PR fortran/60928
[official-gcc.git] / gcc / tree-eh.c
blob9f8408d71d36e892e66400d97a8253082d583b99
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "expr.h"
27 #include "calls.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "pointer-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "stringpool.h"
46 #include "tree-ssanames.h"
47 #include "tree-into-ssa.h"
48 #include "tree-ssa.h"
49 #include "tree-inline.h"
50 #include "tree-pass.h"
51 #include "langhooks.h"
52 #include "diagnostic-core.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "gimple-low.h"
57 /* In some instances a tree and a gimple need to be stored in a same table,
58 i.e. in hash tables. This is a structure to do this. */
59 typedef union {tree *tp; tree t; gimple g;} treemple;
61 /* Misc functions used in this file. */
63 /* Remember and lookup EH landing pad data for arbitrary statements.
64 Really this means any statement that could_throw_p. We could
65 stuff this information into the stmt_ann data structure, but:
67 (1) We absolutely rely on this information being kept until
68 we get to rtl. Once we're done with lowering here, if we lose
69 the information there's no way to recover it!
71 (2) There are many more statements that *cannot* throw as
72 compared to those that can. We should be saving some amount
73 of space by only allocating memory for those that can throw. */
75 /* Add statement T in function IFUN to landing pad NUM. */
77 static void
78 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
80 struct throw_stmt_node *n;
81 void **slot;
83 gcc_assert (num != 0);
85 n = ggc_alloc<throw_stmt_node> ();
86 n->stmt = t;
87 n->lp_nr = num;
89 if (!get_eh_throw_stmt_table (ifun))
90 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
91 struct_ptr_eq,
92 ggc_free));
94 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
95 gcc_assert (!*slot);
96 *slot = n;
99 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
101 void
102 add_stmt_to_eh_lp (gimple t, int num)
104 add_stmt_to_eh_lp_fn (cfun, t, num);
107 /* Add statement T to the single EH landing pad in REGION. */
109 static void
110 record_stmt_eh_region (eh_region region, gimple t)
112 if (region == NULL)
113 return;
114 if (region->type == ERT_MUST_NOT_THROW)
115 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
116 else
118 eh_landing_pad lp = region->landing_pads;
119 if (lp == NULL)
120 lp = gen_eh_landing_pad (region);
121 else
122 gcc_assert (lp->next_lp == NULL);
123 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
128 /* Remove statement T in function IFUN from its EH landing pad. */
130 bool
131 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
133 struct throw_stmt_node dummy;
134 void **slot;
136 if (!get_eh_throw_stmt_table (ifun))
137 return false;
139 dummy.stmt = t;
140 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
141 NO_INSERT);
142 if (slot)
144 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
145 return true;
147 else
148 return false;
152 /* Remove statement T in the current function (cfun) from its
153 EH landing pad. */
155 bool
156 remove_stmt_from_eh_lp (gimple t)
158 return remove_stmt_from_eh_lp_fn (cfun, t);
161 /* Determine if statement T is inside an EH region in function IFUN.
162 Positive numbers indicate a landing pad index; negative numbers
163 indicate a MUST_NOT_THROW region index; zero indicates that the
164 statement is not recorded in the region table. */
167 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
169 struct throw_stmt_node *p, n;
171 if (ifun->eh->throw_stmt_table == NULL)
172 return 0;
174 n.stmt = t;
175 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
176 return p ? p->lp_nr : 0;
179 /* Likewise, but always use the current function. */
182 lookup_stmt_eh_lp (gimple t)
184 /* We can get called from initialized data when -fnon-call-exceptions
185 is on; prevent crash. */
186 if (!cfun)
187 return 0;
188 return lookup_stmt_eh_lp_fn (cfun, t);
191 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
192 nodes and LABEL_DECL nodes. We will use this during the second phase to
193 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
195 struct finally_tree_node
197 /* When storing a GIMPLE_TRY, we have to record a gimple. However
198 when deciding whether a GOTO to a certain LABEL_DECL (which is a
199 tree) leaves the TRY block, its necessary to record a tree in
200 this field. Thus a treemple is used. */
201 treemple child;
202 gimple parent;
205 /* Hashtable helpers. */
207 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
209 typedef finally_tree_node value_type;
210 typedef finally_tree_node compare_type;
211 static inline hashval_t hash (const value_type *);
212 static inline bool equal (const value_type *, const compare_type *);
215 inline hashval_t
216 finally_tree_hasher::hash (const value_type *v)
218 return (intptr_t)v->child.t >> 4;
221 inline bool
222 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
224 return v->child.t == c->child.t;
227 /* Note that this table is *not* marked GTY. It is short-lived. */
228 static hash_table <finally_tree_hasher> finally_tree;
230 static void
231 record_in_finally_tree (treemple child, gimple parent)
233 struct finally_tree_node *n;
234 finally_tree_node **slot;
236 n = XNEW (struct finally_tree_node);
237 n->child = child;
238 n->parent = parent;
240 slot = finally_tree.find_slot (n, INSERT);
241 gcc_assert (!*slot);
242 *slot = n;
245 static void
246 collect_finally_tree (gimple stmt, gimple region);
248 /* Go through the gimple sequence. Works with collect_finally_tree to
249 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
251 static void
252 collect_finally_tree_1 (gimple_seq seq, gimple region)
254 gimple_stmt_iterator gsi;
256 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
257 collect_finally_tree (gsi_stmt (gsi), region);
260 static void
261 collect_finally_tree (gimple stmt, gimple region)
263 treemple temp;
265 switch (gimple_code (stmt))
267 case GIMPLE_LABEL:
268 temp.t = gimple_label_label (stmt);
269 record_in_finally_tree (temp, region);
270 break;
272 case GIMPLE_TRY:
273 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
275 temp.g = stmt;
276 record_in_finally_tree (temp, region);
277 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
278 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
280 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
282 collect_finally_tree_1 (gimple_try_eval (stmt), region);
283 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
285 break;
287 case GIMPLE_CATCH:
288 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
289 break;
291 case GIMPLE_EH_FILTER:
292 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
293 break;
295 case GIMPLE_EH_ELSE:
296 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
297 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
298 break;
300 default:
301 /* A type, a decl, or some kind of statement that we're not
302 interested in. Don't walk them. */
303 break;
308 /* Use the finally tree to determine if a jump from START to TARGET
309 would leave the try_finally node that START lives in. */
311 static bool
312 outside_finally_tree (treemple start, gimple target)
314 struct finally_tree_node n, *p;
318 n.child = start;
319 p = finally_tree.find (&n);
320 if (!p)
321 return true;
322 start.g = p->parent;
324 while (start.g != target);
326 return false;
329 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
330 nodes into a set of gotos, magic labels, and eh regions.
331 The eh region creation is straight-forward, but frobbing all the gotos
332 and such into shape isn't. */
334 /* The sequence into which we record all EH stuff. This will be
335 placed at the end of the function when we're all done. */
336 static gimple_seq eh_seq;
338 /* Record whether an EH region contains something that can throw,
339 indexed by EH region number. */
340 static bitmap eh_region_may_contain_throw_map;
342 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
343 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
344 The idea is to record a gimple statement for everything except for
345 the conditionals, which get their labels recorded. Since labels are
346 of type 'tree', we need this node to store both gimple and tree
347 objects. REPL_STMT is the sequence used to replace the goto/return
348 statement. CONT_STMT is used to store the statement that allows
349 the return/goto to jump to the original destination. */
351 struct goto_queue_node
353 treemple stmt;
354 location_t location;
355 gimple_seq repl_stmt;
356 gimple cont_stmt;
357 int index;
358 /* This is used when index >= 0 to indicate that stmt is a label (as
359 opposed to a goto stmt). */
360 int is_label;
363 /* State of the world while lowering. */
365 struct leh_state
367 /* What's "current" while constructing the eh region tree. These
368 correspond to variables of the same name in cfun->eh, which we
369 don't have easy access to. */
370 eh_region cur_region;
372 /* What's "current" for the purposes of __builtin_eh_pointer. For
373 a CATCH, this is the associated TRY. For an EH_FILTER, this is
374 the associated ALLOWED_EXCEPTIONS, etc. */
375 eh_region ehp_region;
377 /* Processing of TRY_FINALLY requires a bit more state. This is
378 split out into a separate structure so that we don't have to
379 copy so much when processing other nodes. */
380 struct leh_tf_state *tf;
383 struct leh_tf_state
385 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
386 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
387 this so that outside_finally_tree can reliably reference the tree used
388 in the collect_finally_tree data structures. */
389 gimple try_finally_expr;
390 gimple top_p;
392 /* While lowering a top_p usually it is expanded into multiple statements,
393 thus we need the following field to store them. */
394 gimple_seq top_p_seq;
396 /* The state outside this try_finally node. */
397 struct leh_state *outer;
399 /* The exception region created for it. */
400 eh_region region;
402 /* The goto queue. */
403 struct goto_queue_node *goto_queue;
404 size_t goto_queue_size;
405 size_t goto_queue_active;
407 /* Pointer map to help in searching goto_queue when it is large. */
408 struct pointer_map_t *goto_queue_map;
410 /* The set of unique labels seen as entries in the goto queue. */
411 vec<tree> dest_array;
413 /* A label to be added at the end of the completed transformed
414 sequence. It will be set if may_fallthru was true *at one time*,
415 though subsequent transformations may have cleared that flag. */
416 tree fallthru_label;
418 /* True if it is possible to fall out the bottom of the try block.
419 Cleared if the fallthru is converted to a goto. */
420 bool may_fallthru;
422 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
423 bool may_return;
425 /* True if the finally block can receive an exception edge.
426 Cleared if the exception case is handled by code duplication. */
427 bool may_throw;
430 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
432 /* Search for STMT in the goto queue. Return the replacement,
433 or null if the statement isn't in the queue. */
435 #define LARGE_GOTO_QUEUE 20
437 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
439 static gimple_seq
440 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
442 unsigned int i;
443 void **slot;
445 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
447 for (i = 0; i < tf->goto_queue_active; i++)
448 if ( tf->goto_queue[i].stmt.g == stmt.g)
449 return tf->goto_queue[i].repl_stmt;
450 return NULL;
453 /* If we have a large number of entries in the goto_queue, create a
454 pointer map and use that for searching. */
456 if (!tf->goto_queue_map)
458 tf->goto_queue_map = pointer_map_create ();
459 for (i = 0; i < tf->goto_queue_active; i++)
461 slot = pointer_map_insert (tf->goto_queue_map,
462 tf->goto_queue[i].stmt.g);
463 gcc_assert (*slot == NULL);
464 *slot = &tf->goto_queue[i];
468 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
469 if (slot != NULL)
470 return (((struct goto_queue_node *) *slot)->repl_stmt);
472 return NULL;
475 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
476 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
477 then we can just splat it in, otherwise we add the new stmts immediately
478 after the GIMPLE_COND and redirect. */
480 static void
481 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
482 gimple_stmt_iterator *gsi)
484 tree label;
485 gimple_seq new_seq;
486 treemple temp;
487 location_t loc = gimple_location (gsi_stmt (*gsi));
489 temp.tp = tp;
490 new_seq = find_goto_replacement (tf, temp);
491 if (!new_seq)
492 return;
494 if (gimple_seq_singleton_p (new_seq)
495 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
497 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
498 return;
501 label = create_artificial_label (loc);
502 /* Set the new label for the GIMPLE_COND */
503 *tp = label;
505 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
506 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
509 /* The real work of replace_goto_queue. Returns with TSI updated to
510 point to the next statement. */
512 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
514 static void
515 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
516 gimple_stmt_iterator *gsi)
518 gimple_seq seq;
519 treemple temp;
520 temp.g = NULL;
522 switch (gimple_code (stmt))
524 case GIMPLE_GOTO:
525 case GIMPLE_RETURN:
526 temp.g = stmt;
527 seq = find_goto_replacement (tf, temp);
528 if (seq)
530 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
531 gsi_remove (gsi, false);
532 return;
534 break;
536 case GIMPLE_COND:
537 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
538 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
539 break;
541 case GIMPLE_TRY:
542 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
543 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
544 break;
545 case GIMPLE_CATCH:
546 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
547 break;
548 case GIMPLE_EH_FILTER:
549 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
550 break;
551 case GIMPLE_EH_ELSE:
552 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
553 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
554 break;
556 default:
557 /* These won't have gotos in them. */
558 break;
561 gsi_next (gsi);
564 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
566 static void
567 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
569 gimple_stmt_iterator gsi = gsi_start (*seq);
571 while (!gsi_end_p (gsi))
572 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
575 /* Replace all goto queue members. */
577 static void
578 replace_goto_queue (struct leh_tf_state *tf)
580 if (tf->goto_queue_active == 0)
581 return;
582 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
583 replace_goto_queue_stmt_list (&eh_seq, tf);
586 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
587 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
588 a gimple return. */
590 static void
591 record_in_goto_queue (struct leh_tf_state *tf,
592 treemple new_stmt,
593 int index,
594 bool is_label,
595 location_t location)
597 size_t active, size;
598 struct goto_queue_node *q;
600 gcc_assert (!tf->goto_queue_map);
602 active = tf->goto_queue_active;
603 size = tf->goto_queue_size;
604 if (active >= size)
606 size = (size ? size * 2 : 32);
607 tf->goto_queue_size = size;
608 tf->goto_queue
609 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
612 q = &tf->goto_queue[active];
613 tf->goto_queue_active = active + 1;
615 memset (q, 0, sizeof (*q));
616 q->stmt = new_stmt;
617 q->index = index;
618 q->location = location;
619 q->is_label = is_label;
622 /* Record the LABEL label in the goto queue contained in TF.
623 TF is not null. */
625 static void
626 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
627 location_t location)
629 int index;
630 treemple temp, new_stmt;
632 if (!label)
633 return;
635 /* Computed and non-local gotos do not get processed. Given
636 their nature we can neither tell whether we've escaped the
637 finally block nor redirect them if we knew. */
638 if (TREE_CODE (label) != LABEL_DECL)
639 return;
641 /* No need to record gotos that don't leave the try block. */
642 temp.t = label;
643 if (!outside_finally_tree (temp, tf->try_finally_expr))
644 return;
646 if (! tf->dest_array.exists ())
648 tf->dest_array.create (10);
649 tf->dest_array.quick_push (label);
650 index = 0;
652 else
654 int n = tf->dest_array.length ();
655 for (index = 0; index < n; ++index)
656 if (tf->dest_array[index] == label)
657 break;
658 if (index == n)
659 tf->dest_array.safe_push (label);
662 /* In the case of a GOTO we want to record the destination label,
663 since with a GIMPLE_COND we have an easy access to the then/else
664 labels. */
665 new_stmt = stmt;
666 record_in_goto_queue (tf, new_stmt, index, true, location);
669 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
670 node, and if so record that fact in the goto queue associated with that
671 try_finally node. */
673 static void
674 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
676 struct leh_tf_state *tf = state->tf;
677 treemple new_stmt;
679 if (!tf)
680 return;
682 switch (gimple_code (stmt))
684 case GIMPLE_COND:
685 new_stmt.tp = gimple_op_ptr (stmt, 2);
686 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
687 EXPR_LOCATION (*new_stmt.tp));
688 new_stmt.tp = gimple_op_ptr (stmt, 3);
689 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
690 EXPR_LOCATION (*new_stmt.tp));
691 break;
692 case GIMPLE_GOTO:
693 new_stmt.g = stmt;
694 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
695 gimple_location (stmt));
696 break;
698 case GIMPLE_RETURN:
699 tf->may_return = true;
700 new_stmt.g = stmt;
701 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
702 break;
704 default:
705 gcc_unreachable ();
710 #ifdef ENABLE_CHECKING
711 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
712 was in fact structured, and we've not yet done jump threading, then none
713 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
715 static void
716 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
718 struct leh_tf_state *tf = state->tf;
719 size_t i, n;
721 if (!tf)
722 return;
724 n = gimple_switch_num_labels (switch_expr);
726 for (i = 0; i < n; ++i)
728 treemple temp;
729 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
730 temp.t = lab;
731 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
734 #else
735 #define verify_norecord_switch_expr(state, switch_expr)
736 #endif
738 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
739 non-null, insert it before the new branch. */
741 static void
742 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
744 gimple x;
746 /* In the case of a return, the queue node must be a gimple statement. */
747 gcc_assert (!q->is_label);
749 /* Note that the return value may have already been computed, e.g.,
751 int x;
752 int foo (void)
754 x = 0;
755 try {
756 return x;
757 } finally {
758 x++;
762 should return 0, not 1. We don't have to do anything to make
763 this happens because the return value has been placed in the
764 RESULT_DECL already. */
766 q->cont_stmt = q->stmt.g;
768 if (mod)
769 gimple_seq_add_seq (&q->repl_stmt, mod);
771 x = gimple_build_goto (finlab);
772 gimple_set_location (x, q->location);
773 gimple_seq_add_stmt (&q->repl_stmt, x);
776 /* Similar, but easier, for GIMPLE_GOTO. */
778 static void
779 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
780 struct leh_tf_state *tf)
782 gimple x;
784 gcc_assert (q->is_label);
786 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
788 if (mod)
789 gimple_seq_add_seq (&q->repl_stmt, mod);
791 x = gimple_build_goto (finlab);
792 gimple_set_location (x, q->location);
793 gimple_seq_add_stmt (&q->repl_stmt, x);
796 /* Emit a standard landing pad sequence into SEQ for REGION. */
798 static void
799 emit_post_landing_pad (gimple_seq *seq, eh_region region)
801 eh_landing_pad lp = region->landing_pads;
802 gimple x;
804 if (lp == NULL)
805 lp = gen_eh_landing_pad (region);
807 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
808 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
810 x = gimple_build_label (lp->post_landing_pad);
811 gimple_seq_add_stmt (seq, x);
814 /* Emit a RESX statement into SEQ for REGION. */
816 static void
817 emit_resx (gimple_seq *seq, eh_region region)
819 gimple x = gimple_build_resx (region->index);
820 gimple_seq_add_stmt (seq, x);
821 if (region->outer)
822 record_stmt_eh_region (region->outer, x);
825 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
827 static void
828 emit_eh_dispatch (gimple_seq *seq, eh_region region)
830 gimple x = gimple_build_eh_dispatch (region->index);
831 gimple_seq_add_stmt (seq, x);
834 /* Note that the current EH region may contain a throw, or a
835 call to a function which itself may contain a throw. */
837 static void
838 note_eh_region_may_contain_throw (eh_region region)
840 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
842 if (region->type == ERT_MUST_NOT_THROW)
843 break;
844 region = region->outer;
845 if (region == NULL)
846 break;
850 /* Check if REGION has been marked as containing a throw. If REGION is
851 NULL, this predicate is false. */
853 static inline bool
854 eh_region_may_contain_throw (eh_region r)
856 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
859 /* We want to transform
860 try { body; } catch { stuff; }
862 normal_seqence:
863 body;
864 over:
865 eh_seqence:
866 landing_pad:
867 stuff;
868 goto over;
870 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
871 should be placed before the second operand, or NULL. OVER is
872 an existing label that should be put at the exit, or NULL. */
874 static gimple_seq
875 frob_into_branch_around (gimple tp, eh_region region, tree over)
877 gimple x;
878 gimple_seq cleanup, result;
879 location_t loc = gimple_location (tp);
881 cleanup = gimple_try_cleanup (tp);
882 result = gimple_try_eval (tp);
884 if (region)
885 emit_post_landing_pad (&eh_seq, region);
887 if (gimple_seq_may_fallthru (cleanup))
889 if (!over)
890 over = create_artificial_label (loc);
891 x = gimple_build_goto (over);
892 gimple_set_location (x, loc);
893 gimple_seq_add_stmt (&cleanup, x);
895 gimple_seq_add_seq (&eh_seq, cleanup);
897 if (over)
899 x = gimple_build_label (over);
900 gimple_seq_add_stmt (&result, x);
902 return result;
905 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
906 Make sure to record all new labels found. */
908 static gimple_seq
909 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
910 location_t loc)
912 gimple region = NULL;
913 gimple_seq new_seq;
914 gimple_stmt_iterator gsi;
916 new_seq = copy_gimple_seq_and_replace_locals (seq);
918 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
920 gimple stmt = gsi_stmt (gsi);
921 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
923 tree block = gimple_block (stmt);
924 gimple_set_location (stmt, loc);
925 gimple_set_block (stmt, block);
929 if (outer_state->tf)
930 region = outer_state->tf->try_finally_expr;
931 collect_finally_tree_1 (new_seq, region);
933 return new_seq;
936 /* A subroutine of lower_try_finally. Create a fallthru label for
937 the given try_finally state. The only tricky bit here is that
938 we have to make sure to record the label in our outer context. */
940 static tree
941 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
943 tree label = tf->fallthru_label;
944 treemple temp;
946 if (!label)
948 label = create_artificial_label (gimple_location (tf->try_finally_expr));
949 tf->fallthru_label = label;
950 if (tf->outer->tf)
952 temp.t = label;
953 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
956 return label;
959 /* A subroutine of lower_try_finally. If FINALLY consits of a
960 GIMPLE_EH_ELSE node, return it. */
962 static inline gimple
963 get_eh_else (gimple_seq finally)
965 gimple x = gimple_seq_first_stmt (finally);
966 if (gimple_code (x) == GIMPLE_EH_ELSE)
968 gcc_assert (gimple_seq_singleton_p (finally));
969 return x;
971 return NULL;
974 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
975 langhook returns non-null, then the language requires that the exception
976 path out of a try_finally be treated specially. To wit: the code within
977 the finally block may not itself throw an exception. We have two choices
978 here. First we can duplicate the finally block and wrap it in a
979 must_not_throw region. Second, we can generate code like
981 try {
982 finally_block;
983 } catch {
984 if (fintmp == eh_edge)
985 protect_cleanup_actions;
988 where "fintmp" is the temporary used in the switch statement generation
989 alternative considered below. For the nonce, we always choose the first
990 option.
992 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
994 static void
995 honor_protect_cleanup_actions (struct leh_state *outer_state,
996 struct leh_state *this_state,
997 struct leh_tf_state *tf)
999 tree protect_cleanup_actions;
1000 gimple_stmt_iterator gsi;
1001 bool finally_may_fallthru;
1002 gimple_seq finally;
1003 gimple x, eh_else;
1005 /* First check for nothing to do. */
1006 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1007 return;
1008 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1009 if (protect_cleanup_actions == NULL)
1010 return;
1012 finally = gimple_try_cleanup (tf->top_p);
1013 eh_else = get_eh_else (finally);
1015 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1016 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1017 if (eh_else)
1019 finally = gimple_eh_else_e_body (eh_else);
1020 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1022 else if (this_state)
1023 finally = lower_try_finally_dup_block (finally, outer_state,
1024 gimple_location (tf->try_finally_expr));
1025 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1027 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1028 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1029 to be in an enclosing scope, but needs to be implemented at this level
1030 to avoid a nesting violation (see wrap_temporary_cleanups in
1031 cp/decl.c). Since it's logically at an outer level, we should call
1032 terminate before we get to it, so strip it away before adding the
1033 MUST_NOT_THROW filter. */
1034 gsi = gsi_start (finally);
1035 x = gsi_stmt (gsi);
1036 if (gimple_code (x) == GIMPLE_TRY
1037 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1038 && gimple_try_catch_is_cleanup (x))
1040 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1041 gsi_remove (&gsi, false);
1044 /* Wrap the block with protect_cleanup_actions as the action. */
1045 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1046 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1047 GIMPLE_TRY_CATCH);
1048 finally = lower_eh_must_not_throw (outer_state, x);
1050 /* Drop all of this into the exception sequence. */
1051 emit_post_landing_pad (&eh_seq, tf->region);
1052 gimple_seq_add_seq (&eh_seq, finally);
1053 if (finally_may_fallthru)
1054 emit_resx (&eh_seq, tf->region);
1056 /* Having now been handled, EH isn't to be considered with
1057 the rest of the outgoing edges. */
1058 tf->may_throw = false;
1061 /* A subroutine of lower_try_finally. We have determined that there is
1062 no fallthru edge out of the finally block. This means that there is
1063 no outgoing edge corresponding to any incoming edge. Restructure the
1064 try_finally node for this special case. */
1066 static void
1067 lower_try_finally_nofallthru (struct leh_state *state,
1068 struct leh_tf_state *tf)
1070 tree lab;
1071 gimple x, eh_else;
1072 gimple_seq finally;
1073 struct goto_queue_node *q, *qe;
1075 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1077 /* We expect that tf->top_p is a GIMPLE_TRY. */
1078 finally = gimple_try_cleanup (tf->top_p);
1079 tf->top_p_seq = gimple_try_eval (tf->top_p);
1081 x = gimple_build_label (lab);
1082 gimple_seq_add_stmt (&tf->top_p_seq, x);
1084 q = tf->goto_queue;
1085 qe = q + tf->goto_queue_active;
1086 for (; q < qe; ++q)
1087 if (q->index < 0)
1088 do_return_redirection (q, lab, NULL);
1089 else
1090 do_goto_redirection (q, lab, NULL, tf);
1092 replace_goto_queue (tf);
1094 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1095 eh_else = get_eh_else (finally);
1096 if (eh_else)
1098 finally = gimple_eh_else_n_body (eh_else);
1099 lower_eh_constructs_1 (state, &finally);
1100 gimple_seq_add_seq (&tf->top_p_seq, finally);
1102 if (tf->may_throw)
1104 finally = gimple_eh_else_e_body (eh_else);
1105 lower_eh_constructs_1 (state, &finally);
1107 emit_post_landing_pad (&eh_seq, tf->region);
1108 gimple_seq_add_seq (&eh_seq, finally);
1111 else
1113 lower_eh_constructs_1 (state, &finally);
1114 gimple_seq_add_seq (&tf->top_p_seq, finally);
1116 if (tf->may_throw)
1118 emit_post_landing_pad (&eh_seq, tf->region);
1120 x = gimple_build_goto (lab);
1121 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1122 gimple_seq_add_stmt (&eh_seq, x);
1127 /* A subroutine of lower_try_finally. We have determined that there is
1128 exactly one destination of the finally block. Restructure the
1129 try_finally node for this special case. */
1131 static void
1132 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1134 struct goto_queue_node *q, *qe;
1135 gimple x;
1136 gimple_seq finally;
1137 gimple_stmt_iterator gsi;
1138 tree finally_label;
1139 location_t loc = gimple_location (tf->try_finally_expr);
1141 finally = gimple_try_cleanup (tf->top_p);
1142 tf->top_p_seq = gimple_try_eval (tf->top_p);
1144 /* Since there's only one destination, and the destination edge can only
1145 either be EH or non-EH, that implies that all of our incoming edges
1146 are of the same type. Therefore we can lower EH_ELSE immediately. */
1147 x = get_eh_else (finally);
1148 if (x)
1150 if (tf->may_throw)
1151 finally = gimple_eh_else_e_body (x);
1152 else
1153 finally = gimple_eh_else_n_body (x);
1156 lower_eh_constructs_1 (state, &finally);
1158 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1160 gimple stmt = gsi_stmt (gsi);
1161 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1163 tree block = gimple_block (stmt);
1164 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1165 gimple_set_block (stmt, block);
1169 if (tf->may_throw)
1171 /* Only reachable via the exception edge. Add the given label to
1172 the head of the FINALLY block. Append a RESX at the end. */
1173 emit_post_landing_pad (&eh_seq, tf->region);
1174 gimple_seq_add_seq (&eh_seq, finally);
1175 emit_resx (&eh_seq, tf->region);
1176 return;
1179 if (tf->may_fallthru)
1181 /* Only reachable via the fallthru edge. Do nothing but let
1182 the two blocks run together; we'll fall out the bottom. */
1183 gimple_seq_add_seq (&tf->top_p_seq, finally);
1184 return;
1187 finally_label = create_artificial_label (loc);
1188 x = gimple_build_label (finally_label);
1189 gimple_seq_add_stmt (&tf->top_p_seq, x);
1191 gimple_seq_add_seq (&tf->top_p_seq, finally);
1193 q = tf->goto_queue;
1194 qe = q + tf->goto_queue_active;
1196 if (tf->may_return)
1198 /* Reachable by return expressions only. Redirect them. */
1199 for (; q < qe; ++q)
1200 do_return_redirection (q, finally_label, NULL);
1201 replace_goto_queue (tf);
1203 else
1205 /* Reachable by goto expressions only. Redirect them. */
1206 for (; q < qe; ++q)
1207 do_goto_redirection (q, finally_label, NULL, tf);
1208 replace_goto_queue (tf);
1210 if (tf->dest_array[0] == tf->fallthru_label)
1212 /* Reachable by goto to fallthru label only. Redirect it
1213 to the new label (already created, sadly), and do not
1214 emit the final branch out, or the fallthru label. */
1215 tf->fallthru_label = NULL;
1216 return;
1220 /* Place the original return/goto to the original destination
1221 immediately after the finally block. */
1222 x = tf->goto_queue[0].cont_stmt;
1223 gimple_seq_add_stmt (&tf->top_p_seq, x);
1224 maybe_record_in_goto_queue (state, x);
1227 /* A subroutine of lower_try_finally. There are multiple edges incoming
1228 and outgoing from the finally block. Implement this by duplicating the
1229 finally block for every destination. */
1231 static void
1232 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1234 gimple_seq finally;
1235 gimple_seq new_stmt;
1236 gimple_seq seq;
1237 gimple x, eh_else;
1238 tree tmp;
1239 location_t tf_loc = gimple_location (tf->try_finally_expr);
1241 finally = gimple_try_cleanup (tf->top_p);
1243 /* Notice EH_ELSE, and simplify some of the remaining code
1244 by considering FINALLY to be the normal return path only. */
1245 eh_else = get_eh_else (finally);
1246 if (eh_else)
1247 finally = gimple_eh_else_n_body (eh_else);
1249 tf->top_p_seq = gimple_try_eval (tf->top_p);
1250 new_stmt = NULL;
1252 if (tf->may_fallthru)
1254 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1255 lower_eh_constructs_1 (state, &seq);
1256 gimple_seq_add_seq (&new_stmt, seq);
1258 tmp = lower_try_finally_fallthru_label (tf);
1259 x = gimple_build_goto (tmp);
1260 gimple_set_location (x, tf_loc);
1261 gimple_seq_add_stmt (&new_stmt, x);
1264 if (tf->may_throw)
1266 /* We don't need to copy the EH path of EH_ELSE,
1267 since it is only emitted once. */
1268 if (eh_else)
1269 seq = gimple_eh_else_e_body (eh_else);
1270 else
1271 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1272 lower_eh_constructs_1 (state, &seq);
1274 emit_post_landing_pad (&eh_seq, tf->region);
1275 gimple_seq_add_seq (&eh_seq, seq);
1276 emit_resx (&eh_seq, tf->region);
1279 if (tf->goto_queue)
1281 struct goto_queue_node *q, *qe;
1282 int return_index, index;
1283 struct labels_s
1285 struct goto_queue_node *q;
1286 tree label;
1287 } *labels;
1289 return_index = tf->dest_array.length ();
1290 labels = XCNEWVEC (struct labels_s, return_index + 1);
1292 q = tf->goto_queue;
1293 qe = q + tf->goto_queue_active;
1294 for (; q < qe; q++)
1296 index = q->index < 0 ? return_index : q->index;
1298 if (!labels[index].q)
1299 labels[index].q = q;
1302 for (index = 0; index < return_index + 1; index++)
1304 tree lab;
1306 q = labels[index].q;
1307 if (! q)
1308 continue;
1310 lab = labels[index].label
1311 = create_artificial_label (tf_loc);
1313 if (index == return_index)
1314 do_return_redirection (q, lab, NULL);
1315 else
1316 do_goto_redirection (q, lab, NULL, tf);
1318 x = gimple_build_label (lab);
1319 gimple_seq_add_stmt (&new_stmt, x);
1321 seq = lower_try_finally_dup_block (finally, state, q->location);
1322 lower_eh_constructs_1 (state, &seq);
1323 gimple_seq_add_seq (&new_stmt, seq);
1325 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1326 maybe_record_in_goto_queue (state, q->cont_stmt);
1329 for (q = tf->goto_queue; q < qe; q++)
1331 tree lab;
1333 index = q->index < 0 ? return_index : q->index;
1335 if (labels[index].q == q)
1336 continue;
1338 lab = labels[index].label;
1340 if (index == return_index)
1341 do_return_redirection (q, lab, NULL);
1342 else
1343 do_goto_redirection (q, lab, NULL, tf);
1346 replace_goto_queue (tf);
1347 free (labels);
1350 /* Need to link new stmts after running replace_goto_queue due
1351 to not wanting to process the same goto stmts twice. */
1352 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1355 /* A subroutine of lower_try_finally. There are multiple edges incoming
1356 and outgoing from the finally block. Implement this by instrumenting
1357 each incoming edge and creating a switch statement at the end of the
1358 finally block that branches to the appropriate destination. */
1360 static void
1361 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1363 struct goto_queue_node *q, *qe;
1364 tree finally_tmp, finally_label;
1365 int return_index, eh_index, fallthru_index;
1366 int nlabels, ndests, j, last_case_index;
1367 tree last_case;
1368 vec<tree> case_label_vec;
1369 gimple_seq switch_body = NULL;
1370 gimple x, eh_else;
1371 tree tmp;
1372 gimple switch_stmt;
1373 gimple_seq finally;
1374 struct pointer_map_t *cont_map = NULL;
1375 /* The location of the TRY_FINALLY stmt. */
1376 location_t tf_loc = gimple_location (tf->try_finally_expr);
1377 /* The location of the finally block. */
1378 location_t finally_loc;
1380 finally = gimple_try_cleanup (tf->top_p);
1381 eh_else = get_eh_else (finally);
1383 /* Mash the TRY block to the head of the chain. */
1384 tf->top_p_seq = gimple_try_eval (tf->top_p);
1386 /* The location of the finally is either the last stmt in the finally
1387 block or the location of the TRY_FINALLY itself. */
1388 x = gimple_seq_last_stmt (finally);
1389 finally_loc = x ? gimple_location (x) : tf_loc;
1391 /* Prepare for switch statement generation. */
1392 nlabels = tf->dest_array.length ();
1393 return_index = nlabels;
1394 eh_index = return_index + tf->may_return;
1395 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1396 ndests = fallthru_index + tf->may_fallthru;
1398 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1399 finally_label = create_artificial_label (finally_loc);
1401 /* We use vec::quick_push on case_label_vec throughout this function,
1402 since we know the size in advance and allocate precisely as muce
1403 space as needed. */
1404 case_label_vec.create (ndests);
1405 last_case = NULL;
1406 last_case_index = 0;
1408 /* Begin inserting code for getting to the finally block. Things
1409 are done in this order to correspond to the sequence the code is
1410 laid out. */
1412 if (tf->may_fallthru)
1414 x = gimple_build_assign (finally_tmp,
1415 build_int_cst (integer_type_node,
1416 fallthru_index));
1417 gimple_seq_add_stmt (&tf->top_p_seq, x);
1419 tmp = build_int_cst (integer_type_node, fallthru_index);
1420 last_case = build_case_label (tmp, NULL,
1421 create_artificial_label (tf_loc));
1422 case_label_vec.quick_push (last_case);
1423 last_case_index++;
1425 x = gimple_build_label (CASE_LABEL (last_case));
1426 gimple_seq_add_stmt (&switch_body, x);
1428 tmp = lower_try_finally_fallthru_label (tf);
1429 x = gimple_build_goto (tmp);
1430 gimple_set_location (x, tf_loc);
1431 gimple_seq_add_stmt (&switch_body, x);
1434 /* For EH_ELSE, emit the exception path (plus resx) now, then
1435 subsequently we only need consider the normal path. */
1436 if (eh_else)
1438 if (tf->may_throw)
1440 finally = gimple_eh_else_e_body (eh_else);
1441 lower_eh_constructs_1 (state, &finally);
1443 emit_post_landing_pad (&eh_seq, tf->region);
1444 gimple_seq_add_seq (&eh_seq, finally);
1445 emit_resx (&eh_seq, tf->region);
1448 finally = gimple_eh_else_n_body (eh_else);
1450 else if (tf->may_throw)
1452 emit_post_landing_pad (&eh_seq, tf->region);
1454 x = gimple_build_assign (finally_tmp,
1455 build_int_cst (integer_type_node, eh_index));
1456 gimple_seq_add_stmt (&eh_seq, x);
1458 x = gimple_build_goto (finally_label);
1459 gimple_set_location (x, tf_loc);
1460 gimple_seq_add_stmt (&eh_seq, x);
1462 tmp = build_int_cst (integer_type_node, eh_index);
1463 last_case = build_case_label (tmp, NULL,
1464 create_artificial_label (tf_loc));
1465 case_label_vec.quick_push (last_case);
1466 last_case_index++;
1468 x = gimple_build_label (CASE_LABEL (last_case));
1469 gimple_seq_add_stmt (&eh_seq, x);
1470 emit_resx (&eh_seq, tf->region);
1473 x = gimple_build_label (finally_label);
1474 gimple_seq_add_stmt (&tf->top_p_seq, x);
1476 lower_eh_constructs_1 (state, &finally);
1477 gimple_seq_add_seq (&tf->top_p_seq, finally);
1479 /* Redirect each incoming goto edge. */
1480 q = tf->goto_queue;
1481 qe = q + tf->goto_queue_active;
1482 j = last_case_index + tf->may_return;
1483 /* Prepare the assignments to finally_tmp that are executed upon the
1484 entrance through a particular edge. */
1485 for (; q < qe; ++q)
1487 gimple_seq mod = NULL;
1488 int switch_id;
1489 unsigned int case_index;
1491 if (q->index < 0)
1493 x = gimple_build_assign (finally_tmp,
1494 build_int_cst (integer_type_node,
1495 return_index));
1496 gimple_seq_add_stmt (&mod, x);
1497 do_return_redirection (q, finally_label, mod);
1498 switch_id = return_index;
1500 else
1502 x = gimple_build_assign (finally_tmp,
1503 build_int_cst (integer_type_node, q->index));
1504 gimple_seq_add_stmt (&mod, x);
1505 do_goto_redirection (q, finally_label, mod, tf);
1506 switch_id = q->index;
1509 case_index = j + q->index;
1510 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1512 tree case_lab;
1513 void **slot;
1514 tmp = build_int_cst (integer_type_node, switch_id);
1515 case_lab = build_case_label (tmp, NULL,
1516 create_artificial_label (tf_loc));
1517 /* We store the cont_stmt in the pointer map, so that we can recover
1518 it in the loop below. */
1519 if (!cont_map)
1520 cont_map = pointer_map_create ();
1521 slot = pointer_map_insert (cont_map, case_lab);
1522 *slot = q->cont_stmt;
1523 case_label_vec.quick_push (case_lab);
1526 for (j = last_case_index; j < last_case_index + nlabels; j++)
1528 gimple cont_stmt;
1529 void **slot;
1531 last_case = case_label_vec[j];
1533 gcc_assert (last_case);
1534 gcc_assert (cont_map);
1536 slot = pointer_map_contains (cont_map, last_case);
1537 gcc_assert (slot);
1538 cont_stmt = *(gimple *) slot;
1540 x = gimple_build_label (CASE_LABEL (last_case));
1541 gimple_seq_add_stmt (&switch_body, x);
1542 gimple_seq_add_stmt (&switch_body, cont_stmt);
1543 maybe_record_in_goto_queue (state, cont_stmt);
1545 if (cont_map)
1546 pointer_map_destroy (cont_map);
1548 replace_goto_queue (tf);
1550 /* Make sure that the last case is the default label, as one is required.
1551 Then sort the labels, which is also required in GIMPLE. */
1552 CASE_LOW (last_case) = NULL;
1553 tree tem = case_label_vec.pop ();
1554 gcc_assert (tem == last_case);
1555 sort_case_labels (case_label_vec);
1557 /* Build the switch statement, setting last_case to be the default
1558 label. */
1559 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1560 case_label_vec);
1561 gimple_set_location (switch_stmt, finally_loc);
1563 /* Need to link SWITCH_STMT after running replace_goto_queue
1564 due to not wanting to process the same goto stmts twice. */
1565 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1566 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1569 /* Decide whether or not we are going to duplicate the finally block.
1570 There are several considerations.
1572 First, if this is Java, then the finally block contains code
1573 written by the user. It has line numbers associated with it,
1574 so duplicating the block means it's difficult to set a breakpoint.
1575 Since controlling code generation via -g is verboten, we simply
1576 never duplicate code without optimization.
1578 Second, we'd like to prevent egregious code growth. One way to
1579 do this is to estimate the size of the finally block, multiply
1580 that by the number of copies we'd need to make, and compare against
1581 the estimate of the size of the switch machinery we'd have to add. */
1583 static bool
1584 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1586 int f_estimate, sw_estimate;
1587 gimple eh_else;
1589 /* If there's an EH_ELSE involved, the exception path is separate
1590 and really doesn't come into play for this computation. */
1591 eh_else = get_eh_else (finally);
1592 if (eh_else)
1594 ndests -= may_throw;
1595 finally = gimple_eh_else_n_body (eh_else);
1598 if (!optimize)
1600 gimple_stmt_iterator gsi;
1602 if (ndests == 1)
1603 return true;
1605 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1607 gimple stmt = gsi_stmt (gsi);
1608 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1609 return false;
1611 return true;
1614 /* Finally estimate N times, plus N gotos. */
1615 f_estimate = count_insns_seq (finally, &eni_size_weights);
1616 f_estimate = (f_estimate + 1) * ndests;
1618 /* Switch statement (cost 10), N variable assignments, N gotos. */
1619 sw_estimate = 10 + 2 * ndests;
1621 /* Optimize for size clearly wants our best guess. */
1622 if (optimize_function_for_size_p (cfun))
1623 return f_estimate < sw_estimate;
1625 /* ??? These numbers are completely made up so far. */
1626 if (optimize > 1)
1627 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1628 else
1629 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1632 /* REG is the enclosing region for a possible cleanup region, or the region
1633 itself. Returns TRUE if such a region would be unreachable.
1635 Cleanup regions within a must-not-throw region aren't actually reachable
1636 even if there are throwing stmts within them, because the personality
1637 routine will call terminate before unwinding. */
1639 static bool
1640 cleanup_is_dead_in (eh_region reg)
1642 while (reg && reg->type == ERT_CLEANUP)
1643 reg = reg->outer;
1644 return (reg && reg->type == ERT_MUST_NOT_THROW);
1647 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1648 to a sequence of labels and blocks, plus the exception region trees
1649 that record all the magic. This is complicated by the need to
1650 arrange for the FINALLY block to be executed on all exits. */
1652 static gimple_seq
1653 lower_try_finally (struct leh_state *state, gimple tp)
1655 struct leh_tf_state this_tf;
1656 struct leh_state this_state;
1657 int ndests;
1658 gimple_seq old_eh_seq;
1660 /* Process the try block. */
1662 memset (&this_tf, 0, sizeof (this_tf));
1663 this_tf.try_finally_expr = tp;
1664 this_tf.top_p = tp;
1665 this_tf.outer = state;
1666 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1668 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1669 this_state.cur_region = this_tf.region;
1671 else
1673 this_tf.region = NULL;
1674 this_state.cur_region = state->cur_region;
1677 this_state.ehp_region = state->ehp_region;
1678 this_state.tf = &this_tf;
1680 old_eh_seq = eh_seq;
1681 eh_seq = NULL;
1683 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1685 /* Determine if the try block is escaped through the bottom. */
1686 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1688 /* Determine if any exceptions are possible within the try block. */
1689 if (this_tf.region)
1690 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1691 if (this_tf.may_throw)
1692 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1694 /* Determine how many edges (still) reach the finally block. Or rather,
1695 how many destinations are reached by the finally block. Use this to
1696 determine how we process the finally block itself. */
1698 ndests = this_tf.dest_array.length ();
1699 ndests += this_tf.may_fallthru;
1700 ndests += this_tf.may_return;
1701 ndests += this_tf.may_throw;
1703 /* If the FINALLY block is not reachable, dike it out. */
1704 if (ndests == 0)
1706 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1707 gimple_try_set_cleanup (tp, NULL);
1709 /* If the finally block doesn't fall through, then any destination
1710 we might try to impose there isn't reached either. There may be
1711 some minor amount of cleanup and redirection still needed. */
1712 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1713 lower_try_finally_nofallthru (state, &this_tf);
1715 /* We can easily special-case redirection to a single destination. */
1716 else if (ndests == 1)
1717 lower_try_finally_onedest (state, &this_tf);
1718 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1719 gimple_try_cleanup (tp)))
1720 lower_try_finally_copy (state, &this_tf);
1721 else
1722 lower_try_finally_switch (state, &this_tf);
1724 /* If someone requested we add a label at the end of the transformed
1725 block, do so. */
1726 if (this_tf.fallthru_label)
1728 /* This must be reached only if ndests == 0. */
1729 gimple x = gimple_build_label (this_tf.fallthru_label);
1730 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1733 this_tf.dest_array.release ();
1734 free (this_tf.goto_queue);
1735 if (this_tf.goto_queue_map)
1736 pointer_map_destroy (this_tf.goto_queue_map);
1738 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1739 If there was no old eh_seq, then the append is trivially already done. */
1740 if (old_eh_seq)
1742 if (eh_seq == NULL)
1743 eh_seq = old_eh_seq;
1744 else
1746 gimple_seq new_eh_seq = eh_seq;
1747 eh_seq = old_eh_seq;
1748 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1752 return this_tf.top_p_seq;
1755 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1756 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1757 exception region trees that records all the magic. */
1759 static gimple_seq
1760 lower_catch (struct leh_state *state, gimple tp)
1762 eh_region try_region = NULL;
1763 struct leh_state this_state = *state;
1764 gimple_stmt_iterator gsi;
1765 tree out_label;
1766 gimple_seq new_seq, cleanup;
1767 gimple x;
1768 location_t try_catch_loc = gimple_location (tp);
1770 if (flag_exceptions)
1772 try_region = gen_eh_region_try (state->cur_region);
1773 this_state.cur_region = try_region;
1776 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1778 if (!eh_region_may_contain_throw (try_region))
1779 return gimple_try_eval (tp);
1781 new_seq = NULL;
1782 emit_eh_dispatch (&new_seq, try_region);
1783 emit_resx (&new_seq, try_region);
1785 this_state.cur_region = state->cur_region;
1786 this_state.ehp_region = try_region;
1788 out_label = NULL;
1789 cleanup = gimple_try_cleanup (tp);
1790 for (gsi = gsi_start (cleanup);
1791 !gsi_end_p (gsi);
1792 gsi_next (&gsi))
1794 eh_catch c;
1795 gimple gcatch;
1796 gimple_seq handler;
1798 gcatch = gsi_stmt (gsi);
1799 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1801 handler = gimple_catch_handler (gcatch);
1802 lower_eh_constructs_1 (&this_state, &handler);
1804 c->label = create_artificial_label (UNKNOWN_LOCATION);
1805 x = gimple_build_label (c->label);
1806 gimple_seq_add_stmt (&new_seq, x);
1808 gimple_seq_add_seq (&new_seq, handler);
1810 if (gimple_seq_may_fallthru (new_seq))
1812 if (!out_label)
1813 out_label = create_artificial_label (try_catch_loc);
1815 x = gimple_build_goto (out_label);
1816 gimple_seq_add_stmt (&new_seq, x);
1818 if (!c->type_list)
1819 break;
1822 gimple_try_set_cleanup (tp, new_seq);
1824 return frob_into_branch_around (tp, try_region, out_label);
1827 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1828 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1829 region trees that record all the magic. */
1831 static gimple_seq
1832 lower_eh_filter (struct leh_state *state, gimple tp)
1834 struct leh_state this_state = *state;
1835 eh_region this_region = NULL;
1836 gimple inner, x;
1837 gimple_seq new_seq;
1839 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1841 if (flag_exceptions)
1843 this_region = gen_eh_region_allowed (state->cur_region,
1844 gimple_eh_filter_types (inner));
1845 this_state.cur_region = this_region;
1848 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1850 if (!eh_region_may_contain_throw (this_region))
1851 return gimple_try_eval (tp);
1853 new_seq = NULL;
1854 this_state.cur_region = state->cur_region;
1855 this_state.ehp_region = this_region;
1857 emit_eh_dispatch (&new_seq, this_region);
1858 emit_resx (&new_seq, this_region);
1860 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1861 x = gimple_build_label (this_region->u.allowed.label);
1862 gimple_seq_add_stmt (&new_seq, x);
1864 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1865 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1867 gimple_try_set_cleanup (tp, new_seq);
1869 return frob_into_branch_around (tp, this_region, NULL);
1872 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1873 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1874 plus the exception region trees that record all the magic. */
1876 static gimple_seq
1877 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1879 struct leh_state this_state = *state;
1881 if (flag_exceptions)
1883 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1884 eh_region this_region;
1886 this_region = gen_eh_region_must_not_throw (state->cur_region);
1887 this_region->u.must_not_throw.failure_decl
1888 = gimple_eh_must_not_throw_fndecl (inner);
1889 this_region->u.must_not_throw.failure_loc
1890 = LOCATION_LOCUS (gimple_location (tp));
1892 /* In order to get mangling applied to this decl, we must mark it
1893 used now. Otherwise, pass_ipa_free_lang_data won't think it
1894 needs to happen. */
1895 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1897 this_state.cur_region = this_region;
1900 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1902 return gimple_try_eval (tp);
1905 /* Implement a cleanup expression. This is similar to try-finally,
1906 except that we only execute the cleanup block for exception edges. */
1908 static gimple_seq
1909 lower_cleanup (struct leh_state *state, gimple tp)
1911 struct leh_state this_state = *state;
1912 eh_region this_region = NULL;
1913 struct leh_tf_state fake_tf;
1914 gimple_seq result;
1915 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1917 if (flag_exceptions && !cleanup_dead)
1919 this_region = gen_eh_region_cleanup (state->cur_region);
1920 this_state.cur_region = this_region;
1923 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1925 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1926 return gimple_try_eval (tp);
1928 /* Build enough of a try-finally state so that we can reuse
1929 honor_protect_cleanup_actions. */
1930 memset (&fake_tf, 0, sizeof (fake_tf));
1931 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1932 fake_tf.outer = state;
1933 fake_tf.region = this_region;
1934 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1935 fake_tf.may_throw = true;
1937 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1939 if (fake_tf.may_throw)
1941 /* In this case honor_protect_cleanup_actions had nothing to do,
1942 and we should process this normally. */
1943 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1944 result = frob_into_branch_around (tp, this_region,
1945 fake_tf.fallthru_label);
1947 else
1949 /* In this case honor_protect_cleanup_actions did nearly all of
1950 the work. All we have left is to append the fallthru_label. */
1952 result = gimple_try_eval (tp);
1953 if (fake_tf.fallthru_label)
1955 gimple x = gimple_build_label (fake_tf.fallthru_label);
1956 gimple_seq_add_stmt (&result, x);
1959 return result;
1962 /* Main loop for lowering eh constructs. Also moves gsi to the next
1963 statement. */
1965 static void
1966 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1968 gimple_seq replace;
1969 gimple x;
1970 gimple stmt = gsi_stmt (*gsi);
1972 switch (gimple_code (stmt))
1974 case GIMPLE_CALL:
1976 tree fndecl = gimple_call_fndecl (stmt);
1977 tree rhs, lhs;
1979 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1980 switch (DECL_FUNCTION_CODE (fndecl))
1982 case BUILT_IN_EH_POINTER:
1983 /* The front end may have generated a call to
1984 __builtin_eh_pointer (0) within a catch region. Replace
1985 this zero argument with the current catch region number. */
1986 if (state->ehp_region)
1988 tree nr = build_int_cst (integer_type_node,
1989 state->ehp_region->index);
1990 gimple_call_set_arg (stmt, 0, nr);
1992 else
1994 /* The user has dome something silly. Remove it. */
1995 rhs = null_pointer_node;
1996 goto do_replace;
1998 break;
2000 case BUILT_IN_EH_FILTER:
2001 /* ??? This should never appear, but since it's a builtin it
2002 is accessible to abuse by users. Just remove it and
2003 replace the use with the arbitrary value zero. */
2004 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2005 do_replace:
2006 lhs = gimple_call_lhs (stmt);
2007 x = gimple_build_assign (lhs, rhs);
2008 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2009 /* FALLTHRU */
2011 case BUILT_IN_EH_COPY_VALUES:
2012 /* Likewise this should not appear. Remove it. */
2013 gsi_remove (gsi, true);
2014 return;
2016 default:
2017 break;
2020 /* FALLTHRU */
2022 case GIMPLE_ASSIGN:
2023 /* If the stmt can throw use a new temporary for the assignment
2024 to a LHS. This makes sure the old value of the LHS is
2025 available on the EH edge. Only do so for statements that
2026 potentially fall through (no noreturn calls e.g.), otherwise
2027 this new assignment might create fake fallthru regions. */
2028 if (stmt_could_throw_p (stmt)
2029 && gimple_has_lhs (stmt)
2030 && gimple_stmt_may_fallthru (stmt)
2031 && !tree_could_throw_p (gimple_get_lhs (stmt))
2032 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2034 tree lhs = gimple_get_lhs (stmt);
2035 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2036 gimple s = gimple_build_assign (lhs, tmp);
2037 gimple_set_location (s, gimple_location (stmt));
2038 gimple_set_block (s, gimple_block (stmt));
2039 gimple_set_lhs (stmt, tmp);
2040 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2041 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2042 DECL_GIMPLE_REG_P (tmp) = 1;
2043 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2045 /* Look for things that can throw exceptions, and record them. */
2046 if (state->cur_region && stmt_could_throw_p (stmt))
2048 record_stmt_eh_region (state->cur_region, stmt);
2049 note_eh_region_may_contain_throw (state->cur_region);
2051 break;
2053 case GIMPLE_COND:
2054 case GIMPLE_GOTO:
2055 case GIMPLE_RETURN:
2056 maybe_record_in_goto_queue (state, stmt);
2057 break;
2059 case GIMPLE_SWITCH:
2060 verify_norecord_switch_expr (state, stmt);
2061 break;
2063 case GIMPLE_TRY:
2064 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2065 replace = lower_try_finally (state, stmt);
2066 else
2068 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2069 if (!x)
2071 replace = gimple_try_eval (stmt);
2072 lower_eh_constructs_1 (state, &replace);
2074 else
2075 switch (gimple_code (x))
2077 case GIMPLE_CATCH:
2078 replace = lower_catch (state, stmt);
2079 break;
2080 case GIMPLE_EH_FILTER:
2081 replace = lower_eh_filter (state, stmt);
2082 break;
2083 case GIMPLE_EH_MUST_NOT_THROW:
2084 replace = lower_eh_must_not_throw (state, stmt);
2085 break;
2086 case GIMPLE_EH_ELSE:
2087 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2088 gcc_unreachable ();
2089 default:
2090 replace = lower_cleanup (state, stmt);
2091 break;
2095 /* Remove the old stmt and insert the transformed sequence
2096 instead. */
2097 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2098 gsi_remove (gsi, true);
2100 /* Return since we don't want gsi_next () */
2101 return;
2103 case GIMPLE_EH_ELSE:
2104 /* We should be eliminating this in lower_try_finally et al. */
2105 gcc_unreachable ();
2107 default:
2108 /* A type, a decl, or some kind of statement that we're not
2109 interested in. Don't walk them. */
2110 break;
2113 gsi_next (gsi);
2116 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2118 static void
2119 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2121 gimple_stmt_iterator gsi;
2122 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2123 lower_eh_constructs_2 (state, &gsi);
2126 namespace {
2128 const pass_data pass_data_lower_eh =
2130 GIMPLE_PASS, /* type */
2131 "eh", /* name */
2132 OPTGROUP_NONE, /* optinfo_flags */
2133 true, /* has_execute */
2134 TV_TREE_EH, /* tv_id */
2135 PROP_gimple_lcf, /* properties_required */
2136 PROP_gimple_leh, /* properties_provided */
2137 0, /* properties_destroyed */
2138 0, /* todo_flags_start */
2139 0, /* todo_flags_finish */
2142 class pass_lower_eh : public gimple_opt_pass
2144 public:
2145 pass_lower_eh (gcc::context *ctxt)
2146 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2149 /* opt_pass methods: */
2150 virtual unsigned int execute (function *);
2152 }; // class pass_lower_eh
2154 unsigned int
2155 pass_lower_eh::execute (function *fun)
2157 struct leh_state null_state;
2158 gimple_seq bodyp;
2160 bodyp = gimple_body (current_function_decl);
2161 if (bodyp == NULL)
2162 return 0;
2164 finally_tree.create (31);
2165 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2166 memset (&null_state, 0, sizeof (null_state));
2168 collect_finally_tree_1 (bodyp, NULL);
2169 lower_eh_constructs_1 (&null_state, &bodyp);
2170 gimple_set_body (current_function_decl, bodyp);
2172 /* We assume there's a return statement, or something, at the end of
2173 the function, and thus ploping the EH sequence afterward won't
2174 change anything. */
2175 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2176 gimple_seq_add_seq (&bodyp, eh_seq);
2178 /* We assume that since BODYP already existed, adding EH_SEQ to it
2179 didn't change its value, and we don't have to re-set the function. */
2180 gcc_assert (bodyp == gimple_body (current_function_decl));
2182 finally_tree.dispose ();
2183 BITMAP_FREE (eh_region_may_contain_throw_map);
2184 eh_seq = NULL;
2186 /* If this function needs a language specific EH personality routine
2187 and the frontend didn't already set one do so now. */
2188 if (function_needs_eh_personality (fun) == eh_personality_lang
2189 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2190 DECL_FUNCTION_PERSONALITY (current_function_decl)
2191 = lang_hooks.eh_personality ();
2193 return 0;
2196 } // anon namespace
2198 gimple_opt_pass *
2199 make_pass_lower_eh (gcc::context *ctxt)
2201 return new pass_lower_eh (ctxt);
2204 /* Create the multiple edges from an EH_DISPATCH statement to all of
2205 the possible handlers for its EH region. Return true if there's
2206 no fallthru edge; false if there is. */
2208 bool
2209 make_eh_dispatch_edges (gimple stmt)
2211 eh_region r;
2212 eh_catch c;
2213 basic_block src, dst;
2215 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2216 src = gimple_bb (stmt);
2218 switch (r->type)
2220 case ERT_TRY:
2221 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2223 dst = label_to_block (c->label);
2224 make_edge (src, dst, 0);
2226 /* A catch-all handler doesn't have a fallthru. */
2227 if (c->type_list == NULL)
2228 return false;
2230 break;
2232 case ERT_ALLOWED_EXCEPTIONS:
2233 dst = label_to_block (r->u.allowed.label);
2234 make_edge (src, dst, 0);
2235 break;
2237 default:
2238 gcc_unreachable ();
2241 return true;
2244 /* Create the single EH edge from STMT to its nearest landing pad,
2245 if there is such a landing pad within the current function. */
2247 void
2248 make_eh_edges (gimple stmt)
2250 basic_block src, dst;
2251 eh_landing_pad lp;
2252 int lp_nr;
2254 lp_nr = lookup_stmt_eh_lp (stmt);
2255 if (lp_nr <= 0)
2256 return;
2258 lp = get_eh_landing_pad_from_number (lp_nr);
2259 gcc_assert (lp != NULL);
2261 src = gimple_bb (stmt);
2262 dst = label_to_block (lp->post_landing_pad);
2263 make_edge (src, dst, EDGE_EH);
2266 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2267 do not actually perform the final edge redirection.
2269 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2270 we intend to change the destination EH region as well; this means
2271 EH_LANDING_PAD_NR must already be set on the destination block label.
2272 If false, we're being called from generic cfg manipulation code and we
2273 should preserve our place within the region tree. */
2275 static void
2276 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2278 eh_landing_pad old_lp, new_lp;
2279 basic_block old_bb;
2280 gimple throw_stmt;
2281 int old_lp_nr, new_lp_nr;
2282 tree old_label, new_label;
2283 edge_iterator ei;
2284 edge e;
2286 old_bb = edge_in->dest;
2287 old_label = gimple_block_label (old_bb);
2288 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2289 gcc_assert (old_lp_nr > 0);
2290 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2292 throw_stmt = last_stmt (edge_in->src);
2293 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2295 new_label = gimple_block_label (new_bb);
2297 /* Look for an existing region that might be using NEW_BB already. */
2298 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2299 if (new_lp_nr)
2301 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2302 gcc_assert (new_lp);
2304 /* Unless CHANGE_REGION is true, the new and old landing pad
2305 had better be associated with the same EH region. */
2306 gcc_assert (change_region || new_lp->region == old_lp->region);
2308 else
2310 new_lp = NULL;
2311 gcc_assert (!change_region);
2314 /* Notice when we redirect the last EH edge away from OLD_BB. */
2315 FOR_EACH_EDGE (e, ei, old_bb->preds)
2316 if (e != edge_in && (e->flags & EDGE_EH))
2317 break;
2319 if (new_lp)
2321 /* NEW_LP already exists. If there are still edges into OLD_LP,
2322 there's nothing to do with the EH tree. If there are no more
2323 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2324 If CHANGE_REGION is true, then our caller is expecting to remove
2325 the landing pad. */
2326 if (e == NULL && !change_region)
2327 remove_eh_landing_pad (old_lp);
2329 else
2331 /* No correct landing pad exists. If there are no more edges
2332 into OLD_LP, then we can simply re-use the existing landing pad.
2333 Otherwise, we have to create a new landing pad. */
2334 if (e == NULL)
2336 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2337 new_lp = old_lp;
2339 else
2340 new_lp = gen_eh_landing_pad (old_lp->region);
2341 new_lp->post_landing_pad = new_label;
2342 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2345 /* Maybe move the throwing statement to the new region. */
2346 if (old_lp != new_lp)
2348 remove_stmt_from_eh_lp (throw_stmt);
2349 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2353 /* Redirect EH edge E to NEW_BB. */
2355 edge
2356 redirect_eh_edge (edge edge_in, basic_block new_bb)
2358 redirect_eh_edge_1 (edge_in, new_bb, false);
2359 return ssa_redirect_edge (edge_in, new_bb);
2362 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2363 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2364 The actual edge update will happen in the caller. */
2366 void
2367 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2369 tree new_lab = gimple_block_label (new_bb);
2370 bool any_changed = false;
2371 basic_block old_bb;
2372 eh_region r;
2373 eh_catch c;
2375 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2376 switch (r->type)
2378 case ERT_TRY:
2379 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2381 old_bb = label_to_block (c->label);
2382 if (old_bb == e->dest)
2384 c->label = new_lab;
2385 any_changed = true;
2388 break;
2390 case ERT_ALLOWED_EXCEPTIONS:
2391 old_bb = label_to_block (r->u.allowed.label);
2392 gcc_assert (old_bb == e->dest);
2393 r->u.allowed.label = new_lab;
2394 any_changed = true;
2395 break;
2397 default:
2398 gcc_unreachable ();
2401 gcc_assert (any_changed);
2404 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2406 bool
2407 operation_could_trap_helper_p (enum tree_code op,
2408 bool fp_operation,
2409 bool honor_trapv,
2410 bool honor_nans,
2411 bool honor_snans,
2412 tree divisor,
2413 bool *handled)
2415 *handled = true;
2416 switch (op)
2418 case TRUNC_DIV_EXPR:
2419 case CEIL_DIV_EXPR:
2420 case FLOOR_DIV_EXPR:
2421 case ROUND_DIV_EXPR:
2422 case EXACT_DIV_EXPR:
2423 case CEIL_MOD_EXPR:
2424 case FLOOR_MOD_EXPR:
2425 case ROUND_MOD_EXPR:
2426 case TRUNC_MOD_EXPR:
2427 case RDIV_EXPR:
2428 if (honor_snans || honor_trapv)
2429 return true;
2430 if (fp_operation)
2431 return flag_trapping_math;
2432 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2433 return true;
2434 return false;
2436 case LT_EXPR:
2437 case LE_EXPR:
2438 case GT_EXPR:
2439 case GE_EXPR:
2440 case LTGT_EXPR:
2441 /* Some floating point comparisons may trap. */
2442 return honor_nans;
2444 case EQ_EXPR:
2445 case NE_EXPR:
2446 case UNORDERED_EXPR:
2447 case ORDERED_EXPR:
2448 case UNLT_EXPR:
2449 case UNLE_EXPR:
2450 case UNGT_EXPR:
2451 case UNGE_EXPR:
2452 case UNEQ_EXPR:
2453 return honor_snans;
2455 case CONVERT_EXPR:
2456 case FIX_TRUNC_EXPR:
2457 /* Conversion of floating point might trap. */
2458 return honor_nans;
2460 case NEGATE_EXPR:
2461 case ABS_EXPR:
2462 case CONJ_EXPR:
2463 /* These operations don't trap with floating point. */
2464 if (honor_trapv)
2465 return true;
2466 return false;
2468 case PLUS_EXPR:
2469 case MINUS_EXPR:
2470 case MULT_EXPR:
2471 /* Any floating arithmetic may trap. */
2472 if (fp_operation && flag_trapping_math)
2473 return true;
2474 if (honor_trapv)
2475 return true;
2476 return false;
2478 case COMPLEX_EXPR:
2479 case CONSTRUCTOR:
2480 /* Constructing an object cannot trap. */
2481 return false;
2483 default:
2484 /* Any floating arithmetic may trap. */
2485 if (fp_operation && flag_trapping_math)
2486 return true;
2488 *handled = false;
2489 return false;
2493 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2494 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2495 type operands that may trap. If OP is a division operator, DIVISOR contains
2496 the value of the divisor. */
2498 bool
2499 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2500 tree divisor)
2502 bool honor_nans = (fp_operation && flag_trapping_math
2503 && !flag_finite_math_only);
2504 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2505 bool handled;
2507 if (TREE_CODE_CLASS (op) != tcc_comparison
2508 && TREE_CODE_CLASS (op) != tcc_unary
2509 && TREE_CODE_CLASS (op) != tcc_binary)
2510 return false;
2512 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2513 honor_nans, honor_snans, divisor,
2514 &handled);
2518 /* Returns true if it is possible to prove that the index of
2519 an array access REF (an ARRAY_REF expression) falls into the
2520 array bounds. */
2522 static bool
2523 in_array_bounds_p (tree ref)
2525 tree idx = TREE_OPERAND (ref, 1);
2526 tree min, max;
2528 if (TREE_CODE (idx) != INTEGER_CST)
2529 return false;
2531 min = array_ref_low_bound (ref);
2532 max = array_ref_up_bound (ref);
2533 if (!min
2534 || !max
2535 || TREE_CODE (min) != INTEGER_CST
2536 || TREE_CODE (max) != INTEGER_CST)
2537 return false;
2539 if (tree_int_cst_lt (idx, min)
2540 || tree_int_cst_lt (max, idx))
2541 return false;
2543 return true;
2546 /* Returns true if it is possible to prove that the range of
2547 an array access REF (an ARRAY_RANGE_REF expression) falls
2548 into the array bounds. */
2550 static bool
2551 range_in_array_bounds_p (tree ref)
2553 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2554 tree range_min, range_max, min, max;
2556 range_min = TYPE_MIN_VALUE (domain_type);
2557 range_max = TYPE_MAX_VALUE (domain_type);
2558 if (!range_min
2559 || !range_max
2560 || TREE_CODE (range_min) != INTEGER_CST
2561 || TREE_CODE (range_max) != INTEGER_CST)
2562 return false;
2564 min = array_ref_low_bound (ref);
2565 max = array_ref_up_bound (ref);
2566 if (!min
2567 || !max
2568 || TREE_CODE (min) != INTEGER_CST
2569 || TREE_CODE (max) != INTEGER_CST)
2570 return false;
2572 if (tree_int_cst_lt (range_min, min)
2573 || tree_int_cst_lt (max, range_max))
2574 return false;
2576 return true;
2579 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2580 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2581 This routine expects only GIMPLE lhs or rhs input. */
2583 bool
2584 tree_could_trap_p (tree expr)
2586 enum tree_code code;
2587 bool fp_operation = false;
2588 bool honor_trapv = false;
2589 tree t, base, div = NULL_TREE;
2591 if (!expr)
2592 return false;
2594 code = TREE_CODE (expr);
2595 t = TREE_TYPE (expr);
2597 if (t)
2599 if (COMPARISON_CLASS_P (expr))
2600 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2601 else
2602 fp_operation = FLOAT_TYPE_P (t);
2603 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2606 if (TREE_CODE_CLASS (code) == tcc_binary)
2607 div = TREE_OPERAND (expr, 1);
2608 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2609 return true;
2611 restart:
2612 switch (code)
2614 case COMPONENT_REF:
2615 case REALPART_EXPR:
2616 case IMAGPART_EXPR:
2617 case BIT_FIELD_REF:
2618 case VIEW_CONVERT_EXPR:
2619 case WITH_SIZE_EXPR:
2620 expr = TREE_OPERAND (expr, 0);
2621 code = TREE_CODE (expr);
2622 goto restart;
2624 case ARRAY_RANGE_REF:
2625 base = TREE_OPERAND (expr, 0);
2626 if (tree_could_trap_p (base))
2627 return true;
2628 if (TREE_THIS_NOTRAP (expr))
2629 return false;
2630 return !range_in_array_bounds_p (expr);
2632 case ARRAY_REF:
2633 base = TREE_OPERAND (expr, 0);
2634 if (tree_could_trap_p (base))
2635 return true;
2636 if (TREE_THIS_NOTRAP (expr))
2637 return false;
2638 return !in_array_bounds_p (expr);
2640 case TARGET_MEM_REF:
2641 case MEM_REF:
2642 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2643 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2644 return true;
2645 if (TREE_THIS_NOTRAP (expr))
2646 return false;
2647 /* We cannot prove that the access is in-bounds when we have
2648 variable-index TARGET_MEM_REFs. */
2649 if (code == TARGET_MEM_REF
2650 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2651 return true;
2652 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2654 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2655 offset_int off = mem_ref_offset (expr);
2656 if (wi::neg_p (off, SIGNED))
2657 return true;
2658 if (TREE_CODE (base) == STRING_CST)
2659 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2660 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2661 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2662 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2663 return true;
2664 /* Now we are sure the first byte of the access is inside
2665 the object. */
2666 return false;
2668 return true;
2670 case INDIRECT_REF:
2671 return !TREE_THIS_NOTRAP (expr);
2673 case ASM_EXPR:
2674 return TREE_THIS_VOLATILE (expr);
2676 case CALL_EXPR:
2677 t = get_callee_fndecl (expr);
2678 /* Assume that calls to weak functions may trap. */
2679 if (!t || !DECL_P (t))
2680 return true;
2681 if (DECL_WEAK (t))
2682 return tree_could_trap_p (t);
2683 return false;
2685 case FUNCTION_DECL:
2686 /* Assume that accesses to weak functions may trap, unless we know
2687 they are certainly defined in current TU or in some other
2688 LTO partition. */
2689 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2691 struct cgraph_node *node;
2692 if (!DECL_EXTERNAL (expr))
2693 return false;
2694 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2695 if (node && node->in_other_partition)
2696 return false;
2697 return true;
2699 return false;
2701 case VAR_DECL:
2702 /* Assume that accesses to weak vars may trap, unless we know
2703 they are certainly defined in current TU or in some other
2704 LTO partition. */
2705 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2707 varpool_node *node;
2708 if (!DECL_EXTERNAL (expr))
2709 return false;
2710 node = varpool_variable_node (varpool_get_node (expr), NULL);
2711 if (node && node->in_other_partition)
2712 return false;
2713 return true;
2715 return false;
2717 default:
2718 return false;
2723 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2724 an assignment or a conditional) may throw. */
2726 static bool
2727 stmt_could_throw_1_p (gimple stmt)
2729 enum tree_code code = gimple_expr_code (stmt);
2730 bool honor_nans = false;
2731 bool honor_snans = false;
2732 bool fp_operation = false;
2733 bool honor_trapv = false;
2734 tree t;
2735 size_t i;
2736 bool handled, ret;
2738 if (TREE_CODE_CLASS (code) == tcc_comparison
2739 || TREE_CODE_CLASS (code) == tcc_unary
2740 || TREE_CODE_CLASS (code) == tcc_binary)
2742 if (is_gimple_assign (stmt)
2743 && TREE_CODE_CLASS (code) == tcc_comparison)
2744 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2745 else if (gimple_code (stmt) == GIMPLE_COND)
2746 t = TREE_TYPE (gimple_cond_lhs (stmt));
2747 else
2748 t = gimple_expr_type (stmt);
2749 fp_operation = FLOAT_TYPE_P (t);
2750 if (fp_operation)
2752 honor_nans = flag_trapping_math && !flag_finite_math_only;
2753 honor_snans = flag_signaling_nans != 0;
2755 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2756 honor_trapv = true;
2759 /* Check if the main expression may trap. */
2760 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2761 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2762 honor_nans, honor_snans, t,
2763 &handled);
2764 if (handled)
2765 return ret;
2767 /* If the expression does not trap, see if any of the individual operands may
2768 trap. */
2769 for (i = 0; i < gimple_num_ops (stmt); i++)
2770 if (tree_could_trap_p (gimple_op (stmt, i)))
2771 return true;
2773 return false;
2777 /* Return true if statement STMT could throw an exception. */
2779 bool
2780 stmt_could_throw_p (gimple stmt)
2782 if (!flag_exceptions)
2783 return false;
2785 /* The only statements that can throw an exception are assignments,
2786 conditionals, calls, resx, and asms. */
2787 switch (gimple_code (stmt))
2789 case GIMPLE_RESX:
2790 return true;
2792 case GIMPLE_CALL:
2793 return !gimple_call_nothrow_p (stmt);
2795 case GIMPLE_ASSIGN:
2796 case GIMPLE_COND:
2797 if (!cfun->can_throw_non_call_exceptions)
2798 return false;
2799 return stmt_could_throw_1_p (stmt);
2801 case GIMPLE_ASM:
2802 if (!cfun->can_throw_non_call_exceptions)
2803 return false;
2804 return gimple_asm_volatile_p (stmt);
2806 default:
2807 return false;
2812 /* Return true if expression T could throw an exception. */
2814 bool
2815 tree_could_throw_p (tree t)
2817 if (!flag_exceptions)
2818 return false;
2819 if (TREE_CODE (t) == MODIFY_EXPR)
2821 if (cfun->can_throw_non_call_exceptions
2822 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2823 return true;
2824 t = TREE_OPERAND (t, 1);
2827 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2828 t = TREE_OPERAND (t, 0);
2829 if (TREE_CODE (t) == CALL_EXPR)
2830 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2831 if (cfun->can_throw_non_call_exceptions)
2832 return tree_could_trap_p (t);
2833 return false;
2836 /* Return true if STMT can throw an exception that is not caught within
2837 the current function (CFUN). */
2839 bool
2840 stmt_can_throw_external (gimple stmt)
2842 int lp_nr;
2844 if (!stmt_could_throw_p (stmt))
2845 return false;
2847 lp_nr = lookup_stmt_eh_lp (stmt);
2848 return lp_nr == 0;
2851 /* Return true if STMT can throw an exception that is caught within
2852 the current function (CFUN). */
2854 bool
2855 stmt_can_throw_internal (gimple stmt)
2857 int lp_nr;
2859 if (!stmt_could_throw_p (stmt))
2860 return false;
2862 lp_nr = lookup_stmt_eh_lp (stmt);
2863 return lp_nr > 0;
2866 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2867 remove any entry it might have from the EH table. Return true if
2868 any change was made. */
2870 bool
2871 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2873 if (stmt_could_throw_p (stmt))
2874 return false;
2875 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2878 /* Likewise, but always use the current function. */
2880 bool
2881 maybe_clean_eh_stmt (gimple stmt)
2883 return maybe_clean_eh_stmt_fn (cfun, stmt);
2886 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2887 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2888 in the table if it should be in there. Return TRUE if a replacement was
2889 done that my require an EH edge purge. */
2891 bool
2892 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2894 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2896 if (lp_nr != 0)
2898 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2900 if (new_stmt == old_stmt && new_stmt_could_throw)
2901 return false;
2903 remove_stmt_from_eh_lp (old_stmt);
2904 if (new_stmt_could_throw)
2906 add_stmt_to_eh_lp (new_stmt, lp_nr);
2907 return false;
2909 else
2910 return true;
2913 return false;
2916 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2917 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2918 operand is the return value of duplicate_eh_regions. */
2920 bool
2921 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2922 struct function *old_fun, gimple old_stmt,
2923 struct pointer_map_t *map, int default_lp_nr)
2925 int old_lp_nr, new_lp_nr;
2926 void **slot;
2928 if (!stmt_could_throw_p (new_stmt))
2929 return false;
2931 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2932 if (old_lp_nr == 0)
2934 if (default_lp_nr == 0)
2935 return false;
2936 new_lp_nr = default_lp_nr;
2938 else if (old_lp_nr > 0)
2940 eh_landing_pad old_lp, new_lp;
2942 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2943 slot = pointer_map_contains (map, old_lp);
2944 new_lp = (eh_landing_pad) *slot;
2945 new_lp_nr = new_lp->index;
2947 else
2949 eh_region old_r, new_r;
2951 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2952 slot = pointer_map_contains (map, old_r);
2953 new_r = (eh_region) *slot;
2954 new_lp_nr = -new_r->index;
2957 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2958 return true;
2961 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2962 and thus no remapping is required. */
2964 bool
2965 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2967 int lp_nr;
2969 if (!stmt_could_throw_p (new_stmt))
2970 return false;
2972 lp_nr = lookup_stmt_eh_lp (old_stmt);
2973 if (lp_nr == 0)
2974 return false;
2976 add_stmt_to_eh_lp (new_stmt, lp_nr);
2977 return true;
2980 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2981 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2982 this only handles handlers consisting of a single call, as that's the
2983 important case for C++: a destructor call for a particular object showing
2984 up in multiple handlers. */
2986 static bool
2987 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2989 gimple_stmt_iterator gsi;
2990 gimple ones, twos;
2991 unsigned int ai;
2993 gsi = gsi_start (oneh);
2994 if (!gsi_one_before_end_p (gsi))
2995 return false;
2996 ones = gsi_stmt (gsi);
2998 gsi = gsi_start (twoh);
2999 if (!gsi_one_before_end_p (gsi))
3000 return false;
3001 twos = gsi_stmt (gsi);
3003 if (!is_gimple_call (ones)
3004 || !is_gimple_call (twos)
3005 || gimple_call_lhs (ones)
3006 || gimple_call_lhs (twos)
3007 || gimple_call_chain (ones)
3008 || gimple_call_chain (twos)
3009 || !gimple_call_same_target_p (ones, twos)
3010 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3011 return false;
3013 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3014 if (!operand_equal_p (gimple_call_arg (ones, ai),
3015 gimple_call_arg (twos, ai), 0))
3016 return false;
3018 return true;
3021 /* Optimize
3022 try { A() } finally { try { ~B() } catch { ~A() } }
3023 try { ... } finally { ~A() }
3024 into
3025 try { A() } catch { ~B() }
3026 try { ~B() ... } finally { ~A() }
3028 This occurs frequently in C++, where A is a local variable and B is a
3029 temporary used in the initializer for A. */
3031 static void
3032 optimize_double_finally (gimple one, gimple two)
3034 gimple oneh;
3035 gimple_stmt_iterator gsi;
3036 gimple_seq cleanup;
3038 cleanup = gimple_try_cleanup (one);
3039 gsi = gsi_start (cleanup);
3040 if (!gsi_one_before_end_p (gsi))
3041 return;
3043 oneh = gsi_stmt (gsi);
3044 if (gimple_code (oneh) != GIMPLE_TRY
3045 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3046 return;
3048 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3050 gimple_seq seq = gimple_try_eval (oneh);
3052 gimple_try_set_cleanup (one, seq);
3053 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3054 seq = copy_gimple_seq_and_replace_locals (seq);
3055 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3056 gimple_try_set_eval (two, seq);
3060 /* Perform EH refactoring optimizations that are simpler to do when code
3061 flow has been lowered but EH structures haven't. */
3063 static void
3064 refactor_eh_r (gimple_seq seq)
3066 gimple_stmt_iterator gsi;
3067 gimple one, two;
3069 one = NULL;
3070 two = NULL;
3071 gsi = gsi_start (seq);
3072 while (1)
3074 one = two;
3075 if (gsi_end_p (gsi))
3076 two = NULL;
3077 else
3078 two = gsi_stmt (gsi);
3079 if (one
3080 && two
3081 && gimple_code (one) == GIMPLE_TRY
3082 && gimple_code (two) == GIMPLE_TRY
3083 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
3084 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
3085 optimize_double_finally (one, two);
3086 if (one)
3087 switch (gimple_code (one))
3089 case GIMPLE_TRY:
3090 refactor_eh_r (gimple_try_eval (one));
3091 refactor_eh_r (gimple_try_cleanup (one));
3092 break;
3093 case GIMPLE_CATCH:
3094 refactor_eh_r (gimple_catch_handler (one));
3095 break;
3096 case GIMPLE_EH_FILTER:
3097 refactor_eh_r (gimple_eh_filter_failure (one));
3098 break;
3099 case GIMPLE_EH_ELSE:
3100 refactor_eh_r (gimple_eh_else_n_body (one));
3101 refactor_eh_r (gimple_eh_else_e_body (one));
3102 break;
3103 default:
3104 break;
3106 if (two)
3107 gsi_next (&gsi);
3108 else
3109 break;
3113 namespace {
3115 const pass_data pass_data_refactor_eh =
3117 GIMPLE_PASS, /* type */
3118 "ehopt", /* name */
3119 OPTGROUP_NONE, /* optinfo_flags */
3120 true, /* has_execute */
3121 TV_TREE_EH, /* tv_id */
3122 PROP_gimple_lcf, /* properties_required */
3123 0, /* properties_provided */
3124 0, /* properties_destroyed */
3125 0, /* todo_flags_start */
3126 0, /* todo_flags_finish */
3129 class pass_refactor_eh : public gimple_opt_pass
3131 public:
3132 pass_refactor_eh (gcc::context *ctxt)
3133 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3136 /* opt_pass methods: */
3137 virtual bool gate (function *) { return flag_exceptions != 0; }
3138 virtual unsigned int execute (function *)
3140 refactor_eh_r (gimple_body (current_function_decl));
3141 return 0;
3144 }; // class pass_refactor_eh
3146 } // anon namespace
3148 gimple_opt_pass *
3149 make_pass_refactor_eh (gcc::context *ctxt)
3151 return new pass_refactor_eh (ctxt);
3154 /* At the end of gimple optimization, we can lower RESX. */
3156 static bool
3157 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3159 int lp_nr;
3160 eh_region src_r, dst_r;
3161 gimple_stmt_iterator gsi;
3162 gimple x;
3163 tree fn, src_nr;
3164 bool ret = false;
3166 lp_nr = lookup_stmt_eh_lp (stmt);
3167 if (lp_nr != 0)
3168 dst_r = get_eh_region_from_lp_number (lp_nr);
3169 else
3170 dst_r = NULL;
3172 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3173 gsi = gsi_last_bb (bb);
3175 if (src_r == NULL)
3177 /* We can wind up with no source region when pass_cleanup_eh shows
3178 that there are no entries into an eh region and deletes it, but
3179 then the block that contains the resx isn't removed. This can
3180 happen without optimization when the switch statement created by
3181 lower_try_finally_switch isn't simplified to remove the eh case.
3183 Resolve this by expanding the resx node to an abort. */
3185 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3186 x = gimple_build_call (fn, 0);
3187 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3189 while (EDGE_COUNT (bb->succs) > 0)
3190 remove_edge (EDGE_SUCC (bb, 0));
3192 else if (dst_r)
3194 /* When we have a destination region, we resolve this by copying
3195 the excptr and filter values into place, and changing the edge
3196 to immediately after the landing pad. */
3197 edge e;
3199 if (lp_nr < 0)
3201 basic_block new_bb;
3202 void **slot;
3203 tree lab;
3205 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3206 the failure decl into a new block, if needed. */
3207 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3209 slot = pointer_map_contains (mnt_map, dst_r);
3210 if (slot == NULL)
3212 gimple_stmt_iterator gsi2;
3214 new_bb = create_empty_bb (bb);
3215 add_bb_to_loop (new_bb, bb->loop_father);
3216 lab = gimple_block_label (new_bb);
3217 gsi2 = gsi_start_bb (new_bb);
3219 fn = dst_r->u.must_not_throw.failure_decl;
3220 x = gimple_build_call (fn, 0);
3221 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3222 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3224 slot = pointer_map_insert (mnt_map, dst_r);
3225 *slot = lab;
3227 else
3229 lab = (tree) *slot;
3230 new_bb = label_to_block (lab);
3233 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3234 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3235 e->count = bb->count;
3236 e->probability = REG_BR_PROB_BASE;
3238 else
3240 edge_iterator ei;
3241 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3243 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3244 src_nr = build_int_cst (integer_type_node, src_r->index);
3245 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3246 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3248 /* Update the flags for the outgoing edge. */
3249 e = single_succ_edge (bb);
3250 gcc_assert (e->flags & EDGE_EH);
3251 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3253 /* If there are no more EH users of the landing pad, delete it. */
3254 FOR_EACH_EDGE (e, ei, e->dest->preds)
3255 if (e->flags & EDGE_EH)
3256 break;
3257 if (e == NULL)
3259 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3260 remove_eh_landing_pad (lp);
3264 ret = true;
3266 else
3268 tree var;
3270 /* When we don't have a destination region, this exception escapes
3271 up the call chain. We resolve this by generating a call to the
3272 _Unwind_Resume library function. */
3274 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3275 with no arguments for C++ and Java. Check for that. */
3276 if (src_r->use_cxa_end_cleanup)
3278 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3279 x = gimple_build_call (fn, 0);
3280 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3282 else
3284 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3285 src_nr = build_int_cst (integer_type_node, src_r->index);
3286 x = gimple_build_call (fn, 1, src_nr);
3287 var = create_tmp_var (ptr_type_node, NULL);
3288 var = make_ssa_name (var, x);
3289 gimple_call_set_lhs (x, var);
3290 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3292 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3293 x = gimple_build_call (fn, 1, var);
3294 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3297 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3300 gsi_remove (&gsi, true);
3302 return ret;
3305 namespace {
3307 const pass_data pass_data_lower_resx =
3309 GIMPLE_PASS, /* type */
3310 "resx", /* name */
3311 OPTGROUP_NONE, /* optinfo_flags */
3312 true, /* has_execute */
3313 TV_TREE_EH, /* tv_id */
3314 PROP_gimple_lcf, /* properties_required */
3315 0, /* properties_provided */
3316 0, /* properties_destroyed */
3317 0, /* todo_flags_start */
3318 0, /* todo_flags_finish */
3321 class pass_lower_resx : public gimple_opt_pass
3323 public:
3324 pass_lower_resx (gcc::context *ctxt)
3325 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3328 /* opt_pass methods: */
3329 virtual bool gate (function *) { return flag_exceptions != 0; }
3330 virtual unsigned int execute (function *);
3332 }; // class pass_lower_resx
3334 unsigned
3335 pass_lower_resx::execute (function *fun)
3337 basic_block bb;
3338 struct pointer_map_t *mnt_map;
3339 bool dominance_invalidated = false;
3340 bool any_rewritten = false;
3342 mnt_map = pointer_map_create ();
3344 FOR_EACH_BB_FN (bb, fun)
3346 gimple last = last_stmt (bb);
3347 if (last && is_gimple_resx (last))
3349 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3350 any_rewritten = true;
3354 pointer_map_destroy (mnt_map);
3356 if (dominance_invalidated)
3358 free_dominance_info (CDI_DOMINATORS);
3359 free_dominance_info (CDI_POST_DOMINATORS);
3362 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3365 } // anon namespace
3367 gimple_opt_pass *
3368 make_pass_lower_resx (gcc::context *ctxt)
3370 return new pass_lower_resx (ctxt);
3373 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3374 external throw. */
3376 static void
3377 optimize_clobbers (basic_block bb)
3379 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3380 bool any_clobbers = false;
3381 bool seen_stack_restore = false;
3382 edge_iterator ei;
3383 edge e;
3385 /* Only optimize anything if the bb contains at least one clobber,
3386 ends with resx (checked by caller), optionally contains some
3387 debug stmts or labels, or at most one __builtin_stack_restore
3388 call, and has an incoming EH edge. */
3389 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3391 gimple stmt = gsi_stmt (gsi);
3392 if (is_gimple_debug (stmt))
3393 continue;
3394 if (gimple_clobber_p (stmt))
3396 any_clobbers = true;
3397 continue;
3399 if (!seen_stack_restore
3400 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3402 seen_stack_restore = true;
3403 continue;
3405 if (gimple_code (stmt) == GIMPLE_LABEL)
3406 break;
3407 return;
3409 if (!any_clobbers)
3410 return;
3411 FOR_EACH_EDGE (e, ei, bb->preds)
3412 if (e->flags & EDGE_EH)
3413 break;
3414 if (e == NULL)
3415 return;
3416 gsi = gsi_last_bb (bb);
3417 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3419 gimple stmt = gsi_stmt (gsi);
3420 if (!gimple_clobber_p (stmt))
3421 continue;
3422 unlink_stmt_vdef (stmt);
3423 gsi_remove (&gsi, true);
3424 release_defs (stmt);
3428 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3429 internal throw to successor BB. */
3431 static int
3432 sink_clobbers (basic_block bb)
3434 edge e;
3435 edge_iterator ei;
3436 gimple_stmt_iterator gsi, dgsi;
3437 basic_block succbb;
3438 bool any_clobbers = false;
3439 unsigned todo = 0;
3441 /* Only optimize if BB has a single EH successor and
3442 all predecessor edges are EH too. */
3443 if (!single_succ_p (bb)
3444 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3445 return 0;
3447 FOR_EACH_EDGE (e, ei, bb->preds)
3449 if ((e->flags & EDGE_EH) == 0)
3450 return 0;
3453 /* And BB contains only CLOBBER stmts before the final
3454 RESX. */
3455 gsi = gsi_last_bb (bb);
3456 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3458 gimple stmt = gsi_stmt (gsi);
3459 if (is_gimple_debug (stmt))
3460 continue;
3461 if (gimple_code (stmt) == GIMPLE_LABEL)
3462 break;
3463 if (!gimple_clobber_p (stmt))
3464 return 0;
3465 any_clobbers = true;
3467 if (!any_clobbers)
3468 return 0;
3470 edge succe = single_succ_edge (bb);
3471 succbb = succe->dest;
3473 /* See if there is a virtual PHI node to take an updated virtual
3474 operand from. */
3475 gimple vphi = NULL;
3476 tree vuse = NULL_TREE;
3477 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3479 tree res = gimple_phi_result (gsi_stmt (gsi));
3480 if (virtual_operand_p (res))
3482 vphi = gsi_stmt (gsi);
3483 vuse = res;
3484 break;
3488 dgsi = gsi_after_labels (succbb);
3489 gsi = gsi_last_bb (bb);
3490 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3492 gimple stmt = gsi_stmt (gsi);
3493 tree lhs;
3494 if (is_gimple_debug (stmt))
3495 continue;
3496 if (gimple_code (stmt) == GIMPLE_LABEL)
3497 break;
3498 lhs = gimple_assign_lhs (stmt);
3499 /* Unfortunately we don't have dominance info updated at this
3500 point, so checking if
3501 dominated_by_p (CDI_DOMINATORS, succbb,
3502 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3503 would be too costly. Thus, avoid sinking any clobbers that
3504 refer to non-(D) SSA_NAMEs. */
3505 if (TREE_CODE (lhs) == MEM_REF
3506 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3507 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3509 unlink_stmt_vdef (stmt);
3510 gsi_remove (&gsi, true);
3511 release_defs (stmt);
3512 continue;
3515 /* As we do not change stmt order when sinking across a
3516 forwarder edge we can keep virtual operands in place. */
3517 gsi_remove (&gsi, false);
3518 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3520 /* But adjust virtual operands if we sunk across a PHI node. */
3521 if (vuse)
3523 gimple use_stmt;
3524 imm_use_iterator iter;
3525 use_operand_p use_p;
3526 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3527 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3528 SET_USE (use_p, gimple_vdef (stmt));
3529 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3531 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3532 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3534 /* Adjust the incoming virtual operand. */
3535 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3536 SET_USE (gimple_vuse_op (stmt), vuse);
3538 /* If there isn't a single predecessor but no virtual PHI node
3539 arrange for virtual operands to be renamed. */
3540 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3541 && !single_pred_p (succbb))
3543 /* In this case there will be no use of the VDEF of this stmt.
3544 ??? Unless this is a secondary opportunity and we have not
3545 removed unreachable blocks yet, so we cannot assert this.
3546 Which also means we will end up renaming too many times. */
3547 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3548 mark_virtual_operands_for_renaming (cfun);
3549 todo |= TODO_update_ssa_only_virtuals;
3553 return todo;
3556 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3557 we have found some duplicate labels and removed some edges. */
3559 static bool
3560 lower_eh_dispatch (basic_block src, gimple stmt)
3562 gimple_stmt_iterator gsi;
3563 int region_nr;
3564 eh_region r;
3565 tree filter, fn;
3566 gimple x;
3567 bool redirected = false;
3569 region_nr = gimple_eh_dispatch_region (stmt);
3570 r = get_eh_region_from_number (region_nr);
3572 gsi = gsi_last_bb (src);
3574 switch (r->type)
3576 case ERT_TRY:
3578 auto_vec<tree> labels;
3579 tree default_label = NULL;
3580 eh_catch c;
3581 edge_iterator ei;
3582 edge e;
3583 struct pointer_set_t *seen_values = pointer_set_create ();
3585 /* Collect the labels for a switch. Zero the post_landing_pad
3586 field becase we'll no longer have anything keeping these labels
3587 in existence and the optimizer will be free to merge these
3588 blocks at will. */
3589 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3591 tree tp_node, flt_node, lab = c->label;
3592 bool have_label = false;
3594 c->label = NULL;
3595 tp_node = c->type_list;
3596 flt_node = c->filter_list;
3598 if (tp_node == NULL)
3600 default_label = lab;
3601 break;
3605 /* Filter out duplicate labels that arise when this handler
3606 is shadowed by an earlier one. When no labels are
3607 attached to the handler anymore, we remove
3608 the corresponding edge and then we delete unreachable
3609 blocks at the end of this pass. */
3610 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3612 tree t = build_case_label (TREE_VALUE (flt_node),
3613 NULL, lab);
3614 labels.safe_push (t);
3615 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3616 have_label = true;
3619 tp_node = TREE_CHAIN (tp_node);
3620 flt_node = TREE_CHAIN (flt_node);
3622 while (tp_node);
3623 if (! have_label)
3625 remove_edge (find_edge (src, label_to_block (lab)));
3626 redirected = true;
3630 /* Clean up the edge flags. */
3631 FOR_EACH_EDGE (e, ei, src->succs)
3633 if (e->flags & EDGE_FALLTHRU)
3635 /* If there was no catch-all, use the fallthru edge. */
3636 if (default_label == NULL)
3637 default_label = gimple_block_label (e->dest);
3638 e->flags &= ~EDGE_FALLTHRU;
3641 gcc_assert (default_label != NULL);
3643 /* Don't generate a switch if there's only a default case.
3644 This is common in the form of try { A; } catch (...) { B; }. */
3645 if (!labels.exists ())
3647 e = single_succ_edge (src);
3648 e->flags |= EDGE_FALLTHRU;
3650 else
3652 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3653 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3654 region_nr));
3655 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3656 filter = make_ssa_name (filter, x);
3657 gimple_call_set_lhs (x, filter);
3658 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3660 /* Turn the default label into a default case. */
3661 default_label = build_case_label (NULL, NULL, default_label);
3662 sort_case_labels (labels);
3664 x = gimple_build_switch (filter, default_label, labels);
3665 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3667 pointer_set_destroy (seen_values);
3669 break;
3671 case ERT_ALLOWED_EXCEPTIONS:
3673 edge b_e = BRANCH_EDGE (src);
3674 edge f_e = FALLTHRU_EDGE (src);
3676 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3677 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3678 region_nr));
3679 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3680 filter = make_ssa_name (filter, x);
3681 gimple_call_set_lhs (x, filter);
3682 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3684 r->u.allowed.label = NULL;
3685 x = gimple_build_cond (EQ_EXPR, filter,
3686 build_int_cst (TREE_TYPE (filter),
3687 r->u.allowed.filter),
3688 NULL_TREE, NULL_TREE);
3689 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3691 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3692 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3694 break;
3696 default:
3697 gcc_unreachable ();
3700 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3701 gsi_remove (&gsi, true);
3702 return redirected;
3705 namespace {
3707 const pass_data pass_data_lower_eh_dispatch =
3709 GIMPLE_PASS, /* type */
3710 "ehdisp", /* name */
3711 OPTGROUP_NONE, /* optinfo_flags */
3712 true, /* has_execute */
3713 TV_TREE_EH, /* tv_id */
3714 PROP_gimple_lcf, /* properties_required */
3715 0, /* properties_provided */
3716 0, /* properties_destroyed */
3717 0, /* todo_flags_start */
3718 0, /* todo_flags_finish */
3721 class pass_lower_eh_dispatch : public gimple_opt_pass
3723 public:
3724 pass_lower_eh_dispatch (gcc::context *ctxt)
3725 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3728 /* opt_pass methods: */
3729 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3730 virtual unsigned int execute (function *);
3732 }; // class pass_lower_eh_dispatch
3734 unsigned
3735 pass_lower_eh_dispatch::execute (function *fun)
3737 basic_block bb;
3738 int flags = 0;
3739 bool redirected = false;
3741 assign_filter_values ();
3743 FOR_EACH_BB_FN (bb, fun)
3745 gimple last = last_stmt (bb);
3746 if (last == NULL)
3747 continue;
3748 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3750 redirected |= lower_eh_dispatch (bb, last);
3751 flags |= TODO_update_ssa_only_virtuals;
3753 else if (gimple_code (last) == GIMPLE_RESX)
3755 if (stmt_can_throw_external (last))
3756 optimize_clobbers (bb);
3757 else
3758 flags |= sink_clobbers (bb);
3762 if (redirected)
3763 delete_unreachable_blocks ();
3764 return flags;
3767 } // anon namespace
3769 gimple_opt_pass *
3770 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3772 return new pass_lower_eh_dispatch (ctxt);
3775 /* Walk statements, see what regions and, optionally, landing pads
3776 are really referenced.
3778 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3779 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3781 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3782 regions are marked.
3784 The caller is responsible for freeing the returned sbitmaps. */
3786 static void
3787 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3789 sbitmap r_reachable, lp_reachable;
3790 basic_block bb;
3791 bool mark_landing_pads = (lp_reachablep != NULL);
3792 gcc_checking_assert (r_reachablep != NULL);
3794 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3795 bitmap_clear (r_reachable);
3796 *r_reachablep = r_reachable;
3798 if (mark_landing_pads)
3800 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3801 bitmap_clear (lp_reachable);
3802 *lp_reachablep = lp_reachable;
3804 else
3805 lp_reachable = NULL;
3807 FOR_EACH_BB_FN (bb, cfun)
3809 gimple_stmt_iterator gsi;
3811 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3813 gimple stmt = gsi_stmt (gsi);
3815 if (mark_landing_pads)
3817 int lp_nr = lookup_stmt_eh_lp (stmt);
3819 /* Negative LP numbers are MUST_NOT_THROW regions which
3820 are not considered BB enders. */
3821 if (lp_nr < 0)
3822 bitmap_set_bit (r_reachable, -lp_nr);
3824 /* Positive LP numbers are real landing pads, and BB enders. */
3825 else if (lp_nr > 0)
3827 gcc_assert (gsi_one_before_end_p (gsi));
3828 eh_region region = get_eh_region_from_lp_number (lp_nr);
3829 bitmap_set_bit (r_reachable, region->index);
3830 bitmap_set_bit (lp_reachable, lp_nr);
3834 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3835 switch (gimple_code (stmt))
3837 case GIMPLE_RESX:
3838 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3839 break;
3840 case GIMPLE_EH_DISPATCH:
3841 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3842 break;
3843 default:
3844 break;
3850 /* Remove unreachable handlers and unreachable landing pads. */
3852 static void
3853 remove_unreachable_handlers (void)
3855 sbitmap r_reachable, lp_reachable;
3856 eh_region region;
3857 eh_landing_pad lp;
3858 unsigned i;
3860 mark_reachable_handlers (&r_reachable, &lp_reachable);
3862 if (dump_file)
3864 fprintf (dump_file, "Before removal of unreachable regions:\n");
3865 dump_eh_tree (dump_file, cfun);
3866 fprintf (dump_file, "Reachable regions: ");
3867 dump_bitmap_file (dump_file, r_reachable);
3868 fprintf (dump_file, "Reachable landing pads: ");
3869 dump_bitmap_file (dump_file, lp_reachable);
3872 if (dump_file)
3874 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3875 if (region && !bitmap_bit_p (r_reachable, region->index))
3876 fprintf (dump_file,
3877 "Removing unreachable region %d\n",
3878 region->index);
3881 remove_unreachable_eh_regions (r_reachable);
3883 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3884 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3886 if (dump_file)
3887 fprintf (dump_file,
3888 "Removing unreachable landing pad %d\n",
3889 lp->index);
3890 remove_eh_landing_pad (lp);
3893 if (dump_file)
3895 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3896 dump_eh_tree (dump_file, cfun);
3897 fprintf (dump_file, "\n\n");
3900 sbitmap_free (r_reachable);
3901 sbitmap_free (lp_reachable);
3903 #ifdef ENABLE_CHECKING
3904 verify_eh_tree (cfun);
3905 #endif
3908 /* Remove unreachable handlers if any landing pads have been removed after
3909 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3911 void
3912 maybe_remove_unreachable_handlers (void)
3914 eh_landing_pad lp;
3915 unsigned i;
3917 if (cfun->eh == NULL)
3918 return;
3920 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3921 if (lp && lp->post_landing_pad)
3923 if (label_to_block (lp->post_landing_pad) == NULL)
3925 remove_unreachable_handlers ();
3926 return;
3931 /* Remove regions that do not have landing pads. This assumes
3932 that remove_unreachable_handlers has already been run, and
3933 that we've just manipulated the landing pads since then.
3935 Preserve regions with landing pads and regions that prevent
3936 exceptions from propagating further, even if these regions
3937 are not reachable. */
3939 static void
3940 remove_unreachable_handlers_no_lp (void)
3942 eh_region region;
3943 sbitmap r_reachable;
3944 unsigned i;
3946 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3948 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3950 if (! region)
3951 continue;
3953 if (region->landing_pads != NULL
3954 || region->type == ERT_MUST_NOT_THROW)
3955 bitmap_set_bit (r_reachable, region->index);
3957 if (dump_file
3958 && !bitmap_bit_p (r_reachable, region->index))
3959 fprintf (dump_file,
3960 "Removing unreachable region %d\n",
3961 region->index);
3964 remove_unreachable_eh_regions (r_reachable);
3966 sbitmap_free (r_reachable);
3969 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3970 optimisticaly split all sorts of edges, including EH edges. The
3971 optimization passes in between may not have needed them; if not,
3972 we should undo the split.
3974 Recognize this case by having one EH edge incoming to the BB and
3975 one normal edge outgoing; BB should be empty apart from the
3976 post_landing_pad label.
3978 Note that this is slightly different from the empty handler case
3979 handled by cleanup_empty_eh, in that the actual handler may yet
3980 have actual code but the landing pad has been separated from the
3981 handler. As such, cleanup_empty_eh relies on this transformation
3982 having been done first. */
3984 static bool
3985 unsplit_eh (eh_landing_pad lp)
3987 basic_block bb = label_to_block (lp->post_landing_pad);
3988 gimple_stmt_iterator gsi;
3989 edge e_in, e_out;
3991 /* Quickly check the edge counts on BB for singularity. */
3992 if (!single_pred_p (bb) || !single_succ_p (bb))
3993 return false;
3994 e_in = single_pred_edge (bb);
3995 e_out = single_succ_edge (bb);
3997 /* Input edge must be EH and output edge must be normal. */
3998 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3999 return false;
4001 /* The block must be empty except for the labels and debug insns. */
4002 gsi = gsi_after_labels (bb);
4003 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4004 gsi_next_nondebug (&gsi);
4005 if (!gsi_end_p (gsi))
4006 return false;
4008 /* The destination block must not already have a landing pad
4009 for a different region. */
4010 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4012 gimple stmt = gsi_stmt (gsi);
4013 tree lab;
4014 int lp_nr;
4016 if (gimple_code (stmt) != GIMPLE_LABEL)
4017 break;
4018 lab = gimple_label_label (stmt);
4019 lp_nr = EH_LANDING_PAD_NR (lab);
4020 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4021 return false;
4024 /* The new destination block must not already be a destination of
4025 the source block, lest we merge fallthru and eh edges and get
4026 all sorts of confused. */
4027 if (find_edge (e_in->src, e_out->dest))
4028 return false;
4030 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4031 thought this should have been cleaned up by a phicprop pass, but
4032 that doesn't appear to handle virtuals. Propagate by hand. */
4033 if (!gimple_seq_empty_p (phi_nodes (bb)))
4035 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
4037 gimple use_stmt, phi = gsi_stmt (gsi);
4038 tree lhs = gimple_phi_result (phi);
4039 tree rhs = gimple_phi_arg_def (phi, 0);
4040 use_operand_p use_p;
4041 imm_use_iterator iter;
4043 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4045 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4046 SET_USE (use_p, rhs);
4049 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4050 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4052 remove_phi_node (&gsi, true);
4056 if (dump_file && (dump_flags & TDF_DETAILS))
4057 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4058 lp->index, e_out->dest->index);
4060 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4061 a successor edge, humor it. But do the real CFG change with the
4062 predecessor of E_OUT in order to preserve the ordering of arguments
4063 to the PHI nodes in E_OUT->DEST. */
4064 redirect_eh_edge_1 (e_in, e_out->dest, false);
4065 redirect_edge_pred (e_out, e_in->src);
4066 e_out->flags = e_in->flags;
4067 e_out->probability = e_in->probability;
4068 e_out->count = e_in->count;
4069 remove_edge (e_in);
4071 return true;
4074 /* Examine each landing pad block and see if it matches unsplit_eh. */
4076 static bool
4077 unsplit_all_eh (void)
4079 bool changed = false;
4080 eh_landing_pad lp;
4081 int i;
4083 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4084 if (lp)
4085 changed |= unsplit_eh (lp);
4087 return changed;
4090 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4091 to OLD_BB to NEW_BB; return true on success, false on failure.
4093 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4094 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4095 Virtual PHIs may be deleted and marked for renaming. */
4097 static bool
4098 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4099 edge old_bb_out, bool change_region)
4101 gimple_stmt_iterator ngsi, ogsi;
4102 edge_iterator ei;
4103 edge e;
4104 bitmap ophi_handled;
4106 /* The destination block must not be a regular successor for any
4107 of the preds of the landing pad. Thus, avoid turning
4108 <..>
4109 | \ EH
4110 | <..>
4112 <..>
4113 into
4114 <..>
4115 | | EH
4116 <..>
4117 which CFG verification would choke on. See PR45172 and PR51089. */
4118 FOR_EACH_EDGE (e, ei, old_bb->preds)
4119 if (find_edge (e->src, new_bb))
4120 return false;
4122 FOR_EACH_EDGE (e, ei, old_bb->preds)
4123 redirect_edge_var_map_clear (e);
4125 ophi_handled = BITMAP_ALLOC (NULL);
4127 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4128 for the edges we're going to move. */
4129 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4131 gimple ophi, nphi = gsi_stmt (ngsi);
4132 tree nresult, nop;
4134 nresult = gimple_phi_result (nphi);
4135 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4137 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4138 the source ssa_name. */
4139 ophi = NULL;
4140 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4142 ophi = gsi_stmt (ogsi);
4143 if (gimple_phi_result (ophi) == nop)
4144 break;
4145 ophi = NULL;
4148 /* If we did find the corresponding PHI, copy those inputs. */
4149 if (ophi)
4151 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4152 if (!has_single_use (nop))
4154 imm_use_iterator imm_iter;
4155 use_operand_p use_p;
4157 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4159 if (!gimple_debug_bind_p (USE_STMT (use_p))
4160 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4161 || gimple_bb (USE_STMT (use_p)) != new_bb))
4162 goto fail;
4165 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4166 FOR_EACH_EDGE (e, ei, old_bb->preds)
4168 location_t oloc;
4169 tree oop;
4171 if ((e->flags & EDGE_EH) == 0)
4172 continue;
4173 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4174 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4175 redirect_edge_var_map_add (e, nresult, oop, oloc);
4178 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4179 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4180 variable is unchanged from input to the block and we can simply
4181 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4182 else
4184 location_t nloc
4185 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4186 FOR_EACH_EDGE (e, ei, old_bb->preds)
4187 redirect_edge_var_map_add (e, nresult, nop, nloc);
4191 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4192 we don't know what values from the other edges into NEW_BB to use. */
4193 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4195 gimple ophi = gsi_stmt (ogsi);
4196 tree oresult = gimple_phi_result (ophi);
4197 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4198 goto fail;
4201 /* Finally, move the edges and update the PHIs. */
4202 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4203 if (e->flags & EDGE_EH)
4205 /* ??? CFG manipluation routines do not try to update loop
4206 form on edge redirection. Do so manually here for now. */
4207 /* If we redirect a loop entry or latch edge that will either create
4208 a multiple entry loop or rotate the loop. If the loops merge
4209 we may have created a loop with multiple latches.
4210 All of this isn't easily fixed thus cancel the affected loop
4211 and mark the other loop as possibly having multiple latches. */
4212 if (e->dest == e->dest->loop_father->header)
4214 e->dest->loop_father->header = NULL;
4215 e->dest->loop_father->latch = NULL;
4216 new_bb->loop_father->latch = NULL;
4217 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4219 redirect_eh_edge_1 (e, new_bb, change_region);
4220 redirect_edge_succ (e, new_bb);
4221 flush_pending_stmts (e);
4223 else
4224 ei_next (&ei);
4226 BITMAP_FREE (ophi_handled);
4227 return true;
4229 fail:
4230 FOR_EACH_EDGE (e, ei, old_bb->preds)
4231 redirect_edge_var_map_clear (e);
4232 BITMAP_FREE (ophi_handled);
4233 return false;
4236 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4237 old region to NEW_REGION at BB. */
4239 static void
4240 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4241 eh_landing_pad lp, eh_region new_region)
4243 gimple_stmt_iterator gsi;
4244 eh_landing_pad *pp;
4246 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4247 continue;
4248 *pp = lp->next_lp;
4250 lp->region = new_region;
4251 lp->next_lp = new_region->landing_pads;
4252 new_region->landing_pads = lp;
4254 /* Delete the RESX that was matched within the empty handler block. */
4255 gsi = gsi_last_bb (bb);
4256 unlink_stmt_vdef (gsi_stmt (gsi));
4257 gsi_remove (&gsi, true);
4259 /* Clean up E_OUT for the fallthru. */
4260 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4261 e_out->probability = REG_BR_PROB_BASE;
4264 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4265 unsplitting than unsplit_eh was prepared to handle, e.g. when
4266 multiple incoming edges and phis are involved. */
4268 static bool
4269 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4271 gimple_stmt_iterator gsi;
4272 tree lab;
4274 /* We really ought not have totally lost everything following
4275 a landing pad label. Given that BB is empty, there had better
4276 be a successor. */
4277 gcc_assert (e_out != NULL);
4279 /* The destination block must not already have a landing pad
4280 for a different region. */
4281 lab = NULL;
4282 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4284 gimple stmt = gsi_stmt (gsi);
4285 int lp_nr;
4287 if (gimple_code (stmt) != GIMPLE_LABEL)
4288 break;
4289 lab = gimple_label_label (stmt);
4290 lp_nr = EH_LANDING_PAD_NR (lab);
4291 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4292 return false;
4295 /* Attempt to move the PHIs into the successor block. */
4296 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4298 if (dump_file && (dump_flags & TDF_DETAILS))
4299 fprintf (dump_file,
4300 "Unsplit EH landing pad %d to block %i "
4301 "(via cleanup_empty_eh).\n",
4302 lp->index, e_out->dest->index);
4303 return true;
4306 return false;
4309 /* Return true if edge E_FIRST is part of an empty infinite loop
4310 or leads to such a loop through a series of single successor
4311 empty bbs. */
4313 static bool
4314 infinite_empty_loop_p (edge e_first)
4316 bool inf_loop = false;
4317 edge e;
4319 if (e_first->dest == e_first->src)
4320 return true;
4322 e_first->src->aux = (void *) 1;
4323 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4325 gimple_stmt_iterator gsi;
4326 if (e->dest->aux)
4328 inf_loop = true;
4329 break;
4331 e->dest->aux = (void *) 1;
4332 gsi = gsi_after_labels (e->dest);
4333 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4334 gsi_next_nondebug (&gsi);
4335 if (!gsi_end_p (gsi))
4336 break;
4338 e_first->src->aux = NULL;
4339 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4340 e->dest->aux = NULL;
4342 return inf_loop;
4345 /* Examine the block associated with LP to determine if it's an empty
4346 handler for its EH region. If so, attempt to redirect EH edges to
4347 an outer region. Return true the CFG was updated in any way. This
4348 is similar to jump forwarding, just across EH edges. */
4350 static bool
4351 cleanup_empty_eh (eh_landing_pad lp)
4353 basic_block bb = label_to_block (lp->post_landing_pad);
4354 gimple_stmt_iterator gsi;
4355 gimple resx;
4356 eh_region new_region;
4357 edge_iterator ei;
4358 edge e, e_out;
4359 bool has_non_eh_pred;
4360 bool ret = false;
4361 int new_lp_nr;
4363 /* There can be zero or one edges out of BB. This is the quickest test. */
4364 switch (EDGE_COUNT (bb->succs))
4366 case 0:
4367 e_out = NULL;
4368 break;
4369 case 1:
4370 e_out = single_succ_edge (bb);
4371 break;
4372 default:
4373 return false;
4376 resx = last_stmt (bb);
4377 if (resx && is_gimple_resx (resx))
4379 if (stmt_can_throw_external (resx))
4380 optimize_clobbers (bb);
4381 else if (sink_clobbers (bb))
4382 ret = true;
4385 gsi = gsi_after_labels (bb);
4387 /* Make sure to skip debug statements. */
4388 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4389 gsi_next_nondebug (&gsi);
4391 /* If the block is totally empty, look for more unsplitting cases. */
4392 if (gsi_end_p (gsi))
4394 /* For the degenerate case of an infinite loop bail out.
4395 If bb has no successors and is totally empty, which can happen e.g.
4396 because of incorrect noreturn attribute, bail out too. */
4397 if (e_out == NULL
4398 || infinite_empty_loop_p (e_out))
4399 return ret;
4401 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4404 /* The block should consist only of a single RESX statement, modulo a
4405 preceding call to __builtin_stack_restore if there is no outgoing
4406 edge, since the call can be eliminated in this case. */
4407 resx = gsi_stmt (gsi);
4408 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4410 gsi_next (&gsi);
4411 resx = gsi_stmt (gsi);
4413 if (!is_gimple_resx (resx))
4414 return ret;
4415 gcc_assert (gsi_one_before_end_p (gsi));
4417 /* Determine if there are non-EH edges, or resx edges into the handler. */
4418 has_non_eh_pred = false;
4419 FOR_EACH_EDGE (e, ei, bb->preds)
4420 if (!(e->flags & EDGE_EH))
4421 has_non_eh_pred = true;
4423 /* Find the handler that's outer of the empty handler by looking at
4424 where the RESX instruction was vectored. */
4425 new_lp_nr = lookup_stmt_eh_lp (resx);
4426 new_region = get_eh_region_from_lp_number (new_lp_nr);
4428 /* If there's no destination region within the current function,
4429 redirection is trivial via removing the throwing statements from
4430 the EH region, removing the EH edges, and allowing the block
4431 to go unreachable. */
4432 if (new_region == NULL)
4434 gcc_assert (e_out == NULL);
4435 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4436 if (e->flags & EDGE_EH)
4438 gimple stmt = last_stmt (e->src);
4439 remove_stmt_from_eh_lp (stmt);
4440 remove_edge (e);
4442 else
4443 ei_next (&ei);
4444 goto succeed;
4447 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4448 to handle the abort and allow the blocks to go unreachable. */
4449 if (new_region->type == ERT_MUST_NOT_THROW)
4451 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4452 if (e->flags & EDGE_EH)
4454 gimple stmt = last_stmt (e->src);
4455 remove_stmt_from_eh_lp (stmt);
4456 add_stmt_to_eh_lp (stmt, new_lp_nr);
4457 remove_edge (e);
4459 else
4460 ei_next (&ei);
4461 goto succeed;
4464 /* Try to redirect the EH edges and merge the PHIs into the destination
4465 landing pad block. If the merge succeeds, we'll already have redirected
4466 all the EH edges. The handler itself will go unreachable if there were
4467 no normal edges. */
4468 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4469 goto succeed;
4471 /* Finally, if all input edges are EH edges, then we can (potentially)
4472 reduce the number of transfers from the runtime by moving the landing
4473 pad from the original region to the new region. This is a win when
4474 we remove the last CLEANUP region along a particular exception
4475 propagation path. Since nothing changes except for the region with
4476 which the landing pad is associated, the PHI nodes do not need to be
4477 adjusted at all. */
4478 if (!has_non_eh_pred)
4480 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4481 if (dump_file && (dump_flags & TDF_DETAILS))
4482 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4483 lp->index, new_region->index);
4485 /* ??? The CFG didn't change, but we may have rendered the
4486 old EH region unreachable. Trigger a cleanup there. */
4487 return true;
4490 return ret;
4492 succeed:
4493 if (dump_file && (dump_flags & TDF_DETAILS))
4494 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4495 remove_eh_landing_pad (lp);
4496 return true;
4499 /* Do a post-order traversal of the EH region tree. Examine each
4500 post_landing_pad block and see if we can eliminate it as empty. */
4502 static bool
4503 cleanup_all_empty_eh (void)
4505 bool changed = false;
4506 eh_landing_pad lp;
4507 int i;
4509 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4510 if (lp)
4511 changed |= cleanup_empty_eh (lp);
4513 return changed;
4516 /* Perform cleanups and lowering of exception handling
4517 1) cleanups regions with handlers doing nothing are optimized out
4518 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4519 3) Info about regions that are containing instructions, and regions
4520 reachable via local EH edges is collected
4521 4) Eh tree is pruned for regions no longer necessary.
4523 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4524 Unify those that have the same failure decl and locus.
4527 static unsigned int
4528 execute_cleanup_eh_1 (void)
4530 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4531 looking up unreachable landing pads. */
4532 remove_unreachable_handlers ();
4534 /* Watch out for the region tree vanishing due to all unreachable. */
4535 if (cfun->eh->region_tree)
4537 bool changed = false;
4539 if (optimize)
4540 changed |= unsplit_all_eh ();
4541 changed |= cleanup_all_empty_eh ();
4543 if (changed)
4545 free_dominance_info (CDI_DOMINATORS);
4546 free_dominance_info (CDI_POST_DOMINATORS);
4548 /* We delayed all basic block deletion, as we may have performed
4549 cleanups on EH edges while non-EH edges were still present. */
4550 delete_unreachable_blocks ();
4552 /* We manipulated the landing pads. Remove any region that no
4553 longer has a landing pad. */
4554 remove_unreachable_handlers_no_lp ();
4556 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4560 return 0;
4563 namespace {
4565 const pass_data pass_data_cleanup_eh =
4567 GIMPLE_PASS, /* type */
4568 "ehcleanup", /* name */
4569 OPTGROUP_NONE, /* optinfo_flags */
4570 true, /* has_execute */
4571 TV_TREE_EH, /* tv_id */
4572 PROP_gimple_lcf, /* properties_required */
4573 0, /* properties_provided */
4574 0, /* properties_destroyed */
4575 0, /* todo_flags_start */
4576 0, /* todo_flags_finish */
4579 class pass_cleanup_eh : public gimple_opt_pass
4581 public:
4582 pass_cleanup_eh (gcc::context *ctxt)
4583 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4586 /* opt_pass methods: */
4587 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4588 virtual bool gate (function *fun)
4590 return fun->eh != NULL && fun->eh->region_tree != NULL;
4593 virtual unsigned int execute (function *);
4595 }; // class pass_cleanup_eh
4597 unsigned int
4598 pass_cleanup_eh::execute (function *fun)
4600 int ret = execute_cleanup_eh_1 ();
4602 /* If the function no longer needs an EH personality routine
4603 clear it. This exposes cross-language inlining opportunities
4604 and avoids references to a never defined personality routine. */
4605 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4606 && function_needs_eh_personality (fun) != eh_personality_lang)
4607 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4609 return ret;
4612 } // anon namespace
4614 gimple_opt_pass *
4615 make_pass_cleanup_eh (gcc::context *ctxt)
4617 return new pass_cleanup_eh (ctxt);
4620 /* Verify that BB containing STMT as the last statement, has precisely the
4621 edge that make_eh_edges would create. */
4623 DEBUG_FUNCTION bool
4624 verify_eh_edges (gimple stmt)
4626 basic_block bb = gimple_bb (stmt);
4627 eh_landing_pad lp = NULL;
4628 int lp_nr;
4629 edge_iterator ei;
4630 edge e, eh_edge;
4632 lp_nr = lookup_stmt_eh_lp (stmt);
4633 if (lp_nr > 0)
4634 lp = get_eh_landing_pad_from_number (lp_nr);
4636 eh_edge = NULL;
4637 FOR_EACH_EDGE (e, ei, bb->succs)
4639 if (e->flags & EDGE_EH)
4641 if (eh_edge)
4643 error ("BB %i has multiple EH edges", bb->index);
4644 return true;
4646 else
4647 eh_edge = e;
4651 if (lp == NULL)
4653 if (eh_edge)
4655 error ("BB %i can not throw but has an EH edge", bb->index);
4656 return true;
4658 return false;
4661 if (!stmt_could_throw_p (stmt))
4663 error ("BB %i last statement has incorrectly set lp", bb->index);
4664 return true;
4667 if (eh_edge == NULL)
4669 error ("BB %i is missing an EH edge", bb->index);
4670 return true;
4673 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4675 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4676 return true;
4679 return false;
4682 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4684 DEBUG_FUNCTION bool
4685 verify_eh_dispatch_edge (gimple stmt)
4687 eh_region r;
4688 eh_catch c;
4689 basic_block src, dst;
4690 bool want_fallthru = true;
4691 edge_iterator ei;
4692 edge e, fall_edge;
4694 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4695 src = gimple_bb (stmt);
4697 FOR_EACH_EDGE (e, ei, src->succs)
4698 gcc_assert (e->aux == NULL);
4700 switch (r->type)
4702 case ERT_TRY:
4703 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4705 dst = label_to_block (c->label);
4706 e = find_edge (src, dst);
4707 if (e == NULL)
4709 error ("BB %i is missing an edge", src->index);
4710 return true;
4712 e->aux = (void *)e;
4714 /* A catch-all handler doesn't have a fallthru. */
4715 if (c->type_list == NULL)
4717 want_fallthru = false;
4718 break;
4721 break;
4723 case ERT_ALLOWED_EXCEPTIONS:
4724 dst = label_to_block (r->u.allowed.label);
4725 e = find_edge (src, dst);
4726 if (e == NULL)
4728 error ("BB %i is missing an edge", src->index);
4729 return true;
4731 e->aux = (void *)e;
4732 break;
4734 default:
4735 gcc_unreachable ();
4738 fall_edge = NULL;
4739 FOR_EACH_EDGE (e, ei, src->succs)
4741 if (e->flags & EDGE_FALLTHRU)
4743 if (fall_edge != NULL)
4745 error ("BB %i too many fallthru edges", src->index);
4746 return true;
4748 fall_edge = e;
4750 else if (e->aux)
4751 e->aux = NULL;
4752 else
4754 error ("BB %i has incorrect edge", src->index);
4755 return true;
4758 if ((fall_edge != NULL) ^ want_fallthru)
4760 error ("BB %i has incorrect fallthru edge", src->index);
4761 return true;
4764 return false;