST:
2493 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2494 if (XEXP (x, 0))
2496 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2497 if (new != XEXP (x, 0))
2499 /* If this is a REG_DEAD note, it is not valid anymore.
2500 Using the eliminated version could result in creating a
2501 REG_DEAD note for the stack or frame pointer. */
2502 if (GET_MODE (x) == REG_DEAD)
2503 return (XEXP (x, 1)
2504 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2505 : NULL_RTX);
2507 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2511 /* ... fall through ... */
2513 case INSN_LIST:
2514 /* Now do eliminations in the rest of the chain. If this was
2515 an EXPR_LIST, this might result in allocating more memory than is
2516 strictly needed, but it simplifies the code. */
2517 if (XEXP (x, 1))
2519 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2520 if (new != XEXP (x, 1))
2521 return
2522 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2524 return x;
2526 case PRE_INC:
2527 case POST_INC:
2528 case PRE_DEC:
2529 case POST_DEC:
2530 case STRICT_LOW_PART:
2531 case NEG: case NOT:
2532 case SIGN_EXTEND: case ZERO_EXTEND:
2533 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2534 case FLOAT: case FIX:
2535 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2536 case ABS:
2537 case SQRT:
2538 case FFS:
2539 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2540 if (new != XEXP (x, 0))
2541 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2542 return x;
2544 case SUBREG:
2545 /* Similar to above processing, but preserve SUBREG_BYTE.
2546 Convert (subreg (mem)) to (mem) if not paradoxical.
2547 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2548 pseudo didn't get a hard reg, we must replace this with the
2549 eliminated version of the memory location because push_reloads
2550 may do the replacement in certain circumstances. */
2551 if (GET_CODE (SUBREG_REG (x)) == REG
2552 && (GET_MODE_SIZE (GET_MODE (x))
2553 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2554 && reg_equiv_memory_loc != 0
2555 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2557 new = SUBREG_REG (x);
2559 else
2560 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2562 if (new != SUBREG_REG (x))
2564 int x_size = GET_MODE_SIZE (GET_MODE (x));
2565 int new_size = GET_MODE_SIZE (GET_MODE (new));
2567 if (GET_CODE (new) == MEM
2568 && ((x_size < new_size
2569 #ifdef WORD_REGISTER_OPERATIONS
2570 /* On these machines, combine can create rtl of the form
2571 (set (subreg:m1 (reg:m2 R) 0) ...)
2572 where m1 < m2, and expects something interesting to
2573 happen to the entire word. Moreover, it will use the
2574 (reg:m2 R) later, expecting all bits to be preserved.
2575 So if the number of words is the same, preserve the
2576 subreg so that push_reloads can see it. */
2577 && ! ((x_size - 1) / UNITS_PER_WORD
2578 == (new_size -1 ) / UNITS_PER_WORD)
2579 #endif
2581 || x_size == new_size)
2583 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2584 else
2585 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2588 return x;
2590 case MEM:
2591 /* This is only for the benefit of the debugging backends, which call
2592 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2593 removed after CSE. */
2594 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2595 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2597 /* Our only special processing is to pass the mode of the MEM to our
2598 recursive call and copy the flags. While we are here, handle this
2599 case more efficiently. */
2600 return
2601 replace_equiv_address_nv (x,
2602 eliminate_regs (XEXP (x, 0),
2603 GET_MODE (x), insn));
2605 case USE:
2606 /* Handle insn_list USE that a call to a pure function may generate. */
2607 new = eliminate_regs (XEXP (x, 0), 0, insn);
2608 if (new != XEXP (x, 0))
2609 return gen_rtx_USE (GET_MODE (x), new);
2610 return x;
2612 case CLOBBER:
2613 case ASM_OPERANDS:
2614 case SET:
2615 abort ();
2617 default:
2618 break;
2621 /* Process each of our operands recursively. If any have changed, make a
2622 copy of the rtx. */
2623 fmt = GET_RTX_FORMAT (code);
2624 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2626 if (*fmt == 'e')
2628 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2629 if (new != XEXP (x, i) && ! copied)
2631 rtx new_x = rtx_alloc (code);
2632 memcpy (new_x, x,
2633 (sizeof (*new_x) - sizeof (new_x->fld)
2634 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2635 x = new_x;
2636 copied = 1;
2638 XEXP (x, i) = new;
2640 else if (*fmt == 'E')
2642 int copied_vec = 0;
2643 for (j = 0; j < XVECLEN (x, i); j++)
2645 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2646 if (new != XVECEXP (x, i, j) && ! copied_vec)
2648 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2649 XVEC (x, i)->elem);
2650 if (! copied)
2652 rtx new_x = rtx_alloc (code);
2653 memcpy (new_x, x,
2654 (sizeof (*new_x) - sizeof (new_x->fld)
2655 + (sizeof (new_x->fld[0])
2656 * GET_RTX_LENGTH (code))));
2657 x = new_x;
2658 copied = 1;
2660 XVEC (x, i) = new_v;
2661 copied_vec = 1;
2663 XVECEXP (x, i, j) = new;
2668 return x;
2671 /* Scan rtx X for modifications of elimination target registers. Update
2672 the table of eliminables to reflect the changed state. MEM_MODE is
2673 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2675 static void
2676 elimination_effects (x, mem_mode)
2677 rtx x;
2678 enum machine_mode mem_mode;
2681 enum rtx_code code = GET_CODE (x);
2682 struct elim_table *ep;
2683 int regno;
2684 int i, j;
2685 const char *fmt;
2687 switch (code)
2689 case CONST_INT:
2690 case CONST_DOUBLE:
2691 case CONST_VECTOR:
2692 case CONST:
2693 case SYMBOL_REF:
2694 case CODE_LABEL:
2695 case PC:
2696 case CC0:
2697 case ASM_INPUT:
2698 case ADDR_VEC:
2699 case ADDR_DIFF_VEC:
2700 case RETURN:
2701 return;
2703 case ADDRESSOF:
2704 abort ();
2706 case REG:
2707 regno = REGNO (x);
2709 /* First handle the case where we encounter a bare register that
2710 is eliminable. Replace it with a PLUS. */
2711 if (regno < FIRST_PSEUDO_REGISTER)
2713 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2714 ep++)
2715 if (ep->from_rtx == x && ep->can_eliminate)
2717 if (! mem_mode)
2718 ep->ref_outside_mem = 1;
2719 return;
2723 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2724 && reg_equiv_constant[regno]
2725 && ! function_invariant_p (reg_equiv_constant[regno]))
2726 elimination_effects (reg_equiv_constant[regno], mem_mode);
2727 return;
2729 case PRE_INC:
2730 case POST_INC:
2731 case PRE_DEC:
2732 case POST_DEC:
2733 case POST_MODIFY:
2734 case PRE_MODIFY:
2735 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2736 if (ep->to_rtx == XEXP (x, 0))
2738 int size = GET_MODE_SIZE (mem_mode);
2740 /* If more bytes than MEM_MODE are pushed, account for them. */
2741 #ifdef PUSH_ROUNDING
2742 if (ep->to_rtx == stack_pointer_rtx)
2743 size = PUSH_ROUNDING (size);
2744 #endif
2745 if (code == PRE_DEC || code == POST_DEC)
2746 ep->offset += size;
2747 else if (code == PRE_INC || code == POST_INC)
2748 ep->offset -= size;
2749 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2750 && GET_CODE (XEXP (x, 1)) == PLUS
2751 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2752 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2753 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2756 /* These two aren't unary operators. */
2757 if (code == POST_MODIFY || code == PRE_MODIFY)
2758 break;
2760 /* Fall through to generic unary operation case. */
2761 case STRICT_LOW_PART:
2762 case NEG: case NOT:
2763 case SIGN_EXTEND: case ZERO_EXTEND:
2764 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2765 case FLOAT: case FIX:
2766 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2767 case ABS:
2768 case SQRT:
2769 case FFS:
2770 elimination_effects (XEXP (x, 0), mem_mode);
2771 return;
2773 case SUBREG:
2774 if (GET_CODE (SUBREG_REG (x)) == REG
2775 && (GET_MODE_SIZE (GET_MODE (x))
2776 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2777 && reg_equiv_memory_loc != 0
2778 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2779 return;
2781 elimination_effects (SUBREG_REG (x), mem_mode);
2782 return;
2784 case USE:
2785 /* If using a register that is the source of an eliminate we still
2786 think can be performed, note it cannot be performed since we don't
2787 know how this register is used. */
2788 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2789 if (ep->from_rtx == XEXP (x, 0))
2790 ep->can_eliminate = 0;
2792 elimination_effects (XEXP (x, 0), mem_mode);
2793 return;
2795 case CLOBBER:
2796 /* If clobbering a register that is the replacement register for an
2797 elimination we still think can be performed, note that it cannot
2798 be performed. Otherwise, we need not be concerned about it. */
2799 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2800 if (ep->to_rtx == XEXP (x, 0))
2801 ep->can_eliminate = 0;
2803 elimination_effects (XEXP (x, 0), mem_mode);
2804 return;
2806 case SET:
2807 /* Check for setting a register that we know about. */
2808 if (GET_CODE (SET_DEST (x)) == REG)
2810 /* See if this is setting the replacement register for an
2811 elimination.
2813 If DEST is the hard frame pointer, we do nothing because we
2814 assume that all assignments to the frame pointer are for
2815 non-local gotos and are being done at a time when they are valid
2816 and do not disturb anything else. Some machines want to
2817 eliminate a fake argument pointer (or even a fake frame pointer)
2818 with either the real frame or the stack pointer. Assignments to
2819 the hard frame pointer must not prevent this elimination. */
2821 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2822 ep++)
2823 if (ep->to_rtx == SET_DEST (x)
2824 && SET_DEST (x) != hard_frame_pointer_rtx)
2826 /* If it is being incremented, adjust the offset. Otherwise,
2827 this elimination can't be done. */
2828 rtx src = SET_SRC (x);
2830 if (GET_CODE (src) == PLUS
2831 && XEXP (src, 0) == SET_DEST (x)
2832 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2833 ep->offset -= INTVAL (XEXP (src, 1));
2834 else
2835 ep->can_eliminate = 0;
2839 elimination_effects (SET_DEST (x), 0);
2840 elimination_effects (SET_SRC (x), 0);
2841 return;
2843 case MEM:
2844 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2845 abort ();
2847 /* Our only special processing is to pass the mode of the MEM to our
2848 recursive call. */
2849 elimination_effects (XEXP (x, 0), GET_MODE (x));
2850 return;
2852 default:
2853 break;
2856 fmt = GET_RTX_FORMAT (code);
2857 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2859 if (*fmt == 'e')
2860 elimination_effects (XEXP (x, i), mem_mode);
2861 else if (*fmt == 'E')
2862 for (j = 0; j < XVECLEN (x, i); j++)
2863 elimination_effects (XVECEXP (x, i, j), mem_mode);
2867 /* Descend through rtx X and verify that no references to eliminable registers
2868 remain. If any do remain, mark the involved register as not
2869 eliminable. */
2871 static void
2872 check_eliminable_occurrences (x)
2873 rtx x;
2875 const char *fmt;
2876 int i;
2877 enum rtx_code code;
2879 if (x == 0)
2880 return;
2882 code = GET_CODE (x);
2884 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2886 struct elim_table *ep;
2888 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2889 if (ep->from_rtx == x && ep->can_eliminate)
2890 ep->can_eliminate = 0;
2891 return;
2894 fmt = GET_RTX_FORMAT (code);
2895 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2897 if (*fmt == 'e')
2898 check_eliminable_occurrences (XEXP (x, i));
2899 else if (*fmt == 'E')
2901 int j;
2902 for (j = 0; j < XVECLEN (x, i); j++)
2903 check_eliminable_occurrences (XVECEXP (x, i, j));
2908 /* Scan INSN and eliminate all eliminable registers in it.
2910 If REPLACE is nonzero, do the replacement destructively. Also
2911 delete the insn as dead it if it is setting an eliminable register.
2913 If REPLACE is zero, do all our allocations in reload_obstack.
2915 If no eliminations were done and this insn doesn't require any elimination
2916 processing (these are not identical conditions: it might be updating sp,
2917 but not referencing fp; this needs to be seen during reload_as_needed so
2918 that the offset between fp and sp can be taken into consideration), zero
2919 is returned. Otherwise, 1 is returned. */
2921 static int
2922 eliminate_regs_in_insn (insn, replace)
2923 rtx insn;
2924 int replace;
2926 int icode = recog_memoized (insn);
2927 rtx old_body = PATTERN (insn);
2928 int insn_is_asm = asm_noperands (old_body) >= 0;
2929 rtx old_set = single_set (insn);
2930 rtx new_body;
2931 int val = 0;
2932 int i, any_changes;
2933 rtx substed_operand[MAX_RECOG_OPERANDS];
2934 rtx orig_operand[MAX_RECOG_OPERANDS];
2935 struct elim_table *ep;
2937 if (! insn_is_asm && icode < 0)
2939 if (GET_CODE (PATTERN (insn)) == USE
2940 || GET_CODE (PATTERN (insn)) == CLOBBER
2941 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2942 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2943 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2944 return 0;
2945 abort ();
2948 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2949 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2951 /* Check for setting an eliminable register. */
2952 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2953 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2955 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2956 /* If this is setting the frame pointer register to the
2957 hardware frame pointer register and this is an elimination
2958 that will be done (tested above), this insn is really
2959 adjusting the frame pointer downward to compensate for
2960 the adjustment done before a nonlocal goto. */
2961 if (ep->from == FRAME_POINTER_REGNUM
2962 && ep->to == HARD_FRAME_POINTER_REGNUM)
2964 rtx base = SET_SRC (old_set);
2965 rtx base_insn = insn;
2966 int offset = 0;
2968 while (base != ep->to_rtx)
2970 rtx prev_insn, prev_set;
2972 if (GET_CODE (base) == PLUS
2973 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2975 offset += INTVAL (XEXP (base, 1));
2976 base = XEXP (base, 0);
2978 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2979 && (prev_set = single_set (prev_insn)) != 0
2980 && rtx_equal_p (SET_DEST (prev_set), base))
2982 base = SET_SRC (prev_set);
2983 base_insn = prev_insn;
2985 else
2986 break;
2989 if (base == ep->to_rtx)
2991 rtx src
2992 = plus_constant (ep->to_rtx, offset - ep->offset);
2994 new_body = old_body;
2995 if (! replace)
2997 new_body = copy_insn (old_body);
2998 if (REG_NOTES (insn))
2999 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3001 PATTERN (insn) = new_body;
3002 old_set = single_set (insn);
3004 /* First see if this insn remains valid when we
3005 make the change. If not, keep the INSN_CODE
3006 the same and let reload fit it up. */
3007 validate_change (insn, &SET_SRC (old_set), src, 1);
3008 validate_change (insn, &SET_DEST (old_set),
3009 ep->to_rtx, 1);
3010 if (! apply_change_group ())
3012 SET_SRC (old_set) = src;
3013 SET_DEST (old_set) = ep->to_rtx;
3016 val = 1;
3017 goto done;
3020 #endif
3022 /* In this case this insn isn't serving a useful purpose. We
3023 will delete it in reload_as_needed once we know that this
3024 elimination is, in fact, being done.
3026 If REPLACE isn't set, we can't delete this insn, but needn't
3027 process it since it won't be used unless something changes. */
3028 if (replace)
3030 delete_dead_insn (insn);
3031 return 1;
3033 val = 1;
3034 goto done;
3038 /* We allow one special case which happens to work on all machines we
3039 currently support: a single set with the source being a PLUS of an
3040 eliminable register and a constant. */
3041 if (old_set
3042 && GET_CODE (SET_DEST (old_set)) == REG
3043 && GET_CODE (SET_SRC (old_set)) == PLUS
3044 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3045 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3046 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3048 rtx reg = XEXP (SET_SRC (old_set), 0);
3049 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3051 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3052 if (ep->from_rtx == reg && ep->can_eliminate)
3054 offset += ep->offset;
3056 if (offset == 0)
3058 int num_clobbers;
3059 /* We assume here that if we need a PARALLEL with
3060 CLOBBERs for this assignment, we can do with the
3061 MATCH_SCRATCHes that add_clobbers allocates.
3062 There's not much we can do if that doesn't work. */
3063 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3064 SET_DEST (old_set),
3065 ep->to_rtx);
3066 num_clobbers = 0;
3067 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3068 if (num_clobbers)
3070 rtvec vec = rtvec_alloc (num_clobbers + 1);
3072 vec->elem[0] = PATTERN (insn);
3073 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3074 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3076 if (INSN_CODE (insn) < 0)
3077 abort ();
3079 else
3081 new_body = old_body;
3082 if (! replace)
3084 new_body = copy_insn (old_body);
3085 if (REG_NOTES (insn))
3086 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3088 PATTERN (insn) = new_body;
3089 old_set = single_set (insn);
3091 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3092 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3094 val = 1;
3095 /* This can't have an effect on elimination offsets, so skip right
3096 to the end. */
3097 goto done;
3101 /* Determine the effects of this insn on elimination offsets. */
3102 elimination_effects (old_body, 0);
3104 /* Eliminate all eliminable registers occurring in operands that
3105 can be handled by reload. */
3106 extract_insn (insn);
3107 any_changes = 0;
3108 for (i = 0; i < recog_data.n_operands; i++)
3110 orig_operand[i] = recog_data.operand[i];
3111 substed_operand[i] = recog_data.operand[i];
3113 /* For an asm statement, every operand is eliminable. */
3114 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3116 /* Check for setting a register that we know about. */
3117 if (recog_data.operand_type[i] != OP_IN
3118 && GET_CODE (orig_operand[i]) == REG)
3120 /* If we are assigning to a register that can be eliminated, it
3121 must be as part of a PARALLEL, since the code above handles
3122 single SETs. We must indicate that we can no longer
3123 eliminate this reg. */
3124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 ep++)
3126 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3127 ep->can_eliminate = 0;
3130 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3131 replace ? insn : NULL_RTX);
3132 if (substed_operand[i] != orig_operand[i])
3133 val = any_changes = 1;
3134 /* Terminate the search in check_eliminable_occurrences at
3135 this point. */
3136 *recog_data.operand_loc[i] = 0;
3138 /* If an output operand changed from a REG to a MEM and INSN is an
3139 insn, write a CLOBBER insn. */
3140 if (recog_data.operand_type[i] != OP_IN
3141 && GET_CODE (orig_operand[i]) == REG
3142 && GET_CODE (substed_operand[i]) == MEM
3143 && replace)
3144 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3145 insn);
3149 for (i = 0; i < recog_data.n_dups; i++)
3150 *recog_data.dup_loc[i]
3151 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3153 /* If any eliminable remain, they aren't eliminable anymore. */
3154 check_eliminable_occurrences (old_body);
3156 /* Substitute the operands; the new values are in the substed_operand
3157 array. */
3158 for (i = 0; i < recog_data.n_operands; i++)
3159 *recog_data.operand_loc[i] = substed_operand[i];
3160 for (i = 0; i < recog_data.n_dups; i++)
3161 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3163 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3164 re-recognize the insn. We do this in case we had a simple addition
3165 but now can do this as a load-address. This saves an insn in this
3166 common case.
3167 If re-recognition fails, the old insn code number will still be used,
3168 and some register operands may have changed into PLUS expressions.
3169 These will be handled by find_reloads by loading them into a register
3170 again. */
3172 if (val)
3174 /* If we aren't replacing things permanently and we changed something,
3175 make another copy to ensure that all the RTL is new. Otherwise
3176 things can go wrong if find_reload swaps commutative operands
3177 and one is inside RTL that has been copied while the other is not. */
3178 new_body = old_body;
3179 if (! replace)
3181 new_body = copy_insn (old_body);
3182 if (REG_NOTES (insn))
3183 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3185 PATTERN (insn) = new_body;
3187 /* If we had a move insn but now we don't, rerecognize it. This will
3188 cause spurious re-recognition if the old move had a PARALLEL since
3189 the new one still will, but we can't call single_set without
3190 having put NEW_BODY into the insn and the re-recognition won't
3191 hurt in this rare case. */
3192 /* ??? Why this huge if statement - why don't we just rerecognize the
3193 thing always? */
3194 if (! insn_is_asm
3195 && old_set != 0
3196 && ((GET_CODE (SET_SRC (old_set)) == REG
3197 && (GET_CODE (new_body) != SET
3198 || GET_CODE (SET_SRC (new_body)) != REG))
3199 /* If this was a load from or store to memory, compare
3200 the MEM in recog_data.operand to the one in the insn.
3201 If they are not equal, then rerecognize the insn. */
3202 || (old_set != 0
3203 && ((GET_CODE (SET_SRC (old_set)) == MEM
3204 && SET_SRC (old_set) != recog_data.operand[1])
3205 || (GET_CODE (SET_DEST (old_set)) == MEM
3206 && SET_DEST (old_set) != recog_data.operand[0])))
3207 /* If this was an add insn before, rerecognize. */
3208 || GET_CODE (SET_SRC (old_set)) == PLUS))
3210 int new_icode = recog (PATTERN (insn), insn, 0);
3211 if (new_icode < 0)
3212 INSN_CODE (insn) = icode;
3216 /* Restore the old body. If there were any changes to it, we made a copy
3217 of it while the changes were still in place, so we'll correctly return
3218 a modified insn below. */
3219 if (! replace)
3221 /* Restore the old body. */
3222 for (i = 0; i < recog_data.n_operands; i++)
3223 *recog_data.operand_loc[i] = orig_operand[i];
3224 for (i = 0; i < recog_data.n_dups; i++)
3225 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3228 /* Update all elimination pairs to reflect the status after the current
3229 insn. The changes we make were determined by the earlier call to
3230 elimination_effects.
3232 We also detect a cases where register elimination cannot be done,
3233 namely, if a register would be both changed and referenced outside a MEM
3234 in the resulting insn since such an insn is often undefined and, even if
3235 not, we cannot know what meaning will be given to it. Note that it is
3236 valid to have a register used in an address in an insn that changes it
3237 (presumably with a pre- or post-increment or decrement).
3239 If anything changes, return nonzero. */
3241 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3243 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3244 ep->can_eliminate = 0;
3246 ep->ref_outside_mem = 0;
3248 if (ep->previous_offset != ep->offset)
3249 val = 1;
3252 done:
3253 /* If we changed something, perform elimination in REG_NOTES. This is
3254 needed even when REPLACE is zero because a REG_DEAD note might refer
3255 to a register that we eliminate and could cause a different number
3256 of spill registers to be needed in the final reload pass than in
3257 the pre-passes. */
3258 if (val && REG_NOTES (insn) != 0)
3259 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3261 return val;
3264 /* Loop through all elimination pairs.
3265 Recalculate the number not at initial offset.
3267 Compute the maximum offset (minimum offset if the stack does not
3268 grow downward) for each elimination pair. */
3270 static void
3271 update_eliminable_offsets ()
3273 struct elim_table *ep;
3275 num_not_at_initial_offset = 0;
3276 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3278 ep->previous_offset = ep->offset;
3279 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3280 num_not_at_initial_offset++;
3284 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3285 replacement we currently believe is valid, mark it as not eliminable if X
3286 modifies DEST in any way other than by adding a constant integer to it.
3288 If DEST is the frame pointer, we do nothing because we assume that
3289 all assignments to the hard frame pointer are nonlocal gotos and are being
3290 done at a time when they are valid and do not disturb anything else.
3291 Some machines want to eliminate a fake argument pointer with either the
3292 frame or stack pointer. Assignments to the hard frame pointer must not
3293 prevent this elimination.
3295 Called via note_stores from reload before starting its passes to scan
3296 the insns of the function. */
3298 static void
3299 mark_not_eliminable (dest, x, data)
3300 rtx dest;
3301 rtx x;
3302 void *data ATTRIBUTE_UNUSED;
3304 unsigned int i;
3306 /* A SUBREG of a hard register here is just changing its mode. We should
3307 not see a SUBREG of an eliminable hard register, but check just in
3308 case. */
3309 if (GET_CODE (dest) == SUBREG)
3310 dest = SUBREG_REG (dest);
3312 if (dest == hard_frame_pointer_rtx)
3313 return;
3315 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3316 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3317 && (GET_CODE (x) != SET
3318 || GET_CODE (SET_SRC (x)) != PLUS
3319 || XEXP (SET_SRC (x), 0) != dest
3320 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3322 reg_eliminate[i].can_eliminate_previous
3323 = reg_eliminate[i].can_eliminate = 0;
3324 num_eliminable--;
3328 /* Verify that the initial elimination offsets did not change since the
3329 last call to set_initial_elim_offsets. This is used to catch cases
3330 where something illegal happened during reload_as_needed that could
3331 cause incorrect code to be generated if we did not check for it. */
3333 static void
3334 verify_initial_elim_offsets ()
3336 int t;
3338 #ifdef ELIMINABLE_REGS
3339 struct elim_table *ep;
3341 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3343 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3344 if (t != ep->initial_offset)
3345 abort ();
3347 #else
3348 INITIAL_FRAME_POINTER_OFFSET (t);
3349 if (t != reg_eliminate[0].initial_offset)
3350 abort ();
3351 #endif
3354 /* Reset all offsets on eliminable registers to their initial values. */
3356 static void
3357 set_initial_elim_offsets ()
3359 struct elim_table *ep = reg_eliminate;
3361 #ifdef ELIMINABLE_REGS
3362 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3364 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3365 ep->previous_offset = ep->offset = ep->initial_offset;
3367 #else
3368 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3369 ep->previous_offset = ep->offset = ep->initial_offset;
3370 #endif
3372 num_not_at_initial_offset = 0;
3375 /* Initialize the known label offsets.
3376 Set a known offset for each forced label to be at the initial offset
3377 of each elimination. We do this because we assume that all
3378 computed jumps occur from a location where each elimination is
3379 at its initial offset.
3380 For all other labels, show that we don't know the offsets. */
3382 static void
3383 set_initial_label_offsets ()
3385 rtx x;
3386 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3388 for (x = forced_labels; x; x = XEXP (x, 1))
3389 if (XEXP (x, 0))
3390 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3393 /* Set all elimination offsets to the known values for the code label given
3394 by INSN. */
3396 static void
3397 set_offsets_for_label (insn)
3398 rtx insn;
3400 unsigned int i;
3401 int label_nr = CODE_LABEL_NUMBER (insn);
3402 struct elim_table *ep;
3404 num_not_at_initial_offset = 0;
3405 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3407 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3408 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3409 num_not_at_initial_offset++;
3413 /* See if anything that happened changes which eliminations are valid.
3414 For example, on the SPARC, whether or not the frame pointer can
3415 be eliminated can depend on what registers have been used. We need
3416 not check some conditions again (such as flag_omit_frame_pointer)
3417 since they can't have changed. */
3419 static void
3420 update_eliminables (pset)
3421 HARD_REG_SET *pset;
3423 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3424 int previous_frame_pointer_needed = frame_pointer_needed;
3425 #endif
3426 struct elim_table *ep;
3428 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3429 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3430 #ifdef ELIMINABLE_REGS
3431 || ! CAN_ELIMINATE (ep->from, ep->to)
3432 #endif
3434 ep->can_eliminate = 0;
3436 /* Look for the case where we have discovered that we can't replace
3437 register A with register B and that means that we will now be
3438 trying to replace register A with register C. This means we can
3439 no longer replace register C with register B and we need to disable
3440 such an elimination, if it exists. This occurs often with A == ap,
3441 B == sp, and C == fp. */
3443 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3445 struct elim_table *op;
3446 int new_to = -1;
3448 if (! ep->can_eliminate && ep->can_eliminate_previous)
3450 /* Find the current elimination for ep->from, if there is a
3451 new one. */
3452 for (op = reg_eliminate;
3453 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3454 if (op->from == ep->from && op->can_eliminate)
3456 new_to = op->to;
3457 break;
3460 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3461 disable it. */
3462 for (op = reg_eliminate;
3463 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3464 if (op->from == new_to && op->to == ep->to)
3465 op->can_eliminate = 0;
3469 /* See if any registers that we thought we could eliminate the previous
3470 time are no longer eliminable. If so, something has changed and we
3471 must spill the register. Also, recompute the number of eliminable
3472 registers and see if the frame pointer is needed; it is if there is
3473 no elimination of the frame pointer that we can perform. */
3475 frame_pointer_needed = 1;
3476 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3478 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3479 && ep->to != HARD_FRAME_POINTER_REGNUM)
3480 frame_pointer_needed = 0;
3482 if (! ep->can_eliminate && ep->can_eliminate_previous)
3484 ep->can_eliminate_previous = 0;
3485 SET_HARD_REG_BIT (*pset, ep->from);
3486 num_eliminable--;
3490 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3491 /* If we didn't need a frame pointer last time, but we do now, spill
3492 the hard frame pointer. */
3493 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3494 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3495 #endif
3498 /* Initialize the table of registers to eliminate. */
3500 static void
3501 init_elim_table ()
3503 struct elim_table *ep;
3504 #ifdef ELIMINABLE_REGS
3505 const struct elim_table_1 *ep1;
3506 #endif
3508 if (!reg_eliminate)
3509 reg_eliminate = (struct elim_table *)
3510 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3512 /* Does this function require a frame pointer? */
3514 frame_pointer_needed = (! flag_omit_frame_pointer
3515 #ifdef EXIT_IGNORE_STACK
3516 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3517 and restore sp for alloca. So we can't eliminate
3518 the frame pointer in that case. At some point,
3519 we should improve this by emitting the
3520 sp-adjusting insns for this case. */
3521 || (current_function_calls_alloca
3522 && EXIT_IGNORE_STACK)
3523 #endif
3524 || FRAME_POINTER_REQUIRED);
3526 num_eliminable = 0;
3528 #ifdef ELIMINABLE_REGS
3529 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3530 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3532 ep->from = ep1->from;
3533 ep->to = ep1->to;
3534 ep->can_eliminate = ep->can_eliminate_previous
3535 = (CAN_ELIMINATE (ep->from, ep->to)
3536 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3538 #else
3539 reg_eliminate[0].from = reg_eliminate_1[0].from;
3540 reg_eliminate[0].to = reg_eliminate_1[0].to;
3541 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3542 = ! frame_pointer_needed;
3543 #endif
3545 /* Count the number of eliminable registers and build the FROM and TO
3546 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3547 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3548 We depend on this. */
3549 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3551 num_eliminable += ep->can_eliminate;
3552 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3553 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3557 /* Kick all pseudos out of hard register REGNO.
3559 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3560 because we found we can't eliminate some register. In the case, no pseudos
3561 are allowed to be in the register, even if they are only in a block that
3562 doesn't require spill registers, unlike the case when we are spilling this
3563 hard reg to produce another spill register.
3565 Return nonzero if any pseudos needed to be kicked out. */
3567 static void
3568 spill_hard_reg (regno, cant_eliminate)
3569 unsigned int regno;
3570 int cant_eliminate;
3572 int i;
3574 if (cant_eliminate)
3576 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3577 regs_ever_live[regno] = 1;
3580 /* Spill every pseudo reg that was allocated to this reg
3581 or to something that overlaps this reg. */
3583 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3584 if (reg_renumber[i] >= 0
3585 && (unsigned int) reg_renumber[i] <= regno
3586 && ((unsigned int) reg_renumber[i]
3587 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3588 PSEUDO_REGNO_MODE (i))
3589 > regno))
3590 SET_REGNO_REG_SET (&spilled_pseudos, i);
3593 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3594 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3596 static void
3597 ior_hard_reg_set (set1, set2)
3598 HARD_REG_SET *set1, *set2;
3600 IOR_HARD_REG_SET (*set1, *set2);
3603 /* After find_reload_regs has been run for all insn that need reloads,
3604 and/or spill_hard_regs was called, this function is used to actually
3605 spill pseudo registers and try to reallocate them. It also sets up the
3606 spill_regs array for use by choose_reload_regs. */
3608 static int
3609 finish_spills (global)
3610 int global;
3612 struct insn_chain *chain;
3613 int something_changed = 0;
3614 int i;
3616 /* Build the spill_regs array for the function. */
3617 /* If there are some registers still to eliminate and one of the spill regs
3618 wasn't ever used before, additional stack space may have to be
3619 allocated to store this register. Thus, we may have changed the offset
3620 between the stack and frame pointers, so mark that something has changed.
3622 One might think that we need only set VAL to 1 if this is a call-used
3623 register. However, the set of registers that must be saved by the
3624 prologue is not identical to the call-used set. For example, the
3625 register used by the call insn for the return PC is a call-used register,
3626 but must be saved by the prologue. */
3628 n_spills = 0;
3629 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3630 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3632 spill_reg_order[i] = n_spills;
3633 spill_regs[n_spills++] = i;
3634 if (num_eliminable && ! regs_ever_live[i])
3635 something_changed = 1;
3636 regs_ever_live[i] = 1;
3638 else
3639 spill_reg_order[i] = -1;
3641 EXECUTE_IF_SET_IN_REG_SET
3642 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3644 /* Record the current hard register the pseudo is allocated to in
3645 pseudo_previous_regs so we avoid reallocating it to the same
3646 hard reg in a later pass. */
3647 if (reg_renumber[i] < 0)
3648 abort ();
3650 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3651 /* Mark it as no longer having a hard register home. */
3652 reg_renumber[i] = -1;
3653 /* We will need to scan everything again. */
3654 something_changed = 1;
3657 /* Retry global register allocation if possible. */
3658 if (global)
3660 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3661 /* For every insn that needs reloads, set the registers used as spill
3662 regs in pseudo_forbidden_regs for every pseudo live across the
3663 insn. */
3664 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3666 EXECUTE_IF_SET_IN_REG_SET
3667 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3669 ior_hard_reg_set (pseudo_forbidden_regs + i,
3670 &chain->used_spill_regs);
3672 EXECUTE_IF_SET_IN_REG_SET
3673 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3675 ior_hard_reg_set (pseudo_forbidden_regs + i,
3676 &chain->used_spill_regs);
3680 /* Retry allocating the spilled pseudos. For each reg, merge the
3681 various reg sets that indicate which hard regs can't be used,
3682 and call retry_global_alloc.
3683 We change spill_pseudos here to only contain pseudos that did not
3684 get a new hard register. */
3685 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3686 if (reg_old_renumber[i] != reg_renumber[i])
3688 HARD_REG_SET forbidden;
3689 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3690 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3691 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3692 retry_global_alloc (i, forbidden);
3693 if (reg_renumber[i] >= 0)
3694 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3698 /* Fix up the register information in the insn chain.
3699 This involves deleting those of the spilled pseudos which did not get
3700 a new hard register home from the live_{before,after} sets. */
3701 for (chain = reload_insn_chain; chain; chain = chain->next)
3703 HARD_REG_SET used_by_pseudos;
3704 HARD_REG_SET used_by_pseudos2;
3706 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3707 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3709 /* Mark any unallocated hard regs as available for spills. That
3710 makes inheritance work somewhat better. */
3711 if (chain->need_reload)
3713 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3714 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3715 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3717 /* Save the old value for the sanity test below. */
3718 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3720 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3721 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3722 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3723 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3725 /* Make sure we only enlarge the set. */
3726 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3727 abort ();
3728 ok:;
3732 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3733 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3735 int regno = reg_renumber[i];
3736 if (reg_old_renumber[i] == regno)
3737 continue;
3739 alter_reg (i, reg_old_renumber[i]);
3740 reg_old_renumber[i] = regno;
3741 if (rtl_dump_file)
3743 if (regno == -1)
3744 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3745 else
3746 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3747 i, reg_renumber[i]);
3751 return something_changed;
3754 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3755 Also mark any hard registers used to store user variables as
3756 forbidden from being used for spill registers. */
3758 static void
3759 scan_paradoxical_subregs (x)
3760 rtx x;
3762 int i;
3763 const char *fmt;
3764 enum rtx_code code = GET_CODE (x);
3766 switch (code)
3768 case REG:
3769 #if 0
3770 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3771 && REG_USERVAR_P (x))
3772 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3773 #endif
3774 return;
3776 case CONST_INT:
3777 case CONST:
3778 case SYMBOL_REF:
3779 case LABEL_REF:
3780 case CONST_DOUBLE:
3781 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3782 case CC0:
3783 case PC:
3784 case USE:
3785 case CLOBBER:
3786 return;
3788 case SUBREG:
3789 if (GET_CODE (SUBREG_REG (x)) == REG
3790 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3791 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3792 = GET_MODE_SIZE (GET_MODE (x));
3793 return;
3795 default:
3796 break;
3799 fmt = GET_RTX_FORMAT (code);
3800 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3802 if (fmt[i] == 'e')
3803 scan_paradoxical_subregs (XEXP (x, i));
3804 else if (fmt[i] == 'E')
3806 int j;
3807 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3808 scan_paradoxical_subregs (XVECEXP (x, i, j));
3813 /* Reload pseudo-registers into hard regs around each insn as needed.
3814 Additional register load insns are output before the insn that needs it
3815 and perhaps store insns after insns that modify the reloaded pseudo reg.
3817 reg_last_reload_reg and reg_reloaded_contents keep track of
3818 which registers are already available in reload registers.
3819 We update these for the reloads that we perform,
3820 as the insns are scanned. */
3822 static void
3823 reload_as_needed (live_known)
3824 int live_known;
3826 struct insn_chain *chain;
3827 #if defined (AUTO_INC_DEC)
3828 int i;
3829 #endif
3830 rtx x;
3832 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3833 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3834 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3835 reg_has_output_reload = (char *) xmalloc (max_regno);
3836 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3838 set_initial_elim_offsets ();
3840 for (chain = reload_insn_chain; chain; chain = chain->next)
3842 rtx prev;
3843 rtx insn = chain->insn;
3844 rtx old_next = NEXT_INSN (insn);
3846 /* If we pass a label, copy the offsets from the label information
3847 into the current offsets of each elimination. */
3848 if (GET_CODE (insn) == CODE_LABEL)
3849 set_offsets_for_label (insn);
3851 else if (INSN_P (insn))
3853 rtx oldpat = copy_rtx (PATTERN (insn));
3855 /* If this is a USE and CLOBBER of a MEM, ensure that any
3856 references to eliminable registers have been removed. */
3858 if ((GET_CODE (PATTERN (insn)) == USE
3859 || GET_CODE (PATTERN (insn)) == CLOBBER)
3860 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3861 XEXP (XEXP (PATTERN (insn), 0), 0)
3862 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3863 GET_MODE (XEXP (PATTERN (insn), 0)),
3864 NULL_RTX);
3866 /* If we need to do register elimination processing, do so.
3867 This might delete the insn, in which case we are done. */
3868 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3870 eliminate_regs_in_insn (insn, 1);
3871 if (GET_CODE (insn) == NOTE)
3873 update_eliminable_offsets ();
3874 continue;
3878 /* If need_elim is nonzero but need_reload is zero, one might think
3879 that we could simply set n_reloads to 0. However, find_reloads
3880 could have done some manipulation of the insn (such as swapping
3881 commutative operands), and these manipulations are lost during
3882 the first pass for every insn that needs register elimination.
3883 So the actions of find_reloads must be redone here. */
3885 if (! chain->need_elim && ! chain->need_reload
3886 && ! chain->need_operand_change)
3887 n_reloads = 0;
3888 /* First find the pseudo regs that must be reloaded for this insn.
3889 This info is returned in the tables reload_... (see reload.h).
3890 Also modify the body of INSN by substituting RELOAD
3891 rtx's for those pseudo regs. */
3892 else
3894 memset (reg_has_output_reload, 0, max_regno);
3895 CLEAR_HARD_REG_SET (reg_is_output_reload);
3897 find_reloads (insn, 1, spill_indirect_levels, live_known,
3898 spill_reg_order);
3901 if (n_reloads > 0)
3903 rtx next = NEXT_INSN (insn);
3904 rtx p;
3906 prev = PREV_INSN (insn);
3908 /* Now compute which reload regs to reload them into. Perhaps
3909 reusing reload regs from previous insns, or else output
3910 load insns to reload them. Maybe output store insns too.
3911 Record the choices of reload reg in reload_reg_rtx. */
3912 choose_reload_regs (chain);
3914 /* Merge any reloads that we didn't combine for fear of
3915 increasing the number of spill registers needed but now
3916 discover can be safely merged. */
3917 if (SMALL_REGISTER_CLASSES)
3918 merge_assigned_reloads (insn);
3920 /* Generate the insns to reload operands into or out of
3921 their reload regs. */
3922 emit_reload_insns (chain);
3924 /* Substitute the chosen reload regs from reload_reg_rtx
3925 into the insn's body (or perhaps into the bodies of other
3926 load and store insn that we just made for reloading
3927 and that we moved the structure into). */
3928 subst_reloads (insn);
3930 /* If this was an ASM, make sure that all the reload insns
3931 we have generated are valid. If not, give an error
3932 and delete them. */
3934 if (asm_noperands (PATTERN (insn)) >= 0)
3935 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3936 if (p != insn && INSN_P (p)
3937 && (recog_memoized (p) < 0
3938 || (extract_insn (p), ! constrain_operands (1))))
3940 error_for_asm (insn,
3941 "`asm' operand requires impossible reload");
3942 delete_insn (p);
3946 if (num_eliminable && chain->need_elim)
3947 update_eliminable_offsets ();
3949 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3950 is no longer validly lying around to save a future reload.
3951 Note that this does not detect pseudos that were reloaded
3952 for this insn in order to be stored in
3953 (obeying register constraints). That is correct; such reload
3954 registers ARE still valid. */
3955 note_stores (oldpat, forget_old_reloads_1, NULL);
3957 /* There may have been CLOBBER insns placed after INSN. So scan
3958 between INSN and NEXT and use them to forget old reloads. */
3959 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3960 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3961 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3963 #ifdef AUTO_INC_DEC
3964 /* Likewise for regs altered by auto-increment in this insn.
3965 REG_INC notes have been changed by reloading:
3966 find_reloads_address_1 records substitutions for them,
3967 which have been performed by subst_reloads above. */
3968 for (i = n_reloads - 1; i >= 0; i--)
3970 rtx in_reg = rld[i].in_reg;
3971 if (in_reg)
3973 enum rtx_code code = GET_CODE (in_reg);
3974 /* PRE_INC / PRE_DEC will have the reload register ending up
3975 with the same value as the stack slot, but that doesn't
3976 hold true for POST_INC / POST_DEC. Either we have to
3977 convert the memory access to a true POST_INC / POST_DEC,
3978 or we can't use the reload register for inheritance. */
3979 if ((code == POST_INC || code == POST_DEC)
3980 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3981 REGNO (rld[i].reg_rtx))
3982 /* Make sure it is the inc/dec pseudo, and not
3983 some other (e.g. output operand) pseudo. */
3984 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3985 == REGNO (XEXP (in_reg, 0))))
3988 rtx reload_reg = rld[i].reg_rtx;
3989 enum machine_mode mode = GET_MODE (reload_reg);
3990 int n = 0;
3991 rtx p;
3993 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3995 /* We really want to ignore REG_INC notes here, so
3996 use PATTERN (p) as argument to reg_set_p . */
3997 if (reg_set_p (reload_reg, PATTERN (p)))
3998 break;
3999 n = count_occurrences (PATTERN (p), reload_reg, 0);
4000 if (! n)
4001 continue;
4002 if (n == 1)
4004 n = validate_replace_rtx (reload_reg,
4005 gen_rtx (code, mode,
4006 reload_reg),
4009 /* We must also verify that the constraints
4010 are met after the replacement. */
4011 extract_insn (p);
4012 if (n)
4013 n = constrain_operands (1);
4014 else
4015 break;
4017 /* If the constraints were not met, then
4018 undo the replacement. */
4019 if (!n)
4021 validate_replace_rtx (gen_rtx (code, mode,
4022 reload_reg),
4023 reload_reg, p);
4024 break;
4028 break;
4030 if (n == 1)
4032 REG_NOTES (p)
4033 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4034 REG_NOTES (p));
4035 /* Mark this as having an output reload so that the
4036 REG_INC processing code below won't invalidate
4037 the reload for inheritance. */
4038 SET_HARD_REG_BIT (reg_is_output_reload,
4039 REGNO (reload_reg));
4040 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4042 else
4043 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4044 NULL);
4046 else if ((code == PRE_INC || code == PRE_DEC)
4047 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4048 REGNO (rld[i].reg_rtx))
4049 /* Make sure it is the inc/dec pseudo, and not
4050 some other (e.g. output operand) pseudo. */
4051 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4052 == REGNO (XEXP (in_reg, 0))))
4054 SET_HARD_REG_BIT (reg_is_output_reload,
4055 REGNO (rld[i].reg_rtx));
4056 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4060 /* If a pseudo that got a hard register is auto-incremented,
4061 we must purge records of copying it into pseudos without
4062 hard registers. */
4063 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4064 if (REG_NOTE_KIND (x) == REG_INC)
4066 /* See if this pseudo reg was reloaded in this insn.
4067 If so, its last-reload info is still valid
4068 because it is based on this insn's reload. */
4069 for (i = 0; i < n_reloads; i++)
4070 if (rld[i].out == XEXP (x, 0))
4071 break;
4073 if (i == n_reloads)
4074 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4076 #endif
4078 /* A reload reg's contents are unknown after a label. */
4079 if (GET_CODE (insn) == CODE_LABEL)
4080 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4082 /* Don't assume a reload reg is still good after a call insn
4083 if it is a call-used reg. */
4084 else if (GET_CODE (insn) == CALL_INSN)
4085 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4088 /* Clean up. */
4089 free (reg_last_reload_reg);
4090 free (reg_has_output_reload);
4093 /* Discard all record of any value reloaded from X,
4094 or reloaded in X from someplace else;
4095 unless X is an output reload reg of the current insn.
4097 X may be a hard reg (the reload reg)
4098 or it may be a pseudo reg that was reloaded from. */
4100 static void
4101 forget_old_reloads_1 (x, ignored, data)
4102 rtx x;
4103 rtx ignored ATTRIBUTE_UNUSED;
4104 void *data ATTRIBUTE_UNUSED;
4106 unsigned int regno;
4107 unsigned int nr;
4109 /* note_stores does give us subregs of hard regs,
4110 subreg_regno_offset will abort if it is not a hard reg. */
4111 while (GET_CODE (x) == SUBREG)
4113 /* We ignore the subreg offset when calculating the regno,
4114 because we are using the entire underlying hard register
4115 below. */
4116 x = SUBREG_REG (x);
4119 if (GET_CODE (x) != REG)
4120 return;
4122 regno = REGNO (x);
4124 if (regno >= FIRST_PSEUDO_REGISTER)
4125 nr = 1;
4126 else
4128 unsigned int i;
4130 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4131 /* Storing into a spilled-reg invalidates its contents.
4132 This can happen if a block-local pseudo is allocated to that reg
4133 and it wasn't spilled because this block's total need is 0.
4134 Then some insn might have an optional reload and use this reg. */
4135 for (i = 0; i < nr; i++)
4136 /* But don't do this if the reg actually serves as an output
4137 reload reg in the current instruction. */
4138 if (n_reloads == 0
4139 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4141 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4142 spill_reg_store[regno + i] = 0;
4146 /* Since value of X has changed,
4147 forget any value previously copied from it. */
4149 while (nr-- > 0)
4150 /* But don't forget a copy if this is the output reload
4151 that establishes the copy's validity. */
4152 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4153 reg_last_reload_reg[regno + nr] = 0;
4156 /* The following HARD_REG_SETs indicate when each hard register is
4157 used for a reload of various parts of the current insn. */
4159 /* If reg is unavailable for all reloads. */
4160 static HARD_REG_SET reload_reg_unavailable;
4161 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4162 static HARD_REG_SET reload_reg_used;
4163 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4164 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4165 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4166 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4167 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4168 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4169 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4170 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4171 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4172 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4173 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4174 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4175 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4176 static HARD_REG_SET reload_reg_used_in_op_addr;
4177 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4178 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4179 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4180 static HARD_REG_SET reload_reg_used_in_insn;
4181 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4182 static HARD_REG_SET reload_reg_used_in_other_addr;
4184 /* If reg is in use as a reload reg for any sort of reload. */
4185 static HARD_REG_SET reload_reg_used_at_all;
4187 /* If reg is use as an inherited reload. We just mark the first register
4188 in the group. */
4189 static HARD_REG_SET reload_reg_used_for_inherit;
4191 /* Records which hard regs are used in any way, either as explicit use or
4192 by being allocated to a pseudo during any point of the current insn. */
4193 static HARD_REG_SET reg_used_in_insn;
4195 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4196 TYPE. MODE is used to indicate how many consecutive regs are
4197 actually used. */
4199 static void
4200 mark_reload_reg_in_use (regno, opnum, type, mode)
4201 unsigned int regno;
4202 int opnum;
4203 enum reload_type type;
4204 enum machine_mode mode;
4206 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4207 unsigned int i;
4209 for (i = regno; i < nregs + regno; i++)
4211 switch (type)
4213 case RELOAD_OTHER:
4214 SET_HARD_REG_BIT (reload_reg_used, i);
4215 break;
4217 case RELOAD_FOR_INPUT_ADDRESS:
4218 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4219 break;
4221 case RELOAD_FOR_INPADDR_ADDRESS:
4222 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4223 break;
4225 case RELOAD_FOR_OUTPUT_ADDRESS:
4226 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4227 break;
4229 case RELOAD_FOR_OUTADDR_ADDRESS:
4230 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4231 break;
4233 case RELOAD_FOR_OPERAND_ADDRESS:
4234 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4235 break;
4237 case RELOAD_FOR_OPADDR_ADDR:
4238 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4239 break;
4241 case RELOAD_FOR_OTHER_ADDRESS:
4242 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4243 break;
4245 case RELOAD_FOR_INPUT:
4246 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4247 break;
4249 case RELOAD_FOR_OUTPUT:
4250 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4251 break;
4253 case RELOAD_FOR_INSN:
4254 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4255 break;
4258 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4262 /* Similarly, but show REGNO is no longer in use for a reload. */
4264 static void
4265 clear_reload_reg_in_use (regno, opnum, type, mode)
4266 unsigned int regno;
4267 int opnum;
4268 enum reload_type type;
4269 enum machine_mode mode;
4271 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4272 unsigned int start_regno, end_regno, r;
4273 int i;
4274 /* A complication is that for some reload types, inheritance might
4275 allow multiple reloads of the same types to share a reload register.
4276 We set check_opnum if we have to check only reloads with the same
4277 operand number, and check_any if we have to check all reloads. */
4278 int check_opnum = 0;
4279 int check_any = 0;
4280 HARD_REG_SET *used_in_set;
4282 switch (type)
4284 case RELOAD_OTHER:
4285 used_in_set = &reload_reg_used;
4286 break;
4288 case RELOAD_FOR_INPUT_ADDRESS:
4289 used_in_set = &reload_reg_used_in_input_addr[opnum];
4290 break;
4292 case RELOAD_FOR_INPADDR_ADDRESS:
4293 check_opnum = 1;
4294 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4295 break;
4297 case RELOAD_FOR_OUTPUT_ADDRESS:
4298 used_in_set = &reload_reg_used_in_output_addr[opnum];
4299 break;
4301 case RELOAD_FOR_OUTADDR_ADDRESS:
4302 check_opnum = 1;
4303 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4304 break;
4306 case RELOAD_FOR_OPERAND_ADDRESS:
4307 used_in_set = &reload_reg_used_in_op_addr;
4308 break;
4310 case RELOAD_FOR_OPADDR_ADDR:
4311 check_any = 1;
4312 used_in_set = &reload_reg_used_in_op_addr_reload;
4313 break;
4315 case RELOAD_FOR_OTHER_ADDRESS:
4316 used_in_set = &reload_reg_used_in_other_addr;
4317 check_any = 1;
4318 break;
4320 case RELOAD_FOR_INPUT:
4321 used_in_set = &reload_reg_used_in_input[opnum];
4322 break;
4324 case RELOAD_FOR_OUTPUT:
4325 used_in_set = &reload_reg_used_in_output[opnum];
4326 break;
4328 case RELOAD_FOR_INSN:
4329 used_in_set = &reload_reg_used_in_insn;
4330 break;
4331 default:
4332 abort ();
4334 /* We resolve conflicts with remaining reloads of the same type by
4335 excluding the intervals of reload registers by them from the
4336 interval of freed reload registers. Since we only keep track of
4337 one set of interval bounds, we might have to exclude somewhat
4338 more than what would be necessary if we used a HARD_REG_SET here.
4339 But this should only happen very infrequently, so there should
4340 be no reason to worry about it. */
4342 start_regno = regno;
4343 end_regno = regno + nregs;
4344 if (check_opnum || check_any)
4346 for (i = n_reloads - 1; i >= 0; i--)
4348 if (rld[i].when_needed == type
4349 && (check_any || rld[i].opnum == opnum)
4350 && rld[i].reg_rtx)
4352 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4353 unsigned int conflict_end
4354 = (conflict_start
4355 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4357 /* If there is an overlap with the first to-be-freed register,
4358 adjust the interval start. */
4359 if (conflict_start <= start_regno && conflict_end > start_regno)
4360 start_regno = conflict_end;
4361 /* Otherwise, if there is a conflict with one of the other
4362 to-be-freed registers, adjust the interval end. */
4363 if (conflict_start > start_regno && conflict_start < end_regno)
4364 end_regno = conflict_start;
4369 for (r = start_regno; r < end_regno; r++)
4370 CLEAR_HARD_REG_BIT (*used_in_set, r);
4373 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4374 specified by OPNUM and TYPE. */
4376 static int
4377 reload_reg_free_p (regno, opnum, type)
4378 unsigned int regno;
4379 int opnum;
4380 enum reload_type type;
4382 int i;
4384 /* In use for a RELOAD_OTHER means it's not available for anything. */
4385 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4386 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4387 return 0;
4389 switch (type)
4391 case RELOAD_OTHER:
4392 /* In use for anything means we can't use it for RELOAD_OTHER. */
4393 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4394 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4395 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4396 return 0;
4398 for (i = 0; i < reload_n_operands; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4400 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4401 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4402 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4403 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4404 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4405 return 0;
4407 return 1;
4409 case RELOAD_FOR_INPUT:
4410 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4411 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4412 return 0;
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4415 return 0;
4417 /* If it is used for some other input, can't use it. */
4418 for (i = 0; i < reload_n_operands; i++)
4419 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4420 return 0;
4422 /* If it is used in a later operand's address, can't use it. */
4423 for (i = opnum + 1; i < reload_n_operands; i++)
4424 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4425 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4426 return 0;
4428 return 1;
4430 case RELOAD_FOR_INPUT_ADDRESS:
4431 /* Can't use a register if it is used for an input address for this
4432 operand or used as an input in an earlier one. */
4433 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4434 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4435 return 0;
4437 for (i = 0; i < opnum; i++)
4438 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4439 return 0;
4441 return 1;
4443 case RELOAD_FOR_INPADDR_ADDRESS:
4444 /* Can't use a register if it is used for an input address
4445 for this operand or used as an input in an earlier
4446 one. */
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4448 return 0;
4450 for (i = 0; i < opnum; i++)
4451 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4452 return 0;
4454 return 1;
4456 case RELOAD_FOR_OUTPUT_ADDRESS:
4457 /* Can't use a register if it is used for an output address for this
4458 operand or used as an output in this or a later operand. Note
4459 that multiple output operands are emitted in reverse order, so
4460 the conflicting ones are those with lower indices. */
4461 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4462 return 0;
4464 for (i = 0; i <= opnum; i++)
4465 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4466 return 0;
4468 return 1;
4470 case RELOAD_FOR_OUTADDR_ADDRESS:
4471 /* Can't use a register if it is used for an output address
4472 for this operand or used as an output in this or a
4473 later operand. Note that multiple output operands are
4474 emitted in reverse order, so the conflicting ones are
4475 those with lower indices. */
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4477 return 0;
4479 for (i = 0; i <= opnum; i++)
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4481 return 0;
4483 return 1;
4485 case RELOAD_FOR_OPERAND_ADDRESS:
4486 for (i = 0; i < reload_n_operands; i++)
4487 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4488 return 0;
4490 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4491 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4493 case RELOAD_FOR_OPADDR_ADDR:
4494 for (i = 0; i < reload_n_operands; i++)
4495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4496 return 0;
4498 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4500 case RELOAD_FOR_OUTPUT:
4501 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4502 outputs, or an operand address for this or an earlier output.
4503 Note that multiple output operands are emitted in reverse order,
4504 so the conflicting ones are those with higher indices. */
4505 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4506 return 0;
4508 for (i = 0; i < reload_n_operands; i++)
4509 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4510 return 0;
4512 for (i = opnum; i < reload_n_operands; i++)
4513 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4514 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4515 return 0;
4517 return 1;
4519 case RELOAD_FOR_INSN:
4520 for (i = 0; i < reload_n_operands; i++)
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4523 return 0;
4525 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4526 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4528 case RELOAD_FOR_OTHER_ADDRESS:
4529 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4531 abort ();
4534 /* Return 1 if the value in reload reg REGNO, as used by a reload
4535 needed for the part of the insn specified by OPNUM and TYPE,
4536 is still available in REGNO at the end of the insn.
4538 We can assume that the reload reg was already tested for availability
4539 at the time it is needed, and we should not check this again,
4540 in case the reg has already been marked in use. */
4542 static int
4543 reload_reg_reaches_end_p (regno, opnum, type)
4544 unsigned int regno;
4545 int opnum;
4546 enum reload_type type;
4548 int i;
4550 switch (type)
4552 case RELOAD_OTHER:
4553 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4554 its value must reach the end. */
4555 return 1;
4557 /* If this use is for part of the insn,
4558 its value reaches if no subsequent part uses the same register.
4559 Just like the above function, don't try to do this with lots
4560 of fallthroughs. */
4562 case RELOAD_FOR_OTHER_ADDRESS:
4563 /* Here we check for everything else, since these don't conflict
4564 with anything else and everything comes later. */
4566 for (i = 0; i < reload_n_operands; i++)
4567 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4568 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4569 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4570 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4571 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4573 return 0;
4575 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4576 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4577 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4579 case RELOAD_FOR_INPUT_ADDRESS:
4580 case RELOAD_FOR_INPADDR_ADDRESS:
4581 /* Similar, except that we check only for this and subsequent inputs
4582 and the address of only subsequent inputs and we do not need
4583 to check for RELOAD_OTHER objects since they are known not to
4584 conflict. */
4586 for (i = opnum; i < reload_n_operands; i++)
4587 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4588 return 0;
4590 for (i = opnum + 1; i < reload_n_operands; i++)
4591 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4592 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4593 return 0;
4595 for (i = 0; i < reload_n_operands; i++)
4596 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4597 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4598 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4599 return 0;
4601 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4602 return 0;
4604 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4605 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4606 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4608 case RELOAD_FOR_INPUT:
4609 /* Similar to input address, except we start at the next operand for
4610 both input and input address and we do not check for
4611 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4612 would conflict. */
4614 for (i = opnum + 1; i < reload_n_operands; i++)
4615 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4616 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4617 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4618 return 0;
4620 /* ... fall through ... */
4622 case RELOAD_FOR_OPERAND_ADDRESS:
4623 /* Check outputs and their addresses. */
4625 for (i = 0; i < reload_n_operands; i++)
4626 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4627 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4629 return 0;
4631 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4633 case RELOAD_FOR_OPADDR_ADDR:
4634 for (i = 0; i < reload_n_operands; i++)
4635 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4636 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4637 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4638 return 0;
4640 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4641 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4642 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4644 case RELOAD_FOR_INSN:
4645 /* These conflict with other outputs with RELOAD_OTHER. So
4646 we need only check for output addresses. */
4648 opnum = reload_n_operands;
4650 /* ... fall through ... */
4652 case RELOAD_FOR_OUTPUT:
4653 case RELOAD_FOR_OUTPUT_ADDRESS:
4654 case RELOAD_FOR_OUTADDR_ADDRESS:
4655 /* We already know these can't conflict with a later output. So the
4656 only thing to check are later output addresses.
4657 Note that multiple output operands are emitted in reverse order,
4658 so the conflicting ones are those with lower indices. */
4659 for (i = 0; i < opnum; i++)
4660 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4661 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4662 return 0;
4664 return 1;
4667 abort ();
4670 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4671 Return 0 otherwise.
4673 This function uses the same algorithm as reload_reg_free_p above. */
4676 reloads_conflict (r1, r2)
4677 int r1, r2;
4679 enum reload_type r1_type = rld[r1].when_needed;
4680 enum reload_type r2_type = rld[r2].when_needed;
4681 int r1_opnum = rld[r1].opnum;
4682 int r2_opnum = rld[r2].opnum;
4684 /* RELOAD_OTHER conflicts with everything. */
4685 if (r2_type == RELOAD_OTHER)
4686 return 1;
4688 /* Otherwise, check conflicts differently for each type. */
4690 switch (r1_type)
4692 case RELOAD_FOR_INPUT:
4693 return (r2_type == RELOAD_FOR_INSN
4694 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4695 || r2_type == RELOAD_FOR_OPADDR_ADDR
4696 || r2_type == RELOAD_FOR_INPUT
4697 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4698 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4699 && r2_opnum > r1_opnum));
4701 case RELOAD_FOR_INPUT_ADDRESS:
4702 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4703 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4705 case RELOAD_FOR_INPADDR_ADDRESS:
4706 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4707 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4709 case RELOAD_FOR_OUTPUT_ADDRESS:
4710 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4711 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4713 case RELOAD_FOR_OUTADDR_ADDRESS:
4714 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4715 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4717 case RELOAD_FOR_OPERAND_ADDRESS:
4718 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4719 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4721 case RELOAD_FOR_OPADDR_ADDR:
4722 return (r2_type == RELOAD_FOR_INPUT
4723 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4725 case RELOAD_FOR_OUTPUT:
4726 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4727 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4728 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4729 && r2_opnum >= r1_opnum));
4731 case RELOAD_FOR_INSN:
4732 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4733 || r2_type == RELOAD_FOR_INSN
4734 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4736 case RELOAD_FOR_OTHER_ADDRESS:
4737 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4739 case RELOAD_OTHER:
4740 return 1;
4742 default:
4743 abort ();
4747 /* Indexed by reload number, 1 if incoming value
4748 inherited from previous insns. */
4749 char reload_inherited[MAX_RELOADS];
4751 /* For an inherited reload, this is the insn the reload was inherited from,
4752 if we know it. Otherwise, this is 0. */
4753 rtx reload_inheritance_insn[MAX_RELOADS];
4755 /* If nonzero, this is a place to get the value of the reload,
4756 rather than using reload_in. */
4757 rtx reload_override_in[MAX_RELOADS];
4759 /* For each reload, the hard register number of the register used,
4760 or -1 if we did not need a register for this reload. */
4761 int reload_spill_index[MAX_RELOADS];
4763 /* Subroutine of free_for_value_p, used to check a single register.
4764 START_REGNO is the starting regno of the full reload register
4765 (possibly comprising multiple hard registers) that we are considering. */
4767 static int
4768 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4769 reloadnum, ignore_address_reloads)
4770 int start_regno, regno;
4771 int opnum;
4772 enum reload_type type;
4773 rtx value, out;
4774 int reloadnum;
4775 int ignore_address_reloads;
4777 int time1;
4778 /* Set if we see an input reload that must not share its reload register
4779 with any new earlyclobber, but might otherwise share the reload
4780 register with an output or input-output reload. */
4781 int check_earlyclobber = 0;
4782 int i;
4783 int copy = 0;
4785 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4786 return 0;
4788 if (out == const0_rtx)
4790 copy = 1;
4791 out = NULL_RTX;
4794 /* We use some pseudo 'time' value to check if the lifetimes of the
4795 new register use would overlap with the one of a previous reload
4796 that is not read-only or uses a different value.
4797 The 'time' used doesn't have to be linear in any shape or form, just
4798 monotonic.
4799 Some reload types use different 'buckets' for each operand.
4800 So there are MAX_RECOG_OPERANDS different time values for each
4801 such reload type.
4802 We compute TIME1 as the time when the register for the prospective
4803 new reload ceases to be live, and TIME2 for each existing
4804 reload as the time when that the reload register of that reload
4805 becomes live.
4806 Where there is little to be gained by exact lifetime calculations,
4807 we just make conservative assumptions, i.e. a longer lifetime;
4808 this is done in the 'default:' cases. */
4809 switch (type)
4811 case RELOAD_FOR_OTHER_ADDRESS:
4812 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4813 time1 = copy ? 0 : 1;
4814 break;
4815 case RELOAD_OTHER:
4816 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4817 break;
4818 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4819 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4820 respectively, to the time values for these, we get distinct time
4821 values. To get distinct time values for each operand, we have to
4822 multiply opnum by at least three. We round that up to four because
4823 multiply by four is often cheaper. */
4824 case RELOAD_FOR_INPADDR_ADDRESS:
4825 time1 = opnum * 4 + 2;
4826 break;
4827 case RELOAD_FOR_INPUT_ADDRESS:
4828 time1 = opnum * 4 + 3;
4829 break;
4830 case RELOAD_FOR_INPUT:
4831 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4832 executes (inclusive). */
4833 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4834 break;
4835 case RELOAD_FOR_OPADDR_ADDR:
4836 /* opnum * 4 + 4
4837 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4838 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4839 break;
4840 case RELOAD_FOR_OPERAND_ADDRESS:
4841 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4842 is executed. */
4843 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4844 break;
4845 case RELOAD_FOR_OUTADDR_ADDRESS:
4846 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4847 break;
4848 case RELOAD_FOR_OUTPUT_ADDRESS:
4849 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4850 break;
4851 default:
4852 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4855 for (i = 0; i < n_reloads; i++)
4857 rtx reg = rld[i].reg_rtx;
4858 if (reg && GET_CODE (reg) == REG
4859 && ((unsigned) regno - true_regnum (reg)
4860 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4861 && i != reloadnum)
4863 rtx other_input = rld[i].in;
4865 /* If the other reload loads the same input value, that
4866 will not cause a conflict only if it's loading it into
4867 the same register. */
4868 if (true_regnum (reg) != start_regno)
4869 other_input = NULL_RTX;
4870 if (! other_input || ! rtx_equal_p (other_input, value)
4871 || rld[i].out || out)
4873 int time2;
4874 switch (rld[i].when_needed)
4876 case RELOAD_FOR_OTHER_ADDRESS:
4877 time2 = 0;
4878 break;
4879 case RELOAD_FOR_INPADDR_ADDRESS:
4880 /* find_reloads makes sure that a
4881 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4882 by at most one - the first -
4883 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4884 address reload is inherited, the address address reload
4885 goes away, so we can ignore this conflict. */
4886 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4887 && ignore_address_reloads
4888 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4889 Then the address address is still needed to store
4890 back the new address. */
4891 && ! rld[reloadnum].out)
4892 continue;
4893 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4894 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4895 reloads go away. */
4896 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4897 && ignore_address_reloads
4898 /* Unless we are reloading an auto_inc expression. */
4899 && ! rld[reloadnum].out)
4900 continue;
4901 time2 = rld[i].opnum * 4 + 2;
4902 break;
4903 case RELOAD_FOR_INPUT_ADDRESS:
4904 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4905 && ignore_address_reloads
4906 && ! rld[reloadnum].out)
4907 continue;
4908 time2 = rld[i].opnum * 4 + 3;
4909 break;
4910 case RELOAD_FOR_INPUT:
4911 time2 = rld[i].opnum * 4 + 4;
4912 check_earlyclobber = 1;
4913 break;
4914 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4915 == MAX_RECOG_OPERAND * 4 */
4916 case RELOAD_FOR_OPADDR_ADDR:
4917 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4918 && ignore_address_reloads
4919 && ! rld[reloadnum].out)
4920 continue;
4921 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4922 break;
4923 case RELOAD_FOR_OPERAND_ADDRESS:
4924 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4925 check_earlyclobber = 1;
4926 break;
4927 case RELOAD_FOR_INSN:
4928 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4929 break;
4930 case RELOAD_FOR_OUTPUT:
4931 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4932 instruction is executed. */
4933 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4934 break;
4935 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4936 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4937 value. */
4938 case RELOAD_FOR_OUTADDR_ADDRESS:
4939 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4940 && ignore_address_reloads
4941 && ! rld[reloadnum].out)
4942 continue;
4943 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4944 break;
4945 case RELOAD_FOR_OUTPUT_ADDRESS:
4946 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4947 break;
4948 case RELOAD_OTHER:
4949 /* If there is no conflict in the input part, handle this
4950 like an output reload. */
4951 if (! rld[i].in || rtx_equal_p (other_input, value))
4953 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4954 /* Earlyclobbered outputs must conflict with inputs. */
4955 if (earlyclobber_operand_p (rld[i].out))
4956 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4958 break;
4960 time2 = 1;
4961 /* RELOAD_OTHER might be live beyond instruction execution,
4962 but this is not obvious when we set time2 = 1. So check
4963 here if there might be a problem with the new reload
4964 clobbering the register used by the RELOAD_OTHER. */
4965 if (out)
4966 return 0;
4967 break;
4968 default:
4969 return 0;
4971 if ((time1 >= time2
4972 && (! rld[i].in || rld[i].out
4973 || ! rtx_equal_p (other_input, value)))
4974 || (out && rld[reloadnum].out_reg
4975 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4976 return 0;
4981 /* Earlyclobbered outputs must conflict with inputs. */
4982 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4983 return 0;
4985 return 1;
4988 /* Return 1 if the value in reload reg REGNO, as used by a reload
4989 needed for the part of the insn specified by OPNUM and TYPE,
4990 may be used to load VALUE into it.
4992 MODE is the mode in which the register is used, this is needed to
4993 determine how many hard regs to test.
4995 Other read-only reloads with the same value do not conflict
4996 unless OUT is nonzero and these other reloads have to live while
4997 output reloads live.
4998 If OUT is CONST0_RTX, this is a special case: it means that the
4999 test should not be for using register REGNO as reload register, but
5000 for copying from register REGNO into the reload register.
5002 RELOADNUM is the number of the reload we want to load this value for;
5003 a reload does not conflict with itself.
5005 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5006 reloads that load an address for the very reload we are considering.
5008 The caller has to make sure that there is no conflict with the return
5009 register. */
5011 static int
5012 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5013 ignore_address_reloads)
5014 int regno;
5015 enum machine_mode mode;
5016 int opnum;
5017 enum reload_type type;
5018 rtx value, out;
5019 int reloadnum;
5020 int ignore_address_reloads;
5022 int nregs = HARD_REGNO_NREGS (regno, mode);
5023 while (nregs-- > 0)
5024 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5025 value, out, reloadnum,
5026 ignore_address_reloads))
5027 return 0;
5028 return 1;
5031 /* Determine whether the reload reg X overlaps any rtx'es used for
5032 overriding inheritance. Return nonzero if so. */
5034 static int
5035 conflicts_with_override (x)
5036 rtx x;
5038 int i;
5039 for (i = 0; i < n_reloads; i++)
5040 if (reload_override_in[i]
5041 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5042 return 1;
5043 return 0;
5046 /* Give an error message saying we failed to find a reload for INSN,
5047 and clear out reload R. */
5048 static void
5049 failed_reload (insn, r)
5050 rtx insn;
5051 int r;
5053 if (asm_noperands (PATTERN (insn)) < 0)
5054 /* It's the compiler's fault. */
5055 fatal_insn ("could not find a spill register", insn);
5057 /* It's the user's fault; the operand's mode and constraint
5058 don't match. Disable this reload so we don't crash in final. */
5059 error_for_asm (insn,
5060 "`asm' operand constraint incompatible with operand size");
5061 rld[r].in = 0;
5062 rld[r].out = 0;
5063 rld[r].reg_rtx = 0;
5064 rld[r].optional = 1;
5065 rld[r].secondary_p = 1;
5068 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5069 for reload R. If it's valid, get an rtx for it. Return nonzero if
5070 successful. */
5071 static int
5072 set_reload_reg (i, r)
5073 int i, r;
5075 int regno;
5076 rtx reg = spill_reg_rtx[i];
5078 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5079 spill_reg_rtx[i] = reg
5080 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5082 regno = true_regnum (reg);
5084 /* Detect when the reload reg can't hold the reload mode.
5085 This used to be one `if', but Sequent compiler can't handle that. */
5086 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5088 enum machine_mode test_mode = VOIDmode;
5089 if (rld[r].in)
5090 test_mode = GET_MODE (rld[r].in);
5091 /* If rld[r].in has VOIDmode, it means we will load it
5092 in whatever mode the reload reg has: to wit, rld[r].mode.
5093 We have already tested that for validity. */
5094 /* Aside from that, we need to test that the expressions
5095 to reload from or into have modes which are valid for this
5096 reload register. Otherwise the reload insns would be invalid. */
5097 if (! (rld[r].in != 0 && test_mode != VOIDmode
5098 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5099 if (! (rld[r].out != 0
5100 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5102 /* The reg is OK. */
5103 last_spill_reg = i;
5105 /* Mark as in use for this insn the reload regs we use
5106 for this. */
5107 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5108 rld[r].when_needed, rld[r].mode);
5110 rld[r].reg_rtx = reg;
5111 reload_spill_index[r] = spill_regs[i];
5112 return 1;
5115 return 0;
5118 /* Find a spill register to use as a reload register for reload R.
5119 LAST_RELOAD is nonzero if this is the last reload for the insn being
5120 processed.
5122 Set rld[R].reg_rtx to the register allocated.
5124 We return 1 if successful, or 0 if we couldn't find a spill reg and
5125 we didn't change anything. */
5127 static int
5128 allocate_reload_reg (chain, r, last_reload)
5129 struct insn_chain *chain ATTRIBUTE_UNUSED;
5130 int r;
5131 int last_reload;
5133 int i, pass, count;
5135 /* If we put this reload ahead, thinking it is a group,
5136 then insist on finding a group. Otherwise we can grab a
5137 reg that some other reload needs.
5138 (That can happen when we have a 68000 DATA_OR_FP_REG
5139 which is a group of data regs or one fp reg.)
5140 We need not be so restrictive if there are no more reloads
5141 for this insn.
5143 ??? Really it would be nicer to have smarter handling
5144 for that kind of reg class, where a problem like this is normal.
5145 Perhaps those classes should be avoided for reloading
5146 by use of more alternatives. */
5148 int force_group = rld[r].nregs > 1 && ! last_reload;
5150 /* If we want a single register and haven't yet found one,
5151 take any reg in the right class and not in use.
5152 If we want a consecutive group, here is where we look for it.
5154 We use two passes so we can first look for reload regs to
5155 reuse, which are already in use for other reloads in this insn,
5156 and only then use additional registers.
5157 I think that maximizing reuse is needed to make sure we don't
5158 run out of reload regs. Suppose we have three reloads, and
5159 reloads A and B can share regs. These need two regs.
5160 Suppose A and B are given different regs.
5161 That leaves none for C. */
5162 for (pass = 0; pass < 2; pass++)
5164 /* I is the index in spill_regs.
5165 We advance it round-robin between insns to use all spill regs
5166 equally, so that inherited reloads have a chance
5167 of leapfrogging each other. */
5169 i = last_spill_reg;
5171 for (count = 0; count < n_spills; count++)
5173 int class = (int) rld[r].class;
5174 int regnum;
5176 i++;
5177 if (i >= n_spills)
5178 i -= n_spills;
5179 regnum = spill_regs[i];
5181 if ((reload_reg_free_p (regnum, rld[r].opnum,
5182 rld[r].when_needed)
5183 || (rld[r].in
5184 /* We check reload_reg_used to make sure we
5185 don't clobber the return register. */
5186 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5187 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5188 rld[r].when_needed, rld[r].in,
5189 rld[r].out, r, 1)))
5190 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5191 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5192 /* Look first for regs to share, then for unshared. But
5193 don't share regs used for inherited reloads; they are
5194 the ones we want to preserve. */
5195 && (pass
5196 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5197 regnum)
5198 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5199 regnum))))
5201 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5202 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5203 (on 68000) got us two FP regs. If NR is 1,
5204 we would reject both of them. */
5205 if (force_group)
5206 nr = rld[r].nregs;
5207 /* If we need only one reg, we have already won. */
5208 if (nr == 1)
5210 /* But reject a single reg if we demand a group. */
5211 if (force_group)
5212 continue;
5213 break;
5215 /* Otherwise check that as many consecutive regs as we need
5216 are available here. */
5217 while (nr > 1)
5219 int regno = regnum + nr - 1;
5220 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5221 && spill_reg_order[regno] >= 0
5222 && reload_reg_free_p (regno, rld[r].opnum,
5223 rld[r].when_needed)))
5224 break;
5225 nr--;
5227 if (nr == 1)
5228 break;
5232 /* If we found something on pass 1, omit pass 2. */
5233 if (count < n_spills)
5234 break;
5237 /* We should have found a spill register by now. */
5238 if (count >= n_spills)
5239 return 0;
5241 /* I is the index in SPILL_REG_RTX of the reload register we are to
5242 allocate. Get an rtx for it and find its register number. */
5244 return set_reload_reg (i, r);
5247 /* Initialize all the tables needed to allocate reload registers.
5248 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5249 is the array we use to restore the reg_rtx field for every reload. */
5251 static void
5252 choose_reload_regs_init (chain, save_reload_reg_rtx)
5253 struct insn_chain *chain;
5254 rtx *save_reload_reg_rtx;
5256 int i;
5258 for (i = 0; i < n_reloads; i++)
5259 rld[i].reg_rtx = save_reload_reg_rtx[i];
5261 memset (reload_inherited, 0, MAX_RELOADS);
5262 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5263 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5265 CLEAR_HARD_REG_SET (reload_reg_used);
5266 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5267 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5268 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5269 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5270 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5272 CLEAR_HARD_REG_SET (reg_used_in_insn);
5274 HARD_REG_SET tmp;
5275 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5276 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5277 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5278 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5279 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5280 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5283 for (i = 0; i < reload_n_operands; i++)
5285 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5286 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5287 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5288 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5289 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5290 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5293 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5295 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5297 for (i = 0; i < n_reloads; i++)
5298 /* If we have already decided to use a certain register,
5299 don't use it in another way. */
5300 if (rld[i].reg_rtx)
5301 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5302 rld[i].when_needed, rld[i].mode);
5305 /* Assign hard reg targets for the pseudo-registers we must reload
5306 into hard regs for this insn.
5307 Also output the instructions to copy them in and out of the hard regs.
5309 For machines with register classes, we are responsible for
5310 finding a reload reg in the proper class. */
5312 static void
5313 choose_reload_regs (chain)
5314 struct insn_chain *chain;
5316 rtx insn = chain->insn;
5317 int i, j;
5318 unsigned int max_group_size = 1;
5319 enum reg_class group_class = NO_REGS;
5320 int pass, win, inheritance;
5322 rtx save_reload_reg_rtx[MAX_RELOADS];
5324 /* In order to be certain of getting the registers we need,
5325 we must sort the reloads into order of increasing register class.
5326 Then our grabbing of reload registers will parallel the process
5327 that provided the reload registers.
5329 Also note whether any of the reloads wants a consecutive group of regs.
5330 If so, record the maximum size of the group desired and what
5331 register class contains all the groups needed by this insn. */
5333 for (j = 0; j < n_reloads; j++)
5335 reload_order[j] = j;
5336 reload_spill_index[j] = -1;
5338 if (rld[j].nregs > 1)
5340 max_group_size = MAX (rld[j].nregs, max_group_size);
5341 group_class
5342 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5345 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5348 if (n_reloads > 1)
5349 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5351 /* If -O, try first with inheritance, then turning it off.
5352 If not -O, don't do inheritance.
5353 Using inheritance when not optimizing leads to paradoxes
5354 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5355 because one side of the comparison might be inherited. */
5356 win = 0;
5357 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5359 choose_reload_regs_init (chain, save_reload_reg_rtx);
5361 /* Process the reloads in order of preference just found.
5362 Beyond this point, subregs can be found in reload_reg_rtx.
5364 This used to look for an existing reloaded home for all of the
5365 reloads, and only then perform any new reloads. But that could lose
5366 if the reloads were done out of reg-class order because a later
5367 reload with a looser constraint might have an old home in a register
5368 needed by an earlier reload with a tighter constraint.
5370 To solve this, we make two passes over the reloads, in the order
5371 described above. In the first pass we try to inherit a reload
5372 from a previous insn. If there is a later reload that needs a
5373 class that is a proper subset of the class being processed, we must
5374 also allocate a spill register during the first pass.
5376 Then make a second pass over the reloads to allocate any reloads
5377 that haven't been given registers yet. */
5379 for (j = 0; j < n_reloads; j++)
5381 int r = reload_order[j];
5382 rtx search_equiv = NULL_RTX;
5384 /* Ignore reloads that got marked inoperative. */
5385 if (rld[r].out == 0 && rld[r].in == 0
5386 && ! rld[r].secondary_p)
5387 continue;
5389 /* If find_reloads chose to use reload_in or reload_out as a reload
5390 register, we don't need to chose one. Otherwise, try even if it
5391 found one since we might save an insn if we find the value lying
5392 around.
5393 Try also when reload_in is a pseudo without a hard reg. */
5394 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5395 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5396 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5397 && GET_CODE (rld[r].in) != MEM
5398 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5399 continue;
5401 #if 0 /* No longer needed for correct operation.
5402 It might give better code, or might not; worth an experiment? */
5403 /* If this is an optional reload, we can't inherit from earlier insns
5404 until we are sure that any non-optional reloads have been allocated.
5405 The following code takes advantage of the fact that optional reloads
5406 are at the end of reload_order. */
5407 if (rld[r].optional != 0)
5408 for (i = 0; i < j; i++)
5409 if ((rld[reload_order[i]].out != 0
5410 || rld[reload_order[i]].in != 0
5411 || rld[reload_order[i]].secondary_p)
5412 && ! rld[reload_order[i]].optional
5413 && rld[reload_order[i]].reg_rtx == 0)
5414 allocate_reload_reg (chain, reload_order[i], 0);
5415 #endif
5417 /* First see if this pseudo is already available as reloaded
5418 for a previous insn. We cannot try to inherit for reloads
5419 that are smaller than the maximum number of registers needed
5420 for groups unless the register we would allocate cannot be used
5421 for the groups.
5423 We could check here to see if this is a secondary reload for
5424 an object that is already in a register of the desired class.
5425 This would avoid the need for the secondary reload register.
5426 But this is complex because we can't easily determine what
5427 objects might want to be loaded via this reload. So let a
5428 register be allocated here. In `emit_reload_insns' we suppress
5429 one of the loads in the case described above. */
5431 if (inheritance)
5433 int byte = 0;
5434 int regno = -1;
5435 enum machine_mode mode = VOIDmode;
5437 if (rld[r].in == 0)
5439 else if (GET_CODE (rld[r].in) == REG)
5441 regno = REGNO (rld[r].in);
5442 mode = GET_MODE (rld[r].in);
5444 else if (GET_CODE (rld[r].in_reg) == REG)
5446 regno = REGNO (rld[r].in_reg);
5447 mode = GET_MODE (rld[r].in_reg);
5449 else if (GET_CODE (rld[r].in_reg) == SUBREG
5450 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5452 byte = SUBREG_BYTE (rld[r].in_reg);
5453 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5454 if (regno < FIRST_PSEUDO_REGISTER)
5455 regno = subreg_regno (rld[r].in_reg);
5456 mode = GET_MODE (rld[r].in_reg);
5458 #ifdef AUTO_INC_DEC
5459 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5460 || GET_CODE (rld[r].in_reg) == PRE_DEC
5461 || GET_CODE (rld[r].in_reg) == POST_INC
5462 || GET_CODE (rld[r].in_reg) == POST_DEC)
5463 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5465 regno = REGNO (XEXP (rld[r].in_reg, 0));
5466 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5467 rld[r].out = rld[r].in;
5469 #endif
5470 #if 0
5471 /* This won't work, since REGNO can be a pseudo reg number.
5472 Also, it takes much more hair to keep track of all the things
5473 that can invalidate an inherited reload of part of a pseudoreg. */
5474 else if (GET_CODE (rld[r].in) == SUBREG
5475 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5476 regno = subreg_regno (rld[r].in);
5477 #endif
5479 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5481 enum reg_class class = rld[r].class, last_class;
5482 rtx last_reg = reg_last_reload_reg[regno];
5483 enum machine_mode need_mode;
5485 i = REGNO (last_reg);
5486 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5487 last_class = REGNO_REG_CLASS (i);
5489 if (byte == 0)
5490 need_mode = mode;
5491 else
5492 need_mode
5493 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5494 GET_MODE_CLASS (mode));
5496 if (
5497 #ifdef CLASS_CANNOT_CHANGE_MODE
5498 (TEST_HARD_REG_BIT
5499 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5500 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5501 need_mode)
5502 : (GET_MODE_SIZE (GET_MODE (last_reg))
5503 >= GET_MODE_SIZE (need_mode)))
5504 #else
5505 (GET_MODE_SIZE (GET_MODE (last_reg))
5506 >= GET_MODE_SIZE (need_mode))
5507 #endif
5508 && reg_reloaded_contents[i] == regno
5509 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5510 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5511 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5512 /* Even if we can't use this register as a reload
5513 register, we might use it for reload_override_in,
5514 if copying it to the desired class is cheap
5515 enough. */
5516 || ((REGISTER_MOVE_COST (mode, last_class, class)
5517 < MEMORY_MOVE_COST (mode, class, 1))
5518 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5519 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5520 last_reg)
5521 == NO_REGS)
5522 #endif
5523 #ifdef SECONDARY_MEMORY_NEEDED
5524 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5525 mode)
5526 #endif
5529 && (rld[r].nregs == max_group_size
5530 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5532 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5533 rld[r].when_needed, rld[r].in,
5534 const0_rtx, r, 1))
5536 /* If a group is needed, verify that all the subsequent
5537 registers still have their values intact. */
5538 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5539 int k;
5541 for (k = 1; k < nr; k++)
5542 if (reg_reloaded_contents[i + k] != regno
5543 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5544 break;
5546 if (k == nr)
5548 int i1;
5549 int bad_for_class;
5551 last_reg = (GET_MODE (last_reg) == mode
5552 ? last_reg : gen_rtx_REG (mode, i));
5554 bad_for_class = 0;
5555 for (k = 0; k < nr; k++)
5556 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5557 i+k);
5559 /* We found a register that contains the
5560 value we need. If this register is the
5561 same as an `earlyclobber' operand of the
5562 current insn, just mark it as a place to
5563 reload from since we can't use it as the
5564 reload register itself. */
5566 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5567 if (reg_overlap_mentioned_for_reload_p
5568 (reg_last_reload_reg[regno],
5569 reload_earlyclobbers[i1]))
5570 break;
5572 if (i1 != n_earlyclobbers
5573 || ! (free_for_value_p (i, rld[r].mode,
5574 rld[r].opnum,
5575 rld[r].when_needed, rld[r].in,
5576 rld[r].out, r, 1))
5577 /* Don't use it if we'd clobber a pseudo reg. */
5578 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5579 && rld[r].out
5580 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5581 /* Don't clobber the frame pointer. */
5582 || (i == HARD_FRAME_POINTER_REGNUM
5583 && frame_pointer_needed
5584 && rld[r].out)
5585 /* Don't really use the inherited spill reg
5586 if we need it wider than we've got it. */
5587 || (GET_MODE_SIZE (rld[r].mode)
5588 > GET_MODE_SIZE (mode))
5589 || bad_for_class
5591 /* If find_reloads chose reload_out as reload
5592 register, stay with it - that leaves the
5593 inherited register for subsequent reloads. */
5594 || (rld[r].out && rld[r].reg_rtx
5595 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5597 if (! rld[r].optional)
5599 reload_override_in[r] = last_reg;
5600 reload_inheritance_insn[r]
5601 = reg_reloaded_insn[i];
5604 else
5606 int k;
5607 /* We can use this as a reload reg. */
5608 /* Mark the register as in use for this part of
5609 the insn. */
5610 mark_reload_reg_in_use (i,
5611 rld[r].opnum,
5612 rld[r].when_needed,
5613 rld[r].mode);
5614 rld[r].reg_rtx = last_reg;
5615 reload_inherited[r] = 1;
5616 reload_inheritance_insn[r]
5617 = reg_reloaded_insn[i];
5618 reload_spill_index[r] = i;
5619 for (k = 0; k < nr; k++)
5620 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5621 i + k);
5628 /* Here's another way to see if the value is already lying around. */
5629 if (inheritance
5630 && rld[r].in != 0
5631 && ! reload_inherited[r]
5632 && rld[r].out == 0
5633 && (CONSTANT_P (rld[r].in)
5634 || GET_CODE (rld[r].in) == PLUS
5635 || GET_CODE (rld[r].in) == REG
5636 || GET_CODE (rld[r].in) == MEM)
5637 && (rld[r].nregs == max_group_size
5638 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5639 search_equiv = rld[r].in;
5640 /* If this is an output reload from a simple move insn, look
5641 if an equivalence for the input is available. */
5642 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5644 rtx set = single_set (insn);
5646 if (set
5647 && rtx_equal_p (rld[r].out, SET_DEST (set))
5648 && CONSTANT_P (SET_SRC (set)))
5649 search_equiv = SET_SRC (set);
5652 if (search_equiv)
5654 rtx equiv
5655 = find_equiv_reg (search_equiv, insn, rld[r].class,
5656 -1, NULL, 0, rld[r].mode);
5657 int regno = 0;
5659 if (equiv != 0)
5661 if (GET_CODE (equiv) == REG)
5662 regno = REGNO (equiv);
5663 else if (GET_CODE (equiv) == SUBREG)
5665 /* This must be a SUBREG of a hard register.
5666 Make a new REG since this might be used in an
5667 address and not all machines support SUBREGs
5668 there. */
5669 regno = subreg_regno (equiv);
5670 equiv = gen_rtx_REG (rld[r].mode, regno);
5672 else
5673 abort ();
5676 /* If we found a spill reg, reject it unless it is free
5677 and of the desired class. */
5678 if (equiv != 0
5679 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5680 && ! free_for_value_p (regno, rld[r].mode,
5681 rld[r].opnum, rld[r].when_needed,
5682 rld[r].in, rld[r].out, r, 1))
5683 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5684 regno)))
5685 equiv = 0;
5687 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5688 equiv = 0;
5690 /* We found a register that contains the value we need.
5691 If this register is the same as an `earlyclobber' operand
5692 of the current insn, just mark it as a place to reload from
5693 since we can't use it as the reload register itself. */
5695 if (equiv != 0)
5696 for (i = 0; i < n_earlyclobbers; i++)
5697 if (reg_overlap_mentioned_for_reload_p (equiv,
5698 reload_earlyclobbers[i]))
5700 if (! rld[r].optional)
5701 reload_override_in[r] = equiv;
5702 equiv = 0;
5703 break;
5706 /* If the equiv register we have found is explicitly clobbered
5707 in the current insn, it depends on the reload type if we
5708 can use it, use it for reload_override_in, or not at all.
5709 In particular, we then can't use EQUIV for a
5710 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5712 if (equiv != 0)
5714 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5715 switch (rld[r].when_needed)
5717 case RELOAD_FOR_OTHER_ADDRESS:
5718 case RELOAD_FOR_INPADDR_ADDRESS:
5719 case RELOAD_FOR_INPUT_ADDRESS:
5720 case RELOAD_FOR_OPADDR_ADDR:
5721 break;
5722 case RELOAD_OTHER:
5723 case RELOAD_FOR_INPUT:
5724 case RELOAD_FOR_OPERAND_ADDRESS:
5725 if (! rld[r].optional)
5726 reload_override_in[r] = equiv;
5727 /* Fall through. */
5728 default:
5729 equiv = 0;
5730 break;
5732 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5733 switch (rld[r].when_needed)
5735 case RELOAD_FOR_OTHER_ADDRESS:
5736 case RELOAD_FOR_INPADDR_ADDRESS:
5737 case RELOAD_FOR_INPUT_ADDRESS:
5738 case RELOAD_FOR_OPADDR_ADDR:
5739 case RELOAD_FOR_OPERAND_ADDRESS:
5740 case RELOAD_FOR_INPUT:
5741 break;
5742 case RELOAD_OTHER:
5743 if (! rld[r].optional)
5744 reload_override_in[r] = equiv;
5745 /* Fall through. */
5746 default:
5747 equiv = 0;
5748 break;
5752 /* If we found an equivalent reg, say no code need be generated
5753 to load it, and use it as our reload reg. */
5754 if (equiv != 0
5755 && (regno != HARD_FRAME_POINTER_REGNUM
5756 || !frame_pointer_needed))
5758 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5759 int k;
5760 rld[r].reg_rtx = equiv;
5761 reload_inherited[r] = 1;
5763 /* If reg_reloaded_valid is not set for this register,
5764 there might be a stale spill_reg_store lying around.
5765 We must clear it, since otherwise emit_reload_insns
5766 might delete the store. */
5767 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5768 spill_reg_store[regno] = NULL_RTX;
5769 /* If any of the hard registers in EQUIV are spill
5770 registers, mark them as in use for this insn. */
5771 for (k = 0; k < nr; k++)
5773 i = spill_reg_order[regno + k];
5774 if (i >= 0)
5776 mark_reload_reg_in_use (regno, rld[r].opnum,
5777 rld[r].when_needed,
5778 rld[r].mode);
5779 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5780 regno + k);
5786 /* If we found a register to use already, or if this is an optional
5787 reload, we are done. */
5788 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5789 continue;
5791 #if 0
5792 /* No longer needed for correct operation. Might or might
5793 not give better code on the average. Want to experiment? */
5795 /* See if there is a later reload that has a class different from our
5796 class that intersects our class or that requires less register
5797 than our reload. If so, we must allocate a register to this
5798 reload now, since that reload might inherit a previous reload
5799 and take the only available register in our class. Don't do this
5800 for optional reloads since they will force all previous reloads
5801 to be allocated. Also don't do this for reloads that have been
5802 turned off. */
5804 for (i = j + 1; i < n_reloads; i++)
5806 int s = reload_order[i];
5808 if ((rld[s].in == 0 && rld[s].out == 0
5809 && ! rld[s].secondary_p)
5810 || rld[s].optional)
5811 continue;
5813 if ((rld[s].class != rld[r].class
5814 && reg_classes_intersect_p (rld[r].class,
5815 rld[s].class))
5816 || rld[s].nregs < rld[r].nregs)
5817 break;
5820 if (i == n_reloads)
5821 continue;
5823 allocate_reload_reg (chain, r, j == n_reloads - 1);
5824 #endif
5827 /* Now allocate reload registers for anything non-optional that
5828 didn't get one yet. */
5829 for (j = 0; j < n_reloads; j++)
5831 int r = reload_order[j];
5833 /* Ignore reloads that got marked inoperative. */
5834 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5835 continue;
5837 /* Skip reloads that already have a register allocated or are
5838 optional. */
5839 if (rld[r].reg_rtx != 0 || rld[r].optional)
5840 continue;
5842 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5843 break;
5846 /* If that loop got all the way, we have won. */
5847 if (j == n_reloads)
5849 win = 1;
5850 break;
5853 /* Loop around and try without any inheritance. */
5856 if (! win)
5858 /* First undo everything done by the failed attempt
5859 to allocate with inheritance. */
5860 choose_reload_regs_init (chain, save_reload_reg_rtx);
5862 /* Some sanity tests to verify that the reloads found in the first
5863 pass are identical to the ones we have now. */
5864 if (chain->n_reloads != n_reloads)
5865 abort ();
5867 for (i = 0; i < n_reloads; i++)
5869 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5870 continue;
5871 if (chain->rld[i].when_needed != rld[i].when_needed)
5872 abort ();
5873 for (j = 0; j < n_spills; j++)
5874 if (spill_regs[j] == chain->rld[i].regno)
5875 if (! set_reload_reg (j, i))
5876 failed_reload (chain->insn, i);
5880 /* If we thought we could inherit a reload, because it seemed that
5881 nothing else wanted the same reload register earlier in the insn,
5882 verify that assumption, now that all reloads have been assigned.
5883 Likewise for reloads where reload_override_in has been set. */
5885 /* If doing expensive optimizations, do one preliminary pass that doesn't
5886 cancel any inheritance, but removes reloads that have been needed only
5887 for reloads that we know can be inherited. */
5888 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5890 for (j = 0; j < n_reloads; j++)
5892 int r = reload_order[j];
5893 rtx check_reg;
5894 if (reload_inherited[r] && rld[r].reg_rtx)
5895 check_reg = rld[r].reg_rtx;
5896 else if (reload_override_in[r]
5897 && (GET_CODE (reload_override_in[r]) == REG
5898 || GET_CODE (reload_override_in[r]) == SUBREG))
5899 check_reg = reload_override_in[r];
5900 else
5901 continue;
5902 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5903 rld[r].opnum, rld[r].when_needed, rld[r].in,
5904 (reload_inherited[r]
5905 ? rld[r].out : const0_rtx),
5906 r, 1))
5908 if (pass)
5909 continue;
5910 reload_inherited[r] = 0;
5911 reload_override_in[r] = 0;
5913 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5914 reload_override_in, then we do not need its related
5915 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5916 likewise for other reload types.
5917 We handle this by removing a reload when its only replacement
5918 is mentioned in reload_in of the reload we are going to inherit.
5919 A special case are auto_inc expressions; even if the input is
5920 inherited, we still need the address for the output. We can
5921 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5922 If we succeeded removing some reload and we are doing a preliminary
5923 pass just to remove such reloads, make another pass, since the
5924 removal of one reload might allow us to inherit another one. */
5925 else if (rld[r].in
5926 && rld[r].out != rld[r].in
5927 && remove_address_replacements (rld[r].in) && pass)
5928 pass = 2;
5932 /* Now that reload_override_in is known valid,
5933 actually override reload_in. */
5934 for (j = 0; j < n_reloads; j++)
5935 if (reload_override_in[j])
5936 rld[j].in = reload_override_in[j];
5938 /* If this reload won't be done because it has been cancelled or is
5939 optional and not inherited, clear reload_reg_rtx so other
5940 routines (such as subst_reloads) don't get confused. */
5941 for (j = 0; j < n_reloads; j++)
5942 if (rld[j].reg_rtx != 0
5943 && ((rld[j].optional && ! reload_inherited[j])
5944 || (rld[j].in == 0 && rld[j].out == 0
5945 && ! rld[j].secondary_p)))
5947 int regno = true_regnum (rld[j].reg_rtx);
5949 if (spill_reg_order[regno] >= 0)
5950 clear_reload_reg_in_use (regno, rld[j].opnum,
5951 rld[j].when_needed, rld[j].mode);
5952 rld[j].reg_rtx = 0;
5953 reload_spill_index[j] = -1;
5956 /* Record which pseudos and which spill regs have output reloads. */
5957 for (j = 0; j < n_reloads; j++)
5959 int r = reload_order[j];
5961 i = reload_spill_index[r];
5963 /* I is nonneg if this reload uses a register.
5964 If rld[r].reg_rtx is 0, this is an optional reload
5965 that we opted to ignore. */
5966 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5967 && rld[r].reg_rtx != 0)
5969 int nregno = REGNO (rld[r].out_reg);
5970 int nr = 1;
5972 if (nregno < FIRST_PSEUDO_REGISTER)
5973 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5975 while (--nr >= 0)
5976 reg_has_output_reload[nregno + nr] = 1;
5978 if (i >= 0)
5980 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5981 while (--nr >= 0)
5982 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5985 if (rld[r].when_needed != RELOAD_OTHER
5986 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5987 && rld[r].when_needed != RELOAD_FOR_INSN)
5988 abort ();
5993 /* Deallocate the reload register for reload R. This is called from
5994 remove_address_replacements. */
5996 void
5997 deallocate_reload_reg (r)
5998 int r;
6000 int regno;
6002 if (! rld[r].reg_rtx)
6003 return;
6004 regno = true_regnum (rld[r].reg_rtx);
6005 rld[r].reg_rtx = 0;
6006 if (spill_reg_order[regno] >= 0)
6007 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6008 rld[r].mode);
6009 reload_spill_index[r] = -1;
6012 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6013 reloads of the same item for fear that we might not have enough reload
6014 registers. However, normally they will get the same reload register
6015 and hence actually need not be loaded twice.
6017 Here we check for the most common case of this phenomenon: when we have
6018 a number of reloads for the same object, each of which were allocated
6019 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6020 reload, and is not modified in the insn itself. If we find such,
6021 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6022 This will not increase the number of spill registers needed and will
6023 prevent redundant code. */
6025 static void
6026 merge_assigned_reloads (insn)
6027 rtx insn;
6029 int i, j;
6031 /* Scan all the reloads looking for ones that only load values and
6032 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6033 assigned and not modified by INSN. */
6035 for (i = 0; i < n_reloads; i++)
6037 int conflicting_input = 0;
6038 int max_input_address_opnum = -1;
6039 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6041 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6042 || rld[i].out != 0 || rld[i].reg_rtx == 0
6043 || reg_set_p (rld[i].reg_rtx, insn))
6044 continue;
6046 /* Look at all other reloads. Ensure that the only use of this
6047 reload_reg_rtx is in a reload that just loads the same value
6048 as we do. Note that any secondary reloads must be of the identical
6049 class since the values, modes, and result registers are the
6050 same, so we need not do anything with any secondary reloads. */
6052 for (j = 0; j < n_reloads; j++)
6054 if (i == j || rld[j].reg_rtx == 0
6055 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6056 rld[i].reg_rtx))
6057 continue;
6059 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6060 && rld[j].opnum > max_input_address_opnum)
6061 max_input_address_opnum = rld[j].opnum;
6063 /* If the reload regs aren't exactly the same (e.g, different modes)
6064 or if the values are different, we can't merge this reload.
6065 But if it is an input reload, we might still merge
6066 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6068 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6069 || rld[j].out != 0 || rld[j].in == 0
6070 || ! rtx_equal_p (rld[i].in, rld[j].in))
6072 if (rld[j].when_needed != RELOAD_FOR_INPUT
6073 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6074 || rld[i].opnum > rld[j].opnum)
6075 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6076 break;
6077 conflicting_input = 1;
6078 if (min_conflicting_input_opnum > rld[j].opnum)
6079 min_conflicting_input_opnum = rld[j].opnum;
6083 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6084 we, in fact, found any matching reloads. */
6086 if (j == n_reloads
6087 && max_input_address_opnum <= min_conflicting_input_opnum)
6089 for (j = 0; j < n_reloads; j++)
6090 if (i != j && rld[j].reg_rtx != 0
6091 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6092 && (! conflicting_input
6093 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6094 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6096 rld[i].when_needed = RELOAD_OTHER;
6097 rld[j].in = 0;
6098 reload_spill_index[j] = -1;
6099 transfer_replacements (i, j);
6102 /* If this is now RELOAD_OTHER, look for any reloads that load
6103 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6104 if they were for inputs, RELOAD_OTHER for outputs. Note that
6105 this test is equivalent to looking for reloads for this operand
6106 number. */
6107 /* We must take special care when there are two or more reloads to
6108 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6109 same value or a part of it; we must not change its type if there
6110 is a conflicting input. */
6112 if (rld[i].when_needed == RELOAD_OTHER)
6113 for (j = 0; j < n_reloads; j++)
6114 if (rld[j].in != 0
6115 && rld[j].when_needed != RELOAD_OTHER
6116 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6117 && (! conflicting_input
6118 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6119 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6120 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6121 rld[i].in))
6122 rld[j].when_needed
6123 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6124 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6125 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6130 /* These arrays are filled by emit_reload_insns and its subroutines. */
6131 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6132 static rtx other_input_address_reload_insns = 0;
6133 static rtx other_input_reload_insns = 0;
6134 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6135 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6136 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6137 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6138 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6139 static rtx operand_reload_insns = 0;
6140 static rtx other_operand_reload_insns = 0;
6141 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6143 /* Values to be put in spill_reg_store are put here first. */
6144 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6145 static HARD_REG_SET reg_reloaded_died;
6147 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6148 has the number J. OLD contains the value to be used as input. */
6150 static void
6151 emit_input_reload_insns (chain, rl, old, j)
6152 struct insn_chain *chain;
6153 struct reload *rl;
6154 rtx old;
6155 int j;
6157 rtx insn = chain->insn;
6158 rtx reloadreg = rl->reg_rtx;
6159 rtx oldequiv_reg = 0;
6160 rtx oldequiv = 0;
6161 int special = 0;
6162 enum machine_mode mode;
6163 rtx *where;
6165 /* Determine the mode to reload in.
6166 This is very tricky because we have three to choose from.
6167 There is the mode the insn operand wants (rl->inmode).
6168 There is the mode of the reload register RELOADREG.
6169 There is the intrinsic mode of the operand, which we could find
6170 by stripping some SUBREGs.
6171 It turns out that RELOADREG's mode is irrelevant:
6172 we can change that arbitrarily.
6174 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6175 then the reload reg may not support QImode moves, so use SImode.
6176 If foo is in memory due to spilling a pseudo reg, this is safe,
6177 because the QImode value is in the least significant part of a
6178 slot big enough for a SImode. If foo is some other sort of
6179 memory reference, then it is impossible to reload this case,
6180 so previous passes had better make sure this never happens.
6182 Then consider a one-word union which has SImode and one of its
6183 members is a float, being fetched as (SUBREG:SF union:SI).
6184 We must fetch that as SFmode because we could be loading into
6185 a float-only register. In this case OLD's mode is correct.
6187 Consider an immediate integer: it has VOIDmode. Here we need
6188 to get a mode from something else.
6190 In some cases, there is a fourth mode, the operand's
6191 containing mode. If the insn specifies a containing mode for
6192 this operand, it overrides all others.
6194 I am not sure whether the algorithm here is always right,
6195 but it does the right things in those cases. */
6197 mode = GET_MODE (old);
6198 if (mode == VOIDmode)
6199 mode = rl->inmode;
6201 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6202 /* If we need a secondary register for this operation, see if
6203 the value is already in a register in that class. Don't
6204 do this if the secondary register will be used as a scratch
6205 register. */
6207 if (rl->secondary_in_reload >= 0
6208 && rl->secondary_in_icode == CODE_FOR_nothing
6209 && optimize)
6210 oldequiv
6211 = find_equiv_reg (old, insn,
6212 rld[rl->secondary_in_reload].class,
6213 -1, NULL, 0, mode);
6214 #endif
6216 /* If reloading from memory, see if there is a register
6217 that already holds the same value. If so, reload from there.
6218 We can pass 0 as the reload_reg_p argument because
6219 any other reload has either already been emitted,
6220 in which case find_equiv_reg will see the reload-insn,
6221 or has yet to be emitted, in which case it doesn't matter
6222 because we will use this equiv reg right away. */
6224 if (oldequiv == 0 && optimize
6225 && (GET_CODE (old) == MEM
6226 || (GET_CODE (old) == REG
6227 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6228 && reg_renumber[REGNO (old)] < 0)))
6229 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6231 if (oldequiv)
6233 unsigned int regno = true_regnum (oldequiv);
6235 /* Don't use OLDEQUIV if any other reload changes it at an
6236 earlier stage of this insn or at this stage. */
6237 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6238 rl->in, const0_rtx, j, 0))
6239 oldequiv = 0;
6241 /* If it is no cheaper to copy from OLDEQUIV into the
6242 reload register than it would be to move from memory,
6243 don't use it. Likewise, if we need a secondary register
6244 or memory. */
6246 if (oldequiv != 0
6247 && ((REGNO_REG_CLASS (regno) != rl->class
6248 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6249 rl->class)
6250 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6251 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6252 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6253 mode, oldequiv)
6254 != NO_REGS)
6255 #endif
6256 #ifdef SECONDARY_MEMORY_NEEDED
6257 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6258 rl->class,
6259 mode)
6260 #endif
6262 oldequiv = 0;
6265 /* delete_output_reload is only invoked properly if old contains
6266 the original pseudo register. Since this is replaced with a
6267 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6268 find the pseudo in RELOAD_IN_REG. */
6269 if (oldequiv == 0
6270 && reload_override_in[j]
6271 && GET_CODE (rl->in_reg) == REG)
6273 oldequiv = old;
6274 old = rl->in_reg;
6276 if (oldequiv == 0)
6277 oldequiv = old;
6278 else if (GET_CODE (oldequiv) == REG)
6279 oldequiv_reg = oldequiv;
6280 else if (GET_CODE (oldequiv) == SUBREG)
6281 oldequiv_reg = SUBREG_REG (oldequiv);
6283 /* If we are reloading from a register that was recently stored in
6284 with an output-reload, see if we can prove there was
6285 actually no need to store the old value in it. */
6287 if (optimize && GET_CODE (oldequiv) == REG
6288 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6289 && spill_reg_store[REGNO (oldequiv)]
6290 && GET_CODE (old) == REG
6291 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6292 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6293 rl->out_reg)))
6294 delete_output_reload (insn, j, REGNO (oldequiv));
6296 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6297 then load RELOADREG from OLDEQUIV. Note that we cannot use
6298 gen_lowpart_common since it can do the wrong thing when
6299 RELOADREG has a multi-word mode. Note that RELOADREG
6300 must always be a REG here. */
6302 if (GET_MODE (reloadreg) != mode)
6303 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6304 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6305 oldequiv = SUBREG_REG (oldequiv);
6306 if (GET_MODE (oldequiv) != VOIDmode
6307 && mode != GET_MODE (oldequiv))
6308 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6310 /* Switch to the right place to emit the reload insns. */
6311 switch (rl->when_needed)
6313 case RELOAD_OTHER:
6314 where = &other_input_reload_insns;
6315 break;
6316 case RELOAD_FOR_INPUT:
6317 where = &input_reload_insns[rl->opnum];
6318 break;
6319 case RELOAD_FOR_INPUT_ADDRESS:
6320 where = &input_address_reload_insns[rl->opnum];
6321 break;
6322 case RELOAD_FOR_INPADDR_ADDRESS:
6323 where = &inpaddr_address_reload_insns[rl->opnum];
6324 break;
6325 case RELOAD_FOR_OUTPUT_ADDRESS:
6326 where = &output_address_reload_insns[rl->opnum];
6327 break;
6328 case RELOAD_FOR_OUTADDR_ADDRESS:
6329 where = &outaddr_address_reload_insns[rl->opnum];
6330 break;
6331 case RELOAD_FOR_OPERAND_ADDRESS:
6332 where = &operand_reload_insns;
6333 break;
6334 case RELOAD_FOR_OPADDR_ADDR:
6335 where = &other_operand_reload_insns;
6336 break;
6337 case RELOAD_FOR_OTHER_ADDRESS:
6338 where = &other_input_address_reload_insns;
6339 break;
6340 default:
6341 abort ();
6344 push_to_sequence (*where);
6346 /* Auto-increment addresses must be reloaded in a special way. */
6347 if (rl->out && ! rl->out_reg)
6349 /* We are not going to bother supporting the case where a
6350 incremented register can't be copied directly from
6351 OLDEQUIV since this seems highly unlikely. */
6352 if (rl->secondary_in_reload >= 0)
6353 abort ();
6355 if (reload_inherited[j])
6356 oldequiv = reloadreg;
6358 old = XEXP (rl->in_reg, 0);
6360 if (optimize && GET_CODE (oldequiv) == REG
6361 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6362 && spill_reg_store[REGNO (oldequiv)]
6363 && GET_CODE (old) == REG
6364 && (dead_or_set_p (insn,
6365 spill_reg_stored_to[REGNO (oldequiv)])
6366 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6367 old)))
6368 delete_output_reload (insn, j, REGNO (oldequiv));
6370 /* Prevent normal processing of this reload. */
6371 special = 1;
6372 /* Output a special code sequence for this case. */
6373 new_spill_reg_store[REGNO (reloadreg)]
6374 = inc_for_reload (reloadreg, oldequiv, rl->out,
6375 rl->inc);
6378 /* If we are reloading a pseudo-register that was set by the previous
6379 insn, see if we can get rid of that pseudo-register entirely
6380 by redirecting the previous insn into our reload register. */
6382 else if (optimize && GET_CODE (old) == REG
6383 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6384 && dead_or_set_p (insn, old)
6385 /* This is unsafe if some other reload
6386 uses the same reg first. */
6387 && ! conflicts_with_override (reloadreg)
6388 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6389 rl->when_needed, old, rl->out, j, 0))
6391 rtx temp = PREV_INSN (insn);
6392 while (temp && GET_CODE (temp) == NOTE)
6393 temp = PREV_INSN (temp);
6394 if (temp
6395 && GET_CODE (temp) == INSN
6396 && GET_CODE (PATTERN (temp)) == SET
6397 && SET_DEST (PATTERN (temp)) == old
6398 /* Make sure we can access insn_operand_constraint. */
6399 && asm_noperands (PATTERN (temp)) < 0
6400 /* This is unsafe if operand occurs more than once in current
6401 insn. Perhaps some occurrences aren't reloaded. */
6402 && count_occurrences (PATTERN (insn), old, 0) == 1)
6404 rtx old = SET_DEST (PATTERN (temp));
6405 /* Store into the reload register instead of the pseudo. */
6406 SET_DEST (PATTERN (temp)) = reloadreg;
6408 /* Verify that resulting insn is valid. */
6409 extract_insn (temp);
6410 if (constrain_operands (1))
6412 /* If the previous insn is an output reload, the source is
6413 a reload register, and its spill_reg_store entry will
6414 contain the previous destination. This is now
6415 invalid. */
6416 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6417 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6419 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6420 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6423 /* If these are the only uses of the pseudo reg,
6424 pretend for GDB it lives in the reload reg we used. */
6425 if (REG_N_DEATHS (REGNO (old)) == 1
6426 && REG_N_SETS (REGNO (old)) == 1)
6428 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6429 alter_reg (REGNO (old), -1);
6431 special = 1;
6433 else
6435 SET_DEST (PATTERN (temp)) = old;
6440 /* We can't do that, so output an insn to load RELOADREG. */
6442 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6443 /* If we have a secondary reload, pick up the secondary register
6444 and icode, if any. If OLDEQUIV and OLD are different or
6445 if this is an in-out reload, recompute whether or not we
6446 still need a secondary register and what the icode should
6447 be. If we still need a secondary register and the class or
6448 icode is different, go back to reloading from OLD if using
6449 OLDEQUIV means that we got the wrong type of register. We
6450 cannot have different class or icode due to an in-out reload
6451 because we don't make such reloads when both the input and
6452 output need secondary reload registers. */
6454 if (! special && rl->secondary_in_reload >= 0)
6456 rtx second_reload_reg = 0;
6457 int secondary_reload = rl->secondary_in_reload;
6458 rtx real_oldequiv = oldequiv;
6459 rtx real_old = old;
6460 rtx tmp;
6461 enum insn_code icode;
6463 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6464 and similarly for OLD.
6465 See comments in get_secondary_reload in reload.c. */
6466 /* If it is a pseudo that cannot be replaced with its
6467 equivalent MEM, we must fall back to reload_in, which
6468 will have all the necessary substitutions registered.
6469 Likewise for a pseudo that can't be replaced with its
6470 equivalent constant.
6472 Take extra care for subregs of such pseudos. Note that
6473 we cannot use reg_equiv_mem in this case because it is
6474 not in the right mode. */
6476 tmp = oldequiv;
6477 if (GET_CODE (tmp) == SUBREG)
6478 tmp = SUBREG_REG (tmp);
6479 if (GET_CODE (tmp) == REG
6480 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6481 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6482 || reg_equiv_constant[REGNO (tmp)] != 0))
6484 if (! reg_equiv_mem[REGNO (tmp)]
6485 || num_not_at_initial_offset
6486 || GET_CODE (oldequiv) == SUBREG)
6487 real_oldequiv = rl->in;
6488 else
6489 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6492 tmp = old;
6493 if (GET_CODE (tmp) == SUBREG)
6494 tmp = SUBREG_REG (tmp);
6495 if (GET_CODE (tmp) == REG
6496 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6497 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6498 || reg_equiv_constant[REGNO (tmp)] != 0))
6500 if (! reg_equiv_mem[REGNO (tmp)]
6501 || num_not_at_initial_offset
6502 || GET_CODE (old) == SUBREG)
6503 real_old = rl->in;
6504 else
6505 real_old = reg_equiv_mem[REGNO (tmp)];
6508 second_reload_reg = rld[secondary_reload].reg_rtx;
6509 icode = rl->secondary_in_icode;
6511 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6512 || (rl->in != 0 && rl->out != 0))
6514 enum reg_class new_class
6515 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6516 mode, real_oldequiv);
6518 if (new_class == NO_REGS)
6519 second_reload_reg = 0;
6520 else
6522 enum insn_code new_icode;
6523 enum machine_mode new_mode;
6525 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6526 REGNO (second_reload_reg)))
6527 oldequiv = old, real_oldequiv = real_old;
6528 else
6530 new_icode = reload_in_optab[(int) mode];
6531 if (new_icode != CODE_FOR_nothing
6532 && ((insn_data[(int) new_icode].operand[0].predicate
6533 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6534 (reloadreg, mode)))
6535 || (insn_data[(int) new_icode].operand[1].predicate
6536 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6537 (real_oldequiv, mode)))))
6538 new_icode = CODE_FOR_nothing;
6540 if (new_icode == CODE_FOR_nothing)
6541 new_mode = mode;
6542 else
6543 new_mode = insn_data[(int) new_icode].operand[2].mode;
6545 if (GET_MODE (second_reload_reg) != new_mode)
6547 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6548 new_mode))
6549 oldequiv = old, real_oldequiv = real_old;
6550 else
6551 second_reload_reg
6552 = gen_rtx_REG (new_mode,
6553 REGNO (second_reload_reg));
6559 /* If we still need a secondary reload register, check
6560 to see if it is being used as a scratch or intermediate
6561 register and generate code appropriately. If we need
6562 a scratch register, use REAL_OLDEQUIV since the form of
6563 the insn may depend on the actual address if it is
6564 a MEM. */
6566 if (second_reload_reg)
6568 if (icode != CODE_FOR_nothing)
6570 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6571 second_reload_reg));
6572 special = 1;
6574 else
6576 /* See if we need a scratch register to load the
6577 intermediate register (a tertiary reload). */
6578 enum insn_code tertiary_icode
6579 = rld[secondary_reload].secondary_in_icode;
6581 if (tertiary_icode != CODE_FOR_nothing)
6583 rtx third_reload_reg
6584 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6586 emit_insn ((GEN_FCN (tertiary_icode)
6587 (second_reload_reg, real_oldequiv,
6588 third_reload_reg)));
6590 else
6591 gen_reload (second_reload_reg, real_oldequiv,
6592 rl->opnum,
6593 rl->when_needed);
6595 oldequiv = second_reload_reg;
6599 #endif
6601 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6603 rtx real_oldequiv = oldequiv;
6605 if ((GET_CODE (oldequiv) == REG
6606 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6607 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6608 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6609 || (GET_CODE (oldequiv) == SUBREG
6610 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6611 && (REGNO (SUBREG_REG (oldequiv))
6612 >= FIRST_PSEUDO_REGISTER)
6613 && ((reg_equiv_memory_loc
6614 [REGNO (SUBREG_REG (oldequiv))] != 0)
6615 || (reg_equiv_constant
6616 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6617 || (CONSTANT_P (oldequiv)
6618 && (PREFERRED_RELOAD_CLASS (oldequiv,
6619 REGNO_REG_CLASS (REGNO (reloadreg)))
6620 == NO_REGS)))
6621 real_oldequiv = rl->in;
6622 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6623 rl->when_needed);
6626 if (flag_non_call_exceptions)
6627 copy_eh_notes (insn, get_insns ());
6629 /* End this sequence. */
6630 *where = get_insns ();
6631 end_sequence ();
6633 /* Update reload_override_in so that delete_address_reloads_1
6634 can see the actual register usage. */
6635 if (oldequiv_reg)
6636 reload_override_in[j] = oldequiv;
6639 /* Generate insns to for the output reload RL, which is for the insn described
6640 by CHAIN and has the number J. */
6641 static void
6642 emit_output_reload_insns (chain, rl, j)
6643 struct insn_chain *chain;
6644 struct reload *rl;
6645 int j;
6647 rtx reloadreg = rl->reg_rtx;
6648 rtx insn = chain->insn;
6649 int special = 0;
6650 rtx old = rl->out;
6651 enum machine_mode mode = GET_MODE (old);
6652 rtx p;
6654 if (rl->when_needed == RELOAD_OTHER)
6655 start_sequence ();
6656 else
6657 push_to_sequence (output_reload_insns[rl->opnum]);
6659 /* Determine the mode to reload in.
6660 See comments above (for input reloading). */
6662 if (mode == VOIDmode)
6664 /* VOIDmode should never happen for an output. */
6665 if (asm_noperands (PATTERN (insn)) < 0)
6666 /* It's the compiler's fault. */
6667 fatal_insn ("VOIDmode on an output", insn);
6668 error_for_asm (insn, "output operand is constant in `asm'");
6669 /* Prevent crash--use something we know is valid. */
6670 mode = word_mode;
6671 old = gen_rtx_REG (mode, REGNO (reloadreg));
6674 if (GET_MODE (reloadreg) != mode)
6675 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6677 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6679 /* If we need two reload regs, set RELOADREG to the intermediate
6680 one, since it will be stored into OLD. We might need a secondary
6681 register only for an input reload, so check again here. */
6683 if (rl->secondary_out_reload >= 0)
6685 rtx real_old = old;
6687 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6688 && reg_equiv_mem[REGNO (old)] != 0)
6689 real_old = reg_equiv_mem[REGNO (old)];
6691 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6692 mode, real_old)
6693 != NO_REGS))
6695 rtx second_reloadreg = reloadreg;
6696 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6698 /* See if RELOADREG is to be used as a scratch register
6699 or as an intermediate register. */
6700 if (rl->secondary_out_icode != CODE_FOR_nothing)
6702 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6703 (real_old, second_reloadreg, reloadreg)));
6704 special = 1;
6706 else
6708 /* See if we need both a scratch and intermediate reload
6709 register. */
6711 int secondary_reload = rl->secondary_out_reload;
6712 enum insn_code tertiary_icode
6713 = rld[secondary_reload].secondary_out_icode;
6715 if (GET_MODE (reloadreg) != mode)
6716 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6718 if (tertiary_icode != CODE_FOR_nothing)
6720 rtx third_reloadreg
6721 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6722 rtx tem;
6724 /* Copy primary reload reg to secondary reload reg.
6725 (Note that these have been swapped above, then
6726 secondary reload reg to OLD using our insn.) */
6728 /* If REAL_OLD is a paradoxical SUBREG, remove it
6729 and try to put the opposite SUBREG on
6730 RELOADREG. */
6731 if (GET_CODE (real_old) == SUBREG
6732 && (GET_MODE_SIZE (GET_MODE (real_old))
6733 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6734 && 0 != (tem = gen_lowpart_common
6735 (GET_MODE (SUBREG_REG (real_old)),
6736 reloadreg)))
6737 real_old = SUBREG_REG (real_old), reloadreg = tem;
6739 gen_reload (reloadreg, second_reloadreg,
6740 rl->opnum, rl->when_needed);
6741 emit_insn ((GEN_FCN (tertiary_icode)
6742 (real_old, reloadreg, third_reloadreg)));
6743 special = 1;
6746 else
6747 /* Copy between the reload regs here and then to
6748 OUT later. */
6750 gen_reload (reloadreg, second_reloadreg,
6751 rl->opnum, rl->when_needed);
6755 #endif
6757 /* Output the last reload insn. */
6758 if (! special)
6760 rtx set;
6762 /* Don't output the last reload if OLD is not the dest of
6763 INSN and is in the src and is clobbered by INSN. */
6764 if (! flag_expensive_optimizations
6765 || GET_CODE (old) != REG
6766 || !(set = single_set (insn))
6767 || rtx_equal_p (old, SET_DEST (set))
6768 || !reg_mentioned_p (old, SET_SRC (set))
6769 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6770 gen_reload (old, reloadreg, rl->opnum,
6771 rl->when_needed);
6774 /* Look at all insns we emitted, just to be safe. */
6775 for (p = get_insns (); p; p = NEXT_INSN (p))
6776 if (INSN_P (p))
6778 rtx pat = PATTERN (p);
6780 /* If this output reload doesn't come from a spill reg,
6781 clear any memory of reloaded copies of the pseudo reg.
6782 If this output reload comes from a spill reg,
6783 reg_has_output_reload will make this do nothing. */
6784 note_stores (pat, forget_old_reloads_1, NULL);
6786 if (reg_mentioned_p (rl->reg_rtx, pat))
6788 rtx set = single_set (insn);
6789 if (reload_spill_index[j] < 0
6790 && set
6791 && SET_SRC (set) == rl->reg_rtx)
6793 int src = REGNO (SET_SRC (set));
6795 reload_spill_index[j] = src;
6796 SET_HARD_REG_BIT (reg_is_output_reload, src);
6797 if (find_regno_note (insn, REG_DEAD, src))
6798 SET_HARD_REG_BIT (reg_reloaded_died, src);
6800 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6802 int s = rl->secondary_out_reload;
6803 set = single_set (p);
6804 /* If this reload copies only to the secondary reload
6805 register, the secondary reload does the actual
6806 store. */
6807 if (s >= 0 && set == NULL_RTX)
6808 /* We can't tell what function the secondary reload
6809 has and where the actual store to the pseudo is
6810 made; leave new_spill_reg_store alone. */
6812 else if (s >= 0
6813 && SET_SRC (set) == rl->reg_rtx
6814 && SET_DEST (set) == rld[s].reg_rtx)
6816 /* Usually the next instruction will be the
6817 secondary reload insn; if we can confirm
6818 that it is, setting new_spill_reg_store to
6819 that insn will allow an extra optimization. */
6820 rtx s_reg = rld[s].reg_rtx;
6821 rtx next = NEXT_INSN (p);
6822 rld[s].out = rl->out;
6823 rld[s].out_reg = rl->out_reg;
6824 set = single_set (next);
6825 if (set && SET_SRC (set) == s_reg
6826 && ! new_spill_reg_store[REGNO (s_reg)])
6828 SET_HARD_REG_BIT (reg_is_output_reload,
6829 REGNO (s_reg));
6830 new_spill_reg_store[REGNO (s_reg)] = next;
6833 else
6834 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6839 if (rl->when_needed == RELOAD_OTHER)
6841 emit_insn (other_output_reload_insns[rl->opnum]);
6842 other_output_reload_insns[rl->opnum] = get_insns ();
6844 else
6845 output_reload_insns[rl->opnum] = get_insns ();
6847 if (flag_non_call_exceptions)
6848 copy_eh_notes (insn, get_insns ());
6850 end_sequence ();
6853 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6854 and has the number J. */
6855 static void
6856 do_input_reload (chain, rl, j)
6857 struct insn_chain *chain;
6858 struct reload *rl;
6859 int j;
6861 int expect_occurrences = 1;
6862 rtx insn = chain->insn;
6863 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6864 ? rl->in_reg : rl->in);
6866 if (old != 0
6867 /* AUTO_INC reloads need to be handled even if inherited. We got an
6868 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6869 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6870 && ! rtx_equal_p (rl->reg_rtx, old)
6871 && rl->reg_rtx != 0)
6872 emit_input_reload_insns (chain, rld + j, old, j);
6874 /* When inheriting a wider reload, we have a MEM in rl->in,
6875 e.g. inheriting a SImode output reload for
6876 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6877 if (optimize && reload_inherited[j] && rl->in
6878 && GET_CODE (rl->in) == MEM
6879 && GET_CODE (rl->in_reg) == MEM
6880 && reload_spill_index[j] >= 0
6881 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6883 expect_occurrences
6884 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6885 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6888 /* If we are reloading a register that was recently stored in with an
6889 output-reload, see if we can prove there was
6890 actually no need to store the old value in it. */
6892 if (optimize
6893 && (reload_inherited[j] || reload_override_in[j])
6894 && rl->reg_rtx
6895 && GET_CODE (rl->reg_rtx) == REG
6896 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6897 #if 0
6898 /* There doesn't seem to be any reason to restrict this to pseudos
6899 and doing so loses in the case where we are copying from a
6900 register of the wrong class. */
6901 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6902 >= FIRST_PSEUDO_REGISTER)
6903 #endif
6904 /* The insn might have already some references to stackslots
6905 replaced by MEMs, while reload_out_reg still names the
6906 original pseudo. */
6907 && (dead_or_set_p (insn,
6908 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6909 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6910 rl->out_reg)))
6911 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6914 /* Do output reloading for reload RL, which is for the insn described by
6915 CHAIN and has the number J.
6916 ??? At some point we need to support handling output reloads of
6917 JUMP_INSNs or insns that set cc0. */
6918 static void
6919 do_output_reload (chain, rl, j)
6920 struct insn_chain *chain;
6921 struct reload *rl;
6922 int j;
6924 rtx note, old;
6925 rtx insn = chain->insn;
6926 /* If this is an output reload that stores something that is
6927 not loaded in this same reload, see if we can eliminate a previous
6928 store. */
6929 rtx pseudo = rl->out_reg;
6931 if (pseudo
6932 && optimize
6933 && GET_CODE (pseudo) == REG
6934 && ! rtx_equal_p (rl->in_reg, pseudo)
6935 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6936 && reg_last_reload_reg[REGNO (pseudo)])
6938 int pseudo_no = REGNO (pseudo);
6939 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6941 /* We don't need to test full validity of last_regno for
6942 inherit here; we only want to know if the store actually
6943 matches the pseudo. */
6944 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6945 && reg_reloaded_contents[last_regno] == pseudo_no
6946 && spill_reg_store[last_regno]
6947 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6948 delete_output_reload (insn, j, last_regno);
6951 old = rl->out_reg;
6952 if (old == 0
6953 || rl->reg_rtx == old
6954 || rl->reg_rtx == 0)
6955 return;
6957 /* An output operand that dies right away does need a reload,
6958 but need not be copied from it. Show the new location in the
6959 REG_UNUSED note. */
6960 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6961 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6963 XEXP (note, 0) = rl->reg_rtx;
6964 return;
6966 /* Likewise for a SUBREG of an operand that dies. */
6967 else if (GET_CODE (old) == SUBREG
6968 && GET_CODE (SUBREG_REG (old)) == REG
6969 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6970 SUBREG_REG (old))))
6972 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6973 rl->reg_rtx);
6974 return;
6976 else if (GET_CODE (old) == SCRATCH)
6977 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6978 but we don't want to make an output reload. */
6979 return;
6981 /* If is a JUMP_INSN, we can't support output reloads yet. */
6982 if (GET_CODE (insn) == JUMP_INSN)
6983 abort ();
6985 emit_output_reload_insns (chain, rld + j, j);
6988 /* Output insns to reload values in and out of the chosen reload regs. */
6990 static void
6991 emit_reload_insns (chain)
6992 struct insn_chain *chain;
6994 rtx insn = chain->insn;
6996 int j;
6998 CLEAR_HARD_REG_SET (reg_reloaded_died);
7000 for (j = 0; j < reload_n_operands; j++)
7001 input_reload_insns[j] = input_address_reload_insns[j]
7002 = inpaddr_address_reload_insns[j]
7003 = output_reload_insns[j] = output_address_reload_insns[j]
7004 = outaddr_address_reload_insns[j]
7005 = other_output_reload_insns[j] = 0;
7006 other_input_address_reload_insns = 0;
7007 other_input_reload_insns = 0;
7008 operand_reload_insns = 0;
7009 other_operand_reload_insns = 0;
7011 /* Dump reloads into the dump file. */
7012 if (rtl_dump_file)
7014 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7015 debug_reload_to_stream (rtl_dump_file);
7018 /* Now output the instructions to copy the data into and out of the
7019 reload registers. Do these in the order that the reloads were reported,
7020 since reloads of base and index registers precede reloads of operands
7021 and the operands may need the base and index registers reloaded. */
7023 for (j = 0; j < n_reloads; j++)
7025 if (rld[j].reg_rtx
7026 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7027 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7029 do_input_reload (chain, rld + j, j);
7030 do_output_reload (chain, rld + j, j);
7033 /* Now write all the insns we made for reloads in the order expected by
7034 the allocation functions. Prior to the insn being reloaded, we write
7035 the following reloads:
7037 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7039 RELOAD_OTHER reloads.
7041 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7042 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7043 RELOAD_FOR_INPUT reload for the operand.
7045 RELOAD_FOR_OPADDR_ADDRS reloads.
7047 RELOAD_FOR_OPERAND_ADDRESS reloads.
7049 After the insn being reloaded, we write the following:
7051 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7052 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7053 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7054 reloads for the operand. The RELOAD_OTHER output reloads are
7055 output in descending order by reload number. */
7057 emit_insn_before (other_input_address_reload_insns, insn);
7058 emit_insn_before (other_input_reload_insns, insn);
7060 for (j = 0; j < reload_n_operands; j++)
7062 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7063 emit_insn_before (input_address_reload_insns[j], insn);
7064 emit_insn_before (input_reload_insns[j], insn);
7067 emit_insn_before (other_operand_reload_insns, insn);
7068 emit_insn_before (operand_reload_insns, insn);
7070 for (j = 0; j < reload_n_operands; j++)
7072 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7073 x = emit_insn_after (output_address_reload_insns[j], x);
7074 x = emit_insn_after (output_reload_insns[j], x);
7075 emit_insn_after (other_output_reload_insns[j], x);
7078 /* For all the spill regs newly reloaded in this instruction,
7079 record what they were reloaded from, so subsequent instructions
7080 can inherit the reloads.
7082 Update spill_reg_store for the reloads of this insn.
7083 Copy the elements that were updated in the loop above. */
7085 for (j = 0; j < n_reloads; j++)
7087 int r = reload_order[j];
7088 int i = reload_spill_index[r];
7090 /* If this is a non-inherited input reload from a pseudo, we must
7091 clear any memory of a previous store to the same pseudo. Only do
7092 something if there will not be an output reload for the pseudo
7093 being reloaded. */
7094 if (rld[r].in_reg != 0
7095 && ! (reload_inherited[r] || reload_override_in[r]))
7097 rtx reg = rld[r].in_reg;
7099 if (GET_CODE (reg) == SUBREG)
7100 reg = SUBREG_REG (reg);
7102 if (GET_CODE (reg) == REG
7103 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7104 && ! reg_has_output_reload[REGNO (reg)])
7106 int nregno = REGNO (reg);
7108 if (reg_last_reload_reg[nregno])
7110 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7112 if (reg_reloaded_contents[last_regno] == nregno)
7113 spill_reg_store[last_regno] = 0;
7118 /* I is nonneg if this reload used a register.
7119 If rld[r].reg_rtx is 0, this is an optional reload
7120 that we opted to ignore. */
7122 if (i >= 0 && rld[r].reg_rtx != 0)
7124 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7125 int k;
7126 int part_reaches_end = 0;
7127 int all_reaches_end = 1;
7129 /* For a multi register reload, we need to check if all or part
7130 of the value lives to the end. */
7131 for (k = 0; k < nr; k++)
7133 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7134 rld[r].when_needed))
7135 part_reaches_end = 1;
7136 else
7137 all_reaches_end = 0;
7140 /* Ignore reloads that don't reach the end of the insn in
7141 entirety. */
7142 if (all_reaches_end)
7144 /* First, clear out memory of what used to be in this spill reg.
7145 If consecutive registers are used, clear them all. */
7147 for (k = 0; k < nr; k++)
7148 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7150 /* Maybe the spill reg contains a copy of reload_out. */
7151 if (rld[r].out != 0
7152 && (GET_CODE (rld[r].out) == REG
7153 #ifdef AUTO_INC_DEC
7154 || ! rld[r].out_reg
7155 #endif
7156 || GET_CODE (rld[r].out_reg) == REG))
7158 rtx out = (GET_CODE (rld[r].out) == REG
7159 ? rld[r].out
7160 : rld[r].out_reg
7161 ? rld[r].out_reg
7162 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7163 int nregno = REGNO (out);
7164 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7165 : HARD_REGNO_NREGS (nregno,
7166 GET_MODE (rld[r].reg_rtx)));
7168 spill_reg_store[i] = new_spill_reg_store[i];
7169 spill_reg_stored_to[i] = out;
7170 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7172 /* If NREGNO is a hard register, it may occupy more than
7173 one register. If it does, say what is in the
7174 rest of the registers assuming that both registers
7175 agree on how many words the object takes. If not,
7176 invalidate the subsequent registers. */
7178 if (nregno < FIRST_PSEUDO_REGISTER)
7179 for (k = 1; k < nnr; k++)
7180 reg_last_reload_reg[nregno + k]
7181 = (nr == nnr
7182 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7183 : 0);
7185 /* Now do the inverse operation. */
7186 for (k = 0; k < nr; k++)
7188 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7189 reg_reloaded_contents[i + k]
7190 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7191 ? nregno
7192 : nregno + k);
7193 reg_reloaded_insn[i + k] = insn;
7194 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7198 /* Maybe the spill reg contains a copy of reload_in. Only do
7199 something if there will not be an output reload for
7200 the register being reloaded. */
7201 else if (rld[r].out_reg == 0
7202 && rld[r].in != 0
7203 && ((GET_CODE (rld[r].in) == REG
7204 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7205 && ! reg_has_output_reload[REGNO (rld[r].in)])
7206 || (GET_CODE (rld[r].in_reg) == REG
7207 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7208 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7210 int nregno;
7211 int nnr;
7213 if (GET_CODE (rld[r].in) == REG
7214 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7215 nregno = REGNO (rld[r].in);
7216 else if (GET_CODE (rld[r].in_reg) == REG)
7217 nregno = REGNO (rld[r].in_reg);
7218 else
7219 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7221 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7222 : HARD_REGNO_NREGS (nregno,
7223 GET_MODE (rld[r].reg_rtx)));
7225 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7227 if (nregno < FIRST_PSEUDO_REGISTER)
7228 for (k = 1; k < nnr; k++)
7229 reg_last_reload_reg[nregno + k]
7230 = (nr == nnr
7231 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7232 : 0);
7234 /* Unless we inherited this reload, show we haven't
7235 recently done a store.
7236 Previous stores of inherited auto_inc expressions
7237 also have to be discarded. */
7238 if (! reload_inherited[r]
7239 || (rld[r].out && ! rld[r].out_reg))
7240 spill_reg_store[i] = 0;
7242 for (k = 0; k < nr; k++)
7244 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7245 reg_reloaded_contents[i + k]
7246 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7247 ? nregno
7248 : nregno + k);
7249 reg_reloaded_insn[i + k] = insn;
7250 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7255 /* However, if part of the reload reaches the end, then we must
7256 invalidate the old info for the part that survives to the end. */
7257 else if (part_reaches_end)
7259 for (k = 0; k < nr; k++)
7260 if (reload_reg_reaches_end_p (i + k,
7261 rld[r].opnum,
7262 rld[r].when_needed))
7263 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7267 /* The following if-statement was #if 0'd in 1.34 (or before...).
7268 It's reenabled in 1.35 because supposedly nothing else
7269 deals with this problem. */
7271 /* If a register gets output-reloaded from a non-spill register,
7272 that invalidates any previous reloaded copy of it.
7273 But forget_old_reloads_1 won't get to see it, because
7274 it thinks only about the original insn. So invalidate it here. */
7275 if (i < 0 && rld[r].out != 0
7276 && (GET_CODE (rld[r].out) == REG
7277 || (GET_CODE (rld[r].out) == MEM
7278 && GET_CODE (rld[r].out_reg) == REG)))
7280 rtx out = (GET_CODE (rld[r].out) == REG
7281 ? rld[r].out : rld[r].out_reg);
7282 int nregno = REGNO (out);
7283 if (nregno >= FIRST_PSEUDO_REGISTER)
7285 rtx src_reg, store_insn = NULL_RTX;
7287 reg_last_reload_reg[nregno] = 0;
7289 /* If we can find a hard register that is stored, record
7290 the storing insn so that we may delete this insn with
7291 delete_output_reload. */
7292 src_reg = rld[r].reg_rtx;
7294 /* If this is an optional reload, try to find the source reg
7295 from an input reload. */
7296 if (! src_reg)
7298 rtx set = single_set (insn);
7299 if (set && SET_DEST (set) == rld[r].out)
7301 int k;
7303 src_reg = SET_SRC (set);
7304 store_insn = insn;
7305 for (k = 0; k < n_reloads; k++)
7307 if (rld[k].in == src_reg)
7309 src_reg = rld[k].reg_rtx;
7310 break;
7315 else
7316 store_insn = new_spill_reg_store[REGNO (src_reg)];
7317 if (src_reg && GET_CODE (src_reg) == REG
7318 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7320 int src_regno = REGNO (src_reg);
7321 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7322 /* The place where to find a death note varies with
7323 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7324 necessarily checked exactly in the code that moves
7325 notes, so just check both locations. */
7326 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7327 if (! note && store_insn)
7328 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7329 while (nr-- > 0)
7331 spill_reg_store[src_regno + nr] = store_insn;
7332 spill_reg_stored_to[src_regno + nr] = out;
7333 reg_reloaded_contents[src_regno + nr] = nregno;
7334 reg_reloaded_insn[src_regno + nr] = store_insn;
7335 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7336 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7337 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7338 if (note)
7339 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7340 else
7341 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7343 reg_last_reload_reg[nregno] = src_reg;
7346 else
7348 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7350 while (num_regs-- > 0)
7351 reg_last_reload_reg[nregno + num_regs] = 0;
7355 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7358 /* Emit code to perform a reload from IN (which may be a reload register) to
7359 OUT (which may also be a reload register). IN or OUT is from operand
7360 OPNUM with reload type TYPE.
7362 Returns first insn emitted. */
7365 gen_reload (out, in, opnum, type)
7366 rtx out;
7367 rtx in;
7368 int opnum;
7369 enum reload_type type;
7371 rtx last = get_last_insn ();
7372 rtx tem;
7374 /* If IN is a paradoxical SUBREG, remove it and try to put the
7375 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7376 if (GET_CODE (in) == SUBREG
7377 && (GET_MODE_SIZE (GET_MODE (in))
7378 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7379 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7380 in = SUBREG_REG (in), out = tem;
7381 else if (GET_CODE (out) == SUBREG
7382 && (GET_MODE_SIZE (GET_MODE (out))
7383 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7384 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7385 out = SUBREG_REG (out), in = tem;
7387 /* How to do this reload can get quite tricky. Normally, we are being
7388 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7389 register that didn't get a hard register. In that case we can just
7390 call emit_move_insn.
7392 We can also be asked to reload a PLUS that adds a register or a MEM to
7393 another register, constant or MEM. This can occur during frame pointer
7394 elimination and while reloading addresses. This case is handled by
7395 trying to emit a single insn to perform the add. If it is not valid,
7396 we use a two insn sequence.
7398 Finally, we could be called to handle an 'o' constraint by putting
7399 an address into a register. In that case, we first try to do this
7400 with a named pattern of "reload_load_address". If no such pattern
7401 exists, we just emit a SET insn and hope for the best (it will normally
7402 be valid on machines that use 'o').
7404 This entire process is made complex because reload will never
7405 process the insns we generate here and so we must ensure that
7406 they will fit their constraints and also by the fact that parts of
7407 IN might be being reloaded separately and replaced with spill registers.
7408 Because of this, we are, in some sense, just guessing the right approach
7409 here. The one listed above seems to work.
7411 ??? At some point, this whole thing needs to be rethought. */
7413 if (GET_CODE (in) == PLUS
7414 && (GET_CODE (XEXP (in, 0)) == REG
7415 || GET_CODE (XEXP (in, 0)) == SUBREG
7416 || GET_CODE (XEXP (in, 0)) == MEM)
7417 && (GET_CODE (XEXP (in, 1)) == REG
7418 || GET_CODE (XEXP (in, 1)) == SUBREG
7419 || CONSTANT_P (XEXP (in, 1))
7420 || GET_CODE (XEXP (in, 1)) == MEM))
7422 /* We need to compute the sum of a register or a MEM and another
7423 register, constant, or MEM, and put it into the reload
7424 register. The best possible way of doing this is if the machine
7425 has a three-operand ADD insn that accepts the required operands.
7427 The simplest approach is to try to generate such an insn and see if it
7428 is recognized and matches its constraints. If so, it can be used.
7430 It might be better not to actually emit the insn unless it is valid,
7431 but we need to pass the insn as an operand to `recog' and
7432 `extract_insn' and it is simpler to emit and then delete the insn if
7433 not valid than to dummy things up. */
7435 rtx op0, op1, tem, insn;
7436 int code;
7438 op0 = find_replacement (&XEXP (in, 0));
7439 op1 = find_replacement (&XEXP (in, 1));
7441 /* Since constraint checking is strict, commutativity won't be
7442 checked, so we need to do that here to avoid spurious failure
7443 if the add instruction is two-address and the second operand
7444 of the add is the same as the reload reg, which is frequently
7445 the case. If the insn would be A = B + A, rearrange it so
7446 it will be A = A + B as constrain_operands expects. */
7448 if (GET_CODE (XEXP (in, 1)) == REG
7449 && REGNO (out) == REGNO (XEXP (in, 1)))
7450 tem = op0, op0 = op1, op1 = tem;
7452 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7453 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7455 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7456 code = recog_memoized (insn);
7458 if (code >= 0)
7460 extract_insn (insn);
7461 /* We want constrain operands to treat this insn strictly in
7462 its validity determination, i.e., the way it would after reload
7463 has completed. */
7464 if (constrain_operands (1))
7465 return insn;
7468 delete_insns_since (last);
7470 /* If that failed, we must use a conservative two-insn sequence.
7472 Use a move to copy one operand into the reload register. Prefer
7473 to reload a constant, MEM or pseudo since the move patterns can
7474 handle an arbitrary operand. If OP1 is not a constant, MEM or
7475 pseudo and OP1 is not a valid operand for an add instruction, then
7476 reload OP1.
7478 After reloading one of the operands into the reload register, add
7479 the reload register to the output register.
7481 If there is another way to do this for a specific machine, a
7482 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7483 we emit below. */
7485 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7487 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7488 || (GET_CODE (op1) == REG
7489 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7490 || (code != CODE_FOR_nothing
7491 && ! ((*insn_data[code].operand[2].predicate)
7492 (op1, insn_data[code].operand[2].mode))))
7493 tem = op0, op0 = op1, op1 = tem;
7495 gen_reload (out, op0, opnum, type);
7497 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7498 This fixes a problem on the 32K where the stack pointer cannot
7499 be used as an operand of an add insn. */
7501 if (rtx_equal_p (op0, op1))
7502 op1 = out;
7504 insn = emit_insn (gen_add2_insn (out, op1));
7506 /* If that failed, copy the address register to the reload register.
7507 Then add the constant to the reload register. */
7509 code = recog_memoized (insn);
7511 if (code >= 0)
7513 extract_insn (insn);
7514 /* We want constrain operands to treat this insn strictly in
7515 its validity determination, i.e., the way it would after reload
7516 has completed. */
7517 if (constrain_operands (1))
7519 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7520 REG_NOTES (insn)
7521 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7522 return insn;
7526 delete_insns_since (last);
7528 gen_reload (out, op1, opnum, type);
7529 insn = emit_insn (gen_add2_insn (out, op0));
7530 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7533 #ifdef SECONDARY_MEMORY_NEEDED
7534 /* If we need a memory location to do the move, do it that way. */
7535 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7536 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7537 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7538 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7539 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7540 REGNO_REG_CLASS (reg_or_subregno (out)),
7541 GET_MODE (out)))
7543 /* Get the memory to use and rewrite both registers to its mode. */
7544 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7546 if (GET_MODE (loc) != GET_MODE (out))
7547 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7549 if (GET_MODE (loc) != GET_MODE (in))
7550 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7552 gen_reload (loc, in, opnum, type);
7553 gen_reload (out, loc, opnum, type);
7555 #endif
7557 /* If IN is a simple operand, use gen_move_insn. */
7558 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7559 emit_insn (gen_move_insn (out, in));
7561 #ifdef HAVE_reload_load_address
7562 else if (HAVE_reload_load_address)
7563 emit_insn (gen_reload_load_address (out, in));
7564 #endif
7566 /* Otherwise, just write (set OUT IN) and hope for the best. */
7567 else
7568 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7570 /* Return the first insn emitted.
7571 We can not just return get_last_insn, because there may have
7572 been multiple instructions emitted. Also note that gen_move_insn may
7573 emit more than one insn itself, so we can not assume that there is one
7574 insn emitted per emit_insn_before call. */
7576 return last ? NEXT_INSN (last) : get_insns ();
7579 /* Delete a previously made output-reload whose result we now believe
7580 is not needed. First we double-check.
7582 INSN is the insn now being processed.
7583 LAST_RELOAD_REG is the hard register number for which we want to delete
7584 the last output reload.
7585 J is the reload-number that originally used REG. The caller has made
7586 certain that reload J doesn't use REG any longer for input. */
7588 static void
7589 delete_output_reload (insn, j, last_reload_reg)
7590 rtx insn;
7591 int j;
7592 int last_reload_reg;
7594 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7595 rtx reg = spill_reg_stored_to[last_reload_reg];
7596 int k;
7597 int n_occurrences;
7598 int n_inherited = 0;
7599 rtx i1;
7600 rtx substed;
7602 /* Get the raw pseudo-register referred to. */
7604 while (GET_CODE (reg) == SUBREG)
7605 reg = SUBREG_REG (reg);
7606 substed = reg_equiv_memory_loc[REGNO (reg)];
7608 /* This is unsafe if the operand occurs more often in the current
7609 insn than it is inherited. */
7610 for (k = n_reloads - 1; k >= 0; k--)
7612 rtx reg2 = rld[k].in;
7613 if (! reg2)
7614 continue;
7615 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7616 reg2 = rld[k].in_reg;
7617 #ifdef AUTO_INC_DEC
7618 if (rld[k].out && ! rld[k].out_reg)
7619 reg2 = XEXP (rld[k].in_reg, 0);
7620 #endif
7621 while (GET_CODE (reg2) == SUBREG)
7622 reg2 = SUBREG_REG (reg2);
7623 if (rtx_equal_p (reg2, reg))
7625 if (reload_inherited[k] || reload_override_in[k] || k == j)
7627 n_inherited++;
7628 reg2 = rld[k].out_reg;
7629 if (! reg2)
7630 continue;
7631 while (GET_CODE (reg2) == SUBREG)
7632 reg2 = XEXP (reg2, 0);
7633 if (rtx_equal_p (reg2, reg))
7634 n_inherited++;
7636 else
7637 return;
7640 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7641 if (substed)
7642 n_occurrences += count_occurrences (PATTERN (insn),
7643 eliminate_regs (substed, 0,
7644 NULL_RTX), 0);
7645 if (n_occurrences > n_inherited)
7646 return;
7648 /* If the pseudo-reg we are reloading is no longer referenced
7649 anywhere between the store into it and here,
7650 and no jumps or labels intervene, then the value can get
7651 here through the reload reg alone.
7652 Otherwise, give up--return. */
7653 for (i1 = NEXT_INSN (output_reload_insn);
7654 i1 != insn; i1 = NEXT_INSN (i1))
7656 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7657 return;
7658 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7659 && reg_mentioned_p (reg, PATTERN (i1)))
7661 /* If this is USE in front of INSN, we only have to check that
7662 there are no more references than accounted for by inheritance. */
7663 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7665 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7666 i1 = NEXT_INSN (i1);
7668 if (n_occurrences <= n_inherited && i1 == insn)
7669 break;
7670 return;
7674 /* We will be deleting the insn. Remove the spill reg information. */
7675 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7677 spill_reg_store[last_reload_reg + k] = 0;
7678 spill_reg_stored_to[last_reload_reg + k] = 0;
7681 /* The caller has already checked that REG dies or is set in INSN.
7682 It has also checked that we are optimizing, and thus some
7683 inaccurancies in the debugging information are acceptable.
7684 So we could just delete output_reload_insn. But in some cases
7685 we can improve the debugging information without sacrificing
7686 optimization - maybe even improving the code: See if the pseudo
7687 reg has been completely replaced with reload regs. If so, delete
7688 the store insn and forget we had a stack slot for the pseudo. */
7689 if (rld[j].out != rld[j].in
7690 && REG_N_DEATHS (REGNO (reg)) == 1
7691 && REG_N_SETS (REGNO (reg)) == 1
7692 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7693 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7695 rtx i2;
7697 /* We know that it was used only between here and the beginning of
7698 the current basic block. (We also know that the last use before
7699 INSN was the output reload we are thinking of deleting, but never
7700 mind that.) Search that range; see if any ref remains. */
7701 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7703 rtx set = single_set (i2);
7705 /* Uses which just store in the pseudo don't count,
7706 since if they are the only uses, they are dead. */
7707 if (set != 0 && SET_DEST (set) == reg)
7708 continue;
7709 if (GET_CODE (i2) == CODE_LABEL
7710 || GET_CODE (i2) == JUMP_INSN)
7711 break;
7712 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7713 && reg_mentioned_p (reg, PATTERN (i2)))
7715 /* Some other ref remains; just delete the output reload we
7716 know to be dead. */
7717 delete_address_reloads (output_reload_insn, insn);
7718 delete_insn (output_reload_insn);
7719 return;
7723 /* Delete the now-dead stores into this pseudo. Note that this
7724 loop also takes care of deleting output_reload_insn. */
7725 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7727 rtx set = single_set (i2);
7729 if (set != 0 && SET_DEST (set) == reg)
7731 delete_address_reloads (i2, insn);
7732 delete_insn (i2);
7734 if (GET_CODE (i2) == CODE_LABEL
7735 || GET_CODE (i2) == JUMP_INSN)
7736 break;
7739 /* For the debugging info, say the pseudo lives in this reload reg. */
7740 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7741 alter_reg (REGNO (reg), -1);
7743 else
7745 delete_address_reloads (output_reload_insn, insn);
7746 delete_insn (output_reload_insn);
7750 /* We are going to delete DEAD_INSN. Recursively delete loads of
7751 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7752 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7753 static void
7754 delete_address_reloads (dead_insn, current_insn)
7755 rtx dead_insn, current_insn;
7757 rtx set = single_set (dead_insn);
7758 rtx set2, dst, prev, next;
7759 if (set)
7761 rtx dst = SET_DEST (set);
7762 if (GET_CODE (dst) == MEM)
7763 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7765 /* If we deleted the store from a reloaded post_{in,de}c expression,
7766 we can delete the matching adds. */
7767 prev = PREV_INSN (dead_insn);
7768 next = NEXT_INSN (dead_insn);
7769 if (! prev || ! next)
7770 return;
7771 set = single_set (next);
7772 set2 = single_set (prev);
7773 if (! set || ! set2
7774 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7775 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7776 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7777 return;
7778 dst = SET_DEST (set);
7779 if (! rtx_equal_p (dst, SET_DEST (set2))
7780 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7781 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7782 || (INTVAL (XEXP (SET_SRC (set), 1))
7783 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7784 return;
7785 delete_related_insns (prev);
7786 delete_related_insns (next);
7789 /* Subfunction of delete_address_reloads: process registers found in X. */
7790 static void
7791 delete_address_reloads_1 (dead_insn, x, current_insn)
7792 rtx dead_insn, x, current_insn;
7794 rtx prev, set, dst, i2;
7795 int i, j;
7796 enum rtx_code code = GET_CODE (x);
7798 if (code != REG)
7800 const char *fmt = GET_RTX_FORMAT (code);
7801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7803 if (fmt[i] == 'e')
7804 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7805 else if (fmt[i] == 'E')
7807 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7808 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7809 current_insn);
7812 return;
7815 if (spill_reg_order[REGNO (x)] < 0)
7816 return;
7818 /* Scan backwards for the insn that sets x. This might be a way back due
7819 to inheritance. */
7820 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7822 code = GET_CODE (prev);
7823 if (code == CODE_LABEL || code == JUMP_INSN)
7824 return;
7825 if (GET_RTX_CLASS (code) != 'i')
7826 continue;
7827 if (reg_set_p (x, PATTERN (prev)))
7828 break;
7829 if (reg_referenced_p (x, PATTERN (prev)))
7830 return;
7832 if (! prev || INSN_UID (prev) < reload_first_uid)
7833 return;
7834 /* Check that PREV only sets the reload register. */
7835 set = single_set (prev);
7836 if (! set)
7837 return;
7838 dst = SET_DEST (set);
7839 if (GET_CODE (dst) != REG
7840 || ! rtx_equal_p (dst, x))
7841 return;
7842 if (! reg_set_p (dst, PATTERN (dead_insn)))
7844 /* Check if DST was used in a later insn -
7845 it might have been inherited. */
7846 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7848 if (GET_CODE (i2) == CODE_LABEL)
7849 break;
7850 if (! INSN_P (i2))
7851 continue;
7852 if (reg_referenced_p (dst, PATTERN (i2)))
7854 /* If there is a reference to the register in the current insn,
7855 it might be loaded in a non-inherited reload. If no other
7856 reload uses it, that means the register is set before
7857 referenced. */
7858 if (i2 == current_insn)
7860 for (j = n_reloads - 1; j >= 0; j--)
7861 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7862 || reload_override_in[j] == dst)
7863 return;
7864 for (j = n_reloads - 1; j >= 0; j--)
7865 if (rld[j].in && rld[j].reg_rtx == dst)
7866 break;
7867 if (j >= 0)
7868 break;
7870 return;
7872 if (GET_CODE (i2) == JUMP_INSN)
7873 break;
7874 /* If DST is still live at CURRENT_INSN, check if it is used for
7875 any reload. Note that even if CURRENT_INSN sets DST, we still
7876 have to check the reloads. */
7877 if (i2 == current_insn)
7879 for (j = n_reloads - 1; j >= 0; j--)
7880 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7881 || reload_override_in[j] == dst)
7882 return;
7883 /* ??? We can't finish the loop here, because dst might be
7884 allocated to a pseudo in this block if no reload in this
7885 block needs any of the clsses containing DST - see
7886 spill_hard_reg. There is no easy way to tell this, so we
7887 have to scan till the end of the basic block. */
7889 if (reg_set_p (dst, PATTERN (i2)))
7890 break;
7893 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7894 reg_reloaded_contents[REGNO (dst)] = -1;
7895 delete_insn (prev);
7898 /* Output reload-insns to reload VALUE into RELOADREG.
7899 VALUE is an autoincrement or autodecrement RTX whose operand
7900 is a register or memory location;
7901 so reloading involves incrementing that location.
7902 IN is either identical to VALUE, or some cheaper place to reload from.
7904 INC_AMOUNT is the number to increment or decrement by (always positive).
7905 This cannot be deduced from VALUE.
7907 Return the instruction that stores into RELOADREG. */
7909 static rtx
7910 inc_for_reload (reloadreg, in, value, inc_amount)
7911 rtx reloadreg;
7912 rtx in, value;
7913 int inc_amount;
7915 /* REG or MEM to be copied and incremented. */
7916 rtx incloc = XEXP (value, 0);
7917 /* Nonzero if increment after copying. */
7918 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7919 rtx last;
7920 rtx inc;
7921 rtx add_insn;
7922 int code;
7923 rtx store;
7924 rtx real_in = in == value ? XEXP (in, 0) : in;
7926 /* No hard register is equivalent to this register after
7927 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7928 we could inc/dec that register as well (maybe even using it for
7929 the source), but I'm not sure it's worth worrying about. */
7930 if (GET_CODE (incloc) == REG)
7931 reg_last_reload_reg[REGNO (incloc)] = 0;
7933 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7934 inc_amount = -inc_amount;
7936 inc = GEN_INT (inc_amount);
7938 /* If this is post-increment, first copy the location to the reload reg. */
7939 if (post && real_in != reloadreg)
7940 emit_insn (gen_move_insn (reloadreg, real_in));
7942 if (in == value)
7944 /* See if we can directly increment INCLOC. Use a method similar to
7945 that in gen_reload. */
7947 last = get_last_insn ();
7948 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7949 gen_rtx_PLUS (GET_MODE (incloc),
7950 incloc, inc)));
7952 code = recog_memoized (add_insn);
7953 if (code >= 0)
7955 extract_insn (add_insn);
7956 if (constrain_operands (1))
7958 /* If this is a pre-increment and we have incremented the value
7959 where it lives, copy the incremented value to RELOADREG to
7960 be used as an address. */
7962 if (! post)
7963 emit_insn (gen_move_insn (reloadreg, incloc));
7965 return add_insn;
7968 delete_insns_since (last);
7971 /* If couldn't do the increment directly, must increment in RELOADREG.
7972 The way we do this depends on whether this is pre- or post-increment.
7973 For pre-increment, copy INCLOC to the reload register, increment it
7974 there, then save back. */
7976 if (! post)
7978 if (in != reloadreg)
7979 emit_insn (gen_move_insn (reloadreg, real_in));
7980 emit_insn (gen_add2_insn (reloadreg, inc));
7981 store = emit_insn (gen_move_insn (incloc, reloadreg));
7983 else
7985 /* Postincrement.
7986 Because this might be a jump insn or a compare, and because RELOADREG
7987 may not be available after the insn in an input reload, we must do
7988 the incrementation before the insn being reloaded for.
7990 We have already copied IN to RELOADREG. Increment the copy in
7991 RELOADREG, save that back, then decrement RELOADREG so it has
7992 the original value. */
7994 emit_insn (gen_add2_insn (reloadreg, inc));
7995 store = emit_insn (gen_move_insn (incloc, reloadreg));
7996 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7999 return store;
8003 /* See whether a single set SET is a noop. */
8004 static int
8005 reload_cse_noop_set_p (set)
8006 rtx set;
8008 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8011 /* Try to simplify INSN. */
8012 static void
8013 reload_cse_simplify (insn, testreg)
8014 rtx insn;
8015 rtx testreg;
8017 rtx body = PATTERN (insn);
8019 if (GET_CODE (body) == SET)
8021 int count = 0;
8023 /* Simplify even if we may think it is a no-op.
8024 We may think a memory load of a value smaller than WORD_SIZE
8025 is redundant because we haven't taken into account possible
8026 implicit extension. reload_cse_simplify_set() will bring
8027 this out, so it's safer to simplify before we delete. */
8028 count += reload_cse_simplify_set (body, insn);
8030 if (!count && reload_cse_noop_set_p (body))
8032 rtx value = SET_DEST (body);
8033 if (REG_P (value)
8034 && ! REG_FUNCTION_VALUE_P (value))
8035 value = 0;
8036 delete_insn_and_edges (insn);
8037 return;
8040 if (count > 0)
8041 apply_change_group ();
8042 else
8043 reload_cse_simplify_operands (insn, testreg);
8045 else if (GET_CODE (body) == PARALLEL)
8047 int i;
8048 int count = 0;
8049 rtx value = NULL_RTX;
8051 /* If every action in a PARALLEL is a noop, we can delete
8052 the entire PARALLEL. */
8053 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8055 rtx part = XVECEXP (body, 0, i);
8056 if (GET_CODE (part) == SET)
8058 if (! reload_cse_noop_set_p (part))
8059 break;
8060 if (REG_P (SET_DEST (part))
8061 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
8063 if (value)
8064 break;
8065 value = SET_DEST (part);
8068 else if (GET_CODE (part) != CLOBBER)
8069 break;
8072 if (i < 0)
8074 delete_insn_and_edges (insn);
8075 /* We're done with this insn. */
8076 return;
8079 /* It's not a no-op, but we can try to simplify it. */
8080 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8081 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8082 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8084 if (count > 0)
8085 apply_change_group ();
8086 else
8087 reload_cse_simplify_operands (insn, testreg);
8091 /* Do a very simple CSE pass over the hard registers.
8093 This function detects no-op moves where we happened to assign two
8094 different pseudo-registers to the same hard register, and then
8095 copied one to the other. Reload will generate a useless
8096 instruction copying a register to itself.
8098 This function also detects cases where we load a value from memory
8099 into two different registers, and (if memory is more expensive than
8100 registers) changes it to simply copy the first register into the
8101 second register.
8103 Another optimization is performed that scans the operands of each
8104 instruction to see whether the value is already available in a
8105 hard register. It then replaces the operand with the hard register
8106 if possible, much like an optional reload would. */
8108 static void
8109 reload_cse_regs_1 (first)
8110 rtx first;
8112 rtx insn;
8113 rtx testreg = gen_rtx_REG (VOIDmode, -1);
8115 cselib_init ();
8116 init_alias_analysis ();
8118 for (insn = first; insn; insn = NEXT_INSN (insn))
8120 if (INSN_P (insn))
8121 reload_cse_simplify (insn, testreg);
8123 cselib_process_insn (insn);
8126 /* Clean up. */
8127 end_alias_analysis ();
8128 cselib_finish ();
8131 /* Call cse / combine like post-reload optimization phases.
8132 FIRST is the first instruction. */
8133 void
8134 reload_cse_regs (first)
8135 rtx first;
8137 reload_cse_regs_1 (first);
8138 reload_combine ();
8139 reload_cse_move2add (first);
8140 if (flag_expensive_optimizations)
8141 reload_cse_regs_1 (first);
8144 /* Try to simplify a single SET instruction. SET is the set pattern.
8145 INSN is the instruction it came from.
8146 This function only handles one case: if we set a register to a value
8147 which is not a register, we try to find that value in some other register
8148 and change the set into a register copy. */
8150 static int
8151 reload_cse_simplify_set (set, insn)
8152 rtx set;
8153 rtx insn;
8155 int did_change = 0;
8156 int dreg;
8157 rtx src;
8158 enum reg_class dclass;
8159 int old_cost;
8160 cselib_val *val;
8161 struct elt_loc_list *l;
8162 #ifdef LOAD_EXTEND_OP
8163 enum rtx_code extend_op = NIL;
8164 #endif
8166 dreg = true_regnum (SET_DEST (set));
8167 if (dreg < 0)
8168 return 0;
8170 src = SET_SRC (set);
8171 if (side_effects_p (src) || true_regnum (src) >= 0)
8172 return 0;
8174 dclass = REGNO_REG_CLASS (dreg);
8176 #ifdef LOAD_EXTEND_OP
8177 /* When replacing a memory with a register, we need to honor assumptions
8178 that combine made wrt the contents of sign bits. We'll do this by
8179 generating an extend instruction instead of a reg->reg copy. Thus
8180 the destination must be a register that we can widen. */
8181 if (GET_CODE (src) == MEM
8182 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8183 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8184 && GET_CODE (SET_DEST (set)) != REG)
8185 return 0;
8186 #endif
8188 /* If memory loads are cheaper than register copies, don't change them. */
8189 if (GET_CODE (src) == MEM)
8190 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8191 else if (CONSTANT_P (src))
8192 old_cost = rtx_cost (src, SET);
8193 else if (GET_CODE (src) == REG)
8194 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8195 REGNO_REG_CLASS (REGNO (src)), dclass);
8196 else
8197 /* ??? */
8198 old_cost = rtx_cost (src, SET);
8200 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8201 if (! val)
8202 return 0;
8203 for (l = val->locs; l; l = l->next)
8205 rtx this_rtx = l->loc;
8206 int this_cost;
8208 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8210 #ifdef LOAD_EXTEND_OP
8211 if (extend_op != NIL)
8213 HOST_WIDE_INT this_val;
8215 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8216 constants, such as SYMBOL_REF, cannot be extended. */
8217 if (GET_CODE (this_rtx) != CONST_INT)
8218 continue;
8220 this_val = INTVAL (this_rtx);
8221 switch (extend_op)
8223 case ZERO_EXTEND:
8224 this_val &= GET_MODE_MASK (GET_MODE (src));
8225 break;
8226 case SIGN_EXTEND:
8227 /* ??? In theory we're already extended. */
8228 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8229 break;
8230 default:
8231 abort ();
8233 this_rtx = GEN_INT (this_val);
8235 #endif
8236 this_cost = rtx_cost (this_rtx, SET);
8238 else if (GET_CODE (this_rtx) == REG)
8240 #ifdef LOAD_EXTEND_OP
8241 if (extend_op != NIL)
8243 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8244 this_cost = rtx_cost (this_rtx, SET);
8246 else
8247 #endif
8248 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8249 REGNO_REG_CLASS (REGNO (this_rtx)),
8250 dclass);
8252 else
8253 continue;
8255 /* If equal costs, prefer registers over anything else. That
8256 tends to lead to smaller instructions on some machines. */
8257 if (this_cost < old_cost
8258 || (this_cost == old_cost
8259 && GET_CODE (this_rtx) == REG
8260 && GET_CODE (SET_SRC (set)) != REG))
8262 #ifdef LOAD_EXTEND_OP
8263 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8264 && extend_op != NIL)
8266 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8267 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8268 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8270 #endif
8272 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8273 old_cost = this_cost, did_change = 1;
8277 return did_change;
8280 /* Try to replace operands in INSN with equivalent values that are already
8281 in registers. This can be viewed as optional reloading.
8283 For each non-register operand in the insn, see if any hard regs are
8284 known to be equivalent to that operand. Record the alternatives which
8285 can accept these hard registers. Among all alternatives, select the
8286 ones which are better or equal to the one currently matching, where
8287 "better" is in terms of '?' and '!' constraints. Among the remaining
8288 alternatives, select the one which replaces most operands with
8289 hard registers. */
8291 static int
8292 reload_cse_simplify_operands (insn, testreg)
8293 rtx insn;
8294 rtx testreg;
8296 int i, j;
8298 /* For each operand, all registers that are equivalent to it. */
8299 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8301 const char *constraints[MAX_RECOG_OPERANDS];
8303 /* Vector recording how bad an alternative is. */
8304 int *alternative_reject;
8305 /* Vector recording how many registers can be introduced by choosing
8306 this alternative. */
8307 int *alternative_nregs;
8308 /* Array of vectors recording, for each operand and each alternative,
8309 which hard register to substitute, or -1 if the operand should be
8310 left as it is. */
8311 int *op_alt_regno[MAX_RECOG_OPERANDS];
8312 /* Array of alternatives, sorted in order of decreasing desirability. */
8313 int *alternative_order;
8315 extract_insn (insn);
8317 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8318 return 0;
8320 /* Figure out which alternative currently matches. */
8321 if (! constrain_operands (1))
8322 fatal_insn_not_found (insn);
8324 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8325 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8326 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8327 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8328 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8330 /* For each operand, find out which regs are equivalent. */
8331 for (i = 0; i < recog_data.n_operands; i++)
8333 cselib_val *v;
8334 struct elt_loc_list *l;
8336 CLEAR_HARD_REG_SET (equiv_regs[i]);
8338 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8339 right, so avoid the problem here. Likewise if we have a constant
8340 and the insn pattern doesn't tell us the mode we need. */
8341 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8342 || (CONSTANT_P (recog_data.operand[i])
8343 && recog_data.operand_mode[i] == VOIDmode))
8344 continue;
8346 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8347 if (! v)
8348 continue;
8350 for (l = v->locs; l; l = l->next)
8351 if (GET_CODE (l->loc) == REG)
8352 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8355 for (i = 0; i < recog_data.n_operands; i++)
8357 enum machine_mode mode;
8358 int regno;
8359 const char *p;
8361 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8362 for (j = 0; j < recog_data.n_alternatives; j++)
8363 op_alt_regno[i][j] = -1;
8365 p = constraints[i] = recog_data.constraints[i];
8366 mode = recog_data.operand_mode[i];
8368 /* Add the reject values for each alternative given by the constraints
8369 for this operand. */
8370 j = 0;
8371 while (*p != '\0')
8373 char c = *p++;
8374 if (c == ',')
8375 j++;
8376 else if (c == '?')
8377 alternative_reject[j] += 3;
8378 else if (c == '!')
8379 alternative_reject[j] += 300;
8382 /* We won't change operands which are already registers. We
8383 also don't want to modify output operands. */
8384 regno = true_regnum (recog_data.operand[i]);
8385 if (regno >= 0
8386 || constraints[i][0] == '='
8387 || constraints[i][0] == '+')
8388 continue;
8390 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8392 int class = (int) NO_REGS;
8394 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8395 continue;
8397 REGNO (testreg) = regno;
8398 PUT_MODE (testreg, mode);
8400 /* We found a register equal to this operand. Now look for all
8401 alternatives that can accept this register and have not been
8402 assigned a register they can use yet. */
8403 j = 0;
8404 p = constraints[i];
8405 for (;;)
8407 char c = *p++;
8409 switch (c)
8411 case '=': case '+': case '?':
8412 case '#': case '&': case '!':
8413 case '*': case '%':
8414 case '0': case '1': case '2': case '3': case '4':
8415 case '5': case '6': case '7': case '8': case '9':
8416 case 'm': case '<': case '>': case 'V': case 'o':
8417 case 'E': case 'F': case 'G': case 'H':
8418 case 's': case 'i': case 'n':
8419 case 'I': case 'J': case 'K': case 'L':
8420 case 'M': case 'N': case 'O': case 'P':
8421 case 'p': case 'X':
8422 /* These don't say anything we care about. */
8423 break;
8425 case 'g': case 'r':
8426 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8427 break;
8429 default:
8430 class
8431 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
8432 break;
8434 case ',': case '\0':
8435 /* See if REGNO fits this alternative, and set it up as the
8436 replacement register if we don't have one for this
8437 alternative yet and the operand being replaced is not
8438 a cheap CONST_INT. */
8439 if (op_alt_regno[i][j] == -1
8440 && reg_fits_class_p (testreg, class, 0, mode)
8441 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8442 || (rtx_cost (recog_data.operand[i], SET)
8443 > rtx_cost (testreg, SET))))
8445 alternative_nregs[j]++;
8446 op_alt_regno[i][j] = regno;
8448 j++;
8449 break;
8452 if (c == '\0')
8453 break;
8458 /* Record all alternatives which are better or equal to the currently
8459 matching one in the alternative_order array. */
8460 for (i = j = 0; i < recog_data.n_alternatives; i++)
8461 if (alternative_reject[i] <= alternative_reject[which_alternative])
8462 alternative_order[j++] = i;
8463 recog_data.n_alternatives = j;
8465 /* Sort it. Given a small number of alternatives, a dumb algorithm
8466 won't hurt too much. */
8467 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8469 int best = i;
8470 int best_reject = alternative_reject[alternative_order[i]];
8471 int best_nregs = alternative_nregs[alternative_order[i]];
8472 int tmp;
8474 for (j = i + 1; j < recog_data.n_alternatives; j++)
8476 int this_reject = alternative_reject[alternative_order[j]];
8477 int this_nregs = alternative_nregs[alternative_order[j]];
8479 if (this_reject < best_reject
8480 || (this_reject == best_reject && this_nregs < best_nregs))
8482 best = j;
8483 best_reject = this_reject;
8484 best_nregs = this_nregs;
8488 tmp = alternative_order[best];
8489 alternative_order[best] = alternative_order[i];
8490 alternative_order[i] = tmp;
8493 /* Substitute the operands as determined by op_alt_regno for the best
8494 alternative. */
8495 j = alternative_order[0];
8497 for (i = 0; i < recog_data.n_operands; i++)
8499 enum machine_mode mode = recog_data.operand_mode[i];
8500 if (op_alt_regno[i][j] == -1)
8501 continue;
8503 validate_change (insn, recog_data.operand_loc[i],
8504 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8507 for (i = recog_data.n_dups - 1; i >= 0; i--)
8509 int op = recog_data.dup_num[i];
8510 enum machine_mode mode = recog_data.operand_mode[op];
8512 if (op_alt_regno[op][j] == -1)
8513 continue;
8515 validate_change (insn, recog_data.dup_loc[i],
8516 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8519 return apply_change_group ();
8522 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8523 addressing now.
8524 This code might also be useful when reload gave up on reg+reg addresssing
8525 because of clashes between the return register and INDEX_REG_CLASS. */
8527 /* The maximum number of uses of a register we can keep track of to
8528 replace them with reg+reg addressing. */
8529 #define RELOAD_COMBINE_MAX_USES 6
8531 /* INSN is the insn where a register has ben used, and USEP points to the
8532 location of the register within the rtl. */
8533 struct reg_use { rtx insn, *usep; };
8535 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8536 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8537 indicates where it becomes live again.
8538 Otherwise, USE_INDEX is the index of the last encountered use of the
8539 register (which is first among these we have seen since we scan backwards),
8540 OFFSET contains the constant offset that is added to the register in
8541 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8542 last, of these uses.
8543 STORE_RUID is always meaningful if we only want to use a value in a
8544 register in a different place: it denotes the next insn in the insn
8545 stream (i.e. the last ecountered) that sets or clobbers the register. */
8546 static struct
8548 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8549 int use_index;
8550 rtx offset;
8551 int store_ruid;
8552 int use_ruid;
8553 } reg_state[FIRST_PSEUDO_REGISTER];
8555 /* Reverse linear uid. This is increased in reload_combine while scanning
8556 the instructions from last to first. It is used to set last_label_ruid
8557 and the store_ruid / use_ruid fields in reg_state. */
8558 static int reload_combine_ruid;
8560 #define LABEL_LIVE(LABEL) \
8561 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8563 static void
8564 reload_combine ()
8566 rtx insn, set;
8567 int first_index_reg = -1;
8568 int last_index_reg = 0;
8569 int i;
8570 basic_block bb;
8571 unsigned int r;
8572 int last_label_ruid;
8573 int min_labelno, n_labels;
8574 HARD_REG_SET ever_live_at_start, *label_live;
8576 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8577 reload has already used it where appropriate, so there is no use in
8578 trying to generate it now. */
8579 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8580 return;
8582 /* To avoid wasting too much time later searching for an index register,
8583 determine the minimum and maximum index register numbers. */
8584 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8585 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8587 if (first_index_reg == -1)
8588 first_index_reg = r;
8590 last_index_reg = r;
8593 /* If no index register is available, we can quit now. */
8594 if (first_index_reg == -1)
8595 return;
8597 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8598 information is a bit fuzzy immediately after reload, but it's
8599 still good enough to determine which registers are live at a jump
8600 destination. */
8601 min_labelno = get_first_label_num ();
8602 n_labels = max_label_num () - min_labelno;
8603 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8604 CLEAR_HARD_REG_SET (ever_live_at_start);
8606 FOR_EACH_BB_REVERSE (bb)
8608 insn = bb->head;
8609 if (GET_CODE (insn) == CODE_LABEL)
8611 HARD_REG_SET live;
8613 REG_SET_TO_HARD_REG_SET (live,
8614 bb->global_live_at_start);
8615 compute_use_by_pseudos (&live,
8616 bb->global_live_at_start);
8617 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8618 IOR_HARD_REG_SET (ever_live_at_start, live);
8622 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8623 last_label_ruid = reload_combine_ruid = 0;
8624 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8626 reg_state[r].store_ruid = reload_combine_ruid;
8627 if (fixed_regs[r])
8628 reg_state[r].use_index = -1;
8629 else
8630 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8633 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8635 rtx note;
8637 /* We cannot do our optimization across labels. Invalidating all the use
8638 information we have would be costly, so we just note where the label
8639 is and then later disable any optimization that would cross it. */
8640 if (GET_CODE (insn) == CODE_LABEL)
8641 last_label_ruid = reload_combine_ruid;
8642 else if (GET_CODE (insn) == BARRIER)
8643 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8644 if (! fixed_regs[r])
8645 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8647 if (! INSN_P (insn))
8648 continue;
8650 reload_combine_ruid++;
8652 /* Look for (set (REGX) (CONST_INT))
8653 (set (REGX) (PLUS (REGX) (REGY)))
8655 ... (MEM (REGX)) ...
8656 and convert it to
8657 (set (REGZ) (CONST_INT))
8659 ... (MEM (PLUS (REGZ) (REGY)))... .
8661 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8662 and that we know all uses of REGX before it dies. */
8663 set = single_set (insn);
8664 if (set != NULL_RTX
8665 && GET_CODE (SET_DEST (set)) == REG
8666 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8667 GET_MODE (SET_DEST (set)))
8668 == 1)
8669 && GET_CODE (SET_SRC (set)) == PLUS
8670 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8671 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8672 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8674 rtx reg = SET_DEST (set);
8675 rtx plus = SET_SRC (set);
8676 rtx base = XEXP (plus, 1);
8677 rtx prev = prev_nonnote_insn (insn);
8678 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8679 unsigned int regno = REGNO (reg);
8680 rtx const_reg = NULL_RTX;
8681 rtx reg_sum = NULL_RTX;
8683 /* Now, we need an index register.
8684 We'll set index_reg to this index register, const_reg to the
8685 register that is to be loaded with the constant
8686 (denoted as REGZ in the substitution illustration above),
8687 and reg_sum to the register-register that we want to use to
8688 substitute uses of REG (typically in MEMs) with.
8689 First check REG and BASE for being index registers;
8690 we can use them even if they are not dead. */
8691 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8692 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8693 REGNO (base)))
8695 const_reg = reg;
8696 reg_sum = plus;
8698 else
8700 /* Otherwise, look for a free index register. Since we have
8701 checked above that neiter REG nor BASE are index registers,
8702 if we find anything at all, it will be different from these
8703 two registers. */
8704 for (i = first_index_reg; i <= last_index_reg; i++)
8706 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8708 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8709 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8710 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8712 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8714 const_reg = index_reg;
8715 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8716 break;
8721 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8722 (REGY), i.e. BASE, is not clobbered before the last use we'll
8723 create. */
8724 if (prev_set != 0
8725 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8726 && rtx_equal_p (SET_DEST (prev_set), reg)
8727 && reg_state[regno].use_index >= 0
8728 && (reg_state[REGNO (base)].store_ruid
8729 <= reg_state[regno].use_ruid)
8730 && reg_sum != 0)
8732 int i;
8734 /* Change destination register and, if necessary, the
8735 constant value in PREV, the constant loading instruction. */
8736 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8737 if (reg_state[regno].offset != const0_rtx)
8738 validate_change (prev,
8739 &SET_SRC (prev_set),
8740 GEN_INT (INTVAL (SET_SRC (prev_set))
8741 + INTVAL (reg_state[regno].offset)),
8744 /* Now for every use of REG that we have recorded, replace REG
8745 with REG_SUM. */
8746 for (i = reg_state[regno].use_index;
8747 i < RELOAD_COMBINE_MAX_USES; i++)
8748 validate_change (reg_state[regno].reg_use[i].insn,
8749 reg_state[regno].reg_use[i].usep,
8750 /* Each change must have its own
8751 replacement. */
8752 copy_rtx (reg_sum), 1);
8754 if (apply_change_group ())
8756 rtx *np;
8758 /* Delete the reg-reg addition. */
8759 delete_insn (insn);
8761 if (reg_state[regno].offset != const0_rtx)
8762 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8763 are now invalid. */
8764 for (np = &REG_NOTES (prev); *np;)
8766 if (REG_NOTE_KIND (*np) == REG_EQUAL
8767 || REG_NOTE_KIND (*np) == REG_EQUIV)
8768 *np = XEXP (*np, 1);
8769 else
8770 np = &XEXP (*np, 1);
8773 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8774 reg_state[REGNO (const_reg)].store_ruid
8775 = reload_combine_ruid;
8776 continue;
8781 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8783 if (GET_CODE (insn) == CALL_INSN)
8785 rtx link;
8787 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8788 if (call_used_regs[r])
8790 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8791 reg_state[r].store_ruid = reload_combine_ruid;
8794 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8795 link = XEXP (link, 1))
8797 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8798 if (GET_CODE (usage_rtx) == REG)
8800 unsigned int i;
8801 unsigned int start_reg = REGNO (usage_rtx);
8802 unsigned int num_regs =
8803 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8804 unsigned int end_reg = start_reg + num_regs - 1;
8805 for (i = start_reg; i <= end_reg; i++)
8806 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8808 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8809 reg_state[i].store_ruid = reload_combine_ruid;
8811 else
8812 reg_state[i].use_index = -1;
8817 else if (GET_CODE (insn) == JUMP_INSN
8818 && GET_CODE (PATTERN (insn)) != RETURN)
8820 /* Non-spill registers might be used at the call destination in
8821 some unknown fashion, so we have to mark the unknown use. */
8822 HARD_REG_SET *live;
8824 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8825 && JUMP_LABEL (insn))
8826 live = &LABEL_LIVE (JUMP_LABEL (insn));
8827 else
8828 live = &ever_live_at_start;
8830 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8831 if (TEST_HARD_REG_BIT (*live, i))
8832 reg_state[i].use_index = -1;
8835 reload_combine_note_use (&PATTERN (insn), insn);
8836 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8838 if (REG_NOTE_KIND (note) == REG_INC
8839 && GET_CODE (XEXP (note, 0)) == REG)
8841 int regno = REGNO (XEXP (note, 0));
8843 reg_state[regno].store_ruid = reload_combine_ruid;
8844 reg_state[regno].use_index = -1;
8849 free (label_live);
8852 /* Check if DST is a register or a subreg of a register; if it is,
8853 update reg_state[regno].store_ruid and reg_state[regno].use_index
8854 accordingly. Called via note_stores from reload_combine. */
8856 static void
8857 reload_combine_note_store (dst, set, data)
8858 rtx dst, set;
8859 void *data ATTRIBUTE_UNUSED;
8861 int regno = 0;
8862 int i;
8863 enum machine_mode mode = GET_MODE (dst);
8865 if (GET_CODE (dst) == SUBREG)
8867 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8868 GET_MODE (SUBREG_REG (dst)),
8869 SUBREG_BYTE (dst),
8870 GET_MODE (dst));
8871 dst = SUBREG_REG (dst);
8873 if (GET_CODE (dst) != REG)
8874 return;
8875 regno += REGNO (dst);
8877 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8878 careful with registers / register parts that are not full words.
8880 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8881 if (GET_CODE (set) != SET
8882 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8883 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8884 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8886 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8888 reg_state[i].use_index = -1;
8889 reg_state[i].store_ruid = reload_combine_ruid;
8892 else
8894 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8896 reg_state[i].store_ruid = reload_combine_ruid;
8897 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8902 /* XP points to a piece of rtl that has to be checked for any uses of
8903 registers.
8904 *XP is the pattern of INSN, or a part of it.
8905 Called from reload_combine, and recursively by itself. */
8906 static void
8907 reload_combine_note_use (xp, insn)
8908 rtx *xp, insn;
8910 rtx x = *xp;
8911 enum rtx_code code = x->code;
8912 const char *fmt;
8913 int i, j;
8914 rtx offset = const0_rtx; /* For the REG case below. */
8916 switch (code)
8918 case SET:
8919 if (GET_CODE (SET_DEST (x)) == REG)
8921 reload_combine_note_use (&SET_SRC (x), insn);
8922 return;
8924 break;
8926 case USE:
8927 /* If this is the USE of a return value, we can't change it. */
8928 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8930 /* Mark the return register as used in an unknown fashion. */
8931 rtx reg = XEXP (x, 0);
8932 int regno = REGNO (reg);
8933 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8935 while (--nregs >= 0)
8936 reg_state[regno + nregs].use_index = -1;
8937 return;
8939 break;
8941 case CLOBBER:
8942 if (GET_CODE (SET_DEST (x)) == REG)
8944 /* No spurious CLOBBERs of pseudo registers may remain. */
8945 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8946 abort ();
8947 return;
8949 break;
8951 case PLUS:
8952 /* We are interested in (plus (reg) (const_int)) . */
8953 if (GET_CODE (XEXP (x, 0)) != REG
8954 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8955 break;
8956 offset = XEXP (x, 1);
8957 x = XEXP (x, 0);
8958 /* Fall through. */
8959 case REG:
8961 int regno = REGNO (x);
8962 int use_index;
8963 int nregs;
8965 /* No spurious USEs of pseudo registers may remain. */
8966 if (regno >= FIRST_PSEUDO_REGISTER)
8967 abort ();
8969 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8971 /* We can't substitute into multi-hard-reg uses. */
8972 if (nregs > 1)
8974 while (--nregs >= 0)
8975 reg_state[regno + nregs].use_index = -1;
8976 return;
8979 /* If this register is already used in some unknown fashion, we
8980 can't do anything.
8981 If we decrement the index from zero to -1, we can't store more
8982 uses, so this register becomes used in an unknown fashion. */
8983 use_index = --reg_state[regno].use_index;
8984 if (use_index < 0)
8985 return;
8987 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8989 /* We have found another use for a register that is already
8990 used later. Check if the offsets match; if not, mark the
8991 register as used in an unknown fashion. */
8992 if (! rtx_equal_p (offset, reg_state[regno].offset))
8994 reg_state[regno].use_index = -1;
8995 return;
8998 else
9000 /* This is the first use of this register we have seen since we
9001 marked it as dead. */
9002 reg_state[regno].offset = offset;
9003 reg_state[regno].use_ruid = reload_combine_ruid;
9005 reg_state[regno].reg_use[use_index].insn = insn;
9006 reg_state[regno].reg_use[use_index].usep = xp;
9007 return;
9010 default:
9011 break;
9014 /* Recursively process the components of X. */
9015 fmt = GET_RTX_FORMAT (code);
9016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9018 if (fmt[i] == 'e')
9019 reload_combine_note_use (&XEXP (x, i), insn);
9020 else if (fmt[i] == 'E')
9022 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9023 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9028 /* See if we can reduce the cost of a constant by replacing a move
9029 with an add. We track situations in which a register is set to a
9030 constant or to a register plus a constant. */
9031 /* We cannot do our optimization across labels. Invalidating all the
9032 information about register contents we have would be costly, so we
9033 use move2add_last_label_luid to note where the label is and then
9034 later disable any optimization that would cross it.
9035 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9036 reg_set_luid[n] is greater than last_label_luid[n] . */
9037 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9039 /* If reg_base_reg[n] is negative, register n has been set to
9040 reg_offset[n] in mode reg_mode[n] .
9041 If reg_base_reg[n] is non-negative, register n has been set to the
9042 sum of reg_offset[n] and the value of register reg_base_reg[n]
9043 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9044 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9045 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9046 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9048 /* move2add_luid is linearily increased while scanning the instructions
9049 from first to last. It is used to set reg_set_luid in
9050 reload_cse_move2add and move2add_note_store. */
9051 static int move2add_luid;
9053 /* move2add_last_label_luid is set whenever a label is found. Labels
9054 invalidate all previously collected reg_offset data. */
9055 static int move2add_last_label_luid;
9057 /* Generate a CONST_INT and force it in the range of MODE. */
9059 static HOST_WIDE_INT
9060 sext_for_mode (mode, value)
9061 enum machine_mode mode;
9062 HOST_WIDE_INT value;
9064 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9065 int width = GET_MODE_BITSIZE (mode);
9067 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9068 sign extend it. */
9069 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9070 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9071 cval |= (HOST_WIDE_INT) -1 << width;
9073 return cval;
9076 /* ??? We don't know how zero / sign extension is handled, hence we
9077 can't go from a narrower to a wider mode. */
9078 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9079 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9080 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9081 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9082 GET_MODE_BITSIZE (INMODE))))
9084 static void
9085 reload_cse_move2add (first)
9086 rtx first;
9088 int i;
9089 rtx insn;
9091 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9092 reg_set_luid[i] = 0;
9094 move2add_last_label_luid = 0;
9095 move2add_luid = 2;
9096 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9098 rtx pat, note;
9100 if (GET_CODE (insn) == CODE_LABEL)
9102 move2add_last_label_luid = move2add_luid;
9103 /* We're going to increment move2add_luid twice after a
9104 label, so that we can use move2add_last_label_luid + 1 as
9105 the luid for constants. */
9106 move2add_luid++;
9107 continue;
9109 if (! INSN_P (insn))
9110 continue;
9111 pat = PATTERN (insn);
9112 /* For simplicity, we only perform this optimization on
9113 straightforward SETs. */
9114 if (GET_CODE (pat) == SET
9115 && GET_CODE (SET_DEST (pat)) == REG)
9117 rtx reg = SET_DEST (pat);
9118 int regno = REGNO (reg);
9119 rtx src = SET_SRC (pat);
9121 /* Check if we have valid information on the contents of this
9122 register in the mode of REG. */
9123 if (reg_set_luid[regno] > move2add_last_label_luid
9124 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9126 /* Try to transform (set (REGX) (CONST_INT A))
9128 (set (REGX) (CONST_INT B))
9130 (set (REGX) (CONST_INT A))
9132 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9134 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9136 int success = 0;
9137 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9138 INTVAL (src)
9139 - reg_offset[regno]));
9140 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9141 use (set (reg) (reg)) instead.
9142 We don't delete this insn, nor do we convert it into a
9143 note, to avoid losing register notes or the return
9144 value flag. jump2 already knowns how to get rid of
9145 no-op moves. */
9146 if (new_src == const0_rtx)
9147 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9148 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9149 && have_add2_insn (reg, new_src))
9150 success = validate_change (insn, &PATTERN (insn),
9151 gen_add2_insn (reg, new_src), 0);
9152 reg_set_luid[regno] = move2add_luid;
9153 reg_mode[regno] = GET_MODE (reg);
9154 reg_offset[regno] = INTVAL (src);
9155 continue;
9158 /* Try to transform (set (REGX) (REGY))
9159 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9161 (set (REGX) (REGY))
9162 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9164 (REGX) (REGY))
9165 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9167 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9168 else if (GET_CODE (src) == REG
9169 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9170 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9171 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9172 reg_mode[REGNO (src)]))
9174 rtx next = next_nonnote_insn (insn);
9175 rtx set = NULL_RTX;
9176 if (next)
9177 set = single_set (next);
9178 if (set
9179 && SET_DEST (set) == reg
9180 && GET_CODE (SET_SRC (set)) == PLUS
9181 && XEXP (SET_SRC (set), 0) == reg
9182 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9184 rtx src3 = XEXP (SET_SRC (set), 1);
9185 HOST_WIDE_INT added_offset = INTVAL (src3);
9186 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9187 HOST_WIDE_INT regno_offset = reg_offset[regno];
9188 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9189 added_offset
9190 + base_offset
9191 - regno_offset));
9192 int success = 0;
9194 if (new_src == const0_rtx)
9195 /* See above why we create (set (reg) (reg)) here. */
9196 success
9197 = validate_change (next, &SET_SRC (set), reg, 0);
9198 else if ((rtx_cost (new_src, PLUS)
9199 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9200 && have_add2_insn (reg, new_src))
9201 success
9202 = validate_change (next, &PATTERN (next),
9203 gen_add2_insn (reg, new_src), 0);
9204 if (success)
9205 delete_insn (insn);
9206 insn = next;
9207 reg_mode[regno] = GET_MODE (reg);
9208 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9209 added_offset
9210 + base_offset);
9211 continue;
9217 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9219 if (REG_NOTE_KIND (note) == REG_INC
9220 && GET_CODE (XEXP (note, 0)) == REG)
9222 /* Reset the information about this register. */
9223 int regno = REGNO (XEXP (note, 0));
9224 if (regno < FIRST_PSEUDO_REGISTER)
9225 reg_set_luid[regno] = 0;
9228 note_stores (PATTERN (insn), move2add_note_store, NULL);
9229 /* If this is a CALL_INSN, all call used registers are stored with
9230 unknown values. */
9231 if (GET_CODE (insn) == CALL_INSN)
9233 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9235 if (call_used_regs[i])
9236 /* Reset the information about this register. */
9237 reg_set_luid[i] = 0;
9243 /* SET is a SET or CLOBBER that sets DST.
9244 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9245 Called from reload_cse_move2add via note_stores. */
9247 static void
9248 move2add_note_store (dst, set, data)
9249 rtx dst, set;
9250 void *data ATTRIBUTE_UNUSED;
9252 unsigned int regno = 0;
9253 unsigned int i;
9254 enum machine_mode mode = GET_MODE (dst);
9256 if (GET_CODE (dst) == SUBREG)
9258 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9259 GET_MODE (SUBREG_REG (dst)),
9260 SUBREG_BYTE (dst),
9261 GET_MODE (dst));
9262 dst = SUBREG_REG (dst);
9265 /* Some targets do argument pushes without adding REG_INC notes. */
9267 if (GET_CODE (dst) == MEM)
9269 dst = XEXP (dst, 0);
9270 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9271 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9272 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9273 return;
9275 if (GET_CODE (dst) != REG)
9276 return;
9278 regno += REGNO (dst);
9280 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9281 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9282 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9283 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9285 rtx src = SET_SRC (set);
9286 rtx base_reg;
9287 HOST_WIDE_INT offset;
9288 int base_regno;
9289 /* This may be different from mode, if SET_DEST (set) is a
9290 SUBREG. */
9291 enum machine_mode dst_mode = GET_MODE (dst);
9293 switch (GET_CODE (src))
9295 case PLUS:
9296 if (GET_CODE (XEXP (src, 0)) == REG)
9298 base_reg = XEXP (src, 0);
9300 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9301 offset = INTVAL (XEXP (src, 1));
9302 else if (GET_CODE (XEXP (src, 1)) == REG
9303 && (reg_set_luid[REGNO (XEXP (src, 1))]
9304 > move2add_last_label_luid)
9305 && (MODES_OK_FOR_MOVE2ADD
9306 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9308 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9309 offset = reg_offset[REGNO (XEXP (src, 1))];
9310 /* Maybe the first register is known to be a
9311 constant. */
9312 else if (reg_set_luid[REGNO (base_reg)]
9313 > move2add_last_label_luid
9314 && (MODES_OK_FOR_MOVE2ADD
9315 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9316 && reg_base_reg[REGNO (base_reg)] < 0)
9318 offset = reg_offset[REGNO (base_reg)];
9319 base_reg = XEXP (src, 1);
9321 else
9322 goto invalidate;
9324 else
9325 goto invalidate;
9327 break;
9330 goto invalidate;
9332 case REG:
9333 base_reg = src;
9334 offset = 0;
9335 break;
9337 case CONST_INT:
9338 /* Start tracking the register as a constant. */
9339 reg_base_reg[regno] = -1;
9340 reg_offset[regno] = INTVAL (SET_SRC (set));
9341 /* We assign the same luid to all registers set to constants. */
9342 reg_set_luid[regno] = move2add_last_label_luid + 1;
9343 reg_mode[regno] = mode;
9344 return;
9346 default:
9347 invalidate:
9348 /* Invalidate the contents of the register. */
9349 reg_set_luid[regno] = 0;
9350 return;
9353 base_regno = REGNO (base_reg);
9354 /* If information about the base register is not valid, set it
9355 up as a new base register, pretending its value is known
9356 starting from the current insn. */
9357 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9359 reg_base_reg[base_regno] = base_regno;
9360 reg_offset[base_regno] = 0;
9361 reg_set_luid[base_regno] = move2add_luid;
9362 reg_mode[base_regno] = mode;
9364 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9365 reg_mode[base_regno]))
9366 goto invalidate;
9368 reg_mode[regno] = mode;
9370 /* Copy base information from our base register. */
9371 reg_set_luid[regno] = reg_set_luid[base_regno];
9372 reg_base_reg[regno] = reg_base_reg[base_regno];
9374 /* Compute the sum of the offsets or constants. */
9375 reg_offset[regno] = sext_for_mode (dst_mode,
9376 offset
9377 + reg_offset[base_regno]);
9379 else
9381 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9383 for (i = regno; i < endregno; i++)
9384 /* Reset the information about this register. */
9385 reg_set_luid[i] = 0;
9389 #ifdef AUTO_INC_DEC
9390 static void
9391 add_auto_inc_notes (insn, x)
9392 rtx insn;
9393 rtx x;
9395 enum rtx_code code = GET_CODE (x);
9396 const char *fmt;
9397 int i, j;
9399 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9401 REG_NOTES (insn)
9402 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9403 return;
9406 /* Scan all the operand sub-expressions. */
9407 fmt = GET_RTX_FORMAT (code);
9408 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9410 if (fmt[i] == 'e')
9411 add_auto_inc_notes (insn, XEXP (x, i));
9412 else if (fmt[i] == 'E')
9413 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9414 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9417 #endif
9419 /* Copy EH notes from an insn to its reloads. */
9420 static void
9421 copy_eh_notes (insn, x)
9422 rtx insn;
9423 rtx x;
9425 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9426 if (eh_note)
9428 for (; x != 0; x = NEXT_INSN (x))
9430 if (may_trap_p (PATTERN (x)))
9431 REG_NOTES (x)
9432 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9433 REG_NOTES (x));
9438 /* This is used by reload pass, that does emit some instructions after
9439 abnormal calls moving basic block end, but in fact it wants to emit
9440 them on the edge. Looks for abnormal call edges, find backward the
9441 proper call and fix the damage.
9443 Similar handle instructions throwing exceptions internally. */
9444 void
9445 fixup_abnormal_edges ()
9447 bool inserted = false;
9448 basic_block bb;
9450 FOR_EACH_BB (bb)
9452 edge e;
9454 /* Look for cases we are interested in - an calls or instructions causing
9455 exceptions. */
9456 for (e = bb->succ; e; e = e->succ_next)
9458 if (e->flags & EDGE_ABNORMAL_CALL)
9459 break;
9460 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9461 == (EDGE_ABNORMAL | EDGE_EH))
9462 break;
9464 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9466 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9467 rtx next;
9468 for (e = bb->succ; e; e = e->succ_next)
9469 if (e->flags & EDGE_FALLTHRU)
9470 break;
9471 /* Get past the new insns generated. Allow notes, as the insns may
9472 be already deleted. */
9473 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9474 && !can_throw_internal (insn)
9475 && insn != bb->head)
9476 insn = PREV_INSN (insn);
9477 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9478 abort ();
9479 bb->end = insn;
9480 inserted = true;
9481 insn = NEXT_INSN (insn);
9482 while (insn && insn != stop)
9484 next = NEXT_INSN (insn);
9485 if (INSN_P (insn))
9487 delete_insn (insn);
9489 /* Sometimes there's still the return value USE.
9490 If it's placed after a trapping call (i.e. that
9491 call is the last insn anyway), we have no fallthru
9492 edge. Simply delete this use and don't try to insert
9493 on the non-existant edge. */
9494 if (GET_CODE (PATTERN (insn)) != USE)
9496 /* We're not deleting it, we're moving it. */
9497 INSN_DELETED_P (insn) = 0;
9498 PREV_INSN (insn) = NULL_RTX;
9499 NEXT_INSN (insn) = NULL_RTX;
9501 insert_insn_on_edge (insn, e);
9504 insn = next;
9508 if (inserted)
9509 commit_edge_insertions ();