Fix missing ChangeLog entry for Graphite head files fix.
[official-gcc.git] / gcc / tree-vrp.c
blobacbb70bbbfda43bb81ccf3a818b5469cafd671ea
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-low.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
62 /* Range of values that can be associated with an SSA_NAME after VRP
63 has executed. */
64 struct value_range
66 /* Lattice value represented by this range. */
67 enum value_range_type type;
69 /* Minimum and maximum values represented by this range. These
70 values should be interpreted as follows:
72 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
73 be NULL.
75 - If TYPE == VR_RANGE then MIN holds the minimum value and
76 MAX holds the maximum value of the range [MIN, MAX].
78 - If TYPE == ANTI_RANGE the variable is known to NOT
79 take any values in the range [MIN, MAX]. */
80 tree min;
81 tree max;
83 /* Set of SSA names whose value ranges are equivalent to this one.
84 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
85 bitmap equiv;
88 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
90 /* Set of SSA names found live during the RPO traversal of the function
91 for still active basic-blocks. */
92 static sbitmap *live;
94 /* Return true if the SSA name NAME is live on the edge E. */
96 static bool
97 live_on_edge (edge e, tree name)
99 return (live[e->dest->index]
100 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
103 /* Local functions. */
104 static int compare_values (tree val1, tree val2);
105 static int compare_values_warnv (tree val1, tree val2, bool *);
106 static void vrp_meet (value_range *, value_range *);
107 static void vrp_intersect_ranges (value_range *, value_range *);
108 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
109 tree, tree, bool, bool *,
110 bool *);
112 /* Location information for ASSERT_EXPRs. Each instance of this
113 structure describes an ASSERT_EXPR for an SSA name. Since a single
114 SSA name may have more than one assertion associated with it, these
115 locations are kept in a linked list attached to the corresponding
116 SSA name. */
117 struct assert_locus
119 /* Basic block where the assertion would be inserted. */
120 basic_block bb;
122 /* Some assertions need to be inserted on an edge (e.g., assertions
123 generated by COND_EXPRs). In those cases, BB will be NULL. */
124 edge e;
126 /* Pointer to the statement that generated this assertion. */
127 gimple_stmt_iterator si;
129 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
130 enum tree_code comp_code;
132 /* Value being compared against. */
133 tree val;
135 /* Expression to compare. */
136 tree expr;
138 /* Next node in the linked list. */
139 assert_locus *next;
142 /* If bit I is present, it means that SSA name N_i has a list of
143 assertions that should be inserted in the IL. */
144 static bitmap need_assert_for;
146 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
147 holds a list of ASSERT_LOCUS_T nodes that describe where
148 ASSERT_EXPRs for SSA name N_I should be inserted. */
149 static assert_locus **asserts_for;
151 /* Value range array. After propagation, VR_VALUE[I] holds the range
152 of values that SSA name N_I may take. */
153 static unsigned num_vr_values;
154 static value_range **vr_value;
155 static bool values_propagated;
157 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
158 number of executable edges we saw the last time we visited the
159 node. */
160 static int *vr_phi_edge_counts;
162 struct switch_update {
163 gswitch *stmt;
164 tree vec;
167 static vec<edge> to_remove_edges;
168 static vec<switch_update> to_update_switch_stmts;
171 /* Return the maximum value for TYPE. */
173 static inline tree
174 vrp_val_max (const_tree type)
176 if (!INTEGRAL_TYPE_P (type))
177 return NULL_TREE;
179 return TYPE_MAX_VALUE (type);
182 /* Return the minimum value for TYPE. */
184 static inline tree
185 vrp_val_min (const_tree type)
187 if (!INTEGRAL_TYPE_P (type))
188 return NULL_TREE;
190 return TYPE_MIN_VALUE (type);
193 /* Return whether VAL is equal to the maximum value of its type. This
194 will be true for a positive overflow infinity. We can't do a
195 simple equality comparison with TYPE_MAX_VALUE because C typedefs
196 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
197 to the integer constant with the same value in the type. */
199 static inline bool
200 vrp_val_is_max (const_tree val)
202 tree type_max = vrp_val_max (TREE_TYPE (val));
203 return (val == type_max
204 || (type_max != NULL_TREE
205 && operand_equal_p (val, type_max, 0)));
208 /* Return whether VAL is equal to the minimum value of its type. This
209 will be true for a negative overflow infinity. */
211 static inline bool
212 vrp_val_is_min (const_tree val)
214 tree type_min = vrp_val_min (TREE_TYPE (val));
215 return (val == type_min
216 || (type_min != NULL_TREE
217 && operand_equal_p (val, type_min, 0)));
221 /* Return whether TYPE should use an overflow infinity distinct from
222 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
223 represent a signed overflow during VRP computations. An infinity
224 is distinct from a half-range, which will go from some number to
225 TYPE_{MIN,MAX}_VALUE. */
227 static inline bool
228 needs_overflow_infinity (const_tree type)
230 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
233 /* Return whether TYPE can support our overflow infinity
234 representation: we use the TREE_OVERFLOW flag, which only exists
235 for constants. If TYPE doesn't support this, we don't optimize
236 cases which would require signed overflow--we drop them to
237 VARYING. */
239 static inline bool
240 supports_overflow_infinity (const_tree type)
242 tree min = vrp_val_min (type), max = vrp_val_max (type);
243 gcc_checking_assert (needs_overflow_infinity (type));
244 return (min != NULL_TREE
245 && CONSTANT_CLASS_P (min)
246 && max != NULL_TREE
247 && CONSTANT_CLASS_P (max));
250 /* VAL is the maximum or minimum value of a type. Return a
251 corresponding overflow infinity. */
253 static inline tree
254 make_overflow_infinity (tree val)
256 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
257 val = copy_node (val);
258 TREE_OVERFLOW (val) = 1;
259 return val;
262 /* Return a negative overflow infinity for TYPE. */
264 static inline tree
265 negative_overflow_infinity (tree type)
267 gcc_checking_assert (supports_overflow_infinity (type));
268 return make_overflow_infinity (vrp_val_min (type));
271 /* Return a positive overflow infinity for TYPE. */
273 static inline tree
274 positive_overflow_infinity (tree type)
276 gcc_checking_assert (supports_overflow_infinity (type));
277 return make_overflow_infinity (vrp_val_max (type));
280 /* Return whether VAL is a negative overflow infinity. */
282 static inline bool
283 is_negative_overflow_infinity (const_tree val)
285 return (TREE_OVERFLOW_P (val)
286 && needs_overflow_infinity (TREE_TYPE (val))
287 && vrp_val_is_min (val));
290 /* Return whether VAL is a positive overflow infinity. */
292 static inline bool
293 is_positive_overflow_infinity (const_tree val)
295 return (TREE_OVERFLOW_P (val)
296 && needs_overflow_infinity (TREE_TYPE (val))
297 && vrp_val_is_max (val));
300 /* Return whether VAL is a positive or negative overflow infinity. */
302 static inline bool
303 is_overflow_infinity (const_tree val)
305 return (TREE_OVERFLOW_P (val)
306 && needs_overflow_infinity (TREE_TYPE (val))
307 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
310 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
312 static inline bool
313 stmt_overflow_infinity (gimple *stmt)
315 if (is_gimple_assign (stmt)
316 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
317 GIMPLE_SINGLE_RHS)
318 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
319 return false;
322 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
323 the same value with TREE_OVERFLOW clear. This can be used to avoid
324 confusing a regular value with an overflow value. */
326 static inline tree
327 avoid_overflow_infinity (tree val)
329 if (!is_overflow_infinity (val))
330 return val;
332 if (vrp_val_is_max (val))
333 return vrp_val_max (TREE_TYPE (val));
334 else
336 gcc_checking_assert (vrp_val_is_min (val));
337 return vrp_val_min (TREE_TYPE (val));
342 /* Set value range VR to VR_UNDEFINED. */
344 static inline void
345 set_value_range_to_undefined (value_range *vr)
347 vr->type = VR_UNDEFINED;
348 vr->min = vr->max = NULL_TREE;
349 if (vr->equiv)
350 bitmap_clear (vr->equiv);
354 /* Set value range VR to VR_VARYING. */
356 static inline void
357 set_value_range_to_varying (value_range *vr)
359 vr->type = VR_VARYING;
360 vr->min = vr->max = NULL_TREE;
361 if (vr->equiv)
362 bitmap_clear (vr->equiv);
366 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
368 static void
369 set_value_range (value_range *vr, enum value_range_type t, tree min,
370 tree max, bitmap equiv)
372 /* Check the validity of the range. */
373 if (flag_checking
374 && (t == VR_RANGE || t == VR_ANTI_RANGE))
376 int cmp;
378 gcc_assert (min && max);
380 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
381 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
383 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
384 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
386 cmp = compare_values (min, max);
387 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
389 if (needs_overflow_infinity (TREE_TYPE (min)))
390 gcc_assert (!is_overflow_infinity (min)
391 || !is_overflow_infinity (max));
394 if (flag_checking
395 && (t == VR_UNDEFINED || t == VR_VARYING))
397 gcc_assert (min == NULL_TREE && max == NULL_TREE);
398 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
401 vr->type = t;
402 vr->min = min;
403 vr->max = max;
405 /* Since updating the equivalence set involves deep copying the
406 bitmaps, only do it if absolutely necessary. */
407 if (vr->equiv == NULL
408 && equiv != NULL)
409 vr->equiv = BITMAP_ALLOC (NULL);
411 if (equiv != vr->equiv)
413 if (equiv && !bitmap_empty_p (equiv))
414 bitmap_copy (vr->equiv, equiv);
415 else
416 bitmap_clear (vr->equiv);
421 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
422 This means adjusting T, MIN and MAX representing the case of a
423 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
424 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
425 In corner cases where MAX+1 or MIN-1 wraps this will fall back
426 to varying.
427 This routine exists to ease canonicalization in the case where we
428 extract ranges from var + CST op limit. */
430 static void
431 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
432 tree min, tree max, bitmap equiv)
434 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
435 if (t == VR_UNDEFINED)
437 set_value_range_to_undefined (vr);
438 return;
440 else if (t == VR_VARYING)
442 set_value_range_to_varying (vr);
443 return;
446 /* Nothing to canonicalize for symbolic ranges. */
447 if (TREE_CODE (min) != INTEGER_CST
448 || TREE_CODE (max) != INTEGER_CST)
450 set_value_range (vr, t, min, max, equiv);
451 return;
454 /* Wrong order for min and max, to swap them and the VR type we need
455 to adjust them. */
456 if (tree_int_cst_lt (max, min))
458 tree one, tmp;
460 /* For one bit precision if max < min, then the swapped
461 range covers all values, so for VR_RANGE it is varying and
462 for VR_ANTI_RANGE empty range, so drop to varying as well. */
463 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
465 set_value_range_to_varying (vr);
466 return;
469 one = build_int_cst (TREE_TYPE (min), 1);
470 tmp = int_const_binop (PLUS_EXPR, max, one);
471 max = int_const_binop (MINUS_EXPR, min, one);
472 min = tmp;
474 /* There's one corner case, if we had [C+1, C] before we now have
475 that again. But this represents an empty value range, so drop
476 to varying in this case. */
477 if (tree_int_cst_lt (max, min))
479 set_value_range_to_varying (vr);
480 return;
483 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
486 /* Anti-ranges that can be represented as ranges should be so. */
487 if (t == VR_ANTI_RANGE)
489 bool is_min = vrp_val_is_min (min);
490 bool is_max = vrp_val_is_max (max);
492 if (is_min && is_max)
494 /* We cannot deal with empty ranges, drop to varying.
495 ??? This could be VR_UNDEFINED instead. */
496 set_value_range_to_varying (vr);
497 return;
499 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
500 && (is_min || is_max))
502 /* Non-empty boolean ranges can always be represented
503 as a singleton range. */
504 if (is_min)
505 min = max = vrp_val_max (TREE_TYPE (min));
506 else
507 min = max = vrp_val_min (TREE_TYPE (min));
508 t = VR_RANGE;
510 else if (is_min
511 /* As a special exception preserve non-null ranges. */
512 && !(TYPE_UNSIGNED (TREE_TYPE (min))
513 && integer_zerop (max)))
515 tree one = build_int_cst (TREE_TYPE (max), 1);
516 min = int_const_binop (PLUS_EXPR, max, one);
517 max = vrp_val_max (TREE_TYPE (max));
518 t = VR_RANGE;
520 else if (is_max)
522 tree one = build_int_cst (TREE_TYPE (min), 1);
523 max = int_const_binop (MINUS_EXPR, min, one);
524 min = vrp_val_min (TREE_TYPE (min));
525 t = VR_RANGE;
529 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
530 if (needs_overflow_infinity (TREE_TYPE (min))
531 && is_overflow_infinity (min)
532 && is_overflow_infinity (max))
534 set_value_range_to_varying (vr);
535 return;
538 set_value_range (vr, t, min, max, equiv);
541 /* Copy value range FROM into value range TO. */
543 static inline void
544 copy_value_range (value_range *to, value_range *from)
546 set_value_range (to, from->type, from->min, from->max, from->equiv);
549 /* Set value range VR to a single value. This function is only called
550 with values we get from statements, and exists to clear the
551 TREE_OVERFLOW flag so that we don't think we have an overflow
552 infinity when we shouldn't. */
554 static inline void
555 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
557 gcc_assert (is_gimple_min_invariant (val));
558 if (TREE_OVERFLOW_P (val))
559 val = drop_tree_overflow (val);
560 set_value_range (vr, VR_RANGE, val, val, equiv);
563 /* Set value range VR to a non-negative range of type TYPE.
564 OVERFLOW_INFINITY indicates whether to use an overflow infinity
565 rather than TYPE_MAX_VALUE; this should be true if we determine
566 that the range is nonnegative based on the assumption that signed
567 overflow does not occur. */
569 static inline void
570 set_value_range_to_nonnegative (value_range *vr, tree type,
571 bool overflow_infinity)
573 tree zero;
575 if (overflow_infinity && !supports_overflow_infinity (type))
577 set_value_range_to_varying (vr);
578 return;
581 zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_RANGE, zero,
583 (overflow_infinity
584 ? positive_overflow_infinity (type)
585 : TYPE_MAX_VALUE (type)),
586 vr->equiv);
589 /* Set value range VR to a non-NULL range of type TYPE. */
591 static inline void
592 set_value_range_to_nonnull (value_range *vr, tree type)
594 tree zero = build_int_cst (type, 0);
595 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
599 /* Set value range VR to a NULL range of type TYPE. */
601 static inline void
602 set_value_range_to_null (value_range *vr, tree type)
604 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
608 /* Set value range VR to a range of a truthvalue of type TYPE. */
610 static inline void
611 set_value_range_to_truthvalue (value_range *vr, tree type)
613 if (TYPE_PRECISION (type) == 1)
614 set_value_range_to_varying (vr);
615 else
616 set_value_range (vr, VR_RANGE,
617 build_int_cst (type, 0), build_int_cst (type, 1),
618 vr->equiv);
622 /* If abs (min) < abs (max), set VR to [-max, max], if
623 abs (min) >= abs (max), set VR to [-min, min]. */
625 static void
626 abs_extent_range (value_range *vr, tree min, tree max)
628 int cmp;
630 gcc_assert (TREE_CODE (min) == INTEGER_CST);
631 gcc_assert (TREE_CODE (max) == INTEGER_CST);
632 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
633 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
634 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
635 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
636 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
638 set_value_range_to_varying (vr);
639 return;
641 cmp = compare_values (min, max);
642 if (cmp == -1)
643 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
644 else if (cmp == 0 || cmp == 1)
646 max = min;
647 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
649 else
651 set_value_range_to_varying (vr);
652 return;
654 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
658 /* Return value range information for VAR.
660 If we have no values ranges recorded (ie, VRP is not running), then
661 return NULL. Otherwise create an empty range if none existed for VAR. */
663 static value_range *
664 get_value_range (const_tree var)
666 static const value_range vr_const_varying
667 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
668 value_range *vr;
669 tree sym;
670 unsigned ver = SSA_NAME_VERSION (var);
672 /* If we have no recorded ranges, then return NULL. */
673 if (! vr_value)
674 return NULL;
676 /* If we query the range for a new SSA name return an unmodifiable VARYING.
677 We should get here at most from the substitute-and-fold stage which
678 will never try to change values. */
679 if (ver >= num_vr_values)
680 return CONST_CAST (value_range *, &vr_const_varying);
682 vr = vr_value[ver];
683 if (vr)
684 return vr;
686 /* After propagation finished do not allocate new value-ranges. */
687 if (values_propagated)
688 return CONST_CAST (value_range *, &vr_const_varying);
690 /* Create a default value range. */
691 vr_value[ver] = vr = XCNEW (value_range);
693 /* Defer allocating the equivalence set. */
694 vr->equiv = NULL;
696 /* If VAR is a default definition of a parameter, the variable can
697 take any value in VAR's type. */
698 if (SSA_NAME_IS_DEFAULT_DEF (var))
700 sym = SSA_NAME_VAR (var);
701 if (TREE_CODE (sym) == PARM_DECL)
703 /* Try to use the "nonnull" attribute to create ~[0, 0]
704 anti-ranges for pointers. Note that this is only valid with
705 default definitions of PARM_DECLs. */
706 if (POINTER_TYPE_P (TREE_TYPE (sym))
707 && nonnull_arg_p (sym))
708 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
709 else
710 set_value_range_to_varying (vr);
712 else if (TREE_CODE (sym) == RESULT_DECL
713 && DECL_BY_REFERENCE (sym))
714 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
717 return vr;
720 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
722 static inline bool
723 vrp_operand_equal_p (const_tree val1, const_tree val2)
725 if (val1 == val2)
726 return true;
727 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
728 return false;
729 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
732 /* Return true, if the bitmaps B1 and B2 are equal. */
734 static inline bool
735 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
737 return (b1 == b2
738 || ((!b1 || bitmap_empty_p (b1))
739 && (!b2 || bitmap_empty_p (b2)))
740 || (b1 && b2
741 && bitmap_equal_p (b1, b2)));
744 /* Update the value range and equivalence set for variable VAR to
745 NEW_VR. Return true if NEW_VR is different from VAR's previous
746 value.
748 NOTE: This function assumes that NEW_VR is a temporary value range
749 object created for the sole purpose of updating VAR's range. The
750 storage used by the equivalence set from NEW_VR will be freed by
751 this function. Do not call update_value_range when NEW_VR
752 is the range object associated with another SSA name. */
754 static inline bool
755 update_value_range (const_tree var, value_range *new_vr)
757 value_range *old_vr;
758 bool is_new;
760 /* If there is a value-range on the SSA name from earlier analysis
761 factor that in. */
762 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
764 wide_int min, max;
765 value_range_type rtype = get_range_info (var, &min, &max);
766 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
768 value_range nr;
769 nr.type = rtype;
770 nr.min = wide_int_to_tree (TREE_TYPE (var), min);
771 nr.max = wide_int_to_tree (TREE_TYPE (var), max);
772 nr.equiv = NULL;
773 vrp_intersect_ranges (new_vr, &nr);
777 /* Update the value range, if necessary. */
778 old_vr = get_value_range (var);
779 is_new = old_vr->type != new_vr->type
780 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
781 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
782 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
784 if (is_new)
786 /* Do not allow transitions up the lattice. The following
787 is slightly more awkward than just new_vr->type < old_vr->type
788 because VR_RANGE and VR_ANTI_RANGE need to be considered
789 the same. We may not have is_new when transitioning to
790 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
791 called. */
792 if (new_vr->type == VR_UNDEFINED)
794 BITMAP_FREE (new_vr->equiv);
795 set_value_range_to_varying (old_vr);
796 set_value_range_to_varying (new_vr);
797 return true;
799 else
800 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
801 new_vr->equiv);
804 BITMAP_FREE (new_vr->equiv);
806 return is_new;
810 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
811 point where equivalence processing can be turned on/off. */
813 static void
814 add_equivalence (bitmap *equiv, const_tree var)
816 unsigned ver = SSA_NAME_VERSION (var);
817 value_range *vr = vr_value[ver];
819 if (*equiv == NULL)
820 *equiv = BITMAP_ALLOC (NULL);
821 bitmap_set_bit (*equiv, ver);
822 if (vr && vr->equiv)
823 bitmap_ior_into (*equiv, vr->equiv);
827 /* Return true if VR is ~[0, 0]. */
829 static inline bool
830 range_is_nonnull (value_range *vr)
832 return vr->type == VR_ANTI_RANGE
833 && integer_zerop (vr->min)
834 && integer_zerop (vr->max);
838 /* Return true if VR is [0, 0]. */
840 static inline bool
841 range_is_null (value_range *vr)
843 return vr->type == VR_RANGE
844 && integer_zerop (vr->min)
845 && integer_zerop (vr->max);
848 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
849 a singleton. */
851 static inline bool
852 range_int_cst_p (value_range *vr)
854 return (vr->type == VR_RANGE
855 && TREE_CODE (vr->max) == INTEGER_CST
856 && TREE_CODE (vr->min) == INTEGER_CST);
859 /* Return true if VR is a INTEGER_CST singleton. */
861 static inline bool
862 range_int_cst_singleton_p (value_range *vr)
864 return (range_int_cst_p (vr)
865 && !is_overflow_infinity (vr->min)
866 && !is_overflow_infinity (vr->max)
867 && tree_int_cst_equal (vr->min, vr->max));
870 /* Return true if value range VR involves at least one symbol. */
872 static inline bool
873 symbolic_range_p (value_range *vr)
875 return (!is_gimple_min_invariant (vr->min)
876 || !is_gimple_min_invariant (vr->max));
879 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
880 otherwise. We only handle additive operations and set NEG to true if the
881 symbol is negated and INV to the invariant part, if any. */
883 static tree
884 get_single_symbol (tree t, bool *neg, tree *inv)
886 bool neg_;
887 tree inv_;
889 if (TREE_CODE (t) == PLUS_EXPR
890 || TREE_CODE (t) == POINTER_PLUS_EXPR
891 || TREE_CODE (t) == MINUS_EXPR)
893 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
895 neg_ = (TREE_CODE (t) == MINUS_EXPR);
896 inv_ = TREE_OPERAND (t, 0);
897 t = TREE_OPERAND (t, 1);
899 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
901 neg_ = false;
902 inv_ = TREE_OPERAND (t, 1);
903 t = TREE_OPERAND (t, 0);
905 else
906 return NULL_TREE;
908 else
910 neg_ = false;
911 inv_ = NULL_TREE;
914 if (TREE_CODE (t) == NEGATE_EXPR)
916 t = TREE_OPERAND (t, 0);
917 neg_ = !neg_;
920 if (TREE_CODE (t) != SSA_NAME)
921 return NULL_TREE;
923 *neg = neg_;
924 *inv = inv_;
925 return t;
928 /* The reverse operation: build a symbolic expression with TYPE
929 from symbol SYM, negated according to NEG, and invariant INV. */
931 static tree
932 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
934 const bool pointer_p = POINTER_TYPE_P (type);
935 tree t = sym;
937 if (neg)
938 t = build1 (NEGATE_EXPR, type, t);
940 if (integer_zerop (inv))
941 return t;
943 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
946 /* Return true if value range VR involves exactly one symbol SYM. */
948 static bool
949 symbolic_range_based_on_p (value_range *vr, const_tree sym)
951 bool neg, min_has_symbol, max_has_symbol;
952 tree inv;
954 if (is_gimple_min_invariant (vr->min))
955 min_has_symbol = false;
956 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
957 min_has_symbol = true;
958 else
959 return false;
961 if (is_gimple_min_invariant (vr->max))
962 max_has_symbol = false;
963 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
964 max_has_symbol = true;
965 else
966 return false;
968 return (min_has_symbol || max_has_symbol);
971 /* Return true if value range VR uses an overflow infinity. */
973 static inline bool
974 overflow_infinity_range_p (value_range *vr)
976 return (vr->type == VR_RANGE
977 && (is_overflow_infinity (vr->min)
978 || is_overflow_infinity (vr->max)));
981 /* Return false if we can not make a valid comparison based on VR;
982 this will be the case if it uses an overflow infinity and overflow
983 is not undefined (i.e., -fno-strict-overflow is in effect).
984 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
985 uses an overflow infinity. */
987 static bool
988 usable_range_p (value_range *vr, bool *strict_overflow_p)
990 gcc_assert (vr->type == VR_RANGE);
991 if (is_overflow_infinity (vr->min))
993 *strict_overflow_p = true;
994 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
995 return false;
997 if (is_overflow_infinity (vr->max))
999 *strict_overflow_p = true;
1000 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1001 return false;
1003 return true;
1006 /* Return true if the result of assignment STMT is know to be non-zero.
1007 If the return value is based on the assumption that signed overflow is
1008 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1009 *STRICT_OVERFLOW_P.*/
1011 static bool
1012 gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1014 enum tree_code code = gimple_assign_rhs_code (stmt);
1015 switch (get_gimple_rhs_class (code))
1017 case GIMPLE_UNARY_RHS:
1018 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1019 gimple_expr_type (stmt),
1020 gimple_assign_rhs1 (stmt),
1021 strict_overflow_p);
1022 case GIMPLE_BINARY_RHS:
1023 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1024 gimple_expr_type (stmt),
1025 gimple_assign_rhs1 (stmt),
1026 gimple_assign_rhs2 (stmt),
1027 strict_overflow_p);
1028 case GIMPLE_TERNARY_RHS:
1029 return false;
1030 case GIMPLE_SINGLE_RHS:
1031 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1032 strict_overflow_p);
1033 case GIMPLE_INVALID_RHS:
1034 gcc_unreachable ();
1035 default:
1036 gcc_unreachable ();
1040 /* Return true if STMT is known to compute a non-zero value.
1041 If the return value is based on the assumption that signed overflow is
1042 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1043 *STRICT_OVERFLOW_P.*/
1045 static bool
1046 gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1048 switch (gimple_code (stmt))
1050 case GIMPLE_ASSIGN:
1051 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1052 case GIMPLE_CALL:
1054 tree fndecl = gimple_call_fndecl (stmt);
1055 if (!fndecl) return false;
1056 if (flag_delete_null_pointer_checks && !flag_check_new
1057 && DECL_IS_OPERATOR_NEW (fndecl)
1058 && !TREE_NOTHROW (fndecl))
1059 return true;
1060 /* References are always non-NULL. */
1061 if (flag_delete_null_pointer_checks
1062 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1063 return true;
1064 if (flag_delete_null_pointer_checks &&
1065 lookup_attribute ("returns_nonnull",
1066 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1067 return true;
1068 return gimple_alloca_call_p (stmt);
1070 default:
1071 gcc_unreachable ();
1075 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1076 obtained so far. */
1078 static bool
1079 vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
1081 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1082 return true;
1084 /* If we have an expression of the form &X->a, then the expression
1085 is nonnull if X is nonnull. */
1086 if (is_gimple_assign (stmt)
1087 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1089 tree expr = gimple_assign_rhs1 (stmt);
1090 tree base = get_base_address (TREE_OPERAND (expr, 0));
1092 if (base != NULL_TREE
1093 && TREE_CODE (base) == MEM_REF
1094 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1096 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
1097 if (range_is_nonnull (vr))
1098 return true;
1102 return false;
1105 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1106 a gimple invariant, or SSA_NAME +- CST. */
1108 static bool
1109 valid_value_p (tree expr)
1111 if (TREE_CODE (expr) == SSA_NAME)
1112 return true;
1114 if (TREE_CODE (expr) == PLUS_EXPR
1115 || TREE_CODE (expr) == MINUS_EXPR)
1116 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1117 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1119 return is_gimple_min_invariant (expr);
1122 /* Return
1123 1 if VAL < VAL2
1124 0 if !(VAL < VAL2)
1125 -2 if those are incomparable. */
1126 static inline int
1127 operand_less_p (tree val, tree val2)
1129 /* LT is folded faster than GE and others. Inline the common case. */
1130 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1131 return tree_int_cst_lt (val, val2);
1132 else
1134 tree tcmp;
1136 fold_defer_overflow_warnings ();
1138 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1140 fold_undefer_and_ignore_overflow_warnings ();
1142 if (!tcmp
1143 || TREE_CODE (tcmp) != INTEGER_CST)
1144 return -2;
1146 if (!integer_zerop (tcmp))
1147 return 1;
1150 /* val >= val2, not considering overflow infinity. */
1151 if (is_negative_overflow_infinity (val))
1152 return is_negative_overflow_infinity (val2) ? 0 : 1;
1153 else if (is_positive_overflow_infinity (val2))
1154 return is_positive_overflow_infinity (val) ? 0 : 1;
1156 return 0;
1159 /* Compare two values VAL1 and VAL2. Return
1161 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1162 -1 if VAL1 < VAL2,
1163 0 if VAL1 == VAL2,
1164 +1 if VAL1 > VAL2, and
1165 +2 if VAL1 != VAL2
1167 This is similar to tree_int_cst_compare but supports pointer values
1168 and values that cannot be compared at compile time.
1170 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1171 true if the return value is only valid if we assume that signed
1172 overflow is undefined. */
1174 static int
1175 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1177 if (val1 == val2)
1178 return 0;
1180 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1181 both integers. */
1182 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1183 == POINTER_TYPE_P (TREE_TYPE (val2)));
1185 /* Convert the two values into the same type. This is needed because
1186 sizetype causes sign extension even for unsigned types. */
1187 val2 = fold_convert (TREE_TYPE (val1), val2);
1188 STRIP_USELESS_TYPE_CONVERSION (val2);
1190 if ((TREE_CODE (val1) == SSA_NAME
1191 || (TREE_CODE (val1) == NEGATE_EXPR
1192 && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
1193 || TREE_CODE (val1) == PLUS_EXPR
1194 || TREE_CODE (val1) == MINUS_EXPR)
1195 && (TREE_CODE (val2) == SSA_NAME
1196 || (TREE_CODE (val2) == NEGATE_EXPR
1197 && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
1198 || TREE_CODE (val2) == PLUS_EXPR
1199 || TREE_CODE (val2) == MINUS_EXPR))
1201 tree n1, c1, n2, c2;
1202 enum tree_code code1, code2;
1204 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1205 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1206 same name, return -2. */
1207 if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
1209 code1 = SSA_NAME;
1210 n1 = val1;
1211 c1 = NULL_TREE;
1213 else
1215 code1 = TREE_CODE (val1);
1216 n1 = TREE_OPERAND (val1, 0);
1217 c1 = TREE_OPERAND (val1, 1);
1218 if (tree_int_cst_sgn (c1) == -1)
1220 if (is_negative_overflow_infinity (c1))
1221 return -2;
1222 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1223 if (!c1)
1224 return -2;
1225 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1229 if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
1231 code2 = SSA_NAME;
1232 n2 = val2;
1233 c2 = NULL_TREE;
1235 else
1237 code2 = TREE_CODE (val2);
1238 n2 = TREE_OPERAND (val2, 0);
1239 c2 = TREE_OPERAND (val2, 1);
1240 if (tree_int_cst_sgn (c2) == -1)
1242 if (is_negative_overflow_infinity (c2))
1243 return -2;
1244 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1245 if (!c2)
1246 return -2;
1247 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1251 /* Both values must use the same name. */
1252 if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
1254 n1 = TREE_OPERAND (n1, 0);
1255 n2 = TREE_OPERAND (n2, 0);
1257 if (n1 != n2)
1258 return -2;
1260 if (code1 == SSA_NAME && code2 == SSA_NAME)
1261 /* NAME == NAME */
1262 return 0;
1264 /* If overflow is defined we cannot simplify more. */
1265 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1266 return -2;
1268 if (strict_overflow_p != NULL
1269 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1270 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1271 *strict_overflow_p = true;
1273 if (code1 == SSA_NAME)
1275 if (code2 == PLUS_EXPR)
1276 /* NAME < NAME + CST */
1277 return -1;
1278 else if (code2 == MINUS_EXPR)
1279 /* NAME > NAME - CST */
1280 return 1;
1282 else if (code1 == PLUS_EXPR)
1284 if (code2 == SSA_NAME)
1285 /* NAME + CST > NAME */
1286 return 1;
1287 else if (code2 == PLUS_EXPR)
1288 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1289 return compare_values_warnv (c1, c2, strict_overflow_p);
1290 else if (code2 == MINUS_EXPR)
1291 /* NAME + CST1 > NAME - CST2 */
1292 return 1;
1294 else if (code1 == MINUS_EXPR)
1296 if (code2 == SSA_NAME)
1297 /* NAME - CST < NAME */
1298 return -1;
1299 else if (code2 == PLUS_EXPR)
1300 /* NAME - CST1 < NAME + CST2 */
1301 return -1;
1302 else if (code2 == MINUS_EXPR)
1303 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1304 C1 and C2 are swapped in the call to compare_values. */
1305 return compare_values_warnv (c2, c1, strict_overflow_p);
1308 gcc_unreachable ();
1311 /* We cannot compare non-constants. */
1312 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1313 return -2;
1315 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1317 /* We cannot compare overflowed values, except for overflow
1318 infinities. */
1319 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1321 if (strict_overflow_p != NULL)
1322 *strict_overflow_p = true;
1323 if (is_negative_overflow_infinity (val1))
1324 return is_negative_overflow_infinity (val2) ? 0 : -1;
1325 else if (is_negative_overflow_infinity (val2))
1326 return 1;
1327 else if (is_positive_overflow_infinity (val1))
1328 return is_positive_overflow_infinity (val2) ? 0 : 1;
1329 else if (is_positive_overflow_infinity (val2))
1330 return -1;
1331 return -2;
1334 return tree_int_cst_compare (val1, val2);
1336 else
1338 tree t;
1340 /* First see if VAL1 and VAL2 are not the same. */
1341 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1342 return 0;
1344 /* If VAL1 is a lower address than VAL2, return -1. */
1345 if (operand_less_p (val1, val2) == 1)
1346 return -1;
1348 /* If VAL1 is a higher address than VAL2, return +1. */
1349 if (operand_less_p (val2, val1) == 1)
1350 return 1;
1352 /* If VAL1 is different than VAL2, return +2.
1353 For integer constants we either have already returned -1 or 1
1354 or they are equivalent. We still might succeed in proving
1355 something about non-trivial operands. */
1356 if (TREE_CODE (val1) != INTEGER_CST
1357 || TREE_CODE (val2) != INTEGER_CST)
1359 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1360 if (t && integer_onep (t))
1361 return 2;
1364 return -2;
1368 /* Compare values like compare_values_warnv, but treat comparisons of
1369 nonconstants which rely on undefined overflow as incomparable. */
1371 static int
1372 compare_values (tree val1, tree val2)
1374 bool sop;
1375 int ret;
1377 sop = false;
1378 ret = compare_values_warnv (val1, val2, &sop);
1379 if (sop
1380 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1381 ret = -2;
1382 return ret;
1386 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1387 0 if VAL is not inside [MIN, MAX],
1388 -2 if we cannot tell either way.
1390 Benchmark compile/20001226-1.c compilation time after changing this
1391 function. */
1393 static inline int
1394 value_inside_range (tree val, tree min, tree max)
1396 int cmp1, cmp2;
1398 cmp1 = operand_less_p (val, min);
1399 if (cmp1 == -2)
1400 return -2;
1401 if (cmp1 == 1)
1402 return 0;
1404 cmp2 = operand_less_p (max, val);
1405 if (cmp2 == -2)
1406 return -2;
1408 return !cmp2;
1412 /* Return true if value ranges VR0 and VR1 have a non-empty
1413 intersection.
1415 Benchmark compile/20001226-1.c compilation time after changing this
1416 function.
1419 static inline bool
1420 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1422 /* The value ranges do not intersect if the maximum of the first range is
1423 less than the minimum of the second range or vice versa.
1424 When those relations are unknown, we can't do any better. */
1425 if (operand_less_p (vr0->max, vr1->min) != 0)
1426 return false;
1427 if (operand_less_p (vr1->max, vr0->min) != 0)
1428 return false;
1429 return true;
1433 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1434 include the value zero, -2 if we cannot tell. */
1436 static inline int
1437 range_includes_zero_p (tree min, tree max)
1439 tree zero = build_int_cst (TREE_TYPE (min), 0);
1440 return value_inside_range (zero, min, max);
1443 /* Return true if *VR is know to only contain nonnegative values. */
1445 static inline bool
1446 value_range_nonnegative_p (value_range *vr)
1448 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1449 which would return a useful value should be encoded as a
1450 VR_RANGE. */
1451 if (vr->type == VR_RANGE)
1453 int result = compare_values (vr->min, integer_zero_node);
1454 return (result == 0 || result == 1);
1457 return false;
1460 /* If *VR has a value rante that is a single constant value return that,
1461 otherwise return NULL_TREE. */
1463 static tree
1464 value_range_constant_singleton (value_range *vr)
1466 if (vr->type == VR_RANGE
1467 && operand_equal_p (vr->min, vr->max, 0)
1468 && is_gimple_min_invariant (vr->min))
1469 return vr->min;
1471 return NULL_TREE;
1474 /* If OP has a value range with a single constant value return that,
1475 otherwise return NULL_TREE. This returns OP itself if OP is a
1476 constant. */
1478 static tree
1479 op_with_constant_singleton_value_range (tree op)
1481 if (is_gimple_min_invariant (op))
1482 return op;
1484 if (TREE_CODE (op) != SSA_NAME)
1485 return NULL_TREE;
1487 return value_range_constant_singleton (get_value_range (op));
1490 /* Return true if op is in a boolean [0, 1] value-range. */
1492 static bool
1493 op_with_boolean_value_range_p (tree op)
1495 value_range *vr;
1497 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1498 return true;
1500 if (integer_zerop (op)
1501 || integer_onep (op))
1502 return true;
1504 if (TREE_CODE (op) != SSA_NAME)
1505 return false;
1507 vr = get_value_range (op);
1508 return (vr->type == VR_RANGE
1509 && integer_zerop (vr->min)
1510 && integer_onep (vr->max));
1513 /* Extract value range information from an ASSERT_EXPR EXPR and store
1514 it in *VR_P. */
1516 static void
1517 extract_range_from_assert (value_range *vr_p, tree expr)
1519 tree var, cond, limit, min, max, type;
1520 value_range *limit_vr;
1521 enum tree_code cond_code;
1523 var = ASSERT_EXPR_VAR (expr);
1524 cond = ASSERT_EXPR_COND (expr);
1526 gcc_assert (COMPARISON_CLASS_P (cond));
1528 /* Find VAR in the ASSERT_EXPR conditional. */
1529 if (var == TREE_OPERAND (cond, 0)
1530 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1531 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1533 /* If the predicate is of the form VAR COMP LIMIT, then we just
1534 take LIMIT from the RHS and use the same comparison code. */
1535 cond_code = TREE_CODE (cond);
1536 limit = TREE_OPERAND (cond, 1);
1537 cond = TREE_OPERAND (cond, 0);
1539 else
1541 /* If the predicate is of the form LIMIT COMP VAR, then we need
1542 to flip around the comparison code to create the proper range
1543 for VAR. */
1544 cond_code = swap_tree_comparison (TREE_CODE (cond));
1545 limit = TREE_OPERAND (cond, 0);
1546 cond = TREE_OPERAND (cond, 1);
1549 limit = avoid_overflow_infinity (limit);
1551 type = TREE_TYPE (var);
1552 gcc_assert (limit != var);
1554 /* For pointer arithmetic, we only keep track of pointer equality
1555 and inequality. */
1556 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1558 set_value_range_to_varying (vr_p);
1559 return;
1562 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1563 try to use LIMIT's range to avoid creating symbolic ranges
1564 unnecessarily. */
1565 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1567 /* LIMIT's range is only interesting if it has any useful information. */
1568 if (limit_vr
1569 && (limit_vr->type == VR_UNDEFINED
1570 || limit_vr->type == VR_VARYING
1571 || symbolic_range_p (limit_vr)))
1572 limit_vr = NULL;
1574 /* Initially, the new range has the same set of equivalences of
1575 VAR's range. This will be revised before returning the final
1576 value. Since assertions may be chained via mutually exclusive
1577 predicates, we will need to trim the set of equivalences before
1578 we are done. */
1579 gcc_assert (vr_p->equiv == NULL);
1580 add_equivalence (&vr_p->equiv, var);
1582 /* Extract a new range based on the asserted comparison for VAR and
1583 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1584 will only use it for equality comparisons (EQ_EXPR). For any
1585 other kind of assertion, we cannot derive a range from LIMIT's
1586 anti-range that can be used to describe the new range. For
1587 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1588 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1589 no single range for x_2 that could describe LE_EXPR, so we might
1590 as well build the range [b_4, +INF] for it.
1591 One special case we handle is extracting a range from a
1592 range test encoded as (unsigned)var + CST <= limit. */
1593 if (TREE_CODE (cond) == NOP_EXPR
1594 || TREE_CODE (cond) == PLUS_EXPR)
1596 if (TREE_CODE (cond) == PLUS_EXPR)
1598 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1599 TREE_OPERAND (cond, 1));
1600 max = int_const_binop (PLUS_EXPR, limit, min);
1601 cond = TREE_OPERAND (cond, 0);
1603 else
1605 min = build_int_cst (TREE_TYPE (var), 0);
1606 max = limit;
1609 /* Make sure to not set TREE_OVERFLOW on the final type
1610 conversion. We are willingly interpreting large positive
1611 unsigned values as negative signed values here. */
1612 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1613 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1615 /* We can transform a max, min range to an anti-range or
1616 vice-versa. Use set_and_canonicalize_value_range which does
1617 this for us. */
1618 if (cond_code == LE_EXPR)
1619 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1620 min, max, vr_p->equiv);
1621 else if (cond_code == GT_EXPR)
1622 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1623 min, max, vr_p->equiv);
1624 else
1625 gcc_unreachable ();
1627 else if (cond_code == EQ_EXPR)
1629 enum value_range_type range_type;
1631 if (limit_vr)
1633 range_type = limit_vr->type;
1634 min = limit_vr->min;
1635 max = limit_vr->max;
1637 else
1639 range_type = VR_RANGE;
1640 min = limit;
1641 max = limit;
1644 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1646 /* When asserting the equality VAR == LIMIT and LIMIT is another
1647 SSA name, the new range will also inherit the equivalence set
1648 from LIMIT. */
1649 if (TREE_CODE (limit) == SSA_NAME)
1650 add_equivalence (&vr_p->equiv, limit);
1652 else if (cond_code == NE_EXPR)
1654 /* As described above, when LIMIT's range is an anti-range and
1655 this assertion is an inequality (NE_EXPR), then we cannot
1656 derive anything from the anti-range. For instance, if
1657 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1658 not imply that VAR's range is [0, 0]. So, in the case of
1659 anti-ranges, we just assert the inequality using LIMIT and
1660 not its anti-range.
1662 If LIMIT_VR is a range, we can only use it to build a new
1663 anti-range if LIMIT_VR is a single-valued range. For
1664 instance, if LIMIT_VR is [0, 1], the predicate
1665 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1666 Rather, it means that for value 0 VAR should be ~[0, 0]
1667 and for value 1, VAR should be ~[1, 1]. We cannot
1668 represent these ranges.
1670 The only situation in which we can build a valid
1671 anti-range is when LIMIT_VR is a single-valued range
1672 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1673 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1674 if (limit_vr
1675 && limit_vr->type == VR_RANGE
1676 && compare_values (limit_vr->min, limit_vr->max) == 0)
1678 min = limit_vr->min;
1679 max = limit_vr->max;
1681 else
1683 /* In any other case, we cannot use LIMIT's range to build a
1684 valid anti-range. */
1685 min = max = limit;
1688 /* If MIN and MAX cover the whole range for their type, then
1689 just use the original LIMIT. */
1690 if (INTEGRAL_TYPE_P (type)
1691 && vrp_val_is_min (min)
1692 && vrp_val_is_max (max))
1693 min = max = limit;
1695 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1696 min, max, vr_p->equiv);
1698 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1700 min = TYPE_MIN_VALUE (type);
1702 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1703 max = limit;
1704 else
1706 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1707 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1708 LT_EXPR. */
1709 max = limit_vr->max;
1712 /* If the maximum value forces us to be out of bounds, simply punt.
1713 It would be pointless to try and do anything more since this
1714 all should be optimized away above us. */
1715 if ((cond_code == LT_EXPR
1716 && compare_values (max, min) == 0)
1717 || is_overflow_infinity (max))
1718 set_value_range_to_varying (vr_p);
1719 else
1721 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1722 if (cond_code == LT_EXPR)
1724 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1725 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1726 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1727 build_int_cst (TREE_TYPE (max), -1));
1728 else
1729 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1730 build_int_cst (TREE_TYPE (max), 1));
1731 if (EXPR_P (max))
1732 TREE_NO_WARNING (max) = 1;
1735 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1738 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1740 max = TYPE_MAX_VALUE (type);
1742 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1743 min = limit;
1744 else
1746 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1747 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1748 GT_EXPR. */
1749 min = limit_vr->min;
1752 /* If the minimum value forces us to be out of bounds, simply punt.
1753 It would be pointless to try and do anything more since this
1754 all should be optimized away above us. */
1755 if ((cond_code == GT_EXPR
1756 && compare_values (min, max) == 0)
1757 || is_overflow_infinity (min))
1758 set_value_range_to_varying (vr_p);
1759 else
1761 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1762 if (cond_code == GT_EXPR)
1764 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1765 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1766 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1767 build_int_cst (TREE_TYPE (min), -1));
1768 else
1769 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1770 build_int_cst (TREE_TYPE (min), 1));
1771 if (EXPR_P (min))
1772 TREE_NO_WARNING (min) = 1;
1775 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1778 else
1779 gcc_unreachable ();
1781 /* Finally intersect the new range with what we already know about var. */
1782 vrp_intersect_ranges (vr_p, get_value_range (var));
1786 /* Extract range information from SSA name VAR and store it in VR. If
1787 VAR has an interesting range, use it. Otherwise, create the
1788 range [VAR, VAR] and return it. This is useful in situations where
1789 we may have conditionals testing values of VARYING names. For
1790 instance,
1792 x_3 = y_5;
1793 if (x_3 > y_5)
1796 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1797 always false. */
1799 static void
1800 extract_range_from_ssa_name (value_range *vr, tree var)
1802 value_range *var_vr = get_value_range (var);
1804 if (var_vr->type != VR_VARYING)
1805 copy_value_range (vr, var_vr);
1806 else
1807 set_value_range (vr, VR_RANGE, var, var, NULL);
1809 add_equivalence (&vr->equiv, var);
1813 /* Wrapper around int_const_binop. If the operation overflows and we
1814 are not using wrapping arithmetic, then adjust the result to be
1815 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1816 NULL_TREE if we need to use an overflow infinity representation but
1817 the type does not support it. */
1819 static tree
1820 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1822 tree res;
1824 res = int_const_binop (code, val1, val2);
1826 /* If we are using unsigned arithmetic, operate symbolically
1827 on -INF and +INF as int_const_binop only handles signed overflow. */
1828 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1830 int checkz = compare_values (res, val1);
1831 bool overflow = false;
1833 /* Ensure that res = val1 [+*] val2 >= val1
1834 or that res = val1 - val2 <= val1. */
1835 if ((code == PLUS_EXPR
1836 && !(checkz == 1 || checkz == 0))
1837 || (code == MINUS_EXPR
1838 && !(checkz == 0 || checkz == -1)))
1840 overflow = true;
1842 /* Checking for multiplication overflow is done by dividing the
1843 output of the multiplication by the first input of the
1844 multiplication. If the result of that division operation is
1845 not equal to the second input of the multiplication, then the
1846 multiplication overflowed. */
1847 else if (code == MULT_EXPR && !integer_zerop (val1))
1849 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1850 res,
1851 val1);
1852 int check = compare_values (tmp, val2);
1854 if (check != 0)
1855 overflow = true;
1858 if (overflow)
1860 res = copy_node (res);
1861 TREE_OVERFLOW (res) = 1;
1865 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1866 /* If the singed operation wraps then int_const_binop has done
1867 everything we want. */
1869 /* Signed division of -1/0 overflows and by the time it gets here
1870 returns NULL_TREE. */
1871 else if (!res)
1872 return NULL_TREE;
1873 else if ((TREE_OVERFLOW (res)
1874 && !TREE_OVERFLOW (val1)
1875 && !TREE_OVERFLOW (val2))
1876 || is_overflow_infinity (val1)
1877 || is_overflow_infinity (val2))
1879 /* If the operation overflowed but neither VAL1 nor VAL2 are
1880 overflown, return -INF or +INF depending on the operation
1881 and the combination of signs of the operands. */
1882 int sgn1 = tree_int_cst_sgn (val1);
1883 int sgn2 = tree_int_cst_sgn (val2);
1885 if (needs_overflow_infinity (TREE_TYPE (res))
1886 && !supports_overflow_infinity (TREE_TYPE (res)))
1887 return NULL_TREE;
1889 /* We have to punt on adding infinities of different signs,
1890 since we can't tell what the sign of the result should be.
1891 Likewise for subtracting infinities of the same sign. */
1892 if (((code == PLUS_EXPR && sgn1 != sgn2)
1893 || (code == MINUS_EXPR && sgn1 == sgn2))
1894 && is_overflow_infinity (val1)
1895 && is_overflow_infinity (val2))
1896 return NULL_TREE;
1898 /* Don't try to handle division or shifting of infinities. */
1899 if ((code == TRUNC_DIV_EXPR
1900 || code == FLOOR_DIV_EXPR
1901 || code == CEIL_DIV_EXPR
1902 || code == EXACT_DIV_EXPR
1903 || code == ROUND_DIV_EXPR
1904 || code == RSHIFT_EXPR)
1905 && (is_overflow_infinity (val1)
1906 || is_overflow_infinity (val2)))
1907 return NULL_TREE;
1909 /* Notice that we only need to handle the restricted set of
1910 operations handled by extract_range_from_binary_expr.
1911 Among them, only multiplication, addition and subtraction
1912 can yield overflow without overflown operands because we
1913 are working with integral types only... except in the
1914 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1915 for division too. */
1917 /* For multiplication, the sign of the overflow is given
1918 by the comparison of the signs of the operands. */
1919 if ((code == MULT_EXPR && sgn1 == sgn2)
1920 /* For addition, the operands must be of the same sign
1921 to yield an overflow. Its sign is therefore that
1922 of one of the operands, for example the first. For
1923 infinite operands X + -INF is negative, not positive. */
1924 || (code == PLUS_EXPR
1925 && (sgn1 >= 0
1926 ? !is_negative_overflow_infinity (val2)
1927 : is_positive_overflow_infinity (val2)))
1928 /* For subtraction, non-infinite operands must be of
1929 different signs to yield an overflow. Its sign is
1930 therefore that of the first operand or the opposite of
1931 that of the second operand. A first operand of 0 counts
1932 as positive here, for the corner case 0 - (-INF), which
1933 overflows, but must yield +INF. For infinite operands 0
1934 - INF is negative, not positive. */
1935 || (code == MINUS_EXPR
1936 && (sgn1 >= 0
1937 ? !is_positive_overflow_infinity (val2)
1938 : is_negative_overflow_infinity (val2)))
1939 /* We only get in here with positive shift count, so the
1940 overflow direction is the same as the sign of val1.
1941 Actually rshift does not overflow at all, but we only
1942 handle the case of shifting overflowed -INF and +INF. */
1943 || (code == RSHIFT_EXPR
1944 && sgn1 >= 0)
1945 /* For division, the only case is -INF / -1 = +INF. */
1946 || code == TRUNC_DIV_EXPR
1947 || code == FLOOR_DIV_EXPR
1948 || code == CEIL_DIV_EXPR
1949 || code == EXACT_DIV_EXPR
1950 || code == ROUND_DIV_EXPR)
1951 return (needs_overflow_infinity (TREE_TYPE (res))
1952 ? positive_overflow_infinity (TREE_TYPE (res))
1953 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1954 else
1955 return (needs_overflow_infinity (TREE_TYPE (res))
1956 ? negative_overflow_infinity (TREE_TYPE (res))
1957 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1960 return res;
1964 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1965 bitmask if some bit is unset, it means for all numbers in the range
1966 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1967 bitmask if some bit is set, it means for all numbers in the range
1968 the bit is 1, otherwise it might be 0 or 1. */
1970 static bool
1971 zero_nonzero_bits_from_vr (const tree expr_type,
1972 value_range *vr,
1973 wide_int *may_be_nonzero,
1974 wide_int *must_be_nonzero)
1976 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1977 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1978 if (!range_int_cst_p (vr)
1979 || is_overflow_infinity (vr->min)
1980 || is_overflow_infinity (vr->max))
1981 return false;
1983 if (range_int_cst_singleton_p (vr))
1985 *may_be_nonzero = vr->min;
1986 *must_be_nonzero = *may_be_nonzero;
1988 else if (tree_int_cst_sgn (vr->min) >= 0
1989 || tree_int_cst_sgn (vr->max) < 0)
1991 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1992 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1993 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1994 if (xor_mask != 0)
1996 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1997 may_be_nonzero->get_precision ());
1998 *may_be_nonzero = *may_be_nonzero | mask;
1999 *must_be_nonzero = must_be_nonzero->and_not (mask);
2003 return true;
2006 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2007 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2008 false otherwise. If *AR can be represented with a single range
2009 *VR1 will be VR_UNDEFINED. */
2011 static bool
2012 ranges_from_anti_range (value_range *ar,
2013 value_range *vr0, value_range *vr1)
2015 tree type = TREE_TYPE (ar->min);
2017 vr0->type = VR_UNDEFINED;
2018 vr1->type = VR_UNDEFINED;
2020 if (ar->type != VR_ANTI_RANGE
2021 || TREE_CODE (ar->min) != INTEGER_CST
2022 || TREE_CODE (ar->max) != INTEGER_CST
2023 || !vrp_val_min (type)
2024 || !vrp_val_max (type))
2025 return false;
2027 if (!vrp_val_is_min (ar->min))
2029 vr0->type = VR_RANGE;
2030 vr0->min = vrp_val_min (type);
2031 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2033 if (!vrp_val_is_max (ar->max))
2035 vr1->type = VR_RANGE;
2036 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2037 vr1->max = vrp_val_max (type);
2039 if (vr0->type == VR_UNDEFINED)
2041 *vr0 = *vr1;
2042 vr1->type = VR_UNDEFINED;
2045 return vr0->type != VR_UNDEFINED;
2048 /* Helper to extract a value-range *VR for a multiplicative operation
2049 *VR0 CODE *VR1. */
2051 static void
2052 extract_range_from_multiplicative_op_1 (value_range *vr,
2053 enum tree_code code,
2054 value_range *vr0, value_range *vr1)
2056 enum value_range_type type;
2057 tree val[4];
2058 size_t i;
2059 tree min, max;
2060 bool sop;
2061 int cmp;
2063 /* Multiplications, divisions and shifts are a bit tricky to handle,
2064 depending on the mix of signs we have in the two ranges, we
2065 need to operate on different values to get the minimum and
2066 maximum values for the new range. One approach is to figure
2067 out all the variations of range combinations and do the
2068 operations.
2070 However, this involves several calls to compare_values and it
2071 is pretty convoluted. It's simpler to do the 4 operations
2072 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2073 MAX1) and then figure the smallest and largest values to form
2074 the new range. */
2075 gcc_assert (code == MULT_EXPR
2076 || code == TRUNC_DIV_EXPR
2077 || code == FLOOR_DIV_EXPR
2078 || code == CEIL_DIV_EXPR
2079 || code == EXACT_DIV_EXPR
2080 || code == ROUND_DIV_EXPR
2081 || code == RSHIFT_EXPR
2082 || code == LSHIFT_EXPR);
2083 gcc_assert ((vr0->type == VR_RANGE
2084 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2085 && vr0->type == vr1->type);
2087 type = vr0->type;
2089 /* Compute the 4 cross operations. */
2090 sop = false;
2091 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2092 if (val[0] == NULL_TREE)
2093 sop = true;
2095 if (vr1->max == vr1->min)
2096 val[1] = NULL_TREE;
2097 else
2099 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2100 if (val[1] == NULL_TREE)
2101 sop = true;
2104 if (vr0->max == vr0->min)
2105 val[2] = NULL_TREE;
2106 else
2108 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2109 if (val[2] == NULL_TREE)
2110 sop = true;
2113 if (vr0->min == vr0->max || vr1->min == vr1->max)
2114 val[3] = NULL_TREE;
2115 else
2117 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2118 if (val[3] == NULL_TREE)
2119 sop = true;
2122 if (sop)
2124 set_value_range_to_varying (vr);
2125 return;
2128 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2129 of VAL[i]. */
2130 min = val[0];
2131 max = val[0];
2132 for (i = 1; i < 4; i++)
2134 if (!is_gimple_min_invariant (min)
2135 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2136 || !is_gimple_min_invariant (max)
2137 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2138 break;
2140 if (val[i])
2142 if (!is_gimple_min_invariant (val[i])
2143 || (TREE_OVERFLOW (val[i])
2144 && !is_overflow_infinity (val[i])))
2146 /* If we found an overflowed value, set MIN and MAX
2147 to it so that we set the resulting range to
2148 VARYING. */
2149 min = max = val[i];
2150 break;
2153 if (compare_values (val[i], min) == -1)
2154 min = val[i];
2156 if (compare_values (val[i], max) == 1)
2157 max = val[i];
2161 /* If either MIN or MAX overflowed, then set the resulting range to
2162 VARYING. But we do accept an overflow infinity
2163 representation. */
2164 if (min == NULL_TREE
2165 || !is_gimple_min_invariant (min)
2166 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2167 || max == NULL_TREE
2168 || !is_gimple_min_invariant (max)
2169 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2171 set_value_range_to_varying (vr);
2172 return;
2175 /* We punt if:
2176 1) [-INF, +INF]
2177 2) [-INF, +-INF(OVF)]
2178 3) [+-INF(OVF), +INF]
2179 4) [+-INF(OVF), +-INF(OVF)]
2180 We learn nothing when we have INF and INF(OVF) on both sides.
2181 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2182 overflow. */
2183 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2184 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2186 set_value_range_to_varying (vr);
2187 return;
2190 cmp = compare_values (min, max);
2191 if (cmp == -2 || cmp == 1)
2193 /* If the new range has its limits swapped around (MIN > MAX),
2194 then the operation caused one of them to wrap around, mark
2195 the new range VARYING. */
2196 set_value_range_to_varying (vr);
2198 else
2199 set_value_range (vr, type, min, max, NULL);
2202 /* Extract range information from a binary operation CODE based on
2203 the ranges of each of its operands *VR0 and *VR1 with resulting
2204 type EXPR_TYPE. The resulting range is stored in *VR. */
2206 static void
2207 extract_range_from_binary_expr_1 (value_range *vr,
2208 enum tree_code code, tree expr_type,
2209 value_range *vr0_, value_range *vr1_)
2211 value_range vr0 = *vr0_, vr1 = *vr1_;
2212 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2213 enum value_range_type type;
2214 tree min = NULL_TREE, max = NULL_TREE;
2215 int cmp;
2217 if (!INTEGRAL_TYPE_P (expr_type)
2218 && !POINTER_TYPE_P (expr_type))
2220 set_value_range_to_varying (vr);
2221 return;
2224 /* Not all binary expressions can be applied to ranges in a
2225 meaningful way. Handle only arithmetic operations. */
2226 if (code != PLUS_EXPR
2227 && code != MINUS_EXPR
2228 && code != POINTER_PLUS_EXPR
2229 && code != MULT_EXPR
2230 && code != TRUNC_DIV_EXPR
2231 && code != FLOOR_DIV_EXPR
2232 && code != CEIL_DIV_EXPR
2233 && code != EXACT_DIV_EXPR
2234 && code != ROUND_DIV_EXPR
2235 && code != TRUNC_MOD_EXPR
2236 && code != RSHIFT_EXPR
2237 && code != LSHIFT_EXPR
2238 && code != MIN_EXPR
2239 && code != MAX_EXPR
2240 && code != BIT_AND_EXPR
2241 && code != BIT_IOR_EXPR
2242 && code != BIT_XOR_EXPR)
2244 set_value_range_to_varying (vr);
2245 return;
2248 /* If both ranges are UNDEFINED, so is the result. */
2249 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2251 set_value_range_to_undefined (vr);
2252 return;
2254 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2255 code. At some point we may want to special-case operations that
2256 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2257 operand. */
2258 else if (vr0.type == VR_UNDEFINED)
2259 set_value_range_to_varying (&vr0);
2260 else if (vr1.type == VR_UNDEFINED)
2261 set_value_range_to_varying (&vr1);
2263 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2264 and express ~[] op X as ([]' op X) U ([]'' op X). */
2265 if (vr0.type == VR_ANTI_RANGE
2266 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2268 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2269 if (vrtem1.type != VR_UNDEFINED)
2271 value_range vrres = VR_INITIALIZER;
2272 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2273 &vrtem1, vr1_);
2274 vrp_meet (vr, &vrres);
2276 return;
2278 /* Likewise for X op ~[]. */
2279 if (vr1.type == VR_ANTI_RANGE
2280 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2282 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2283 if (vrtem1.type != VR_UNDEFINED)
2285 value_range vrres = VR_INITIALIZER;
2286 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2287 vr0_, &vrtem1);
2288 vrp_meet (vr, &vrres);
2290 return;
2293 /* The type of the resulting value range defaults to VR0.TYPE. */
2294 type = vr0.type;
2296 /* Refuse to operate on VARYING ranges, ranges of different kinds
2297 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2298 because we may be able to derive a useful range even if one of
2299 the operands is VR_VARYING or symbolic range. Similarly for
2300 divisions, MIN/MAX and PLUS/MINUS.
2302 TODO, we may be able to derive anti-ranges in some cases. */
2303 if (code != BIT_AND_EXPR
2304 && code != BIT_IOR_EXPR
2305 && code != TRUNC_DIV_EXPR
2306 && code != FLOOR_DIV_EXPR
2307 && code != CEIL_DIV_EXPR
2308 && code != EXACT_DIV_EXPR
2309 && code != ROUND_DIV_EXPR
2310 && code != TRUNC_MOD_EXPR
2311 && code != MIN_EXPR
2312 && code != MAX_EXPR
2313 && code != PLUS_EXPR
2314 && code != MINUS_EXPR
2315 && code != RSHIFT_EXPR
2316 && (vr0.type == VR_VARYING
2317 || vr1.type == VR_VARYING
2318 || vr0.type != vr1.type
2319 || symbolic_range_p (&vr0)
2320 || symbolic_range_p (&vr1)))
2322 set_value_range_to_varying (vr);
2323 return;
2326 /* Now evaluate the expression to determine the new range. */
2327 if (POINTER_TYPE_P (expr_type))
2329 if (code == MIN_EXPR || code == MAX_EXPR)
2331 /* For MIN/MAX expressions with pointers, we only care about
2332 nullness, if both are non null, then the result is nonnull.
2333 If both are null, then the result is null. Otherwise they
2334 are varying. */
2335 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2336 set_value_range_to_nonnull (vr, expr_type);
2337 else if (range_is_null (&vr0) && range_is_null (&vr1))
2338 set_value_range_to_null (vr, expr_type);
2339 else
2340 set_value_range_to_varying (vr);
2342 else if (code == POINTER_PLUS_EXPR)
2344 /* For pointer types, we are really only interested in asserting
2345 whether the expression evaluates to non-NULL. */
2346 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2347 set_value_range_to_nonnull (vr, expr_type);
2348 else if (range_is_null (&vr0) && range_is_null (&vr1))
2349 set_value_range_to_null (vr, expr_type);
2350 else
2351 set_value_range_to_varying (vr);
2353 else if (code == BIT_AND_EXPR)
2355 /* For pointer types, we are really only interested in asserting
2356 whether the expression evaluates to non-NULL. */
2357 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2358 set_value_range_to_nonnull (vr, expr_type);
2359 else if (range_is_null (&vr0) || range_is_null (&vr1))
2360 set_value_range_to_null (vr, expr_type);
2361 else
2362 set_value_range_to_varying (vr);
2364 else
2365 set_value_range_to_varying (vr);
2367 return;
2370 /* For integer ranges, apply the operation to each end of the
2371 range and see what we end up with. */
2372 if (code == PLUS_EXPR || code == MINUS_EXPR)
2374 const bool minus_p = (code == MINUS_EXPR);
2375 tree min_op0 = vr0.min;
2376 tree min_op1 = minus_p ? vr1.max : vr1.min;
2377 tree max_op0 = vr0.max;
2378 tree max_op1 = minus_p ? vr1.min : vr1.max;
2379 tree sym_min_op0 = NULL_TREE;
2380 tree sym_min_op1 = NULL_TREE;
2381 tree sym_max_op0 = NULL_TREE;
2382 tree sym_max_op1 = NULL_TREE;
2383 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2385 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2386 single-symbolic ranges, try to compute the precise resulting range,
2387 but only if we know that this resulting range will also be constant
2388 or single-symbolic. */
2389 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2390 && (TREE_CODE (min_op0) == INTEGER_CST
2391 || (sym_min_op0
2392 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2393 && (TREE_CODE (min_op1) == INTEGER_CST
2394 || (sym_min_op1
2395 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2396 && (!(sym_min_op0 && sym_min_op1)
2397 || (sym_min_op0 == sym_min_op1
2398 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2399 && (TREE_CODE (max_op0) == INTEGER_CST
2400 || (sym_max_op0
2401 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2402 && (TREE_CODE (max_op1) == INTEGER_CST
2403 || (sym_max_op1
2404 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2405 && (!(sym_max_op0 && sym_max_op1)
2406 || (sym_max_op0 == sym_max_op1
2407 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2409 const signop sgn = TYPE_SIGN (expr_type);
2410 const unsigned int prec = TYPE_PRECISION (expr_type);
2411 wide_int type_min, type_max, wmin, wmax;
2412 int min_ovf = 0;
2413 int max_ovf = 0;
2415 /* Get the lower and upper bounds of the type. */
2416 if (TYPE_OVERFLOW_WRAPS (expr_type))
2418 type_min = wi::min_value (prec, sgn);
2419 type_max = wi::max_value (prec, sgn);
2421 else
2423 type_min = vrp_val_min (expr_type);
2424 type_max = vrp_val_max (expr_type);
2427 /* Combine the lower bounds, if any. */
2428 if (min_op0 && min_op1)
2430 if (minus_p)
2432 wmin = wi::sub (min_op0, min_op1);
2434 /* Check for overflow. */
2435 if (wi::cmp (0, min_op1, sgn)
2436 != wi::cmp (wmin, min_op0, sgn))
2437 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2439 else
2441 wmin = wi::add (min_op0, min_op1);
2443 /* Check for overflow. */
2444 if (wi::cmp (min_op1, 0, sgn)
2445 != wi::cmp (wmin, min_op0, sgn))
2446 min_ovf = wi::cmp (min_op0, wmin, sgn);
2449 else if (min_op0)
2450 wmin = min_op0;
2451 else if (min_op1)
2452 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2453 else
2454 wmin = wi::shwi (0, prec);
2456 /* Combine the upper bounds, if any. */
2457 if (max_op0 && max_op1)
2459 if (minus_p)
2461 wmax = wi::sub (max_op0, max_op1);
2463 /* Check for overflow. */
2464 if (wi::cmp (0, max_op1, sgn)
2465 != wi::cmp (wmax, max_op0, sgn))
2466 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2468 else
2470 wmax = wi::add (max_op0, max_op1);
2472 if (wi::cmp (max_op1, 0, sgn)
2473 != wi::cmp (wmax, max_op0, sgn))
2474 max_ovf = wi::cmp (max_op0, wmax, sgn);
2477 else if (max_op0)
2478 wmax = max_op0;
2479 else if (max_op1)
2480 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2481 else
2482 wmax = wi::shwi (0, prec);
2484 /* Check for type overflow. */
2485 if (min_ovf == 0)
2487 if (wi::cmp (wmin, type_min, sgn) == -1)
2488 min_ovf = -1;
2489 else if (wi::cmp (wmin, type_max, sgn) == 1)
2490 min_ovf = 1;
2492 if (max_ovf == 0)
2494 if (wi::cmp (wmax, type_min, sgn) == -1)
2495 max_ovf = -1;
2496 else if (wi::cmp (wmax, type_max, sgn) == 1)
2497 max_ovf = 1;
2500 /* If we have overflow for the constant part and the resulting
2501 range will be symbolic, drop to VR_VARYING. */
2502 if ((min_ovf && sym_min_op0 != sym_min_op1)
2503 || (max_ovf && sym_max_op0 != sym_max_op1))
2505 set_value_range_to_varying (vr);
2506 return;
2509 if (TYPE_OVERFLOW_WRAPS (expr_type))
2511 /* If overflow wraps, truncate the values and adjust the
2512 range kind and bounds appropriately. */
2513 wide_int tmin = wide_int::from (wmin, prec, sgn);
2514 wide_int tmax = wide_int::from (wmax, prec, sgn);
2515 if (min_ovf == max_ovf)
2517 /* No overflow or both overflow or underflow. The
2518 range kind stays VR_RANGE. */
2519 min = wide_int_to_tree (expr_type, tmin);
2520 max = wide_int_to_tree (expr_type, tmax);
2522 else if (min_ovf == -1 && max_ovf == 1)
2524 /* Underflow and overflow, drop to VR_VARYING. */
2525 set_value_range_to_varying (vr);
2526 return;
2528 else
2530 /* Min underflow or max overflow. The range kind
2531 changes to VR_ANTI_RANGE. */
2532 bool covers = false;
2533 wide_int tem = tmin;
2534 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2535 || (max_ovf == 1 && min_ovf == 0));
2536 type = VR_ANTI_RANGE;
2537 tmin = tmax + 1;
2538 if (wi::cmp (tmin, tmax, sgn) < 0)
2539 covers = true;
2540 tmax = tem - 1;
2541 if (wi::cmp (tmax, tem, sgn) > 0)
2542 covers = true;
2543 /* If the anti-range would cover nothing, drop to varying.
2544 Likewise if the anti-range bounds are outside of the
2545 types values. */
2546 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2548 set_value_range_to_varying (vr);
2549 return;
2551 min = wide_int_to_tree (expr_type, tmin);
2552 max = wide_int_to_tree (expr_type, tmax);
2555 else
2557 /* If overflow does not wrap, saturate to the types min/max
2558 value. */
2559 if (min_ovf == -1)
2561 if (needs_overflow_infinity (expr_type)
2562 && supports_overflow_infinity (expr_type))
2563 min = negative_overflow_infinity (expr_type);
2564 else
2565 min = wide_int_to_tree (expr_type, type_min);
2567 else if (min_ovf == 1)
2569 if (needs_overflow_infinity (expr_type)
2570 && supports_overflow_infinity (expr_type))
2571 min = positive_overflow_infinity (expr_type);
2572 else
2573 min = wide_int_to_tree (expr_type, type_max);
2575 else
2576 min = wide_int_to_tree (expr_type, wmin);
2578 if (max_ovf == -1)
2580 if (needs_overflow_infinity (expr_type)
2581 && supports_overflow_infinity (expr_type))
2582 max = negative_overflow_infinity (expr_type);
2583 else
2584 max = wide_int_to_tree (expr_type, type_min);
2586 else if (max_ovf == 1)
2588 if (needs_overflow_infinity (expr_type)
2589 && supports_overflow_infinity (expr_type))
2590 max = positive_overflow_infinity (expr_type);
2591 else
2592 max = wide_int_to_tree (expr_type, type_max);
2594 else
2595 max = wide_int_to_tree (expr_type, wmax);
2598 if (needs_overflow_infinity (expr_type)
2599 && supports_overflow_infinity (expr_type))
2601 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2602 || (min_op1
2603 && (minus_p
2604 ? is_positive_overflow_infinity (min_op1)
2605 : is_negative_overflow_infinity (min_op1))))
2606 min = negative_overflow_infinity (expr_type);
2607 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2608 || (max_op1
2609 && (minus_p
2610 ? is_negative_overflow_infinity (max_op1)
2611 : is_positive_overflow_infinity (max_op1))))
2612 max = positive_overflow_infinity (expr_type);
2615 /* If the result lower bound is constant, we're done;
2616 otherwise, build the symbolic lower bound. */
2617 if (sym_min_op0 == sym_min_op1)
2619 else if (sym_min_op0)
2620 min = build_symbolic_expr (expr_type, sym_min_op0,
2621 neg_min_op0, min);
2622 else if (sym_min_op1)
2623 min = build_symbolic_expr (expr_type, sym_min_op1,
2624 neg_min_op1 ^ minus_p, min);
2626 /* Likewise for the upper bound. */
2627 if (sym_max_op0 == sym_max_op1)
2629 else if (sym_max_op0)
2630 max = build_symbolic_expr (expr_type, sym_max_op0,
2631 neg_max_op0, max);
2632 else if (sym_max_op1)
2633 max = build_symbolic_expr (expr_type, sym_max_op1,
2634 neg_max_op1 ^ minus_p, max);
2636 else
2638 /* For other cases, for example if we have a PLUS_EXPR with two
2639 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2640 to compute a precise range for such a case.
2641 ??? General even mixed range kind operations can be expressed
2642 by for example transforming ~[3, 5] + [1, 2] to range-only
2643 operations and a union primitive:
2644 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2645 [-INF+1, 4] U [6, +INF(OVF)]
2646 though usually the union is not exactly representable with
2647 a single range or anti-range as the above is
2648 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2649 but one could use a scheme similar to equivalences for this. */
2650 set_value_range_to_varying (vr);
2651 return;
2654 else if (code == MIN_EXPR
2655 || code == MAX_EXPR)
2657 if (vr0.type == VR_RANGE
2658 && !symbolic_range_p (&vr0))
2660 type = VR_RANGE;
2661 if (vr1.type == VR_RANGE
2662 && !symbolic_range_p (&vr1))
2664 /* For operations that make the resulting range directly
2665 proportional to the original ranges, apply the operation to
2666 the same end of each range. */
2667 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2668 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2670 else if (code == MIN_EXPR)
2672 min = vrp_val_min (expr_type);
2673 max = vr0.max;
2675 else if (code == MAX_EXPR)
2677 min = vr0.min;
2678 max = vrp_val_max (expr_type);
2681 else if (vr1.type == VR_RANGE
2682 && !symbolic_range_p (&vr1))
2684 type = VR_RANGE;
2685 if (code == MIN_EXPR)
2687 min = vrp_val_min (expr_type);
2688 max = vr1.max;
2690 else if (code == MAX_EXPR)
2692 min = vr1.min;
2693 max = vrp_val_max (expr_type);
2696 else
2698 set_value_range_to_varying (vr);
2699 return;
2702 else if (code == MULT_EXPR)
2704 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2705 drop to varying. This test requires 2*prec bits if both
2706 operands are signed and 2*prec + 2 bits if either is not. */
2708 signop sign = TYPE_SIGN (expr_type);
2709 unsigned int prec = TYPE_PRECISION (expr_type);
2711 if (range_int_cst_p (&vr0)
2712 && range_int_cst_p (&vr1)
2713 && TYPE_OVERFLOW_WRAPS (expr_type))
2715 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2716 typedef generic_wide_int
2717 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2718 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2719 vrp_int size = sizem1 + 1;
2721 /* Extend the values using the sign of the result to PREC2.
2722 From here on out, everthing is just signed math no matter
2723 what the input types were. */
2724 vrp_int min0 = vrp_int_cst (vr0.min);
2725 vrp_int max0 = vrp_int_cst (vr0.max);
2726 vrp_int min1 = vrp_int_cst (vr1.min);
2727 vrp_int max1 = vrp_int_cst (vr1.max);
2728 /* Canonicalize the intervals. */
2729 if (sign == UNSIGNED)
2731 if (wi::ltu_p (size, min0 + max0))
2733 min0 -= size;
2734 max0 -= size;
2737 if (wi::ltu_p (size, min1 + max1))
2739 min1 -= size;
2740 max1 -= size;
2744 vrp_int prod0 = min0 * min1;
2745 vrp_int prod1 = min0 * max1;
2746 vrp_int prod2 = max0 * min1;
2747 vrp_int prod3 = max0 * max1;
2749 /* Sort the 4 products so that min is in prod0 and max is in
2750 prod3. */
2751 /* min0min1 > max0max1 */
2752 if (wi::gts_p (prod0, prod3))
2753 std::swap (prod0, prod3);
2755 /* min0max1 > max0min1 */
2756 if (wi::gts_p (prod1, prod2))
2757 std::swap (prod1, prod2);
2759 if (wi::gts_p (prod0, prod1))
2760 std::swap (prod0, prod1);
2762 if (wi::gts_p (prod2, prod3))
2763 std::swap (prod2, prod3);
2765 /* diff = max - min. */
2766 prod2 = prod3 - prod0;
2767 if (wi::geu_p (prod2, sizem1))
2769 /* the range covers all values. */
2770 set_value_range_to_varying (vr);
2771 return;
2774 /* The following should handle the wrapping and selecting
2775 VR_ANTI_RANGE for us. */
2776 min = wide_int_to_tree (expr_type, prod0);
2777 max = wide_int_to_tree (expr_type, prod3);
2778 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2779 return;
2782 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2783 drop to VR_VARYING. It would take more effort to compute a
2784 precise range for such a case. For example, if we have
2785 op0 == 65536 and op1 == 65536 with their ranges both being
2786 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2787 we cannot claim that the product is in ~[0,0]. Note that we
2788 are guaranteed to have vr0.type == vr1.type at this
2789 point. */
2790 if (vr0.type == VR_ANTI_RANGE
2791 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2793 set_value_range_to_varying (vr);
2794 return;
2797 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2798 return;
2800 else if (code == RSHIFT_EXPR
2801 || code == LSHIFT_EXPR)
2803 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2804 then drop to VR_VARYING. Outside of this range we get undefined
2805 behavior from the shift operation. We cannot even trust
2806 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2807 shifts, and the operation at the tree level may be widened. */
2808 if (range_int_cst_p (&vr1)
2809 && compare_tree_int (vr1.min, 0) >= 0
2810 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2812 if (code == RSHIFT_EXPR)
2814 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2815 useful ranges just from the shift count. E.g.
2816 x >> 63 for signed 64-bit x is always [-1, 0]. */
2817 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2819 vr0.type = type = VR_RANGE;
2820 vr0.min = vrp_val_min (expr_type);
2821 vr0.max = vrp_val_max (expr_type);
2823 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2824 return;
2826 /* We can map lshifts by constants to MULT_EXPR handling. */
2827 else if (code == LSHIFT_EXPR
2828 && range_int_cst_singleton_p (&vr1))
2830 bool saved_flag_wrapv;
2831 value_range vr1p = VR_INITIALIZER;
2832 vr1p.type = VR_RANGE;
2833 vr1p.min = (wide_int_to_tree
2834 (expr_type,
2835 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2836 TYPE_PRECISION (expr_type))));
2837 vr1p.max = vr1p.min;
2838 /* We have to use a wrapping multiply though as signed overflow
2839 on lshifts is implementation defined in C89. */
2840 saved_flag_wrapv = flag_wrapv;
2841 flag_wrapv = 1;
2842 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2843 &vr0, &vr1p);
2844 flag_wrapv = saved_flag_wrapv;
2845 return;
2847 else if (code == LSHIFT_EXPR
2848 && range_int_cst_p (&vr0))
2850 int prec = TYPE_PRECISION (expr_type);
2851 int overflow_pos = prec;
2852 int bound_shift;
2853 wide_int low_bound, high_bound;
2854 bool uns = TYPE_UNSIGNED (expr_type);
2855 bool in_bounds = false;
2857 if (!uns)
2858 overflow_pos -= 1;
2860 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2861 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2862 overflow. However, for that to happen, vr1.max needs to be
2863 zero, which means vr1 is a singleton range of zero, which
2864 means it should be handled by the previous LSHIFT_EXPR
2865 if-clause. */
2866 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2867 wide_int complement = ~(bound - 1);
2869 if (uns)
2871 low_bound = bound;
2872 high_bound = complement;
2873 if (wi::ltu_p (vr0.max, low_bound))
2875 /* [5, 6] << [1, 2] == [10, 24]. */
2876 /* We're shifting out only zeroes, the value increases
2877 monotonically. */
2878 in_bounds = true;
2880 else if (wi::ltu_p (high_bound, vr0.min))
2882 /* [0xffffff00, 0xffffffff] << [1, 2]
2883 == [0xfffffc00, 0xfffffffe]. */
2884 /* We're shifting out only ones, the value decreases
2885 monotonically. */
2886 in_bounds = true;
2889 else
2891 /* [-1, 1] << [1, 2] == [-4, 4]. */
2892 low_bound = complement;
2893 high_bound = bound;
2894 if (wi::lts_p (vr0.max, high_bound)
2895 && wi::lts_p (low_bound, vr0.min))
2897 /* For non-negative numbers, we're shifting out only
2898 zeroes, the value increases monotonically.
2899 For negative numbers, we're shifting out only ones, the
2900 value decreases monotomically. */
2901 in_bounds = true;
2905 if (in_bounds)
2907 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2908 return;
2912 set_value_range_to_varying (vr);
2913 return;
2915 else if (code == TRUNC_DIV_EXPR
2916 || code == FLOOR_DIV_EXPR
2917 || code == CEIL_DIV_EXPR
2918 || code == EXACT_DIV_EXPR
2919 || code == ROUND_DIV_EXPR)
2921 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2923 /* For division, if op1 has VR_RANGE but op0 does not, something
2924 can be deduced just from that range. Say [min, max] / [4, max]
2925 gives [min / 4, max / 4] range. */
2926 if (vr1.type == VR_RANGE
2927 && !symbolic_range_p (&vr1)
2928 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2930 vr0.type = type = VR_RANGE;
2931 vr0.min = vrp_val_min (expr_type);
2932 vr0.max = vrp_val_max (expr_type);
2934 else
2936 set_value_range_to_varying (vr);
2937 return;
2941 /* For divisions, if flag_non_call_exceptions is true, we must
2942 not eliminate a division by zero. */
2943 if (cfun->can_throw_non_call_exceptions
2944 && (vr1.type != VR_RANGE
2945 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2947 set_value_range_to_varying (vr);
2948 return;
2951 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2952 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2953 include 0. */
2954 if (vr0.type == VR_RANGE
2955 && (vr1.type != VR_RANGE
2956 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2958 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2959 int cmp;
2961 min = NULL_TREE;
2962 max = NULL_TREE;
2963 if (TYPE_UNSIGNED (expr_type)
2964 || value_range_nonnegative_p (&vr1))
2966 /* For unsigned division or when divisor is known
2967 to be non-negative, the range has to cover
2968 all numbers from 0 to max for positive max
2969 and all numbers from min to 0 for negative min. */
2970 cmp = compare_values (vr0.max, zero);
2971 if (cmp == -1)
2973 /* When vr0.max < 0, vr1.min != 0 and value
2974 ranges for dividend and divisor are available. */
2975 if (vr1.type == VR_RANGE
2976 && !symbolic_range_p (&vr0)
2977 && !symbolic_range_p (&vr1)
2978 && compare_values (vr1.min, zero) != 0)
2979 max = int_const_binop (code, vr0.max, vr1.min);
2980 else
2981 max = zero;
2983 else if (cmp == 0 || cmp == 1)
2984 max = vr0.max;
2985 else
2986 type = VR_VARYING;
2987 cmp = compare_values (vr0.min, zero);
2988 if (cmp == 1)
2990 /* For unsigned division when value ranges for dividend
2991 and divisor are available. */
2992 if (vr1.type == VR_RANGE
2993 && !symbolic_range_p (&vr0)
2994 && !symbolic_range_p (&vr1))
2995 min = int_const_binop (code, vr0.min, vr1.max);
2996 else
2997 min = zero;
2999 else if (cmp == 0 || cmp == -1)
3000 min = vr0.min;
3001 else
3002 type = VR_VARYING;
3004 else
3006 /* Otherwise the range is -max .. max or min .. -min
3007 depending on which bound is bigger in absolute value,
3008 as the division can change the sign. */
3009 abs_extent_range (vr, vr0.min, vr0.max);
3010 return;
3012 if (type == VR_VARYING)
3014 set_value_range_to_varying (vr);
3015 return;
3018 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
3020 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3021 return;
3024 else if (code == TRUNC_MOD_EXPR)
3026 if (range_is_null (&vr1))
3028 set_value_range_to_undefined (vr);
3029 return;
3031 /* ABS (A % B) < ABS (B) and either
3032 0 <= A % B <= A or A <= A % B <= 0. */
3033 type = VR_RANGE;
3034 signop sgn = TYPE_SIGN (expr_type);
3035 unsigned int prec = TYPE_PRECISION (expr_type);
3036 wide_int wmin, wmax, tmp;
3037 wide_int zero = wi::zero (prec);
3038 wide_int one = wi::one (prec);
3039 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3041 wmax = wi::sub (vr1.max, one);
3042 if (sgn == SIGNED)
3044 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3045 wmax = wi::smax (wmax, tmp);
3048 else
3050 wmax = wi::max_value (prec, sgn);
3051 /* X % INT_MIN may be INT_MAX. */
3052 if (sgn == UNSIGNED)
3053 wmax = wmax - one;
3056 if (sgn == UNSIGNED)
3057 wmin = zero;
3058 else
3060 wmin = -wmax;
3061 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3063 tmp = vr0.min;
3064 if (wi::gts_p (tmp, zero))
3065 tmp = zero;
3066 wmin = wi::smax (wmin, tmp);
3070 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3072 tmp = vr0.max;
3073 if (sgn == SIGNED && wi::neg_p (tmp))
3074 tmp = zero;
3075 wmax = wi::min (wmax, tmp, sgn);
3078 min = wide_int_to_tree (expr_type, wmin);
3079 max = wide_int_to_tree (expr_type, wmax);
3081 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3083 bool int_cst_range0, int_cst_range1;
3084 wide_int may_be_nonzero0, may_be_nonzero1;
3085 wide_int must_be_nonzero0, must_be_nonzero1;
3087 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3088 &may_be_nonzero0,
3089 &must_be_nonzero0);
3090 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3091 &may_be_nonzero1,
3092 &must_be_nonzero1);
3094 type = VR_RANGE;
3095 if (code == BIT_AND_EXPR)
3097 min = wide_int_to_tree (expr_type,
3098 must_be_nonzero0 & must_be_nonzero1);
3099 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3100 /* If both input ranges contain only negative values we can
3101 truncate the result range maximum to the minimum of the
3102 input range maxima. */
3103 if (int_cst_range0 && int_cst_range1
3104 && tree_int_cst_sgn (vr0.max) < 0
3105 && tree_int_cst_sgn (vr1.max) < 0)
3107 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3108 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3110 /* If either input range contains only non-negative values
3111 we can truncate the result range maximum to the respective
3112 maximum of the input range. */
3113 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3114 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3115 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3116 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3117 max = wide_int_to_tree (expr_type, wmax);
3119 else if (code == BIT_IOR_EXPR)
3121 max = wide_int_to_tree (expr_type,
3122 may_be_nonzero0 | may_be_nonzero1);
3123 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3124 /* If the input ranges contain only positive values we can
3125 truncate the minimum of the result range to the maximum
3126 of the input range minima. */
3127 if (int_cst_range0 && int_cst_range1
3128 && tree_int_cst_sgn (vr0.min) >= 0
3129 && tree_int_cst_sgn (vr1.min) >= 0)
3131 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3132 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3134 /* If either input range contains only negative values
3135 we can truncate the minimum of the result range to the
3136 respective minimum range. */
3137 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3138 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3139 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3140 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3141 min = wide_int_to_tree (expr_type, wmin);
3143 else if (code == BIT_XOR_EXPR)
3145 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3146 | ~(may_be_nonzero0 | may_be_nonzero1));
3147 wide_int result_one_bits
3148 = (must_be_nonzero0.and_not (may_be_nonzero1)
3149 | must_be_nonzero1.and_not (may_be_nonzero0));
3150 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3151 min = wide_int_to_tree (expr_type, result_one_bits);
3152 /* If the range has all positive or all negative values the
3153 result is better than VARYING. */
3154 if (tree_int_cst_sgn (min) < 0
3155 || tree_int_cst_sgn (max) >= 0)
3157 else
3158 max = min = NULL_TREE;
3161 else
3162 gcc_unreachable ();
3164 /* If either MIN or MAX overflowed, then set the resulting range to
3165 VARYING. But we do accept an overflow infinity representation. */
3166 if (min == NULL_TREE
3167 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3168 || max == NULL_TREE
3169 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3171 set_value_range_to_varying (vr);
3172 return;
3175 /* We punt if:
3176 1) [-INF, +INF]
3177 2) [-INF, +-INF(OVF)]
3178 3) [+-INF(OVF), +INF]
3179 4) [+-INF(OVF), +-INF(OVF)]
3180 We learn nothing when we have INF and INF(OVF) on both sides.
3181 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3182 overflow. */
3183 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3184 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3186 set_value_range_to_varying (vr);
3187 return;
3190 cmp = compare_values (min, max);
3191 if (cmp == -2 || cmp == 1)
3193 /* If the new range has its limits swapped around (MIN > MAX),
3194 then the operation caused one of them to wrap around, mark
3195 the new range VARYING. */
3196 set_value_range_to_varying (vr);
3198 else
3199 set_value_range (vr, type, min, max, NULL);
3202 /* Extract range information from a binary expression OP0 CODE OP1 based on
3203 the ranges of each of its operands with resulting type EXPR_TYPE.
3204 The resulting range is stored in *VR. */
3206 static void
3207 extract_range_from_binary_expr (value_range *vr,
3208 enum tree_code code,
3209 tree expr_type, tree op0, tree op1)
3211 value_range vr0 = VR_INITIALIZER;
3212 value_range vr1 = VR_INITIALIZER;
3214 /* Get value ranges for each operand. For constant operands, create
3215 a new value range with the operand to simplify processing. */
3216 if (TREE_CODE (op0) == SSA_NAME)
3217 vr0 = *(get_value_range (op0));
3218 else if (is_gimple_min_invariant (op0))
3219 set_value_range_to_value (&vr0, op0, NULL);
3220 else
3221 set_value_range_to_varying (&vr0);
3223 if (TREE_CODE (op1) == SSA_NAME)
3224 vr1 = *(get_value_range (op1));
3225 else if (is_gimple_min_invariant (op1))
3226 set_value_range_to_value (&vr1, op1, NULL);
3227 else
3228 set_value_range_to_varying (&vr1);
3230 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3232 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3233 and based on the other operand, for example if it was deduced from a
3234 symbolic comparison. When a bound of the range of the first operand
3235 is invariant, we set the corresponding bound of the new range to INF
3236 in order to avoid recursing on the range of the second operand. */
3237 if (vr->type == VR_VARYING
3238 && (code == PLUS_EXPR || code == MINUS_EXPR)
3239 && TREE_CODE (op1) == SSA_NAME
3240 && vr0.type == VR_RANGE
3241 && symbolic_range_based_on_p (&vr0, op1))
3243 const bool minus_p = (code == MINUS_EXPR);
3244 value_range n_vr1 = VR_INITIALIZER;
3246 /* Try with VR0 and [-INF, OP1]. */
3247 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3248 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3250 /* Try with VR0 and [OP1, +INF]. */
3251 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3252 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3254 /* Try with VR0 and [OP1, OP1]. */
3255 else
3256 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3258 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3261 if (vr->type == VR_VARYING
3262 && (code == PLUS_EXPR || code == MINUS_EXPR)
3263 && TREE_CODE (op0) == SSA_NAME
3264 && vr1.type == VR_RANGE
3265 && symbolic_range_based_on_p (&vr1, op0))
3267 const bool minus_p = (code == MINUS_EXPR);
3268 value_range n_vr0 = VR_INITIALIZER;
3270 /* Try with [-INF, OP0] and VR1. */
3271 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3272 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3274 /* Try with [OP0, +INF] and VR1. */
3275 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3276 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3278 /* Try with [OP0, OP0] and VR1. */
3279 else
3280 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3282 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3286 /* Extract range information from a unary operation CODE based on
3287 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3288 The resulting range is stored in *VR. */
3290 static void
3291 extract_range_from_unary_expr_1 (value_range *vr,
3292 enum tree_code code, tree type,
3293 value_range *vr0_, tree op0_type)
3295 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3297 /* VRP only operates on integral and pointer types. */
3298 if (!(INTEGRAL_TYPE_P (op0_type)
3299 || POINTER_TYPE_P (op0_type))
3300 || !(INTEGRAL_TYPE_P (type)
3301 || POINTER_TYPE_P (type)))
3303 set_value_range_to_varying (vr);
3304 return;
3307 /* If VR0 is UNDEFINED, so is the result. */
3308 if (vr0.type == VR_UNDEFINED)
3310 set_value_range_to_undefined (vr);
3311 return;
3314 /* Handle operations that we express in terms of others. */
3315 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3317 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3318 copy_value_range (vr, &vr0);
3319 return;
3321 else if (code == NEGATE_EXPR)
3323 /* -X is simply 0 - X, so re-use existing code that also handles
3324 anti-ranges fine. */
3325 value_range zero = VR_INITIALIZER;
3326 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3327 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3328 return;
3330 else if (code == BIT_NOT_EXPR)
3332 /* ~X is simply -1 - X, so re-use existing code that also handles
3333 anti-ranges fine. */
3334 value_range minusone = VR_INITIALIZER;
3335 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3336 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3337 type, &minusone, &vr0);
3338 return;
3341 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3342 and express op ~[] as (op []') U (op []''). */
3343 if (vr0.type == VR_ANTI_RANGE
3344 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3346 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3347 if (vrtem1.type != VR_UNDEFINED)
3349 value_range vrres = VR_INITIALIZER;
3350 extract_range_from_unary_expr_1 (&vrres, code, type,
3351 &vrtem1, op0_type);
3352 vrp_meet (vr, &vrres);
3354 return;
3357 if (CONVERT_EXPR_CODE_P (code))
3359 tree inner_type = op0_type;
3360 tree outer_type = type;
3362 /* If the expression evaluates to a pointer, we are only interested in
3363 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3364 if (POINTER_TYPE_P (type))
3366 if (range_is_nonnull (&vr0))
3367 set_value_range_to_nonnull (vr, type);
3368 else if (range_is_null (&vr0))
3369 set_value_range_to_null (vr, type);
3370 else
3371 set_value_range_to_varying (vr);
3372 return;
3375 /* If VR0 is varying and we increase the type precision, assume
3376 a full range for the following transformation. */
3377 if (vr0.type == VR_VARYING
3378 && INTEGRAL_TYPE_P (inner_type)
3379 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3381 vr0.type = VR_RANGE;
3382 vr0.min = TYPE_MIN_VALUE (inner_type);
3383 vr0.max = TYPE_MAX_VALUE (inner_type);
3386 /* If VR0 is a constant range or anti-range and the conversion is
3387 not truncating we can convert the min and max values and
3388 canonicalize the resulting range. Otherwise we can do the
3389 conversion if the size of the range is less than what the
3390 precision of the target type can represent and the range is
3391 not an anti-range. */
3392 if ((vr0.type == VR_RANGE
3393 || vr0.type == VR_ANTI_RANGE)
3394 && TREE_CODE (vr0.min) == INTEGER_CST
3395 && TREE_CODE (vr0.max) == INTEGER_CST
3396 && (!is_overflow_infinity (vr0.min)
3397 || (vr0.type == VR_RANGE
3398 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3399 && needs_overflow_infinity (outer_type)
3400 && supports_overflow_infinity (outer_type)))
3401 && (!is_overflow_infinity (vr0.max)
3402 || (vr0.type == VR_RANGE
3403 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3404 && needs_overflow_infinity (outer_type)
3405 && supports_overflow_infinity (outer_type)))
3406 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3407 || (vr0.type == VR_RANGE
3408 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3409 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3410 size_int (TYPE_PRECISION (outer_type)))))))
3412 tree new_min, new_max;
3413 if (is_overflow_infinity (vr0.min))
3414 new_min = negative_overflow_infinity (outer_type);
3415 else
3416 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3417 0, false);
3418 if (is_overflow_infinity (vr0.max))
3419 new_max = positive_overflow_infinity (outer_type);
3420 else
3421 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3422 0, false);
3423 set_and_canonicalize_value_range (vr, vr0.type,
3424 new_min, new_max, NULL);
3425 return;
3428 set_value_range_to_varying (vr);
3429 return;
3431 else if (code == ABS_EXPR)
3433 tree min, max;
3434 int cmp;
3436 /* Pass through vr0 in the easy cases. */
3437 if (TYPE_UNSIGNED (type)
3438 || value_range_nonnegative_p (&vr0))
3440 copy_value_range (vr, &vr0);
3441 return;
3444 /* For the remaining varying or symbolic ranges we can't do anything
3445 useful. */
3446 if (vr0.type == VR_VARYING
3447 || symbolic_range_p (&vr0))
3449 set_value_range_to_varying (vr);
3450 return;
3453 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3454 useful range. */
3455 if (!TYPE_OVERFLOW_UNDEFINED (type)
3456 && ((vr0.type == VR_RANGE
3457 && vrp_val_is_min (vr0.min))
3458 || (vr0.type == VR_ANTI_RANGE
3459 && !vrp_val_is_min (vr0.min))))
3461 set_value_range_to_varying (vr);
3462 return;
3465 /* ABS_EXPR may flip the range around, if the original range
3466 included negative values. */
3467 if (is_overflow_infinity (vr0.min))
3468 min = positive_overflow_infinity (type);
3469 else if (!vrp_val_is_min (vr0.min))
3470 min = fold_unary_to_constant (code, type, vr0.min);
3471 else if (!needs_overflow_infinity (type))
3472 min = TYPE_MAX_VALUE (type);
3473 else if (supports_overflow_infinity (type))
3474 min = positive_overflow_infinity (type);
3475 else
3477 set_value_range_to_varying (vr);
3478 return;
3481 if (is_overflow_infinity (vr0.max))
3482 max = positive_overflow_infinity (type);
3483 else if (!vrp_val_is_min (vr0.max))
3484 max = fold_unary_to_constant (code, type, vr0.max);
3485 else if (!needs_overflow_infinity (type))
3486 max = TYPE_MAX_VALUE (type);
3487 else if (supports_overflow_infinity (type)
3488 /* We shouldn't generate [+INF, +INF] as set_value_range
3489 doesn't like this and ICEs. */
3490 && !is_positive_overflow_infinity (min))
3491 max = positive_overflow_infinity (type);
3492 else
3494 set_value_range_to_varying (vr);
3495 return;
3498 cmp = compare_values (min, max);
3500 /* If a VR_ANTI_RANGEs contains zero, then we have
3501 ~[-INF, min(MIN, MAX)]. */
3502 if (vr0.type == VR_ANTI_RANGE)
3504 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3506 /* Take the lower of the two values. */
3507 if (cmp != 1)
3508 max = min;
3510 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3511 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3512 flag_wrapv is set and the original anti-range doesn't include
3513 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3514 if (TYPE_OVERFLOW_WRAPS (type))
3516 tree type_min_value = TYPE_MIN_VALUE (type);
3518 min = (vr0.min != type_min_value
3519 ? int_const_binop (PLUS_EXPR, type_min_value,
3520 build_int_cst (TREE_TYPE (type_min_value), 1))
3521 : type_min_value);
3523 else
3525 if (overflow_infinity_range_p (&vr0))
3526 min = negative_overflow_infinity (type);
3527 else
3528 min = TYPE_MIN_VALUE (type);
3531 else
3533 /* All else has failed, so create the range [0, INF], even for
3534 flag_wrapv since TYPE_MIN_VALUE is in the original
3535 anti-range. */
3536 vr0.type = VR_RANGE;
3537 min = build_int_cst (type, 0);
3538 if (needs_overflow_infinity (type))
3540 if (supports_overflow_infinity (type))
3541 max = positive_overflow_infinity (type);
3542 else
3544 set_value_range_to_varying (vr);
3545 return;
3548 else
3549 max = TYPE_MAX_VALUE (type);
3553 /* If the range contains zero then we know that the minimum value in the
3554 range will be zero. */
3555 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3557 if (cmp == 1)
3558 max = min;
3559 min = build_int_cst (type, 0);
3561 else
3563 /* If the range was reversed, swap MIN and MAX. */
3564 if (cmp == 1)
3565 std::swap (min, max);
3568 cmp = compare_values (min, max);
3569 if (cmp == -2 || cmp == 1)
3571 /* If the new range has its limits swapped around (MIN > MAX),
3572 then the operation caused one of them to wrap around, mark
3573 the new range VARYING. */
3574 set_value_range_to_varying (vr);
3576 else
3577 set_value_range (vr, vr0.type, min, max, NULL);
3578 return;
3581 /* For unhandled operations fall back to varying. */
3582 set_value_range_to_varying (vr);
3583 return;
3587 /* Extract range information from a unary expression CODE OP0 based on
3588 the range of its operand with resulting type TYPE.
3589 The resulting range is stored in *VR. */
3591 static void
3592 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3593 tree type, tree op0)
3595 value_range vr0 = VR_INITIALIZER;
3597 /* Get value ranges for the operand. For constant operands, create
3598 a new value range with the operand to simplify processing. */
3599 if (TREE_CODE (op0) == SSA_NAME)
3600 vr0 = *(get_value_range (op0));
3601 else if (is_gimple_min_invariant (op0))
3602 set_value_range_to_value (&vr0, op0, NULL);
3603 else
3604 set_value_range_to_varying (&vr0);
3606 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3610 /* Extract range information from a conditional expression STMT based on
3611 the ranges of each of its operands and the expression code. */
3613 static void
3614 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3616 tree op0, op1;
3617 value_range vr0 = VR_INITIALIZER;
3618 value_range vr1 = VR_INITIALIZER;
3620 /* Get value ranges for each operand. For constant operands, create
3621 a new value range with the operand to simplify processing. */
3622 op0 = gimple_assign_rhs2 (stmt);
3623 if (TREE_CODE (op0) == SSA_NAME)
3624 vr0 = *(get_value_range (op0));
3625 else if (is_gimple_min_invariant (op0))
3626 set_value_range_to_value (&vr0, op0, NULL);
3627 else
3628 set_value_range_to_varying (&vr0);
3630 op1 = gimple_assign_rhs3 (stmt);
3631 if (TREE_CODE (op1) == SSA_NAME)
3632 vr1 = *(get_value_range (op1));
3633 else if (is_gimple_min_invariant (op1))
3634 set_value_range_to_value (&vr1, op1, NULL);
3635 else
3636 set_value_range_to_varying (&vr1);
3638 /* The resulting value range is the union of the operand ranges */
3639 copy_value_range (vr, &vr0);
3640 vrp_meet (vr, &vr1);
3644 /* Extract range information from a comparison expression EXPR based
3645 on the range of its operand and the expression code. */
3647 static void
3648 extract_range_from_comparison (value_range *vr, enum tree_code code,
3649 tree type, tree op0, tree op1)
3651 bool sop = false;
3652 tree val;
3654 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3655 NULL);
3657 /* A disadvantage of using a special infinity as an overflow
3658 representation is that we lose the ability to record overflow
3659 when we don't have an infinity. So we have to ignore a result
3660 which relies on overflow. */
3662 if (val && !is_overflow_infinity (val) && !sop)
3664 /* Since this expression was found on the RHS of an assignment,
3665 its type may be different from _Bool. Convert VAL to EXPR's
3666 type. */
3667 val = fold_convert (type, val);
3668 if (is_gimple_min_invariant (val))
3669 set_value_range_to_value (vr, val, vr->equiv);
3670 else
3671 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3673 else
3674 /* The result of a comparison is always true or false. */
3675 set_value_range_to_truthvalue (vr, type);
3678 /* Helper function for simplify_internal_call_using_ranges and
3679 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3680 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3681 always overflow. Set *OVF to true if it is known to always
3682 overflow. */
3684 static bool
3685 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3686 tree op0, tree op1, bool *ovf)
3688 value_range vr0 = VR_INITIALIZER;
3689 value_range vr1 = VR_INITIALIZER;
3690 if (TREE_CODE (op0) == SSA_NAME)
3691 vr0 = *get_value_range (op0);
3692 else if (TREE_CODE (op0) == INTEGER_CST)
3693 set_value_range_to_value (&vr0, op0, NULL);
3694 else
3695 set_value_range_to_varying (&vr0);
3697 if (TREE_CODE (op1) == SSA_NAME)
3698 vr1 = *get_value_range (op1);
3699 else if (TREE_CODE (op1) == INTEGER_CST)
3700 set_value_range_to_value (&vr1, op1, NULL);
3701 else
3702 set_value_range_to_varying (&vr1);
3704 if (!range_int_cst_p (&vr0)
3705 || TREE_OVERFLOW (vr0.min)
3706 || TREE_OVERFLOW (vr0.max))
3708 vr0.min = vrp_val_min (TREE_TYPE (op0));
3709 vr0.max = vrp_val_max (TREE_TYPE (op0));
3711 if (!range_int_cst_p (&vr1)
3712 || TREE_OVERFLOW (vr1.min)
3713 || TREE_OVERFLOW (vr1.max))
3715 vr1.min = vrp_val_min (TREE_TYPE (op1));
3716 vr1.max = vrp_val_max (TREE_TYPE (op1));
3718 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3719 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3720 if (arith_overflowed_p (subcode, type, vr0.max,
3721 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3722 return false;
3723 if (subcode == MULT_EXPR)
3725 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3726 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3727 return false;
3729 if (*ovf)
3731 /* So far we found that there is an overflow on the boundaries.
3732 That doesn't prove that there is an overflow even for all values
3733 in between the boundaries. For that compute widest_int range
3734 of the result and see if it doesn't overlap the range of
3735 type. */
3736 widest_int wmin, wmax;
3737 widest_int w[4];
3738 int i;
3739 w[0] = wi::to_widest (vr0.min);
3740 w[1] = wi::to_widest (vr0.max);
3741 w[2] = wi::to_widest (vr1.min);
3742 w[3] = wi::to_widest (vr1.max);
3743 for (i = 0; i < 4; i++)
3745 widest_int wt;
3746 switch (subcode)
3748 case PLUS_EXPR:
3749 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3750 break;
3751 case MINUS_EXPR:
3752 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3753 break;
3754 case MULT_EXPR:
3755 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3756 break;
3757 default:
3758 gcc_unreachable ();
3760 if (i == 0)
3762 wmin = wt;
3763 wmax = wt;
3765 else
3767 wmin = wi::smin (wmin, wt);
3768 wmax = wi::smax (wmax, wt);
3771 /* The result of op0 CODE op1 is known to be in range
3772 [wmin, wmax]. */
3773 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3774 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3775 /* If all values in [wmin, wmax] are smaller than
3776 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3777 the arithmetic operation will always overflow. */
3778 if (wi::lts_p (wmax, wtmin) || wi::gts_p (wmin, wtmax))
3779 return true;
3780 return false;
3782 return true;
3785 /* Try to derive a nonnegative or nonzero range out of STMT relying
3786 primarily on generic routines in fold in conjunction with range data.
3787 Store the result in *VR */
3789 static void
3790 extract_range_basic (value_range *vr, gimple *stmt)
3792 bool sop = false;
3793 tree type = gimple_expr_type (stmt);
3795 if (is_gimple_call (stmt))
3797 tree arg;
3798 int mini, maxi, zerov = 0, prec;
3799 enum tree_code subcode = ERROR_MARK;
3800 combined_fn cfn = gimple_call_combined_fn (stmt);
3802 switch (cfn)
3804 case CFN_BUILT_IN_CONSTANT_P:
3805 /* If the call is __builtin_constant_p and the argument is a
3806 function parameter resolve it to false. This avoids bogus
3807 array bound warnings.
3808 ??? We could do this as early as inlining is finished. */
3809 arg = gimple_call_arg (stmt, 0);
3810 if (TREE_CODE (arg) == SSA_NAME
3811 && SSA_NAME_IS_DEFAULT_DEF (arg)
3812 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3814 set_value_range_to_null (vr, type);
3815 return;
3817 break;
3818 /* Both __builtin_ffs* and __builtin_popcount return
3819 [0, prec]. */
3820 CASE_CFN_FFS:
3821 CASE_CFN_POPCOUNT:
3822 arg = gimple_call_arg (stmt, 0);
3823 prec = TYPE_PRECISION (TREE_TYPE (arg));
3824 mini = 0;
3825 maxi = prec;
3826 if (TREE_CODE (arg) == SSA_NAME)
3828 value_range *vr0 = get_value_range (arg);
3829 /* If arg is non-zero, then ffs or popcount
3830 are non-zero. */
3831 if (((vr0->type == VR_RANGE
3832 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3833 || (vr0->type == VR_ANTI_RANGE
3834 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3835 && !is_overflow_infinity (vr0->min)
3836 && !is_overflow_infinity (vr0->max))
3837 mini = 1;
3838 /* If some high bits are known to be zero,
3839 we can decrease the maximum. */
3840 if (vr0->type == VR_RANGE
3841 && TREE_CODE (vr0->max) == INTEGER_CST
3842 && !operand_less_p (vr0->min,
3843 build_zero_cst (TREE_TYPE (vr0->min)))
3844 && !is_overflow_infinity (vr0->max))
3845 maxi = tree_floor_log2 (vr0->max) + 1;
3847 goto bitop_builtin;
3848 /* __builtin_parity* returns [0, 1]. */
3849 CASE_CFN_PARITY:
3850 mini = 0;
3851 maxi = 1;
3852 goto bitop_builtin;
3853 /* __builtin_c[lt]z* return [0, prec-1], except for
3854 when the argument is 0, but that is undefined behavior.
3855 On many targets where the CLZ RTL or optab value is defined
3856 for 0 the value is prec, so include that in the range
3857 by default. */
3858 CASE_CFN_CLZ:
3859 arg = gimple_call_arg (stmt, 0);
3860 prec = TYPE_PRECISION (TREE_TYPE (arg));
3861 mini = 0;
3862 maxi = prec;
3863 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3864 != CODE_FOR_nothing
3865 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3866 zerov)
3867 /* Handle only the single common value. */
3868 && zerov != prec)
3869 /* Magic value to give up, unless vr0 proves
3870 arg is non-zero. */
3871 mini = -2;
3872 if (TREE_CODE (arg) == SSA_NAME)
3874 value_range *vr0 = get_value_range (arg);
3875 /* From clz of VR_RANGE minimum we can compute
3876 result maximum. */
3877 if (vr0->type == VR_RANGE
3878 && TREE_CODE (vr0->min) == INTEGER_CST
3879 && !is_overflow_infinity (vr0->min))
3881 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3882 if (maxi != prec)
3883 mini = 0;
3885 else if (vr0->type == VR_ANTI_RANGE
3886 && integer_zerop (vr0->min)
3887 && !is_overflow_infinity (vr0->min))
3889 maxi = prec - 1;
3890 mini = 0;
3892 if (mini == -2)
3893 break;
3894 /* From clz of VR_RANGE maximum we can compute
3895 result minimum. */
3896 if (vr0->type == VR_RANGE
3897 && TREE_CODE (vr0->max) == INTEGER_CST
3898 && !is_overflow_infinity (vr0->max))
3900 mini = prec - 1 - tree_floor_log2 (vr0->max);
3901 if (mini == prec)
3902 break;
3905 if (mini == -2)
3906 break;
3907 goto bitop_builtin;
3908 /* __builtin_ctz* return [0, prec-1], except for
3909 when the argument is 0, but that is undefined behavior.
3910 If there is a ctz optab for this mode and
3911 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3912 otherwise just assume 0 won't be seen. */
3913 CASE_CFN_CTZ:
3914 arg = gimple_call_arg (stmt, 0);
3915 prec = TYPE_PRECISION (TREE_TYPE (arg));
3916 mini = 0;
3917 maxi = prec - 1;
3918 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3919 != CODE_FOR_nothing
3920 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3921 zerov))
3923 /* Handle only the two common values. */
3924 if (zerov == -1)
3925 mini = -1;
3926 else if (zerov == prec)
3927 maxi = prec;
3928 else
3929 /* Magic value to give up, unless vr0 proves
3930 arg is non-zero. */
3931 mini = -2;
3933 if (TREE_CODE (arg) == SSA_NAME)
3935 value_range *vr0 = get_value_range (arg);
3936 /* If arg is non-zero, then use [0, prec - 1]. */
3937 if (((vr0->type == VR_RANGE
3938 && integer_nonzerop (vr0->min))
3939 || (vr0->type == VR_ANTI_RANGE
3940 && integer_zerop (vr0->min)))
3941 && !is_overflow_infinity (vr0->min))
3943 mini = 0;
3944 maxi = prec - 1;
3946 /* If some high bits are known to be zero,
3947 we can decrease the result maximum. */
3948 if (vr0->type == VR_RANGE
3949 && TREE_CODE (vr0->max) == INTEGER_CST
3950 && !is_overflow_infinity (vr0->max))
3952 maxi = tree_floor_log2 (vr0->max);
3953 /* For vr0 [0, 0] give up. */
3954 if (maxi == -1)
3955 break;
3958 if (mini == -2)
3959 break;
3960 goto bitop_builtin;
3961 /* __builtin_clrsb* returns [0, prec-1]. */
3962 CASE_CFN_CLRSB:
3963 arg = gimple_call_arg (stmt, 0);
3964 prec = TYPE_PRECISION (TREE_TYPE (arg));
3965 mini = 0;
3966 maxi = prec - 1;
3967 goto bitop_builtin;
3968 bitop_builtin:
3969 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3970 build_int_cst (type, maxi), NULL);
3971 return;
3972 case CFN_UBSAN_CHECK_ADD:
3973 subcode = PLUS_EXPR;
3974 break;
3975 case CFN_UBSAN_CHECK_SUB:
3976 subcode = MINUS_EXPR;
3977 break;
3978 case CFN_UBSAN_CHECK_MUL:
3979 subcode = MULT_EXPR;
3980 break;
3981 case CFN_GOACC_DIM_SIZE:
3982 case CFN_GOACC_DIM_POS:
3983 /* Optimizing these two internal functions helps the loop
3984 optimizer eliminate outer comparisons. Size is [1,N]
3985 and pos is [0,N-1]. */
3987 bool is_pos = cfn == CFN_GOACC_DIM_POS;
3988 int axis = get_oacc_ifn_dim_arg (stmt);
3989 int size = get_oacc_fn_dim_size (current_function_decl, axis);
3991 if (!size)
3992 /* If it's dynamic, the backend might know a hardware
3993 limitation. */
3994 size = targetm.goacc.dim_limit (axis);
3996 tree type = TREE_TYPE (gimple_call_lhs (stmt));
3997 set_value_range (vr, VR_RANGE,
3998 build_int_cst (type, is_pos ? 0 : 1),
3999 size ? build_int_cst (type, size - is_pos)
4000 : vrp_val_max (type), NULL);
4002 return;
4003 default:
4004 break;
4006 if (subcode != ERROR_MARK)
4008 bool saved_flag_wrapv = flag_wrapv;
4009 /* Pretend the arithmetics is wrapping. If there is
4010 any overflow, we'll complain, but will actually do
4011 wrapping operation. */
4012 flag_wrapv = 1;
4013 extract_range_from_binary_expr (vr, subcode, type,
4014 gimple_call_arg (stmt, 0),
4015 gimple_call_arg (stmt, 1));
4016 flag_wrapv = saved_flag_wrapv;
4018 /* If for both arguments vrp_valueize returned non-NULL,
4019 this should have been already folded and if not, it
4020 wasn't folded because of overflow. Avoid removing the
4021 UBSAN_CHECK_* calls in that case. */
4022 if (vr->type == VR_RANGE
4023 && (vr->min == vr->max
4024 || operand_equal_p (vr->min, vr->max, 0)))
4025 set_value_range_to_varying (vr);
4026 return;
4029 /* Handle extraction of the two results (result of arithmetics and
4030 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4031 internal function. */
4032 else if (is_gimple_assign (stmt)
4033 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4034 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4035 && INTEGRAL_TYPE_P (type))
4037 enum tree_code code = gimple_assign_rhs_code (stmt);
4038 tree op = gimple_assign_rhs1 (stmt);
4039 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4041 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4042 if (is_gimple_call (g) && gimple_call_internal_p (g))
4044 enum tree_code subcode = ERROR_MARK;
4045 switch (gimple_call_internal_fn (g))
4047 case IFN_ADD_OVERFLOW:
4048 subcode = PLUS_EXPR;
4049 break;
4050 case IFN_SUB_OVERFLOW:
4051 subcode = MINUS_EXPR;
4052 break;
4053 case IFN_MUL_OVERFLOW:
4054 subcode = MULT_EXPR;
4055 break;
4056 default:
4057 break;
4059 if (subcode != ERROR_MARK)
4061 tree op0 = gimple_call_arg (g, 0);
4062 tree op1 = gimple_call_arg (g, 1);
4063 if (code == IMAGPART_EXPR)
4065 bool ovf = false;
4066 if (check_for_binary_op_overflow (subcode, type,
4067 op0, op1, &ovf))
4068 set_value_range_to_value (vr,
4069 build_int_cst (type, ovf),
4070 NULL);
4071 else
4072 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4073 build_int_cst (type, 1), NULL);
4075 else if (types_compatible_p (type, TREE_TYPE (op0))
4076 && types_compatible_p (type, TREE_TYPE (op1)))
4078 bool saved_flag_wrapv = flag_wrapv;
4079 /* Pretend the arithmetics is wrapping. If there is
4080 any overflow, IMAGPART_EXPR will be set. */
4081 flag_wrapv = 1;
4082 extract_range_from_binary_expr (vr, subcode, type,
4083 op0, op1);
4084 flag_wrapv = saved_flag_wrapv;
4086 else
4088 value_range vr0 = VR_INITIALIZER;
4089 value_range vr1 = VR_INITIALIZER;
4090 bool saved_flag_wrapv = flag_wrapv;
4091 /* Pretend the arithmetics is wrapping. If there is
4092 any overflow, IMAGPART_EXPR will be set. */
4093 flag_wrapv = 1;
4094 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4095 type, op0);
4096 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4097 type, op1);
4098 extract_range_from_binary_expr_1 (vr, subcode, type,
4099 &vr0, &vr1);
4100 flag_wrapv = saved_flag_wrapv;
4102 return;
4107 if (INTEGRAL_TYPE_P (type)
4108 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4109 set_value_range_to_nonnegative (vr, type,
4110 sop || stmt_overflow_infinity (stmt));
4111 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4112 && !sop)
4113 set_value_range_to_nonnull (vr, type);
4114 else
4115 set_value_range_to_varying (vr);
4119 /* Try to compute a useful range out of assignment STMT and store it
4120 in *VR. */
4122 static void
4123 extract_range_from_assignment (value_range *vr, gassign *stmt)
4125 enum tree_code code = gimple_assign_rhs_code (stmt);
4127 if (code == ASSERT_EXPR)
4128 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4129 else if (code == SSA_NAME)
4130 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4131 else if (TREE_CODE_CLASS (code) == tcc_binary)
4132 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4133 gimple_expr_type (stmt),
4134 gimple_assign_rhs1 (stmt),
4135 gimple_assign_rhs2 (stmt));
4136 else if (TREE_CODE_CLASS (code) == tcc_unary)
4137 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4138 gimple_expr_type (stmt),
4139 gimple_assign_rhs1 (stmt));
4140 else if (code == COND_EXPR)
4141 extract_range_from_cond_expr (vr, stmt);
4142 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4143 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4144 gimple_expr_type (stmt),
4145 gimple_assign_rhs1 (stmt),
4146 gimple_assign_rhs2 (stmt));
4147 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4148 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4149 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4150 else
4151 set_value_range_to_varying (vr);
4153 if (vr->type == VR_VARYING)
4154 extract_range_basic (vr, stmt);
4157 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4158 would be profitable to adjust VR using scalar evolution information
4159 for VAR. If so, update VR with the new limits. */
4161 static void
4162 adjust_range_with_scev (value_range *vr, struct loop *loop,
4163 gimple *stmt, tree var)
4165 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4166 enum ev_direction dir;
4168 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4169 better opportunities than a regular range, but I'm not sure. */
4170 if (vr->type == VR_ANTI_RANGE)
4171 return;
4173 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4175 /* Like in PR19590, scev can return a constant function. */
4176 if (is_gimple_min_invariant (chrec))
4178 set_value_range_to_value (vr, chrec, vr->equiv);
4179 return;
4182 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4183 return;
4185 init = initial_condition_in_loop_num (chrec, loop->num);
4186 tem = op_with_constant_singleton_value_range (init);
4187 if (tem)
4188 init = tem;
4189 step = evolution_part_in_loop_num (chrec, loop->num);
4190 tem = op_with_constant_singleton_value_range (step);
4191 if (tem)
4192 step = tem;
4194 /* If STEP is symbolic, we can't know whether INIT will be the
4195 minimum or maximum value in the range. Also, unless INIT is
4196 a simple expression, compare_values and possibly other functions
4197 in tree-vrp won't be able to handle it. */
4198 if (step == NULL_TREE
4199 || !is_gimple_min_invariant (step)
4200 || !valid_value_p (init))
4201 return;
4203 dir = scev_direction (chrec);
4204 if (/* Do not adjust ranges if we do not know whether the iv increases
4205 or decreases, ... */
4206 dir == EV_DIR_UNKNOWN
4207 /* ... or if it may wrap. */
4208 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4209 true))
4210 return;
4212 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4213 negative_overflow_infinity and positive_overflow_infinity,
4214 because we have concluded that the loop probably does not
4215 wrap. */
4217 type = TREE_TYPE (var);
4218 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4219 tmin = lower_bound_in_type (type, type);
4220 else
4221 tmin = TYPE_MIN_VALUE (type);
4222 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4223 tmax = upper_bound_in_type (type, type);
4224 else
4225 tmax = TYPE_MAX_VALUE (type);
4227 /* Try to use estimated number of iterations for the loop to constrain the
4228 final value in the evolution. */
4229 if (TREE_CODE (step) == INTEGER_CST
4230 && is_gimple_val (init)
4231 && (TREE_CODE (init) != SSA_NAME
4232 || get_value_range (init)->type == VR_RANGE))
4234 widest_int nit;
4236 /* We are only entering here for loop header PHI nodes, so using
4237 the number of latch executions is the correct thing to use. */
4238 if (max_loop_iterations (loop, &nit))
4240 value_range maxvr = VR_INITIALIZER;
4241 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4242 bool overflow;
4244 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4245 &overflow);
4246 /* If the multiplication overflowed we can't do a meaningful
4247 adjustment. Likewise if the result doesn't fit in the type
4248 of the induction variable. For a signed type we have to
4249 check whether the result has the expected signedness which
4250 is that of the step as number of iterations is unsigned. */
4251 if (!overflow
4252 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4253 && (sgn == UNSIGNED
4254 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4256 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4257 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4258 TREE_TYPE (init), init, tem);
4259 /* Likewise if the addition did. */
4260 if (maxvr.type == VR_RANGE)
4262 tmin = maxvr.min;
4263 tmax = maxvr.max;
4269 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4271 min = tmin;
4272 max = tmax;
4274 /* For VARYING or UNDEFINED ranges, just about anything we get
4275 from scalar evolutions should be better. */
4277 if (dir == EV_DIR_DECREASES)
4278 max = init;
4279 else
4280 min = init;
4282 else if (vr->type == VR_RANGE)
4284 min = vr->min;
4285 max = vr->max;
4287 if (dir == EV_DIR_DECREASES)
4289 /* INIT is the maximum value. If INIT is lower than VR->MAX
4290 but no smaller than VR->MIN, set VR->MAX to INIT. */
4291 if (compare_values (init, max) == -1)
4292 max = init;
4294 /* According to the loop information, the variable does not
4295 overflow. If we think it does, probably because of an
4296 overflow due to arithmetic on a different INF value,
4297 reset now. */
4298 if (is_negative_overflow_infinity (min)
4299 || compare_values (min, tmin) == -1)
4300 min = tmin;
4303 else
4305 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4306 if (compare_values (init, min) == 1)
4307 min = init;
4309 if (is_positive_overflow_infinity (max)
4310 || compare_values (tmax, max) == -1)
4311 max = tmax;
4314 else
4315 return;
4317 /* If we just created an invalid range with the minimum
4318 greater than the maximum, we fail conservatively.
4319 This should happen only in unreachable
4320 parts of code, or for invalid programs. */
4321 if (compare_values (min, max) == 1
4322 || (is_negative_overflow_infinity (min)
4323 && is_positive_overflow_infinity (max)))
4324 return;
4326 /* Even for valid range info, sometimes overflow flag will leak in.
4327 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4328 drop them except for +-overflow_infinity which still need special
4329 handling in vrp pass. */
4330 if (TREE_OVERFLOW_P (min)
4331 && ! is_negative_overflow_infinity (min))
4332 min = drop_tree_overflow (min);
4333 if (TREE_OVERFLOW_P (max)
4334 && ! is_positive_overflow_infinity (max))
4335 max = drop_tree_overflow (max);
4337 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4341 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4343 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4344 all the values in the ranges.
4346 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4348 - Return NULL_TREE if it is not always possible to determine the
4349 value of the comparison.
4351 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4352 overflow infinity was used in the test. */
4355 static tree
4356 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4357 bool *strict_overflow_p)
4359 /* VARYING or UNDEFINED ranges cannot be compared. */
4360 if (vr0->type == VR_VARYING
4361 || vr0->type == VR_UNDEFINED
4362 || vr1->type == VR_VARYING
4363 || vr1->type == VR_UNDEFINED)
4364 return NULL_TREE;
4366 /* Anti-ranges need to be handled separately. */
4367 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4369 /* If both are anti-ranges, then we cannot compute any
4370 comparison. */
4371 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4372 return NULL_TREE;
4374 /* These comparisons are never statically computable. */
4375 if (comp == GT_EXPR
4376 || comp == GE_EXPR
4377 || comp == LT_EXPR
4378 || comp == LE_EXPR)
4379 return NULL_TREE;
4381 /* Equality can be computed only between a range and an
4382 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4383 if (vr0->type == VR_RANGE)
4385 /* To simplify processing, make VR0 the anti-range. */
4386 value_range *tmp = vr0;
4387 vr0 = vr1;
4388 vr1 = tmp;
4391 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4393 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4394 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4395 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4397 return NULL_TREE;
4400 if (!usable_range_p (vr0, strict_overflow_p)
4401 || !usable_range_p (vr1, strict_overflow_p))
4402 return NULL_TREE;
4404 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4405 operands around and change the comparison code. */
4406 if (comp == GT_EXPR || comp == GE_EXPR)
4408 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4409 std::swap (vr0, vr1);
4412 if (comp == EQ_EXPR)
4414 /* Equality may only be computed if both ranges represent
4415 exactly one value. */
4416 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4417 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4419 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4420 strict_overflow_p);
4421 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4422 strict_overflow_p);
4423 if (cmp_min == 0 && cmp_max == 0)
4424 return boolean_true_node;
4425 else if (cmp_min != -2 && cmp_max != -2)
4426 return boolean_false_node;
4428 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4429 else if (compare_values_warnv (vr0->min, vr1->max,
4430 strict_overflow_p) == 1
4431 || compare_values_warnv (vr1->min, vr0->max,
4432 strict_overflow_p) == 1)
4433 return boolean_false_node;
4435 return NULL_TREE;
4437 else if (comp == NE_EXPR)
4439 int cmp1, cmp2;
4441 /* If VR0 is completely to the left or completely to the right
4442 of VR1, they are always different. Notice that we need to
4443 make sure that both comparisons yield similar results to
4444 avoid comparing values that cannot be compared at
4445 compile-time. */
4446 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4447 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4448 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4449 return boolean_true_node;
4451 /* If VR0 and VR1 represent a single value and are identical,
4452 return false. */
4453 else if (compare_values_warnv (vr0->min, vr0->max,
4454 strict_overflow_p) == 0
4455 && compare_values_warnv (vr1->min, vr1->max,
4456 strict_overflow_p) == 0
4457 && compare_values_warnv (vr0->min, vr1->min,
4458 strict_overflow_p) == 0
4459 && compare_values_warnv (vr0->max, vr1->max,
4460 strict_overflow_p) == 0)
4461 return boolean_false_node;
4463 /* Otherwise, they may or may not be different. */
4464 else
4465 return NULL_TREE;
4467 else if (comp == LT_EXPR || comp == LE_EXPR)
4469 int tst;
4471 /* If VR0 is to the left of VR1, return true. */
4472 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4473 if ((comp == LT_EXPR && tst == -1)
4474 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4476 if (overflow_infinity_range_p (vr0)
4477 || overflow_infinity_range_p (vr1))
4478 *strict_overflow_p = true;
4479 return boolean_true_node;
4482 /* If VR0 is to the right of VR1, return false. */
4483 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4484 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4485 || (comp == LE_EXPR && tst == 1))
4487 if (overflow_infinity_range_p (vr0)
4488 || overflow_infinity_range_p (vr1))
4489 *strict_overflow_p = true;
4490 return boolean_false_node;
4493 /* Otherwise, we don't know. */
4494 return NULL_TREE;
4497 gcc_unreachable ();
4501 /* Given a value range VR, a value VAL and a comparison code COMP, return
4502 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4503 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4504 always returns false. Return NULL_TREE if it is not always
4505 possible to determine the value of the comparison. Also set
4506 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4507 infinity was used in the test. */
4509 static tree
4510 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4511 bool *strict_overflow_p)
4513 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4514 return NULL_TREE;
4516 /* Anti-ranges need to be handled separately. */
4517 if (vr->type == VR_ANTI_RANGE)
4519 /* For anti-ranges, the only predicates that we can compute at
4520 compile time are equality and inequality. */
4521 if (comp == GT_EXPR
4522 || comp == GE_EXPR
4523 || comp == LT_EXPR
4524 || comp == LE_EXPR)
4525 return NULL_TREE;
4527 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4528 if (value_inside_range (val, vr->min, vr->max) == 1)
4529 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4531 return NULL_TREE;
4534 if (!usable_range_p (vr, strict_overflow_p))
4535 return NULL_TREE;
4537 if (comp == EQ_EXPR)
4539 /* EQ_EXPR may only be computed if VR represents exactly
4540 one value. */
4541 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4543 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4544 if (cmp == 0)
4545 return boolean_true_node;
4546 else if (cmp == -1 || cmp == 1 || cmp == 2)
4547 return boolean_false_node;
4549 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4550 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4551 return boolean_false_node;
4553 return NULL_TREE;
4555 else if (comp == NE_EXPR)
4557 /* If VAL is not inside VR, then they are always different. */
4558 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4559 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4560 return boolean_true_node;
4562 /* If VR represents exactly one value equal to VAL, then return
4563 false. */
4564 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4565 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4566 return boolean_false_node;
4568 /* Otherwise, they may or may not be different. */
4569 return NULL_TREE;
4571 else if (comp == LT_EXPR || comp == LE_EXPR)
4573 int tst;
4575 /* If VR is to the left of VAL, return true. */
4576 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4577 if ((comp == LT_EXPR && tst == -1)
4578 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4580 if (overflow_infinity_range_p (vr))
4581 *strict_overflow_p = true;
4582 return boolean_true_node;
4585 /* If VR is to the right of VAL, return false. */
4586 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4587 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4588 || (comp == LE_EXPR && tst == 1))
4590 if (overflow_infinity_range_p (vr))
4591 *strict_overflow_p = true;
4592 return boolean_false_node;
4595 /* Otherwise, we don't know. */
4596 return NULL_TREE;
4598 else if (comp == GT_EXPR || comp == GE_EXPR)
4600 int tst;
4602 /* If VR is to the right of VAL, return true. */
4603 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4604 if ((comp == GT_EXPR && tst == 1)
4605 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4607 if (overflow_infinity_range_p (vr))
4608 *strict_overflow_p = true;
4609 return boolean_true_node;
4612 /* If VR is to the left of VAL, return false. */
4613 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4614 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4615 || (comp == GE_EXPR && tst == -1))
4617 if (overflow_infinity_range_p (vr))
4618 *strict_overflow_p = true;
4619 return boolean_false_node;
4622 /* Otherwise, we don't know. */
4623 return NULL_TREE;
4626 gcc_unreachable ();
4630 /* Debugging dumps. */
4632 void dump_value_range (FILE *, value_range *);
4633 void debug_value_range (value_range *);
4634 void dump_all_value_ranges (FILE *);
4635 void debug_all_value_ranges (void);
4636 void dump_vr_equiv (FILE *, bitmap);
4637 void debug_vr_equiv (bitmap);
4640 /* Dump value range VR to FILE. */
4642 void
4643 dump_value_range (FILE *file, value_range *vr)
4645 if (vr == NULL)
4646 fprintf (file, "[]");
4647 else if (vr->type == VR_UNDEFINED)
4648 fprintf (file, "UNDEFINED");
4649 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4651 tree type = TREE_TYPE (vr->min);
4653 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4655 if (is_negative_overflow_infinity (vr->min))
4656 fprintf (file, "-INF(OVF)");
4657 else if (INTEGRAL_TYPE_P (type)
4658 && !TYPE_UNSIGNED (type)
4659 && vrp_val_is_min (vr->min))
4660 fprintf (file, "-INF");
4661 else
4662 print_generic_expr (file, vr->min, 0);
4664 fprintf (file, ", ");
4666 if (is_positive_overflow_infinity (vr->max))
4667 fprintf (file, "+INF(OVF)");
4668 else if (INTEGRAL_TYPE_P (type)
4669 && vrp_val_is_max (vr->max))
4670 fprintf (file, "+INF");
4671 else
4672 print_generic_expr (file, vr->max, 0);
4674 fprintf (file, "]");
4676 if (vr->equiv)
4678 bitmap_iterator bi;
4679 unsigned i, c = 0;
4681 fprintf (file, " EQUIVALENCES: { ");
4683 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4685 print_generic_expr (file, ssa_name (i), 0);
4686 fprintf (file, " ");
4687 c++;
4690 fprintf (file, "} (%u elements)", c);
4693 else if (vr->type == VR_VARYING)
4694 fprintf (file, "VARYING");
4695 else
4696 fprintf (file, "INVALID RANGE");
4700 /* Dump value range VR to stderr. */
4702 DEBUG_FUNCTION void
4703 debug_value_range (value_range *vr)
4705 dump_value_range (stderr, vr);
4706 fprintf (stderr, "\n");
4710 /* Dump value ranges of all SSA_NAMEs to FILE. */
4712 void
4713 dump_all_value_ranges (FILE *file)
4715 size_t i;
4717 for (i = 0; i < num_vr_values; i++)
4719 if (vr_value[i])
4721 print_generic_expr (file, ssa_name (i), 0);
4722 fprintf (file, ": ");
4723 dump_value_range (file, vr_value[i]);
4724 fprintf (file, "\n");
4728 fprintf (file, "\n");
4732 /* Dump all value ranges to stderr. */
4734 DEBUG_FUNCTION void
4735 debug_all_value_ranges (void)
4737 dump_all_value_ranges (stderr);
4741 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4742 create a new SSA name N and return the assertion assignment
4743 'N = ASSERT_EXPR <V, V OP W>'. */
4745 static gimple *
4746 build_assert_expr_for (tree cond, tree v)
4748 tree a;
4749 gassign *assertion;
4751 gcc_assert (TREE_CODE (v) == SSA_NAME
4752 && COMPARISON_CLASS_P (cond));
4754 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4755 assertion = gimple_build_assign (NULL_TREE, a);
4757 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4758 operand of the ASSERT_EXPR. Create it so the new name and the old one
4759 are registered in the replacement table so that we can fix the SSA web
4760 after adding all the ASSERT_EXPRs. */
4761 create_new_def_for (v, assertion, NULL);
4763 return assertion;
4767 /* Return false if EXPR is a predicate expression involving floating
4768 point values. */
4770 static inline bool
4771 fp_predicate (gimple *stmt)
4773 GIMPLE_CHECK (stmt, GIMPLE_COND);
4775 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4778 /* If the range of values taken by OP can be inferred after STMT executes,
4779 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4780 describes the inferred range. Return true if a range could be
4781 inferred. */
4783 static bool
4784 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4786 *val_p = NULL_TREE;
4787 *comp_code_p = ERROR_MARK;
4789 /* Do not attempt to infer anything in names that flow through
4790 abnormal edges. */
4791 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4792 return false;
4794 /* Similarly, don't infer anything from statements that may throw
4795 exceptions. ??? Relax this requirement? */
4796 if (stmt_could_throw_p (stmt))
4797 return false;
4799 /* If STMT is the last statement of a basic block with no normal
4800 successors, there is no point inferring anything about any of its
4801 operands. We would not be able to find a proper insertion point
4802 for the assertion, anyway. */
4803 if (stmt_ends_bb_p (stmt))
4805 edge_iterator ei;
4806 edge e;
4808 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4809 if (!(e->flags & EDGE_ABNORMAL))
4810 break;
4811 if (e == NULL)
4812 return false;
4815 if (infer_nonnull_range (stmt, op))
4817 *val_p = build_int_cst (TREE_TYPE (op), 0);
4818 *comp_code_p = NE_EXPR;
4819 return true;
4822 return false;
4826 void dump_asserts_for (FILE *, tree);
4827 void debug_asserts_for (tree);
4828 void dump_all_asserts (FILE *);
4829 void debug_all_asserts (void);
4831 /* Dump all the registered assertions for NAME to FILE. */
4833 void
4834 dump_asserts_for (FILE *file, tree name)
4836 assert_locus *loc;
4838 fprintf (file, "Assertions to be inserted for ");
4839 print_generic_expr (file, name, 0);
4840 fprintf (file, "\n");
4842 loc = asserts_for[SSA_NAME_VERSION (name)];
4843 while (loc)
4845 fprintf (file, "\t");
4846 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4847 fprintf (file, "\n\tBB #%d", loc->bb->index);
4848 if (loc->e)
4850 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4851 loc->e->dest->index);
4852 dump_edge_info (file, loc->e, dump_flags, 0);
4854 fprintf (file, "\n\tPREDICATE: ");
4855 print_generic_expr (file, name, 0);
4856 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4857 print_generic_expr (file, loc->val, 0);
4858 fprintf (file, "\n\n");
4859 loc = loc->next;
4862 fprintf (file, "\n");
4866 /* Dump all the registered assertions for NAME to stderr. */
4868 DEBUG_FUNCTION void
4869 debug_asserts_for (tree name)
4871 dump_asserts_for (stderr, name);
4875 /* Dump all the registered assertions for all the names to FILE. */
4877 void
4878 dump_all_asserts (FILE *file)
4880 unsigned i;
4881 bitmap_iterator bi;
4883 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4884 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4885 dump_asserts_for (file, ssa_name (i));
4886 fprintf (file, "\n");
4890 /* Dump all the registered assertions for all the names to stderr. */
4892 DEBUG_FUNCTION void
4893 debug_all_asserts (void)
4895 dump_all_asserts (stderr);
4899 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4900 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4901 E->DEST, then register this location as a possible insertion point
4902 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4904 BB, E and SI provide the exact insertion point for the new
4905 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4906 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4907 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4908 must not be NULL. */
4910 static void
4911 register_new_assert_for (tree name, tree expr,
4912 enum tree_code comp_code,
4913 tree val,
4914 basic_block bb,
4915 edge e,
4916 gimple_stmt_iterator si)
4918 assert_locus *n, *loc, *last_loc;
4919 basic_block dest_bb;
4921 gcc_checking_assert (bb == NULL || e == NULL);
4923 if (e == NULL)
4924 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4925 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4927 /* Never build an assert comparing against an integer constant with
4928 TREE_OVERFLOW set. This confuses our undefined overflow warning
4929 machinery. */
4930 if (TREE_OVERFLOW_P (val))
4931 val = drop_tree_overflow (val);
4933 /* The new assertion A will be inserted at BB or E. We need to
4934 determine if the new location is dominated by a previously
4935 registered location for A. If we are doing an edge insertion,
4936 assume that A will be inserted at E->DEST. Note that this is not
4937 necessarily true.
4939 If E is a critical edge, it will be split. But even if E is
4940 split, the new block will dominate the same set of blocks that
4941 E->DEST dominates.
4943 The reverse, however, is not true, blocks dominated by E->DEST
4944 will not be dominated by the new block created to split E. So,
4945 if the insertion location is on a critical edge, we will not use
4946 the new location to move another assertion previously registered
4947 at a block dominated by E->DEST. */
4948 dest_bb = (bb) ? bb : e->dest;
4950 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4951 VAL at a block dominating DEST_BB, then we don't need to insert a new
4952 one. Similarly, if the same assertion already exists at a block
4953 dominated by DEST_BB and the new location is not on a critical
4954 edge, then update the existing location for the assertion (i.e.,
4955 move the assertion up in the dominance tree).
4957 Note, this is implemented as a simple linked list because there
4958 should not be more than a handful of assertions registered per
4959 name. If this becomes a performance problem, a table hashed by
4960 COMP_CODE and VAL could be implemented. */
4961 loc = asserts_for[SSA_NAME_VERSION (name)];
4962 last_loc = loc;
4963 while (loc)
4965 if (loc->comp_code == comp_code
4966 && (loc->val == val
4967 || operand_equal_p (loc->val, val, 0))
4968 && (loc->expr == expr
4969 || operand_equal_p (loc->expr, expr, 0)))
4971 /* If E is not a critical edge and DEST_BB
4972 dominates the existing location for the assertion, move
4973 the assertion up in the dominance tree by updating its
4974 location information. */
4975 if ((e == NULL || !EDGE_CRITICAL_P (e))
4976 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4978 loc->bb = dest_bb;
4979 loc->e = e;
4980 loc->si = si;
4981 return;
4985 /* Update the last node of the list and move to the next one. */
4986 last_loc = loc;
4987 loc = loc->next;
4990 /* If we didn't find an assertion already registered for
4991 NAME COMP_CODE VAL, add a new one at the end of the list of
4992 assertions associated with NAME. */
4993 n = XNEW (struct assert_locus);
4994 n->bb = dest_bb;
4995 n->e = e;
4996 n->si = si;
4997 n->comp_code = comp_code;
4998 n->val = val;
4999 n->expr = expr;
5000 n->next = NULL;
5002 if (last_loc)
5003 last_loc->next = n;
5004 else
5005 asserts_for[SSA_NAME_VERSION (name)] = n;
5007 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5010 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5011 Extract a suitable test code and value and store them into *CODE_P and
5012 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5014 If no extraction was possible, return FALSE, otherwise return TRUE.
5016 If INVERT is true, then we invert the result stored into *CODE_P. */
5018 static bool
5019 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5020 tree cond_op0, tree cond_op1,
5021 bool invert, enum tree_code *code_p,
5022 tree *val_p)
5024 enum tree_code comp_code;
5025 tree val;
5027 /* Otherwise, we have a comparison of the form NAME COMP VAL
5028 or VAL COMP NAME. */
5029 if (name == cond_op1)
5031 /* If the predicate is of the form VAL COMP NAME, flip
5032 COMP around because we need to register NAME as the
5033 first operand in the predicate. */
5034 comp_code = swap_tree_comparison (cond_code);
5035 val = cond_op0;
5037 else
5039 /* The comparison is of the form NAME COMP VAL, so the
5040 comparison code remains unchanged. */
5041 comp_code = cond_code;
5042 val = cond_op1;
5045 /* Invert the comparison code as necessary. */
5046 if (invert)
5047 comp_code = invert_tree_comparison (comp_code, 0);
5049 /* VRP does not handle float types. */
5050 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
5051 return false;
5053 /* Do not register always-false predicates.
5054 FIXME: this works around a limitation in fold() when dealing with
5055 enumerations. Given 'enum { N1, N2 } x;', fold will not
5056 fold 'if (x > N2)' to 'if (0)'. */
5057 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5058 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5060 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5061 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5063 if (comp_code == GT_EXPR
5064 && (!max
5065 || compare_values (val, max) == 0))
5066 return false;
5068 if (comp_code == LT_EXPR
5069 && (!min
5070 || compare_values (val, min) == 0))
5071 return false;
5073 *code_p = comp_code;
5074 *val_p = val;
5075 return true;
5078 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5079 (otherwise return VAL). VAL and MASK must be zero-extended for
5080 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5081 (to transform signed values into unsigned) and at the end xor
5082 SGNBIT back. */
5084 static wide_int
5085 masked_increment (const wide_int &val_in, const wide_int &mask,
5086 const wide_int &sgnbit, unsigned int prec)
5088 wide_int bit = wi::one (prec), res;
5089 unsigned int i;
5091 wide_int val = val_in ^ sgnbit;
5092 for (i = 0; i < prec; i++, bit += bit)
5094 res = mask;
5095 if ((res & bit) == 0)
5096 continue;
5097 res = bit - 1;
5098 res = (val + bit).and_not (res);
5099 res &= mask;
5100 if (wi::gtu_p (res, val))
5101 return res ^ sgnbit;
5103 return val ^ sgnbit;
5106 /* Try to register an edge assertion for SSA name NAME on edge E for
5107 the condition COND contributing to the conditional jump pointed to by BSI.
5108 Invert the condition COND if INVERT is true. */
5110 static void
5111 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5112 enum tree_code cond_code,
5113 tree cond_op0, tree cond_op1, bool invert)
5115 tree val;
5116 enum tree_code comp_code;
5118 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5119 cond_op0,
5120 cond_op1,
5121 invert, &comp_code, &val))
5122 return;
5124 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5125 reachable from E. */
5126 if (live_on_edge (e, name)
5127 && !has_single_use (name))
5128 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5130 /* In the case of NAME <= CST and NAME being defined as
5131 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5132 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5133 This catches range and anti-range tests. */
5134 if ((comp_code == LE_EXPR
5135 || comp_code == GT_EXPR)
5136 && TREE_CODE (val) == INTEGER_CST
5137 && TYPE_UNSIGNED (TREE_TYPE (val)))
5139 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5140 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5142 /* Extract CST2 from the (optional) addition. */
5143 if (is_gimple_assign (def_stmt)
5144 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5146 name2 = gimple_assign_rhs1 (def_stmt);
5147 cst2 = gimple_assign_rhs2 (def_stmt);
5148 if (TREE_CODE (name2) == SSA_NAME
5149 && TREE_CODE (cst2) == INTEGER_CST)
5150 def_stmt = SSA_NAME_DEF_STMT (name2);
5153 /* Extract NAME2 from the (optional) sign-changing cast. */
5154 if (gimple_assign_cast_p (def_stmt))
5156 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5157 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5158 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5159 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5160 name3 = gimple_assign_rhs1 (def_stmt);
5163 /* If name3 is used later, create an ASSERT_EXPR for it. */
5164 if (name3 != NULL_TREE
5165 && TREE_CODE (name3) == SSA_NAME
5166 && (cst2 == NULL_TREE
5167 || TREE_CODE (cst2) == INTEGER_CST)
5168 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5169 && live_on_edge (e, name3)
5170 && !has_single_use (name3))
5172 tree tmp;
5174 /* Build an expression for the range test. */
5175 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5176 if (cst2 != NULL_TREE)
5177 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5179 if (dump_file)
5181 fprintf (dump_file, "Adding assert for ");
5182 print_generic_expr (dump_file, name3, 0);
5183 fprintf (dump_file, " from ");
5184 print_generic_expr (dump_file, tmp, 0);
5185 fprintf (dump_file, "\n");
5188 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5191 /* If name2 is used later, create an ASSERT_EXPR for it. */
5192 if (name2 != NULL_TREE
5193 && TREE_CODE (name2) == SSA_NAME
5194 && TREE_CODE (cst2) == INTEGER_CST
5195 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5196 && live_on_edge (e, name2)
5197 && !has_single_use (name2))
5199 tree tmp;
5201 /* Build an expression for the range test. */
5202 tmp = name2;
5203 if (TREE_TYPE (name) != TREE_TYPE (name2))
5204 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5205 if (cst2 != NULL_TREE)
5206 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5208 if (dump_file)
5210 fprintf (dump_file, "Adding assert for ");
5211 print_generic_expr (dump_file, name2, 0);
5212 fprintf (dump_file, " from ");
5213 print_generic_expr (dump_file, tmp, 0);
5214 fprintf (dump_file, "\n");
5217 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5221 /* In the case of post-in/decrement tests like if (i++) ... and uses
5222 of the in/decremented value on the edge the extra name we want to
5223 assert for is not on the def chain of the name compared. Instead
5224 it is in the set of use stmts.
5225 Similar cases happen for conversions that were simplified through
5226 fold_{sign_changed,widened}_comparison. */
5227 if ((comp_code == NE_EXPR
5228 || comp_code == EQ_EXPR)
5229 && TREE_CODE (val) == INTEGER_CST)
5231 imm_use_iterator ui;
5232 gimple *use_stmt;
5233 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5235 if (!is_gimple_assign (use_stmt))
5236 continue;
5238 /* Cut off to use-stmts that are dominating the predecessor. */
5239 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5240 continue;
5242 tree name2 = gimple_assign_lhs (use_stmt);
5243 if (TREE_CODE (name2) != SSA_NAME
5244 || !live_on_edge (e, name2))
5245 continue;
5247 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5248 tree cst;
5249 if (code == PLUS_EXPR
5250 || code == MINUS_EXPR)
5252 cst = gimple_assign_rhs2 (use_stmt);
5253 if (TREE_CODE (cst) != INTEGER_CST)
5254 continue;
5255 cst = int_const_binop (code, val, cst);
5257 else if (CONVERT_EXPR_CODE_P (code))
5259 /* For truncating conversions we cannot record
5260 an inequality. */
5261 if (comp_code == NE_EXPR
5262 && (TYPE_PRECISION (TREE_TYPE (name2))
5263 < TYPE_PRECISION (TREE_TYPE (name))))
5264 continue;
5265 cst = fold_convert (TREE_TYPE (name2), val);
5267 else
5268 continue;
5270 if (TREE_OVERFLOW_P (cst))
5271 cst = drop_tree_overflow (cst);
5272 register_new_assert_for (name2, name2, comp_code, cst,
5273 NULL, e, bsi);
5277 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5278 && TREE_CODE (val) == INTEGER_CST)
5280 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5281 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5282 tree val2 = NULL_TREE;
5283 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5284 wide_int mask = wi::zero (prec);
5285 unsigned int nprec = prec;
5286 enum tree_code rhs_code = ERROR_MARK;
5288 if (is_gimple_assign (def_stmt))
5289 rhs_code = gimple_assign_rhs_code (def_stmt);
5291 /* Add asserts for NAME cmp CST and NAME being defined
5292 as NAME = (int) NAME2. */
5293 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5294 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5295 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5296 && gimple_assign_cast_p (def_stmt))
5298 name2 = gimple_assign_rhs1 (def_stmt);
5299 if (CONVERT_EXPR_CODE_P (rhs_code)
5300 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5301 && TYPE_UNSIGNED (TREE_TYPE (name2))
5302 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5303 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5304 || !tree_int_cst_equal (val,
5305 TYPE_MIN_VALUE (TREE_TYPE (val))))
5306 && live_on_edge (e, name2)
5307 && !has_single_use (name2))
5309 tree tmp, cst;
5310 enum tree_code new_comp_code = comp_code;
5312 cst = fold_convert (TREE_TYPE (name2),
5313 TYPE_MIN_VALUE (TREE_TYPE (val)));
5314 /* Build an expression for the range test. */
5315 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5316 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5317 fold_convert (TREE_TYPE (name2), val));
5318 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5320 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5321 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5322 build_int_cst (TREE_TYPE (name2), 1));
5325 if (dump_file)
5327 fprintf (dump_file, "Adding assert for ");
5328 print_generic_expr (dump_file, name2, 0);
5329 fprintf (dump_file, " from ");
5330 print_generic_expr (dump_file, tmp, 0);
5331 fprintf (dump_file, "\n");
5334 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5335 e, bsi);
5339 /* Add asserts for NAME cmp CST and NAME being defined as
5340 NAME = NAME2 >> CST2.
5342 Extract CST2 from the right shift. */
5343 if (rhs_code == RSHIFT_EXPR)
5345 name2 = gimple_assign_rhs1 (def_stmt);
5346 cst2 = gimple_assign_rhs2 (def_stmt);
5347 if (TREE_CODE (name2) == SSA_NAME
5348 && tree_fits_uhwi_p (cst2)
5349 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5350 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5351 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5352 && live_on_edge (e, name2)
5353 && !has_single_use (name2))
5355 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5356 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5359 if (val2 != NULL_TREE
5360 && TREE_CODE (val2) == INTEGER_CST
5361 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5362 TREE_TYPE (val),
5363 val2, cst2), val))
5365 enum tree_code new_comp_code = comp_code;
5366 tree tmp, new_val;
5368 tmp = name2;
5369 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5371 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5373 tree type = build_nonstandard_integer_type (prec, 1);
5374 tmp = build1 (NOP_EXPR, type, name2);
5375 val2 = fold_convert (type, val2);
5377 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5378 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5379 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5381 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5383 wide_int minval
5384 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5385 new_val = val2;
5386 if (minval == new_val)
5387 new_val = NULL_TREE;
5389 else
5391 wide_int maxval
5392 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5393 mask |= val2;
5394 if (mask == maxval)
5395 new_val = NULL_TREE;
5396 else
5397 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5400 if (new_val)
5402 if (dump_file)
5404 fprintf (dump_file, "Adding assert for ");
5405 print_generic_expr (dump_file, name2, 0);
5406 fprintf (dump_file, " from ");
5407 print_generic_expr (dump_file, tmp, 0);
5408 fprintf (dump_file, "\n");
5411 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5412 NULL, e, bsi);
5416 /* Add asserts for NAME cmp CST and NAME being defined as
5417 NAME = NAME2 & CST2.
5419 Extract CST2 from the and.
5421 Also handle
5422 NAME = (unsigned) NAME2;
5423 casts where NAME's type is unsigned and has smaller precision
5424 than NAME2's type as if it was NAME = NAME2 & MASK. */
5425 names[0] = NULL_TREE;
5426 names[1] = NULL_TREE;
5427 cst2 = NULL_TREE;
5428 if (rhs_code == BIT_AND_EXPR
5429 || (CONVERT_EXPR_CODE_P (rhs_code)
5430 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5431 && TYPE_UNSIGNED (TREE_TYPE (val))
5432 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5433 > prec))
5435 name2 = gimple_assign_rhs1 (def_stmt);
5436 if (rhs_code == BIT_AND_EXPR)
5437 cst2 = gimple_assign_rhs2 (def_stmt);
5438 else
5440 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5441 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5443 if (TREE_CODE (name2) == SSA_NAME
5444 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5445 && TREE_CODE (cst2) == INTEGER_CST
5446 && !integer_zerop (cst2)
5447 && (nprec > 1
5448 || TYPE_UNSIGNED (TREE_TYPE (val))))
5450 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5451 if (gimple_assign_cast_p (def_stmt2))
5453 names[1] = gimple_assign_rhs1 (def_stmt2);
5454 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5455 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5456 || (TYPE_PRECISION (TREE_TYPE (name2))
5457 != TYPE_PRECISION (TREE_TYPE (names[1])))
5458 || !live_on_edge (e, names[1])
5459 || has_single_use (names[1]))
5460 names[1] = NULL_TREE;
5462 if (live_on_edge (e, name2)
5463 && !has_single_use (name2))
5464 names[0] = name2;
5467 if (names[0] || names[1])
5469 wide_int minv, maxv, valv, cst2v;
5470 wide_int tem, sgnbit;
5471 bool valid_p = false, valn, cst2n;
5472 enum tree_code ccode = comp_code;
5474 valv = wide_int::from (val, nprec, UNSIGNED);
5475 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5476 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5477 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5478 /* If CST2 doesn't have most significant bit set,
5479 but VAL is negative, we have comparison like
5480 if ((x & 0x123) > -4) (always true). Just give up. */
5481 if (!cst2n && valn)
5482 ccode = ERROR_MARK;
5483 if (cst2n)
5484 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5485 else
5486 sgnbit = wi::zero (nprec);
5487 minv = valv & cst2v;
5488 switch (ccode)
5490 case EQ_EXPR:
5491 /* Minimum unsigned value for equality is VAL & CST2
5492 (should be equal to VAL, otherwise we probably should
5493 have folded the comparison into false) and
5494 maximum unsigned value is VAL | ~CST2. */
5495 maxv = valv | ~cst2v;
5496 valid_p = true;
5497 break;
5499 case NE_EXPR:
5500 tem = valv | ~cst2v;
5501 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5502 if (valv == 0)
5504 cst2n = false;
5505 sgnbit = wi::zero (nprec);
5506 goto gt_expr;
5508 /* If (VAL | ~CST2) is all ones, handle it as
5509 (X & CST2) < VAL. */
5510 if (tem == -1)
5512 cst2n = false;
5513 valn = false;
5514 sgnbit = wi::zero (nprec);
5515 goto lt_expr;
5517 if (!cst2n && wi::neg_p (cst2v))
5518 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5519 if (sgnbit != 0)
5521 if (valv == sgnbit)
5523 cst2n = true;
5524 valn = true;
5525 goto gt_expr;
5527 if (tem == wi::mask (nprec - 1, false, nprec))
5529 cst2n = true;
5530 goto lt_expr;
5532 if (!cst2n)
5533 sgnbit = wi::zero (nprec);
5535 break;
5537 case GE_EXPR:
5538 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5539 is VAL and maximum unsigned value is ~0. For signed
5540 comparison, if CST2 doesn't have most significant bit
5541 set, handle it similarly. If CST2 has MSB set,
5542 the minimum is the same, and maximum is ~0U/2. */
5543 if (minv != valv)
5545 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5546 VAL. */
5547 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5548 if (minv == valv)
5549 break;
5551 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5552 valid_p = true;
5553 break;
5555 case GT_EXPR:
5556 gt_expr:
5557 /* Find out smallest MINV where MINV > VAL
5558 && (MINV & CST2) == MINV, if any. If VAL is signed and
5559 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5560 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5561 if (minv == valv)
5562 break;
5563 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5564 valid_p = true;
5565 break;
5567 case LE_EXPR:
5568 /* Minimum unsigned value for <= is 0 and maximum
5569 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5570 Otherwise, find smallest VAL2 where VAL2 > VAL
5571 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5572 as maximum.
5573 For signed comparison, if CST2 doesn't have most
5574 significant bit set, handle it similarly. If CST2 has
5575 MSB set, the maximum is the same and minimum is INT_MIN. */
5576 if (minv == valv)
5577 maxv = valv;
5578 else
5580 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5581 if (maxv == valv)
5582 break;
5583 maxv -= 1;
5585 maxv |= ~cst2v;
5586 minv = sgnbit;
5587 valid_p = true;
5588 break;
5590 case LT_EXPR:
5591 lt_expr:
5592 /* Minimum unsigned value for < is 0 and maximum
5593 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5594 Otherwise, find smallest VAL2 where VAL2 > VAL
5595 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5596 as maximum.
5597 For signed comparison, if CST2 doesn't have most
5598 significant bit set, handle it similarly. If CST2 has
5599 MSB set, the maximum is the same and minimum is INT_MIN. */
5600 if (minv == valv)
5602 if (valv == sgnbit)
5603 break;
5604 maxv = valv;
5606 else
5608 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5609 if (maxv == valv)
5610 break;
5612 maxv -= 1;
5613 maxv |= ~cst2v;
5614 minv = sgnbit;
5615 valid_p = true;
5616 break;
5618 default:
5619 break;
5621 if (valid_p
5622 && (maxv - minv) != -1)
5624 tree tmp, new_val, type;
5625 int i;
5627 for (i = 0; i < 2; i++)
5628 if (names[i])
5630 wide_int maxv2 = maxv;
5631 tmp = names[i];
5632 type = TREE_TYPE (names[i]);
5633 if (!TYPE_UNSIGNED (type))
5635 type = build_nonstandard_integer_type (nprec, 1);
5636 tmp = build1 (NOP_EXPR, type, names[i]);
5638 if (minv != 0)
5640 tmp = build2 (PLUS_EXPR, type, tmp,
5641 wide_int_to_tree (type, -minv));
5642 maxv2 = maxv - minv;
5644 new_val = wide_int_to_tree (type, maxv2);
5646 if (dump_file)
5648 fprintf (dump_file, "Adding assert for ");
5649 print_generic_expr (dump_file, names[i], 0);
5650 fprintf (dump_file, " from ");
5651 print_generic_expr (dump_file, tmp, 0);
5652 fprintf (dump_file, "\n");
5655 register_new_assert_for (names[i], tmp, LE_EXPR,
5656 new_val, NULL, e, bsi);
5663 /* OP is an operand of a truth value expression which is known to have
5664 a particular value. Register any asserts for OP and for any
5665 operands in OP's defining statement.
5667 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5668 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5670 static void
5671 register_edge_assert_for_1 (tree op, enum tree_code code,
5672 edge e, gimple_stmt_iterator bsi)
5674 gimple *op_def;
5675 tree val;
5676 enum tree_code rhs_code;
5678 /* We only care about SSA_NAMEs. */
5679 if (TREE_CODE (op) != SSA_NAME)
5680 return;
5682 /* We know that OP will have a zero or nonzero value. If OP is used
5683 more than once go ahead and register an assert for OP. */
5684 if (live_on_edge (e, op)
5685 && !has_single_use (op))
5687 val = build_int_cst (TREE_TYPE (op), 0);
5688 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5691 /* Now look at how OP is set. If it's set from a comparison,
5692 a truth operation or some bit operations, then we may be able
5693 to register information about the operands of that assignment. */
5694 op_def = SSA_NAME_DEF_STMT (op);
5695 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5696 return;
5698 rhs_code = gimple_assign_rhs_code (op_def);
5700 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5702 bool invert = (code == EQ_EXPR ? true : false);
5703 tree op0 = gimple_assign_rhs1 (op_def);
5704 tree op1 = gimple_assign_rhs2 (op_def);
5706 if (TREE_CODE (op0) == SSA_NAME)
5707 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5708 if (TREE_CODE (op1) == SSA_NAME)
5709 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5711 else if ((code == NE_EXPR
5712 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5713 || (code == EQ_EXPR
5714 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5716 /* Recurse on each operand. */
5717 tree op0 = gimple_assign_rhs1 (op_def);
5718 tree op1 = gimple_assign_rhs2 (op_def);
5719 if (TREE_CODE (op0) == SSA_NAME
5720 && has_single_use (op0))
5721 register_edge_assert_for_1 (op0, code, e, bsi);
5722 if (TREE_CODE (op1) == SSA_NAME
5723 && has_single_use (op1))
5724 register_edge_assert_for_1 (op1, code, e, bsi);
5726 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5727 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5729 /* Recurse, flipping CODE. */
5730 code = invert_tree_comparison (code, false);
5731 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5733 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5735 /* Recurse through the copy. */
5736 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5738 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5740 /* Recurse through the type conversion, unless it is a narrowing
5741 conversion or conversion from non-integral type. */
5742 tree rhs = gimple_assign_rhs1 (op_def);
5743 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5744 && (TYPE_PRECISION (TREE_TYPE (rhs))
5745 <= TYPE_PRECISION (TREE_TYPE (op))))
5746 register_edge_assert_for_1 (rhs, code, e, bsi);
5750 /* Try to register an edge assertion for SSA name NAME on edge E for
5751 the condition COND contributing to the conditional jump pointed to by
5752 SI. */
5754 static void
5755 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5756 enum tree_code cond_code, tree cond_op0,
5757 tree cond_op1)
5759 tree val;
5760 enum tree_code comp_code;
5761 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5763 /* Do not attempt to infer anything in names that flow through
5764 abnormal edges. */
5765 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5766 return;
5768 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5769 cond_op0, cond_op1,
5770 is_else_edge,
5771 &comp_code, &val))
5772 return;
5774 /* Register ASSERT_EXPRs for name. */
5775 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5776 cond_op1, is_else_edge);
5779 /* If COND is effectively an equality test of an SSA_NAME against
5780 the value zero or one, then we may be able to assert values
5781 for SSA_NAMEs which flow into COND. */
5783 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5784 statement of NAME we can assert both operands of the BIT_AND_EXPR
5785 have nonzero value. */
5786 if (((comp_code == EQ_EXPR && integer_onep (val))
5787 || (comp_code == NE_EXPR && integer_zerop (val))))
5789 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5791 if (is_gimple_assign (def_stmt)
5792 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5794 tree op0 = gimple_assign_rhs1 (def_stmt);
5795 tree op1 = gimple_assign_rhs2 (def_stmt);
5796 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5797 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5801 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5802 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5803 have zero value. */
5804 if (((comp_code == EQ_EXPR && integer_zerop (val))
5805 || (comp_code == NE_EXPR && integer_onep (val))))
5807 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5809 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5810 necessarily zero value, or if type-precision is one. */
5811 if (is_gimple_assign (def_stmt)
5812 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5813 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5814 || comp_code == EQ_EXPR)))
5816 tree op0 = gimple_assign_rhs1 (def_stmt);
5817 tree op1 = gimple_assign_rhs2 (def_stmt);
5818 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5819 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5825 /* Determine whether the outgoing edges of BB should receive an
5826 ASSERT_EXPR for each of the operands of BB's LAST statement.
5827 The last statement of BB must be a COND_EXPR.
5829 If any of the sub-graphs rooted at BB have an interesting use of
5830 the predicate operands, an assert location node is added to the
5831 list of assertions for the corresponding operands. */
5833 static void
5834 find_conditional_asserts (basic_block bb, gcond *last)
5836 gimple_stmt_iterator bsi;
5837 tree op;
5838 edge_iterator ei;
5839 edge e;
5840 ssa_op_iter iter;
5842 bsi = gsi_for_stmt (last);
5844 /* Look for uses of the operands in each of the sub-graphs
5845 rooted at BB. We need to check each of the outgoing edges
5846 separately, so that we know what kind of ASSERT_EXPR to
5847 insert. */
5848 FOR_EACH_EDGE (e, ei, bb->succs)
5850 if (e->dest == bb)
5851 continue;
5853 /* Register the necessary assertions for each operand in the
5854 conditional predicate. */
5855 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5856 register_edge_assert_for (op, e, bsi,
5857 gimple_cond_code (last),
5858 gimple_cond_lhs (last),
5859 gimple_cond_rhs (last));
5863 struct case_info
5865 tree expr;
5866 basic_block bb;
5869 /* Compare two case labels sorting first by the destination bb index
5870 and then by the case value. */
5872 static int
5873 compare_case_labels (const void *p1, const void *p2)
5875 const struct case_info *ci1 = (const struct case_info *) p1;
5876 const struct case_info *ci2 = (const struct case_info *) p2;
5877 int idx1 = ci1->bb->index;
5878 int idx2 = ci2->bb->index;
5880 if (idx1 < idx2)
5881 return -1;
5882 else if (idx1 == idx2)
5884 /* Make sure the default label is first in a group. */
5885 if (!CASE_LOW (ci1->expr))
5886 return -1;
5887 else if (!CASE_LOW (ci2->expr))
5888 return 1;
5889 else
5890 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5891 CASE_LOW (ci2->expr));
5893 else
5894 return 1;
5897 /* Determine whether the outgoing edges of BB should receive an
5898 ASSERT_EXPR for each of the operands of BB's LAST statement.
5899 The last statement of BB must be a SWITCH_EXPR.
5901 If any of the sub-graphs rooted at BB have an interesting use of
5902 the predicate operands, an assert location node is added to the
5903 list of assertions for the corresponding operands. */
5905 static void
5906 find_switch_asserts (basic_block bb, gswitch *last)
5908 gimple_stmt_iterator bsi;
5909 tree op;
5910 edge e;
5911 struct case_info *ci;
5912 size_t n = gimple_switch_num_labels (last);
5913 #if GCC_VERSION >= 4000
5914 unsigned int idx;
5915 #else
5916 /* Work around GCC 3.4 bug (PR 37086). */
5917 volatile unsigned int idx;
5918 #endif
5920 bsi = gsi_for_stmt (last);
5921 op = gimple_switch_index (last);
5922 if (TREE_CODE (op) != SSA_NAME)
5923 return;
5925 /* Build a vector of case labels sorted by destination label. */
5926 ci = XNEWVEC (struct case_info, n);
5927 for (idx = 0; idx < n; ++idx)
5929 ci[idx].expr = gimple_switch_label (last, idx);
5930 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5932 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5934 for (idx = 0; idx < n; ++idx)
5936 tree min, max;
5937 tree cl = ci[idx].expr;
5938 basic_block cbb = ci[idx].bb;
5940 min = CASE_LOW (cl);
5941 max = CASE_HIGH (cl);
5943 /* If there are multiple case labels with the same destination
5944 we need to combine them to a single value range for the edge. */
5945 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5947 /* Skip labels until the last of the group. */
5948 do {
5949 ++idx;
5950 } while (idx < n && cbb == ci[idx].bb);
5951 --idx;
5953 /* Pick up the maximum of the case label range. */
5954 if (CASE_HIGH (ci[idx].expr))
5955 max = CASE_HIGH (ci[idx].expr);
5956 else
5957 max = CASE_LOW (ci[idx].expr);
5960 /* Nothing to do if the range includes the default label until we
5961 can register anti-ranges. */
5962 if (min == NULL_TREE)
5963 continue;
5965 /* Find the edge to register the assert expr on. */
5966 e = find_edge (bb, cbb);
5968 /* Register the necessary assertions for the operand in the
5969 SWITCH_EXPR. */
5970 register_edge_assert_for (op, e, bsi,
5971 max ? GE_EXPR : EQ_EXPR,
5972 op, fold_convert (TREE_TYPE (op), min));
5973 if (max)
5974 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
5975 fold_convert (TREE_TYPE (op), max));
5978 XDELETEVEC (ci);
5982 /* Traverse all the statements in block BB looking for statements that
5983 may generate useful assertions for the SSA names in their operand.
5984 If a statement produces a useful assertion A for name N_i, then the
5985 list of assertions already generated for N_i is scanned to
5986 determine if A is actually needed.
5988 If N_i already had the assertion A at a location dominating the
5989 current location, then nothing needs to be done. Otherwise, the
5990 new location for A is recorded instead.
5992 1- For every statement S in BB, all the variables used by S are
5993 added to bitmap FOUND_IN_SUBGRAPH.
5995 2- If statement S uses an operand N in a way that exposes a known
5996 value range for N, then if N was not already generated by an
5997 ASSERT_EXPR, create a new assert location for N. For instance,
5998 if N is a pointer and the statement dereferences it, we can
5999 assume that N is not NULL.
6001 3- COND_EXPRs are a special case of #2. We can derive range
6002 information from the predicate but need to insert different
6003 ASSERT_EXPRs for each of the sub-graphs rooted at the
6004 conditional block. If the last statement of BB is a conditional
6005 expression of the form 'X op Y', then
6007 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6009 b) If the conditional is the only entry point to the sub-graph
6010 corresponding to the THEN_CLAUSE, recurse into it. On
6011 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6012 an ASSERT_EXPR is added for the corresponding variable.
6014 c) Repeat step (b) on the ELSE_CLAUSE.
6016 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6018 For instance,
6020 if (a == 9)
6021 b = a;
6022 else
6023 b = c + 1;
6025 In this case, an assertion on the THEN clause is useful to
6026 determine that 'a' is always 9 on that edge. However, an assertion
6027 on the ELSE clause would be unnecessary.
6029 4- If BB does not end in a conditional expression, then we recurse
6030 into BB's dominator children.
6032 At the end of the recursive traversal, every SSA name will have a
6033 list of locations where ASSERT_EXPRs should be added. When a new
6034 location for name N is found, it is registered by calling
6035 register_new_assert_for. That function keeps track of all the
6036 registered assertions to prevent adding unnecessary assertions.
6037 For instance, if a pointer P_4 is dereferenced more than once in a
6038 dominator tree, only the location dominating all the dereference of
6039 P_4 will receive an ASSERT_EXPR. */
6041 static void
6042 find_assert_locations_1 (basic_block bb, sbitmap live)
6044 gimple *last;
6046 last = last_stmt (bb);
6048 /* If BB's last statement is a conditional statement involving integer
6049 operands, determine if we need to add ASSERT_EXPRs. */
6050 if (last
6051 && gimple_code (last) == GIMPLE_COND
6052 && !fp_predicate (last)
6053 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6054 find_conditional_asserts (bb, as_a <gcond *> (last));
6056 /* If BB's last statement is a switch statement involving integer
6057 operands, determine if we need to add ASSERT_EXPRs. */
6058 if (last
6059 && gimple_code (last) == GIMPLE_SWITCH
6060 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6061 find_switch_asserts (bb, as_a <gswitch *> (last));
6063 /* Traverse all the statements in BB marking used names and looking
6064 for statements that may infer assertions for their used operands. */
6065 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6066 gsi_prev (&si))
6068 gimple *stmt;
6069 tree op;
6070 ssa_op_iter i;
6072 stmt = gsi_stmt (si);
6074 if (is_gimple_debug (stmt))
6075 continue;
6077 /* See if we can derive an assertion for any of STMT's operands. */
6078 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6080 tree value;
6081 enum tree_code comp_code;
6083 /* If op is not live beyond this stmt, do not bother to insert
6084 asserts for it. */
6085 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6086 continue;
6088 /* If OP is used in such a way that we can infer a value
6089 range for it, and we don't find a previous assertion for
6090 it, create a new assertion location node for OP. */
6091 if (infer_value_range (stmt, op, &comp_code, &value))
6093 /* If we are able to infer a nonzero value range for OP,
6094 then walk backwards through the use-def chain to see if OP
6095 was set via a typecast.
6097 If so, then we can also infer a nonzero value range
6098 for the operand of the NOP_EXPR. */
6099 if (comp_code == NE_EXPR && integer_zerop (value))
6101 tree t = op;
6102 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6104 while (is_gimple_assign (def_stmt)
6105 && CONVERT_EXPR_CODE_P
6106 (gimple_assign_rhs_code (def_stmt))
6107 && TREE_CODE
6108 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6109 && POINTER_TYPE_P
6110 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6112 t = gimple_assign_rhs1 (def_stmt);
6113 def_stmt = SSA_NAME_DEF_STMT (t);
6115 /* Note we want to register the assert for the
6116 operand of the NOP_EXPR after SI, not after the
6117 conversion. */
6118 if (! has_single_use (t))
6119 register_new_assert_for (t, t, comp_code, value,
6120 bb, NULL, si);
6124 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6128 /* Update live. */
6129 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6130 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6131 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6132 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6135 /* Traverse all PHI nodes in BB, updating live. */
6136 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6137 gsi_next (&si))
6139 use_operand_p arg_p;
6140 ssa_op_iter i;
6141 gphi *phi = si.phi ();
6142 tree res = gimple_phi_result (phi);
6144 if (virtual_operand_p (res))
6145 continue;
6147 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6149 tree arg = USE_FROM_PTR (arg_p);
6150 if (TREE_CODE (arg) == SSA_NAME)
6151 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6154 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6158 /* Do an RPO walk over the function computing SSA name liveness
6159 on-the-fly and deciding on assert expressions to insert. */
6161 static void
6162 find_assert_locations (void)
6164 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6165 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6166 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6167 int rpo_cnt, i;
6169 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6170 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6171 for (i = 0; i < rpo_cnt; ++i)
6172 bb_rpo[rpo[i]] = i;
6174 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6175 the order we compute liveness and insert asserts we otherwise
6176 fail to insert asserts into the loop latch. */
6177 loop_p loop;
6178 FOR_EACH_LOOP (loop, 0)
6180 i = loop->latch->index;
6181 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6182 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6183 !gsi_end_p (gsi); gsi_next (&gsi))
6185 gphi *phi = gsi.phi ();
6186 if (virtual_operand_p (gimple_phi_result (phi)))
6187 continue;
6188 tree arg = gimple_phi_arg_def (phi, j);
6189 if (TREE_CODE (arg) == SSA_NAME)
6191 if (live[i] == NULL)
6193 live[i] = sbitmap_alloc (num_ssa_names);
6194 bitmap_clear (live[i]);
6196 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6201 for (i = rpo_cnt - 1; i >= 0; --i)
6203 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6204 edge e;
6205 edge_iterator ei;
6207 if (!live[rpo[i]])
6209 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6210 bitmap_clear (live[rpo[i]]);
6213 /* Process BB and update the live information with uses in
6214 this block. */
6215 find_assert_locations_1 (bb, live[rpo[i]]);
6217 /* Merge liveness into the predecessor blocks and free it. */
6218 if (!bitmap_empty_p (live[rpo[i]]))
6220 int pred_rpo = i;
6221 FOR_EACH_EDGE (e, ei, bb->preds)
6223 int pred = e->src->index;
6224 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6225 continue;
6227 if (!live[pred])
6229 live[pred] = sbitmap_alloc (num_ssa_names);
6230 bitmap_clear (live[pred]);
6232 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6234 if (bb_rpo[pred] < pred_rpo)
6235 pred_rpo = bb_rpo[pred];
6238 /* Record the RPO number of the last visited block that needs
6239 live information from this block. */
6240 last_rpo[rpo[i]] = pred_rpo;
6242 else
6244 sbitmap_free (live[rpo[i]]);
6245 live[rpo[i]] = NULL;
6248 /* We can free all successors live bitmaps if all their
6249 predecessors have been visited already. */
6250 FOR_EACH_EDGE (e, ei, bb->succs)
6251 if (last_rpo[e->dest->index] == i
6252 && live[e->dest->index])
6254 sbitmap_free (live[e->dest->index]);
6255 live[e->dest->index] = NULL;
6259 XDELETEVEC (rpo);
6260 XDELETEVEC (bb_rpo);
6261 XDELETEVEC (last_rpo);
6262 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6263 if (live[i])
6264 sbitmap_free (live[i]);
6265 XDELETEVEC (live);
6268 /* Create an ASSERT_EXPR for NAME and insert it in the location
6269 indicated by LOC. Return true if we made any edge insertions. */
6271 static bool
6272 process_assert_insertions_for (tree name, assert_locus *loc)
6274 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6275 gimple *stmt;
6276 tree cond;
6277 gimple *assert_stmt;
6278 edge_iterator ei;
6279 edge e;
6281 /* If we have X <=> X do not insert an assert expr for that. */
6282 if (loc->expr == loc->val)
6283 return false;
6285 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6286 assert_stmt = build_assert_expr_for (cond, name);
6287 if (loc->e)
6289 /* We have been asked to insert the assertion on an edge. This
6290 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6291 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6292 || (gimple_code (gsi_stmt (loc->si))
6293 == GIMPLE_SWITCH));
6295 gsi_insert_on_edge (loc->e, assert_stmt);
6296 return true;
6299 /* Otherwise, we can insert right after LOC->SI iff the
6300 statement must not be the last statement in the block. */
6301 stmt = gsi_stmt (loc->si);
6302 if (!stmt_ends_bb_p (stmt))
6304 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6305 return false;
6308 /* If STMT must be the last statement in BB, we can only insert new
6309 assertions on the non-abnormal edge out of BB. Note that since
6310 STMT is not control flow, there may only be one non-abnormal edge
6311 out of BB. */
6312 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6313 if (!(e->flags & EDGE_ABNORMAL))
6315 gsi_insert_on_edge (e, assert_stmt);
6316 return true;
6319 gcc_unreachable ();
6323 /* Process all the insertions registered for every name N_i registered
6324 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6325 found in ASSERTS_FOR[i]. */
6327 static void
6328 process_assert_insertions (void)
6330 unsigned i;
6331 bitmap_iterator bi;
6332 bool update_edges_p = false;
6333 int num_asserts = 0;
6335 if (dump_file && (dump_flags & TDF_DETAILS))
6336 dump_all_asserts (dump_file);
6338 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6340 assert_locus *loc = asserts_for[i];
6341 gcc_assert (loc);
6343 while (loc)
6345 assert_locus *next = loc->next;
6346 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6347 free (loc);
6348 loc = next;
6349 num_asserts++;
6353 if (update_edges_p)
6354 gsi_commit_edge_inserts ();
6356 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6357 num_asserts);
6361 /* Traverse the flowgraph looking for conditional jumps to insert range
6362 expressions. These range expressions are meant to provide information
6363 to optimizations that need to reason in terms of value ranges. They
6364 will not be expanded into RTL. For instance, given:
6366 x = ...
6367 y = ...
6368 if (x < y)
6369 y = x - 2;
6370 else
6371 x = y + 3;
6373 this pass will transform the code into:
6375 x = ...
6376 y = ...
6377 if (x < y)
6379 x = ASSERT_EXPR <x, x < y>
6380 y = x - 2
6382 else
6384 y = ASSERT_EXPR <y, x >= y>
6385 x = y + 3
6388 The idea is that once copy and constant propagation have run, other
6389 optimizations will be able to determine what ranges of values can 'x'
6390 take in different paths of the code, simply by checking the reaching
6391 definition of 'x'. */
6393 static void
6394 insert_range_assertions (void)
6396 need_assert_for = BITMAP_ALLOC (NULL);
6397 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6399 calculate_dominance_info (CDI_DOMINATORS);
6401 find_assert_locations ();
6402 if (!bitmap_empty_p (need_assert_for))
6404 process_assert_insertions ();
6405 update_ssa (TODO_update_ssa_no_phi);
6408 if (dump_file && (dump_flags & TDF_DETAILS))
6410 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6411 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6414 free (asserts_for);
6415 BITMAP_FREE (need_assert_for);
6418 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6419 and "struct" hacks. If VRP can determine that the
6420 array subscript is a constant, check if it is outside valid
6421 range. If the array subscript is a RANGE, warn if it is
6422 non-overlapping with valid range.
6423 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6425 static void
6426 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6428 value_range *vr = NULL;
6429 tree low_sub, up_sub;
6430 tree low_bound, up_bound, up_bound_p1;
6431 tree base;
6433 if (TREE_NO_WARNING (ref))
6434 return;
6436 low_sub = up_sub = TREE_OPERAND (ref, 1);
6437 up_bound = array_ref_up_bound (ref);
6439 /* Can not check flexible arrays. */
6440 if (!up_bound
6441 || TREE_CODE (up_bound) != INTEGER_CST)
6442 return;
6444 /* Accesses to trailing arrays via pointers may access storage
6445 beyond the types array bounds. */
6446 base = get_base_address (ref);
6447 if ((warn_array_bounds < 2)
6448 && base && TREE_CODE (base) == MEM_REF)
6450 tree cref, next = NULL_TREE;
6452 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6453 return;
6455 cref = TREE_OPERAND (ref, 0);
6456 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6457 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6458 next && TREE_CODE (next) != FIELD_DECL;
6459 next = DECL_CHAIN (next))
6462 /* If this is the last field in a struct type or a field in a
6463 union type do not warn. */
6464 if (!next)
6465 return;
6468 low_bound = array_ref_low_bound (ref);
6469 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6470 build_int_cst (TREE_TYPE (up_bound), 1));
6472 /* Empty array. */
6473 if (tree_int_cst_equal (low_bound, up_bound_p1))
6475 warning_at (location, OPT_Warray_bounds,
6476 "array subscript is above array bounds");
6477 TREE_NO_WARNING (ref) = 1;
6480 if (TREE_CODE (low_sub) == SSA_NAME)
6482 vr = get_value_range (low_sub);
6483 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6485 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6486 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6490 if (vr && vr->type == VR_ANTI_RANGE)
6492 if (TREE_CODE (up_sub) == INTEGER_CST
6493 && (ignore_off_by_one
6494 ? tree_int_cst_lt (up_bound, up_sub)
6495 : tree_int_cst_le (up_bound, up_sub))
6496 && TREE_CODE (low_sub) == INTEGER_CST
6497 && tree_int_cst_le (low_sub, low_bound))
6499 warning_at (location, OPT_Warray_bounds,
6500 "array subscript is outside array bounds");
6501 TREE_NO_WARNING (ref) = 1;
6504 else if (TREE_CODE (up_sub) == INTEGER_CST
6505 && (ignore_off_by_one
6506 ? !tree_int_cst_le (up_sub, up_bound_p1)
6507 : !tree_int_cst_le (up_sub, up_bound)))
6509 if (dump_file && (dump_flags & TDF_DETAILS))
6511 fprintf (dump_file, "Array bound warning for ");
6512 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6513 fprintf (dump_file, "\n");
6515 warning_at (location, OPT_Warray_bounds,
6516 "array subscript is above array bounds");
6517 TREE_NO_WARNING (ref) = 1;
6519 else if (TREE_CODE (low_sub) == INTEGER_CST
6520 && tree_int_cst_lt (low_sub, low_bound))
6522 if (dump_file && (dump_flags & TDF_DETAILS))
6524 fprintf (dump_file, "Array bound warning for ");
6525 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6526 fprintf (dump_file, "\n");
6528 warning_at (location, OPT_Warray_bounds,
6529 "array subscript is below array bounds");
6530 TREE_NO_WARNING (ref) = 1;
6534 /* Searches if the expr T, located at LOCATION computes
6535 address of an ARRAY_REF, and call check_array_ref on it. */
6537 static void
6538 search_for_addr_array (tree t, location_t location)
6540 /* Check each ARRAY_REFs in the reference chain. */
6543 if (TREE_CODE (t) == ARRAY_REF)
6544 check_array_ref (location, t, true /*ignore_off_by_one*/);
6546 t = TREE_OPERAND (t, 0);
6548 while (handled_component_p (t));
6550 if (TREE_CODE (t) == MEM_REF
6551 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6552 && !TREE_NO_WARNING (t))
6554 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6555 tree low_bound, up_bound, el_sz;
6556 offset_int idx;
6557 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6558 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6559 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6560 return;
6562 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6563 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6564 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6565 if (!low_bound
6566 || TREE_CODE (low_bound) != INTEGER_CST
6567 || !up_bound
6568 || TREE_CODE (up_bound) != INTEGER_CST
6569 || !el_sz
6570 || TREE_CODE (el_sz) != INTEGER_CST)
6571 return;
6573 idx = mem_ref_offset (t);
6574 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6575 if (wi::lts_p (idx, 0))
6577 if (dump_file && (dump_flags & TDF_DETAILS))
6579 fprintf (dump_file, "Array bound warning for ");
6580 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6581 fprintf (dump_file, "\n");
6583 warning_at (location, OPT_Warray_bounds,
6584 "array subscript is below array bounds");
6585 TREE_NO_WARNING (t) = 1;
6587 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6588 - wi::to_offset (low_bound) + 1)))
6590 if (dump_file && (dump_flags & TDF_DETAILS))
6592 fprintf (dump_file, "Array bound warning for ");
6593 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6594 fprintf (dump_file, "\n");
6596 warning_at (location, OPT_Warray_bounds,
6597 "array subscript is above array bounds");
6598 TREE_NO_WARNING (t) = 1;
6603 /* walk_tree() callback that checks if *TP is
6604 an ARRAY_REF inside an ADDR_EXPR (in which an array
6605 subscript one outside the valid range is allowed). Call
6606 check_array_ref for each ARRAY_REF found. The location is
6607 passed in DATA. */
6609 static tree
6610 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6612 tree t = *tp;
6613 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6614 location_t location;
6616 if (EXPR_HAS_LOCATION (t))
6617 location = EXPR_LOCATION (t);
6618 else
6620 location_t *locp = (location_t *) wi->info;
6621 location = *locp;
6624 *walk_subtree = TRUE;
6626 if (TREE_CODE (t) == ARRAY_REF)
6627 check_array_ref (location, t, false /*ignore_off_by_one*/);
6629 else if (TREE_CODE (t) == ADDR_EXPR)
6631 search_for_addr_array (t, location);
6632 *walk_subtree = FALSE;
6635 return NULL_TREE;
6638 /* Walk over all statements of all reachable BBs and call check_array_bounds
6639 on them. */
6641 static void
6642 check_all_array_refs (void)
6644 basic_block bb;
6645 gimple_stmt_iterator si;
6647 FOR_EACH_BB_FN (bb, cfun)
6649 edge_iterator ei;
6650 edge e;
6651 bool executable = false;
6653 /* Skip blocks that were found to be unreachable. */
6654 FOR_EACH_EDGE (e, ei, bb->preds)
6655 executable |= !!(e->flags & EDGE_EXECUTABLE);
6656 if (!executable)
6657 continue;
6659 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6661 gimple *stmt = gsi_stmt (si);
6662 struct walk_stmt_info wi;
6663 if (!gimple_has_location (stmt)
6664 || is_gimple_debug (stmt))
6665 continue;
6667 memset (&wi, 0, sizeof (wi));
6669 location_t loc = gimple_location (stmt);
6670 wi.info = &loc;
6672 walk_gimple_op (gsi_stmt (si),
6673 check_array_bounds,
6674 &wi);
6679 /* Return true if all imm uses of VAR are either in STMT, or
6680 feed (optionally through a chain of single imm uses) GIMPLE_COND
6681 in basic block COND_BB. */
6683 static bool
6684 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6686 use_operand_p use_p, use2_p;
6687 imm_use_iterator iter;
6689 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6690 if (USE_STMT (use_p) != stmt)
6692 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6693 if (is_gimple_debug (use_stmt))
6694 continue;
6695 while (is_gimple_assign (use_stmt)
6696 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6697 && single_imm_use (gimple_assign_lhs (use_stmt),
6698 &use2_p, &use_stmt2))
6699 use_stmt = use_stmt2;
6700 if (gimple_code (use_stmt) != GIMPLE_COND
6701 || gimple_bb (use_stmt) != cond_bb)
6702 return false;
6704 return true;
6707 /* Handle
6708 _4 = x_3 & 31;
6709 if (_4 != 0)
6710 goto <bb 6>;
6711 else
6712 goto <bb 7>;
6713 <bb 6>:
6714 __builtin_unreachable ();
6715 <bb 7>:
6716 x_5 = ASSERT_EXPR <x_3, ...>;
6717 If x_3 has no other immediate uses (checked by caller),
6718 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6719 from the non-zero bitmask. */
6721 static void
6722 maybe_set_nonzero_bits (basic_block bb, tree var)
6724 edge e = single_pred_edge (bb);
6725 basic_block cond_bb = e->src;
6726 gimple *stmt = last_stmt (cond_bb);
6727 tree cst;
6729 if (stmt == NULL
6730 || gimple_code (stmt) != GIMPLE_COND
6731 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6732 ? EQ_EXPR : NE_EXPR)
6733 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6734 || !integer_zerop (gimple_cond_rhs (stmt)))
6735 return;
6737 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6738 if (!is_gimple_assign (stmt)
6739 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6740 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6741 return;
6742 if (gimple_assign_rhs1 (stmt) != var)
6744 gimple *stmt2;
6746 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6747 return;
6748 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6749 if (!gimple_assign_cast_p (stmt2)
6750 || gimple_assign_rhs1 (stmt2) != var
6751 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6752 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6753 != TYPE_PRECISION (TREE_TYPE (var))))
6754 return;
6756 cst = gimple_assign_rhs2 (stmt);
6757 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6760 /* Convert range assertion expressions into the implied copies and
6761 copy propagate away the copies. Doing the trivial copy propagation
6762 here avoids the need to run the full copy propagation pass after
6763 VRP.
6765 FIXME, this will eventually lead to copy propagation removing the
6766 names that had useful range information attached to them. For
6767 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6768 then N_i will have the range [3, +INF].
6770 However, by converting the assertion into the implied copy
6771 operation N_i = N_j, we will then copy-propagate N_j into the uses
6772 of N_i and lose the range information. We may want to hold on to
6773 ASSERT_EXPRs a little while longer as the ranges could be used in
6774 things like jump threading.
6776 The problem with keeping ASSERT_EXPRs around is that passes after
6777 VRP need to handle them appropriately.
6779 Another approach would be to make the range information a first
6780 class property of the SSA_NAME so that it can be queried from
6781 any pass. This is made somewhat more complex by the need for
6782 multiple ranges to be associated with one SSA_NAME. */
6784 static void
6785 remove_range_assertions (void)
6787 basic_block bb;
6788 gimple_stmt_iterator si;
6789 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6790 a basic block preceeded by GIMPLE_COND branching to it and
6791 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6792 int is_unreachable;
6794 /* Note that the BSI iterator bump happens at the bottom of the
6795 loop and no bump is necessary if we're removing the statement
6796 referenced by the current BSI. */
6797 FOR_EACH_BB_FN (bb, cfun)
6798 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6800 gimple *stmt = gsi_stmt (si);
6801 gimple *use_stmt;
6803 if (is_gimple_assign (stmt)
6804 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6806 tree lhs = gimple_assign_lhs (stmt);
6807 tree rhs = gimple_assign_rhs1 (stmt);
6808 tree var;
6809 use_operand_p use_p;
6810 imm_use_iterator iter;
6812 var = ASSERT_EXPR_VAR (rhs);
6813 gcc_assert (TREE_CODE (var) == SSA_NAME);
6815 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6816 && SSA_NAME_RANGE_INFO (lhs))
6818 if (is_unreachable == -1)
6820 is_unreachable = 0;
6821 if (single_pred_p (bb)
6822 && assert_unreachable_fallthru_edge_p
6823 (single_pred_edge (bb)))
6824 is_unreachable = 1;
6826 /* Handle
6827 if (x_7 >= 10 && x_7 < 20)
6828 __builtin_unreachable ();
6829 x_8 = ASSERT_EXPR <x_7, ...>;
6830 if the only uses of x_7 are in the ASSERT_EXPR and
6831 in the condition. In that case, we can copy the
6832 range info from x_8 computed in this pass also
6833 for x_7. */
6834 if (is_unreachable
6835 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6836 single_pred (bb)))
6838 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6839 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6840 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6841 maybe_set_nonzero_bits (bb, var);
6845 /* Propagate the RHS into every use of the LHS. */
6846 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6847 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6848 SET_USE (use_p, var);
6850 /* And finally, remove the copy, it is not needed. */
6851 gsi_remove (&si, true);
6852 release_defs (stmt);
6854 else
6856 if (!is_gimple_debug (gsi_stmt (si)))
6857 is_unreachable = 0;
6858 gsi_next (&si);
6864 /* Return true if STMT is interesting for VRP. */
6866 static bool
6867 stmt_interesting_for_vrp (gimple *stmt)
6869 if (gimple_code (stmt) == GIMPLE_PHI)
6871 tree res = gimple_phi_result (stmt);
6872 return (!virtual_operand_p (res)
6873 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6874 || POINTER_TYPE_P (TREE_TYPE (res))));
6876 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6878 tree lhs = gimple_get_lhs (stmt);
6880 /* In general, assignments with virtual operands are not useful
6881 for deriving ranges, with the obvious exception of calls to
6882 builtin functions. */
6883 if (lhs && TREE_CODE (lhs) == SSA_NAME
6884 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6885 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6886 && (is_gimple_call (stmt)
6887 || !gimple_vuse (stmt)))
6888 return true;
6889 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
6890 switch (gimple_call_internal_fn (stmt))
6892 case IFN_ADD_OVERFLOW:
6893 case IFN_SUB_OVERFLOW:
6894 case IFN_MUL_OVERFLOW:
6895 /* These internal calls return _Complex integer type,
6896 but are interesting to VRP nevertheless. */
6897 if (lhs && TREE_CODE (lhs) == SSA_NAME)
6898 return true;
6899 break;
6900 default:
6901 break;
6904 else if (gimple_code (stmt) == GIMPLE_COND
6905 || gimple_code (stmt) == GIMPLE_SWITCH)
6906 return true;
6908 return false;
6912 /* Initialize local data structures for VRP. */
6914 static void
6915 vrp_initialize (void)
6917 basic_block bb;
6919 values_propagated = false;
6920 num_vr_values = num_ssa_names;
6921 vr_value = XCNEWVEC (value_range *, num_vr_values);
6922 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6924 FOR_EACH_BB_FN (bb, cfun)
6926 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6927 gsi_next (&si))
6929 gphi *phi = si.phi ();
6930 if (!stmt_interesting_for_vrp (phi))
6932 tree lhs = PHI_RESULT (phi);
6933 set_value_range_to_varying (get_value_range (lhs));
6934 prop_set_simulate_again (phi, false);
6936 else
6937 prop_set_simulate_again (phi, true);
6940 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
6941 gsi_next (&si))
6943 gimple *stmt = gsi_stmt (si);
6945 /* If the statement is a control insn, then we do not
6946 want to avoid simulating the statement once. Failure
6947 to do so means that those edges will never get added. */
6948 if (stmt_ends_bb_p (stmt))
6949 prop_set_simulate_again (stmt, true);
6950 else if (!stmt_interesting_for_vrp (stmt))
6952 ssa_op_iter i;
6953 tree def;
6954 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6955 set_value_range_to_varying (get_value_range (def));
6956 prop_set_simulate_again (stmt, false);
6958 else
6959 prop_set_simulate_again (stmt, true);
6964 /* Return the singleton value-range for NAME or NAME. */
6966 static inline tree
6967 vrp_valueize (tree name)
6969 if (TREE_CODE (name) == SSA_NAME)
6971 value_range *vr = get_value_range (name);
6972 if (vr->type == VR_RANGE
6973 && (vr->min == vr->max
6974 || operand_equal_p (vr->min, vr->max, 0)))
6975 return vr->min;
6977 return name;
6980 /* Return the singleton value-range for NAME if that is a constant
6981 but signal to not follow SSA edges. */
6983 static inline tree
6984 vrp_valueize_1 (tree name)
6986 if (TREE_CODE (name) == SSA_NAME)
6988 /* If the definition may be simulated again we cannot follow
6989 this SSA edge as the SSA propagator does not necessarily
6990 re-visit the use. */
6991 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
6992 if (!gimple_nop_p (def_stmt)
6993 && prop_simulate_again_p (def_stmt))
6994 return NULL_TREE;
6995 value_range *vr = get_value_range (name);
6996 if (range_int_cst_singleton_p (vr))
6997 return vr->min;
6999 return name;
7002 /* Visit assignment STMT. If it produces an interesting range, record
7003 the SSA name in *OUTPUT_P. */
7005 static enum ssa_prop_result
7006 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p)
7008 tree def, lhs;
7009 ssa_op_iter iter;
7010 enum gimple_code code = gimple_code (stmt);
7011 lhs = gimple_get_lhs (stmt);
7013 /* We only keep track of ranges in integral and pointer types. */
7014 if (TREE_CODE (lhs) == SSA_NAME
7015 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7016 /* It is valid to have NULL MIN/MAX values on a type. See
7017 build_range_type. */
7018 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7019 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7020 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7022 value_range new_vr = VR_INITIALIZER;
7024 /* Try folding the statement to a constant first. */
7025 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7026 vrp_valueize_1);
7027 if (tem && is_gimple_min_invariant (tem))
7028 set_value_range_to_value (&new_vr, tem, NULL);
7029 /* Then dispatch to value-range extracting functions. */
7030 else if (code == GIMPLE_CALL)
7031 extract_range_basic (&new_vr, stmt);
7032 else
7033 extract_range_from_assignment (&new_vr, as_a <gassign *> (stmt));
7035 if (update_value_range (lhs, &new_vr))
7037 *output_p = lhs;
7039 if (dump_file && (dump_flags & TDF_DETAILS))
7041 fprintf (dump_file, "Found new range for ");
7042 print_generic_expr (dump_file, lhs, 0);
7043 fprintf (dump_file, ": ");
7044 dump_value_range (dump_file, &new_vr);
7045 fprintf (dump_file, "\n");
7048 if (new_vr.type == VR_VARYING)
7049 return SSA_PROP_VARYING;
7051 return SSA_PROP_INTERESTING;
7054 return SSA_PROP_NOT_INTERESTING;
7056 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7057 switch (gimple_call_internal_fn (stmt))
7059 case IFN_ADD_OVERFLOW:
7060 case IFN_SUB_OVERFLOW:
7061 case IFN_MUL_OVERFLOW:
7062 /* These internal calls return _Complex integer type,
7063 which VRP does not track, but the immediate uses
7064 thereof might be interesting. */
7065 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7067 imm_use_iterator iter;
7068 use_operand_p use_p;
7069 enum ssa_prop_result res = SSA_PROP_VARYING;
7071 set_value_range_to_varying (get_value_range (lhs));
7073 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
7075 gimple *use_stmt = USE_STMT (use_p);
7076 if (!is_gimple_assign (use_stmt))
7077 continue;
7078 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
7079 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
7080 continue;
7081 tree rhs1 = gimple_assign_rhs1 (use_stmt);
7082 tree use_lhs = gimple_assign_lhs (use_stmt);
7083 if (TREE_CODE (rhs1) != rhs_code
7084 || TREE_OPERAND (rhs1, 0) != lhs
7085 || TREE_CODE (use_lhs) != SSA_NAME
7086 || !stmt_interesting_for_vrp (use_stmt)
7087 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
7088 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
7089 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
7090 continue;
7092 /* If there is a change in the value range for any of the
7093 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7094 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7095 or IMAGPART_EXPR immediate uses, but none of them have
7096 a change in their value ranges, return
7097 SSA_PROP_NOT_INTERESTING. If there are no
7098 {REAL,IMAG}PART_EXPR uses at all,
7099 return SSA_PROP_VARYING. */
7100 value_range new_vr = VR_INITIALIZER;
7101 extract_range_basic (&new_vr, use_stmt);
7102 value_range *old_vr = get_value_range (use_lhs);
7103 if (old_vr->type != new_vr.type
7104 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
7105 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
7106 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
7107 res = SSA_PROP_INTERESTING;
7108 else
7109 res = SSA_PROP_NOT_INTERESTING;
7110 BITMAP_FREE (new_vr.equiv);
7111 if (res == SSA_PROP_INTERESTING)
7113 *output_p = lhs;
7114 return res;
7118 return res;
7120 break;
7121 default:
7122 break;
7125 /* Every other statement produces no useful ranges. */
7126 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7127 set_value_range_to_varying (get_value_range (def));
7129 return SSA_PROP_VARYING;
7132 /* Helper that gets the value range of the SSA_NAME with version I
7133 or a symbolic range containing the SSA_NAME only if the value range
7134 is varying or undefined. */
7136 static inline value_range
7137 get_vr_for_comparison (int i)
7139 value_range vr = *get_value_range (ssa_name (i));
7141 /* If name N_i does not have a valid range, use N_i as its own
7142 range. This allows us to compare against names that may
7143 have N_i in their ranges. */
7144 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7146 vr.type = VR_RANGE;
7147 vr.min = ssa_name (i);
7148 vr.max = ssa_name (i);
7151 return vr;
7154 /* Compare all the value ranges for names equivalent to VAR with VAL
7155 using comparison code COMP. Return the same value returned by
7156 compare_range_with_value, including the setting of
7157 *STRICT_OVERFLOW_P. */
7159 static tree
7160 compare_name_with_value (enum tree_code comp, tree var, tree val,
7161 bool *strict_overflow_p)
7163 bitmap_iterator bi;
7164 unsigned i;
7165 bitmap e;
7166 tree retval, t;
7167 int used_strict_overflow;
7168 bool sop;
7169 value_range equiv_vr;
7171 /* Get the set of equivalences for VAR. */
7172 e = get_value_range (var)->equiv;
7174 /* Start at -1. Set it to 0 if we do a comparison without relying
7175 on overflow, or 1 if all comparisons rely on overflow. */
7176 used_strict_overflow = -1;
7178 /* Compare vars' value range with val. */
7179 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7180 sop = false;
7181 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7182 if (retval)
7183 used_strict_overflow = sop ? 1 : 0;
7185 /* If the equiv set is empty we have done all work we need to do. */
7186 if (e == NULL)
7188 if (retval
7189 && used_strict_overflow > 0)
7190 *strict_overflow_p = true;
7191 return retval;
7194 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7196 equiv_vr = get_vr_for_comparison (i);
7197 sop = false;
7198 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7199 if (t)
7201 /* If we get different answers from different members
7202 of the equivalence set this check must be in a dead
7203 code region. Folding it to a trap representation
7204 would be correct here. For now just return don't-know. */
7205 if (retval != NULL
7206 && t != retval)
7208 retval = NULL_TREE;
7209 break;
7211 retval = t;
7213 if (!sop)
7214 used_strict_overflow = 0;
7215 else if (used_strict_overflow < 0)
7216 used_strict_overflow = 1;
7220 if (retval
7221 && used_strict_overflow > 0)
7222 *strict_overflow_p = true;
7224 return retval;
7228 /* Given a comparison code COMP and names N1 and N2, compare all the
7229 ranges equivalent to N1 against all the ranges equivalent to N2
7230 to determine the value of N1 COMP N2. Return the same value
7231 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7232 whether we relied on an overflow infinity in the comparison. */
7235 static tree
7236 compare_names (enum tree_code comp, tree n1, tree n2,
7237 bool *strict_overflow_p)
7239 tree t, retval;
7240 bitmap e1, e2;
7241 bitmap_iterator bi1, bi2;
7242 unsigned i1, i2;
7243 int used_strict_overflow;
7244 static bitmap_obstack *s_obstack = NULL;
7245 static bitmap s_e1 = NULL, s_e2 = NULL;
7247 /* Compare the ranges of every name equivalent to N1 against the
7248 ranges of every name equivalent to N2. */
7249 e1 = get_value_range (n1)->equiv;
7250 e2 = get_value_range (n2)->equiv;
7252 /* Use the fake bitmaps if e1 or e2 are not available. */
7253 if (s_obstack == NULL)
7255 s_obstack = XNEW (bitmap_obstack);
7256 bitmap_obstack_initialize (s_obstack);
7257 s_e1 = BITMAP_ALLOC (s_obstack);
7258 s_e2 = BITMAP_ALLOC (s_obstack);
7260 if (e1 == NULL)
7261 e1 = s_e1;
7262 if (e2 == NULL)
7263 e2 = s_e2;
7265 /* Add N1 and N2 to their own set of equivalences to avoid
7266 duplicating the body of the loop just to check N1 and N2
7267 ranges. */
7268 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7269 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7271 /* If the equivalence sets have a common intersection, then the two
7272 names can be compared without checking their ranges. */
7273 if (bitmap_intersect_p (e1, e2))
7275 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7276 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7278 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7279 ? boolean_true_node
7280 : boolean_false_node;
7283 /* Start at -1. Set it to 0 if we do a comparison without relying
7284 on overflow, or 1 if all comparisons rely on overflow. */
7285 used_strict_overflow = -1;
7287 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7288 N2 to their own set of equivalences to avoid duplicating the body
7289 of the loop just to check N1 and N2 ranges. */
7290 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7292 value_range vr1 = get_vr_for_comparison (i1);
7294 t = retval = NULL_TREE;
7295 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7297 bool sop = false;
7299 value_range vr2 = get_vr_for_comparison (i2);
7301 t = compare_ranges (comp, &vr1, &vr2, &sop);
7302 if (t)
7304 /* If we get different answers from different members
7305 of the equivalence set this check must be in a dead
7306 code region. Folding it to a trap representation
7307 would be correct here. For now just return don't-know. */
7308 if (retval != NULL
7309 && t != retval)
7311 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7312 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7313 return NULL_TREE;
7315 retval = t;
7317 if (!sop)
7318 used_strict_overflow = 0;
7319 else if (used_strict_overflow < 0)
7320 used_strict_overflow = 1;
7324 if (retval)
7326 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7327 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7328 if (used_strict_overflow > 0)
7329 *strict_overflow_p = true;
7330 return retval;
7334 /* None of the equivalent ranges are useful in computing this
7335 comparison. */
7336 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7337 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7338 return NULL_TREE;
7341 /* Helper function for vrp_evaluate_conditional_warnv & other
7342 optimizers. */
7344 static tree
7345 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7346 tree op0, tree op1,
7347 bool * strict_overflow_p)
7349 value_range *vr0, *vr1;
7351 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7352 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7354 tree res = NULL_TREE;
7355 if (vr0 && vr1)
7356 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7357 if (!res && vr0)
7358 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7359 if (!res && vr1)
7360 res = (compare_range_with_value
7361 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7362 return res;
7365 /* Helper function for vrp_evaluate_conditional_warnv. */
7367 static tree
7368 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7369 tree op1, bool use_equiv_p,
7370 bool *strict_overflow_p, bool *only_ranges)
7372 tree ret;
7373 if (only_ranges)
7374 *only_ranges = true;
7376 /* We only deal with integral and pointer types. */
7377 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7378 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7379 return NULL_TREE;
7381 if (use_equiv_p)
7383 if (only_ranges
7384 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7385 (code, op0, op1, strict_overflow_p)))
7386 return ret;
7387 *only_ranges = false;
7388 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7389 return compare_names (code, op0, op1, strict_overflow_p);
7390 else if (TREE_CODE (op0) == SSA_NAME)
7391 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7392 else if (TREE_CODE (op1) == SSA_NAME)
7393 return (compare_name_with_value
7394 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7396 else
7397 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7398 strict_overflow_p);
7399 return NULL_TREE;
7402 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7403 information. Return NULL if the conditional can not be evaluated.
7404 The ranges of all the names equivalent with the operands in COND
7405 will be used when trying to compute the value. If the result is
7406 based on undefined signed overflow, issue a warning if
7407 appropriate. */
7409 static tree
7410 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7412 bool sop;
7413 tree ret;
7414 bool only_ranges;
7416 /* Some passes and foldings leak constants with overflow flag set
7417 into the IL. Avoid doing wrong things with these and bail out. */
7418 if ((TREE_CODE (op0) == INTEGER_CST
7419 && TREE_OVERFLOW (op0))
7420 || (TREE_CODE (op1) == INTEGER_CST
7421 && TREE_OVERFLOW (op1)))
7422 return NULL_TREE;
7424 sop = false;
7425 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7426 &only_ranges);
7428 if (ret && sop)
7430 enum warn_strict_overflow_code wc;
7431 const char* warnmsg;
7433 if (is_gimple_min_invariant (ret))
7435 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7436 warnmsg = G_("assuming signed overflow does not occur when "
7437 "simplifying conditional to constant");
7439 else
7441 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7442 warnmsg = G_("assuming signed overflow does not occur when "
7443 "simplifying conditional");
7446 if (issue_strict_overflow_warning (wc))
7448 location_t location;
7450 if (!gimple_has_location (stmt))
7451 location = input_location;
7452 else
7453 location = gimple_location (stmt);
7454 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7458 if (warn_type_limits
7459 && ret && only_ranges
7460 && TREE_CODE_CLASS (code) == tcc_comparison
7461 && TREE_CODE (op0) == SSA_NAME)
7463 /* If the comparison is being folded and the operand on the LHS
7464 is being compared against a constant value that is outside of
7465 the natural range of OP0's type, then the predicate will
7466 always fold regardless of the value of OP0. If -Wtype-limits
7467 was specified, emit a warning. */
7468 tree type = TREE_TYPE (op0);
7469 value_range *vr0 = get_value_range (op0);
7471 if (vr0->type == VR_RANGE
7472 && INTEGRAL_TYPE_P (type)
7473 && vrp_val_is_min (vr0->min)
7474 && vrp_val_is_max (vr0->max)
7475 && is_gimple_min_invariant (op1))
7477 location_t location;
7479 if (!gimple_has_location (stmt))
7480 location = input_location;
7481 else
7482 location = gimple_location (stmt);
7484 warning_at (location, OPT_Wtype_limits,
7485 integer_zerop (ret)
7486 ? G_("comparison always false "
7487 "due to limited range of data type")
7488 : G_("comparison always true "
7489 "due to limited range of data type"));
7493 return ret;
7497 /* Visit conditional statement STMT. If we can determine which edge
7498 will be taken out of STMT's basic block, record it in
7499 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7500 SSA_PROP_VARYING. */
7502 static enum ssa_prop_result
7503 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7505 tree val;
7506 bool sop;
7508 *taken_edge_p = NULL;
7510 if (dump_file && (dump_flags & TDF_DETAILS))
7512 tree use;
7513 ssa_op_iter i;
7515 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7516 print_gimple_stmt (dump_file, stmt, 0, 0);
7517 fprintf (dump_file, "\nWith known ranges\n");
7519 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7521 fprintf (dump_file, "\t");
7522 print_generic_expr (dump_file, use, 0);
7523 fprintf (dump_file, ": ");
7524 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7527 fprintf (dump_file, "\n");
7530 /* Compute the value of the predicate COND by checking the known
7531 ranges of each of its operands.
7533 Note that we cannot evaluate all the equivalent ranges here
7534 because those ranges may not yet be final and with the current
7535 propagation strategy, we cannot determine when the value ranges
7536 of the names in the equivalence set have changed.
7538 For instance, given the following code fragment
7540 i_5 = PHI <8, i_13>
7542 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7543 if (i_14 == 1)
7546 Assume that on the first visit to i_14, i_5 has the temporary
7547 range [8, 8] because the second argument to the PHI function is
7548 not yet executable. We derive the range ~[0, 0] for i_14 and the
7549 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7550 the first time, since i_14 is equivalent to the range [8, 8], we
7551 determine that the predicate is always false.
7553 On the next round of propagation, i_13 is determined to be
7554 VARYING, which causes i_5 to drop down to VARYING. So, another
7555 visit to i_14 is scheduled. In this second visit, we compute the
7556 exact same range and equivalence set for i_14, namely ~[0, 0] and
7557 { i_5 }. But we did not have the previous range for i_5
7558 registered, so vrp_visit_assignment thinks that the range for
7559 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7560 is not visited again, which stops propagation from visiting
7561 statements in the THEN clause of that if().
7563 To properly fix this we would need to keep the previous range
7564 value for the names in the equivalence set. This way we would've
7565 discovered that from one visit to the other i_5 changed from
7566 range [8, 8] to VR_VARYING.
7568 However, fixing this apparent limitation may not be worth the
7569 additional checking. Testing on several code bases (GCC, DLV,
7570 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7571 4 more predicates folded in SPEC. */
7572 sop = false;
7574 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7575 gimple_cond_lhs (stmt),
7576 gimple_cond_rhs (stmt),
7577 false, &sop, NULL);
7578 if (val)
7580 if (!sop)
7581 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7582 else
7584 if (dump_file && (dump_flags & TDF_DETAILS))
7585 fprintf (dump_file,
7586 "\nIgnoring predicate evaluation because "
7587 "it assumes that signed overflow is undefined");
7588 val = NULL_TREE;
7592 if (dump_file && (dump_flags & TDF_DETAILS))
7594 fprintf (dump_file, "\nPredicate evaluates to: ");
7595 if (val == NULL_TREE)
7596 fprintf (dump_file, "DON'T KNOW\n");
7597 else
7598 print_generic_stmt (dump_file, val, 0);
7601 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7604 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7605 that includes the value VAL. The search is restricted to the range
7606 [START_IDX, n - 1] where n is the size of VEC.
7608 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7609 returned.
7611 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7612 it is placed in IDX and false is returned.
7614 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7615 returned. */
7617 static bool
7618 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7620 size_t n = gimple_switch_num_labels (stmt);
7621 size_t low, high;
7623 /* Find case label for minimum of the value range or the next one.
7624 At each iteration we are searching in [low, high - 1]. */
7626 for (low = start_idx, high = n; high != low; )
7628 tree t;
7629 int cmp;
7630 /* Note that i != high, so we never ask for n. */
7631 size_t i = (high + low) / 2;
7632 t = gimple_switch_label (stmt, i);
7634 /* Cache the result of comparing CASE_LOW and val. */
7635 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7637 if (cmp == 0)
7639 /* Ranges cannot be empty. */
7640 *idx = i;
7641 return true;
7643 else if (cmp > 0)
7644 high = i;
7645 else
7647 low = i + 1;
7648 if (CASE_HIGH (t) != NULL
7649 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7651 *idx = i;
7652 return true;
7657 *idx = high;
7658 return false;
7661 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7662 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7663 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7664 then MAX_IDX < MIN_IDX.
7665 Returns true if the default label is not needed. */
7667 static bool
7668 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7669 size_t *max_idx)
7671 size_t i, j;
7672 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7673 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7675 if (i == j
7676 && min_take_default
7677 && max_take_default)
7679 /* Only the default case label reached.
7680 Return an empty range. */
7681 *min_idx = 1;
7682 *max_idx = 0;
7683 return false;
7685 else
7687 bool take_default = min_take_default || max_take_default;
7688 tree low, high;
7689 size_t k;
7691 if (max_take_default)
7692 j--;
7694 /* If the case label range is continuous, we do not need
7695 the default case label. Verify that. */
7696 high = CASE_LOW (gimple_switch_label (stmt, i));
7697 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7698 high = CASE_HIGH (gimple_switch_label (stmt, i));
7699 for (k = i + 1; k <= j; ++k)
7701 low = CASE_LOW (gimple_switch_label (stmt, k));
7702 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7704 take_default = true;
7705 break;
7707 high = low;
7708 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7709 high = CASE_HIGH (gimple_switch_label (stmt, k));
7712 *min_idx = i;
7713 *max_idx = j;
7714 return !take_default;
7718 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7719 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7720 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7721 Returns true if the default label is not needed. */
7723 static bool
7724 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7725 size_t *max_idx1, size_t *min_idx2,
7726 size_t *max_idx2)
7728 size_t i, j, k, l;
7729 unsigned int n = gimple_switch_num_labels (stmt);
7730 bool take_default;
7731 tree case_low, case_high;
7732 tree min = vr->min, max = vr->max;
7734 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7736 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7738 /* Set second range to emtpy. */
7739 *min_idx2 = 1;
7740 *max_idx2 = 0;
7742 if (vr->type == VR_RANGE)
7744 *min_idx1 = i;
7745 *max_idx1 = j;
7746 return !take_default;
7749 /* Set first range to all case labels. */
7750 *min_idx1 = 1;
7751 *max_idx1 = n - 1;
7753 if (i > j)
7754 return false;
7756 /* Make sure all the values of case labels [i , j] are contained in
7757 range [MIN, MAX]. */
7758 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7759 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7760 if (tree_int_cst_compare (case_low, min) < 0)
7761 i += 1;
7762 if (case_high != NULL_TREE
7763 && tree_int_cst_compare (max, case_high) < 0)
7764 j -= 1;
7766 if (i > j)
7767 return false;
7769 /* If the range spans case labels [i, j], the corresponding anti-range spans
7770 the labels [1, i - 1] and [j + 1, n - 1]. */
7771 k = j + 1;
7772 l = n - 1;
7773 if (k > l)
7775 k = 1;
7776 l = 0;
7779 j = i - 1;
7780 i = 1;
7781 if (i > j)
7783 i = k;
7784 j = l;
7785 k = 1;
7786 l = 0;
7789 *min_idx1 = i;
7790 *max_idx1 = j;
7791 *min_idx2 = k;
7792 *max_idx2 = l;
7793 return false;
7796 /* Visit switch statement STMT. If we can determine which edge
7797 will be taken out of STMT's basic block, record it in
7798 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7799 SSA_PROP_VARYING. */
7801 static enum ssa_prop_result
7802 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7804 tree op, val;
7805 value_range *vr;
7806 size_t i = 0, j = 0, k, l;
7807 bool take_default;
7809 *taken_edge_p = NULL;
7810 op = gimple_switch_index (stmt);
7811 if (TREE_CODE (op) != SSA_NAME)
7812 return SSA_PROP_VARYING;
7814 vr = get_value_range (op);
7815 if (dump_file && (dump_flags & TDF_DETAILS))
7817 fprintf (dump_file, "\nVisiting switch expression with operand ");
7818 print_generic_expr (dump_file, op, 0);
7819 fprintf (dump_file, " with known range ");
7820 dump_value_range (dump_file, vr);
7821 fprintf (dump_file, "\n");
7824 if ((vr->type != VR_RANGE
7825 && vr->type != VR_ANTI_RANGE)
7826 || symbolic_range_p (vr))
7827 return SSA_PROP_VARYING;
7829 /* Find the single edge that is taken from the switch expression. */
7830 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7832 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7833 label */
7834 if (j < i)
7836 gcc_assert (take_default);
7837 val = gimple_switch_default_label (stmt);
7839 else
7841 /* Check if labels with index i to j and maybe the default label
7842 are all reaching the same label. */
7844 val = gimple_switch_label (stmt, i);
7845 if (take_default
7846 && CASE_LABEL (gimple_switch_default_label (stmt))
7847 != CASE_LABEL (val))
7849 if (dump_file && (dump_flags & TDF_DETAILS))
7850 fprintf (dump_file, " not a single destination for this "
7851 "range\n");
7852 return SSA_PROP_VARYING;
7854 for (++i; i <= j; ++i)
7856 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7858 if (dump_file && (dump_flags & TDF_DETAILS))
7859 fprintf (dump_file, " not a single destination for this "
7860 "range\n");
7861 return SSA_PROP_VARYING;
7864 for (; k <= l; ++k)
7866 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7868 if (dump_file && (dump_flags & TDF_DETAILS))
7869 fprintf (dump_file, " not a single destination for this "
7870 "range\n");
7871 return SSA_PROP_VARYING;
7876 *taken_edge_p = find_edge (gimple_bb (stmt),
7877 label_to_block (CASE_LABEL (val)));
7879 if (dump_file && (dump_flags & TDF_DETAILS))
7881 fprintf (dump_file, " will take edge to ");
7882 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7885 return SSA_PROP_INTERESTING;
7889 /* Evaluate statement STMT. If the statement produces a useful range,
7890 return SSA_PROP_INTERESTING and record the SSA name with the
7891 interesting range into *OUTPUT_P.
7893 If STMT is a conditional branch and we can determine its truth
7894 value, the taken edge is recorded in *TAKEN_EDGE_P.
7896 If STMT produces a varying value, return SSA_PROP_VARYING. */
7898 static enum ssa_prop_result
7899 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
7901 tree def;
7902 ssa_op_iter iter;
7904 if (dump_file && (dump_flags & TDF_DETAILS))
7906 fprintf (dump_file, "\nVisiting statement:\n");
7907 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7910 if (!stmt_interesting_for_vrp (stmt))
7911 gcc_assert (stmt_ends_bb_p (stmt));
7912 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7913 return vrp_visit_assignment_or_call (stmt, output_p);
7914 else if (gimple_code (stmt) == GIMPLE_COND)
7915 return vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
7916 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7917 return vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
7919 /* All other statements produce nothing of interest for VRP, so mark
7920 their outputs varying and prevent further simulation. */
7921 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7922 set_value_range_to_varying (get_value_range (def));
7924 return SSA_PROP_VARYING;
7927 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7928 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7929 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7930 possible such range. The resulting range is not canonicalized. */
7932 static void
7933 union_ranges (enum value_range_type *vr0type,
7934 tree *vr0min, tree *vr0max,
7935 enum value_range_type vr1type,
7936 tree vr1min, tree vr1max)
7938 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7939 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7941 /* [] is vr0, () is vr1 in the following classification comments. */
7942 if (mineq && maxeq)
7944 /* [( )] */
7945 if (*vr0type == vr1type)
7946 /* Nothing to do for equal ranges. */
7948 else if ((*vr0type == VR_RANGE
7949 && vr1type == VR_ANTI_RANGE)
7950 || (*vr0type == VR_ANTI_RANGE
7951 && vr1type == VR_RANGE))
7953 /* For anti-range with range union the result is varying. */
7954 goto give_up;
7956 else
7957 gcc_unreachable ();
7959 else if (operand_less_p (*vr0max, vr1min) == 1
7960 || operand_less_p (vr1max, *vr0min) == 1)
7962 /* [ ] ( ) or ( ) [ ]
7963 If the ranges have an empty intersection, result of the union
7964 operation is the anti-range or if both are anti-ranges
7965 it covers all. */
7966 if (*vr0type == VR_ANTI_RANGE
7967 && vr1type == VR_ANTI_RANGE)
7968 goto give_up;
7969 else if (*vr0type == VR_ANTI_RANGE
7970 && vr1type == VR_RANGE)
7972 else if (*vr0type == VR_RANGE
7973 && vr1type == VR_ANTI_RANGE)
7975 *vr0type = vr1type;
7976 *vr0min = vr1min;
7977 *vr0max = vr1max;
7979 else if (*vr0type == VR_RANGE
7980 && vr1type == VR_RANGE)
7982 /* The result is the convex hull of both ranges. */
7983 if (operand_less_p (*vr0max, vr1min) == 1)
7985 /* If the result can be an anti-range, create one. */
7986 if (TREE_CODE (*vr0max) == INTEGER_CST
7987 && TREE_CODE (vr1min) == INTEGER_CST
7988 && vrp_val_is_min (*vr0min)
7989 && vrp_val_is_max (vr1max))
7991 tree min = int_const_binop (PLUS_EXPR,
7992 *vr0max,
7993 build_int_cst (TREE_TYPE (*vr0max), 1));
7994 tree max = int_const_binop (MINUS_EXPR,
7995 vr1min,
7996 build_int_cst (TREE_TYPE (vr1min), 1));
7997 if (!operand_less_p (max, min))
7999 *vr0type = VR_ANTI_RANGE;
8000 *vr0min = min;
8001 *vr0max = max;
8003 else
8004 *vr0max = vr1max;
8006 else
8007 *vr0max = vr1max;
8009 else
8011 /* If the result can be an anti-range, create one. */
8012 if (TREE_CODE (vr1max) == INTEGER_CST
8013 && TREE_CODE (*vr0min) == INTEGER_CST
8014 && vrp_val_is_min (vr1min)
8015 && vrp_val_is_max (*vr0max))
8017 tree min = int_const_binop (PLUS_EXPR,
8018 vr1max,
8019 build_int_cst (TREE_TYPE (vr1max), 1));
8020 tree max = int_const_binop (MINUS_EXPR,
8021 *vr0min,
8022 build_int_cst (TREE_TYPE (*vr0min), 1));
8023 if (!operand_less_p (max, min))
8025 *vr0type = VR_ANTI_RANGE;
8026 *vr0min = min;
8027 *vr0max = max;
8029 else
8030 *vr0min = vr1min;
8032 else
8033 *vr0min = vr1min;
8036 else
8037 gcc_unreachable ();
8039 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8040 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8042 /* [ ( ) ] or [( ) ] or [ ( )] */
8043 if (*vr0type == VR_RANGE
8044 && vr1type == VR_RANGE)
8046 else if (*vr0type == VR_ANTI_RANGE
8047 && vr1type == VR_ANTI_RANGE)
8049 *vr0type = vr1type;
8050 *vr0min = vr1min;
8051 *vr0max = vr1max;
8053 else if (*vr0type == VR_ANTI_RANGE
8054 && vr1type == VR_RANGE)
8056 /* Arbitrarily choose the right or left gap. */
8057 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8058 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8059 build_int_cst (TREE_TYPE (vr1min), 1));
8060 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8061 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8062 build_int_cst (TREE_TYPE (vr1max), 1));
8063 else
8064 goto give_up;
8066 else if (*vr0type == VR_RANGE
8067 && vr1type == VR_ANTI_RANGE)
8068 /* The result covers everything. */
8069 goto give_up;
8070 else
8071 gcc_unreachable ();
8073 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8074 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8076 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8077 if (*vr0type == VR_RANGE
8078 && vr1type == VR_RANGE)
8080 *vr0type = vr1type;
8081 *vr0min = vr1min;
8082 *vr0max = vr1max;
8084 else if (*vr0type == VR_ANTI_RANGE
8085 && vr1type == VR_ANTI_RANGE)
8087 else if (*vr0type == VR_RANGE
8088 && vr1type == VR_ANTI_RANGE)
8090 *vr0type = VR_ANTI_RANGE;
8091 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8093 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8094 build_int_cst (TREE_TYPE (*vr0min), 1));
8095 *vr0min = vr1min;
8097 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8099 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8100 build_int_cst (TREE_TYPE (*vr0max), 1));
8101 *vr0max = vr1max;
8103 else
8104 goto give_up;
8106 else if (*vr0type == VR_ANTI_RANGE
8107 && vr1type == VR_RANGE)
8108 /* The result covers everything. */
8109 goto give_up;
8110 else
8111 gcc_unreachable ();
8113 else if ((operand_less_p (vr1min, *vr0max) == 1
8114 || operand_equal_p (vr1min, *vr0max, 0))
8115 && operand_less_p (*vr0min, vr1min) == 1
8116 && operand_less_p (*vr0max, vr1max) == 1)
8118 /* [ ( ] ) or [ ]( ) */
8119 if (*vr0type == VR_RANGE
8120 && vr1type == VR_RANGE)
8121 *vr0max = vr1max;
8122 else if (*vr0type == VR_ANTI_RANGE
8123 && vr1type == VR_ANTI_RANGE)
8124 *vr0min = vr1min;
8125 else if (*vr0type == VR_ANTI_RANGE
8126 && vr1type == VR_RANGE)
8128 if (TREE_CODE (vr1min) == INTEGER_CST)
8129 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8130 build_int_cst (TREE_TYPE (vr1min), 1));
8131 else
8132 goto give_up;
8134 else if (*vr0type == VR_RANGE
8135 && vr1type == VR_ANTI_RANGE)
8137 if (TREE_CODE (*vr0max) == INTEGER_CST)
8139 *vr0type = vr1type;
8140 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8141 build_int_cst (TREE_TYPE (*vr0max), 1));
8142 *vr0max = vr1max;
8144 else
8145 goto give_up;
8147 else
8148 gcc_unreachable ();
8150 else if ((operand_less_p (*vr0min, vr1max) == 1
8151 || operand_equal_p (*vr0min, vr1max, 0))
8152 && operand_less_p (vr1min, *vr0min) == 1
8153 && operand_less_p (vr1max, *vr0max) == 1)
8155 /* ( [ ) ] or ( )[ ] */
8156 if (*vr0type == VR_RANGE
8157 && vr1type == VR_RANGE)
8158 *vr0min = vr1min;
8159 else if (*vr0type == VR_ANTI_RANGE
8160 && vr1type == VR_ANTI_RANGE)
8161 *vr0max = vr1max;
8162 else if (*vr0type == VR_ANTI_RANGE
8163 && vr1type == VR_RANGE)
8165 if (TREE_CODE (vr1max) == INTEGER_CST)
8166 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8167 build_int_cst (TREE_TYPE (vr1max), 1));
8168 else
8169 goto give_up;
8171 else if (*vr0type == VR_RANGE
8172 && vr1type == VR_ANTI_RANGE)
8174 if (TREE_CODE (*vr0min) == INTEGER_CST)
8176 *vr0type = vr1type;
8177 *vr0min = vr1min;
8178 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8179 build_int_cst (TREE_TYPE (*vr0min), 1));
8181 else
8182 goto give_up;
8184 else
8185 gcc_unreachable ();
8187 else
8188 goto give_up;
8190 return;
8192 give_up:
8193 *vr0type = VR_VARYING;
8194 *vr0min = NULL_TREE;
8195 *vr0max = NULL_TREE;
8198 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8199 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8200 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8201 possible such range. The resulting range is not canonicalized. */
8203 static void
8204 intersect_ranges (enum value_range_type *vr0type,
8205 tree *vr0min, tree *vr0max,
8206 enum value_range_type vr1type,
8207 tree vr1min, tree vr1max)
8209 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8210 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8212 /* [] is vr0, () is vr1 in the following classification comments. */
8213 if (mineq && maxeq)
8215 /* [( )] */
8216 if (*vr0type == vr1type)
8217 /* Nothing to do for equal ranges. */
8219 else if ((*vr0type == VR_RANGE
8220 && vr1type == VR_ANTI_RANGE)
8221 || (*vr0type == VR_ANTI_RANGE
8222 && vr1type == VR_RANGE))
8224 /* For anti-range with range intersection the result is empty. */
8225 *vr0type = VR_UNDEFINED;
8226 *vr0min = NULL_TREE;
8227 *vr0max = NULL_TREE;
8229 else
8230 gcc_unreachable ();
8232 else if (operand_less_p (*vr0max, vr1min) == 1
8233 || operand_less_p (vr1max, *vr0min) == 1)
8235 /* [ ] ( ) or ( ) [ ]
8236 If the ranges have an empty intersection, the result of the
8237 intersect operation is the range for intersecting an
8238 anti-range with a range or empty when intersecting two ranges. */
8239 if (*vr0type == VR_RANGE
8240 && vr1type == VR_ANTI_RANGE)
8242 else if (*vr0type == VR_ANTI_RANGE
8243 && vr1type == VR_RANGE)
8245 *vr0type = vr1type;
8246 *vr0min = vr1min;
8247 *vr0max = vr1max;
8249 else if (*vr0type == VR_RANGE
8250 && vr1type == VR_RANGE)
8252 *vr0type = VR_UNDEFINED;
8253 *vr0min = NULL_TREE;
8254 *vr0max = NULL_TREE;
8256 else if (*vr0type == VR_ANTI_RANGE
8257 && vr1type == VR_ANTI_RANGE)
8259 /* If the anti-ranges are adjacent to each other merge them. */
8260 if (TREE_CODE (*vr0max) == INTEGER_CST
8261 && TREE_CODE (vr1min) == INTEGER_CST
8262 && operand_less_p (*vr0max, vr1min) == 1
8263 && integer_onep (int_const_binop (MINUS_EXPR,
8264 vr1min, *vr0max)))
8265 *vr0max = vr1max;
8266 else if (TREE_CODE (vr1max) == INTEGER_CST
8267 && TREE_CODE (*vr0min) == INTEGER_CST
8268 && operand_less_p (vr1max, *vr0min) == 1
8269 && integer_onep (int_const_binop (MINUS_EXPR,
8270 *vr0min, vr1max)))
8271 *vr0min = vr1min;
8272 /* Else arbitrarily take VR0. */
8275 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8276 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8278 /* [ ( ) ] or [( ) ] or [ ( )] */
8279 if (*vr0type == VR_RANGE
8280 && vr1type == VR_RANGE)
8282 /* If both are ranges the result is the inner one. */
8283 *vr0type = vr1type;
8284 *vr0min = vr1min;
8285 *vr0max = vr1max;
8287 else if (*vr0type == VR_RANGE
8288 && vr1type == VR_ANTI_RANGE)
8290 /* Choose the right gap if the left one is empty. */
8291 if (mineq)
8293 if (TREE_CODE (vr1max) == INTEGER_CST)
8294 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8295 build_int_cst (TREE_TYPE (vr1max), 1));
8296 else
8297 *vr0min = vr1max;
8299 /* Choose the left gap if the right one is empty. */
8300 else if (maxeq)
8302 if (TREE_CODE (vr1min) == INTEGER_CST)
8303 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8304 build_int_cst (TREE_TYPE (vr1min), 1));
8305 else
8306 *vr0max = vr1min;
8308 /* Choose the anti-range if the range is effectively varying. */
8309 else if (vrp_val_is_min (*vr0min)
8310 && vrp_val_is_max (*vr0max))
8312 *vr0type = vr1type;
8313 *vr0min = vr1min;
8314 *vr0max = vr1max;
8316 /* Else choose the range. */
8318 else if (*vr0type == VR_ANTI_RANGE
8319 && vr1type == VR_ANTI_RANGE)
8320 /* If both are anti-ranges the result is the outer one. */
8322 else if (*vr0type == VR_ANTI_RANGE
8323 && vr1type == VR_RANGE)
8325 /* The intersection is empty. */
8326 *vr0type = VR_UNDEFINED;
8327 *vr0min = NULL_TREE;
8328 *vr0max = NULL_TREE;
8330 else
8331 gcc_unreachable ();
8333 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8334 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8336 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8337 if (*vr0type == VR_RANGE
8338 && vr1type == VR_RANGE)
8339 /* Choose the inner range. */
8341 else if (*vr0type == VR_ANTI_RANGE
8342 && vr1type == VR_RANGE)
8344 /* Choose the right gap if the left is empty. */
8345 if (mineq)
8347 *vr0type = VR_RANGE;
8348 if (TREE_CODE (*vr0max) == INTEGER_CST)
8349 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8350 build_int_cst (TREE_TYPE (*vr0max), 1));
8351 else
8352 *vr0min = *vr0max;
8353 *vr0max = vr1max;
8355 /* Choose the left gap if the right is empty. */
8356 else if (maxeq)
8358 *vr0type = VR_RANGE;
8359 if (TREE_CODE (*vr0min) == INTEGER_CST)
8360 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8361 build_int_cst (TREE_TYPE (*vr0min), 1));
8362 else
8363 *vr0max = *vr0min;
8364 *vr0min = vr1min;
8366 /* Choose the anti-range if the range is effectively varying. */
8367 else if (vrp_val_is_min (vr1min)
8368 && vrp_val_is_max (vr1max))
8370 /* Else choose the range. */
8371 else
8373 *vr0type = vr1type;
8374 *vr0min = vr1min;
8375 *vr0max = vr1max;
8378 else if (*vr0type == VR_ANTI_RANGE
8379 && vr1type == VR_ANTI_RANGE)
8381 /* If both are anti-ranges the result is the outer one. */
8382 *vr0type = vr1type;
8383 *vr0min = vr1min;
8384 *vr0max = vr1max;
8386 else if (vr1type == VR_ANTI_RANGE
8387 && *vr0type == VR_RANGE)
8389 /* The intersection is empty. */
8390 *vr0type = VR_UNDEFINED;
8391 *vr0min = NULL_TREE;
8392 *vr0max = NULL_TREE;
8394 else
8395 gcc_unreachable ();
8397 else if ((operand_less_p (vr1min, *vr0max) == 1
8398 || operand_equal_p (vr1min, *vr0max, 0))
8399 && operand_less_p (*vr0min, vr1min) == 1)
8401 /* [ ( ] ) or [ ]( ) */
8402 if (*vr0type == VR_ANTI_RANGE
8403 && vr1type == VR_ANTI_RANGE)
8404 *vr0max = vr1max;
8405 else if (*vr0type == VR_RANGE
8406 && vr1type == VR_RANGE)
8407 *vr0min = vr1min;
8408 else if (*vr0type == VR_RANGE
8409 && vr1type == VR_ANTI_RANGE)
8411 if (TREE_CODE (vr1min) == INTEGER_CST)
8412 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8413 build_int_cst (TREE_TYPE (vr1min), 1));
8414 else
8415 *vr0max = vr1min;
8417 else if (*vr0type == VR_ANTI_RANGE
8418 && vr1type == VR_RANGE)
8420 *vr0type = VR_RANGE;
8421 if (TREE_CODE (*vr0max) == INTEGER_CST)
8422 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8423 build_int_cst (TREE_TYPE (*vr0max), 1));
8424 else
8425 *vr0min = *vr0max;
8426 *vr0max = vr1max;
8428 else
8429 gcc_unreachable ();
8431 else if ((operand_less_p (*vr0min, vr1max) == 1
8432 || operand_equal_p (*vr0min, vr1max, 0))
8433 && operand_less_p (vr1min, *vr0min) == 1)
8435 /* ( [ ) ] or ( )[ ] */
8436 if (*vr0type == VR_ANTI_RANGE
8437 && vr1type == VR_ANTI_RANGE)
8438 *vr0min = vr1min;
8439 else if (*vr0type == VR_RANGE
8440 && vr1type == VR_RANGE)
8441 *vr0max = vr1max;
8442 else if (*vr0type == VR_RANGE
8443 && vr1type == VR_ANTI_RANGE)
8445 if (TREE_CODE (vr1max) == INTEGER_CST)
8446 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8447 build_int_cst (TREE_TYPE (vr1max), 1));
8448 else
8449 *vr0min = vr1max;
8451 else if (*vr0type == VR_ANTI_RANGE
8452 && vr1type == VR_RANGE)
8454 *vr0type = VR_RANGE;
8455 if (TREE_CODE (*vr0min) == INTEGER_CST)
8456 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8457 build_int_cst (TREE_TYPE (*vr0min), 1));
8458 else
8459 *vr0max = *vr0min;
8460 *vr0min = vr1min;
8462 else
8463 gcc_unreachable ();
8466 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8467 result for the intersection. That's always a conservative
8468 correct estimate. */
8470 return;
8474 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8475 in *VR0. This may not be the smallest possible such range. */
8477 static void
8478 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8480 value_range saved;
8482 /* If either range is VR_VARYING the other one wins. */
8483 if (vr1->type == VR_VARYING)
8484 return;
8485 if (vr0->type == VR_VARYING)
8487 copy_value_range (vr0, vr1);
8488 return;
8491 /* When either range is VR_UNDEFINED the resulting range is
8492 VR_UNDEFINED, too. */
8493 if (vr0->type == VR_UNDEFINED)
8494 return;
8495 if (vr1->type == VR_UNDEFINED)
8497 set_value_range_to_undefined (vr0);
8498 return;
8501 /* Save the original vr0 so we can return it as conservative intersection
8502 result when our worker turns things to varying. */
8503 saved = *vr0;
8504 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8505 vr1->type, vr1->min, vr1->max);
8506 /* Make sure to canonicalize the result though as the inversion of a
8507 VR_RANGE can still be a VR_RANGE. */
8508 set_and_canonicalize_value_range (vr0, vr0->type,
8509 vr0->min, vr0->max, vr0->equiv);
8510 /* If that failed, use the saved original VR0. */
8511 if (vr0->type == VR_VARYING)
8513 *vr0 = saved;
8514 return;
8516 /* If the result is VR_UNDEFINED there is no need to mess with
8517 the equivalencies. */
8518 if (vr0->type == VR_UNDEFINED)
8519 return;
8521 /* The resulting set of equivalences for range intersection is the union of
8522 the two sets. */
8523 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8524 bitmap_ior_into (vr0->equiv, vr1->equiv);
8525 else if (vr1->equiv && !vr0->equiv)
8526 bitmap_copy (vr0->equiv, vr1->equiv);
8529 static void
8530 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8532 if (dump_file && (dump_flags & TDF_DETAILS))
8534 fprintf (dump_file, "Intersecting\n ");
8535 dump_value_range (dump_file, vr0);
8536 fprintf (dump_file, "\nand\n ");
8537 dump_value_range (dump_file, vr1);
8538 fprintf (dump_file, "\n");
8540 vrp_intersect_ranges_1 (vr0, vr1);
8541 if (dump_file && (dump_flags & TDF_DETAILS))
8543 fprintf (dump_file, "to\n ");
8544 dump_value_range (dump_file, vr0);
8545 fprintf (dump_file, "\n");
8549 /* Meet operation for value ranges. Given two value ranges VR0 and
8550 VR1, store in VR0 a range that contains both VR0 and VR1. This
8551 may not be the smallest possible such range. */
8553 static void
8554 vrp_meet_1 (value_range *vr0, value_range *vr1)
8556 value_range saved;
8558 if (vr0->type == VR_UNDEFINED)
8560 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8561 return;
8564 if (vr1->type == VR_UNDEFINED)
8566 /* VR0 already has the resulting range. */
8567 return;
8570 if (vr0->type == VR_VARYING)
8572 /* Nothing to do. VR0 already has the resulting range. */
8573 return;
8576 if (vr1->type == VR_VARYING)
8578 set_value_range_to_varying (vr0);
8579 return;
8582 saved = *vr0;
8583 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8584 vr1->type, vr1->min, vr1->max);
8585 if (vr0->type == VR_VARYING)
8587 /* Failed to find an efficient meet. Before giving up and setting
8588 the result to VARYING, see if we can at least derive a useful
8589 anti-range. FIXME, all this nonsense about distinguishing
8590 anti-ranges from ranges is necessary because of the odd
8591 semantics of range_includes_zero_p and friends. */
8592 if (((saved.type == VR_RANGE
8593 && range_includes_zero_p (saved.min, saved.max) == 0)
8594 || (saved.type == VR_ANTI_RANGE
8595 && range_includes_zero_p (saved.min, saved.max) == 1))
8596 && ((vr1->type == VR_RANGE
8597 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8598 || (vr1->type == VR_ANTI_RANGE
8599 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8601 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8603 /* Since this meet operation did not result from the meeting of
8604 two equivalent names, VR0 cannot have any equivalences. */
8605 if (vr0->equiv)
8606 bitmap_clear (vr0->equiv);
8607 return;
8610 set_value_range_to_varying (vr0);
8611 return;
8613 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8614 vr0->equiv);
8615 if (vr0->type == VR_VARYING)
8616 return;
8618 /* The resulting set of equivalences is always the intersection of
8619 the two sets. */
8620 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8621 bitmap_and_into (vr0->equiv, vr1->equiv);
8622 else if (vr0->equiv && !vr1->equiv)
8623 bitmap_clear (vr0->equiv);
8626 static void
8627 vrp_meet (value_range *vr0, value_range *vr1)
8629 if (dump_file && (dump_flags & TDF_DETAILS))
8631 fprintf (dump_file, "Meeting\n ");
8632 dump_value_range (dump_file, vr0);
8633 fprintf (dump_file, "\nand\n ");
8634 dump_value_range (dump_file, vr1);
8635 fprintf (dump_file, "\n");
8637 vrp_meet_1 (vr0, vr1);
8638 if (dump_file && (dump_flags & TDF_DETAILS))
8640 fprintf (dump_file, "to\n ");
8641 dump_value_range (dump_file, vr0);
8642 fprintf (dump_file, "\n");
8647 /* Visit all arguments for PHI node PHI that flow through executable
8648 edges. If a valid value range can be derived from all the incoming
8649 value ranges, set a new range for the LHS of PHI. */
8651 static enum ssa_prop_result
8652 vrp_visit_phi_node (gphi *phi)
8654 size_t i;
8655 tree lhs = PHI_RESULT (phi);
8656 value_range *lhs_vr = get_value_range (lhs);
8657 value_range vr_result = VR_INITIALIZER;
8658 bool first = true;
8659 int edges, old_edges;
8660 struct loop *l;
8662 if (dump_file && (dump_flags & TDF_DETAILS))
8664 fprintf (dump_file, "\nVisiting PHI node: ");
8665 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8668 edges = 0;
8669 for (i = 0; i < gimple_phi_num_args (phi); i++)
8671 edge e = gimple_phi_arg_edge (phi, i);
8673 if (dump_file && (dump_flags & TDF_DETAILS))
8675 fprintf (dump_file,
8676 " Argument #%d (%d -> %d %sexecutable)\n",
8677 (int) i, e->src->index, e->dest->index,
8678 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8681 if (e->flags & EDGE_EXECUTABLE)
8683 tree arg = PHI_ARG_DEF (phi, i);
8684 value_range vr_arg;
8686 ++edges;
8688 if (TREE_CODE (arg) == SSA_NAME)
8690 vr_arg = *(get_value_range (arg));
8691 /* Do not allow equivalences or symbolic ranges to leak in from
8692 backedges. That creates invalid equivalencies.
8693 See PR53465 and PR54767. */
8694 if (e->flags & EDGE_DFS_BACK)
8696 if (vr_arg.type == VR_RANGE
8697 || vr_arg.type == VR_ANTI_RANGE)
8699 vr_arg.equiv = NULL;
8700 if (symbolic_range_p (&vr_arg))
8702 vr_arg.type = VR_VARYING;
8703 vr_arg.min = NULL_TREE;
8704 vr_arg.max = NULL_TREE;
8708 else
8710 /* If the non-backedge arguments range is VR_VARYING then
8711 we can still try recording a simple equivalence. */
8712 if (vr_arg.type == VR_VARYING)
8714 vr_arg.type = VR_RANGE;
8715 vr_arg.min = arg;
8716 vr_arg.max = arg;
8717 vr_arg.equiv = NULL;
8721 else
8723 if (TREE_OVERFLOW_P (arg))
8724 arg = drop_tree_overflow (arg);
8726 vr_arg.type = VR_RANGE;
8727 vr_arg.min = arg;
8728 vr_arg.max = arg;
8729 vr_arg.equiv = NULL;
8732 if (dump_file && (dump_flags & TDF_DETAILS))
8734 fprintf (dump_file, "\t");
8735 print_generic_expr (dump_file, arg, dump_flags);
8736 fprintf (dump_file, ": ");
8737 dump_value_range (dump_file, &vr_arg);
8738 fprintf (dump_file, "\n");
8741 if (first)
8742 copy_value_range (&vr_result, &vr_arg);
8743 else
8744 vrp_meet (&vr_result, &vr_arg);
8745 first = false;
8747 if (vr_result.type == VR_VARYING)
8748 break;
8752 if (vr_result.type == VR_VARYING)
8753 goto varying;
8754 else if (vr_result.type == VR_UNDEFINED)
8755 goto update_range;
8757 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8758 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8760 /* To prevent infinite iterations in the algorithm, derive ranges
8761 when the new value is slightly bigger or smaller than the
8762 previous one. We don't do this if we have seen a new executable
8763 edge; this helps us avoid an overflow infinity for conditionals
8764 which are not in a loop. If the old value-range was VR_UNDEFINED
8765 use the updated range and iterate one more time. */
8766 if (edges > 0
8767 && gimple_phi_num_args (phi) > 1
8768 && edges == old_edges
8769 && lhs_vr->type != VR_UNDEFINED)
8771 /* Compare old and new ranges, fall back to varying if the
8772 values are not comparable. */
8773 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8774 if (cmp_min == -2)
8775 goto varying;
8776 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8777 if (cmp_max == -2)
8778 goto varying;
8780 /* For non VR_RANGE or for pointers fall back to varying if
8781 the range changed. */
8782 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8783 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8784 && (cmp_min != 0 || cmp_max != 0))
8785 goto varying;
8787 /* If the new minimum is larger than the previous one
8788 retain the old value. If the new minimum value is smaller
8789 than the previous one and not -INF go all the way to -INF + 1.
8790 In the first case, to avoid infinite bouncing between different
8791 minimums, and in the other case to avoid iterating millions of
8792 times to reach -INF. Going to -INF + 1 also lets the following
8793 iteration compute whether there will be any overflow, at the
8794 expense of one additional iteration. */
8795 if (cmp_min < 0)
8796 vr_result.min = lhs_vr->min;
8797 else if (cmp_min > 0
8798 && !vrp_val_is_min (vr_result.min))
8799 vr_result.min
8800 = int_const_binop (PLUS_EXPR,
8801 vrp_val_min (TREE_TYPE (vr_result.min)),
8802 build_int_cst (TREE_TYPE (vr_result.min), 1));
8804 /* Similarly for the maximum value. */
8805 if (cmp_max > 0)
8806 vr_result.max = lhs_vr->max;
8807 else if (cmp_max < 0
8808 && !vrp_val_is_max (vr_result.max))
8809 vr_result.max
8810 = int_const_binop (MINUS_EXPR,
8811 vrp_val_max (TREE_TYPE (vr_result.min)),
8812 build_int_cst (TREE_TYPE (vr_result.min), 1));
8814 /* If we dropped either bound to +-INF then if this is a loop
8815 PHI node SCEV may known more about its value-range. */
8816 if (cmp_min > 0 || cmp_min < 0
8817 || cmp_max < 0 || cmp_max > 0)
8818 goto scev_check;
8820 goto infinite_check;
8823 /* If the new range is different than the previous value, keep
8824 iterating. */
8825 update_range:
8826 if (update_value_range (lhs, &vr_result))
8828 if (dump_file && (dump_flags & TDF_DETAILS))
8830 fprintf (dump_file, "Found new range for ");
8831 print_generic_expr (dump_file, lhs, 0);
8832 fprintf (dump_file, ": ");
8833 dump_value_range (dump_file, &vr_result);
8834 fprintf (dump_file, "\n");
8837 if (vr_result.type == VR_VARYING)
8838 return SSA_PROP_VARYING;
8840 return SSA_PROP_INTERESTING;
8843 /* Nothing changed, don't add outgoing edges. */
8844 return SSA_PROP_NOT_INTERESTING;
8846 varying:
8847 set_value_range_to_varying (&vr_result);
8849 scev_check:
8850 /* If this is a loop PHI node SCEV may known more about its value-range.
8851 scev_check can be reached from two paths, one is a fall through from above
8852 "varying" label, the other is direct goto from code block which tries to
8853 avoid infinite simulation. */
8854 if ((l = loop_containing_stmt (phi))
8855 && l->header == gimple_bb (phi))
8856 adjust_range_with_scev (&vr_result, l, phi, lhs);
8858 infinite_check:
8859 /* If we will end up with a (-INF, +INF) range, set it to
8860 VARYING. Same if the previous max value was invalid for
8861 the type and we end up with vr_result.min > vr_result.max. */
8862 if ((vr_result.type == VR_RANGE || vr_result.type == VR_ANTI_RANGE)
8863 && !((vrp_val_is_max (vr_result.max) && vrp_val_is_min (vr_result.min))
8864 || compare_values (vr_result.min, vr_result.max) > 0))
8865 goto update_range;
8867 /* No match found. Set the LHS to VARYING. */
8868 set_value_range_to_varying (lhs_vr);
8869 return SSA_PROP_VARYING;
8872 /* Simplify boolean operations if the source is known
8873 to be already a boolean. */
8874 static bool
8875 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
8877 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8878 tree lhs, op0, op1;
8879 bool need_conversion;
8881 /* We handle only !=/== case here. */
8882 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8884 op0 = gimple_assign_rhs1 (stmt);
8885 if (!op_with_boolean_value_range_p (op0))
8886 return false;
8888 op1 = gimple_assign_rhs2 (stmt);
8889 if (!op_with_boolean_value_range_p (op1))
8890 return false;
8892 /* Reduce number of cases to handle to NE_EXPR. As there is no
8893 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8894 if (rhs_code == EQ_EXPR)
8896 if (TREE_CODE (op1) == INTEGER_CST)
8897 op1 = int_const_binop (BIT_XOR_EXPR, op1,
8898 build_int_cst (TREE_TYPE (op1), 1));
8899 else
8900 return false;
8903 lhs = gimple_assign_lhs (stmt);
8904 need_conversion
8905 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8907 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8908 if (need_conversion
8909 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8910 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8911 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8912 return false;
8914 /* For A != 0 we can substitute A itself. */
8915 if (integer_zerop (op1))
8916 gimple_assign_set_rhs_with_ops (gsi,
8917 need_conversion
8918 ? NOP_EXPR : TREE_CODE (op0), op0);
8919 /* For A != B we substitute A ^ B. Either with conversion. */
8920 else if (need_conversion)
8922 tree tem = make_ssa_name (TREE_TYPE (op0));
8923 gassign *newop
8924 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
8925 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8926 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
8928 /* Or without. */
8929 else
8930 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8931 update_stmt (gsi_stmt (*gsi));
8933 return true;
8936 /* Simplify a division or modulo operator to a right shift or
8937 bitwise and if the first operand is unsigned or is greater
8938 than zero and the second operand is an exact power of two.
8939 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
8940 into just op0 if op0's range is known to be a subset of
8941 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
8942 modulo. */
8944 static bool
8945 simplify_div_or_mod_using_ranges (gimple *stmt)
8947 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8948 tree val = NULL;
8949 tree op0 = gimple_assign_rhs1 (stmt);
8950 tree op1 = gimple_assign_rhs2 (stmt);
8951 value_range *vr = get_value_range (op0);
8953 if (rhs_code == TRUNC_MOD_EXPR
8954 && TREE_CODE (op1) == INTEGER_CST
8955 && tree_int_cst_sgn (op1) == 1
8956 && range_int_cst_p (vr)
8957 && tree_int_cst_lt (vr->max, op1))
8959 if (TYPE_UNSIGNED (TREE_TYPE (op0))
8960 || tree_int_cst_sgn (vr->min) >= 0
8961 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
8962 vr->min))
8964 /* If op0 already has the range op0 % op1 has,
8965 then TRUNC_MOD_EXPR won't change anything. */
8966 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
8967 gimple_assign_set_rhs_from_tree (&gsi, op0);
8968 update_stmt (stmt);
8969 return true;
8973 if (!integer_pow2p (op1))
8974 return false;
8976 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8978 val = integer_one_node;
8980 else
8982 bool sop = false;
8984 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8986 if (val
8987 && sop
8988 && integer_onep (val)
8989 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8991 location_t location;
8993 if (!gimple_has_location (stmt))
8994 location = input_location;
8995 else
8996 location = gimple_location (stmt);
8997 warning_at (location, OPT_Wstrict_overflow,
8998 "assuming signed overflow does not occur when "
8999 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9003 if (val && integer_onep (val))
9005 tree t;
9007 if (rhs_code == TRUNC_DIV_EXPR)
9009 t = build_int_cst (integer_type_node, tree_log2 (op1));
9010 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9011 gimple_assign_set_rhs1 (stmt, op0);
9012 gimple_assign_set_rhs2 (stmt, t);
9014 else
9016 t = build_int_cst (TREE_TYPE (op1), 1);
9017 t = int_const_binop (MINUS_EXPR, op1, t);
9018 t = fold_convert (TREE_TYPE (op0), t);
9020 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9021 gimple_assign_set_rhs1 (stmt, op0);
9022 gimple_assign_set_rhs2 (stmt, t);
9025 update_stmt (stmt);
9026 return true;
9029 return false;
9032 /* Simplify a min or max if the ranges of the two operands are
9033 disjoint. Return true if we do simplify. */
9035 static bool
9036 simplify_min_or_max_using_ranges (gimple *stmt)
9038 tree op0 = gimple_assign_rhs1 (stmt);
9039 tree op1 = gimple_assign_rhs2 (stmt);
9040 bool sop = false;
9041 tree val;
9043 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9044 (LE_EXPR, op0, op1, &sop));
9045 if (!val)
9047 sop = false;
9048 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9049 (LT_EXPR, op0, op1, &sop));
9052 if (val)
9054 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9056 location_t location;
9058 if (!gimple_has_location (stmt))
9059 location = input_location;
9060 else
9061 location = gimple_location (stmt);
9062 warning_at (location, OPT_Wstrict_overflow,
9063 "assuming signed overflow does not occur when "
9064 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9067 /* VAL == TRUE -> OP0 < or <= op1
9068 VAL == FALSE -> OP0 > or >= op1. */
9069 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9070 == integer_zerop (val)) ? op0 : op1;
9071 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
9072 gimple_assign_set_rhs_from_tree (&gsi, res);
9073 update_stmt (stmt);
9074 return true;
9077 return false;
9080 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9081 ABS_EXPR. If the operand is <= 0, then simplify the
9082 ABS_EXPR into a NEGATE_EXPR. */
9084 static bool
9085 simplify_abs_using_ranges (gimple *stmt)
9087 tree op = gimple_assign_rhs1 (stmt);
9088 value_range *vr = get_value_range (op);
9090 if (vr)
9092 tree val = NULL;
9093 bool sop = false;
9095 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9096 if (!val)
9098 /* The range is neither <= 0 nor > 0. Now see if it is
9099 either < 0 or >= 0. */
9100 sop = false;
9101 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9102 &sop);
9105 if (val)
9107 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9109 location_t location;
9111 if (!gimple_has_location (stmt))
9112 location = input_location;
9113 else
9114 location = gimple_location (stmt);
9115 warning_at (location, OPT_Wstrict_overflow,
9116 "assuming signed overflow does not occur when "
9117 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9120 gimple_assign_set_rhs1 (stmt, op);
9121 if (integer_zerop (val))
9122 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9123 else
9124 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9125 update_stmt (stmt);
9126 return true;
9130 return false;
9133 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9134 If all the bits that are being cleared by & are already
9135 known to be zero from VR, or all the bits that are being
9136 set by | are already known to be one from VR, the bit
9137 operation is redundant. */
9139 static bool
9140 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9142 tree op0 = gimple_assign_rhs1 (stmt);
9143 tree op1 = gimple_assign_rhs2 (stmt);
9144 tree op = NULL_TREE;
9145 value_range vr0 = VR_INITIALIZER;
9146 value_range vr1 = VR_INITIALIZER;
9147 wide_int may_be_nonzero0, may_be_nonzero1;
9148 wide_int must_be_nonzero0, must_be_nonzero1;
9149 wide_int mask;
9151 if (TREE_CODE (op0) == SSA_NAME)
9152 vr0 = *(get_value_range (op0));
9153 else if (is_gimple_min_invariant (op0))
9154 set_value_range_to_value (&vr0, op0, NULL);
9155 else
9156 return false;
9158 if (TREE_CODE (op1) == SSA_NAME)
9159 vr1 = *(get_value_range (op1));
9160 else if (is_gimple_min_invariant (op1))
9161 set_value_range_to_value (&vr1, op1, NULL);
9162 else
9163 return false;
9165 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9166 &must_be_nonzero0))
9167 return false;
9168 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9169 &must_be_nonzero1))
9170 return false;
9172 switch (gimple_assign_rhs_code (stmt))
9174 case BIT_AND_EXPR:
9175 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9176 if (mask == 0)
9178 op = op0;
9179 break;
9181 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9182 if (mask == 0)
9184 op = op1;
9185 break;
9187 break;
9188 case BIT_IOR_EXPR:
9189 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9190 if (mask == 0)
9192 op = op1;
9193 break;
9195 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9196 if (mask == 0)
9198 op = op0;
9199 break;
9201 break;
9202 default:
9203 gcc_unreachable ();
9206 if (op == NULL_TREE)
9207 return false;
9209 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9210 update_stmt (gsi_stmt (*gsi));
9211 return true;
9214 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9215 a known value range VR.
9217 If there is one and only one value which will satisfy the
9218 conditional, then return that value. Else return NULL.
9220 If signed overflow must be undefined for the value to satisfy
9221 the conditional, then set *STRICT_OVERFLOW_P to true. */
9223 static tree
9224 test_for_singularity (enum tree_code cond_code, tree op0,
9225 tree op1, value_range *vr,
9226 bool *strict_overflow_p)
9228 tree min = NULL;
9229 tree max = NULL;
9231 /* Extract minimum/maximum values which satisfy the
9232 the conditional as it was written. */
9233 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9235 /* This should not be negative infinity; there is no overflow
9236 here. */
9237 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9239 max = op1;
9240 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9242 tree one = build_int_cst (TREE_TYPE (op0), 1);
9243 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9244 if (EXPR_P (max))
9245 TREE_NO_WARNING (max) = 1;
9248 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9250 /* This should not be positive infinity; there is no overflow
9251 here. */
9252 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9254 min = op1;
9255 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9257 tree one = build_int_cst (TREE_TYPE (op0), 1);
9258 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9259 if (EXPR_P (min))
9260 TREE_NO_WARNING (min) = 1;
9264 /* Now refine the minimum and maximum values using any
9265 value range information we have for op0. */
9266 if (min && max)
9268 if (compare_values (vr->min, min) == 1)
9269 min = vr->min;
9270 if (compare_values (vr->max, max) == -1)
9271 max = vr->max;
9273 /* If the new min/max values have converged to a single value,
9274 then there is only one value which can satisfy the condition,
9275 return that value. */
9276 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9278 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9279 && is_overflow_infinity (vr->max))
9280 *strict_overflow_p = true;
9281 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9282 && is_overflow_infinity (vr->min))
9283 *strict_overflow_p = true;
9285 return min;
9288 return NULL;
9291 /* Return whether the value range *VR fits in an integer type specified
9292 by PRECISION and UNSIGNED_P. */
9294 static bool
9295 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9297 tree src_type;
9298 unsigned src_precision;
9299 widest_int tem;
9300 signop src_sgn;
9302 /* We can only handle integral and pointer types. */
9303 src_type = TREE_TYPE (vr->min);
9304 if (!INTEGRAL_TYPE_P (src_type)
9305 && !POINTER_TYPE_P (src_type))
9306 return false;
9308 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9309 and so is an identity transform. */
9310 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9311 src_sgn = TYPE_SIGN (src_type);
9312 if ((src_precision < dest_precision
9313 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9314 || (src_precision == dest_precision && src_sgn == dest_sgn))
9315 return true;
9317 /* Now we can only handle ranges with constant bounds. */
9318 if (vr->type != VR_RANGE
9319 || TREE_CODE (vr->min) != INTEGER_CST
9320 || TREE_CODE (vr->max) != INTEGER_CST)
9321 return false;
9323 /* For sign changes, the MSB of the wide_int has to be clear.
9324 An unsigned value with its MSB set cannot be represented by
9325 a signed wide_int, while a negative value cannot be represented
9326 by an unsigned wide_int. */
9327 if (src_sgn != dest_sgn
9328 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9329 return false;
9331 /* Then we can perform the conversion on both ends and compare
9332 the result for equality. */
9333 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9334 if (tem != wi::to_widest (vr->min))
9335 return false;
9336 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9337 if (tem != wi::to_widest (vr->max))
9338 return false;
9340 return true;
9343 /* Simplify a conditional using a relational operator to an equality
9344 test if the range information indicates only one value can satisfy
9345 the original conditional. */
9347 static bool
9348 simplify_cond_using_ranges (gcond *stmt)
9350 tree op0 = gimple_cond_lhs (stmt);
9351 tree op1 = gimple_cond_rhs (stmt);
9352 enum tree_code cond_code = gimple_cond_code (stmt);
9354 if (cond_code != NE_EXPR
9355 && cond_code != EQ_EXPR
9356 && TREE_CODE (op0) == SSA_NAME
9357 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9358 && is_gimple_min_invariant (op1))
9360 value_range *vr = get_value_range (op0);
9362 /* If we have range information for OP0, then we might be
9363 able to simplify this conditional. */
9364 if (vr->type == VR_RANGE)
9366 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9367 bool sop = false;
9368 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9370 if (new_tree
9371 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9373 if (dump_file)
9375 fprintf (dump_file, "Simplified relational ");
9376 print_gimple_stmt (dump_file, stmt, 0, 0);
9377 fprintf (dump_file, " into ");
9380 gimple_cond_set_code (stmt, EQ_EXPR);
9381 gimple_cond_set_lhs (stmt, op0);
9382 gimple_cond_set_rhs (stmt, new_tree);
9384 update_stmt (stmt);
9386 if (dump_file)
9388 print_gimple_stmt (dump_file, stmt, 0, 0);
9389 fprintf (dump_file, "\n");
9392 if (sop && issue_strict_overflow_warning (wc))
9394 location_t location = input_location;
9395 if (gimple_has_location (stmt))
9396 location = gimple_location (stmt);
9398 warning_at (location, OPT_Wstrict_overflow,
9399 "assuming signed overflow does not occur when "
9400 "simplifying conditional");
9403 return true;
9406 /* Try again after inverting the condition. We only deal
9407 with integral types here, so no need to worry about
9408 issues with inverting FP comparisons. */
9409 sop = false;
9410 new_tree = test_for_singularity
9411 (invert_tree_comparison (cond_code, false),
9412 op0, op1, vr, &sop);
9414 if (new_tree
9415 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9417 if (dump_file)
9419 fprintf (dump_file, "Simplified relational ");
9420 print_gimple_stmt (dump_file, stmt, 0, 0);
9421 fprintf (dump_file, " into ");
9424 gimple_cond_set_code (stmt, NE_EXPR);
9425 gimple_cond_set_lhs (stmt, op0);
9426 gimple_cond_set_rhs (stmt, new_tree);
9428 update_stmt (stmt);
9430 if (dump_file)
9432 print_gimple_stmt (dump_file, stmt, 0, 0);
9433 fprintf (dump_file, "\n");
9436 if (sop && issue_strict_overflow_warning (wc))
9438 location_t location = input_location;
9439 if (gimple_has_location (stmt))
9440 location = gimple_location (stmt);
9442 warning_at (location, OPT_Wstrict_overflow,
9443 "assuming signed overflow does not occur when "
9444 "simplifying conditional");
9447 return true;
9452 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9453 see if OP0 was set by a type conversion where the source of
9454 the conversion is another SSA_NAME with a range that fits
9455 into the range of OP0's type.
9457 If so, the conversion is redundant as the earlier SSA_NAME can be
9458 used for the comparison directly if we just massage the constant in the
9459 comparison. */
9460 if (TREE_CODE (op0) == SSA_NAME
9461 && TREE_CODE (op1) == INTEGER_CST)
9463 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9464 tree innerop;
9466 if (!is_gimple_assign (def_stmt)
9467 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9468 return false;
9470 innerop = gimple_assign_rhs1 (def_stmt);
9472 if (TREE_CODE (innerop) == SSA_NAME
9473 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9474 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9476 value_range *vr = get_value_range (innerop);
9478 if (range_int_cst_p (vr)
9479 && range_fits_type_p (vr,
9480 TYPE_PRECISION (TREE_TYPE (op0)),
9481 TYPE_SIGN (TREE_TYPE (op0)))
9482 && int_fits_type_p (op1, TREE_TYPE (innerop))
9483 /* The range must not have overflowed, or if it did overflow
9484 we must not be wrapping/trapping overflow and optimizing
9485 with strict overflow semantics. */
9486 && ((!is_negative_overflow_infinity (vr->min)
9487 && !is_positive_overflow_infinity (vr->max))
9488 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9490 /* If the range overflowed and the user has asked for warnings
9491 when strict overflow semantics were used to optimize code,
9492 issue an appropriate warning. */
9493 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9494 && (is_negative_overflow_infinity (vr->min)
9495 || is_positive_overflow_infinity (vr->max))
9496 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9498 location_t location;
9500 if (!gimple_has_location (stmt))
9501 location = input_location;
9502 else
9503 location = gimple_location (stmt);
9504 warning_at (location, OPT_Wstrict_overflow,
9505 "assuming signed overflow does not occur when "
9506 "simplifying conditional");
9509 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9510 gimple_cond_set_lhs (stmt, innerop);
9511 gimple_cond_set_rhs (stmt, newconst);
9512 return true;
9517 return false;
9520 /* Simplify a switch statement using the value range of the switch
9521 argument. */
9523 static bool
9524 simplify_switch_using_ranges (gswitch *stmt)
9526 tree op = gimple_switch_index (stmt);
9527 value_range *vr;
9528 bool take_default;
9529 edge e;
9530 edge_iterator ei;
9531 size_t i = 0, j = 0, n, n2;
9532 tree vec2;
9533 switch_update su;
9534 size_t k = 1, l = 0;
9536 if (TREE_CODE (op) == SSA_NAME)
9538 vr = get_value_range (op);
9540 /* We can only handle integer ranges. */
9541 if ((vr->type != VR_RANGE
9542 && vr->type != VR_ANTI_RANGE)
9543 || symbolic_range_p (vr))
9544 return false;
9546 /* Find case label for min/max of the value range. */
9547 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9549 else if (TREE_CODE (op) == INTEGER_CST)
9551 take_default = !find_case_label_index (stmt, 1, op, &i);
9552 if (take_default)
9554 i = 1;
9555 j = 0;
9557 else
9559 j = i;
9562 else
9563 return false;
9565 n = gimple_switch_num_labels (stmt);
9567 /* Bail out if this is just all edges taken. */
9568 if (i == 1
9569 && j == n - 1
9570 && take_default)
9571 return false;
9573 /* Build a new vector of taken case labels. */
9574 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9575 n2 = 0;
9577 /* Add the default edge, if necessary. */
9578 if (take_default)
9579 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9581 for (; i <= j; ++i, ++n2)
9582 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9584 for (; k <= l; ++k, ++n2)
9585 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9587 /* Mark needed edges. */
9588 for (i = 0; i < n2; ++i)
9590 e = find_edge (gimple_bb (stmt),
9591 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9592 e->aux = (void *)-1;
9595 /* Queue not needed edges for later removal. */
9596 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9598 if (e->aux == (void *)-1)
9600 e->aux = NULL;
9601 continue;
9604 if (dump_file && (dump_flags & TDF_DETAILS))
9606 fprintf (dump_file, "removing unreachable case label\n");
9608 to_remove_edges.safe_push (e);
9609 e->flags &= ~EDGE_EXECUTABLE;
9612 /* And queue an update for the stmt. */
9613 su.stmt = stmt;
9614 su.vec = vec2;
9615 to_update_switch_stmts.safe_push (su);
9616 return false;
9619 /* Simplify an integral conversion from an SSA name in STMT. */
9621 static bool
9622 simplify_conversion_using_ranges (gimple *stmt)
9624 tree innerop, middleop, finaltype;
9625 gimple *def_stmt;
9626 value_range *innervr;
9627 signop inner_sgn, middle_sgn, final_sgn;
9628 unsigned inner_prec, middle_prec, final_prec;
9629 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9631 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9632 if (!INTEGRAL_TYPE_P (finaltype))
9633 return false;
9634 middleop = gimple_assign_rhs1 (stmt);
9635 def_stmt = SSA_NAME_DEF_STMT (middleop);
9636 if (!is_gimple_assign (def_stmt)
9637 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9638 return false;
9639 innerop = gimple_assign_rhs1 (def_stmt);
9640 if (TREE_CODE (innerop) != SSA_NAME
9641 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9642 return false;
9644 /* Get the value-range of the inner operand. */
9645 innervr = get_value_range (innerop);
9646 if (innervr->type != VR_RANGE
9647 || TREE_CODE (innervr->min) != INTEGER_CST
9648 || TREE_CODE (innervr->max) != INTEGER_CST)
9649 return false;
9651 /* Simulate the conversion chain to check if the result is equal if
9652 the middle conversion is removed. */
9653 innermin = wi::to_widest (innervr->min);
9654 innermax = wi::to_widest (innervr->max);
9656 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9657 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9658 final_prec = TYPE_PRECISION (finaltype);
9660 /* If the first conversion is not injective, the second must not
9661 be widening. */
9662 if (wi::gtu_p (innermax - innermin,
9663 wi::mask <widest_int> (middle_prec, false))
9664 && middle_prec < final_prec)
9665 return false;
9666 /* We also want a medium value so that we can track the effect that
9667 narrowing conversions with sign change have. */
9668 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9669 if (inner_sgn == UNSIGNED)
9670 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9671 else
9672 innermed = 0;
9673 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9674 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9675 innermed = innermin;
9677 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9678 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9679 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9680 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9682 /* Require that the final conversion applied to both the original
9683 and the intermediate range produces the same result. */
9684 final_sgn = TYPE_SIGN (finaltype);
9685 if (wi::ext (middlemin, final_prec, final_sgn)
9686 != wi::ext (innermin, final_prec, final_sgn)
9687 || wi::ext (middlemed, final_prec, final_sgn)
9688 != wi::ext (innermed, final_prec, final_sgn)
9689 || wi::ext (middlemax, final_prec, final_sgn)
9690 != wi::ext (innermax, final_prec, final_sgn))
9691 return false;
9693 gimple_assign_set_rhs1 (stmt, innerop);
9694 update_stmt (stmt);
9695 return true;
9698 /* Simplify a conversion from integral SSA name to float in STMT. */
9700 static bool
9701 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
9702 gimple *stmt)
9704 tree rhs1 = gimple_assign_rhs1 (stmt);
9705 value_range *vr = get_value_range (rhs1);
9706 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9707 machine_mode mode;
9708 tree tem;
9709 gassign *conv;
9711 /* We can only handle constant ranges. */
9712 if (vr->type != VR_RANGE
9713 || TREE_CODE (vr->min) != INTEGER_CST
9714 || TREE_CODE (vr->max) != INTEGER_CST)
9715 return false;
9717 /* First check if we can use a signed type in place of an unsigned. */
9718 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9719 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9720 != CODE_FOR_nothing)
9721 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
9722 mode = TYPE_MODE (TREE_TYPE (rhs1));
9723 /* If we can do the conversion in the current input mode do nothing. */
9724 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9725 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9726 return false;
9727 /* Otherwise search for a mode we can use, starting from the narrowest
9728 integer mode available. */
9729 else
9731 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9734 /* If we cannot do a signed conversion to float from mode
9735 or if the value-range does not fit in the signed type
9736 try with a wider mode. */
9737 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9738 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
9739 break;
9741 mode = GET_MODE_WIDER_MODE (mode);
9742 /* But do not widen the input. Instead leave that to the
9743 optabs expansion code. */
9744 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9745 return false;
9747 while (mode != VOIDmode);
9748 if (mode == VOIDmode)
9749 return false;
9752 /* It works, insert a truncation or sign-change before the
9753 float conversion. */
9754 tem = make_ssa_name (build_nonstandard_integer_type
9755 (GET_MODE_PRECISION (mode), 0));
9756 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
9757 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9758 gimple_assign_set_rhs1 (stmt, tem);
9759 update_stmt (stmt);
9761 return true;
9764 /* Simplify an internal fn call using ranges if possible. */
9766 static bool
9767 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9769 enum tree_code subcode;
9770 bool is_ubsan = false;
9771 bool ovf = false;
9772 switch (gimple_call_internal_fn (stmt))
9774 case IFN_UBSAN_CHECK_ADD:
9775 subcode = PLUS_EXPR;
9776 is_ubsan = true;
9777 break;
9778 case IFN_UBSAN_CHECK_SUB:
9779 subcode = MINUS_EXPR;
9780 is_ubsan = true;
9781 break;
9782 case IFN_UBSAN_CHECK_MUL:
9783 subcode = MULT_EXPR;
9784 is_ubsan = true;
9785 break;
9786 case IFN_ADD_OVERFLOW:
9787 subcode = PLUS_EXPR;
9788 break;
9789 case IFN_SUB_OVERFLOW:
9790 subcode = MINUS_EXPR;
9791 break;
9792 case IFN_MUL_OVERFLOW:
9793 subcode = MULT_EXPR;
9794 break;
9795 default:
9796 return false;
9799 tree op0 = gimple_call_arg (stmt, 0);
9800 tree op1 = gimple_call_arg (stmt, 1);
9801 tree type;
9802 if (is_ubsan)
9803 type = TREE_TYPE (op0);
9804 else if (gimple_call_lhs (stmt) == NULL_TREE)
9805 return false;
9806 else
9807 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
9808 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
9809 || (is_ubsan && ovf))
9810 return false;
9812 gimple *g;
9813 location_t loc = gimple_location (stmt);
9814 if (is_ubsan)
9815 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
9816 else
9818 int prec = TYPE_PRECISION (type);
9819 tree utype = type;
9820 if (ovf
9821 || !useless_type_conversion_p (type, TREE_TYPE (op0))
9822 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
9823 utype = build_nonstandard_integer_type (prec, 1);
9824 if (TREE_CODE (op0) == INTEGER_CST)
9825 op0 = fold_convert (utype, op0);
9826 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
9828 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
9829 gimple_set_location (g, loc);
9830 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9831 op0 = gimple_assign_lhs (g);
9833 if (TREE_CODE (op1) == INTEGER_CST)
9834 op1 = fold_convert (utype, op1);
9835 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
9837 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
9838 gimple_set_location (g, loc);
9839 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9840 op1 = gimple_assign_lhs (g);
9842 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
9843 gimple_set_location (g, loc);
9844 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9845 if (utype != type)
9847 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
9848 gimple_assign_lhs (g));
9849 gimple_set_location (g, loc);
9850 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9852 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
9853 gimple_assign_lhs (g),
9854 build_int_cst (type, ovf));
9856 gimple_set_location (g, loc);
9857 gsi_replace (gsi, g, false);
9858 return true;
9861 /* Simplify STMT using ranges if possible. */
9863 static bool
9864 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9866 gimple *stmt = gsi_stmt (*gsi);
9867 if (is_gimple_assign (stmt))
9869 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9870 tree rhs1 = gimple_assign_rhs1 (stmt);
9872 switch (rhs_code)
9874 case EQ_EXPR:
9875 case NE_EXPR:
9876 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9877 if the RHS is zero or one, and the LHS are known to be boolean
9878 values. */
9879 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9880 return simplify_truth_ops_using_ranges (gsi, stmt);
9881 break;
9883 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9884 and BIT_AND_EXPR respectively if the first operand is greater
9885 than zero and the second operand is an exact power of two.
9886 Also optimize TRUNC_MOD_EXPR away if the second operand is
9887 constant and the first operand already has the right value
9888 range. */
9889 case TRUNC_DIV_EXPR:
9890 case TRUNC_MOD_EXPR:
9891 if (TREE_CODE (rhs1) == SSA_NAME
9892 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9893 return simplify_div_or_mod_using_ranges (stmt);
9894 break;
9896 /* Transform ABS (X) into X or -X as appropriate. */
9897 case ABS_EXPR:
9898 if (TREE_CODE (rhs1) == SSA_NAME
9899 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9900 return simplify_abs_using_ranges (stmt);
9901 break;
9903 case BIT_AND_EXPR:
9904 case BIT_IOR_EXPR:
9905 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9906 if all the bits being cleared are already cleared or
9907 all the bits being set are already set. */
9908 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9909 return simplify_bit_ops_using_ranges (gsi, stmt);
9910 break;
9912 CASE_CONVERT:
9913 if (TREE_CODE (rhs1) == SSA_NAME
9914 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9915 return simplify_conversion_using_ranges (stmt);
9916 break;
9918 case FLOAT_EXPR:
9919 if (TREE_CODE (rhs1) == SSA_NAME
9920 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9921 return simplify_float_conversion_using_ranges (gsi, stmt);
9922 break;
9924 case MIN_EXPR:
9925 case MAX_EXPR:
9926 return simplify_min_or_max_using_ranges (stmt);
9927 break;
9929 default:
9930 break;
9933 else if (gimple_code (stmt) == GIMPLE_COND)
9934 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
9935 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9936 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
9937 else if (is_gimple_call (stmt)
9938 && gimple_call_internal_p (stmt))
9939 return simplify_internal_call_using_ranges (gsi, stmt);
9941 return false;
9944 /* If the statement pointed by SI has a predicate whose value can be
9945 computed using the value range information computed by VRP, compute
9946 its value and return true. Otherwise, return false. */
9948 static bool
9949 fold_predicate_in (gimple_stmt_iterator *si)
9951 bool assignment_p = false;
9952 tree val;
9953 gimple *stmt = gsi_stmt (*si);
9955 if (is_gimple_assign (stmt)
9956 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9958 assignment_p = true;
9959 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9960 gimple_assign_rhs1 (stmt),
9961 gimple_assign_rhs2 (stmt),
9962 stmt);
9964 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
9965 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
9966 gimple_cond_lhs (cond_stmt),
9967 gimple_cond_rhs (cond_stmt),
9968 stmt);
9969 else
9970 return false;
9972 if (val)
9974 if (assignment_p)
9975 val = fold_convert (gimple_expr_type (stmt), val);
9977 if (dump_file)
9979 fprintf (dump_file, "Folding predicate ");
9980 print_gimple_expr (dump_file, stmt, 0, 0);
9981 fprintf (dump_file, " to ");
9982 print_generic_expr (dump_file, val, 0);
9983 fprintf (dump_file, "\n");
9986 if (is_gimple_assign (stmt))
9987 gimple_assign_set_rhs_from_tree (si, val);
9988 else
9990 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9991 gcond *cond_stmt = as_a <gcond *> (stmt);
9992 if (integer_zerop (val))
9993 gimple_cond_make_false (cond_stmt);
9994 else if (integer_onep (val))
9995 gimple_cond_make_true (cond_stmt);
9996 else
9997 gcc_unreachable ();
10000 return true;
10003 return false;
10006 /* Callback for substitute_and_fold folding the stmt at *SI. */
10008 static bool
10009 vrp_fold_stmt (gimple_stmt_iterator *si)
10011 if (fold_predicate_in (si))
10012 return true;
10014 return simplify_stmt_using_ranges (si);
10017 /* Unwindable const/copy equivalences. */
10018 const_and_copies *equiv_stack;
10020 /* A trivial wrapper so that we can present the generic jump threading
10021 code with a simple API for simplifying statements. STMT is the
10022 statement we want to simplify, WITHIN_STMT provides the location
10023 for any overflow warnings. */
10025 static tree
10026 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10027 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED)
10029 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10030 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10031 gimple_cond_lhs (cond_stmt),
10032 gimple_cond_rhs (cond_stmt),
10033 within_stmt);
10035 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10037 value_range new_vr = VR_INITIALIZER;
10038 tree lhs = gimple_assign_lhs (assign_stmt);
10040 if (TREE_CODE (lhs) == SSA_NAME
10041 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10042 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10044 extract_range_from_assignment (&new_vr, assign_stmt);
10045 if (range_int_cst_singleton_p (&new_vr))
10046 return new_vr.min;
10050 return NULL_TREE;
10053 /* Blocks which have more than one predecessor and more than
10054 one successor present jump threading opportunities, i.e.,
10055 when the block is reached from a specific predecessor, we
10056 may be able to determine which of the outgoing edges will
10057 be traversed. When this optimization applies, we are able
10058 to avoid conditionals at runtime and we may expose secondary
10059 optimization opportunities.
10061 This routine is effectively a driver for the generic jump
10062 threading code. It basically just presents the generic code
10063 with edges that may be suitable for jump threading.
10065 Unlike DOM, we do not iterate VRP if jump threading was successful.
10066 While iterating may expose new opportunities for VRP, it is expected
10067 those opportunities would be very limited and the compile time cost
10068 to expose those opportunities would be significant.
10070 As jump threading opportunities are discovered, they are registered
10071 for later realization. */
10073 static void
10074 identify_jump_threads (void)
10076 basic_block bb;
10077 gcond *dummy;
10078 int i;
10079 edge e;
10081 /* Ugh. When substituting values earlier in this pass we can
10082 wipe the dominance information. So rebuild the dominator
10083 information as we need it within the jump threading code. */
10084 calculate_dominance_info (CDI_DOMINATORS);
10086 /* We do not allow VRP information to be used for jump threading
10087 across a back edge in the CFG. Otherwise it becomes too
10088 difficult to avoid eliminating loop exit tests. Of course
10089 EDGE_DFS_BACK is not accurate at this time so we have to
10090 recompute it. */
10091 mark_dfs_back_edges ();
10093 /* Do not thread across edges we are about to remove. Just marking
10094 them as EDGE_IGNORE will do. */
10095 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10096 e->flags |= EDGE_IGNORE;
10098 /* Allocate our unwinder stack to unwind any temporary equivalences
10099 that might be recorded. */
10100 equiv_stack = new const_and_copies ();
10102 /* To avoid lots of silly node creation, we create a single
10103 conditional and just modify it in-place when attempting to
10104 thread jumps. */
10105 dummy = gimple_build_cond (EQ_EXPR,
10106 integer_zero_node, integer_zero_node,
10107 NULL, NULL);
10109 /* Walk through all the blocks finding those which present a
10110 potential jump threading opportunity. We could set this up
10111 as a dominator walker and record data during the walk, but
10112 I doubt it's worth the effort for the classes of jump
10113 threading opportunities we are trying to identify at this
10114 point in compilation. */
10115 FOR_EACH_BB_FN (bb, cfun)
10117 gimple *last;
10119 /* If the generic jump threading code does not find this block
10120 interesting, then there is nothing to do. */
10121 if (! potentially_threadable_block (bb))
10122 continue;
10124 last = last_stmt (bb);
10126 /* We're basically looking for a switch or any kind of conditional with
10127 integral or pointer type arguments. Note the type of the second
10128 argument will be the same as the first argument, so no need to
10129 check it explicitly.
10131 We also handle the case where there are no statements in the
10132 block. This come up with forwarder blocks that are not
10133 optimized away because they lead to a loop header. But we do
10134 want to thread through them as we can sometimes thread to the
10135 loop exit which is obviously profitable. */
10136 if (!last
10137 || gimple_code (last) == GIMPLE_SWITCH
10138 || (gimple_code (last) == GIMPLE_COND
10139 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10140 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10141 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10142 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10143 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10145 edge_iterator ei;
10147 /* We've got a block with multiple predecessors and multiple
10148 successors which also ends in a suitable conditional or
10149 switch statement. For each predecessor, see if we can thread
10150 it to a specific successor. */
10151 FOR_EACH_EDGE (e, ei, bb->preds)
10153 /* Do not thread across edges marked to ignoreor abnormal
10154 edges in the CFG. */
10155 if (e->flags & (EDGE_IGNORE | EDGE_COMPLEX))
10156 continue;
10158 thread_across_edge (dummy, e, true, equiv_stack, NULL,
10159 simplify_stmt_for_jump_threading);
10164 /* Clear EDGE_IGNORE. */
10165 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10166 e->flags &= ~EDGE_IGNORE;
10168 /* We do not actually update the CFG or SSA graphs at this point as
10169 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10170 handle ASSERT_EXPRs gracefully. */
10173 /* We identified all the jump threading opportunities earlier, but could
10174 not transform the CFG at that time. This routine transforms the
10175 CFG and arranges for the dominator tree to be rebuilt if necessary.
10177 Note the SSA graph update will occur during the normal TODO
10178 processing by the pass manager. */
10179 static void
10180 finalize_jump_threads (void)
10182 thread_through_all_blocks (false);
10183 delete equiv_stack;
10187 /* Traverse all the blocks folding conditionals with known ranges. */
10189 static void
10190 vrp_finalize (bool warn_array_bounds_p)
10192 size_t i;
10194 values_propagated = true;
10196 if (dump_file)
10198 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10199 dump_all_value_ranges (dump_file);
10200 fprintf (dump_file, "\n");
10203 substitute_and_fold (op_with_constant_singleton_value_range,
10204 vrp_fold_stmt, false);
10206 if (warn_array_bounds && warn_array_bounds_p)
10207 check_all_array_refs ();
10209 /* We must identify jump threading opportunities before we release
10210 the datastructures built by VRP. */
10211 identify_jump_threads ();
10213 /* Set value range to non pointer SSA_NAMEs. */
10214 for (i = 0; i < num_vr_values; i++)
10215 if (vr_value[i])
10217 tree name = ssa_name (i);
10219 if (!name
10220 || POINTER_TYPE_P (TREE_TYPE (name))
10221 || (vr_value[i]->type == VR_VARYING)
10222 || (vr_value[i]->type == VR_UNDEFINED))
10223 continue;
10225 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
10226 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
10227 && (vr_value[i]->type == VR_RANGE
10228 || vr_value[i]->type == VR_ANTI_RANGE))
10229 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10230 vr_value[i]->max);
10233 /* Free allocated memory. */
10234 for (i = 0; i < num_vr_values; i++)
10235 if (vr_value[i])
10237 BITMAP_FREE (vr_value[i]->equiv);
10238 free (vr_value[i]);
10241 free (vr_value);
10242 free (vr_phi_edge_counts);
10244 /* So that we can distinguish between VRP data being available
10245 and not available. */
10246 vr_value = NULL;
10247 vr_phi_edge_counts = NULL;
10251 /* Main entry point to VRP (Value Range Propagation). This pass is
10252 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10253 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10254 Programming Language Design and Implementation, pp. 67-78, 1995.
10255 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10257 This is essentially an SSA-CCP pass modified to deal with ranges
10258 instead of constants.
10260 While propagating ranges, we may find that two or more SSA name
10261 have equivalent, though distinct ranges. For instance,
10263 1 x_9 = p_3->a;
10264 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10265 3 if (p_4 == q_2)
10266 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10267 5 endif
10268 6 if (q_2)
10270 In the code above, pointer p_5 has range [q_2, q_2], but from the
10271 code we can also determine that p_5 cannot be NULL and, if q_2 had
10272 a non-varying range, p_5's range should also be compatible with it.
10274 These equivalences are created by two expressions: ASSERT_EXPR and
10275 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10276 result of another assertion, then we can use the fact that p_5 and
10277 p_4 are equivalent when evaluating p_5's range.
10279 Together with value ranges, we also propagate these equivalences
10280 between names so that we can take advantage of information from
10281 multiple ranges when doing final replacement. Note that this
10282 equivalency relation is transitive but not symmetric.
10284 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10285 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10286 in contexts where that assertion does not hold (e.g., in line 6).
10288 TODO, the main difference between this pass and Patterson's is that
10289 we do not propagate edge probabilities. We only compute whether
10290 edges can be taken or not. That is, instead of having a spectrum
10291 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10292 DON'T KNOW. In the future, it may be worthwhile to propagate
10293 probabilities to aid branch prediction. */
10295 static unsigned int
10296 execute_vrp (bool warn_array_bounds_p)
10298 int i;
10299 edge e;
10300 switch_update *su;
10302 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
10303 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
10304 scev_initialize ();
10306 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10307 Inserting assertions may split edges which will invalidate
10308 EDGE_DFS_BACK. */
10309 insert_range_assertions ();
10311 to_remove_edges.create (10);
10312 to_update_switch_stmts.create (5);
10313 threadedge_initialize_values ();
10315 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10316 mark_dfs_back_edges ();
10318 vrp_initialize ();
10319 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
10320 vrp_finalize (warn_array_bounds_p);
10322 free_numbers_of_iterations_estimates (cfun);
10324 /* ASSERT_EXPRs must be removed before finalizing jump threads
10325 as finalizing jump threads calls the CFG cleanup code which
10326 does not properly handle ASSERT_EXPRs. */
10327 remove_range_assertions ();
10329 /* If we exposed any new variables, go ahead and put them into
10330 SSA form now, before we handle jump threading. This simplifies
10331 interactions between rewriting of _DECL nodes into SSA form
10332 and rewriting SSA_NAME nodes into SSA form after block
10333 duplication and CFG manipulation. */
10334 update_ssa (TODO_update_ssa);
10336 finalize_jump_threads ();
10338 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10339 CFG in a broken state and requires a cfg_cleanup run. */
10340 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10341 remove_edge (e);
10342 /* Update SWITCH_EXPR case label vector. */
10343 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
10345 size_t j;
10346 size_t n = TREE_VEC_LENGTH (su->vec);
10347 tree label;
10348 gimple_switch_set_num_labels (su->stmt, n);
10349 for (j = 0; j < n; j++)
10350 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
10351 /* As we may have replaced the default label with a regular one
10352 make sure to make it a real default label again. This ensures
10353 optimal expansion. */
10354 label = gimple_switch_label (su->stmt, 0);
10355 CASE_LOW (label) = NULL_TREE;
10356 CASE_HIGH (label) = NULL_TREE;
10359 if (to_remove_edges.length () > 0)
10361 free_dominance_info (CDI_DOMINATORS);
10362 loops_state_set (LOOPS_NEED_FIXUP);
10365 to_remove_edges.release ();
10366 to_update_switch_stmts.release ();
10367 threadedge_finalize_values ();
10369 scev_finalize ();
10370 loop_optimizer_finalize ();
10371 return 0;
10374 namespace {
10376 const pass_data pass_data_vrp =
10378 GIMPLE_PASS, /* type */
10379 "vrp", /* name */
10380 OPTGROUP_NONE, /* optinfo_flags */
10381 TV_TREE_VRP, /* tv_id */
10382 PROP_ssa, /* properties_required */
10383 0, /* properties_provided */
10384 0, /* properties_destroyed */
10385 0, /* todo_flags_start */
10386 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
10389 class pass_vrp : public gimple_opt_pass
10391 public:
10392 pass_vrp (gcc::context *ctxt)
10393 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
10396 /* opt_pass methods: */
10397 opt_pass * clone () { return new pass_vrp (m_ctxt); }
10398 void set_pass_param (unsigned int n, bool param)
10400 gcc_assert (n == 0);
10401 warn_array_bounds_p = param;
10403 virtual bool gate (function *) { return flag_tree_vrp != 0; }
10404 virtual unsigned int execute (function *)
10405 { return execute_vrp (warn_array_bounds_p); }
10407 private:
10408 bool warn_array_bounds_p;
10409 }; // class pass_vrp
10411 } // anon namespace
10413 gimple_opt_pass *
10414 make_pass_vrp (gcc::context *ctxt)
10416 return new pass_vrp (ctxt);