Fix missing ChangeLog entry for Graphite head files fix.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blobf193f5527b1c60812e88736f7f2c25d8ae7515e1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Fname; use Fname;
43 with Freeze; use Freeze;
44 with Ghost; use Ghost;
45 with Inline; use Inline;
46 with Itypes; use Itypes;
47 with Lib.Xref; use Lib.Xref;
48 with Layout; use Layout;
49 with Namet; use Namet;
50 with Lib; use Lib;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Output; use Output;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Cat; use Sem_Cat;
61 with Sem_Ch3; use Sem_Ch3;
62 with Sem_Ch4; use Sem_Ch4;
63 with Sem_Ch5; use Sem_Ch5;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 Set_Is_Abstract_Subprogram (Subp_Id);
230 New_Overloaded_Entity (Subp_Id);
231 Check_Delayed_Subprogram (Subp_Id);
233 Set_Categorization_From_Scope (Subp_Id, Scop);
235 -- An abstract subprogram declared within a Ghost region is rendered
236 -- Ghost (SPARK RM 6.9(2)).
238 if Ghost_Mode > None then
239 Set_Is_Ghost_Entity (Subp_Id);
240 end if;
242 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
243 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
245 -- Issue a warning if the abstract subprogram is neither a dispatching
246 -- operation nor an operation that overrides an inherited subprogram or
247 -- predefined operator, since this most likely indicates a mistake.
249 elsif Warn_On_Redundant_Constructs
250 and then not Is_Dispatching_Operation (Subp_Id)
251 and then not Present (Overridden_Operation (Subp_Id))
252 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
253 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
254 then
255 Error_Msg_N
256 ("abstract subprogram is not dispatching or overriding?r?", N);
257 end if;
259 Generate_Reference_To_Formals (Subp_Id);
260 Check_Eliminated (Subp_Id);
262 if Has_Aspects (N) then
263 Analyze_Aspect_Specifications (N, Subp_Id);
264 end if;
265 end Analyze_Abstract_Subprogram_Declaration;
267 ---------------------------------
268 -- Analyze_Expression_Function --
269 ---------------------------------
271 procedure Analyze_Expression_Function (N : Node_Id) is
272 Expr : constant Node_Id := Expression (N);
273 Loc : constant Source_Ptr := Sloc (N);
274 LocX : constant Source_Ptr := Sloc (Expr);
275 Spec : constant Node_Id := Specification (N);
277 Def_Id : Entity_Id;
279 Prev : Entity_Id;
280 -- If the expression is a completion, Prev is the entity whose
281 -- declaration is completed. Def_Id is needed to analyze the spec.
283 New_Body : Node_Id;
284 New_Spec : Node_Id;
285 Ret : Node_Id;
286 Asp : Node_Id;
288 begin
289 -- This is one of the occasions on which we transform the tree during
290 -- semantic analysis. If this is a completion, transform the expression
291 -- function into an equivalent subprogram body, and analyze it.
293 -- Expression functions are inlined unconditionally. The back-end will
294 -- determine whether this is possible.
296 Inline_Processing_Required := True;
298 -- Create a specification for the generated body. This must be done
299 -- prior to the analysis of the initial declaration.
301 New_Spec := Copy_Subprogram_Spec (Spec);
302 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
304 -- If there are previous overloadable entities with the same name,
305 -- check whether any of them is completed by the expression function.
306 -- In a generic context a formal subprogram has no completion.
308 if Present (Prev)
309 and then Is_Overloadable (Prev)
310 and then not Is_Formal_Subprogram (Prev)
311 then
312 Def_Id := Analyze_Subprogram_Specification (Spec);
313 Prev := Find_Corresponding_Spec (N);
315 -- The previous entity may be an expression function as well, in
316 -- which case the redeclaration is illegal.
318 if Present (Prev)
319 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
320 N_Expression_Function
321 then
322 Error_Msg_Sloc := Sloc (Prev);
323 Error_Msg_N ("& conflicts with declaration#", Def_Id);
324 return;
325 end if;
326 end if;
328 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
330 New_Body :=
331 Make_Subprogram_Body (Loc,
332 Specification => New_Spec,
333 Declarations => Empty_List,
334 Handled_Statement_Sequence =>
335 Make_Handled_Sequence_Of_Statements (LocX,
336 Statements => New_List (Ret)));
337 Set_Was_Expression_Function (New_Body);
339 -- If the expression completes a generic subprogram, we must create a
340 -- separate node for the body, because at instantiation the original
341 -- node of the generic copy must be a generic subprogram body, and
342 -- cannot be a expression function. Otherwise we just rewrite the
343 -- expression with the non-generic body.
345 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
346 Insert_After (N, New_Body);
348 -- Propagate any aspects or pragmas that apply to the expression
349 -- function to the proper body when the expression function acts
350 -- as a completion.
352 if Has_Aspects (N) then
353 Move_Aspects (N, To => New_Body);
354 end if;
356 Relocate_Pragmas_To_Body (New_Body);
358 Rewrite (N, Make_Null_Statement (Loc));
359 Set_Has_Completion (Prev, False);
360 Analyze (N);
361 Analyze (New_Body);
362 Set_Is_Inlined (Prev);
364 -- If the expression function is a completion, the previous declaration
365 -- must come from source. We know already that appears in the current
366 -- scope. The entity itself may be internally created if within a body
367 -- to be inlined.
369 elsif Present (Prev)
370 and then Comes_From_Source (Parent (Prev))
371 and then not Is_Formal_Subprogram (Prev)
372 then
373 Set_Has_Completion (Prev, False);
375 -- An expression function that is a completion freezes the
376 -- expression. This means freezing the return type, and if it is
377 -- an access type, freezing its designated type as well.
379 -- Note that we cannot defer this freezing to the analysis of the
380 -- expression itself, because a freeze node might appear in a nested
381 -- scope, leading to an elaboration order issue in gigi.
383 Freeze_Before (N, Etype (Prev));
385 if Is_Access_Type (Etype (Prev)) then
386 Freeze_Before (N, Designated_Type (Etype (Prev)));
387 end if;
389 -- For navigation purposes, indicate that the function is a body
391 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
392 Rewrite (N, New_Body);
394 -- Correct the parent pointer of the aspect specification list to
395 -- reference the rewritten node.
397 if Has_Aspects (N) then
398 Set_Parent (Aspect_Specifications (N), N);
399 end if;
401 -- Propagate any pragmas that apply to the expression function to the
402 -- proper body when the expression function acts as a completion.
403 -- Aspects are automatically transfered because of node rewriting.
405 Relocate_Pragmas_To_Body (N);
406 Analyze (N);
408 -- Prev is the previous entity with the same name, but it is can
409 -- be an unrelated spec that is not completed by the expression
410 -- function. In that case the relevant entity is the one in the body.
411 -- Not clear that the backend can inline it in this case ???
413 if Has_Completion (Prev) then
414 Set_Is_Inlined (Prev);
416 -- The formals of the expression function are body formals,
417 -- and do not appear in the ali file, which will only contain
418 -- references to the formals of the original subprogram spec.
420 declare
421 F1 : Entity_Id;
422 F2 : Entity_Id;
424 begin
425 F1 := First_Formal (Def_Id);
426 F2 := First_Formal (Prev);
428 while Present (F1) loop
429 Set_Spec_Entity (F1, F2);
430 Next_Formal (F1);
431 Next_Formal (F2);
432 end loop;
433 end;
435 else
436 Set_Is_Inlined (Defining_Entity (New_Body));
437 end if;
439 -- If this is not a completion, create both a declaration and a body, so
440 -- that the expression can be inlined whenever possible.
442 else
443 -- An expression function that is not a completion is not a
444 -- subprogram declaration, and thus cannot appear in a protected
445 -- definition.
447 if Nkind (Parent (N)) = N_Protected_Definition then
448 Error_Msg_N
449 ("an expression function is not a legal protected operation", N);
450 end if;
452 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
454 -- Correct the parent pointer of the aspect specification list to
455 -- reference the rewritten node.
457 if Has_Aspects (N) then
458 Set_Parent (Aspect_Specifications (N), N);
459 end if;
461 Analyze (N);
462 Def_Id := Defining_Entity (N);
464 -- If aspect SPARK_Mode was specified on the body, it needs to be
465 -- repeated both on the generated spec and the body.
467 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
469 if Present (Asp) then
470 Asp := New_Copy_Tree (Asp);
471 Set_Analyzed (Asp, False);
472 Set_Aspect_Specifications (New_Body, New_List (Asp));
473 end if;
475 -- Within a generic pre-analyze the original expression for name
476 -- capture. The body is also generated but plays no role in
477 -- this because it is not part of the original source.
479 if Inside_A_Generic then
480 Set_Has_Completion (Def_Id);
481 Push_Scope (Def_Id);
482 Install_Formals (Def_Id);
483 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
484 End_Scope;
485 end if;
487 Set_Is_Inlined (Defining_Entity (N));
489 -- Establish the linkages between the spec and the body. These are
490 -- used when the expression function acts as the prefix of attribute
491 -- 'Access in order to freeze the original expression which has been
492 -- moved to the generated body.
494 Set_Corresponding_Body (N, Defining_Entity (New_Body));
495 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
497 -- To prevent premature freeze action, insert the new body at the end
498 -- of the current declarations, or at the end of the package spec.
499 -- However, resolve usage names now, to prevent spurious visibility
500 -- on later entities. Note that the function can now be called in
501 -- the current declarative part, which will appear to be prior to
502 -- the presence of the body in the code. There are nevertheless no
503 -- order of elaboration issues because all name resolution has taken
504 -- place at the point of declaration.
506 declare
507 Decls : List_Id := List_Containing (N);
508 Expr : constant Node_Id := Expression (Ret);
509 Par : constant Node_Id := Parent (Decls);
510 Typ : constant Entity_Id := Etype (Def_Id);
512 begin
513 -- If this is a wrapper created for in an instance for a formal
514 -- subprogram, insert body after declaration, to be analyzed when
515 -- the enclosing instance is analyzed.
517 if GNATprove_Mode
518 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
519 then
520 Insert_After (N, New_Body);
522 else
523 if Nkind (Par) = N_Package_Specification
524 and then Decls = Visible_Declarations (Par)
525 and then Present (Private_Declarations (Par))
526 and then not Is_Empty_List (Private_Declarations (Par))
527 then
528 Decls := Private_Declarations (Par);
529 end if;
531 Insert_After (Last (Decls), New_Body);
533 -- Preanalyze the expression for name capture, except in an
534 -- instance, where this has been done during generic analysis,
535 -- and will be redone when analyzing the body.
537 Set_Parent (Expr, Ret);
538 Push_Scope (Def_Id);
539 Install_Formals (Def_Id);
541 if not In_Instance then
542 Preanalyze_Spec_Expression (Expr, Typ);
543 Check_Limited_Return (Original_Node (N), Expr, Typ);
544 end if;
546 End_Scope;
547 end if;
548 end;
549 end if;
551 -- If the return expression is a static constant, we suppress warning
552 -- messages on unused formals, which in most cases will be noise.
554 Set_Is_Trivial_Subprogram
555 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
556 end Analyze_Expression_Function;
558 ----------------------------------------
559 -- Analyze_Extended_Return_Statement --
560 ----------------------------------------
562 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
563 begin
564 Check_Compiler_Unit ("extended return statement", N);
565 Analyze_Return_Statement (N);
566 end Analyze_Extended_Return_Statement;
568 ----------------------------
569 -- Analyze_Function_Call --
570 ----------------------------
572 procedure Analyze_Function_Call (N : Node_Id) is
573 Actuals : constant List_Id := Parameter_Associations (N);
574 Func_Nam : constant Node_Id := Name (N);
575 Actual : Node_Id;
577 begin
578 Analyze (Func_Nam);
580 -- A call of the form A.B (X) may be an Ada 2005 call, which is
581 -- rewritten as B (A, X). If the rewriting is successful, the call
582 -- has been analyzed and we just return.
584 if Nkind (Func_Nam) = N_Selected_Component
585 and then Name (N) /= Func_Nam
586 and then Is_Rewrite_Substitution (N)
587 and then Present (Etype (N))
588 then
589 return;
590 end if;
592 -- If error analyzing name, then set Any_Type as result type and return
594 if Etype (Func_Nam) = Any_Type then
595 Set_Etype (N, Any_Type);
596 return;
597 end if;
599 -- Otherwise analyze the parameters
601 if Present (Actuals) then
602 Actual := First (Actuals);
603 while Present (Actual) loop
604 Analyze (Actual);
605 Check_Parameterless_Call (Actual);
606 Next (Actual);
607 end loop;
608 end if;
610 Analyze_Call (N);
611 end Analyze_Function_Call;
613 -----------------------------
614 -- Analyze_Function_Return --
615 -----------------------------
617 procedure Analyze_Function_Return (N : Node_Id) is
618 Loc : constant Source_Ptr := Sloc (N);
619 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
620 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
622 R_Type : constant Entity_Id := Etype (Scope_Id);
623 -- Function result subtype
625 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
626 -- Apply legality rule of 6.5 (8.2) to the access discriminants of an
627 -- aggregate in a return statement.
629 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
630 -- Check that the return_subtype_indication properly matches the result
631 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
633 -----------------------------------
634 -- Check_Aggregate_Accessibility --
635 -----------------------------------
637 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
638 Typ : constant Entity_Id := Etype (Aggr);
639 Assoc : Node_Id;
640 Discr : Entity_Id;
641 Expr : Node_Id;
642 Obj : Node_Id;
644 begin
645 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
646 Discr := First_Discriminant (Typ);
647 Assoc := First (Component_Associations (Aggr));
648 while Present (Discr) loop
649 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
650 Expr := Expression (Assoc);
651 if Nkind (Expr) = N_Attribute_Reference
652 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
653 then
654 Obj := Prefix (Expr);
655 while Nkind_In (Obj, N_Indexed_Component,
656 N_Selected_Component)
657 loop
658 Obj := Prefix (Obj);
659 end loop;
661 -- No check needed for an aliased formal.
662 -- A run-time check may still be needed ???
664 if Is_Entity_Name (Obj)
665 and then Is_Formal (Entity (Obj))
666 and then Is_Aliased (Entity (Obj))
667 then
668 null;
670 elsif Object_Access_Level (Obj) >
671 Scope_Depth (Scope (Scope_Id))
672 then
673 Error_Msg_N
674 ("access discriminant in return aggregate would be "
675 & "a dangling reference", Obj);
676 end if;
677 end if;
678 end if;
680 Next_Discriminant (Discr);
681 end loop;
682 end if;
683 end Check_Aggregate_Accessibility;
685 -------------------------------------
686 -- Check_Return_Subtype_Indication --
687 -------------------------------------
689 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
690 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
692 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
693 -- Subtype given in the extended return statement (must match R_Type)
695 Subtype_Ind : constant Node_Id :=
696 Object_Definition (Original_Node (Obj_Decl));
698 R_Type_Is_Anon_Access : constant Boolean :=
699 Ekind_In (R_Type,
700 E_Anonymous_Access_Subprogram_Type,
701 E_Anonymous_Access_Protected_Subprogram_Type,
702 E_Anonymous_Access_Type);
703 -- True if return type of the function is an anonymous access type
704 -- Can't we make Is_Anonymous_Access_Type in einfo ???
706 R_Stm_Type_Is_Anon_Access : constant Boolean :=
707 Ekind_In (R_Stm_Type,
708 E_Anonymous_Access_Subprogram_Type,
709 E_Anonymous_Access_Protected_Subprogram_Type,
710 E_Anonymous_Access_Type);
711 -- True if type of the return object is an anonymous access type
713 procedure Error_No_Match (N : Node_Id);
714 -- Output error messages for case where types do not statically
715 -- match. N is the location for the messages.
717 --------------------
718 -- Error_No_Match --
719 --------------------
721 procedure Error_No_Match (N : Node_Id) is
722 begin
723 Error_Msg_N
724 ("subtype must statically match function result subtype", N);
726 if not Predicates_Match (R_Stm_Type, R_Type) then
727 Error_Msg_Node_2 := R_Type;
728 Error_Msg_NE
729 ("\predicate of& does not match predicate of&",
730 N, R_Stm_Type);
731 end if;
732 end Error_No_Match;
734 -- Start of processing for Check_Return_Subtype_Indication
736 begin
737 -- First, avoid cascaded errors
739 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
740 return;
741 end if;
743 -- "return access T" case; check that the return statement also has
744 -- "access T", and that the subtypes statically match:
745 -- if this is an access to subprogram the signatures must match.
747 if R_Type_Is_Anon_Access then
748 if R_Stm_Type_Is_Anon_Access then
750 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
751 then
752 if Base_Type (Designated_Type (R_Stm_Type)) /=
753 Base_Type (Designated_Type (R_Type))
754 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
755 then
756 Error_No_Match (Subtype_Mark (Subtype_Ind));
757 end if;
759 else
760 -- For two anonymous access to subprogram types, the
761 -- types themselves must be type conformant.
763 if not Conforming_Types
764 (R_Stm_Type, R_Type, Fully_Conformant)
765 then
766 Error_No_Match (Subtype_Ind);
767 end if;
768 end if;
770 else
771 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
772 end if;
774 -- If the return object is of an anonymous access type, then report
775 -- an error if the function's result type is not also anonymous.
777 elsif R_Stm_Type_Is_Anon_Access
778 and then not R_Type_Is_Anon_Access
779 then
780 Error_Msg_N ("anonymous access not allowed for function with "
781 & "named access result", Subtype_Ind);
783 -- Subtype indication case: check that the return object's type is
784 -- covered by the result type, and that the subtypes statically match
785 -- when the result subtype is constrained. Also handle record types
786 -- with unknown discriminants for which we have built the underlying
787 -- record view. Coverage is needed to allow specific-type return
788 -- objects when the result type is class-wide (see AI05-32).
790 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
791 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
792 and then
793 Covers
794 (Base_Type (R_Type),
795 Underlying_Record_View (Base_Type (R_Stm_Type))))
796 then
797 -- A null exclusion may be present on the return type, on the
798 -- function specification, on the object declaration or on the
799 -- subtype itself.
801 if Is_Access_Type (R_Type)
802 and then
803 (Can_Never_Be_Null (R_Type)
804 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
805 Can_Never_Be_Null (R_Stm_Type)
806 then
807 Error_No_Match (Subtype_Ind);
808 end if;
810 -- AI05-103: for elementary types, subtypes must statically match
812 if Is_Constrained (R_Type)
813 or else Is_Access_Type (R_Type)
814 then
815 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
816 Error_No_Match (Subtype_Ind);
817 end if;
818 end if;
820 -- All remaining cases are illegal
822 -- Note: previous versions of this subprogram allowed the return
823 -- value to be the ancestor of the return type if the return type
824 -- was a null extension. This was plainly incorrect.
826 else
827 Error_Msg_N
828 ("wrong type for return_subtype_indication", Subtype_Ind);
829 end if;
830 end Check_Return_Subtype_Indication;
832 ---------------------
833 -- Local Variables --
834 ---------------------
836 Expr : Node_Id;
837 Obj_Decl : Node_Id;
839 -- Start of processing for Analyze_Function_Return
841 begin
842 Set_Return_Present (Scope_Id);
844 if Nkind (N) = N_Simple_Return_Statement then
845 Expr := Expression (N);
847 -- Guard against a malformed expression. The parser may have tried to
848 -- recover but the node is not analyzable.
850 if Nkind (Expr) = N_Error then
851 Set_Etype (Expr, Any_Type);
852 Expander_Mode_Save_And_Set (False);
853 return;
855 else
856 -- The resolution of a controlled [extension] aggregate associated
857 -- with a return statement creates a temporary which needs to be
858 -- finalized on function exit. Wrap the return statement inside a
859 -- block so that the finalization machinery can detect this case.
860 -- This early expansion is done only when the return statement is
861 -- not part of a handled sequence of statements.
863 if Nkind_In (Expr, N_Aggregate,
864 N_Extension_Aggregate)
865 and then Needs_Finalization (R_Type)
866 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
867 then
868 Rewrite (N,
869 Make_Block_Statement (Loc,
870 Handled_Statement_Sequence =>
871 Make_Handled_Sequence_Of_Statements (Loc,
872 Statements => New_List (Relocate_Node (N)))));
874 Analyze (N);
875 return;
876 end if;
878 Analyze (Expr);
880 -- Ada 2005 (AI-251): If the type of the returned object is
881 -- an access to an interface type then we add an implicit type
882 -- conversion to force the displacement of the "this" pointer to
883 -- reference the secondary dispatch table. We cannot delay the
884 -- generation of this implicit conversion until the expansion
885 -- because in this case the type resolution changes the decoration
886 -- of the expression node to match R_Type; by contrast, if the
887 -- returned object is a class-wide interface type then it is too
888 -- early to generate here the implicit conversion since the return
889 -- statement may be rewritten by the expander into an extended
890 -- return statement whose expansion takes care of adding the
891 -- implicit type conversion to displace the pointer to the object.
893 if Expander_Active
894 and then Serious_Errors_Detected = 0
895 and then Is_Access_Type (R_Type)
896 and then Nkind (Expr) /= N_Null
897 and then Is_Interface (Designated_Type (R_Type))
898 and then Is_Progenitor (Designated_Type (R_Type),
899 Designated_Type (Etype (Expr)))
900 then
901 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
902 Analyze (Expr);
903 end if;
905 Resolve (Expr, R_Type);
906 Check_Limited_Return (N, Expr, R_Type);
908 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
909 Check_Aggregate_Accessibility (Expr);
910 end if;
911 end if;
913 -- RETURN only allowed in SPARK as the last statement in function
915 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
916 and then
917 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
918 or else Present (Next (N)))
919 then
920 Check_SPARK_05_Restriction
921 ("RETURN should be the last statement in function", N);
922 end if;
924 else
925 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
926 Obj_Decl := Last (Return_Object_Declarations (N));
928 -- Analyze parts specific to extended_return_statement:
930 declare
931 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
932 HSS : constant Node_Id := Handled_Statement_Sequence (N);
934 begin
935 Expr := Expression (Obj_Decl);
937 -- Note: The check for OK_For_Limited_Init will happen in
938 -- Analyze_Object_Declaration; we treat it as a normal
939 -- object declaration.
941 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
942 Analyze (Obj_Decl);
944 Check_Return_Subtype_Indication (Obj_Decl);
946 if Present (HSS) then
947 Analyze (HSS);
949 if Present (Exception_Handlers (HSS)) then
951 -- ???Has_Nested_Block_With_Handler needs to be set.
952 -- Probably by creating an actual N_Block_Statement.
953 -- Probably in Expand.
955 null;
956 end if;
957 end if;
959 -- Mark the return object as referenced, since the return is an
960 -- implicit reference of the object.
962 Set_Referenced (Defining_Identifier (Obj_Decl));
964 Check_References (Stm_Entity);
966 -- Check RM 6.5 (5.9/3)
968 if Has_Aliased then
969 if Ada_Version < Ada_2012 then
971 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
972 -- Can it really happen (extended return???)
974 Error_Msg_N
975 ("aliased only allowed for limited return objects "
976 & "in Ada 2012??", N);
978 elsif not Is_Limited_View (R_Type) then
979 Error_Msg_N
980 ("aliased only allowed for limited return objects", N);
981 end if;
982 end if;
983 end;
984 end if;
986 -- Case of Expr present
988 if Present (Expr)
990 -- Defend against previous errors
992 and then Nkind (Expr) /= N_Empty
993 and then Present (Etype (Expr))
994 then
995 -- Apply constraint check. Note that this is done before the implicit
996 -- conversion of the expression done for anonymous access types to
997 -- ensure correct generation of the null-excluding check associated
998 -- with null-excluding expressions found in return statements.
1000 Apply_Constraint_Check (Expr, R_Type);
1002 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1003 -- type, apply an implicit conversion of the expression to that type
1004 -- to force appropriate static and run-time accessibility checks.
1006 if Ada_Version >= Ada_2005
1007 and then Ekind (R_Type) = E_Anonymous_Access_Type
1008 then
1009 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1010 Analyze_And_Resolve (Expr, R_Type);
1012 -- If this is a local anonymous access to subprogram, the
1013 -- accessibility check can be applied statically. The return is
1014 -- illegal if the access type of the return expression is declared
1015 -- inside of the subprogram (except if it is the subtype indication
1016 -- of an extended return statement).
1018 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1019 if not Comes_From_Source (Current_Scope)
1020 or else Ekind (Current_Scope) = E_Return_Statement
1021 then
1022 null;
1024 elsif
1025 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1026 then
1027 Error_Msg_N ("cannot return local access to subprogram", N);
1028 end if;
1030 -- The expression cannot be of a formal incomplete type
1032 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1033 and then Is_Generic_Type (Etype (Expr))
1034 then
1035 Error_Msg_N
1036 ("cannot return expression of a formal incomplete type", N);
1037 end if;
1039 -- If the result type is class-wide, then check that the return
1040 -- expression's type is not declared at a deeper level than the
1041 -- function (RM05-6.5(5.6/2)).
1043 if Ada_Version >= Ada_2005
1044 and then Is_Class_Wide_Type (R_Type)
1045 then
1046 if Type_Access_Level (Etype (Expr)) >
1047 Subprogram_Access_Level (Scope_Id)
1048 then
1049 Error_Msg_N
1050 ("level of return expression type is deeper than "
1051 & "class-wide function!", Expr);
1052 end if;
1053 end if;
1055 -- Check incorrect use of dynamically tagged expression
1057 if Is_Tagged_Type (R_Type) then
1058 Check_Dynamically_Tagged_Expression
1059 (Expr => Expr,
1060 Typ => R_Type,
1061 Related_Nod => N);
1062 end if;
1064 -- ??? A real run-time accessibility check is needed in cases
1065 -- involving dereferences of access parameters. For now we just
1066 -- check the static cases.
1068 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1069 and then Is_Limited_View (Etype (Scope_Id))
1070 and then Object_Access_Level (Expr) >
1071 Subprogram_Access_Level (Scope_Id)
1072 then
1073 -- Suppress the message in a generic, where the rewriting
1074 -- is irrelevant.
1076 if Inside_A_Generic then
1077 null;
1079 else
1080 Rewrite (N,
1081 Make_Raise_Program_Error (Loc,
1082 Reason => PE_Accessibility_Check_Failed));
1083 Analyze (N);
1085 Error_Msg_Warn := SPARK_Mode /= On;
1086 Error_Msg_N ("cannot return a local value by reference<<", N);
1087 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1088 end if;
1089 end if;
1091 if Known_Null (Expr)
1092 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1093 and then Null_Exclusion_Present (Parent (Scope_Id))
1094 then
1095 Apply_Compile_Time_Constraint_Error
1096 (N => Expr,
1097 Msg => "(Ada 2005) null not allowed for "
1098 & "null-excluding return??",
1099 Reason => CE_Null_Not_Allowed);
1100 end if;
1102 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1103 -- has no initializing expression.
1105 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1106 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1107 Subprogram_Access_Level (Scope_Id)
1108 then
1109 Error_Msg_N
1110 ("level of return expression type is deeper than "
1111 & "class-wide function!", Obj_Decl);
1112 end if;
1113 end if;
1114 end Analyze_Function_Return;
1116 -------------------------------------
1117 -- Analyze_Generic_Subprogram_Body --
1118 -------------------------------------
1120 procedure Analyze_Generic_Subprogram_Body
1121 (N : Node_Id;
1122 Gen_Id : Entity_Id)
1124 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1125 Kind : constant Entity_Kind := Ekind (Gen_Id);
1126 Body_Id : Entity_Id;
1127 New_N : Node_Id;
1128 Spec : Node_Id;
1130 begin
1131 -- Copy body and disable expansion while analyzing the generic For a
1132 -- stub, do not copy the stub (which would load the proper body), this
1133 -- will be done when the proper body is analyzed.
1135 if Nkind (N) /= N_Subprogram_Body_Stub then
1136 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1137 Rewrite (N, New_N);
1139 -- Once the contents of the generic copy and the template are
1140 -- swapped, do the same for their respective aspect specifications.
1142 Exchange_Aspects (N, New_N);
1144 -- Collect all contract-related source pragmas found within the
1145 -- template and attach them to the contract of the subprogram body.
1146 -- This contract is used in the capture of global references within
1147 -- annotations.
1149 Create_Generic_Contract (N);
1151 Start_Generic;
1152 end if;
1154 Spec := Specification (N);
1156 -- Within the body of the generic, the subprogram is callable, and
1157 -- behaves like the corresponding non-generic unit.
1159 Body_Id := Defining_Entity (Spec);
1161 if Kind = E_Generic_Procedure
1162 and then Nkind (Spec) /= N_Procedure_Specification
1163 then
1164 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1165 return;
1167 elsif Kind = E_Generic_Function
1168 and then Nkind (Spec) /= N_Function_Specification
1169 then
1170 Error_Msg_N ("invalid body for generic function ", Body_Id);
1171 return;
1172 end if;
1174 Set_Corresponding_Body (Gen_Decl, Body_Id);
1176 if Has_Completion (Gen_Id)
1177 and then Nkind (Parent (N)) /= N_Subunit
1178 then
1179 Error_Msg_N ("duplicate generic body", N);
1180 return;
1181 else
1182 Set_Has_Completion (Gen_Id);
1183 end if;
1185 if Nkind (N) = N_Subprogram_Body_Stub then
1186 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1187 else
1188 Set_Corresponding_Spec (N, Gen_Id);
1189 end if;
1191 if Nkind (Parent (N)) = N_Compilation_Unit then
1192 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1193 end if;
1195 -- Make generic parameters immediately visible in the body. They are
1196 -- needed to process the formals declarations. Then make the formals
1197 -- visible in a separate step.
1199 Push_Scope (Gen_Id);
1201 declare
1202 E : Entity_Id;
1203 First_Ent : Entity_Id;
1205 begin
1206 First_Ent := First_Entity (Gen_Id);
1208 E := First_Ent;
1209 while Present (E) and then not Is_Formal (E) loop
1210 Install_Entity (E);
1211 Next_Entity (E);
1212 end loop;
1214 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1216 -- Now generic formals are visible, and the specification can be
1217 -- analyzed, for subsequent conformance check.
1219 Body_Id := Analyze_Subprogram_Specification (Spec);
1221 -- Make formal parameters visible
1223 if Present (E) then
1225 -- E is the first formal parameter, we loop through the formals
1226 -- installing them so that they will be visible.
1228 Set_First_Entity (Gen_Id, E);
1229 while Present (E) loop
1230 Install_Entity (E);
1231 Next_Formal (E);
1232 end loop;
1233 end if;
1235 -- Visible generic entity is callable within its own body
1237 Set_Ekind (Gen_Id, Ekind (Body_Id));
1238 Set_Ekind (Body_Id, E_Subprogram_Body);
1239 Set_Convention (Body_Id, Convention (Gen_Id));
1240 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1241 Set_Scope (Body_Id, Scope (Gen_Id));
1243 -- Inherit the "ghostness" of the generic spec. Note that this
1244 -- property is not directly inherited as the body may be subject
1245 -- to a different Ghost assertion policy.
1247 if Ghost_Mode > None or else Is_Ghost_Entity (Gen_Id) then
1248 Set_Is_Ghost_Entity (Body_Id);
1250 -- The Ghost policy in effect at the point of declaration and at
1251 -- the point of completion must match (SPARK RM 6.9(14)).
1253 Check_Ghost_Completion (Gen_Id, Body_Id);
1254 end if;
1256 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1258 if Nkind (N) = N_Subprogram_Body_Stub then
1260 -- No body to analyze, so restore state of generic unit
1262 Set_Ekind (Gen_Id, Kind);
1263 Set_Ekind (Body_Id, Kind);
1265 if Present (First_Ent) then
1266 Set_First_Entity (Gen_Id, First_Ent);
1267 end if;
1269 End_Scope;
1270 return;
1271 end if;
1273 -- If this is a compilation unit, it must be made visible explicitly,
1274 -- because the compilation of the declaration, unlike other library
1275 -- unit declarations, does not. If it is not a unit, the following
1276 -- is redundant but harmless.
1278 Set_Is_Immediately_Visible (Gen_Id);
1279 Reference_Body_Formals (Gen_Id, Body_Id);
1281 if Is_Child_Unit (Gen_Id) then
1282 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1283 end if;
1285 Set_Actual_Subtypes (N, Current_Scope);
1287 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1288 Set_SPARK_Pragma_Inherited (Body_Id);
1290 -- Analyze any aspect specifications that appear on the generic
1291 -- subprogram body.
1293 if Has_Aspects (N) then
1294 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1295 end if;
1297 Analyze_Declarations (Declarations (N));
1298 Check_Completion;
1300 -- Process the contract of the subprogram body after all declarations
1301 -- have been analyzed. This ensures that any contract-related pragmas
1302 -- are available through the N_Contract node of the body.
1304 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1306 Analyze (Handled_Statement_Sequence (N));
1307 Save_Global_References (Original_Node (N));
1309 -- Prior to exiting the scope, include generic formals again (if any
1310 -- are present) in the set of local entities.
1312 if Present (First_Ent) then
1313 Set_First_Entity (Gen_Id, First_Ent);
1314 end if;
1316 Check_References (Gen_Id);
1317 end;
1319 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1320 End_Scope;
1321 Check_Subprogram_Order (N);
1323 -- Outside of its body, unit is generic again
1325 Set_Ekind (Gen_Id, Kind);
1326 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1328 if Style_Check then
1329 Style.Check_Identifier (Body_Id, Gen_Id);
1330 end if;
1332 End_Generic;
1333 end Analyze_Generic_Subprogram_Body;
1335 ----------------------------
1336 -- Analyze_Null_Procedure --
1337 ----------------------------
1339 procedure Analyze_Null_Procedure
1340 (N : Node_Id;
1341 Is_Completion : out Boolean)
1343 Loc : constant Source_Ptr := Sloc (N);
1344 Spec : constant Node_Id := Specification (N);
1345 Designator : Entity_Id;
1346 Form : Node_Id;
1347 Null_Body : Node_Id := Empty;
1348 Prev : Entity_Id;
1350 begin
1351 -- Capture the profile of the null procedure before analysis, for
1352 -- expansion at the freeze point and at each point of call. The body is
1353 -- used if the procedure has preconditions, or if it is a completion. In
1354 -- the first case the body is analyzed at the freeze point, in the other
1355 -- it replaces the null procedure declaration.
1357 Null_Body :=
1358 Make_Subprogram_Body (Loc,
1359 Specification => New_Copy_Tree (Spec),
1360 Declarations => New_List,
1361 Handled_Statement_Sequence =>
1362 Make_Handled_Sequence_Of_Statements (Loc,
1363 Statements => New_List (Make_Null_Statement (Loc))));
1365 -- Create new entities for body and formals
1367 Set_Defining_Unit_Name (Specification (Null_Body),
1368 Make_Defining_Identifier
1369 (Sloc (Defining_Entity (N)),
1370 Chars (Defining_Entity (N))));
1372 Form := First (Parameter_Specifications (Specification (Null_Body)));
1373 while Present (Form) loop
1374 Set_Defining_Identifier (Form,
1375 Make_Defining_Identifier
1376 (Sloc (Defining_Identifier (Form)),
1377 Chars (Defining_Identifier (Form))));
1378 Next (Form);
1379 end loop;
1381 -- Determine whether the null procedure may be a completion of a generic
1382 -- suprogram, in which case we use the new null body as the completion
1383 -- and set minimal semantic information on the original declaration,
1384 -- which is rewritten as a null statement.
1386 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1388 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1389 Insert_Before (N, Null_Body);
1390 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1392 Rewrite (N, Make_Null_Statement (Loc));
1393 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1394 Is_Completion := True;
1395 return;
1397 else
1398 -- Resolve the types of the formals now, because the freeze point
1399 -- may appear in a different context, e.g. an instantiation.
1401 Form := First (Parameter_Specifications (Specification (Null_Body)));
1402 while Present (Form) loop
1403 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1404 Find_Type (Parameter_Type (Form));
1406 elsif
1407 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1408 then
1409 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1411 else
1412 -- The case of a null procedure with a formal that is an
1413 -- access_to_subprogram type, and that is used as an actual
1414 -- in an instantiation is left to the enthusiastic reader.
1416 null;
1417 end if;
1419 Next (Form);
1420 end loop;
1421 end if;
1423 -- If there are previous overloadable entities with the same name,
1424 -- check whether any of them is completed by the null procedure.
1426 if Present (Prev) and then Is_Overloadable (Prev) then
1427 Designator := Analyze_Subprogram_Specification (Spec);
1428 Prev := Find_Corresponding_Spec (N);
1429 end if;
1431 if No (Prev) or else not Comes_From_Source (Prev) then
1432 Designator := Analyze_Subprogram_Specification (Spec);
1433 Set_Has_Completion (Designator);
1435 -- Signal to caller that this is a procedure declaration
1437 Is_Completion := False;
1439 -- Null procedures are always inlined, but generic formal subprograms
1440 -- which appear as such in the internal instance of formal packages,
1441 -- need no completion and are not marked Inline.
1443 if Expander_Active
1444 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1445 then
1446 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1447 Set_Body_To_Inline (N, Null_Body);
1448 Set_Is_Inlined (Designator);
1449 end if;
1451 else
1452 -- The null procedure is a completion. We unconditionally rewrite
1453 -- this as a null body (even if expansion is not active), because
1454 -- there are various error checks that are applied on this body
1455 -- when it is analyzed (e.g. correct aspect placement).
1457 if Has_Completion (Prev) then
1458 Error_Msg_Sloc := Sloc (Prev);
1459 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1460 end if;
1462 Is_Completion := True;
1463 Rewrite (N, Null_Body);
1464 Analyze (N);
1465 end if;
1466 end Analyze_Null_Procedure;
1468 -----------------------------
1469 -- Analyze_Operator_Symbol --
1470 -----------------------------
1472 -- An operator symbol such as "+" or "and" may appear in context where the
1473 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1474 -- is just a string, as in (conjunction = "or"). In these cases the parser
1475 -- generates this node, and the semantics does the disambiguation. Other
1476 -- such case are actuals in an instantiation, the generic unit in an
1477 -- instantiation, and pragma arguments.
1479 procedure Analyze_Operator_Symbol (N : Node_Id) is
1480 Par : constant Node_Id := Parent (N);
1482 begin
1483 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1484 or else Nkind (Par) = N_Function_Instantiation
1485 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1486 or else (Nkind (Par) = N_Pragma_Argument_Association
1487 and then not Is_Pragma_String_Literal (Par))
1488 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1489 or else (Nkind (Par) = N_Attribute_Reference
1490 and then Attribute_Name (Par) /= Name_Value)
1491 then
1492 Find_Direct_Name (N);
1494 else
1495 Change_Operator_Symbol_To_String_Literal (N);
1496 Analyze (N);
1497 end if;
1498 end Analyze_Operator_Symbol;
1500 -----------------------------------
1501 -- Analyze_Parameter_Association --
1502 -----------------------------------
1504 procedure Analyze_Parameter_Association (N : Node_Id) is
1505 begin
1506 Analyze (Explicit_Actual_Parameter (N));
1507 end Analyze_Parameter_Association;
1509 ----------------------------
1510 -- Analyze_Procedure_Call --
1511 ----------------------------
1513 procedure Analyze_Procedure_Call (N : Node_Id) is
1514 procedure Analyze_Call_And_Resolve;
1515 -- Do Analyze and Resolve calls for procedure call
1516 -- At end, check illegal order dependence.
1518 ------------------------------
1519 -- Analyze_Call_And_Resolve --
1520 ------------------------------
1522 procedure Analyze_Call_And_Resolve is
1523 begin
1524 if Nkind (N) = N_Procedure_Call_Statement then
1525 Analyze_Call (N);
1526 Resolve (N, Standard_Void_Type);
1527 else
1528 Analyze (N);
1529 end if;
1530 end Analyze_Call_And_Resolve;
1532 -- Local variables
1534 Actuals : constant List_Id := Parameter_Associations (N);
1535 Loc : constant Source_Ptr := Sloc (N);
1536 P : constant Node_Id := Name (N);
1537 Actual : Node_Id;
1538 New_N : Node_Id;
1540 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1542 -- Start of processing for Analyze_Procedure_Call
1544 begin
1545 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1546 -- a procedure call or an entry call. The prefix may denote an access
1547 -- to subprogram type, in which case an implicit dereference applies.
1548 -- If the prefix is an indexed component (without implicit dereference)
1549 -- then the construct denotes a call to a member of an entire family.
1550 -- If the prefix is a simple name, it may still denote a call to a
1551 -- parameterless member of an entry family. Resolution of these various
1552 -- interpretations is delicate.
1554 -- Do not analyze machine code statements to avoid rejecting them in
1555 -- CodePeer mode.
1557 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1558 Set_Etype (P, Standard_Void_Type);
1559 else
1560 Analyze (P);
1561 end if;
1563 -- If this is a call of the form Obj.Op, the call may have been analyzed
1564 -- and possibly rewritten into a block, in which case we are done.
1566 if Analyzed (N) then
1567 return;
1568 end if;
1570 -- If there is an error analyzing the name (which may have been
1571 -- rewritten if the original call was in prefix notation) then error
1572 -- has been emitted already, mark node and return.
1574 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1575 Set_Etype (N, Any_Type);
1576 return;
1577 end if;
1579 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1580 -- Set the mode now to ensure that any nodes generated during analysis
1581 -- and expansion are properly marked as Ghost.
1583 Set_Ghost_Mode (N);
1585 -- Otherwise analyze the parameters
1587 if Present (Actuals) then
1588 Actual := First (Actuals);
1590 while Present (Actual) loop
1591 Analyze (Actual);
1592 Check_Parameterless_Call (Actual);
1593 Next (Actual);
1594 end loop;
1595 end if;
1597 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1599 if Nkind (P) = N_Attribute_Reference
1600 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1601 Name_Elab_Body,
1602 Name_Elab_Subp_Body)
1603 then
1604 if Present (Actuals) then
1605 Error_Msg_N
1606 ("no parameters allowed for this call", First (Actuals));
1607 return;
1608 end if;
1610 Set_Etype (N, Standard_Void_Type);
1611 Set_Analyzed (N);
1613 elsif Is_Entity_Name (P)
1614 and then Is_Record_Type (Etype (Entity (P)))
1615 and then Remote_AST_I_Dereference (P)
1616 then
1617 Ghost_Mode := Save_Ghost_Mode;
1618 return;
1620 elsif Is_Entity_Name (P)
1621 and then Ekind (Entity (P)) /= E_Entry_Family
1622 then
1623 if Is_Access_Type (Etype (P))
1624 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1625 and then No (Actuals)
1626 and then Comes_From_Source (N)
1627 then
1628 Error_Msg_N ("missing explicit dereference in call", N);
1629 end if;
1631 Analyze_Call_And_Resolve;
1633 -- If the prefix is the simple name of an entry family, this is a
1634 -- parameterless call from within the task body itself.
1636 elsif Is_Entity_Name (P)
1637 and then Nkind (P) = N_Identifier
1638 and then Ekind (Entity (P)) = E_Entry_Family
1639 and then Present (Actuals)
1640 and then No (Next (First (Actuals)))
1641 then
1642 -- Can be call to parameterless entry family. What appears to be the
1643 -- sole argument is in fact the entry index. Rewrite prefix of node
1644 -- accordingly. Source representation is unchanged by this
1645 -- transformation.
1647 New_N :=
1648 Make_Indexed_Component (Loc,
1649 Prefix =>
1650 Make_Selected_Component (Loc,
1651 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1652 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1653 Expressions => Actuals);
1654 Set_Name (N, New_N);
1655 Set_Etype (New_N, Standard_Void_Type);
1656 Set_Parameter_Associations (N, No_List);
1657 Analyze_Call_And_Resolve;
1659 elsif Nkind (P) = N_Explicit_Dereference then
1660 if Ekind (Etype (P)) = E_Subprogram_Type then
1661 Analyze_Call_And_Resolve;
1662 else
1663 Error_Msg_N ("expect access to procedure in call", P);
1664 end if;
1666 -- The name can be a selected component or an indexed component that
1667 -- yields an access to subprogram. Such a prefix is legal if the call
1668 -- has parameter associations.
1670 elsif Is_Access_Type (Etype (P))
1671 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1672 then
1673 if Present (Actuals) then
1674 Analyze_Call_And_Resolve;
1675 else
1676 Error_Msg_N ("missing explicit dereference in call ", N);
1677 end if;
1679 -- If not an access to subprogram, then the prefix must resolve to the
1680 -- name of an entry, entry family, or protected operation.
1682 -- For the case of a simple entry call, P is a selected component where
1683 -- the prefix is the task and the selector name is the entry. A call to
1684 -- a protected procedure will have the same syntax. If the protected
1685 -- object contains overloaded operations, the entity may appear as a
1686 -- function, the context will select the operation whose type is Void.
1688 elsif Nkind (P) = N_Selected_Component
1689 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1690 E_Procedure,
1691 E_Function)
1692 then
1693 Analyze_Call_And_Resolve;
1695 elsif Nkind (P) = N_Selected_Component
1696 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1697 and then Present (Actuals)
1698 and then No (Next (First (Actuals)))
1699 then
1700 -- Can be call to parameterless entry family. What appears to be the
1701 -- sole argument is in fact the entry index. Rewrite prefix of node
1702 -- accordingly. Source representation is unchanged by this
1703 -- transformation.
1705 New_N :=
1706 Make_Indexed_Component (Loc,
1707 Prefix => New_Copy (P),
1708 Expressions => Actuals);
1709 Set_Name (N, New_N);
1710 Set_Etype (New_N, Standard_Void_Type);
1711 Set_Parameter_Associations (N, No_List);
1712 Analyze_Call_And_Resolve;
1714 -- For the case of a reference to an element of an entry family, P is
1715 -- an indexed component whose prefix is a selected component (task and
1716 -- entry family), and whose index is the entry family index.
1718 elsif Nkind (P) = N_Indexed_Component
1719 and then Nkind (Prefix (P)) = N_Selected_Component
1720 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1721 then
1722 Analyze_Call_And_Resolve;
1724 -- If the prefix is the name of an entry family, it is a call from
1725 -- within the task body itself.
1727 elsif Nkind (P) = N_Indexed_Component
1728 and then Nkind (Prefix (P)) = N_Identifier
1729 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1730 then
1731 New_N :=
1732 Make_Selected_Component (Loc,
1733 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1734 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1735 Rewrite (Prefix (P), New_N);
1736 Analyze (P);
1737 Analyze_Call_And_Resolve;
1739 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1740 -- procedure name, so the construct can only be a qualified expression.
1742 elsif Nkind (P) = N_Qualified_Expression
1743 and then Ada_Version >= Ada_2012
1744 then
1745 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1746 Analyze (N);
1748 -- Anything else is an error
1750 else
1751 Error_Msg_N ("invalid procedure or entry call", N);
1752 end if;
1754 Ghost_Mode := Save_Ghost_Mode;
1755 end Analyze_Procedure_Call;
1757 ------------------------------
1758 -- Analyze_Return_Statement --
1759 ------------------------------
1761 procedure Analyze_Return_Statement (N : Node_Id) is
1763 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1764 N_Extended_Return_Statement));
1766 Returns_Object : constant Boolean :=
1767 Nkind (N) = N_Extended_Return_Statement
1768 or else
1769 (Nkind (N) = N_Simple_Return_Statement
1770 and then Present (Expression (N)));
1771 -- True if we're returning something; that is, "return <expression>;"
1772 -- or "return Result : T [:= ...]". False for "return;". Used for error
1773 -- checking: If Returns_Object is True, N should apply to a function
1774 -- body; otherwise N should apply to a procedure body, entry body,
1775 -- accept statement, or extended return statement.
1777 function Find_What_It_Applies_To return Entity_Id;
1778 -- Find the entity representing the innermost enclosing body, accept
1779 -- statement, or extended return statement. If the result is a callable
1780 -- construct or extended return statement, then this will be the value
1781 -- of the Return_Applies_To attribute. Otherwise, the program is
1782 -- illegal. See RM-6.5(4/2).
1784 -----------------------------
1785 -- Find_What_It_Applies_To --
1786 -----------------------------
1788 function Find_What_It_Applies_To return Entity_Id is
1789 Result : Entity_Id := Empty;
1791 begin
1792 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1793 -- and postconditions.
1795 for J in reverse 0 .. Scope_Stack.Last loop
1796 Result := Scope_Stack.Table (J).Entity;
1797 exit when not Ekind_In (Result, E_Block, E_Loop)
1798 and then Chars (Result) /= Name_uPostconditions;
1799 end loop;
1801 pragma Assert (Present (Result));
1802 return Result;
1803 end Find_What_It_Applies_To;
1805 -- Local declarations
1807 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1808 Kind : constant Entity_Kind := Ekind (Scope_Id);
1809 Loc : constant Source_Ptr := Sloc (N);
1810 Stm_Entity : constant Entity_Id :=
1811 New_Internal_Entity
1812 (E_Return_Statement, Current_Scope, Loc, 'R');
1814 -- Start of processing for Analyze_Return_Statement
1816 begin
1817 Set_Return_Statement_Entity (N, Stm_Entity);
1819 Set_Etype (Stm_Entity, Standard_Void_Type);
1820 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1822 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1823 -- (4/2): an inner return statement will apply to this extended return.
1825 if Nkind (N) = N_Extended_Return_Statement then
1826 Push_Scope (Stm_Entity);
1827 end if;
1829 -- Check that pragma No_Return is obeyed. Don't complain about the
1830 -- implicitly-generated return that is placed at the end.
1832 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1833 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1834 end if;
1836 -- Warn on any unassigned OUT parameters if in procedure
1838 if Ekind (Scope_Id) = E_Procedure then
1839 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1840 end if;
1842 -- Check that functions return objects, and other things do not
1844 if Kind = E_Function or else Kind = E_Generic_Function then
1845 if not Returns_Object then
1846 Error_Msg_N ("missing expression in return from function", N);
1847 end if;
1849 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1850 if Returns_Object then
1851 Error_Msg_N ("procedure cannot return value (use function)", N);
1852 end if;
1854 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1855 if Returns_Object then
1856 if Is_Protected_Type (Scope (Scope_Id)) then
1857 Error_Msg_N ("entry body cannot return value", N);
1858 else
1859 Error_Msg_N ("accept statement cannot return value", N);
1860 end if;
1861 end if;
1863 elsif Kind = E_Return_Statement then
1865 -- We are nested within another return statement, which must be an
1866 -- extended_return_statement.
1868 if Returns_Object then
1869 if Nkind (N) = N_Extended_Return_Statement then
1870 Error_Msg_N
1871 ("extended return statement cannot be nested (use `RETURN;`)",
1874 -- Case of a simple return statement with a value inside extended
1875 -- return statement.
1877 else
1878 Error_Msg_N
1879 ("return nested in extended return statement cannot return "
1880 & "value (use `RETURN;`)", N);
1881 end if;
1882 end if;
1884 else
1885 Error_Msg_N ("illegal context for return statement", N);
1886 end if;
1888 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1889 Analyze_Function_Return (N);
1891 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1892 Set_Return_Present (Scope_Id);
1893 end if;
1895 if Nkind (N) = N_Extended_Return_Statement then
1896 End_Scope;
1897 end if;
1899 Kill_Current_Values (Last_Assignment_Only => True);
1900 Check_Unreachable_Code (N);
1902 Analyze_Dimension (N);
1903 end Analyze_Return_Statement;
1905 -------------------------------------
1906 -- Analyze_Simple_Return_Statement --
1907 -------------------------------------
1909 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1910 begin
1911 if Present (Expression (N)) then
1912 Mark_Coextensions (N, Expression (N));
1913 end if;
1915 Analyze_Return_Statement (N);
1916 end Analyze_Simple_Return_Statement;
1918 -------------------------
1919 -- Analyze_Return_Type --
1920 -------------------------
1922 procedure Analyze_Return_Type (N : Node_Id) is
1923 Designator : constant Entity_Id := Defining_Entity (N);
1924 Typ : Entity_Id := Empty;
1926 begin
1927 -- Normal case where result definition does not indicate an error
1929 if Result_Definition (N) /= Error then
1930 if Nkind (Result_Definition (N)) = N_Access_Definition then
1931 Check_SPARK_05_Restriction
1932 ("access result is not allowed", Result_Definition (N));
1934 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1936 declare
1937 AD : constant Node_Id :=
1938 Access_To_Subprogram_Definition (Result_Definition (N));
1939 begin
1940 if Present (AD) and then Protected_Present (AD) then
1941 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1942 else
1943 Typ := Access_Definition (N, Result_Definition (N));
1944 end if;
1945 end;
1947 Set_Parent (Typ, Result_Definition (N));
1948 Set_Is_Local_Anonymous_Access (Typ);
1949 Set_Etype (Designator, Typ);
1951 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1953 Null_Exclusion_Static_Checks (N);
1955 -- Subtype_Mark case
1957 else
1958 Find_Type (Result_Definition (N));
1959 Typ := Entity (Result_Definition (N));
1960 Set_Etype (Designator, Typ);
1962 -- Unconstrained array as result is not allowed in SPARK
1964 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1965 Check_SPARK_05_Restriction
1966 ("returning an unconstrained array is not allowed",
1967 Result_Definition (N));
1968 end if;
1970 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1972 Null_Exclusion_Static_Checks (N);
1974 -- If a null exclusion is imposed on the result type, then create
1975 -- a null-excluding itype (an access subtype) and use it as the
1976 -- function's Etype. Note that the null exclusion checks are done
1977 -- right before this, because they don't get applied to types that
1978 -- do not come from source.
1980 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1981 Set_Etype (Designator,
1982 Create_Null_Excluding_Itype
1983 (T => Typ,
1984 Related_Nod => N,
1985 Scope_Id => Scope (Current_Scope)));
1987 -- The new subtype must be elaborated before use because
1988 -- it is visible outside of the function. However its base
1989 -- type may not be frozen yet, so the reference that will
1990 -- force elaboration must be attached to the freezing of
1991 -- the base type.
1993 -- If the return specification appears on a proper body,
1994 -- the subtype will have been created already on the spec.
1996 if Is_Frozen (Typ) then
1997 if Nkind (Parent (N)) = N_Subprogram_Body
1998 and then Nkind (Parent (Parent (N))) = N_Subunit
1999 then
2000 null;
2001 else
2002 Build_Itype_Reference (Etype (Designator), Parent (N));
2003 end if;
2005 else
2006 Ensure_Freeze_Node (Typ);
2008 declare
2009 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2010 begin
2011 Set_Itype (IR, Etype (Designator));
2012 Append_Freeze_Actions (Typ, New_List (IR));
2013 end;
2014 end if;
2016 else
2017 Set_Etype (Designator, Typ);
2018 end if;
2020 if Ekind (Typ) = E_Incomplete_Type
2021 or else (Is_Class_Wide_Type (Typ)
2022 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2023 then
2024 -- AI05-0151: Tagged incomplete types are allowed in all formal
2025 -- parts. Untagged incomplete types are not allowed in bodies.
2026 -- As a consequence, limited views cannot appear in a basic
2027 -- declaration that is itself within a body, because there is
2028 -- no point at which the non-limited view will become visible.
2030 if Ada_Version >= Ada_2012 then
2031 if From_Limited_With (Typ) and then In_Package_Body then
2032 Error_Msg_NE
2033 ("invalid use of incomplete type&",
2034 Result_Definition (N), Typ);
2036 -- The return type of a subprogram body cannot be of a
2037 -- formal incomplete type.
2039 elsif Is_Generic_Type (Typ)
2040 and then Nkind (Parent (N)) = N_Subprogram_Body
2041 then
2042 Error_Msg_N
2043 ("return type cannot be a formal incomplete type",
2044 Result_Definition (N));
2046 elsif Is_Class_Wide_Type (Typ)
2047 and then Is_Generic_Type (Root_Type (Typ))
2048 and then Nkind (Parent (N)) = N_Subprogram_Body
2049 then
2050 Error_Msg_N
2051 ("return type cannot be a formal incomplete type",
2052 Result_Definition (N));
2054 elsif Is_Tagged_Type (Typ) then
2055 null;
2057 -- Use is legal in a thunk generated for an operation
2058 -- inherited from a progenitor.
2060 elsif Is_Thunk (Designator)
2061 and then Present (Non_Limited_View (Typ))
2062 then
2063 null;
2065 elsif Nkind (Parent (N)) = N_Subprogram_Body
2066 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2067 N_Entry_Body)
2068 then
2069 Error_Msg_NE
2070 ("invalid use of untagged incomplete type&",
2071 Designator, Typ);
2072 end if;
2074 -- The type must be completed in the current package. This
2075 -- is checked at the end of the package declaration when
2076 -- Taft-amendment types are identified. If the return type
2077 -- is class-wide, there is no required check, the type can
2078 -- be a bona fide TAT.
2080 if Ekind (Scope (Current_Scope)) = E_Package
2081 and then In_Private_Part (Scope (Current_Scope))
2082 and then not Is_Class_Wide_Type (Typ)
2083 then
2084 Append_Elmt (Designator, Private_Dependents (Typ));
2085 end if;
2087 else
2088 Error_Msg_NE
2089 ("invalid use of incomplete type&", Designator, Typ);
2090 end if;
2091 end if;
2092 end if;
2094 -- Case where result definition does indicate an error
2096 else
2097 Set_Etype (Designator, Any_Type);
2098 end if;
2099 end Analyze_Return_Type;
2101 -----------------------------
2102 -- Analyze_Subprogram_Body --
2103 -----------------------------
2105 procedure Analyze_Subprogram_Body (N : Node_Id) is
2106 Loc : constant Source_Ptr := Sloc (N);
2107 Body_Spec : constant Node_Id := Specification (N);
2108 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2110 begin
2111 if Debug_Flag_C then
2112 Write_Str ("==> subprogram body ");
2113 Write_Name (Chars (Body_Id));
2114 Write_Str (" from ");
2115 Write_Location (Loc);
2116 Write_Eol;
2117 Indent;
2118 end if;
2120 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2122 -- The real work is split out into the helper, so it can do "return;"
2123 -- without skipping the debug output:
2125 Analyze_Subprogram_Body_Helper (N);
2127 if Debug_Flag_C then
2128 Outdent;
2129 Write_Str ("<== subprogram body ");
2130 Write_Name (Chars (Body_Id));
2131 Write_Str (" from ");
2132 Write_Location (Loc);
2133 Write_Eol;
2134 end if;
2135 end Analyze_Subprogram_Body;
2137 ------------------------------------
2138 -- Analyze_Subprogram_Body_Helper --
2139 ------------------------------------
2141 -- This procedure is called for regular subprogram bodies, generic bodies,
2142 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2143 -- specification matters, and is used to create a proper declaration for
2144 -- the subprogram, or to perform conformance checks.
2146 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2147 Loc : constant Source_Ptr := Sloc (N);
2148 Body_Spec : Node_Id := Specification (N);
2149 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2150 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2151 Conformant : Boolean;
2152 HSS : Node_Id;
2153 Prot_Typ : Entity_Id := Empty;
2154 Spec_Id : Entity_Id;
2155 Spec_Decl : Node_Id := Empty;
2157 Last_Real_Spec_Entity : Entity_Id := Empty;
2158 -- When we analyze a separate spec, the entity chain ends up containing
2159 -- the formals, as well as any itypes generated during analysis of the
2160 -- default expressions for parameters, or the arguments of associated
2161 -- precondition/postcondition pragmas (which are analyzed in the context
2162 -- of the spec since they have visibility on formals).
2164 -- These entities belong with the spec and not the body. However we do
2165 -- the analysis of the body in the context of the spec (again to obtain
2166 -- visibility to the formals), and all the entities generated during
2167 -- this analysis end up also chained to the entity chain of the spec.
2168 -- But they really belong to the body, and there is circuitry to move
2169 -- them from the spec to the body.
2171 -- However, when we do this move, we don't want to move the real spec
2172 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2173 -- variable points to the last real spec entity, so we only move those
2174 -- chained beyond that point. It is initialized to Empty to deal with
2175 -- the case where there is no separate spec.
2177 function Body_Has_Contract return Boolean;
2178 -- Check whether unanalyzed body has an aspect or pragma that may
2179 -- generate a SPARK contract.
2181 procedure Build_Subprogram_Declaration;
2182 -- Create a matching subprogram declaration for subprogram body N
2184 procedure Check_Anonymous_Return;
2185 -- Ada 2005: if a function returns an access type that denotes a task,
2186 -- or a type that contains tasks, we must create a master entity for
2187 -- the anonymous type, which typically will be used in an allocator
2188 -- in the body of the function.
2190 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2191 -- Look ahead to recognize a pragma that may appear after the body.
2192 -- If there is a previous spec, check that it appears in the same
2193 -- declarative part. If the pragma is Inline_Always, perform inlining
2194 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2195 -- If the body acts as a spec, and inlining is required, we create a
2196 -- subprogram declaration for it, in order to attach the body to inline.
2197 -- If pragma does not appear after the body, check whether there is
2198 -- an inline pragma before any local declarations.
2200 procedure Check_Missing_Return;
2201 -- Checks for a function with a no return statements, and also performs
2202 -- the warning checks implemented by Check_Returns. In formal mode, also
2203 -- verify that a function ends with a RETURN and that a procedure does
2204 -- not contain any RETURN.
2206 function Disambiguate_Spec return Entity_Id;
2207 -- When a primitive is declared between the private view and the full
2208 -- view of a concurrent type which implements an interface, a special
2209 -- mechanism is used to find the corresponding spec of the primitive
2210 -- body.
2212 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2213 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2214 -- incomplete types coming from a limited context and swap their limited
2215 -- views with the non-limited ones.
2217 function Is_Private_Concurrent_Primitive
2218 (Subp_Id : Entity_Id) return Boolean;
2219 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2220 -- type that implements an interface and has a private view.
2222 procedure Set_Trivial_Subprogram (N : Node_Id);
2223 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2224 -- subprogram whose body is being analyzed. N is the statement node
2225 -- causing the flag to be set, if the following statement is a return
2226 -- of an entity, we mark the entity as set in source to suppress any
2227 -- warning on the stylized use of function stubs with a dummy return.
2229 procedure Verify_Overriding_Indicator;
2230 -- If there was a previous spec, the entity has been entered in the
2231 -- current scope previously. If the body itself carries an overriding
2232 -- indicator, check that it is consistent with the known status of the
2233 -- entity.
2235 -----------------------
2236 -- Body_Has_Contract --
2237 -----------------------
2239 function Body_Has_Contract return Boolean is
2240 Decls : constant List_Id := Declarations (N);
2241 Item : Node_Id;
2243 begin
2244 -- Check for aspects that may generate a contract
2246 if Present (Aspect_Specifications (N)) then
2247 Item := First (Aspect_Specifications (N));
2248 while Present (Item) loop
2249 if Is_Subprogram_Contract_Annotation (Item) then
2250 return True;
2251 end if;
2253 Next (Item);
2254 end loop;
2255 end if;
2257 -- Check for pragmas that may generate a contract
2259 if Present (Decls) then
2260 Item := First (Decls);
2261 while Present (Item) loop
2262 if Nkind (Item) = N_Pragma
2263 and then Is_Subprogram_Contract_Annotation (Item)
2264 then
2265 return True;
2266 end if;
2268 Next (Item);
2269 end loop;
2270 end if;
2272 return False;
2273 end Body_Has_Contract;
2275 ----------------------------------
2276 -- Build_Subprogram_Declaration --
2277 ----------------------------------
2279 procedure Build_Subprogram_Declaration is
2280 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2281 -- Relocate certain categorization pragmas from the declarative list
2282 -- of subprogram body From and insert them after node To. The pragmas
2283 -- in question are:
2284 -- Ghost
2285 -- SPARK_Mode
2286 -- Volatile_Function
2288 ------------------
2289 -- Move_Pragmas --
2290 ------------------
2292 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2293 Decl : Node_Id;
2294 Next_Decl : Node_Id;
2296 begin
2297 pragma Assert (Nkind (From) = N_Subprogram_Body);
2299 -- The destination node must be part of a list, as the pragmas are
2300 -- inserted after it.
2302 pragma Assert (Is_List_Member (To));
2304 -- Inspect the declarations of the subprogram body looking for
2305 -- specific pragmas.
2307 Decl := First (Declarations (N));
2308 while Present (Decl) loop
2309 Next_Decl := Next (Decl);
2311 if Nkind (Decl) = N_Pragma
2312 and then Nam_In (Pragma_Name (Decl), Name_Ghost,
2313 Name_SPARK_Mode,
2314 Name_Volatile_Function)
2315 then
2316 Remove (Decl);
2317 Insert_After (To, Decl);
2318 end if;
2320 Decl := Next_Decl;
2321 end loop;
2322 end Move_Pragmas;
2324 -- Local variables
2326 Decl : Node_Id;
2327 Subp_Decl : Node_Id;
2329 -- Start of processing for Build_Subprogram_Declaration
2331 begin
2332 -- Create a matching subprogram spec using the profile of the body.
2333 -- The structure of the tree is identical, but has new entities for
2334 -- the defining unit name and formal parameters.
2336 Subp_Decl :=
2337 Make_Subprogram_Declaration (Loc,
2338 Specification => Copy_Subprogram_Spec (Body_Spec));
2339 Set_Comes_From_Source (Subp_Decl, True);
2341 -- Relocate the aspects and relevant pragmas from the subprogram body
2342 -- to the generated spec because it acts as the initial declaration.
2344 Insert_Before (N, Subp_Decl);
2345 Move_Aspects (N, To => Subp_Decl);
2346 Move_Pragmas (N, To => Subp_Decl);
2348 Analyze (Subp_Decl);
2350 -- Analyze any relocated source pragmas or pragmas created for aspect
2351 -- specifications.
2353 Decl := Next (Subp_Decl);
2354 while Present (Decl) loop
2356 -- Stop the search for pragmas once the body has been reached as
2357 -- this terminates the region where pragmas may appear.
2359 if Decl = N then
2360 exit;
2362 elsif Nkind (Decl) = N_Pragma then
2363 Analyze (Decl);
2364 end if;
2366 Next (Decl);
2367 end loop;
2369 Spec_Id := Defining_Entity (Subp_Decl);
2370 Set_Corresponding_Spec (N, Spec_Id);
2372 -- Mark the generated spec as a source construct to ensure that all
2373 -- calls to it are properly registered in ALI files for GNATprove.
2375 Set_Comes_From_Source (Spec_Id, True);
2377 -- Ensure that the specs of the subprogram declaration and its body
2378 -- are identical, otherwise they will appear non-conformant due to
2379 -- rewritings in the default values of formal parameters.
2381 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2382 Set_Specification (N, Body_Spec);
2383 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2385 -- Ensure that the generated corresponding spec and original body
2386 -- share the same Ghost and SPARK_Mode attributes.
2388 Set_Is_Checked_Ghost_Entity
2389 (Body_Id, Is_Checked_Ghost_Entity (Spec_Id));
2390 Set_Is_Ignored_Ghost_Entity
2391 (Body_Id, Is_Ignored_Ghost_Entity (Spec_Id));
2393 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
2394 Set_SPARK_Pragma_Inherited
2395 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
2396 end Build_Subprogram_Declaration;
2398 ----------------------------
2399 -- Check_Anonymous_Return --
2400 ----------------------------
2402 procedure Check_Anonymous_Return is
2403 Decl : Node_Id;
2404 Par : Node_Id;
2405 Scop : Entity_Id;
2407 begin
2408 if Present (Spec_Id) then
2409 Scop := Spec_Id;
2410 else
2411 Scop := Body_Id;
2412 end if;
2414 if Ekind (Scop) = E_Function
2415 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2416 and then not Is_Thunk (Scop)
2418 -- Skip internally built functions which handle the case of
2419 -- a null access (see Expand_Interface_Conversion)
2421 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2422 and then not Comes_From_Source (Parent (Scop)))
2424 and then (Has_Task (Designated_Type (Etype (Scop)))
2425 or else
2426 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2427 and then
2428 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2429 and then Expander_Active
2431 -- Avoid cases with no tasking support
2433 and then RTE_Available (RE_Current_Master)
2434 and then not Restriction_Active (No_Task_Hierarchy)
2435 then
2436 Decl :=
2437 Make_Object_Declaration (Loc,
2438 Defining_Identifier =>
2439 Make_Defining_Identifier (Loc, Name_uMaster),
2440 Constant_Present => True,
2441 Object_Definition =>
2442 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2443 Expression =>
2444 Make_Explicit_Dereference (Loc,
2445 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2447 if Present (Declarations (N)) then
2448 Prepend (Decl, Declarations (N));
2449 else
2450 Set_Declarations (N, New_List (Decl));
2451 end if;
2453 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2454 Set_Has_Master_Entity (Scop);
2456 -- Now mark the containing scope as a task master
2458 Par := N;
2459 while Nkind (Par) /= N_Compilation_Unit loop
2460 Par := Parent (Par);
2461 pragma Assert (Present (Par));
2463 -- If we fall off the top, we are at the outer level, and
2464 -- the environment task is our effective master, so nothing
2465 -- to mark.
2467 if Nkind_In
2468 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2469 then
2470 Set_Is_Task_Master (Par, True);
2471 exit;
2472 end if;
2473 end loop;
2474 end if;
2475 end Check_Anonymous_Return;
2477 -------------------------
2478 -- Check_Inline_Pragma --
2479 -------------------------
2481 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2482 Prag : Node_Id;
2483 Plist : List_Id;
2485 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2486 -- True when N is a pragma Inline or Inline_Always that applies
2487 -- to this subprogram.
2489 -----------------------
2490 -- Is_Inline_Pragma --
2491 -----------------------
2493 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2494 begin
2495 return
2496 Nkind (N) = N_Pragma
2497 and then
2498 (Pragma_Name (N) = Name_Inline_Always
2499 or else (Front_End_Inlining
2500 and then Pragma_Name (N) = Name_Inline))
2501 and then
2502 Chars
2503 (Expression (First (Pragma_Argument_Associations (N)))) =
2504 Chars (Body_Id);
2505 end Is_Inline_Pragma;
2507 -- Start of processing for Check_Inline_Pragma
2509 begin
2510 if not Expander_Active then
2511 return;
2512 end if;
2514 if Is_List_Member (N)
2515 and then Present (Next (N))
2516 and then Is_Inline_Pragma (Next (N))
2517 then
2518 Prag := Next (N);
2520 elsif Nkind (N) /= N_Subprogram_Body_Stub
2521 and then Present (Declarations (N))
2522 and then Is_Inline_Pragma (First (Declarations (N)))
2523 then
2524 Prag := First (Declarations (N));
2526 else
2527 Prag := Empty;
2528 end if;
2530 if Present (Prag) then
2531 if Present (Spec_Id) then
2532 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2533 Analyze (Prag);
2534 end if;
2536 else
2537 -- Create a subprogram declaration, to make treatment uniform
2539 declare
2540 Subp : constant Entity_Id :=
2541 Make_Defining_Identifier (Loc, Chars (Body_Id));
2542 Decl : constant Node_Id :=
2543 Make_Subprogram_Declaration (Loc,
2544 Specification =>
2545 New_Copy_Tree (Specification (N)));
2547 begin
2548 Set_Defining_Unit_Name (Specification (Decl), Subp);
2550 if Present (First_Formal (Body_Id)) then
2551 Plist := Copy_Parameter_List (Body_Id);
2552 Set_Parameter_Specifications
2553 (Specification (Decl), Plist);
2554 end if;
2556 Insert_Before (N, Decl);
2557 Analyze (Decl);
2558 Analyze (Prag);
2559 Set_Has_Pragma_Inline (Subp);
2561 if Pragma_Name (Prag) = Name_Inline_Always then
2562 Set_Is_Inlined (Subp);
2563 Set_Has_Pragma_Inline_Always (Subp);
2564 end if;
2566 -- Prior to copying the subprogram body to create a template
2567 -- for it for subsequent inlining, remove the pragma from
2568 -- the current body so that the copy that will produce the
2569 -- new body will start from a completely unanalyzed tree.
2571 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2572 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2573 end if;
2575 Spec := Subp;
2576 end;
2577 end if;
2578 end if;
2579 end Check_Inline_Pragma;
2581 --------------------------
2582 -- Check_Missing_Return --
2583 --------------------------
2585 procedure Check_Missing_Return is
2586 Id : Entity_Id;
2587 Missing_Ret : Boolean;
2589 begin
2590 if Nkind (Body_Spec) = N_Function_Specification then
2591 if Present (Spec_Id) then
2592 Id := Spec_Id;
2593 else
2594 Id := Body_Id;
2595 end if;
2597 if Return_Present (Id) then
2598 Check_Returns (HSS, 'F', Missing_Ret);
2600 if Missing_Ret then
2601 Set_Has_Missing_Return (Id);
2602 end if;
2604 -- Within a premature instantiation of a package with no body, we
2605 -- build completions of the functions therein, with a Raise
2606 -- statement. No point in complaining about a missing return in
2607 -- this case.
2609 elsif Ekind (Id) = E_Function
2610 and then In_Instance
2611 and then Present (Statements (HSS))
2612 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2613 then
2614 null;
2616 elsif Is_Generic_Subprogram (Id)
2617 or else not Is_Machine_Code_Subprogram (Id)
2618 then
2619 Error_Msg_N ("missing RETURN statement in function body", N);
2620 end if;
2622 -- If procedure with No_Return, check returns
2624 elsif Nkind (Body_Spec) = N_Procedure_Specification
2625 and then Present (Spec_Id)
2626 and then No_Return (Spec_Id)
2627 then
2628 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2629 end if;
2631 -- Special checks in SPARK mode
2633 if Nkind (Body_Spec) = N_Function_Specification then
2635 -- In SPARK mode, last statement of a function should be a return
2637 declare
2638 Stat : constant Node_Id := Last_Source_Statement (HSS);
2639 begin
2640 if Present (Stat)
2641 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2642 N_Extended_Return_Statement)
2643 then
2644 Check_SPARK_05_Restriction
2645 ("last statement in function should be RETURN", Stat);
2646 end if;
2647 end;
2649 -- In SPARK mode, verify that a procedure has no return
2651 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2652 if Present (Spec_Id) then
2653 Id := Spec_Id;
2654 else
2655 Id := Body_Id;
2656 end if;
2658 -- Would be nice to point to return statement here, can we
2659 -- borrow the Check_Returns procedure here ???
2661 if Return_Present (Id) then
2662 Check_SPARK_05_Restriction
2663 ("procedure should not have RETURN", N);
2664 end if;
2665 end if;
2666 end Check_Missing_Return;
2668 -----------------------
2669 -- Disambiguate_Spec --
2670 -----------------------
2672 function Disambiguate_Spec return Entity_Id is
2673 Priv_Spec : Entity_Id;
2674 Spec_N : Entity_Id;
2676 procedure Replace_Types (To_Corresponding : Boolean);
2677 -- Depending on the flag, replace the type of formal parameters of
2678 -- Body_Id if it is a concurrent type implementing interfaces with
2679 -- the corresponding record type or the other way around.
2681 procedure Replace_Types (To_Corresponding : Boolean) is
2682 Formal : Entity_Id;
2683 Formal_Typ : Entity_Id;
2685 begin
2686 Formal := First_Formal (Body_Id);
2687 while Present (Formal) loop
2688 Formal_Typ := Etype (Formal);
2690 if Is_Class_Wide_Type (Formal_Typ) then
2691 Formal_Typ := Root_Type (Formal_Typ);
2692 end if;
2694 -- From concurrent type to corresponding record
2696 if To_Corresponding then
2697 if Is_Concurrent_Type (Formal_Typ)
2698 and then Present (Corresponding_Record_Type (Formal_Typ))
2699 and then
2700 Present (Interfaces
2701 (Corresponding_Record_Type (Formal_Typ)))
2702 then
2703 Set_Etype (Formal,
2704 Corresponding_Record_Type (Formal_Typ));
2705 end if;
2707 -- From corresponding record to concurrent type
2709 else
2710 if Is_Concurrent_Record_Type (Formal_Typ)
2711 and then Present (Interfaces (Formal_Typ))
2712 then
2713 Set_Etype (Formal,
2714 Corresponding_Concurrent_Type (Formal_Typ));
2715 end if;
2716 end if;
2718 Next_Formal (Formal);
2719 end loop;
2720 end Replace_Types;
2722 -- Start of processing for Disambiguate_Spec
2724 begin
2725 -- Try to retrieve the specification of the body as is. All error
2726 -- messages are suppressed because the body may not have a spec in
2727 -- its current state.
2729 Spec_N := Find_Corresponding_Spec (N, False);
2731 -- It is possible that this is the body of a primitive declared
2732 -- between a private and a full view of a concurrent type. The
2733 -- controlling parameter of the spec carries the concurrent type,
2734 -- not the corresponding record type as transformed by Analyze_
2735 -- Subprogram_Specification. In such cases, we undo the change
2736 -- made by the analysis of the specification and try to find the
2737 -- spec again.
2739 -- Note that wrappers already have their corresponding specs and
2740 -- bodies set during their creation, so if the candidate spec is
2741 -- a wrapper, then we definitely need to swap all types to their
2742 -- original concurrent status.
2744 if No (Spec_N)
2745 or else Is_Primitive_Wrapper (Spec_N)
2746 then
2747 -- Restore all references of corresponding record types to the
2748 -- original concurrent types.
2750 Replace_Types (To_Corresponding => False);
2751 Priv_Spec := Find_Corresponding_Spec (N, False);
2753 -- The current body truly belongs to a primitive declared between
2754 -- a private and a full view. We leave the modified body as is,
2755 -- and return the true spec.
2757 if Present (Priv_Spec)
2758 and then Is_Private_Primitive (Priv_Spec)
2759 then
2760 return Priv_Spec;
2761 end if;
2763 -- In case that this is some sort of error, restore the original
2764 -- state of the body.
2766 Replace_Types (To_Corresponding => True);
2767 end if;
2769 return Spec_N;
2770 end Disambiguate_Spec;
2772 ----------------------------
2773 -- Exchange_Limited_Views --
2774 ----------------------------
2776 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2777 procedure Detect_And_Exchange (Id : Entity_Id);
2778 -- Determine whether Id's type denotes an incomplete type associated
2779 -- with a limited with clause and exchange the limited view with the
2780 -- non-limited one when available. Note that the non-limited view
2781 -- may exist because of a with_clause in another unit in the context,
2782 -- but cannot be used because the current view of the enclosing unit
2783 -- is still a limited view.
2785 -------------------------
2786 -- Detect_And_Exchange --
2787 -------------------------
2789 procedure Detect_And_Exchange (Id : Entity_Id) is
2790 Typ : constant Entity_Id := Etype (Id);
2791 begin
2792 if From_Limited_With (Typ)
2793 and then Has_Non_Limited_View (Typ)
2794 and then not From_Limited_With (Scope (Typ))
2795 then
2796 Set_Etype (Id, Non_Limited_View (Typ));
2797 end if;
2798 end Detect_And_Exchange;
2800 -- Local variables
2802 Formal : Entity_Id;
2804 -- Start of processing for Exchange_Limited_Views
2806 begin
2807 if No (Subp_Id) then
2808 return;
2810 -- Do not process subprogram bodies as they already use the non-
2811 -- limited view of types.
2813 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2814 return;
2815 end if;
2817 -- Examine all formals and swap views when applicable
2819 Formal := First_Formal (Subp_Id);
2820 while Present (Formal) loop
2821 Detect_And_Exchange (Formal);
2823 Next_Formal (Formal);
2824 end loop;
2826 -- Process the return type of a function
2828 if Ekind (Subp_Id) = E_Function then
2829 Detect_And_Exchange (Subp_Id);
2830 end if;
2831 end Exchange_Limited_Views;
2833 -------------------------------------
2834 -- Is_Private_Concurrent_Primitive --
2835 -------------------------------------
2837 function Is_Private_Concurrent_Primitive
2838 (Subp_Id : Entity_Id) return Boolean
2840 Formal_Typ : Entity_Id;
2842 begin
2843 if Present (First_Formal (Subp_Id)) then
2844 Formal_Typ := Etype (First_Formal (Subp_Id));
2846 if Is_Concurrent_Record_Type (Formal_Typ) then
2847 if Is_Class_Wide_Type (Formal_Typ) then
2848 Formal_Typ := Root_Type (Formal_Typ);
2849 end if;
2851 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2852 end if;
2854 -- The type of the first formal is a concurrent tagged type with
2855 -- a private view.
2857 return
2858 Is_Concurrent_Type (Formal_Typ)
2859 and then Is_Tagged_Type (Formal_Typ)
2860 and then Has_Private_Declaration (Formal_Typ);
2861 end if;
2863 return False;
2864 end Is_Private_Concurrent_Primitive;
2866 ----------------------------
2867 -- Set_Trivial_Subprogram --
2868 ----------------------------
2870 procedure Set_Trivial_Subprogram (N : Node_Id) is
2871 Nxt : constant Node_Id := Next (N);
2873 begin
2874 Set_Is_Trivial_Subprogram (Body_Id);
2876 if Present (Spec_Id) then
2877 Set_Is_Trivial_Subprogram (Spec_Id);
2878 end if;
2880 if Present (Nxt)
2881 and then Nkind (Nxt) = N_Simple_Return_Statement
2882 and then No (Next (Nxt))
2883 and then Present (Expression (Nxt))
2884 and then Is_Entity_Name (Expression (Nxt))
2885 then
2886 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2887 end if;
2888 end Set_Trivial_Subprogram;
2890 ---------------------------------
2891 -- Verify_Overriding_Indicator --
2892 ---------------------------------
2894 procedure Verify_Overriding_Indicator is
2895 begin
2896 if Must_Override (Body_Spec) then
2897 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2898 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2899 then
2900 null;
2902 elsif not Present (Overridden_Operation (Spec_Id)) then
2903 Error_Msg_NE
2904 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2906 -- Overriding indicators aren't allowed for protected subprogram
2907 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2908 -- this to a warning if -gnatd.E is enabled.
2910 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2911 Error_Msg_Warn := Error_To_Warning;
2912 Error_Msg_N
2913 ("<<overriding indicator not allowed for protected "
2914 & "subprogram body", Body_Spec);
2915 end if;
2917 elsif Must_Not_Override (Body_Spec) then
2918 if Present (Overridden_Operation (Spec_Id)) then
2919 Error_Msg_NE
2920 ("subprogram& overrides inherited operation",
2921 Body_Spec, Spec_Id);
2923 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2924 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2925 then
2926 Error_Msg_NE
2927 ("subprogram& overrides predefined operator ",
2928 Body_Spec, Spec_Id);
2930 -- Overriding indicators aren't allowed for protected subprogram
2931 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2932 -- this to a warning if -gnatd.E is enabled.
2934 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2935 Error_Msg_Warn := Error_To_Warning;
2937 Error_Msg_N
2938 ("<<overriding indicator not allowed "
2939 & "for protected subprogram body", Body_Spec);
2941 -- If this is not a primitive operation, then the overriding
2942 -- indicator is altogether illegal.
2944 elsif not Is_Primitive (Spec_Id) then
2945 Error_Msg_N
2946 ("overriding indicator only allowed "
2947 & "if subprogram is primitive", Body_Spec);
2948 end if;
2950 -- If checking the style rule and the operation overrides, then
2951 -- issue a warning about a missing overriding_indicator. Protected
2952 -- subprogram bodies are excluded from this style checking, since
2953 -- they aren't primitives (even though their declarations can
2954 -- override) and aren't allowed to have an overriding_indicator.
2956 elsif Style_Check
2957 and then Present (Overridden_Operation (Spec_Id))
2958 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2959 then
2960 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2961 Style.Missing_Overriding (N, Body_Id);
2963 elsif Style_Check
2964 and then Can_Override_Operator (Spec_Id)
2965 and then not Is_Predefined_File_Name
2966 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2967 then
2968 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2969 Style.Missing_Overriding (N, Body_Id);
2970 end if;
2971 end Verify_Overriding_Indicator;
2973 -- Local variables
2975 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
2976 Cloned_Body_For_C : Node_Id := Empty;
2978 -- Start of processing for Analyze_Subprogram_Body_Helper
2980 begin
2981 -- A [generic] subprogram body "freezes" the contract of the nearest
2982 -- enclosing package body and all other contracts encountered in the
2983 -- same declarative part upto and excluding the subprogram body:
2985 -- package body Nearest_Enclosing_Package
2986 -- with Refined_State => (State => Constit)
2987 -- is
2988 -- Constit : ...;
2990 -- procedure Freezes_Enclosing_Package_Body
2991 -- with Refined_Depends => (Input => Constit) ...
2993 -- This ensures that any annotations referenced by the contract of the
2994 -- [generic] subprogram body are available. This form of "freezing" is
2995 -- decoupled from the usual Freeze_xxx mechanism because it must also
2996 -- work in the context of generics where normal freezing is disabled.
2998 -- Only bodies coming from source should cause this type of "freezing".
2999 -- Expression functions that act as bodies and complete an initial
3000 -- declaration must be included in this category, hence the use of
3001 -- Original_Node.
3003 if Comes_From_Source (Original_Node (N)) then
3004 Analyze_Previous_Contracts (N);
3005 end if;
3007 -- Generic subprograms are handled separately. They always have a
3008 -- generic specification. Determine whether current scope has a
3009 -- previous declaration.
3011 -- If the subprogram body is defined within an instance of the same
3012 -- name, the instance appears as a package renaming, and will be hidden
3013 -- within the subprogram.
3015 if Present (Prev_Id)
3016 and then not Is_Overloadable (Prev_Id)
3017 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3018 or else Comes_From_Source (Prev_Id))
3019 then
3020 if Is_Generic_Subprogram (Prev_Id) then
3021 Spec_Id := Prev_Id;
3023 -- A subprogram body is Ghost when it is stand alone and subject
3024 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3025 -- the mode now to ensure that any nodes generated during analysis
3026 -- and expansion are properly marked as Ghost.
3028 Set_Ghost_Mode (N, Spec_Id);
3029 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3030 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3032 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3034 if Nkind (N) = N_Subprogram_Body then
3035 HSS := Handled_Statement_Sequence (N);
3036 Check_Missing_Return;
3037 end if;
3039 Ghost_Mode := Save_Ghost_Mode;
3040 return;
3042 else
3043 -- Previous entity conflicts with subprogram name. Attempting to
3044 -- enter name will post error.
3046 Enter_Name (Body_Id);
3047 Ghost_Mode := Save_Ghost_Mode;
3048 return;
3049 end if;
3051 -- Non-generic case, find the subprogram declaration, if one was seen,
3052 -- or enter new overloaded entity in the current scope. If the
3053 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3054 -- part of the context of one of its subunits. No need to redo the
3055 -- analysis.
3057 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3058 Ghost_Mode := Save_Ghost_Mode;
3059 return;
3061 else
3062 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3064 if Nkind (N) = N_Subprogram_Body_Stub
3065 or else No (Corresponding_Spec (N))
3066 then
3067 if Is_Private_Concurrent_Primitive (Body_Id) then
3068 Spec_Id := Disambiguate_Spec;
3070 -- A subprogram body is Ghost when it is stand alone and
3071 -- subject to pragma Ghost or when the corresponding spec is
3072 -- Ghost. Set the mode now to ensure that any nodes generated
3073 -- during analysis and expansion are properly marked as Ghost.
3075 Set_Ghost_Mode (N, Spec_Id);
3077 else
3078 Spec_Id := Find_Corresponding_Spec (N);
3080 -- A subprogram body is Ghost when it is stand alone and
3081 -- subject to pragma Ghost or when the corresponding spec is
3082 -- Ghost. Set the mode now to ensure that any nodes generated
3083 -- during analysis and expansion are properly marked as Ghost.
3085 Set_Ghost_Mode (N, Spec_Id);
3087 -- In GNATprove mode, if the body has no previous spec, create
3088 -- one so that the inlining machinery can operate properly.
3089 -- Transfer aspects, if any, to the new spec, so that they
3090 -- are legal and can be processed ahead of the body.
3091 -- We make two copies of the given spec, one for the new
3092 -- declaration, and one for the body.
3094 if No (Spec_Id) and then GNATprove_Mode
3096 -- Inlining does not apply during pre-analysis of code
3098 and then Full_Analysis
3100 -- Inlining only applies to full bodies, not stubs
3102 and then Nkind (N) /= N_Subprogram_Body_Stub
3104 -- Inlining only applies to bodies in the source code, not to
3105 -- those generated by the compiler. In particular, expression
3106 -- functions, whose body is generated by the compiler, are
3107 -- treated specially by GNATprove.
3109 and then Comes_From_Source (Body_Id)
3111 -- This cannot be done for a compilation unit, which is not
3112 -- in a context where we can insert a new spec.
3114 and then Is_List_Member (N)
3116 -- Inlining only applies to subprograms without contracts,
3117 -- as a contract is a sign that GNATprove should perform a
3118 -- modular analysis of the subprogram instead of a contextual
3119 -- analysis at each call site. The same test is performed in
3120 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3121 -- here in another form (because the contract has not
3122 -- been attached to the body) to avoid frontend errors in
3123 -- case pragmas are used instead of aspects, because the
3124 -- corresponding pragmas in the body would not be transferred
3125 -- to the spec, leading to legality errors.
3127 and then not Body_Has_Contract
3128 and then not Inside_A_Generic
3129 then
3130 Build_Subprogram_Declaration;
3132 -- If this is a function that returns a constrained array, and
3133 -- we are generating SPARK_For_C, create subprogram declaration
3134 -- to simplify subsequent C generation.
3136 elsif No (Spec_Id)
3137 and then Modify_Tree_For_C
3138 and then Nkind (Body_Spec) = N_Function_Specification
3139 and then Is_Array_Type (Etype (Body_Id))
3140 and then Is_Constrained (Etype (Body_Id))
3141 then
3142 Build_Subprogram_Declaration;
3143 end if;
3144 end if;
3146 -- If this is a duplicate body, no point in analyzing it
3148 if Error_Posted (N) then
3149 Ghost_Mode := Save_Ghost_Mode;
3150 return;
3151 end if;
3153 -- A subprogram body should cause freezing of its own declaration,
3154 -- but if there was no previous explicit declaration, then the
3155 -- subprogram will get frozen too late (there may be code within
3156 -- the body that depends on the subprogram having been frozen,
3157 -- such as uses of extra formals), so we force it to be frozen
3158 -- here. Same holds if the body and spec are compilation units.
3159 -- Finally, if the return type is an anonymous access to protected
3160 -- subprogram, it must be frozen before the body because its
3161 -- expansion has generated an equivalent type that is used when
3162 -- elaborating the body.
3164 -- An exception in the case of Ada 2012, AI05-177: The bodies
3165 -- created for expression functions do not freeze.
3167 if No (Spec_Id)
3168 and then Nkind (Original_Node (N)) /= N_Expression_Function
3169 then
3170 Freeze_Before (N, Body_Id);
3172 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3173 Freeze_Before (N, Spec_Id);
3175 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3176 Freeze_Before (N, Etype (Body_Id));
3177 end if;
3179 else
3180 Spec_Id := Corresponding_Spec (N);
3182 -- A subprogram body is Ghost when it is stand alone and subject
3183 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3184 -- the mode now to ensure that any nodes generated during analysis
3185 -- and expansion are properly marked as Ghost.
3187 Set_Ghost_Mode (N, Spec_Id);
3188 end if;
3189 end if;
3191 -- Previously we scanned the body to look for nested subprograms, and
3192 -- rejected an inline directive if nested subprograms were present,
3193 -- because the back-end would generate conflicting symbols for the
3194 -- nested bodies. This is now unnecessary.
3196 -- Look ahead to recognize a pragma Inline that appears after the body
3198 Check_Inline_Pragma (Spec_Id);
3200 -- Deal with special case of a fully private operation in the body of
3201 -- the protected type. We must create a declaration for the subprogram,
3202 -- in order to attach the protected subprogram that will be used in
3203 -- internal calls. We exclude compiler generated bodies from the
3204 -- expander since the issue does not arise for those cases.
3206 if No (Spec_Id)
3207 and then Comes_From_Source (N)
3208 and then Is_Protected_Type (Current_Scope)
3209 then
3210 Spec_Id := Build_Private_Protected_Declaration (N);
3211 end if;
3213 -- If a separate spec is present, then deal with freezing issues
3215 if Present (Spec_Id) then
3216 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3217 Verify_Overriding_Indicator;
3219 -- In general, the spec will be frozen when we start analyzing the
3220 -- body. However, for internally generated operations, such as
3221 -- wrapper functions for inherited operations with controlling
3222 -- results, the spec may not have been frozen by the time we expand
3223 -- the freeze actions that include the bodies. In particular, extra
3224 -- formals for accessibility or for return-in-place may need to be
3225 -- generated. Freeze nodes, if any, are inserted before the current
3226 -- body. These freeze actions are also needed in ASIS mode and in
3227 -- Compile_Only mode to enable the proper back-end type annotations.
3228 -- They are necessary in any case to insure order of elaboration
3229 -- in gigi.
3231 if not Is_Frozen (Spec_Id)
3232 and then (Expander_Active
3233 or else ASIS_Mode
3234 or else (Operating_Mode = Check_Semantics
3235 and then Serious_Errors_Detected = 0))
3236 then
3237 Set_Has_Delayed_Freeze (Spec_Id);
3238 Freeze_Before (N, Spec_Id);
3239 end if;
3240 end if;
3242 -- Place subprogram on scope stack, and make formals visible. If there
3243 -- is a spec, the visible entity remains that of the spec.
3245 if Present (Spec_Id) then
3246 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3248 if Is_Child_Unit (Spec_Id) then
3249 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3250 end if;
3252 if Style_Check then
3253 Style.Check_Identifier (Body_Id, Spec_Id);
3254 end if;
3256 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3257 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3259 if Is_Abstract_Subprogram (Spec_Id) then
3260 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3261 Ghost_Mode := Save_Ghost_Mode;
3262 return;
3264 else
3265 Set_Convention (Body_Id, Convention (Spec_Id));
3266 Set_Has_Completion (Spec_Id);
3268 -- Inherit the "ghostness" of the subprogram spec. Note that this
3269 -- property is not directly inherited as the body may be subject
3270 -- to a different Ghost assertion policy.
3272 if Ghost_Mode > None or else Is_Ghost_Entity (Spec_Id) then
3273 Set_Is_Ghost_Entity (Body_Id);
3275 -- The Ghost policy in effect at the point of declaration and
3276 -- at the point of completion must match (SPARK RM 6.9(14)).
3278 Check_Ghost_Completion (Spec_Id, Body_Id);
3279 end if;
3281 if Is_Protected_Type (Scope (Spec_Id)) then
3282 Prot_Typ := Scope (Spec_Id);
3283 end if;
3285 -- If this is a body generated for a renaming, do not check for
3286 -- full conformance. The check is redundant, because the spec of
3287 -- the body is a copy of the spec in the renaming declaration,
3288 -- and the test can lead to spurious errors on nested defaults.
3290 if Present (Spec_Decl)
3291 and then not Comes_From_Source (N)
3292 and then
3293 (Nkind (Original_Node (Spec_Decl)) =
3294 N_Subprogram_Renaming_Declaration
3295 or else (Present (Corresponding_Body (Spec_Decl))
3296 and then
3297 Nkind (Unit_Declaration_Node
3298 (Corresponding_Body (Spec_Decl))) =
3299 N_Subprogram_Renaming_Declaration))
3300 then
3301 Conformant := True;
3303 -- Conversely, the spec may have been generated for specless body
3304 -- with an inline pragma.
3306 elsif Comes_From_Source (N)
3307 and then not Comes_From_Source (Spec_Id)
3308 and then Has_Pragma_Inline (Spec_Id)
3309 then
3310 Conformant := True;
3312 else
3313 Check_Conformance
3314 (Body_Id, Spec_Id,
3315 Fully_Conformant, True, Conformant, Body_Id);
3316 end if;
3318 -- If the body is not fully conformant, we have to decide if we
3319 -- should analyze it or not. If it has a really messed up profile
3320 -- then we probably should not analyze it, since we will get too
3321 -- many bogus messages.
3323 -- Our decision is to go ahead in the non-fully conformant case
3324 -- only if it is at least mode conformant with the spec. Note
3325 -- that the call to Check_Fully_Conformant has issued the proper
3326 -- error messages to complain about the lack of conformance.
3328 if not Conformant
3329 and then not Mode_Conformant (Body_Id, Spec_Id)
3330 then
3331 Ghost_Mode := Save_Ghost_Mode;
3332 return;
3333 end if;
3334 end if;
3336 if Spec_Id /= Body_Id then
3337 Reference_Body_Formals (Spec_Id, Body_Id);
3338 end if;
3340 Set_Ekind (Body_Id, E_Subprogram_Body);
3342 if Nkind (N) = N_Subprogram_Body_Stub then
3343 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3345 -- Regular body
3347 else
3348 Set_Corresponding_Spec (N, Spec_Id);
3350 -- Ada 2005 (AI-345): If the operation is a primitive operation
3351 -- of a concurrent type, the type of the first parameter has been
3352 -- replaced with the corresponding record, which is the proper
3353 -- run-time structure to use. However, within the body there may
3354 -- be uses of the formals that depend on primitive operations
3355 -- of the type (in particular calls in prefixed form) for which
3356 -- we need the original concurrent type. The operation may have
3357 -- several controlling formals, so the replacement must be done
3358 -- for all of them.
3360 if Comes_From_Source (Spec_Id)
3361 and then Present (First_Entity (Spec_Id))
3362 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3363 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3364 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3365 and then Present (Corresponding_Concurrent_Type
3366 (Etype (First_Entity (Spec_Id))))
3367 then
3368 declare
3369 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3370 Form : Entity_Id;
3372 begin
3373 Form := First_Formal (Spec_Id);
3374 while Present (Form) loop
3375 if Etype (Form) = Typ then
3376 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3377 end if;
3379 Next_Formal (Form);
3380 end loop;
3381 end;
3382 end if;
3384 -- Make the formals visible, and place subprogram on scope stack.
3385 -- This is also the point at which we set Last_Real_Spec_Entity
3386 -- to mark the entities which will not be moved to the body.
3388 Install_Formals (Spec_Id);
3389 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3391 -- Within an instance, add local renaming declarations so that
3392 -- gdb can retrieve the values of actuals more easily. This is
3393 -- only relevant if generating code (and indeed we definitely
3394 -- do not want these definitions -gnatc mode, because that would
3395 -- confuse ASIS).
3397 if Is_Generic_Instance (Spec_Id)
3398 and then Is_Wrapper_Package (Current_Scope)
3399 and then Expander_Active
3400 then
3401 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3402 end if;
3404 Push_Scope (Spec_Id);
3406 -- Make sure that the subprogram is immediately visible. For
3407 -- child units that have no separate spec this is indispensable.
3408 -- Otherwise it is safe albeit redundant.
3410 Set_Is_Immediately_Visible (Spec_Id);
3411 end if;
3413 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3414 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3415 Set_Scope (Body_Id, Scope (Spec_Id));
3417 -- Case of subprogram body with no previous spec
3419 else
3420 -- Check for style warning required
3422 if Style_Check
3424 -- Only apply check for source level subprograms for which checks
3425 -- have not been suppressed.
3427 and then Comes_From_Source (Body_Id)
3428 and then not Suppress_Style_Checks (Body_Id)
3430 -- No warnings within an instance
3432 and then not In_Instance
3434 -- No warnings for expression functions
3436 and then Nkind (Original_Node (N)) /= N_Expression_Function
3437 then
3438 Style.Body_With_No_Spec (N);
3439 end if;
3441 New_Overloaded_Entity (Body_Id);
3443 -- A subprogram body declared within a Ghost region is automatically
3444 -- Ghost (SPARK RM 6.9(2)).
3446 if Ghost_Mode > None then
3447 Set_Is_Ghost_Entity (Body_Id);
3448 end if;
3450 if Nkind (N) /= N_Subprogram_Body_Stub then
3451 Set_Acts_As_Spec (N);
3452 Generate_Definition (Body_Id);
3453 Generate_Reference
3454 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3455 Install_Formals (Body_Id);
3457 Push_Scope (Body_Id);
3458 end if;
3460 -- For stubs and bodies with no previous spec, generate references to
3461 -- formals.
3463 Generate_Reference_To_Formals (Body_Id);
3464 end if;
3466 -- Entry barrier functions are generated outside the protected type and
3467 -- should not carry the SPARK_Mode of the enclosing context.
3469 if Nkind (N) = N_Subprogram_Body
3470 and then Is_Entry_Barrier_Function (N)
3471 then
3472 null;
3474 -- The body is generated as part of expression function expansion. When
3475 -- the expression function appears in the visible declarations of a
3476 -- package, the body is added to the private declarations. Since both
3477 -- declarative lists may be subject to a different SPARK_Mode, inherit
3478 -- the mode of the spec.
3480 -- package P with SPARK_Mode is
3481 -- function Expr_Func ... is (...); -- original
3482 -- [function Expr_Func ...;] -- generated spec
3483 -- -- mode is ON
3484 -- private
3485 -- pragma SPARK_Mode (Off);
3486 -- [function Expr_Func ... is return ...;] -- generated body
3487 -- end P; -- mode is ON
3489 elsif not Comes_From_Source (N)
3490 and then Present (Prev_Id)
3491 and then Is_Expression_Function (Prev_Id)
3492 then
3493 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Prev_Id));
3494 Set_SPARK_Pragma_Inherited
3495 (Body_Id, SPARK_Pragma_Inherited (Prev_Id));
3497 -- Set the SPARK_Mode from the current context (may be overwritten later
3498 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
3499 -- initially on a stand-alone subprogram body, but is then relocated to
3500 -- a generated corresponding spec. In this scenario the mode is shared
3501 -- between the spec and body.
3503 elsif No (SPARK_Pragma (Body_Id)) then
3504 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3505 Set_SPARK_Pragma_Inherited (Body_Id);
3506 end if;
3508 -- If the return type is an anonymous access type whose designated type
3509 -- is the limited view of a class-wide type and the non-limited view is
3510 -- available, update the return type accordingly.
3512 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3513 declare
3514 Etyp : Entity_Id;
3515 Rtyp : Entity_Id;
3517 begin
3518 Rtyp := Etype (Current_Scope);
3520 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3521 Etyp := Directly_Designated_Type (Rtyp);
3523 if Is_Class_Wide_Type (Etyp)
3524 and then From_Limited_With (Etyp)
3525 then
3526 Set_Directly_Designated_Type
3527 (Etype (Current_Scope), Available_View (Etyp));
3528 end if;
3529 end if;
3530 end;
3531 end if;
3533 -- If this is the proper body of a stub, we must verify that the stub
3534 -- conforms to the body, and to the previous spec if one was present.
3535 -- We know already that the body conforms to that spec. This test is
3536 -- only required for subprograms that come from source.
3538 if Nkind (Parent (N)) = N_Subunit
3539 and then Comes_From_Source (N)
3540 and then not Error_Posted (Body_Id)
3541 and then Nkind (Corresponding_Stub (Parent (N))) =
3542 N_Subprogram_Body_Stub
3543 then
3544 declare
3545 Old_Id : constant Entity_Id :=
3546 Defining_Entity
3547 (Specification (Corresponding_Stub (Parent (N))));
3549 Conformant : Boolean := False;
3551 begin
3552 if No (Spec_Id) then
3553 Check_Fully_Conformant (Body_Id, Old_Id);
3555 else
3556 Check_Conformance
3557 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3559 if not Conformant then
3561 -- The stub was taken to be a new declaration. Indicate that
3562 -- it lacks a body.
3564 Set_Has_Completion (Old_Id, False);
3565 end if;
3566 end if;
3567 end;
3568 end if;
3570 Set_Has_Completion (Body_Id);
3571 Check_Eliminated (Body_Id);
3573 -- Analyze any aspect specifications that appear on the subprogram body
3574 -- stub. Stop the analysis now as the stub does not have a declarative
3575 -- or a statement part, and it cannot be inlined.
3577 if Nkind (N) = N_Subprogram_Body_Stub then
3578 if Has_Aspects (N) then
3579 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3580 end if;
3582 Ghost_Mode := Save_Ghost_Mode;
3583 return;
3584 end if;
3586 -- If we are generating C and this is a function returning a constrained
3587 -- array type for which we must create a procedure with an extra out
3588 -- parameter then clone the body before it is analyzed. Needed to ensure
3589 -- that the body of the built procedure does not have any reference to
3590 -- the body of the function.
3592 if Expander_Active
3593 and then Modify_Tree_For_C
3594 and then Present (Spec_Id)
3595 and then Ekind (Spec_Id) = E_Function
3596 and then Rewritten_For_C (Spec_Id)
3597 then
3598 Cloned_Body_For_C := Copy_Separate_Tree (N);
3599 end if;
3601 -- Handle frontend inlining
3603 -- Note: Normally we don't do any inlining if expansion is off, since
3604 -- we won't generate code in any case. An exception arises in GNATprove
3605 -- mode where we want to expand some calls in place, even with expansion
3606 -- disabled, since the inlining eases formal verification.
3608 if not GNATprove_Mode
3609 and then Expander_Active
3610 and then Serious_Errors_Detected = 0
3611 and then Present (Spec_Id)
3612 and then Has_Pragma_Inline (Spec_Id)
3613 then
3614 -- Legacy implementation (relying on frontend inlining)
3616 if not Back_End_Inlining then
3617 if (Has_Pragma_Inline_Always (Spec_Id)
3618 and then not Opt.Disable_FE_Inline_Always)
3619 or else
3620 (Has_Pragma_Inline (Spec_Id) and then Front_End_Inlining
3621 and then not Opt.Disable_FE_Inline)
3622 then
3623 Build_Body_To_Inline (N, Spec_Id);
3624 end if;
3626 -- New implementation (relying on backend inlining)
3628 else
3629 if Has_Pragma_Inline_Always (Spec_Id)
3630 or else Optimization_Level > 0
3631 then
3632 -- Handle function returning an unconstrained type
3634 if Comes_From_Source (Body_Id)
3635 and then Ekind (Spec_Id) = E_Function
3636 and then Returns_Unconstrained_Type (Spec_Id)
3638 -- If function builds in place, i.e. returns a limited type,
3639 -- inlining cannot be done.
3641 and then not Is_Limited_Type (Etype (Spec_Id))
3642 then
3643 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3645 else
3646 declare
3647 Subp_Body : constant Node_Id :=
3648 Unit_Declaration_Node (Body_Id);
3649 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3651 begin
3652 -- Do not pass inlining to the backend if the subprogram
3653 -- has declarations or statements which cannot be inlined
3654 -- by the backend. This check is done here to emit an
3655 -- error instead of the generic warning message reported
3656 -- by the GCC backend (ie. "function might not be
3657 -- inlinable").
3659 if Present (Subp_Decl)
3660 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3661 then
3662 null;
3664 elsif Has_Excluded_Statement
3665 (Spec_Id,
3666 Statements
3667 (Handled_Statement_Sequence (Subp_Body)))
3668 then
3669 null;
3671 -- If the backend inlining is available then at this
3672 -- stage we only have to mark the subprogram as inlined.
3673 -- The expander will take care of registering it in the
3674 -- table of subprograms inlined by the backend a part of
3675 -- processing calls to it (cf. Expand_Call)
3677 else
3678 Set_Is_Inlined (Spec_Id);
3679 end if;
3680 end;
3681 end if;
3682 end if;
3683 end if;
3685 -- In GNATprove mode, inline only when there is a separate subprogram
3686 -- declaration for now, as inlining of subprogram bodies acting as
3687 -- declarations, or subprogram stubs, are not supported by frontend
3688 -- inlining. This inlining should occur after analysis of the body, so
3689 -- that it is known whether the value of SPARK_Mode, which can be
3690 -- defined by a pragma inside the body, is applicable to the body.
3692 elsif GNATprove_Mode
3693 and then Full_Analysis
3694 and then not Inside_A_Generic
3695 and then Present (Spec_Id)
3696 and then
3697 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
3698 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3699 and then not Body_Has_Contract
3700 then
3701 Build_Body_To_Inline (N, Spec_Id);
3702 end if;
3704 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3705 -- of the specification we have to install the private withed units.
3706 -- This holds for child units as well.
3708 if Is_Compilation_Unit (Body_Id)
3709 or else Nkind (Parent (N)) = N_Compilation_Unit
3710 then
3711 Install_Private_With_Clauses (Body_Id);
3712 end if;
3714 Check_Anonymous_Return;
3716 -- Set the Protected_Formal field of each extra formal of the protected
3717 -- subprogram to reference the corresponding extra formal of the
3718 -- subprogram that implements it. For regular formals this occurs when
3719 -- the protected subprogram's declaration is expanded, but the extra
3720 -- formals don't get created until the subprogram is frozen. We need to
3721 -- do this before analyzing the protected subprogram's body so that any
3722 -- references to the original subprogram's extra formals will be changed
3723 -- refer to the implementing subprogram's formals (see Expand_Formal).
3725 if Present (Spec_Id)
3726 and then Is_Protected_Type (Scope (Spec_Id))
3727 and then Present (Protected_Body_Subprogram (Spec_Id))
3728 then
3729 declare
3730 Impl_Subp : constant Entity_Id :=
3731 Protected_Body_Subprogram (Spec_Id);
3732 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3733 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3734 begin
3735 while Present (Prot_Ext_Formal) loop
3736 pragma Assert (Present (Impl_Ext_Formal));
3737 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3738 Next_Formal_With_Extras (Prot_Ext_Formal);
3739 Next_Formal_With_Extras (Impl_Ext_Formal);
3740 end loop;
3741 end;
3742 end if;
3744 -- Now we can go on to analyze the body
3746 HSS := Handled_Statement_Sequence (N);
3747 Set_Actual_Subtypes (N, Current_Scope);
3749 -- Add a declaration for the Protection object, renaming declarations
3750 -- for discriminals and privals and finally a declaration for the entry
3751 -- family index (if applicable). This form of early expansion is done
3752 -- when the Expander is active because Install_Private_Data_Declarations
3753 -- references entities which were created during regular expansion. The
3754 -- subprogram entity must come from source, and not be an internally
3755 -- generated subprogram.
3757 if Expander_Active
3758 and then Present (Prot_Typ)
3759 and then Present (Spec_Id)
3760 and then Comes_From_Source (Spec_Id)
3761 and then not Is_Eliminated (Spec_Id)
3762 then
3763 Install_Private_Data_Declarations
3764 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3765 end if;
3767 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3768 -- may now appear in parameter and result profiles. Since the analysis
3769 -- of a subprogram body may use the parameter and result profile of the
3770 -- spec, swap any limited views with their non-limited counterpart.
3772 if Ada_Version >= Ada_2012 then
3773 Exchange_Limited_Views (Spec_Id);
3774 end if;
3776 -- Analyze any aspect specifications that appear on the subprogram body
3778 if Has_Aspects (N) then
3779 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3780 end if;
3782 Analyze_Declarations (Declarations (N));
3784 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3786 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3787 if Present (SPARK_Pragma (Spec_Id)) then
3788 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3789 and then
3790 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3791 then
3792 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3793 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3794 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3795 Error_Msg_NE
3796 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3797 end if;
3799 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3800 null;
3802 else
3803 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3804 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3805 Error_Msg_Sloc := Sloc (Spec_Id);
3806 Error_Msg_NE
3807 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3808 end if;
3809 end if;
3811 -- A subprogram body "freezes" its own contract. Analyze the contract
3812 -- after the declarations of the body have been processed as pragmas
3813 -- are now chained on the contract of the subprogram body.
3815 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
3817 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3818 -- subprogram in GNATprove mode, as its body should not be analyzed.
3820 if SPARK_Mode /= On
3821 and then GNATprove_Mode
3822 and then Present (Spec_Id)
3823 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3824 then
3825 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
3826 Set_Is_Inlined_Always (Spec_Id, False);
3827 end if;
3829 -- Check completion, and analyze the statements
3831 Check_Completion;
3832 Inspect_Deferred_Constant_Completion (Declarations (N));
3833 Analyze (HSS);
3835 -- Deal with end of scope processing for the body
3837 Process_End_Label (HSS, 't', Current_Scope);
3838 End_Scope;
3839 Check_Subprogram_Order (N);
3840 Set_Analyzed (Body_Id);
3842 -- If we have a separate spec, then the analysis of the declarations
3843 -- caused the entities in the body to be chained to the spec id, but
3844 -- we want them chained to the body id. Only the formal parameters
3845 -- end up chained to the spec id in this case.
3847 if Present (Spec_Id) then
3849 -- We must conform to the categorization of our spec
3851 Validate_Categorization_Dependency (N, Spec_Id);
3853 -- And if this is a child unit, the parent units must conform
3855 if Is_Child_Unit (Spec_Id) then
3856 Validate_Categorization_Dependency
3857 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3858 end if;
3860 -- Here is where we move entities from the spec to the body
3862 -- Case where there are entities that stay with the spec
3864 if Present (Last_Real_Spec_Entity) then
3866 -- No body entities (happens when the only real spec entities come
3867 -- from precondition and postcondition pragmas).
3869 if No (Last_Entity (Body_Id)) then
3870 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3872 -- Body entities present (formals), so chain stuff past them
3874 else
3875 Set_Next_Entity
3876 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3877 end if;
3879 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3880 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3881 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3883 -- Case where there are no spec entities, in this case there can be
3884 -- no body entities either, so just move everything.
3886 -- If the body is generated for an expression function, it may have
3887 -- been preanalyzed already, if 'access was applied to it.
3889 else
3890 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
3891 N_Expression_Function
3892 then
3893 pragma Assert (No (Last_Entity (Body_Id)));
3894 null;
3895 end if;
3897 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3898 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3899 Set_First_Entity (Spec_Id, Empty);
3900 Set_Last_Entity (Spec_Id, Empty);
3901 end if;
3902 end if;
3904 Check_Missing_Return;
3906 -- Now we are going to check for variables that are never modified in
3907 -- the body of the procedure. But first we deal with a special case
3908 -- where we want to modify this check. If the body of the subprogram
3909 -- starts with a raise statement or its equivalent, or if the body
3910 -- consists entirely of a null statement, then it is pretty obvious that
3911 -- it is OK to not reference the parameters. For example, this might be
3912 -- the following common idiom for a stubbed function: statement of the
3913 -- procedure raises an exception. In particular this deals with the
3914 -- common idiom of a stubbed function, which appears something like:
3916 -- function F (A : Integer) return Some_Type;
3917 -- X : Some_Type;
3918 -- begin
3919 -- raise Program_Error;
3920 -- return X;
3921 -- end F;
3923 -- Here the purpose of X is simply to satisfy the annoying requirement
3924 -- in Ada that there be at least one return, and we certainly do not
3925 -- want to go posting warnings on X that it is not initialized. On
3926 -- the other hand, if X is entirely unreferenced that should still
3927 -- get a warning.
3929 -- What we do is to detect these cases, and if we find them, flag the
3930 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3931 -- suppress unwanted warnings. For the case of the function stub above
3932 -- we have a special test to set X as apparently assigned to suppress
3933 -- the warning.
3935 declare
3936 Stm : Node_Id;
3938 begin
3939 -- Skip initial labels (for one thing this occurs when we are in
3940 -- front end ZCX mode, but in any case it is irrelevant), and also
3941 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3943 Stm := First (Statements (HSS));
3944 while Nkind (Stm) = N_Label
3945 or else Nkind (Stm) in N_Push_xxx_Label
3946 loop
3947 Next (Stm);
3948 end loop;
3950 -- Do the test on the original statement before expansion
3952 declare
3953 Ostm : constant Node_Id := Original_Node (Stm);
3955 begin
3956 -- If explicit raise statement, turn on flag
3958 if Nkind (Ostm) = N_Raise_Statement then
3959 Set_Trivial_Subprogram (Stm);
3961 -- If null statement, and no following statements, turn on flag
3963 elsif Nkind (Stm) = N_Null_Statement
3964 and then Comes_From_Source (Stm)
3965 and then No (Next (Stm))
3966 then
3967 Set_Trivial_Subprogram (Stm);
3969 -- Check for explicit call cases which likely raise an exception
3971 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3972 if Is_Entity_Name (Name (Ostm)) then
3973 declare
3974 Ent : constant Entity_Id := Entity (Name (Ostm));
3976 begin
3977 -- If the procedure is marked No_Return, then likely it
3978 -- raises an exception, but in any case it is not coming
3979 -- back here, so turn on the flag.
3981 if Present (Ent)
3982 and then Ekind (Ent) = E_Procedure
3983 and then No_Return (Ent)
3984 then
3985 Set_Trivial_Subprogram (Stm);
3986 end if;
3987 end;
3988 end if;
3989 end if;
3990 end;
3991 end;
3993 -- Check for variables that are never modified
3995 declare
3996 E1, E2 : Entity_Id;
3998 begin
3999 -- If there is a separate spec, then transfer Never_Set_In_Source
4000 -- flags from out parameters to the corresponding entities in the
4001 -- body. The reason we do that is we want to post error flags on
4002 -- the body entities, not the spec entities.
4004 if Present (Spec_Id) then
4005 E1 := First_Entity (Spec_Id);
4006 while Present (E1) loop
4007 if Ekind (E1) = E_Out_Parameter then
4008 E2 := First_Entity (Body_Id);
4009 while Present (E2) loop
4010 exit when Chars (E1) = Chars (E2);
4011 Next_Entity (E2);
4012 end loop;
4014 if Present (E2) then
4015 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4016 end if;
4017 end if;
4019 Next_Entity (E1);
4020 end loop;
4021 end if;
4023 -- Check references in body
4025 Check_References (Body_Id);
4026 end;
4028 -- Check for nested subprogram, and mark outer level subprogram if so
4030 declare
4031 Ent : Entity_Id;
4033 begin
4034 if Present (Spec_Id) then
4035 Ent := Spec_Id;
4036 else
4037 Ent := Body_Id;
4038 end if;
4040 loop
4041 Ent := Enclosing_Subprogram (Ent);
4042 exit when No (Ent) or else Is_Subprogram (Ent);
4043 end loop;
4045 if Present (Ent) then
4046 Set_Has_Nested_Subprogram (Ent);
4047 end if;
4048 end;
4050 -- When generating C code, transform a function that returns a
4051 -- constrained array type into a procedure with an out parameter
4052 -- that carries the return value.
4054 if Present (Cloned_Body_For_C) then
4055 Rewrite (N,
4056 Build_Procedure_Body_Form (Spec_Id, Cloned_Body_For_C));
4057 Analyze (N);
4058 end if;
4060 Ghost_Mode := Save_Ghost_Mode;
4061 end Analyze_Subprogram_Body_Helper;
4063 ------------------------------------
4064 -- Analyze_Subprogram_Declaration --
4065 ------------------------------------
4067 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4068 Scop : constant Entity_Id := Current_Scope;
4069 Designator : Entity_Id;
4071 Is_Completion : Boolean;
4072 -- Indicates whether a null procedure declaration is a completion
4074 begin
4075 -- Null procedures are not allowed in SPARK
4077 if Nkind (Specification (N)) = N_Procedure_Specification
4078 and then Null_Present (Specification (N))
4079 then
4080 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4082 -- Null procedures are allowed in protected types, following the
4083 -- recent AI12-0147.
4085 if Is_Protected_Type (Current_Scope)
4086 and then Ada_Version < Ada_2012
4087 then
4088 Error_Msg_N ("protected operation cannot be a null procedure", N);
4089 end if;
4091 Analyze_Null_Procedure (N, Is_Completion);
4093 -- The null procedure acts as a body, nothing further is needed
4095 if Is_Completion then
4096 return;
4097 end if;
4098 end if;
4100 Designator := Analyze_Subprogram_Specification (Specification (N));
4102 -- A reference may already have been generated for the unit name, in
4103 -- which case the following call is redundant. However it is needed for
4104 -- declarations that are the rewriting of an expression function.
4106 Generate_Definition (Designator);
4108 -- Set the SPARK mode from the current context (may be overwritten later
4109 -- with explicit pragma). This is not done for entry barrier functions
4110 -- because they are generated outside the protected type and should not
4111 -- carry the mode of the enclosing context.
4113 if Nkind (N) = N_Subprogram_Declaration
4114 and then Is_Entry_Barrier_Function (N)
4115 then
4116 null;
4117 else
4118 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4119 Set_SPARK_Pragma_Inherited (Designator);
4120 end if;
4122 -- A subprogram declared within a Ghost region is automatically Ghost
4123 -- (SPARK RM 6.9(2)).
4125 if Ghost_Mode > None then
4126 Set_Is_Ghost_Entity (Designator);
4127 end if;
4129 if Debug_Flag_C then
4130 Write_Str ("==> subprogram spec ");
4131 Write_Name (Chars (Designator));
4132 Write_Str (" from ");
4133 Write_Location (Sloc (N));
4134 Write_Eol;
4135 Indent;
4136 end if;
4138 Validate_RCI_Subprogram_Declaration (N);
4139 New_Overloaded_Entity (Designator);
4140 Check_Delayed_Subprogram (Designator);
4142 -- If the type of the first formal of the current subprogram is a non-
4143 -- generic tagged private type, mark the subprogram as being a private
4144 -- primitive. Ditto if this is a function with controlling result, and
4145 -- the return type is currently private. In both cases, the type of the
4146 -- controlling argument or result must be in the current scope for the
4147 -- operation to be primitive.
4149 if Has_Controlling_Result (Designator)
4150 and then Is_Private_Type (Etype (Designator))
4151 and then Scope (Etype (Designator)) = Current_Scope
4152 and then not Is_Generic_Actual_Type (Etype (Designator))
4153 then
4154 Set_Is_Private_Primitive (Designator);
4156 elsif Present (First_Formal (Designator)) then
4157 declare
4158 Formal_Typ : constant Entity_Id :=
4159 Etype (First_Formal (Designator));
4160 begin
4161 Set_Is_Private_Primitive (Designator,
4162 Is_Tagged_Type (Formal_Typ)
4163 and then Scope (Formal_Typ) = Current_Scope
4164 and then Is_Private_Type (Formal_Typ)
4165 and then not Is_Generic_Actual_Type (Formal_Typ));
4166 end;
4167 end if;
4169 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4170 -- or null.
4172 if Ada_Version >= Ada_2005
4173 and then Comes_From_Source (N)
4174 and then Is_Dispatching_Operation (Designator)
4175 then
4176 declare
4177 E : Entity_Id;
4178 Etyp : Entity_Id;
4180 begin
4181 if Has_Controlling_Result (Designator) then
4182 Etyp := Etype (Designator);
4184 else
4185 E := First_Entity (Designator);
4186 while Present (E)
4187 and then Is_Formal (E)
4188 and then not Is_Controlling_Formal (E)
4189 loop
4190 Next_Entity (E);
4191 end loop;
4193 Etyp := Etype (E);
4194 end if;
4196 if Is_Access_Type (Etyp) then
4197 Etyp := Directly_Designated_Type (Etyp);
4198 end if;
4200 if Is_Interface (Etyp)
4201 and then not Is_Abstract_Subprogram (Designator)
4202 and then not (Ekind (Designator) = E_Procedure
4203 and then Null_Present (Specification (N)))
4204 then
4205 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4207 -- Specialize error message based on procedures vs. functions,
4208 -- since functions can't be null subprograms.
4210 if Ekind (Designator) = E_Procedure then
4211 Error_Msg_N
4212 ("interface procedure % must be abstract or null", N);
4213 else
4214 Error_Msg_N
4215 ("interface function % must be abstract", N);
4216 end if;
4217 end if;
4218 end;
4219 end if;
4221 -- What is the following code for, it used to be
4223 -- ??? Set_Suppress_Elaboration_Checks
4224 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4226 -- The following seems equivalent, but a bit dubious
4228 if Elaboration_Checks_Suppressed (Designator) then
4229 Set_Kill_Elaboration_Checks (Designator);
4230 end if;
4232 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4233 Set_Categorization_From_Scope (Designator, Scop);
4235 else
4236 -- For a compilation unit, check for library-unit pragmas
4238 Push_Scope (Designator);
4239 Set_Categorization_From_Pragmas (N);
4240 Validate_Categorization_Dependency (N, Designator);
4241 Pop_Scope;
4242 end if;
4244 -- For a compilation unit, set body required. This flag will only be
4245 -- reset if a valid Import or Interface pragma is processed later on.
4247 if Nkind (Parent (N)) = N_Compilation_Unit then
4248 Set_Body_Required (Parent (N), True);
4250 if Ada_Version >= Ada_2005
4251 and then Nkind (Specification (N)) = N_Procedure_Specification
4252 and then Null_Present (Specification (N))
4253 then
4254 Error_Msg_N
4255 ("null procedure cannot be declared at library level", N);
4256 end if;
4257 end if;
4259 Generate_Reference_To_Formals (Designator);
4260 Check_Eliminated (Designator);
4262 if Debug_Flag_C then
4263 Outdent;
4264 Write_Str ("<== subprogram spec ");
4265 Write_Name (Chars (Designator));
4266 Write_Str (" from ");
4267 Write_Location (Sloc (N));
4268 Write_Eol;
4269 end if;
4271 if Is_Protected_Type (Current_Scope) then
4273 -- Indicate that this is a protected operation, because it may be
4274 -- used in subsequent declarations within the protected type.
4276 Set_Convention (Designator, Convention_Protected);
4277 end if;
4279 List_Inherited_Pre_Post_Aspects (Designator);
4281 if Has_Aspects (N) then
4282 Analyze_Aspect_Specifications (N, Designator);
4283 end if;
4284 end Analyze_Subprogram_Declaration;
4286 --------------------------------------
4287 -- Analyze_Subprogram_Specification --
4288 --------------------------------------
4290 -- Reminder: N here really is a subprogram specification (not a subprogram
4291 -- declaration). This procedure is called to analyze the specification in
4292 -- both subprogram bodies and subprogram declarations (specs).
4294 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4295 Designator : constant Entity_Id := Defining_Entity (N);
4296 Formals : constant List_Id := Parameter_Specifications (N);
4298 -- Start of processing for Analyze_Subprogram_Specification
4300 begin
4301 -- User-defined operator is not allowed in SPARK, except as a renaming
4303 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4304 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4305 then
4306 Check_SPARK_05_Restriction
4307 ("user-defined operator is not allowed", N);
4308 end if;
4310 -- Proceed with analysis. Do not emit a cross-reference entry if the
4311 -- specification comes from an expression function, because it may be
4312 -- the completion of a previous declaration. It is not, the cross-
4313 -- reference entry will be emitted for the new subprogram declaration.
4315 if Nkind (Parent (N)) /= N_Expression_Function then
4316 Generate_Definition (Designator);
4317 end if;
4319 if Nkind (N) = N_Function_Specification then
4320 Set_Ekind (Designator, E_Function);
4321 Set_Mechanism (Designator, Default_Mechanism);
4322 else
4323 Set_Ekind (Designator, E_Procedure);
4324 Set_Etype (Designator, Standard_Void_Type);
4325 end if;
4327 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4328 -- those subprograms which could be inlined in GNATprove mode (because
4329 -- Body_To_Inline is non-Empty) but should not be inlined.
4331 if GNATprove_Mode then
4332 Set_Is_Inlined_Always (Designator);
4333 end if;
4335 -- Introduce new scope for analysis of the formals and the return type
4337 Set_Scope (Designator, Current_Scope);
4339 if Present (Formals) then
4340 Push_Scope (Designator);
4341 Process_Formals (Formals, N);
4343 -- Check dimensions in N for formals with default expression
4345 Analyze_Dimension_Formals (N, Formals);
4347 -- Ada 2005 (AI-345): If this is an overriding operation of an
4348 -- inherited interface operation, and the controlling type is
4349 -- a synchronized type, replace the type with its corresponding
4350 -- record, to match the proper signature of an overriding operation.
4351 -- Same processing for an access parameter whose designated type is
4352 -- derived from a synchronized interface.
4354 if Ada_Version >= Ada_2005 then
4355 declare
4356 Formal : Entity_Id;
4357 Formal_Typ : Entity_Id;
4358 Rec_Typ : Entity_Id;
4359 Desig_Typ : Entity_Id;
4361 begin
4362 Formal := First_Formal (Designator);
4363 while Present (Formal) loop
4364 Formal_Typ := Etype (Formal);
4366 if Is_Concurrent_Type (Formal_Typ)
4367 and then Present (Corresponding_Record_Type (Formal_Typ))
4368 then
4369 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4371 if Present (Interfaces (Rec_Typ)) then
4372 Set_Etype (Formal, Rec_Typ);
4373 end if;
4375 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4376 Desig_Typ := Designated_Type (Formal_Typ);
4378 if Is_Concurrent_Type (Desig_Typ)
4379 and then Present (Corresponding_Record_Type (Desig_Typ))
4380 then
4381 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4383 if Present (Interfaces (Rec_Typ)) then
4384 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4385 end if;
4386 end if;
4387 end if;
4389 Next_Formal (Formal);
4390 end loop;
4391 end;
4392 end if;
4394 End_Scope;
4396 -- The subprogram scope is pushed and popped around the processing of
4397 -- the return type for consistency with call above to Process_Formals
4398 -- (which itself can call Analyze_Return_Type), and to ensure that any
4399 -- itype created for the return type will be associated with the proper
4400 -- scope.
4402 elsif Nkind (N) = N_Function_Specification then
4403 Push_Scope (Designator);
4404 Analyze_Return_Type (N);
4405 End_Scope;
4406 end if;
4408 -- Function case
4410 if Nkind (N) = N_Function_Specification then
4412 -- Deal with operator symbol case
4414 if Nkind (Designator) = N_Defining_Operator_Symbol then
4415 Valid_Operator_Definition (Designator);
4416 end if;
4418 May_Need_Actuals (Designator);
4420 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4421 -- the subprogram is abstract also. This does not apply to renaming
4422 -- declarations, where abstractness is inherited, and to subprogram
4423 -- bodies generated for stream operations, which become renamings as
4424 -- bodies.
4426 -- In case of primitives associated with abstract interface types
4427 -- the check is applied later (see Analyze_Subprogram_Declaration).
4429 if not Nkind_In (Original_Node (Parent (N)),
4430 N_Abstract_Subprogram_Declaration,
4431 N_Formal_Abstract_Subprogram_Declaration,
4432 N_Subprogram_Renaming_Declaration)
4433 then
4434 if Is_Abstract_Type (Etype (Designator))
4435 and then not Is_Interface (Etype (Designator))
4436 then
4437 Error_Msg_N
4438 ("function that returns abstract type must be abstract", N);
4440 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4441 -- access result whose designated type is abstract.
4443 elsif Ada_Version >= Ada_2012
4444 and then Nkind (Result_Definition (N)) = N_Access_Definition
4445 and then
4446 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4447 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4448 then
4449 Error_Msg_N
4450 ("function whose access result designates abstract type "
4451 & "must be abstract", N);
4452 end if;
4453 end if;
4454 end if;
4456 return Designator;
4457 end Analyze_Subprogram_Specification;
4459 -----------------------
4460 -- Check_Conformance --
4461 -----------------------
4463 procedure Check_Conformance
4464 (New_Id : Entity_Id;
4465 Old_Id : Entity_Id;
4466 Ctype : Conformance_Type;
4467 Errmsg : Boolean;
4468 Conforms : out Boolean;
4469 Err_Loc : Node_Id := Empty;
4470 Get_Inst : Boolean := False;
4471 Skip_Controlling_Formals : Boolean := False)
4473 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4474 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4475 -- If Errmsg is True, then processing continues to post an error message
4476 -- for conformance error on given node. Two messages are output. The
4477 -- first message points to the previous declaration with a general "no
4478 -- conformance" message. The second is the detailed reason, supplied as
4479 -- Msg. The parameter N provide information for a possible & insertion
4480 -- in the message, and also provides the location for posting the
4481 -- message in the absence of a specified Err_Loc location.
4483 -----------------------
4484 -- Conformance_Error --
4485 -----------------------
4487 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4488 Enode : Node_Id;
4490 begin
4491 Conforms := False;
4493 if Errmsg then
4494 if No (Err_Loc) then
4495 Enode := N;
4496 else
4497 Enode := Err_Loc;
4498 end if;
4500 Error_Msg_Sloc := Sloc (Old_Id);
4502 case Ctype is
4503 when Type_Conformant =>
4504 Error_Msg_N -- CODEFIX
4505 ("not type conformant with declaration#!", Enode);
4507 when Mode_Conformant =>
4508 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4509 Error_Msg_N
4510 ("not mode conformant with operation inherited#!",
4511 Enode);
4512 else
4513 Error_Msg_N
4514 ("not mode conformant with declaration#!", Enode);
4515 end if;
4517 when Subtype_Conformant =>
4518 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4519 Error_Msg_N
4520 ("not subtype conformant with operation inherited#!",
4521 Enode);
4522 else
4523 Error_Msg_N
4524 ("not subtype conformant with declaration#!", Enode);
4525 end if;
4527 when Fully_Conformant =>
4528 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4529 Error_Msg_N -- CODEFIX
4530 ("not fully conformant with operation inherited#!",
4531 Enode);
4532 else
4533 Error_Msg_N -- CODEFIX
4534 ("not fully conformant with declaration#!", Enode);
4535 end if;
4536 end case;
4538 Error_Msg_NE (Msg, Enode, N);
4539 end if;
4540 end Conformance_Error;
4542 -- Local Variables
4544 Old_Type : constant Entity_Id := Etype (Old_Id);
4545 New_Type : constant Entity_Id := Etype (New_Id);
4546 Old_Formal : Entity_Id;
4547 New_Formal : Entity_Id;
4548 Access_Types_Match : Boolean;
4549 Old_Formal_Base : Entity_Id;
4550 New_Formal_Base : Entity_Id;
4552 -- Start of processing for Check_Conformance
4554 begin
4555 Conforms := True;
4557 -- We need a special case for operators, since they don't appear
4558 -- explicitly.
4560 if Ctype = Type_Conformant then
4561 if Ekind (New_Id) = E_Operator
4562 and then Operator_Matches_Spec (New_Id, Old_Id)
4563 then
4564 return;
4565 end if;
4566 end if;
4568 -- If both are functions/operators, check return types conform
4570 if Old_Type /= Standard_Void_Type
4571 and then
4572 New_Type /= Standard_Void_Type
4573 then
4574 -- If we are checking interface conformance we omit controlling
4575 -- arguments and result, because we are only checking the conformance
4576 -- of the remaining parameters.
4578 if Has_Controlling_Result (Old_Id)
4579 and then Has_Controlling_Result (New_Id)
4580 and then Skip_Controlling_Formals
4581 then
4582 null;
4584 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4585 if Ctype >= Subtype_Conformant
4586 and then not Predicates_Match (Old_Type, New_Type)
4587 then
4588 Conformance_Error
4589 ("\predicate of return type does not match!", New_Id);
4590 else
4591 Conformance_Error
4592 ("\return type does not match!", New_Id);
4593 end if;
4595 return;
4596 end if;
4598 -- Ada 2005 (AI-231): In case of anonymous access types check the
4599 -- null-exclusion and access-to-constant attributes match.
4601 if Ada_Version >= Ada_2005
4602 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4603 and then
4604 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4605 or else Is_Access_Constant (Etype (Old_Type)) /=
4606 Is_Access_Constant (Etype (New_Type)))
4607 then
4608 Conformance_Error ("\return type does not match!", New_Id);
4609 return;
4610 end if;
4612 -- If either is a function/operator and the other isn't, error
4614 elsif Old_Type /= Standard_Void_Type
4615 or else New_Type /= Standard_Void_Type
4616 then
4617 Conformance_Error ("\functions can only match functions!", New_Id);
4618 return;
4619 end if;
4621 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4622 -- If this is a renaming as body, refine error message to indicate that
4623 -- the conflict is with the original declaration. If the entity is not
4624 -- frozen, the conventions don't have to match, the one of the renamed
4625 -- entity is inherited.
4627 if Ctype >= Subtype_Conformant then
4628 if Convention (Old_Id) /= Convention (New_Id) then
4629 if not Is_Frozen (New_Id) then
4630 null;
4632 elsif Present (Err_Loc)
4633 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4634 and then Present (Corresponding_Spec (Err_Loc))
4635 then
4636 Error_Msg_Name_1 := Chars (New_Id);
4637 Error_Msg_Name_2 :=
4638 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4639 Conformance_Error ("\prior declaration for% has convention %!");
4641 else
4642 Conformance_Error ("\calling conventions do not match!");
4643 end if;
4645 return;
4647 elsif Is_Formal_Subprogram (Old_Id)
4648 or else Is_Formal_Subprogram (New_Id)
4649 then
4650 Conformance_Error ("\formal subprograms not allowed!");
4651 return;
4653 -- Pragma Ghost behaves as a convention in the context of subtype
4654 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4655 -- subprograms as their spec may reside in a Ghost region and their
4656 -- body not, or vice versa.
4658 elsif Comes_From_Source (Old_Id)
4659 and then Comes_From_Source (New_Id)
4660 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4661 then
4662 Conformance_Error ("\ghost modes do not match!");
4663 return;
4664 end if;
4665 end if;
4667 -- Deal with parameters
4669 -- Note: we use the entity information, rather than going directly
4670 -- to the specification in the tree. This is not only simpler, but
4671 -- absolutely necessary for some cases of conformance tests between
4672 -- operators, where the declaration tree simply does not exist.
4674 Old_Formal := First_Formal (Old_Id);
4675 New_Formal := First_Formal (New_Id);
4676 while Present (Old_Formal) and then Present (New_Formal) loop
4677 if Is_Controlling_Formal (Old_Formal)
4678 and then Is_Controlling_Formal (New_Formal)
4679 and then Skip_Controlling_Formals
4680 then
4681 -- The controlling formals will have different types when
4682 -- comparing an interface operation with its match, but both
4683 -- or neither must be access parameters.
4685 if Is_Access_Type (Etype (Old_Formal))
4687 Is_Access_Type (Etype (New_Formal))
4688 then
4689 goto Skip_Controlling_Formal;
4690 else
4691 Conformance_Error
4692 ("\access parameter does not match!", New_Formal);
4693 end if;
4694 end if;
4696 -- Ada 2012: Mode conformance also requires that formal parameters
4697 -- be both aliased, or neither.
4699 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4700 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4701 Conformance_Error
4702 ("\aliased parameter mismatch!", New_Formal);
4703 end if;
4704 end if;
4706 if Ctype = Fully_Conformant then
4708 -- Names must match. Error message is more accurate if we do
4709 -- this before checking that the types of the formals match.
4711 if Chars (Old_Formal) /= Chars (New_Formal) then
4712 Conformance_Error ("\name& does not match!", New_Formal);
4714 -- Set error posted flag on new formal as well to stop
4715 -- junk cascaded messages in some cases.
4717 Set_Error_Posted (New_Formal);
4718 return;
4719 end if;
4721 -- Null exclusion must match
4723 if Null_Exclusion_Present (Parent (Old_Formal))
4725 Null_Exclusion_Present (Parent (New_Formal))
4726 then
4727 -- Only give error if both come from source. This should be
4728 -- investigated some time, since it should not be needed ???
4730 if Comes_From_Source (Old_Formal)
4731 and then
4732 Comes_From_Source (New_Formal)
4733 then
4734 Conformance_Error
4735 ("\null exclusion for& does not match", New_Formal);
4737 -- Mark error posted on the new formal to avoid duplicated
4738 -- complaint about types not matching.
4740 Set_Error_Posted (New_Formal);
4741 end if;
4742 end if;
4743 end if;
4745 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4746 -- case occurs whenever a subprogram is being renamed and one of its
4747 -- parameters imposes a null exclusion. For example:
4749 -- type T is null record;
4750 -- type Acc_T is access T;
4751 -- subtype Acc_T_Sub is Acc_T;
4753 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4754 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4755 -- renames P;
4757 Old_Formal_Base := Etype (Old_Formal);
4758 New_Formal_Base := Etype (New_Formal);
4760 if Get_Inst then
4761 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4762 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4763 end if;
4765 Access_Types_Match := Ada_Version >= Ada_2005
4767 -- Ensure that this rule is only applied when New_Id is a
4768 -- renaming of Old_Id.
4770 and then Nkind (Parent (Parent (New_Id))) =
4771 N_Subprogram_Renaming_Declaration
4772 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4773 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4774 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4776 -- Now handle the allowed access-type case
4778 and then Is_Access_Type (Old_Formal_Base)
4779 and then Is_Access_Type (New_Formal_Base)
4781 -- The type kinds must match. The only exception occurs with
4782 -- multiple generics of the form:
4784 -- generic generic
4785 -- type F is private; type A is private;
4786 -- type F_Ptr is access F; type A_Ptr is access A;
4787 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4788 -- package F_Pack is ... package A_Pack is
4789 -- package F_Inst is
4790 -- new F_Pack (A, A_Ptr, A_P);
4792 -- When checking for conformance between the parameters of A_P
4793 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4794 -- because the compiler has transformed A_Ptr into a subtype of
4795 -- F_Ptr. We catch this case in the code below.
4797 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4798 or else
4799 (Is_Generic_Type (Old_Formal_Base)
4800 and then Is_Generic_Type (New_Formal_Base)
4801 and then Is_Internal (New_Formal_Base)
4802 and then Etype (Etype (New_Formal_Base)) =
4803 Old_Formal_Base))
4804 and then Directly_Designated_Type (Old_Formal_Base) =
4805 Directly_Designated_Type (New_Formal_Base)
4806 and then ((Is_Itype (Old_Formal_Base)
4807 and then Can_Never_Be_Null (Old_Formal_Base))
4808 or else
4809 (Is_Itype (New_Formal_Base)
4810 and then Can_Never_Be_Null (New_Formal_Base)));
4812 -- Types must always match. In the visible part of an instance,
4813 -- usual overloading rules for dispatching operations apply, and
4814 -- we check base types (not the actual subtypes).
4816 if In_Instance_Visible_Part
4817 and then Is_Dispatching_Operation (New_Id)
4818 then
4819 if not Conforming_Types
4820 (T1 => Base_Type (Etype (Old_Formal)),
4821 T2 => Base_Type (Etype (New_Formal)),
4822 Ctype => Ctype,
4823 Get_Inst => Get_Inst)
4824 and then not Access_Types_Match
4825 then
4826 Conformance_Error ("\type of & does not match!", New_Formal);
4827 return;
4828 end if;
4830 elsif not Conforming_Types
4831 (T1 => Old_Formal_Base,
4832 T2 => New_Formal_Base,
4833 Ctype => Ctype,
4834 Get_Inst => Get_Inst)
4835 and then not Access_Types_Match
4836 then
4837 -- Don't give error message if old type is Any_Type. This test
4838 -- avoids some cascaded errors, e.g. in case of a bad spec.
4840 if Errmsg and then Old_Formal_Base = Any_Type then
4841 Conforms := False;
4842 else
4843 if Ctype >= Subtype_Conformant
4844 and then
4845 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4846 then
4847 Conformance_Error
4848 ("\predicate of & does not match!", New_Formal);
4849 else
4850 Conformance_Error
4851 ("\type of & does not match!", New_Formal);
4852 end if;
4853 end if;
4855 return;
4856 end if;
4858 -- For mode conformance, mode must match
4860 if Ctype >= Mode_Conformant then
4861 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4862 if not Ekind_In (New_Id, E_Function, E_Procedure)
4863 or else not Is_Primitive_Wrapper (New_Id)
4864 then
4865 Conformance_Error ("\mode of & does not match!", New_Formal);
4867 else
4868 declare
4869 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
4870 begin
4871 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
4872 then
4873 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
4874 else
4875 Conformance_Error
4876 ("\mode of & does not match!", New_Formal);
4877 end if;
4878 end;
4879 end if;
4881 return;
4883 -- Part of mode conformance for access types is having the same
4884 -- constant modifier.
4886 elsif Access_Types_Match
4887 and then Is_Access_Constant (Old_Formal_Base) /=
4888 Is_Access_Constant (New_Formal_Base)
4889 then
4890 Conformance_Error
4891 ("\constant modifier does not match!", New_Formal);
4892 return;
4893 end if;
4894 end if;
4896 if Ctype >= Subtype_Conformant then
4898 -- Ada 2005 (AI-231): In case of anonymous access types check
4899 -- the null-exclusion and access-to-constant attributes must
4900 -- match. For null exclusion, we test the types rather than the
4901 -- formals themselves, since the attribute is only set reliably
4902 -- on the formals in the Ada 95 case, and we exclude the case
4903 -- where Old_Formal is marked as controlling, to avoid errors
4904 -- when matching completing bodies with dispatching declarations
4905 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
4907 if Ada_Version >= Ada_2005
4908 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4909 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4910 and then
4911 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4912 Can_Never_Be_Null (Etype (New_Formal))
4913 and then
4914 not Is_Controlling_Formal (Old_Formal))
4915 or else
4916 Is_Access_Constant (Etype (Old_Formal)) /=
4917 Is_Access_Constant (Etype (New_Formal)))
4919 -- Do not complain if error already posted on New_Formal. This
4920 -- avoids some redundant error messages.
4922 and then not Error_Posted (New_Formal)
4923 then
4924 -- It is allowed to omit the null-exclusion in case of stream
4925 -- attribute subprograms. We recognize stream subprograms
4926 -- through their TSS-generated suffix.
4928 declare
4929 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4931 begin
4932 if TSS_Name /= TSS_Stream_Read
4933 and then TSS_Name /= TSS_Stream_Write
4934 and then TSS_Name /= TSS_Stream_Input
4935 and then TSS_Name /= TSS_Stream_Output
4936 then
4937 -- Here we have a definite conformance error. It is worth
4938 -- special casing the error message for the case of a
4939 -- controlling formal (which excludes null).
4941 if Is_Controlling_Formal (New_Formal) then
4942 Error_Msg_Node_2 := Scope (New_Formal);
4943 Conformance_Error
4944 ("\controlling formal & of & excludes null, "
4945 & "declaration must exclude null as well",
4946 New_Formal);
4948 -- Normal case (couldn't we give more detail here???)
4950 else
4951 Conformance_Error
4952 ("\type of & does not match!", New_Formal);
4953 end if;
4955 return;
4956 end if;
4957 end;
4958 end if;
4959 end if;
4961 -- Full conformance checks
4963 if Ctype = Fully_Conformant then
4965 -- We have checked already that names match
4967 if Parameter_Mode (Old_Formal) = E_In_Parameter then
4969 -- Check default expressions for in parameters
4971 declare
4972 NewD : constant Boolean :=
4973 Present (Default_Value (New_Formal));
4974 OldD : constant Boolean :=
4975 Present (Default_Value (Old_Formal));
4976 begin
4977 if NewD or OldD then
4979 -- The old default value has been analyzed because the
4980 -- current full declaration will have frozen everything
4981 -- before. The new default value has not been analyzed,
4982 -- so analyze it now before we check for conformance.
4984 if NewD then
4985 Push_Scope (New_Id);
4986 Preanalyze_Spec_Expression
4987 (Default_Value (New_Formal), Etype (New_Formal));
4988 End_Scope;
4989 end if;
4991 if not (NewD and OldD)
4992 or else not Fully_Conformant_Expressions
4993 (Default_Value (Old_Formal),
4994 Default_Value (New_Formal))
4995 then
4996 Conformance_Error
4997 ("\default expression for & does not match!",
4998 New_Formal);
4999 return;
5000 end if;
5001 end if;
5002 end;
5003 end if;
5004 end if;
5006 -- A couple of special checks for Ada 83 mode. These checks are
5007 -- skipped if either entity is an operator in package Standard,
5008 -- or if either old or new instance is not from the source program.
5010 if Ada_Version = Ada_83
5011 and then Sloc (Old_Id) > Standard_Location
5012 and then Sloc (New_Id) > Standard_Location
5013 and then Comes_From_Source (Old_Id)
5014 and then Comes_From_Source (New_Id)
5015 then
5016 declare
5017 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5018 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5020 begin
5021 -- Explicit IN must be present or absent in both cases. This
5022 -- test is required only in the full conformance case.
5024 if In_Present (Old_Param) /= In_Present (New_Param)
5025 and then Ctype = Fully_Conformant
5026 then
5027 Conformance_Error
5028 ("\(Ada 83) IN must appear in both declarations",
5029 New_Formal);
5030 return;
5031 end if;
5033 -- Grouping (use of comma in param lists) must be the same
5034 -- This is where we catch a misconformance like:
5036 -- A, B : Integer
5037 -- A : Integer; B : Integer
5039 -- which are represented identically in the tree except
5040 -- for the setting of the flags More_Ids and Prev_Ids.
5042 if More_Ids (Old_Param) /= More_Ids (New_Param)
5043 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5044 then
5045 Conformance_Error
5046 ("\grouping of & does not match!", New_Formal);
5047 return;
5048 end if;
5049 end;
5050 end if;
5052 -- This label is required when skipping controlling formals
5054 <<Skip_Controlling_Formal>>
5056 Next_Formal (Old_Formal);
5057 Next_Formal (New_Formal);
5058 end loop;
5060 if Present (Old_Formal) then
5061 Conformance_Error ("\too few parameters!");
5062 return;
5064 elsif Present (New_Formal) then
5065 Conformance_Error ("\too many parameters!", New_Formal);
5066 return;
5067 end if;
5068 end Check_Conformance;
5070 -----------------------
5071 -- Check_Conventions --
5072 -----------------------
5074 procedure Check_Conventions (Typ : Entity_Id) is
5075 Ifaces_List : Elist_Id;
5077 procedure Check_Convention (Op : Entity_Id);
5078 -- Verify that the convention of inherited dispatching operation Op is
5079 -- consistent among all subprograms it overrides. In order to minimize
5080 -- the search, Search_From is utilized to designate a specific point in
5081 -- the list rather than iterating over the whole list once more.
5083 ----------------------
5084 -- Check_Convention --
5085 ----------------------
5087 procedure Check_Convention (Op : Entity_Id) is
5088 Op_Conv : constant Convention_Id := Convention (Op);
5089 Iface_Conv : Convention_Id;
5090 Iface_Elmt : Elmt_Id;
5091 Iface_Prim_Elmt : Elmt_Id;
5092 Iface_Prim : Entity_Id;
5094 begin
5095 Iface_Elmt := First_Elmt (Ifaces_List);
5096 while Present (Iface_Elmt) loop
5097 Iface_Prim_Elmt :=
5098 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5099 while Present (Iface_Prim_Elmt) loop
5100 Iface_Prim := Node (Iface_Prim_Elmt);
5101 Iface_Conv := Convention (Iface_Prim);
5103 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5104 and then Iface_Conv /= Op_Conv
5105 then
5106 Error_Msg_N
5107 ("inconsistent conventions in primitive operations", Typ);
5109 Error_Msg_Name_1 := Chars (Op);
5110 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5111 Error_Msg_Sloc := Sloc (Op);
5113 if Comes_From_Source (Op) or else No (Alias (Op)) then
5114 if not Present (Overridden_Operation (Op)) then
5115 Error_Msg_N ("\\primitive % defined #", Typ);
5116 else
5117 Error_Msg_N
5118 ("\\overriding operation % with "
5119 & "convention % defined #", Typ);
5120 end if;
5122 else pragma Assert (Present (Alias (Op)));
5123 Error_Msg_Sloc := Sloc (Alias (Op));
5124 Error_Msg_N ("\\inherited operation % with "
5125 & "convention % defined #", Typ);
5126 end if;
5128 Error_Msg_Name_1 := Chars (Op);
5129 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5130 Error_Msg_Sloc := Sloc (Iface_Prim);
5131 Error_Msg_N ("\\overridden operation % with "
5132 & "convention % defined #", Typ);
5134 -- Avoid cascading errors
5136 return;
5137 end if;
5139 Next_Elmt (Iface_Prim_Elmt);
5140 end loop;
5142 Next_Elmt (Iface_Elmt);
5143 end loop;
5144 end Check_Convention;
5146 -- Local variables
5148 Prim_Op : Entity_Id;
5149 Prim_Op_Elmt : Elmt_Id;
5151 -- Start of processing for Check_Conventions
5153 begin
5154 if not Has_Interfaces (Typ) then
5155 return;
5156 end if;
5158 Collect_Interfaces (Typ, Ifaces_List);
5160 -- The algorithm checks every overriding dispatching operation against
5161 -- all the corresponding overridden dispatching operations, detecting
5162 -- differences in conventions.
5164 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5165 while Present (Prim_Op_Elmt) loop
5166 Prim_Op := Node (Prim_Op_Elmt);
5168 -- A small optimization: skip the predefined dispatching operations
5169 -- since they always have the same convention.
5171 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5172 Check_Convention (Prim_Op);
5173 end if;
5175 Next_Elmt (Prim_Op_Elmt);
5176 end loop;
5177 end Check_Conventions;
5179 ------------------------------
5180 -- Check_Delayed_Subprogram --
5181 ------------------------------
5183 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5184 F : Entity_Id;
5186 procedure Possible_Freeze (T : Entity_Id);
5187 -- T is the type of either a formal parameter or of the return type.
5188 -- If T is not yet frozen and needs a delayed freeze, then the
5189 -- subprogram itself must be delayed. If T is the limited view of an
5190 -- incomplete type the subprogram must be frozen as well, because
5191 -- T may depend on local types that have not been frozen yet.
5193 ---------------------
5194 -- Possible_Freeze --
5195 ---------------------
5197 procedure Possible_Freeze (T : Entity_Id) is
5198 begin
5199 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5200 Set_Has_Delayed_Freeze (Designator);
5202 elsif Is_Access_Type (T)
5203 and then Has_Delayed_Freeze (Designated_Type (T))
5204 and then not Is_Frozen (Designated_Type (T))
5205 then
5206 Set_Has_Delayed_Freeze (Designator);
5208 elsif Ekind (T) = E_Incomplete_Type
5209 and then From_Limited_With (T)
5210 then
5211 Set_Has_Delayed_Freeze (Designator);
5213 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5214 -- of a subprogram or entry declaration.
5216 elsif Ekind (T) = E_Incomplete_Type
5217 and then Ada_Version >= Ada_2012
5218 then
5219 Set_Has_Delayed_Freeze (Designator);
5220 end if;
5222 end Possible_Freeze;
5224 -- Start of processing for Check_Delayed_Subprogram
5226 begin
5227 -- All subprograms, including abstract subprograms, may need a freeze
5228 -- node if some formal type or the return type needs one.
5230 Possible_Freeze (Etype (Designator));
5231 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5233 -- Need delayed freeze if any of the formal types themselves need
5234 -- a delayed freeze and are not yet frozen.
5236 F := First_Formal (Designator);
5237 while Present (F) loop
5238 Possible_Freeze (Etype (F));
5239 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5240 Next_Formal (F);
5241 end loop;
5243 -- Mark functions that return by reference. Note that it cannot be
5244 -- done for delayed_freeze subprograms because the underlying
5245 -- returned type may not be known yet (for private types)
5247 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5248 declare
5249 Typ : constant Entity_Id := Etype (Designator);
5250 Utyp : constant Entity_Id := Underlying_Type (Typ);
5251 begin
5252 if Is_Limited_View (Typ) then
5253 Set_Returns_By_Ref (Designator);
5254 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5255 Set_Returns_By_Ref (Designator);
5256 end if;
5257 end;
5258 end if;
5259 end Check_Delayed_Subprogram;
5261 ------------------------------------
5262 -- Check_Discriminant_Conformance --
5263 ------------------------------------
5265 procedure Check_Discriminant_Conformance
5266 (N : Node_Id;
5267 Prev : Entity_Id;
5268 Prev_Loc : Node_Id)
5270 Old_Discr : Entity_Id := First_Discriminant (Prev);
5271 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5272 New_Discr_Id : Entity_Id;
5273 New_Discr_Type : Entity_Id;
5275 procedure Conformance_Error (Msg : String; N : Node_Id);
5276 -- Post error message for conformance error on given node. Two messages
5277 -- are output. The first points to the previous declaration with a
5278 -- general "no conformance" message. The second is the detailed reason,
5279 -- supplied as Msg. The parameter N provide information for a possible
5280 -- & insertion in the message.
5282 -----------------------
5283 -- Conformance_Error --
5284 -----------------------
5286 procedure Conformance_Error (Msg : String; N : Node_Id) is
5287 begin
5288 Error_Msg_Sloc := Sloc (Prev_Loc);
5289 Error_Msg_N -- CODEFIX
5290 ("not fully conformant with declaration#!", N);
5291 Error_Msg_NE (Msg, N, N);
5292 end Conformance_Error;
5294 -- Start of processing for Check_Discriminant_Conformance
5296 begin
5297 while Present (Old_Discr) and then Present (New_Discr) loop
5298 New_Discr_Id := Defining_Identifier (New_Discr);
5300 -- The subtype mark of the discriminant on the full type has not
5301 -- been analyzed so we do it here. For an access discriminant a new
5302 -- type is created.
5304 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5305 New_Discr_Type :=
5306 Access_Definition (N, Discriminant_Type (New_Discr));
5308 else
5309 Analyze (Discriminant_Type (New_Discr));
5310 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5312 -- Ada 2005: if the discriminant definition carries a null
5313 -- exclusion, create an itype to check properly for consistency
5314 -- with partial declaration.
5316 if Is_Access_Type (New_Discr_Type)
5317 and then Null_Exclusion_Present (New_Discr)
5318 then
5319 New_Discr_Type :=
5320 Create_Null_Excluding_Itype
5321 (T => New_Discr_Type,
5322 Related_Nod => New_Discr,
5323 Scope_Id => Current_Scope);
5324 end if;
5325 end if;
5327 if not Conforming_Types
5328 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5329 then
5330 Conformance_Error ("type of & does not match!", New_Discr_Id);
5331 return;
5332 else
5333 -- Treat the new discriminant as an occurrence of the old one,
5334 -- for navigation purposes, and fill in some semantic
5335 -- information, for completeness.
5337 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5338 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5339 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5340 end if;
5342 -- Names must match
5344 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5345 Conformance_Error ("name & does not match!", New_Discr_Id);
5346 return;
5347 end if;
5349 -- Default expressions must match
5351 declare
5352 NewD : constant Boolean :=
5353 Present (Expression (New_Discr));
5354 OldD : constant Boolean :=
5355 Present (Expression (Parent (Old_Discr)));
5357 begin
5358 if NewD or OldD then
5360 -- The old default value has been analyzed and expanded,
5361 -- because the current full declaration will have frozen
5362 -- everything before. The new default values have not been
5363 -- expanded, so expand now to check conformance.
5365 if NewD then
5366 Preanalyze_Spec_Expression
5367 (Expression (New_Discr), New_Discr_Type);
5368 end if;
5370 if not (NewD and OldD)
5371 or else not Fully_Conformant_Expressions
5372 (Expression (Parent (Old_Discr)),
5373 Expression (New_Discr))
5375 then
5376 Conformance_Error
5377 ("default expression for & does not match!",
5378 New_Discr_Id);
5379 return;
5380 end if;
5381 end if;
5382 end;
5384 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5386 if Ada_Version = Ada_83 then
5387 declare
5388 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5390 begin
5391 -- Grouping (use of comma in param lists) must be the same
5392 -- This is where we catch a misconformance like:
5394 -- A, B : Integer
5395 -- A : Integer; B : Integer
5397 -- which are represented identically in the tree except
5398 -- for the setting of the flags More_Ids and Prev_Ids.
5400 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5401 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5402 then
5403 Conformance_Error
5404 ("grouping of & does not match!", New_Discr_Id);
5405 return;
5406 end if;
5407 end;
5408 end if;
5410 Next_Discriminant (Old_Discr);
5411 Next (New_Discr);
5412 end loop;
5414 if Present (Old_Discr) then
5415 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5416 return;
5418 elsif Present (New_Discr) then
5419 Conformance_Error
5420 ("too many discriminants!", Defining_Identifier (New_Discr));
5421 return;
5422 end if;
5423 end Check_Discriminant_Conformance;
5425 ----------------------------
5426 -- Check_Fully_Conformant --
5427 ----------------------------
5429 procedure Check_Fully_Conformant
5430 (New_Id : Entity_Id;
5431 Old_Id : Entity_Id;
5432 Err_Loc : Node_Id := Empty)
5434 Result : Boolean;
5435 pragma Warnings (Off, Result);
5436 begin
5437 Check_Conformance
5438 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5439 end Check_Fully_Conformant;
5441 --------------------------
5442 -- Check_Limited_Return --
5443 --------------------------
5445 procedure Check_Limited_Return
5446 (N : Node_Id;
5447 Expr : Node_Id;
5448 R_Type : Entity_Id)
5450 begin
5451 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
5452 -- replaced by anonymous access results. This is an incompatibility with
5453 -- Ada 95. Not clear whether this should be enforced yet or perhaps
5454 -- controllable with special switch. ???
5456 -- A limited interface that is not immutably limited is OK
5458 if Is_Limited_Interface (R_Type)
5459 and then
5460 not (Is_Task_Interface (R_Type)
5461 or else Is_Protected_Interface (R_Type)
5462 or else Is_Synchronized_Interface (R_Type))
5463 then
5464 null;
5466 elsif Is_Limited_Type (R_Type)
5467 and then not Is_Interface (R_Type)
5468 and then Comes_From_Source (N)
5469 and then not In_Instance_Body
5470 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
5471 then
5472 -- Error in Ada 2005
5474 if Ada_Version >= Ada_2005
5475 and then not Debug_Flag_Dot_L
5476 and then not GNAT_Mode
5477 then
5478 Error_Msg_N
5479 ("(Ada 2005) cannot copy object of a limited type "
5480 & "(RM-2005 6.5(5.5/2))", Expr);
5482 if Is_Limited_View (R_Type) then
5483 Error_Msg_N
5484 ("\return by reference not permitted in Ada 2005", Expr);
5485 end if;
5487 -- Warn in Ada 95 mode, to give folks a heads up about this
5488 -- incompatibility.
5490 -- In GNAT mode, this is just a warning, to allow it to be evilly
5491 -- turned off. Otherwise it is a real error.
5493 -- In a generic context, simplify the warning because it makes no
5494 -- sense to discuss pass-by-reference or copy.
5496 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
5497 if Inside_A_Generic then
5498 Error_Msg_N
5499 ("return of limited object not permitted in Ada 2005 "
5500 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5502 elsif Is_Limited_View (R_Type) then
5503 Error_Msg_N
5504 ("return by reference not permitted in Ada 2005 "
5505 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5506 else
5507 Error_Msg_N
5508 ("cannot copy object of a limited type in Ada 2005 "
5509 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5510 end if;
5512 -- Ada 95 mode, compatibility warnings disabled
5514 else
5515 return; -- skip continuation messages below
5516 end if;
5518 if not Inside_A_Generic then
5519 Error_Msg_N
5520 ("\consider switching to return of access type", Expr);
5521 Explain_Limited_Type (R_Type, Expr);
5522 end if;
5523 end if;
5524 end Check_Limited_Return;
5526 ---------------------------
5527 -- Check_Mode_Conformant --
5528 ---------------------------
5530 procedure Check_Mode_Conformant
5531 (New_Id : Entity_Id;
5532 Old_Id : Entity_Id;
5533 Err_Loc : Node_Id := Empty;
5534 Get_Inst : Boolean := False)
5536 Result : Boolean;
5537 pragma Warnings (Off, Result);
5538 begin
5539 Check_Conformance
5540 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5541 end Check_Mode_Conformant;
5543 --------------------------------
5544 -- Check_Overriding_Indicator --
5545 --------------------------------
5547 procedure Check_Overriding_Indicator
5548 (Subp : Entity_Id;
5549 Overridden_Subp : Entity_Id;
5550 Is_Primitive : Boolean)
5552 Decl : Node_Id;
5553 Spec : Node_Id;
5555 begin
5556 -- No overriding indicator for literals
5558 if Ekind (Subp) = E_Enumeration_Literal then
5559 return;
5561 elsif Ekind (Subp) = E_Entry then
5562 Decl := Parent (Subp);
5564 -- No point in analyzing a malformed operator
5566 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5567 and then Error_Posted (Subp)
5568 then
5569 return;
5571 else
5572 Decl := Unit_Declaration_Node (Subp);
5573 end if;
5575 if Nkind_In (Decl, N_Subprogram_Body,
5576 N_Subprogram_Body_Stub,
5577 N_Subprogram_Declaration,
5578 N_Abstract_Subprogram_Declaration,
5579 N_Subprogram_Renaming_Declaration)
5580 then
5581 Spec := Specification (Decl);
5583 elsif Nkind (Decl) = N_Entry_Declaration then
5584 Spec := Decl;
5586 else
5587 return;
5588 end if;
5590 -- The overriding operation is type conformant with the overridden one,
5591 -- but the names of the formals are not required to match. If the names
5592 -- appear permuted in the overriding operation, this is a possible
5593 -- source of confusion that is worth diagnosing. Controlling formals
5594 -- often carry names that reflect the type, and it is not worthwhile
5595 -- requiring that their names match.
5597 if Present (Overridden_Subp)
5598 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5599 then
5600 declare
5601 Form1 : Entity_Id;
5602 Form2 : Entity_Id;
5604 begin
5605 Form1 := First_Formal (Subp);
5606 Form2 := First_Formal (Overridden_Subp);
5608 -- If the overriding operation is a synchronized operation, skip
5609 -- the first parameter of the overridden operation, which is
5610 -- implicit in the new one. If the operation is declared in the
5611 -- body it is not primitive and all formals must match.
5613 if Is_Concurrent_Type (Scope (Subp))
5614 and then Is_Tagged_Type (Scope (Subp))
5615 and then not Has_Completion (Scope (Subp))
5616 then
5617 Form2 := Next_Formal (Form2);
5618 end if;
5620 if Present (Form1) then
5621 Form1 := Next_Formal (Form1);
5622 Form2 := Next_Formal (Form2);
5623 end if;
5625 while Present (Form1) loop
5626 if not Is_Controlling_Formal (Form1)
5627 and then Present (Next_Formal (Form2))
5628 and then Chars (Form1) = Chars (Next_Formal (Form2))
5629 then
5630 Error_Msg_Node_2 := Alias (Overridden_Subp);
5631 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5632 Error_Msg_NE
5633 ("& does not match corresponding formal of&#",
5634 Form1, Form1);
5635 exit;
5636 end if;
5638 Next_Formal (Form1);
5639 Next_Formal (Form2);
5640 end loop;
5641 end;
5642 end if;
5644 -- If there is an overridden subprogram, then check that there is no
5645 -- "not overriding" indicator, and mark the subprogram as overriding.
5646 -- This is not done if the overridden subprogram is marked as hidden,
5647 -- which can occur for the case of inherited controlled operations
5648 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5649 -- subprogram is not itself hidden. (Note: This condition could probably
5650 -- be simplified, leaving out the testing for the specific controlled
5651 -- cases, but it seems safer and clearer this way, and echoes similar
5652 -- special-case tests of this kind in other places.)
5654 if Present (Overridden_Subp)
5655 and then (not Is_Hidden (Overridden_Subp)
5656 or else
5657 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5658 Name_Adjust,
5659 Name_Finalize)
5660 and then Present (Alias (Overridden_Subp))
5661 and then not Is_Hidden (Alias (Overridden_Subp))))
5662 then
5663 if Must_Not_Override (Spec) then
5664 Error_Msg_Sloc := Sloc (Overridden_Subp);
5666 if Ekind (Subp) = E_Entry then
5667 Error_Msg_NE
5668 ("entry & overrides inherited operation #", Spec, Subp);
5669 else
5670 Error_Msg_NE
5671 ("subprogram & overrides inherited operation #", Spec, Subp);
5672 end if;
5674 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5675 -- as an extension of Root_Controlled, and thus has a useless Adjust
5676 -- operation. This operation should not be inherited by other limited
5677 -- controlled types. An explicit Adjust for them is not overriding.
5679 elsif Must_Override (Spec)
5680 and then Chars (Overridden_Subp) = Name_Adjust
5681 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5682 and then Present (Alias (Overridden_Subp))
5683 and then
5684 Is_Predefined_File_Name
5685 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5686 then
5687 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5689 elsif Is_Subprogram (Subp) then
5690 if Is_Init_Proc (Subp) then
5691 null;
5693 elsif No (Overridden_Operation (Subp)) then
5695 -- For entities generated by Derive_Subprograms the overridden
5696 -- operation is the inherited primitive (which is available
5697 -- through the attribute alias)
5699 if (Is_Dispatching_Operation (Subp)
5700 or else Is_Dispatching_Operation (Overridden_Subp))
5701 and then not Comes_From_Source (Overridden_Subp)
5702 and then Find_Dispatching_Type (Overridden_Subp) =
5703 Find_Dispatching_Type (Subp)
5704 and then Present (Alias (Overridden_Subp))
5705 and then Comes_From_Source (Alias (Overridden_Subp))
5706 then
5707 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5708 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5710 else
5711 Set_Overridden_Operation (Subp, Overridden_Subp);
5712 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5713 end if;
5714 end if;
5715 end if;
5717 -- If primitive flag is set or this is a protected operation, then
5718 -- the operation is overriding at the point of its declaration, so
5719 -- warn if necessary. Otherwise it may have been declared before the
5720 -- operation it overrides and no check is required.
5722 if Style_Check
5723 and then not Must_Override (Spec)
5724 and then (Is_Primitive
5725 or else Ekind (Scope (Subp)) = E_Protected_Type)
5726 then
5727 Style.Missing_Overriding (Decl, Subp);
5728 end if;
5730 -- If Subp is an operator, it may override a predefined operation, if
5731 -- it is defined in the same scope as the type to which it applies.
5732 -- In that case Overridden_Subp is empty because of our implicit
5733 -- representation for predefined operators. We have to check whether the
5734 -- signature of Subp matches that of a predefined operator. Note that
5735 -- first argument provides the name of the operator, and the second
5736 -- argument the signature that may match that of a standard operation.
5737 -- If the indicator is overriding, then the operator must match a
5738 -- predefined signature, because we know already that there is no
5739 -- explicit overridden operation.
5741 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5742 if Must_Not_Override (Spec) then
5744 -- If this is not a primitive or a protected subprogram, then
5745 -- "not overriding" is illegal.
5747 if not Is_Primitive
5748 and then Ekind (Scope (Subp)) /= E_Protected_Type
5749 then
5750 Error_Msg_N ("overriding indicator only allowed "
5751 & "if subprogram is primitive", Subp);
5753 elsif Can_Override_Operator (Subp) then
5754 Error_Msg_NE
5755 ("subprogram& overrides predefined operator ", Spec, Subp);
5756 end if;
5758 elsif Must_Override (Spec) then
5759 if No (Overridden_Operation (Subp))
5760 and then not Can_Override_Operator (Subp)
5761 then
5762 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5763 end if;
5765 elsif not Error_Posted (Subp)
5766 and then Style_Check
5767 and then Can_Override_Operator (Subp)
5768 and then
5769 not Is_Predefined_File_Name
5770 (Unit_File_Name (Get_Source_Unit (Subp)))
5771 then
5772 -- If style checks are enabled, indicate that the indicator is
5773 -- missing. However, at the point of declaration, the type of
5774 -- which this is a primitive operation may be private, in which
5775 -- case the indicator would be premature.
5777 if Has_Private_Declaration (Etype (Subp))
5778 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5779 then
5780 null;
5781 else
5782 Style.Missing_Overriding (Decl, Subp);
5783 end if;
5784 end if;
5786 elsif Must_Override (Spec) then
5787 if Ekind (Subp) = E_Entry then
5788 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5789 else
5790 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5791 end if;
5793 -- If the operation is marked "not overriding" and it's not primitive
5794 -- then an error is issued, unless this is an operation of a task or
5795 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5796 -- has been specified have already been checked above.
5798 elsif Must_Not_Override (Spec)
5799 and then not Is_Primitive
5800 and then Ekind (Subp) /= E_Entry
5801 and then Ekind (Scope (Subp)) /= E_Protected_Type
5802 then
5803 Error_Msg_N
5804 ("overriding indicator only allowed if subprogram is primitive",
5805 Subp);
5806 return;
5807 end if;
5808 end Check_Overriding_Indicator;
5810 -------------------
5811 -- Check_Returns --
5812 -------------------
5814 -- Note: this procedure needs to know far too much about how the expander
5815 -- messes with exceptions. The use of the flag Exception_Junk and the
5816 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5817 -- works, but is not very clean. It would be better if the expansion
5818 -- routines would leave Original_Node working nicely, and we could use
5819 -- Original_Node here to ignore all the peculiar expander messing ???
5821 procedure Check_Returns
5822 (HSS : Node_Id;
5823 Mode : Character;
5824 Err : out Boolean;
5825 Proc : Entity_Id := Empty)
5827 Handler : Node_Id;
5829 procedure Check_Statement_Sequence (L : List_Id);
5830 -- Internal recursive procedure to check a list of statements for proper
5831 -- termination by a return statement (or a transfer of control or a
5832 -- compound statement that is itself internally properly terminated).
5834 ------------------------------
5835 -- Check_Statement_Sequence --
5836 ------------------------------
5838 procedure Check_Statement_Sequence (L : List_Id) is
5839 Last_Stm : Node_Id;
5840 Stm : Node_Id;
5841 Kind : Node_Kind;
5843 function Assert_False return Boolean;
5844 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5845 -- rewritten as a null statement when assertions are off. The assert
5846 -- is not active, but it is still enough to kill the warning.
5848 ------------------
5849 -- Assert_False --
5850 ------------------
5852 function Assert_False return Boolean is
5853 Orig : constant Node_Id := Original_Node (Last_Stm);
5855 begin
5856 if Nkind (Orig) = N_Pragma
5857 and then Pragma_Name (Orig) = Name_Assert
5858 and then not Error_Posted (Orig)
5859 then
5860 declare
5861 Arg : constant Node_Id :=
5862 First (Pragma_Argument_Associations (Orig));
5863 Exp : constant Node_Id := Expression (Arg);
5864 begin
5865 return Nkind (Exp) = N_Identifier
5866 and then Chars (Exp) = Name_False;
5867 end;
5869 else
5870 return False;
5871 end if;
5872 end Assert_False;
5874 -- Local variables
5876 Raise_Exception_Call : Boolean;
5877 -- Set True if statement sequence terminated by Raise_Exception call
5878 -- or a Reraise_Occurrence call.
5880 -- Start of processing for Check_Statement_Sequence
5882 begin
5883 Raise_Exception_Call := False;
5885 -- Get last real statement
5887 Last_Stm := Last (L);
5889 -- Deal with digging out exception handler statement sequences that
5890 -- have been transformed by the local raise to goto optimization.
5891 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5892 -- optimization has occurred, we are looking at something like:
5894 -- begin
5895 -- original stmts in block
5897 -- exception \
5898 -- when excep1 => |
5899 -- goto L1; | omitted if No_Exception_Propagation
5900 -- when excep2 => |
5901 -- goto L2; /
5902 -- end;
5904 -- goto L3; -- skip handler when exception not raised
5906 -- <<L1>> -- target label for local exception
5907 -- begin
5908 -- estmts1
5909 -- end;
5911 -- goto L3;
5913 -- <<L2>>
5914 -- begin
5915 -- estmts2
5916 -- end;
5918 -- <<L3>>
5920 -- and what we have to do is to dig out the estmts1 and estmts2
5921 -- sequences (which were the original sequences of statements in
5922 -- the exception handlers) and check them.
5924 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
5925 Stm := Last_Stm;
5926 loop
5927 Prev (Stm);
5928 exit when No (Stm);
5929 exit when Nkind (Stm) /= N_Block_Statement;
5930 exit when not Exception_Junk (Stm);
5931 Prev (Stm);
5932 exit when No (Stm);
5933 exit when Nkind (Stm) /= N_Label;
5934 exit when not Exception_Junk (Stm);
5935 Check_Statement_Sequence
5936 (Statements (Handled_Statement_Sequence (Next (Stm))));
5938 Prev (Stm);
5939 Last_Stm := Stm;
5940 exit when No (Stm);
5941 exit when Nkind (Stm) /= N_Goto_Statement;
5942 exit when not Exception_Junk (Stm);
5943 end loop;
5944 end if;
5946 -- Don't count pragmas
5948 while Nkind (Last_Stm) = N_Pragma
5950 -- Don't count call to SS_Release (can happen after Raise_Exception)
5952 or else
5953 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5954 and then
5955 Nkind (Name (Last_Stm)) = N_Identifier
5956 and then
5957 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5959 -- Don't count exception junk
5961 or else
5962 (Nkind_In (Last_Stm, N_Goto_Statement,
5963 N_Label,
5964 N_Object_Declaration)
5965 and then Exception_Junk (Last_Stm))
5966 or else Nkind (Last_Stm) in N_Push_xxx_Label
5967 or else Nkind (Last_Stm) in N_Pop_xxx_Label
5969 -- Inserted code, such as finalization calls, is irrelevant: we only
5970 -- need to check original source.
5972 or else Is_Rewrite_Insertion (Last_Stm)
5973 loop
5974 Prev (Last_Stm);
5975 end loop;
5977 -- Here we have the "real" last statement
5979 Kind := Nkind (Last_Stm);
5981 -- Transfer of control, OK. Note that in the No_Return procedure
5982 -- case, we already diagnosed any explicit return statements, so
5983 -- we can treat them as OK in this context.
5985 if Is_Transfer (Last_Stm) then
5986 return;
5988 -- Check cases of explicit non-indirect procedure calls
5990 elsif Kind = N_Procedure_Call_Statement
5991 and then Is_Entity_Name (Name (Last_Stm))
5992 then
5993 -- Check call to Raise_Exception procedure which is treated
5994 -- specially, as is a call to Reraise_Occurrence.
5996 -- We suppress the warning in these cases since it is likely that
5997 -- the programmer really does not expect to deal with the case
5998 -- of Null_Occurrence, and thus would find a warning about a
5999 -- missing return curious, and raising Program_Error does not
6000 -- seem such a bad behavior if this does occur.
6002 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6003 -- behavior will be to raise Constraint_Error (see AI-329).
6005 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6006 or else
6007 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6008 then
6009 Raise_Exception_Call := True;
6011 -- For Raise_Exception call, test first argument, if it is
6012 -- an attribute reference for a 'Identity call, then we know
6013 -- that the call cannot possibly return.
6015 declare
6016 Arg : constant Node_Id :=
6017 Original_Node (First_Actual (Last_Stm));
6018 begin
6019 if Nkind (Arg) = N_Attribute_Reference
6020 and then Attribute_Name (Arg) = Name_Identity
6021 then
6022 return;
6023 end if;
6024 end;
6025 end if;
6027 -- If statement, need to look inside if there is an else and check
6028 -- each constituent statement sequence for proper termination.
6030 elsif Kind = N_If_Statement
6031 and then Present (Else_Statements (Last_Stm))
6032 then
6033 Check_Statement_Sequence (Then_Statements (Last_Stm));
6034 Check_Statement_Sequence (Else_Statements (Last_Stm));
6036 if Present (Elsif_Parts (Last_Stm)) then
6037 declare
6038 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6040 begin
6041 while Present (Elsif_Part) loop
6042 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6043 Next (Elsif_Part);
6044 end loop;
6045 end;
6046 end if;
6048 return;
6050 -- Case statement, check each case for proper termination
6052 elsif Kind = N_Case_Statement then
6053 declare
6054 Case_Alt : Node_Id;
6055 begin
6056 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6057 while Present (Case_Alt) loop
6058 Check_Statement_Sequence (Statements (Case_Alt));
6059 Next_Non_Pragma (Case_Alt);
6060 end loop;
6061 end;
6063 return;
6065 -- Block statement, check its handled sequence of statements
6067 elsif Kind = N_Block_Statement then
6068 declare
6069 Err1 : Boolean;
6071 begin
6072 Check_Returns
6073 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6075 if Err1 then
6076 Err := True;
6077 end if;
6079 return;
6080 end;
6082 -- Loop statement. If there is an iteration scheme, we can definitely
6083 -- fall out of the loop. Similarly if there is an exit statement, we
6084 -- can fall out. In either case we need a following return.
6086 elsif Kind = N_Loop_Statement then
6087 if Present (Iteration_Scheme (Last_Stm))
6088 or else Has_Exit (Entity (Identifier (Last_Stm)))
6089 then
6090 null;
6092 -- A loop with no exit statement or iteration scheme is either
6093 -- an infinite loop, or it has some other exit (raise/return).
6094 -- In either case, no warning is required.
6096 else
6097 return;
6098 end if;
6100 -- Timed entry call, check entry call and delay alternatives
6102 -- Note: in expanded code, the timed entry call has been converted
6103 -- to a set of expanded statements on which the check will work
6104 -- correctly in any case.
6106 elsif Kind = N_Timed_Entry_Call then
6107 declare
6108 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6109 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6111 begin
6112 -- If statement sequence of entry call alternative is missing,
6113 -- then we can definitely fall through, and we post the error
6114 -- message on the entry call alternative itself.
6116 if No (Statements (ECA)) then
6117 Last_Stm := ECA;
6119 -- If statement sequence of delay alternative is missing, then
6120 -- we can definitely fall through, and we post the error
6121 -- message on the delay alternative itself.
6123 -- Note: if both ECA and DCA are missing the return, then we
6124 -- post only one message, should be enough to fix the bugs.
6125 -- If not we will get a message next time on the DCA when the
6126 -- ECA is fixed.
6128 elsif No (Statements (DCA)) then
6129 Last_Stm := DCA;
6131 -- Else check both statement sequences
6133 else
6134 Check_Statement_Sequence (Statements (ECA));
6135 Check_Statement_Sequence (Statements (DCA));
6136 return;
6137 end if;
6138 end;
6140 -- Conditional entry call, check entry call and else part
6142 -- Note: in expanded code, the conditional entry call has been
6143 -- converted to a set of expanded statements on which the check
6144 -- will work correctly in any case.
6146 elsif Kind = N_Conditional_Entry_Call then
6147 declare
6148 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6150 begin
6151 -- If statement sequence of entry call alternative is missing,
6152 -- then we can definitely fall through, and we post the error
6153 -- message on the entry call alternative itself.
6155 if No (Statements (ECA)) then
6156 Last_Stm := ECA;
6158 -- Else check statement sequence and else part
6160 else
6161 Check_Statement_Sequence (Statements (ECA));
6162 Check_Statement_Sequence (Else_Statements (Last_Stm));
6163 return;
6164 end if;
6165 end;
6166 end if;
6168 -- If we fall through, issue appropriate message
6170 if Mode = 'F' then
6172 -- Kill warning if last statement is a raise exception call,
6173 -- or a pragma Assert (False). Note that with assertions enabled,
6174 -- such a pragma has been converted into a raise exception call
6175 -- already, so the Assert_False is for the assertions off case.
6177 if not Raise_Exception_Call and then not Assert_False then
6179 -- In GNATprove mode, it is an error to have a missing return
6181 Error_Msg_Warn := SPARK_Mode /= On;
6183 -- Issue error message or warning
6185 Error_Msg_N
6186 ("RETURN statement missing following this statement<<!",
6187 Last_Stm);
6188 Error_Msg_N
6189 ("\Program_Error ]<<!", Last_Stm);
6190 end if;
6192 -- Note: we set Err even though we have not issued a warning
6193 -- because we still have a case of a missing return. This is
6194 -- an extremely marginal case, probably will never be noticed
6195 -- but we might as well get it right.
6197 Err := True;
6199 -- Otherwise we have the case of a procedure marked No_Return
6201 else
6202 if not Raise_Exception_Call then
6203 if GNATprove_Mode then
6204 Error_Msg_N
6205 ("implied return after this statement "
6206 & "would have raised Program_Error", Last_Stm);
6207 else
6208 Error_Msg_N
6209 ("implied return after this statement "
6210 & "will raise Program_Error??", Last_Stm);
6211 end if;
6213 Error_Msg_Warn := SPARK_Mode /= On;
6214 Error_Msg_NE
6215 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6216 end if;
6218 declare
6219 RE : constant Node_Id :=
6220 Make_Raise_Program_Error (Sloc (Last_Stm),
6221 Reason => PE_Implicit_Return);
6222 begin
6223 Insert_After (Last_Stm, RE);
6224 Analyze (RE);
6225 end;
6226 end if;
6227 end Check_Statement_Sequence;
6229 -- Start of processing for Check_Returns
6231 begin
6232 Err := False;
6233 Check_Statement_Sequence (Statements (HSS));
6235 if Present (Exception_Handlers (HSS)) then
6236 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6237 while Present (Handler) loop
6238 Check_Statement_Sequence (Statements (Handler));
6239 Next_Non_Pragma (Handler);
6240 end loop;
6241 end if;
6242 end Check_Returns;
6244 ----------------------------
6245 -- Check_Subprogram_Order --
6246 ----------------------------
6248 procedure Check_Subprogram_Order (N : Node_Id) is
6250 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6251 -- This is used to check if S1 > S2 in the sense required by this test,
6252 -- for example nameab < namec, but name2 < name10.
6254 -----------------------------
6255 -- Subprogram_Name_Greater --
6256 -----------------------------
6258 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6259 L1, L2 : Positive;
6260 N1, N2 : Natural;
6262 begin
6263 -- Deal with special case where names are identical except for a
6264 -- numerical suffix. These are handled specially, taking the numeric
6265 -- ordering from the suffix into account.
6267 L1 := S1'Last;
6268 while S1 (L1) in '0' .. '9' loop
6269 L1 := L1 - 1;
6270 end loop;
6272 L2 := S2'Last;
6273 while S2 (L2) in '0' .. '9' loop
6274 L2 := L2 - 1;
6275 end loop;
6277 -- If non-numeric parts non-equal, do straight compare
6279 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6280 return S1 > S2;
6282 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6283 -- that a missing suffix is treated as numeric zero in this test.
6285 else
6286 N1 := 0;
6287 while L1 < S1'Last loop
6288 L1 := L1 + 1;
6289 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6290 end loop;
6292 N2 := 0;
6293 while L2 < S2'Last loop
6294 L2 := L2 + 1;
6295 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6296 end loop;
6298 return N1 > N2;
6299 end if;
6300 end Subprogram_Name_Greater;
6302 -- Start of processing for Check_Subprogram_Order
6304 begin
6305 -- Check body in alpha order if this is option
6307 if Style_Check
6308 and then Style_Check_Order_Subprograms
6309 and then Nkind (N) = N_Subprogram_Body
6310 and then Comes_From_Source (N)
6311 and then In_Extended_Main_Source_Unit (N)
6312 then
6313 declare
6314 LSN : String_Ptr
6315 renames Scope_Stack.Table
6316 (Scope_Stack.Last).Last_Subprogram_Name;
6318 Body_Id : constant Entity_Id :=
6319 Defining_Entity (Specification (N));
6321 begin
6322 Get_Decoded_Name_String (Chars (Body_Id));
6324 if LSN /= null then
6325 if Subprogram_Name_Greater
6326 (LSN.all, Name_Buffer (1 .. Name_Len))
6327 then
6328 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6329 end if;
6331 Free (LSN);
6332 end if;
6334 LSN := new String'(Name_Buffer (1 .. Name_Len));
6335 end;
6336 end if;
6337 end Check_Subprogram_Order;
6339 ------------------------------
6340 -- Check_Subtype_Conformant --
6341 ------------------------------
6343 procedure Check_Subtype_Conformant
6344 (New_Id : Entity_Id;
6345 Old_Id : Entity_Id;
6346 Err_Loc : Node_Id := Empty;
6347 Skip_Controlling_Formals : Boolean := False;
6348 Get_Inst : Boolean := False)
6350 Result : Boolean;
6351 pragma Warnings (Off, Result);
6352 begin
6353 Check_Conformance
6354 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6355 Skip_Controlling_Formals => Skip_Controlling_Formals,
6356 Get_Inst => Get_Inst);
6357 end Check_Subtype_Conformant;
6359 ---------------------------
6360 -- Check_Type_Conformant --
6361 ---------------------------
6363 procedure Check_Type_Conformant
6364 (New_Id : Entity_Id;
6365 Old_Id : Entity_Id;
6366 Err_Loc : Node_Id := Empty)
6368 Result : Boolean;
6369 pragma Warnings (Off, Result);
6370 begin
6371 Check_Conformance
6372 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6373 end Check_Type_Conformant;
6375 ---------------------------
6376 -- Can_Override_Operator --
6377 ---------------------------
6379 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6380 Typ : Entity_Id;
6382 begin
6383 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6384 return False;
6386 else
6387 Typ := Base_Type (Etype (First_Formal (Subp)));
6389 -- Check explicitly that the operation is a primitive of the type
6391 return Operator_Matches_Spec (Subp, Subp)
6392 and then not Is_Generic_Type (Typ)
6393 and then Scope (Subp) = Scope (Typ)
6394 and then not Is_Class_Wide_Type (Typ);
6395 end if;
6396 end Can_Override_Operator;
6398 ----------------------
6399 -- Conforming_Types --
6400 ----------------------
6402 function Conforming_Types
6403 (T1 : Entity_Id;
6404 T2 : Entity_Id;
6405 Ctype : Conformance_Type;
6406 Get_Inst : Boolean := False) return Boolean
6408 Type_1 : Entity_Id := T1;
6409 Type_2 : Entity_Id := T2;
6410 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6412 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6413 -- If neither T1 nor T2 are generic actual types, or if they are in
6414 -- different scopes (e.g. parent and child instances), then verify that
6415 -- the base types are equal. Otherwise T1 and T2 must be on the same
6416 -- subtype chain. The whole purpose of this procedure is to prevent
6417 -- spurious ambiguities in an instantiation that may arise if two
6418 -- distinct generic types are instantiated with the same actual.
6420 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6421 -- An access parameter can designate an incomplete type. If the
6422 -- incomplete type is the limited view of a type from a limited_
6423 -- with_clause, check whether the non-limited view is available. If
6424 -- it is a (non-limited) incomplete type, get the full view.
6426 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6427 -- Returns True if and only if either T1 denotes a limited view of T2
6428 -- or T2 denotes a limited view of T1. This can arise when the limited
6429 -- with view of a type is used in a subprogram declaration and the
6430 -- subprogram body is in the scope of a regular with clause for the
6431 -- same unit. In such a case, the two type entities can be considered
6432 -- identical for purposes of conformance checking.
6434 ----------------------
6435 -- Base_Types_Match --
6436 ----------------------
6438 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6439 BT1 : constant Entity_Id := Base_Type (T1);
6440 BT2 : constant Entity_Id := Base_Type (T2);
6442 begin
6443 if T1 = T2 then
6444 return True;
6446 elsif BT1 = BT2 then
6448 -- The following is too permissive. A more precise test should
6449 -- check that the generic actual is an ancestor subtype of the
6450 -- other ???.
6452 -- See code in Find_Corresponding_Spec that applies an additional
6453 -- filter to handle accidental amiguities in instances.
6455 return not Is_Generic_Actual_Type (T1)
6456 or else not Is_Generic_Actual_Type (T2)
6457 or else Scope (T1) /= Scope (T2);
6459 -- If T2 is a generic actual type it is declared as the subtype of
6460 -- the actual. If that actual is itself a subtype we need to use its
6461 -- own base type to check for compatibility.
6463 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6464 return True;
6466 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6467 return True;
6469 else
6470 return False;
6471 end if;
6472 end Base_Types_Match;
6474 --------------------------
6475 -- Find_Designated_Type --
6476 --------------------------
6478 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6479 Desig : Entity_Id;
6481 begin
6482 Desig := Directly_Designated_Type (T);
6484 if Ekind (Desig) = E_Incomplete_Type then
6486 -- If regular incomplete type, get full view if available
6488 if Present (Full_View (Desig)) then
6489 Desig := Full_View (Desig);
6491 -- If limited view of a type, get non-limited view if available,
6492 -- and check again for a regular incomplete type.
6494 elsif Present (Non_Limited_View (Desig)) then
6495 Desig := Get_Full_View (Non_Limited_View (Desig));
6496 end if;
6497 end if;
6499 return Desig;
6500 end Find_Designated_Type;
6502 -------------------------------
6503 -- Matches_Limited_With_View --
6504 -------------------------------
6506 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6507 begin
6508 -- In some cases a type imported through a limited_with clause, and
6509 -- its nonlimited view are both visible, for example in an anonymous
6510 -- access-to-class-wide type in a formal, or when building the body
6511 -- for a subprogram renaming after the subprogram has been frozen.
6512 -- In these cases Both entities designate the same type. In addition,
6513 -- if one of them is an actual in an instance, it may be a subtype of
6514 -- the non-limited view of the other.
6516 if From_Limited_With (T1)
6517 and then (T2 = Available_View (T1)
6518 or else Is_Subtype_Of (T2, Available_View (T1)))
6519 then
6520 return True;
6522 elsif From_Limited_With (T2)
6523 and then (T1 = Available_View (T2)
6524 or else Is_Subtype_Of (T1, Available_View (T2)))
6525 then
6526 return True;
6528 elsif From_Limited_With (T1)
6529 and then From_Limited_With (T2)
6530 and then Available_View (T1) = Available_View (T2)
6531 then
6532 return True;
6534 else
6535 return False;
6536 end if;
6537 end Matches_Limited_With_View;
6539 -- Start of processing for Conforming_Types
6541 begin
6542 -- The context is an instance association for a formal access-to-
6543 -- subprogram type; the formal parameter types require mapping because
6544 -- they may denote other formal parameters of the generic unit.
6546 if Get_Inst then
6547 Type_1 := Get_Instance_Of (T1);
6548 Type_2 := Get_Instance_Of (T2);
6549 end if;
6551 -- If one of the types is a view of the other introduced by a limited
6552 -- with clause, treat these as conforming for all purposes.
6554 if Matches_Limited_With_View (T1, T2) then
6555 return True;
6557 elsif Base_Types_Match (Type_1, Type_2) then
6558 return Ctype <= Mode_Conformant
6559 or else Subtypes_Statically_Match (Type_1, Type_2);
6561 elsif Is_Incomplete_Or_Private_Type (Type_1)
6562 and then Present (Full_View (Type_1))
6563 and then Base_Types_Match (Full_View (Type_1), Type_2)
6564 then
6565 return Ctype <= Mode_Conformant
6566 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6568 elsif Ekind (Type_2) = E_Incomplete_Type
6569 and then Present (Full_View (Type_2))
6570 and then Base_Types_Match (Type_1, Full_View (Type_2))
6571 then
6572 return Ctype <= Mode_Conformant
6573 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6575 elsif Is_Private_Type (Type_2)
6576 and then In_Instance
6577 and then Present (Full_View (Type_2))
6578 and then Base_Types_Match (Type_1, Full_View (Type_2))
6579 then
6580 return Ctype <= Mode_Conformant
6581 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6583 -- In Ada 2012, incomplete types (including limited views) can appear
6584 -- as actuals in instantiations.
6586 elsif Is_Incomplete_Type (Type_1)
6587 and then Is_Incomplete_Type (Type_2)
6588 and then (Used_As_Generic_Actual (Type_1)
6589 or else Used_As_Generic_Actual (Type_2))
6590 then
6591 return True;
6592 end if;
6594 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6595 -- treated recursively because they carry a signature. As far as
6596 -- conformance is concerned, convention plays no role, and either
6597 -- or both could be access to protected subprograms.
6599 Are_Anonymous_Access_To_Subprogram_Types :=
6600 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6601 E_Anonymous_Access_Protected_Subprogram_Type)
6602 and then
6603 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6604 E_Anonymous_Access_Protected_Subprogram_Type);
6606 -- Test anonymous access type case. For this case, static subtype
6607 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6608 -- the base types because we may have built internal subtype entities
6609 -- to handle null-excluding types (see Process_Formals).
6611 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6612 and then
6613 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6615 -- Ada 2005 (AI-254)
6617 or else Are_Anonymous_Access_To_Subprogram_Types
6618 then
6619 declare
6620 Desig_1 : Entity_Id;
6621 Desig_2 : Entity_Id;
6623 begin
6624 -- In Ada 2005, access constant indicators must match for
6625 -- subtype conformance.
6627 if Ada_Version >= Ada_2005
6628 and then Ctype >= Subtype_Conformant
6629 and then
6630 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6631 then
6632 return False;
6633 end if;
6635 Desig_1 := Find_Designated_Type (Type_1);
6636 Desig_2 := Find_Designated_Type (Type_2);
6638 -- If the context is an instance association for a formal
6639 -- access-to-subprogram type; formal access parameter designated
6640 -- types require mapping because they may denote other formal
6641 -- parameters of the generic unit.
6643 if Get_Inst then
6644 Desig_1 := Get_Instance_Of (Desig_1);
6645 Desig_2 := Get_Instance_Of (Desig_2);
6646 end if;
6648 -- It is possible for a Class_Wide_Type to be introduced for an
6649 -- incomplete type, in which case there is a separate class_ wide
6650 -- type for the full view. The types conform if their Etypes
6651 -- conform, i.e. one may be the full view of the other. This can
6652 -- only happen in the context of an access parameter, other uses
6653 -- of an incomplete Class_Wide_Type are illegal.
6655 if Is_Class_Wide_Type (Desig_1)
6656 and then
6657 Is_Class_Wide_Type (Desig_2)
6658 then
6659 return
6660 Conforming_Types
6661 (Etype (Base_Type (Desig_1)),
6662 Etype (Base_Type (Desig_2)), Ctype);
6664 elsif Are_Anonymous_Access_To_Subprogram_Types then
6665 if Ada_Version < Ada_2005 then
6666 return Ctype = Type_Conformant
6667 or else
6668 Subtypes_Statically_Match (Desig_1, Desig_2);
6670 -- We must check the conformance of the signatures themselves
6672 else
6673 declare
6674 Conformant : Boolean;
6675 begin
6676 Check_Conformance
6677 (Desig_1, Desig_2, Ctype, False, Conformant);
6678 return Conformant;
6679 end;
6680 end if;
6682 -- A limited view of an actual matches the corresponding
6683 -- incomplete formal.
6685 elsif Ekind (Desig_2) = E_Incomplete_Subtype
6686 and then From_Limited_With (Desig_2)
6687 and then Used_As_Generic_Actual (Etype (Desig_2))
6688 then
6689 return True;
6691 else
6692 return Base_Type (Desig_1) = Base_Type (Desig_2)
6693 and then (Ctype = Type_Conformant
6694 or else
6695 Subtypes_Statically_Match (Desig_1, Desig_2));
6696 end if;
6697 end;
6699 -- Otherwise definitely no match
6701 else
6702 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6703 and then Is_Access_Type (Type_2))
6704 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6705 and then Is_Access_Type (Type_1)))
6706 and then
6707 Conforming_Types
6708 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6709 then
6710 May_Hide_Profile := True;
6711 end if;
6713 return False;
6714 end if;
6715 end Conforming_Types;
6717 --------------------------
6718 -- Create_Extra_Formals --
6719 --------------------------
6721 procedure Create_Extra_Formals (E : Entity_Id) is
6722 Formal : Entity_Id;
6723 First_Extra : Entity_Id := Empty;
6724 Last_Extra : Entity_Id;
6725 Formal_Type : Entity_Id;
6726 P_Formal : Entity_Id := Empty;
6728 function Add_Extra_Formal
6729 (Assoc_Entity : Entity_Id;
6730 Typ : Entity_Id;
6731 Scope : Entity_Id;
6732 Suffix : String) return Entity_Id;
6733 -- Add an extra formal to the current list of formals and extra formals.
6734 -- The extra formal is added to the end of the list of extra formals,
6735 -- and also returned as the result. These formals are always of mode IN.
6736 -- The new formal has the type Typ, is declared in Scope, and its name
6737 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6738 -- The following suffixes are currently used. They should not be changed
6739 -- without coordinating with CodePeer, which makes use of these to
6740 -- provide better messages.
6742 -- O denotes the Constrained bit.
6743 -- L denotes the accessibility level.
6744 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6745 -- the full list in exp_ch6.BIP_Formal_Kind.
6747 ----------------------
6748 -- Add_Extra_Formal --
6749 ----------------------
6751 function Add_Extra_Formal
6752 (Assoc_Entity : Entity_Id;
6753 Typ : Entity_Id;
6754 Scope : Entity_Id;
6755 Suffix : String) return Entity_Id
6757 EF : constant Entity_Id :=
6758 Make_Defining_Identifier (Sloc (Assoc_Entity),
6759 Chars => New_External_Name (Chars (Assoc_Entity),
6760 Suffix => Suffix));
6762 begin
6763 -- A little optimization. Never generate an extra formal for the
6764 -- _init operand of an initialization procedure, since it could
6765 -- never be used.
6767 if Chars (Formal) = Name_uInit then
6768 return Empty;
6769 end if;
6771 Set_Ekind (EF, E_In_Parameter);
6772 Set_Actual_Subtype (EF, Typ);
6773 Set_Etype (EF, Typ);
6774 Set_Scope (EF, Scope);
6775 Set_Mechanism (EF, Default_Mechanism);
6776 Set_Formal_Validity (EF);
6778 if No (First_Extra) then
6779 First_Extra := EF;
6780 Set_Extra_Formals (Scope, First_Extra);
6781 end if;
6783 if Present (Last_Extra) then
6784 Set_Extra_Formal (Last_Extra, EF);
6785 end if;
6787 Last_Extra := EF;
6789 return EF;
6790 end Add_Extra_Formal;
6792 -- Start of processing for Create_Extra_Formals
6794 begin
6795 -- We never generate extra formals if expansion is not active because we
6796 -- don't need them unless we are generating code.
6798 if not Expander_Active then
6799 return;
6800 end if;
6802 -- No need to generate extra formals in interface thunks whose target
6803 -- primitive has no extra formals.
6805 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6806 return;
6807 end if;
6809 -- If this is a derived subprogram then the subtypes of the parent
6810 -- subprogram's formal parameters will be used to determine the need
6811 -- for extra formals.
6813 if Is_Overloadable (E) and then Present (Alias (E)) then
6814 P_Formal := First_Formal (Alias (E));
6815 end if;
6817 Last_Extra := Empty;
6818 Formal := First_Formal (E);
6819 while Present (Formal) loop
6820 Last_Extra := Formal;
6821 Next_Formal (Formal);
6822 end loop;
6824 -- If Extra_Formals were already created, don't do it again. This
6825 -- situation may arise for subprogram types created as part of
6826 -- dispatching calls (see Expand_Dispatching_Call)
6828 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6829 return;
6830 end if;
6832 -- If the subprogram is a predefined dispatching subprogram then don't
6833 -- generate any extra constrained or accessibility level formals. In
6834 -- general we suppress these for internal subprograms (by not calling
6835 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6836 -- generated stream attributes do get passed through because extra
6837 -- build-in-place formals are needed in some cases (limited 'Input).
6839 if Is_Predefined_Internal_Operation (E) then
6840 goto Test_For_Func_Result_Extras;
6841 end if;
6843 Formal := First_Formal (E);
6844 while Present (Formal) loop
6846 -- Create extra formal for supporting the attribute 'Constrained.
6847 -- The case of a private type view without discriminants also
6848 -- requires the extra formal if the underlying type has defaulted
6849 -- discriminants.
6851 if Ekind (Formal) /= E_In_Parameter then
6852 if Present (P_Formal) then
6853 Formal_Type := Etype (P_Formal);
6854 else
6855 Formal_Type := Etype (Formal);
6856 end if;
6858 -- Do not produce extra formals for Unchecked_Union parameters.
6859 -- Jump directly to the end of the loop.
6861 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6862 goto Skip_Extra_Formal_Generation;
6863 end if;
6865 if not Has_Discriminants (Formal_Type)
6866 and then Ekind (Formal_Type) in Private_Kind
6867 and then Present (Underlying_Type (Formal_Type))
6868 then
6869 Formal_Type := Underlying_Type (Formal_Type);
6870 end if;
6872 -- Suppress the extra formal if formal's subtype is constrained or
6873 -- indefinite, or we're compiling for Ada 2012 and the underlying
6874 -- type is tagged and limited. In Ada 2012, a limited tagged type
6875 -- can have defaulted discriminants, but 'Constrained is required
6876 -- to return True, so the formal is never needed (see AI05-0214).
6877 -- Note that this ensures consistency of calling sequences for
6878 -- dispatching operations when some types in a class have defaults
6879 -- on discriminants and others do not (and requiring the extra
6880 -- formal would introduce distributed overhead).
6882 -- If the type does not have a completion yet, treat as prior to
6883 -- Ada 2012 for consistency.
6885 if Has_Discriminants (Formal_Type)
6886 and then not Is_Constrained (Formal_Type)
6887 and then Is_Definite_Subtype (Formal_Type)
6888 and then (Ada_Version < Ada_2012
6889 or else No (Underlying_Type (Formal_Type))
6890 or else not
6891 (Is_Limited_Type (Formal_Type)
6892 and then
6893 (Is_Tagged_Type
6894 (Underlying_Type (Formal_Type)))))
6895 then
6896 Set_Extra_Constrained
6897 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6898 end if;
6899 end if;
6901 -- Create extra formal for supporting accessibility checking. This
6902 -- is done for both anonymous access formals and formals of named
6903 -- access types that are marked as controlling formals. The latter
6904 -- case can occur when Expand_Dispatching_Call creates a subprogram
6905 -- type and substitutes the types of access-to-class-wide actuals
6906 -- for the anonymous access-to-specific-type of controlling formals.
6907 -- Base_Type is applied because in cases where there is a null
6908 -- exclusion the formal may have an access subtype.
6910 -- This is suppressed if we specifically suppress accessibility
6911 -- checks at the package level for either the subprogram, or the
6912 -- package in which it resides. However, we do not suppress it
6913 -- simply if the scope has accessibility checks suppressed, since
6914 -- this could cause trouble when clients are compiled with a
6915 -- different suppression setting. The explicit checks at the
6916 -- package level are safe from this point of view.
6918 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6919 or else (Is_Controlling_Formal (Formal)
6920 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6921 and then not
6922 (Explicit_Suppress (E, Accessibility_Check)
6923 or else
6924 Explicit_Suppress (Scope (E), Accessibility_Check))
6925 and then
6926 (No (P_Formal)
6927 or else Present (Extra_Accessibility (P_Formal)))
6928 then
6929 Set_Extra_Accessibility
6930 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6931 end if;
6933 -- This label is required when skipping extra formal generation for
6934 -- Unchecked_Union parameters.
6936 <<Skip_Extra_Formal_Generation>>
6938 if Present (P_Formal) then
6939 Next_Formal (P_Formal);
6940 end if;
6942 Next_Formal (Formal);
6943 end loop;
6945 <<Test_For_Func_Result_Extras>>
6947 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6948 -- function call is ... determined by the point of call ...".
6950 if Needs_Result_Accessibility_Level (E) then
6951 Set_Extra_Accessibility_Of_Result
6952 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6953 end if;
6955 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6956 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6958 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
6959 declare
6960 Result_Subt : constant Entity_Id := Etype (E);
6961 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
6962 Formal_Typ : Entity_Id;
6964 Discard : Entity_Id;
6965 pragma Warnings (Off, Discard);
6967 begin
6968 -- In the case of functions with unconstrained result subtypes,
6969 -- add a 4-state formal indicating whether the return object is
6970 -- allocated by the caller (1), or should be allocated by the
6971 -- callee on the secondary stack (2), in the global heap (3), or
6972 -- in a user-defined storage pool (4). For the moment we just use
6973 -- Natural for the type of this formal. Note that this formal
6974 -- isn't usually needed in the case where the result subtype is
6975 -- constrained, but it is needed when the function has a tagged
6976 -- result, because generally such functions can be called in a
6977 -- dispatching context and such calls must be handled like calls
6978 -- to a class-wide function.
6980 if Needs_BIP_Alloc_Form (E) then
6981 Discard :=
6982 Add_Extra_Formal
6983 (E, Standard_Natural,
6984 E, BIP_Formal_Suffix (BIP_Alloc_Form));
6986 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
6987 -- use a user-defined pool. This formal is not added on
6988 -- ZFP as those targets do not support pools.
6990 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
6991 Discard :=
6992 Add_Extra_Formal
6993 (E, RTE (RE_Root_Storage_Pool_Ptr),
6994 E, BIP_Formal_Suffix (BIP_Storage_Pool));
6995 end if;
6996 end if;
6998 -- In the case of functions whose result type needs finalization,
6999 -- add an extra formal which represents the finalization master.
7001 if Needs_BIP_Finalization_Master (E) then
7002 Discard :=
7003 Add_Extra_Formal
7004 (E, RTE (RE_Finalization_Master_Ptr),
7005 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7006 end if;
7008 -- When the result type contains tasks, add two extra formals: the
7009 -- master of the tasks to be created, and the caller's activation
7010 -- chain.
7012 if Has_Task (Full_Subt) then
7013 Discard :=
7014 Add_Extra_Formal
7015 (E, RTE (RE_Master_Id),
7016 E, BIP_Formal_Suffix (BIP_Task_Master));
7017 Discard :=
7018 Add_Extra_Formal
7019 (E, RTE (RE_Activation_Chain_Access),
7020 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7021 end if;
7023 -- All build-in-place functions get an extra formal that will be
7024 -- passed the address of the return object within the caller.
7026 Formal_Typ :=
7027 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7029 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7030 Set_Etype (Formal_Typ, Formal_Typ);
7031 Set_Depends_On_Private
7032 (Formal_Typ, Has_Private_Component (Formal_Typ));
7033 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7034 Set_Is_Access_Constant (Formal_Typ, False);
7036 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7037 -- the designated type comes from the limited view (for back-end
7038 -- purposes).
7040 Set_From_Limited_With
7041 (Formal_Typ, From_Limited_With (Result_Subt));
7043 Layout_Type (Formal_Typ);
7045 Discard :=
7046 Add_Extra_Formal
7047 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7048 end;
7049 end if;
7050 end Create_Extra_Formals;
7052 -----------------------------
7053 -- Enter_Overloaded_Entity --
7054 -----------------------------
7056 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7057 E : Entity_Id := Current_Entity_In_Scope (S);
7058 C_E : Entity_Id := Current_Entity (S);
7060 begin
7061 if Present (E) then
7062 Set_Has_Homonym (E);
7063 Set_Has_Homonym (S);
7064 end if;
7066 Set_Is_Immediately_Visible (S);
7067 Set_Scope (S, Current_Scope);
7069 -- Chain new entity if front of homonym in current scope, so that
7070 -- homonyms are contiguous.
7072 if Present (E) and then E /= C_E then
7073 while Homonym (C_E) /= E loop
7074 C_E := Homonym (C_E);
7075 end loop;
7077 Set_Homonym (C_E, S);
7079 else
7080 E := C_E;
7081 Set_Current_Entity (S);
7082 end if;
7084 Set_Homonym (S, E);
7086 if Is_Inherited_Operation (S) then
7087 Append_Inherited_Subprogram (S);
7088 else
7089 Append_Entity (S, Current_Scope);
7090 end if;
7092 Set_Public_Status (S);
7094 if Debug_Flag_E then
7095 Write_Str ("New overloaded entity chain: ");
7096 Write_Name (Chars (S));
7098 E := S;
7099 while Present (E) loop
7100 Write_Str (" "); Write_Int (Int (E));
7101 E := Homonym (E);
7102 end loop;
7104 Write_Eol;
7105 end if;
7107 -- Generate warning for hiding
7109 if Warn_On_Hiding
7110 and then Comes_From_Source (S)
7111 and then In_Extended_Main_Source_Unit (S)
7112 then
7113 E := S;
7114 loop
7115 E := Homonym (E);
7116 exit when No (E);
7118 -- Warn unless genuine overloading. Do not emit warning on
7119 -- hiding predefined operators in Standard (these are either an
7120 -- (artifact of our implicit declarations, or simple noise) but
7121 -- keep warning on a operator defined on a local subtype, because
7122 -- of the real danger that different operators may be applied in
7123 -- various parts of the program.
7125 -- Note that if E and S have the same scope, there is never any
7126 -- hiding. Either the two conflict, and the program is illegal,
7127 -- or S is overriding an implicit inherited subprogram.
7129 if Scope (E) /= Scope (S)
7130 and then (not Is_Overloadable (E)
7131 or else Subtype_Conformant (E, S))
7132 and then (Is_Immediately_Visible (E)
7133 or else
7134 Is_Potentially_Use_Visible (S))
7135 then
7136 if Scope (E) /= Standard_Standard then
7137 Error_Msg_Sloc := Sloc (E);
7138 Error_Msg_N ("declaration of & hides one #?h?", S);
7140 elsif Nkind (S) = N_Defining_Operator_Symbol
7141 and then
7142 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7143 then
7144 Error_Msg_N
7145 ("declaration of & hides predefined operator?h?", S);
7146 end if;
7147 end if;
7148 end loop;
7149 end if;
7150 end Enter_Overloaded_Entity;
7152 -----------------------------
7153 -- Check_Untagged_Equality --
7154 -----------------------------
7156 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7157 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7158 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7159 Obj_Decl : Node_Id;
7161 begin
7162 -- This check applies only if we have a subprogram declaration with an
7163 -- untagged record type.
7165 if Nkind (Decl) /= N_Subprogram_Declaration
7166 or else not Is_Record_Type (Typ)
7167 or else Is_Tagged_Type (Typ)
7168 then
7169 return;
7170 end if;
7172 -- In Ada 2012 case, we will output errors or warnings depending on
7173 -- the setting of debug flag -gnatd.E.
7175 if Ada_Version >= Ada_2012 then
7176 Error_Msg_Warn := Debug_Flag_Dot_EE;
7178 -- In earlier versions of Ada, nothing to do unless we are warning on
7179 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7181 else
7182 if not Warn_On_Ada_2012_Compatibility then
7183 return;
7184 end if;
7185 end if;
7187 -- Cases where the type has already been frozen
7189 if Is_Frozen (Typ) then
7191 -- If the type is not declared in a package, or if we are in the body
7192 -- of the package or in some other scope, the new operation is not
7193 -- primitive, and therefore legal, though suspicious. Should we
7194 -- generate a warning in this case ???
7196 if Ekind (Scope (Typ)) /= E_Package
7197 or else Scope (Typ) /= Current_Scope
7198 then
7199 return;
7201 -- If the type is a generic actual (sub)type, the operation is not
7202 -- primitive either because the base type is declared elsewhere.
7204 elsif Is_Generic_Actual_Type (Typ) then
7205 return;
7207 -- Here we have a definite error of declaration after freezing
7209 else
7210 if Ada_Version >= Ada_2012 then
7211 Error_Msg_NE
7212 ("equality operator must be declared before type & is "
7213 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7215 -- In Ada 2012 mode with error turned to warning, output one
7216 -- more warning to warn that the equality operation may not
7217 -- compose. This is the consequence of ignoring the error.
7219 if Error_Msg_Warn then
7220 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7221 end if;
7223 else
7224 Error_Msg_NE
7225 ("equality operator must be declared before type& is "
7226 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7227 end if;
7229 -- If we are in the package body, we could just move the
7230 -- declaration to the package spec, so add a message saying that.
7232 if In_Package_Body (Scope (Typ)) then
7233 if Ada_Version >= Ada_2012 then
7234 Error_Msg_N
7235 ("\move declaration to package spec<<", Eq_Op);
7236 else
7237 Error_Msg_N
7238 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7239 end if;
7241 -- Otherwise try to find the freezing point
7243 else
7244 Obj_Decl := Next (Parent (Typ));
7245 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7246 if Nkind (Obj_Decl) = N_Object_Declaration
7247 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7248 then
7249 -- Freezing point, output warnings
7251 if Ada_Version >= Ada_2012 then
7252 Error_Msg_NE
7253 ("type& is frozen by declaration??", Obj_Decl, Typ);
7254 Error_Msg_N
7255 ("\an equality operator cannot be declared after "
7256 & "this point??",
7257 Obj_Decl);
7258 else
7259 Error_Msg_NE
7260 ("type& is frozen by declaration (Ada 2012)?y?",
7261 Obj_Decl, Typ);
7262 Error_Msg_N
7263 ("\an equality operator cannot be declared after "
7264 & "this point (Ada 2012)?y?",
7265 Obj_Decl);
7266 end if;
7268 exit;
7269 end if;
7271 Next (Obj_Decl);
7272 end loop;
7273 end if;
7274 end if;
7276 -- Here if type is not frozen yet. It is illegal to have a primitive
7277 -- equality declared in the private part if the type is visible.
7279 elsif not In_Same_List (Parent (Typ), Decl)
7280 and then not Is_Limited_Type (Typ)
7281 then
7282 -- Shouldn't we give an RM reference here???
7284 if Ada_Version >= Ada_2012 then
7285 Error_Msg_N
7286 ("equality operator appears too late<<", Eq_Op);
7287 else
7288 Error_Msg_N
7289 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7290 end if;
7292 -- No error detected
7294 else
7295 return;
7296 end if;
7297 end Check_Untagged_Equality;
7299 -----------------------------
7300 -- Find_Corresponding_Spec --
7301 -----------------------------
7303 function Find_Corresponding_Spec
7304 (N : Node_Id;
7305 Post_Error : Boolean := True) return Entity_Id
7307 Spec : constant Node_Id := Specification (N);
7308 Designator : constant Entity_Id := Defining_Entity (Spec);
7310 E : Entity_Id;
7312 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7313 -- Even if fully conformant, a body may depend on a generic actual when
7314 -- the spec does not, or vice versa, in which case they were distinct
7315 -- entities in the generic.
7317 -------------------------------
7318 -- Different_Generic_Profile --
7319 -------------------------------
7321 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7322 F1, F2 : Entity_Id;
7324 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7325 -- Check that the types of corresponding formals have the same
7326 -- generic actual if any. We have to account for subtypes of a
7327 -- generic formal, declared between a spec and a body, which may
7328 -- appear distinct in an instance but matched in the generic, and
7329 -- the subtype may be used either in the spec or the body of the
7330 -- subprogram being checked.
7332 -------------------------
7333 -- Same_Generic_Actual --
7334 -------------------------
7336 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7338 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7339 -- Predicate to check whether S1 is a subtype of S2 in the source
7340 -- of the instance.
7342 -------------------------
7343 -- Is_Declared_Subtype --
7344 -------------------------
7346 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7347 begin
7348 return Comes_From_Source (Parent (S1))
7349 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7350 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7351 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7352 end Is_Declared_Subtype;
7354 -- Start of processing for Same_Generic_Actual
7356 begin
7357 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7358 or else Is_Declared_Subtype (T1, T2)
7359 or else Is_Declared_Subtype (T2, T1);
7360 end Same_Generic_Actual;
7362 -- Start of processing for Different_Generic_Profile
7364 begin
7365 if not In_Instance then
7366 return False;
7368 elsif Ekind (E) = E_Function
7369 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7370 then
7371 return True;
7372 end if;
7374 F1 := First_Formal (Designator);
7375 F2 := First_Formal (E);
7376 while Present (F1) loop
7377 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7378 return True;
7379 end if;
7381 Next_Formal (F1);
7382 Next_Formal (F2);
7383 end loop;
7385 return False;
7386 end Different_Generic_Profile;
7388 -- Start of processing for Find_Corresponding_Spec
7390 begin
7391 E := Current_Entity (Designator);
7392 while Present (E) loop
7394 -- We are looking for a matching spec. It must have the same scope,
7395 -- and the same name, and either be type conformant, or be the case
7396 -- of a library procedure spec and its body (which belong to one
7397 -- another regardless of whether they are type conformant or not).
7399 if Scope (E) = Current_Scope then
7400 if Current_Scope = Standard_Standard
7401 or else (Ekind (E) = Ekind (Designator)
7402 and then Type_Conformant (E, Designator))
7403 then
7404 -- Within an instantiation, we know that spec and body are
7405 -- subtype conformant, because they were subtype conformant in
7406 -- the generic. We choose the subtype-conformant entity here as
7407 -- well, to resolve spurious ambiguities in the instance that
7408 -- were not present in the generic (i.e. when two different
7409 -- types are given the same actual). If we are looking for a
7410 -- spec to match a body, full conformance is expected.
7412 if In_Instance then
7414 -- Inherit the convention and "ghostness" of the matching
7415 -- spec to ensure proper full and subtype conformance.
7417 Set_Convention (Designator, Convention (E));
7419 if Is_Ghost_Entity (E) then
7420 Set_Is_Ghost_Entity (Designator);
7421 end if;
7423 -- Skip past subprogram bodies and subprogram renamings that
7424 -- may appear to have a matching spec, but that aren't fully
7425 -- conformant with it. That can occur in cases where an
7426 -- actual type causes unrelated homographs in the instance.
7428 if Nkind_In (N, N_Subprogram_Body,
7429 N_Subprogram_Renaming_Declaration)
7430 and then Present (Homonym (E))
7431 and then not Fully_Conformant (Designator, E)
7432 then
7433 goto Next_Entity;
7435 elsif not Subtype_Conformant (Designator, E) then
7436 goto Next_Entity;
7438 elsif Different_Generic_Profile (E) then
7439 goto Next_Entity;
7440 end if;
7441 end if;
7443 -- Ada 2012 (AI05-0165): For internally generated bodies of
7444 -- null procedures locate the internally generated spec. We
7445 -- enforce mode conformance since a tagged type may inherit
7446 -- from interfaces several null primitives which differ only
7447 -- in the mode of the formals.
7449 if not (Comes_From_Source (E))
7450 and then Is_Null_Procedure (E)
7451 and then not Mode_Conformant (Designator, E)
7452 then
7453 null;
7455 -- For null procedures coming from source that are completions,
7456 -- analysis of the generated body will establish the link.
7458 elsif Comes_From_Source (E)
7459 and then Nkind (Spec) = N_Procedure_Specification
7460 and then Null_Present (Spec)
7461 then
7462 return E;
7464 -- Expression functions can be completions, but cannot be
7465 -- completed by an explicit body.
7467 elsif Comes_From_Source (E)
7468 and then Comes_From_Source (N)
7469 and then Nkind (N) = N_Subprogram_Body
7470 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
7471 N_Expression_Function
7472 then
7473 Error_Msg_Sloc := Sloc (E);
7474 Error_Msg_N ("body conflicts with expression function#", N);
7475 return Empty;
7477 elsif not Has_Completion (E) then
7478 if Nkind (N) /= N_Subprogram_Body_Stub then
7479 Set_Corresponding_Spec (N, E);
7480 end if;
7482 Set_Has_Completion (E);
7483 return E;
7485 elsif Nkind (Parent (N)) = N_Subunit then
7487 -- If this is the proper body of a subunit, the completion
7488 -- flag is set when analyzing the stub.
7490 return E;
7492 -- If E is an internal function with a controlling result that
7493 -- was created for an operation inherited by a null extension,
7494 -- it may be overridden by a body without a previous spec (one
7495 -- more reason why these should be shunned). In that case we
7496 -- remove the generated body if present, because the current
7497 -- one is the explicit overriding.
7499 elsif Ekind (E) = E_Function
7500 and then Ada_Version >= Ada_2005
7501 and then not Comes_From_Source (E)
7502 and then Has_Controlling_Result (E)
7503 and then Is_Null_Extension (Etype (E))
7504 and then Comes_From_Source (Spec)
7505 then
7506 Set_Has_Completion (E, False);
7508 if Expander_Active
7509 and then Nkind (Parent (E)) = N_Function_Specification
7510 then
7511 Remove
7512 (Unit_Declaration_Node
7513 (Corresponding_Body (Unit_Declaration_Node (E))));
7515 return E;
7517 -- If expansion is disabled, or if the wrapper function has
7518 -- not been generated yet, this a late body overriding an
7519 -- inherited operation, or it is an overriding by some other
7520 -- declaration before the controlling result is frozen. In
7521 -- either case this is a declaration of a new entity.
7523 else
7524 return Empty;
7525 end if;
7527 -- If the body already exists, then this is an error unless
7528 -- the previous declaration is the implicit declaration of a
7529 -- derived subprogram. It is also legal for an instance to
7530 -- contain type conformant overloadable declarations (but the
7531 -- generic declaration may not), per 8.3(26/2).
7533 elsif No (Alias (E))
7534 and then not Is_Intrinsic_Subprogram (E)
7535 and then not In_Instance
7536 and then Post_Error
7537 then
7538 Error_Msg_Sloc := Sloc (E);
7540 if Is_Imported (E) then
7541 Error_Msg_NE
7542 ("body not allowed for imported subprogram & declared#",
7543 N, E);
7544 else
7545 Error_Msg_NE ("duplicate body for & declared#", N, E);
7546 end if;
7547 end if;
7549 -- Child units cannot be overloaded, so a conformance mismatch
7550 -- between body and a previous spec is an error.
7552 elsif Is_Child_Unit (E)
7553 and then
7554 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7555 and then
7556 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7557 N_Compilation_Unit
7558 and then Post_Error
7559 then
7560 Error_Msg_N
7561 ("body of child unit does not match previous declaration", N);
7562 end if;
7563 end if;
7565 <<Next_Entity>>
7566 E := Homonym (E);
7567 end loop;
7569 -- On exit, we know that no previous declaration of subprogram exists
7571 return Empty;
7572 end Find_Corresponding_Spec;
7574 ----------------------
7575 -- Fully_Conformant --
7576 ----------------------
7578 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7579 Result : Boolean;
7580 begin
7581 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7582 return Result;
7583 end Fully_Conformant;
7585 ----------------------------------
7586 -- Fully_Conformant_Expressions --
7587 ----------------------------------
7589 function Fully_Conformant_Expressions
7590 (Given_E1 : Node_Id;
7591 Given_E2 : Node_Id) return Boolean
7593 E1 : constant Node_Id := Original_Node (Given_E1);
7594 E2 : constant Node_Id := Original_Node (Given_E2);
7595 -- We always test conformance on original nodes, since it is possible
7596 -- for analysis and/or expansion to make things look as though they
7597 -- conform when they do not, e.g. by converting 1+2 into 3.
7599 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7600 renames Fully_Conformant_Expressions;
7602 function FCL (L1, L2 : List_Id) return Boolean;
7603 -- Compare elements of two lists for conformance. Elements have to be
7604 -- conformant, and actuals inserted as default parameters do not match
7605 -- explicit actuals with the same value.
7607 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7608 -- Compare an operator node with a function call
7610 ---------
7611 -- FCL --
7612 ---------
7614 function FCL (L1, L2 : List_Id) return Boolean is
7615 N1, N2 : Node_Id;
7617 begin
7618 if L1 = No_List then
7619 N1 := Empty;
7620 else
7621 N1 := First (L1);
7622 end if;
7624 if L2 = No_List then
7625 N2 := Empty;
7626 else
7627 N2 := First (L2);
7628 end if;
7630 -- Compare two lists, skipping rewrite insertions (we want to compare
7631 -- the original trees, not the expanded versions).
7633 loop
7634 if Is_Rewrite_Insertion (N1) then
7635 Next (N1);
7636 elsif Is_Rewrite_Insertion (N2) then
7637 Next (N2);
7638 elsif No (N1) then
7639 return No (N2);
7640 elsif No (N2) then
7641 return False;
7642 elsif not FCE (N1, N2) then
7643 return False;
7644 else
7645 Next (N1);
7646 Next (N2);
7647 end if;
7648 end loop;
7649 end FCL;
7651 ---------
7652 -- FCO --
7653 ---------
7655 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7656 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7657 Act : Node_Id;
7659 begin
7660 if No (Actuals)
7661 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7662 then
7663 return False;
7665 else
7666 Act := First (Actuals);
7668 if Nkind (Op_Node) in N_Binary_Op then
7669 if not FCE (Left_Opnd (Op_Node), Act) then
7670 return False;
7671 end if;
7673 Next (Act);
7674 end if;
7676 return Present (Act)
7677 and then FCE (Right_Opnd (Op_Node), Act)
7678 and then No (Next (Act));
7679 end if;
7680 end FCO;
7682 -- Start of processing for Fully_Conformant_Expressions
7684 begin
7685 -- Non-conformant if paren count does not match. Note: if some idiot
7686 -- complains that we don't do this right for more than 3 levels of
7687 -- parentheses, they will be treated with the respect they deserve.
7689 if Paren_Count (E1) /= Paren_Count (E2) then
7690 return False;
7692 -- If same entities are referenced, then they are conformant even if
7693 -- they have different forms (RM 8.3.1(19-20)).
7695 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7696 if Present (Entity (E1)) then
7697 return Entity (E1) = Entity (E2)
7698 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7699 and then Ekind (Entity (E1)) = E_Discriminant
7700 and then Ekind (Entity (E2)) = E_In_Parameter);
7702 elsif Nkind (E1) = N_Expanded_Name
7703 and then Nkind (E2) = N_Expanded_Name
7704 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7705 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7706 then
7707 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7709 else
7710 -- Identifiers in component associations don't always have
7711 -- entities, but their names must conform.
7713 return Nkind (E1) = N_Identifier
7714 and then Nkind (E2) = N_Identifier
7715 and then Chars (E1) = Chars (E2);
7716 end if;
7718 elsif Nkind (E1) = N_Character_Literal
7719 and then Nkind (E2) = N_Expanded_Name
7720 then
7721 return Nkind (Selector_Name (E2)) = N_Character_Literal
7722 and then Chars (E1) = Chars (Selector_Name (E2));
7724 elsif Nkind (E2) = N_Character_Literal
7725 and then Nkind (E1) = N_Expanded_Name
7726 then
7727 return Nkind (Selector_Name (E1)) = N_Character_Literal
7728 and then Chars (E2) = Chars (Selector_Name (E1));
7730 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7731 return FCO (E1, E2);
7733 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7734 return FCO (E2, E1);
7736 -- Otherwise we must have the same syntactic entity
7738 elsif Nkind (E1) /= Nkind (E2) then
7739 return False;
7741 -- At this point, we specialize by node type
7743 else
7744 case Nkind (E1) is
7746 when N_Aggregate =>
7747 return
7748 FCL (Expressions (E1), Expressions (E2))
7749 and then
7750 FCL (Component_Associations (E1),
7751 Component_Associations (E2));
7753 when N_Allocator =>
7754 if Nkind (Expression (E1)) = N_Qualified_Expression
7755 or else
7756 Nkind (Expression (E2)) = N_Qualified_Expression
7757 then
7758 return FCE (Expression (E1), Expression (E2));
7760 -- Check that the subtype marks and any constraints
7761 -- are conformant
7763 else
7764 declare
7765 Indic1 : constant Node_Id := Expression (E1);
7766 Indic2 : constant Node_Id := Expression (E2);
7767 Elt1 : Node_Id;
7768 Elt2 : Node_Id;
7770 begin
7771 if Nkind (Indic1) /= N_Subtype_Indication then
7772 return
7773 Nkind (Indic2) /= N_Subtype_Indication
7774 and then Entity (Indic1) = Entity (Indic2);
7776 elsif Nkind (Indic2) /= N_Subtype_Indication then
7777 return
7778 Nkind (Indic1) /= N_Subtype_Indication
7779 and then Entity (Indic1) = Entity (Indic2);
7781 else
7782 if Entity (Subtype_Mark (Indic1)) /=
7783 Entity (Subtype_Mark (Indic2))
7784 then
7785 return False;
7786 end if;
7788 Elt1 := First (Constraints (Constraint (Indic1)));
7789 Elt2 := First (Constraints (Constraint (Indic2)));
7790 while Present (Elt1) and then Present (Elt2) loop
7791 if not FCE (Elt1, Elt2) then
7792 return False;
7793 end if;
7795 Next (Elt1);
7796 Next (Elt2);
7797 end loop;
7799 return True;
7800 end if;
7801 end;
7802 end if;
7804 when N_Attribute_Reference =>
7805 return
7806 Attribute_Name (E1) = Attribute_Name (E2)
7807 and then FCL (Expressions (E1), Expressions (E2));
7809 when N_Binary_Op =>
7810 return
7811 Entity (E1) = Entity (E2)
7812 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7813 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7815 when N_Short_Circuit | N_Membership_Test =>
7816 return
7817 FCE (Left_Opnd (E1), Left_Opnd (E2))
7818 and then
7819 FCE (Right_Opnd (E1), Right_Opnd (E2));
7821 when N_Case_Expression =>
7822 declare
7823 Alt1 : Node_Id;
7824 Alt2 : Node_Id;
7826 begin
7827 if not FCE (Expression (E1), Expression (E2)) then
7828 return False;
7830 else
7831 Alt1 := First (Alternatives (E1));
7832 Alt2 := First (Alternatives (E2));
7833 loop
7834 if Present (Alt1) /= Present (Alt2) then
7835 return False;
7836 elsif No (Alt1) then
7837 return True;
7838 end if;
7840 if not FCE (Expression (Alt1), Expression (Alt2))
7841 or else not FCL (Discrete_Choices (Alt1),
7842 Discrete_Choices (Alt2))
7843 then
7844 return False;
7845 end if;
7847 Next (Alt1);
7848 Next (Alt2);
7849 end loop;
7850 end if;
7851 end;
7853 when N_Character_Literal =>
7854 return
7855 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7857 when N_Component_Association =>
7858 return
7859 FCL (Choices (E1), Choices (E2))
7860 and then
7861 FCE (Expression (E1), Expression (E2));
7863 when N_Explicit_Dereference =>
7864 return
7865 FCE (Prefix (E1), Prefix (E2));
7867 when N_Extension_Aggregate =>
7868 return
7869 FCL (Expressions (E1), Expressions (E2))
7870 and then Null_Record_Present (E1) =
7871 Null_Record_Present (E2)
7872 and then FCL (Component_Associations (E1),
7873 Component_Associations (E2));
7875 when N_Function_Call =>
7876 return
7877 FCE (Name (E1), Name (E2))
7878 and then
7879 FCL (Parameter_Associations (E1),
7880 Parameter_Associations (E2));
7882 when N_If_Expression =>
7883 return
7884 FCL (Expressions (E1), Expressions (E2));
7886 when N_Indexed_Component =>
7887 return
7888 FCE (Prefix (E1), Prefix (E2))
7889 and then
7890 FCL (Expressions (E1), Expressions (E2));
7892 when N_Integer_Literal =>
7893 return (Intval (E1) = Intval (E2));
7895 when N_Null =>
7896 return True;
7898 when N_Operator_Symbol =>
7899 return
7900 Chars (E1) = Chars (E2);
7902 when N_Others_Choice =>
7903 return True;
7905 when N_Parameter_Association =>
7906 return
7907 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7908 and then FCE (Explicit_Actual_Parameter (E1),
7909 Explicit_Actual_Parameter (E2));
7911 when N_Qualified_Expression =>
7912 return
7913 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7914 and then
7915 FCE (Expression (E1), Expression (E2));
7917 when N_Quantified_Expression =>
7918 if not FCE (Condition (E1), Condition (E2)) then
7919 return False;
7920 end if;
7922 if Present (Loop_Parameter_Specification (E1))
7923 and then Present (Loop_Parameter_Specification (E2))
7924 then
7925 declare
7926 L1 : constant Node_Id :=
7927 Loop_Parameter_Specification (E1);
7928 L2 : constant Node_Id :=
7929 Loop_Parameter_Specification (E2);
7931 begin
7932 return
7933 Reverse_Present (L1) = Reverse_Present (L2)
7934 and then
7935 FCE (Defining_Identifier (L1),
7936 Defining_Identifier (L2))
7937 and then
7938 FCE (Discrete_Subtype_Definition (L1),
7939 Discrete_Subtype_Definition (L2));
7940 end;
7942 elsif Present (Iterator_Specification (E1))
7943 and then Present (Iterator_Specification (E2))
7944 then
7945 declare
7946 I1 : constant Node_Id := Iterator_Specification (E1);
7947 I2 : constant Node_Id := Iterator_Specification (E2);
7949 begin
7950 return
7951 FCE (Defining_Identifier (I1),
7952 Defining_Identifier (I2))
7953 and then
7954 Of_Present (I1) = Of_Present (I2)
7955 and then
7956 Reverse_Present (I1) = Reverse_Present (I2)
7957 and then FCE (Name (I1), Name (I2))
7958 and then FCE (Subtype_Indication (I1),
7959 Subtype_Indication (I2));
7960 end;
7962 -- The quantified expressions used different specifications to
7963 -- walk their respective ranges.
7965 else
7966 return False;
7967 end if;
7969 when N_Range =>
7970 return
7971 FCE (Low_Bound (E1), Low_Bound (E2))
7972 and then
7973 FCE (High_Bound (E1), High_Bound (E2));
7975 when N_Real_Literal =>
7976 return (Realval (E1) = Realval (E2));
7978 when N_Selected_Component =>
7979 return
7980 FCE (Prefix (E1), Prefix (E2))
7981 and then
7982 FCE (Selector_Name (E1), Selector_Name (E2));
7984 when N_Slice =>
7985 return
7986 FCE (Prefix (E1), Prefix (E2))
7987 and then
7988 FCE (Discrete_Range (E1), Discrete_Range (E2));
7990 when N_String_Literal =>
7991 declare
7992 S1 : constant String_Id := Strval (E1);
7993 S2 : constant String_Id := Strval (E2);
7994 L1 : constant Nat := String_Length (S1);
7995 L2 : constant Nat := String_Length (S2);
7997 begin
7998 if L1 /= L2 then
7999 return False;
8001 else
8002 for J in 1 .. L1 loop
8003 if Get_String_Char (S1, J) /=
8004 Get_String_Char (S2, J)
8005 then
8006 return False;
8007 end if;
8008 end loop;
8010 return True;
8011 end if;
8012 end;
8014 when N_Type_Conversion =>
8015 return
8016 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8017 and then
8018 FCE (Expression (E1), Expression (E2));
8020 when N_Unary_Op =>
8021 return
8022 Entity (E1) = Entity (E2)
8023 and then
8024 FCE (Right_Opnd (E1), Right_Opnd (E2));
8026 when N_Unchecked_Type_Conversion =>
8027 return
8028 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8029 and then
8030 FCE (Expression (E1), Expression (E2));
8032 -- All other node types cannot appear in this context. Strictly
8033 -- we should raise a fatal internal error. Instead we just ignore
8034 -- the nodes. This means that if anyone makes a mistake in the
8035 -- expander and mucks an expression tree irretrievably, the result
8036 -- will be a failure to detect a (probably very obscure) case
8037 -- of non-conformance, which is better than bombing on some
8038 -- case where two expressions do in fact conform.
8040 when others =>
8041 return True;
8043 end case;
8044 end if;
8045 end Fully_Conformant_Expressions;
8047 ----------------------------------------
8048 -- Fully_Conformant_Discrete_Subtypes --
8049 ----------------------------------------
8051 function Fully_Conformant_Discrete_Subtypes
8052 (Given_S1 : Node_Id;
8053 Given_S2 : Node_Id) return Boolean
8055 S1 : constant Node_Id := Original_Node (Given_S1);
8056 S2 : constant Node_Id := Original_Node (Given_S2);
8058 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8059 -- Special-case for a bound given by a discriminant, which in the body
8060 -- is replaced with the discriminal of the enclosing type.
8062 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8063 -- Check both bounds
8065 -----------------------
8066 -- Conforming_Bounds --
8067 -----------------------
8069 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8070 begin
8071 if Is_Entity_Name (B1)
8072 and then Is_Entity_Name (B2)
8073 and then Ekind (Entity (B1)) = E_Discriminant
8074 then
8075 return Chars (B1) = Chars (B2);
8077 else
8078 return Fully_Conformant_Expressions (B1, B2);
8079 end if;
8080 end Conforming_Bounds;
8082 -----------------------
8083 -- Conforming_Ranges --
8084 -----------------------
8086 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8087 begin
8088 return
8089 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8090 and then
8091 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8092 end Conforming_Ranges;
8094 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8096 begin
8097 if Nkind (S1) /= Nkind (S2) then
8098 return False;
8100 elsif Is_Entity_Name (S1) then
8101 return Entity (S1) = Entity (S2);
8103 elsif Nkind (S1) = N_Range then
8104 return Conforming_Ranges (S1, S2);
8106 elsif Nkind (S1) = N_Subtype_Indication then
8107 return
8108 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8109 and then
8110 Conforming_Ranges
8111 (Range_Expression (Constraint (S1)),
8112 Range_Expression (Constraint (S2)));
8113 else
8114 return True;
8115 end if;
8116 end Fully_Conformant_Discrete_Subtypes;
8118 --------------------
8119 -- Install_Entity --
8120 --------------------
8122 procedure Install_Entity (E : Entity_Id) is
8123 Prev : constant Entity_Id := Current_Entity (E);
8124 begin
8125 Set_Is_Immediately_Visible (E);
8126 Set_Current_Entity (E);
8127 Set_Homonym (E, Prev);
8128 end Install_Entity;
8130 ---------------------
8131 -- Install_Formals --
8132 ---------------------
8134 procedure Install_Formals (Id : Entity_Id) is
8135 F : Entity_Id;
8136 begin
8137 F := First_Formal (Id);
8138 while Present (F) loop
8139 Install_Entity (F);
8140 Next_Formal (F);
8141 end loop;
8142 end Install_Formals;
8144 -----------------------------
8145 -- Is_Interface_Conformant --
8146 -----------------------------
8148 function Is_Interface_Conformant
8149 (Tagged_Type : Entity_Id;
8150 Iface_Prim : Entity_Id;
8151 Prim : Entity_Id) return Boolean
8153 -- The operation may in fact be an inherited (implicit) operation
8154 -- rather than the original interface primitive, so retrieve the
8155 -- ultimate ancestor.
8157 Iface : constant Entity_Id :=
8158 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8159 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8161 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8162 -- Return the controlling formal of Prim
8164 ------------------------
8165 -- Controlling_Formal --
8166 ------------------------
8168 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8169 E : Entity_Id;
8171 begin
8172 E := First_Entity (Prim);
8173 while Present (E) loop
8174 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8175 return E;
8176 end if;
8178 Next_Entity (E);
8179 end loop;
8181 return Empty;
8182 end Controlling_Formal;
8184 -- Local variables
8186 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8187 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8189 -- Start of processing for Is_Interface_Conformant
8191 begin
8192 pragma Assert (Is_Subprogram (Iface_Prim)
8193 and then Is_Subprogram (Prim)
8194 and then Is_Dispatching_Operation (Iface_Prim)
8195 and then Is_Dispatching_Operation (Prim));
8197 pragma Assert (Is_Interface (Iface)
8198 or else (Present (Alias (Iface_Prim))
8199 and then
8200 Is_Interface
8201 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8203 if Prim = Iface_Prim
8204 or else not Is_Subprogram (Prim)
8205 or else Ekind (Prim) /= Ekind (Iface_Prim)
8206 or else not Is_Dispatching_Operation (Prim)
8207 or else Scope (Prim) /= Scope (Tagged_Type)
8208 or else No (Typ)
8209 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8210 or else not Primitive_Names_Match (Iface_Prim, Prim)
8211 then
8212 return False;
8214 -- The mode of the controlling formals must match
8216 elsif Present (Iface_Ctrl_F)
8217 and then Present (Prim_Ctrl_F)
8218 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8219 then
8220 return False;
8222 -- Case of a procedure, or a function whose result type matches the
8223 -- result type of the interface primitive, or a function that has no
8224 -- controlling result (I or access I).
8226 elsif Ekind (Iface_Prim) = E_Procedure
8227 or else Etype (Prim) = Etype (Iface_Prim)
8228 or else not Has_Controlling_Result (Prim)
8229 then
8230 return Type_Conformant
8231 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8233 -- Case of a function returning an interface, or an access to one. Check
8234 -- that the return types correspond.
8236 elsif Implements_Interface (Typ, Iface) then
8237 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8239 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8240 then
8241 return False;
8242 else
8243 return
8244 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8245 Skip_Controlling_Formals => True);
8246 end if;
8248 else
8249 return False;
8250 end if;
8251 end Is_Interface_Conformant;
8253 ---------------------------------
8254 -- Is_Non_Overriding_Operation --
8255 ---------------------------------
8257 function Is_Non_Overriding_Operation
8258 (Prev_E : Entity_Id;
8259 New_E : Entity_Id) return Boolean
8261 Formal : Entity_Id;
8262 F_Typ : Entity_Id;
8263 G_Typ : Entity_Id := Empty;
8265 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8266 -- If F_Type is a derived type associated with a generic actual subtype,
8267 -- then return its Generic_Parent_Type attribute, else return Empty.
8269 function Types_Correspond
8270 (P_Type : Entity_Id;
8271 N_Type : Entity_Id) return Boolean;
8272 -- Returns true if and only if the types (or designated types in the
8273 -- case of anonymous access types) are the same or N_Type is derived
8274 -- directly or indirectly from P_Type.
8276 -----------------------------
8277 -- Get_Generic_Parent_Type --
8278 -----------------------------
8280 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8281 G_Typ : Entity_Id;
8282 Defn : Node_Id;
8283 Indic : Node_Id;
8285 begin
8286 if Is_Derived_Type (F_Typ)
8287 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8288 then
8289 -- The tree must be traversed to determine the parent subtype in
8290 -- the generic unit, which unfortunately isn't always available
8291 -- via semantic attributes. ??? (Note: The use of Original_Node
8292 -- is needed for cases where a full derived type has been
8293 -- rewritten.)
8295 -- If the parent type is a scalar type, the derivation creates
8296 -- an anonymous base type for it, and the source type is its
8297 -- first subtype.
8299 if Is_Scalar_Type (F_Typ)
8300 and then not Comes_From_Source (F_Typ)
8301 then
8302 Defn :=
8303 Type_Definition
8304 (Original_Node (Parent (First_Subtype (F_Typ))));
8305 else
8306 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8307 end if;
8308 if Nkind (Defn) = N_Derived_Type_Definition then
8309 Indic := Subtype_Indication (Defn);
8311 if Nkind (Indic) = N_Subtype_Indication then
8312 G_Typ := Entity (Subtype_Mark (Indic));
8313 else
8314 G_Typ := Entity (Indic);
8315 end if;
8317 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8318 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8319 then
8320 return Generic_Parent_Type (Parent (G_Typ));
8321 end if;
8322 end if;
8323 end if;
8325 return Empty;
8326 end Get_Generic_Parent_Type;
8328 ----------------------
8329 -- Types_Correspond --
8330 ----------------------
8332 function Types_Correspond
8333 (P_Type : Entity_Id;
8334 N_Type : Entity_Id) return Boolean
8336 Prev_Type : Entity_Id := Base_Type (P_Type);
8337 New_Type : Entity_Id := Base_Type (N_Type);
8339 begin
8340 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8341 Prev_Type := Designated_Type (Prev_Type);
8342 end if;
8344 if Ekind (New_Type) = E_Anonymous_Access_Type then
8345 New_Type := Designated_Type (New_Type);
8346 end if;
8348 if Prev_Type = New_Type then
8349 return True;
8351 elsif not Is_Class_Wide_Type (New_Type) then
8352 while Etype (New_Type) /= New_Type loop
8353 New_Type := Etype (New_Type);
8355 if New_Type = Prev_Type then
8356 return True;
8357 end if;
8358 end loop;
8359 end if;
8360 return False;
8361 end Types_Correspond;
8363 -- Start of processing for Is_Non_Overriding_Operation
8365 begin
8366 -- In the case where both operations are implicit derived subprograms
8367 -- then neither overrides the other. This can only occur in certain
8368 -- obscure cases (e.g., derivation from homographs created in a generic
8369 -- instantiation).
8371 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8372 return True;
8374 elsif Ekind (Current_Scope) = E_Package
8375 and then Is_Generic_Instance (Current_Scope)
8376 and then In_Private_Part (Current_Scope)
8377 and then Comes_From_Source (New_E)
8378 then
8379 -- We examine the formals and result type of the inherited operation,
8380 -- to determine whether their type is derived from (the instance of)
8381 -- a generic type. The first such formal or result type is the one
8382 -- tested.
8384 Formal := First_Formal (Prev_E);
8385 while Present (Formal) loop
8386 F_Typ := Base_Type (Etype (Formal));
8388 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8389 F_Typ := Designated_Type (F_Typ);
8390 end if;
8392 G_Typ := Get_Generic_Parent_Type (F_Typ);
8393 exit when Present (G_Typ);
8395 Next_Formal (Formal);
8396 end loop;
8398 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8399 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8400 end if;
8402 if No (G_Typ) then
8403 return False;
8404 end if;
8406 -- If the generic type is a private type, then the original operation
8407 -- was not overriding in the generic, because there was no primitive
8408 -- operation to override.
8410 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8411 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8412 N_Formal_Private_Type_Definition
8413 then
8414 return True;
8416 -- The generic parent type is the ancestor of a formal derived
8417 -- type declaration. We need to check whether it has a primitive
8418 -- operation that should be overridden by New_E in the generic.
8420 else
8421 declare
8422 P_Formal : Entity_Id;
8423 N_Formal : Entity_Id;
8424 P_Typ : Entity_Id;
8425 N_Typ : Entity_Id;
8426 P_Prim : Entity_Id;
8427 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8429 begin
8430 while Present (Prim_Elt) loop
8431 P_Prim := Node (Prim_Elt);
8433 if Chars (P_Prim) = Chars (New_E)
8434 and then Ekind (P_Prim) = Ekind (New_E)
8435 then
8436 P_Formal := First_Formal (P_Prim);
8437 N_Formal := First_Formal (New_E);
8438 while Present (P_Formal) and then Present (N_Formal) loop
8439 P_Typ := Etype (P_Formal);
8440 N_Typ := Etype (N_Formal);
8442 if not Types_Correspond (P_Typ, N_Typ) then
8443 exit;
8444 end if;
8446 Next_Entity (P_Formal);
8447 Next_Entity (N_Formal);
8448 end loop;
8450 -- Found a matching primitive operation belonging to the
8451 -- formal ancestor type, so the new subprogram is
8452 -- overriding.
8454 if No (P_Formal)
8455 and then No (N_Formal)
8456 and then (Ekind (New_E) /= E_Function
8457 or else
8458 Types_Correspond
8459 (Etype (P_Prim), Etype (New_E)))
8460 then
8461 return False;
8462 end if;
8463 end if;
8465 Next_Elmt (Prim_Elt);
8466 end loop;
8468 -- If no match found, then the new subprogram does not override
8469 -- in the generic (nor in the instance).
8471 -- If the type in question is not abstract, and the subprogram
8472 -- is, this will be an error if the new operation is in the
8473 -- private part of the instance. Emit a warning now, which will
8474 -- make the subsequent error message easier to understand.
8476 if not Is_Abstract_Type (F_Typ)
8477 and then Is_Abstract_Subprogram (Prev_E)
8478 and then In_Private_Part (Current_Scope)
8479 then
8480 Error_Msg_Node_2 := F_Typ;
8481 Error_Msg_NE
8482 ("private operation& in generic unit does not override "
8483 & "any primitive operation of& (RM 12.3 (18))??",
8484 New_E, New_E);
8485 end if;
8487 return True;
8488 end;
8489 end if;
8490 else
8491 return False;
8492 end if;
8493 end Is_Non_Overriding_Operation;
8495 -------------------------------------
8496 -- List_Inherited_Pre_Post_Aspects --
8497 -------------------------------------
8499 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8500 begin
8501 if Opt.List_Inherited_Aspects
8502 and then Is_Subprogram_Or_Generic_Subprogram (E)
8503 then
8504 declare
8505 Subps : constant Subprogram_List := Inherited_Subprograms (E);
8506 Items : Node_Id;
8507 Prag : Node_Id;
8509 begin
8510 for Index in Subps'Range loop
8511 Items := Contract (Subps (Index));
8513 if Present (Items) then
8514 Prag := Pre_Post_Conditions (Items);
8515 while Present (Prag) loop
8516 Error_Msg_Sloc := Sloc (Prag);
8518 if Class_Present (Prag)
8519 and then not Split_PPC (Prag)
8520 then
8521 if Pragma_Name (Prag) = Name_Precondition then
8522 Error_Msg_N
8523 ("info: & inherits `Pre''Class` aspect from "
8524 & "#?L?", E);
8525 else
8526 Error_Msg_N
8527 ("info: & inherits `Post''Class` aspect from "
8528 & "#?L?", E);
8529 end if;
8530 end if;
8532 Prag := Next_Pragma (Prag);
8533 end loop;
8534 end if;
8535 end loop;
8536 end;
8537 end if;
8538 end List_Inherited_Pre_Post_Aspects;
8540 ------------------------------
8541 -- Make_Inequality_Operator --
8542 ------------------------------
8544 -- S is the defining identifier of an equality operator. We build a
8545 -- subprogram declaration with the right signature. This operation is
8546 -- intrinsic, because it is always expanded as the negation of the
8547 -- call to the equality function.
8549 procedure Make_Inequality_Operator (S : Entity_Id) is
8550 Loc : constant Source_Ptr := Sloc (S);
8551 Decl : Node_Id;
8552 Formals : List_Id;
8553 Op_Name : Entity_Id;
8555 FF : constant Entity_Id := First_Formal (S);
8556 NF : constant Entity_Id := Next_Formal (FF);
8558 begin
8559 -- Check that equality was properly defined, ignore call if not
8561 if No (NF) then
8562 return;
8563 end if;
8565 declare
8566 A : constant Entity_Id :=
8567 Make_Defining_Identifier (Sloc (FF),
8568 Chars => Chars (FF));
8570 B : constant Entity_Id :=
8571 Make_Defining_Identifier (Sloc (NF),
8572 Chars => Chars (NF));
8574 begin
8575 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8577 Formals := New_List (
8578 Make_Parameter_Specification (Loc,
8579 Defining_Identifier => A,
8580 Parameter_Type =>
8581 New_Occurrence_Of (Etype (First_Formal (S)),
8582 Sloc (Etype (First_Formal (S))))),
8584 Make_Parameter_Specification (Loc,
8585 Defining_Identifier => B,
8586 Parameter_Type =>
8587 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8588 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8590 Decl :=
8591 Make_Subprogram_Declaration (Loc,
8592 Specification =>
8593 Make_Function_Specification (Loc,
8594 Defining_Unit_Name => Op_Name,
8595 Parameter_Specifications => Formals,
8596 Result_Definition =>
8597 New_Occurrence_Of (Standard_Boolean, Loc)));
8599 -- Insert inequality right after equality if it is explicit or after
8600 -- the derived type when implicit. These entities are created only
8601 -- for visibility purposes, and eventually replaced in the course
8602 -- of expansion, so they do not need to be attached to the tree and
8603 -- seen by the back-end. Keeping them internal also avoids spurious
8604 -- freezing problems. The declaration is inserted in the tree for
8605 -- analysis, and removed afterwards. If the equality operator comes
8606 -- from an explicit declaration, attach the inequality immediately
8607 -- after. Else the equality is inherited from a derived type
8608 -- declaration, so insert inequality after that declaration.
8610 if No (Alias (S)) then
8611 Insert_After (Unit_Declaration_Node (S), Decl);
8612 elsif Is_List_Member (Parent (S)) then
8613 Insert_After (Parent (S), Decl);
8614 else
8615 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8616 end if;
8618 Mark_Rewrite_Insertion (Decl);
8619 Set_Is_Intrinsic_Subprogram (Op_Name);
8620 Analyze (Decl);
8621 Remove (Decl);
8622 Set_Has_Completion (Op_Name);
8623 Set_Corresponding_Equality (Op_Name, S);
8624 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8625 end;
8626 end Make_Inequality_Operator;
8628 ----------------------
8629 -- May_Need_Actuals --
8630 ----------------------
8632 procedure May_Need_Actuals (Fun : Entity_Id) is
8633 F : Entity_Id;
8634 B : Boolean;
8636 begin
8637 F := First_Formal (Fun);
8638 B := True;
8639 while Present (F) loop
8640 if No (Default_Value (F)) then
8641 B := False;
8642 exit;
8643 end if;
8645 Next_Formal (F);
8646 end loop;
8648 Set_Needs_No_Actuals (Fun, B);
8649 end May_Need_Actuals;
8651 ---------------------
8652 -- Mode_Conformant --
8653 ---------------------
8655 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8656 Result : Boolean;
8657 begin
8658 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8659 return Result;
8660 end Mode_Conformant;
8662 ---------------------------
8663 -- New_Overloaded_Entity --
8664 ---------------------------
8666 procedure New_Overloaded_Entity
8667 (S : Entity_Id;
8668 Derived_Type : Entity_Id := Empty)
8670 Overridden_Subp : Entity_Id := Empty;
8671 -- Set if the current scope has an operation that is type-conformant
8672 -- with S, and becomes hidden by S.
8674 Is_Primitive_Subp : Boolean;
8675 -- Set to True if the new subprogram is primitive
8677 E : Entity_Id;
8678 -- Entity that S overrides
8680 Prev_Vis : Entity_Id := Empty;
8681 -- Predecessor of E in Homonym chain
8683 procedure Check_For_Primitive_Subprogram
8684 (Is_Primitive : out Boolean;
8685 Is_Overriding : Boolean := False);
8686 -- If the subprogram being analyzed is a primitive operation of the type
8687 -- of a formal or result, set the Has_Primitive_Operations flag on the
8688 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8689 -- corresponding flag on the entity itself for later use.
8691 procedure Check_Synchronized_Overriding
8692 (Def_Id : Entity_Id;
8693 Overridden_Subp : out Entity_Id);
8694 -- First determine if Def_Id is an entry or a subprogram either defined
8695 -- in the scope of a task or protected type, or is a primitive of such
8696 -- a type. Check whether Def_Id overrides a subprogram of an interface
8697 -- implemented by the synchronized type, return the overridden entity
8698 -- or Empty.
8700 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8701 -- Check that E is declared in the private part of the current package,
8702 -- or in the package body, where it may hide a previous declaration.
8703 -- We can't use In_Private_Part by itself because this flag is also
8704 -- set when freezing entities, so we must examine the place of the
8705 -- declaration in the tree, and recognize wrapper packages as well.
8707 function Is_Overriding_Alias
8708 (Old_E : Entity_Id;
8709 New_E : Entity_Id) return Boolean;
8710 -- Check whether new subprogram and old subprogram are both inherited
8711 -- from subprograms that have distinct dispatch table entries. This can
8712 -- occur with derivations from instances with accidental homonyms. The
8713 -- function is conservative given that the converse is only true within
8714 -- instances that contain accidental overloadings.
8716 ------------------------------------
8717 -- Check_For_Primitive_Subprogram --
8718 ------------------------------------
8720 procedure Check_For_Primitive_Subprogram
8721 (Is_Primitive : out Boolean;
8722 Is_Overriding : Boolean := False)
8724 Formal : Entity_Id;
8725 F_Typ : Entity_Id;
8726 B_Typ : Entity_Id;
8728 function Visible_Part_Type (T : Entity_Id) return Boolean;
8729 -- Returns true if T is declared in the visible part of the current
8730 -- package scope; otherwise returns false. Assumes that T is declared
8731 -- in a package.
8733 procedure Check_Private_Overriding (T : Entity_Id);
8734 -- Checks that if a primitive abstract subprogram of a visible
8735 -- abstract type is declared in a private part, then it must override
8736 -- an abstract subprogram declared in the visible part. Also checks
8737 -- that if a primitive function with a controlling result is declared
8738 -- in a private part, then it must override a function declared in
8739 -- the visible part.
8741 ------------------------------
8742 -- Check_Private_Overriding --
8743 ------------------------------
8745 procedure Check_Private_Overriding (T : Entity_Id) is
8746 function Overrides_Private_Part_Op return Boolean;
8747 -- This detects the special case where the overriding subprogram
8748 -- is overriding a subprogram that was declared in the same
8749 -- private part. That case is illegal by 3.9.3(10).
8751 function Overrides_Visible_Function
8752 (Partial_View : Entity_Id) return Boolean;
8753 -- True if S overrides a function in the visible part. The
8754 -- overridden function could be explicitly or implicitly declared.
8756 -------------------------------
8757 -- Overrides_Private_Part_Op --
8758 -------------------------------
8760 function Overrides_Private_Part_Op return Boolean is
8761 Over_Decl : constant Node_Id :=
8762 Unit_Declaration_Node (Overridden_Operation (S));
8763 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
8765 begin
8766 pragma Assert (Is_Overriding);
8767 pragma Assert
8768 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
8769 pragma Assert
8770 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
8772 return In_Same_List (Over_Decl, Subp_Decl);
8773 end Overrides_Private_Part_Op;
8775 --------------------------------
8776 -- Overrides_Visible_Function --
8777 --------------------------------
8779 function Overrides_Visible_Function
8780 (Partial_View : Entity_Id) return Boolean
8782 begin
8783 if not Is_Overriding or else not Has_Homonym (S) then
8784 return False;
8785 end if;
8787 if not Present (Partial_View) then
8788 return True;
8789 end if;
8791 -- Search through all the homonyms H of S in the current
8792 -- package spec, and return True if we find one that matches.
8793 -- Note that Parent (H) will be the declaration of the
8794 -- partial view of T for a match.
8796 declare
8797 H : Entity_Id := S;
8798 begin
8799 loop
8800 H := Homonym (H);
8801 exit when not Present (H) or else Scope (H) /= Scope (S);
8803 if Nkind_In
8804 (Parent (H),
8805 N_Private_Extension_Declaration,
8806 N_Private_Type_Declaration)
8807 and then Defining_Identifier (Parent (H)) = Partial_View
8808 then
8809 return True;
8810 end if;
8811 end loop;
8812 end;
8814 return False;
8815 end Overrides_Visible_Function;
8817 -- Start of processing for Check_Private_Overriding
8819 begin
8820 if Is_Package_Or_Generic_Package (Current_Scope)
8821 and then In_Private_Part (Current_Scope)
8822 and then Visible_Part_Type (T)
8823 and then not In_Instance
8824 then
8825 if Is_Abstract_Type (T)
8826 and then Is_Abstract_Subprogram (S)
8827 and then (not Is_Overriding
8828 or else not Is_Abstract_Subprogram (E)
8829 or else Overrides_Private_Part_Op)
8830 then
8831 Error_Msg_N
8832 ("abstract subprograms must be visible (RM 3.9.3(10))!",
8835 elsif Ekind (S) = E_Function then
8836 declare
8837 Partial_View : constant Entity_Id :=
8838 Incomplete_Or_Partial_View (T);
8840 begin
8841 if not Overrides_Visible_Function (Partial_View) then
8843 -- Here, S is "function ... return T;" declared in
8844 -- the private part, not overriding some visible
8845 -- operation. That's illegal in the tagged case
8846 -- (but not if the private type is untagged).
8848 if ((Present (Partial_View)
8849 and then Is_Tagged_Type (Partial_View))
8850 or else (not Present (Partial_View)
8851 and then Is_Tagged_Type (T)))
8852 and then T = Base_Type (Etype (S))
8853 then
8854 Error_Msg_N
8855 ("private function with tagged result must"
8856 & " override visible-part function", S);
8857 Error_Msg_N
8858 ("\move subprogram to the visible part"
8859 & " (RM 3.9.3(10))", S);
8861 -- AI05-0073: extend this test to the case of a
8862 -- function with a controlling access result.
8864 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8865 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8866 and then
8867 not Is_Class_Wide_Type
8868 (Designated_Type (Etype (S)))
8869 and then Ada_Version >= Ada_2012
8870 then
8871 Error_Msg_N
8872 ("private function with controlling access "
8873 & "result must override visible-part function",
8875 Error_Msg_N
8876 ("\move subprogram to the visible part"
8877 & " (RM 3.9.3(10))", S);
8878 end if;
8879 end if;
8880 end;
8881 end if;
8882 end if;
8883 end Check_Private_Overriding;
8885 -----------------------
8886 -- Visible_Part_Type --
8887 -----------------------
8889 function Visible_Part_Type (T : Entity_Id) return Boolean is
8890 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8891 N : Node_Id;
8893 begin
8894 -- If the entity is a private type, then it must be declared in a
8895 -- visible part.
8897 if Ekind (T) in Private_Kind then
8898 return True;
8899 end if;
8901 -- Otherwise, we traverse the visible part looking for its
8902 -- corresponding declaration. We cannot use the declaration
8903 -- node directly because in the private part the entity of a
8904 -- private type is the one in the full view, which does not
8905 -- indicate that it is the completion of something visible.
8907 N := First (Visible_Declarations (Specification (P)));
8908 while Present (N) loop
8909 if Nkind (N) = N_Full_Type_Declaration
8910 and then Present (Defining_Identifier (N))
8911 and then T = Defining_Identifier (N)
8912 then
8913 return True;
8915 elsif Nkind_In (N, N_Private_Type_Declaration,
8916 N_Private_Extension_Declaration)
8917 and then Present (Defining_Identifier (N))
8918 and then T = Full_View (Defining_Identifier (N))
8919 then
8920 return True;
8921 end if;
8923 Next (N);
8924 end loop;
8926 return False;
8927 end Visible_Part_Type;
8929 -- Start of processing for Check_For_Primitive_Subprogram
8931 begin
8932 Is_Primitive := False;
8934 if not Comes_From_Source (S) then
8935 null;
8937 -- If subprogram is at library level, it is not primitive operation
8939 elsif Current_Scope = Standard_Standard then
8940 null;
8942 elsif (Is_Package_Or_Generic_Package (Current_Scope)
8943 and then not In_Package_Body (Current_Scope))
8944 or else Is_Overriding
8945 then
8946 -- For function, check return type
8948 if Ekind (S) = E_Function then
8949 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8950 F_Typ := Designated_Type (Etype (S));
8951 else
8952 F_Typ := Etype (S);
8953 end if;
8955 B_Typ := Base_Type (F_Typ);
8957 if Scope (B_Typ) = Current_Scope
8958 and then not Is_Class_Wide_Type (B_Typ)
8959 and then not Is_Generic_Type (B_Typ)
8960 then
8961 Is_Primitive := True;
8962 Set_Has_Primitive_Operations (B_Typ);
8963 Set_Is_Primitive (S);
8964 Check_Private_Overriding (B_Typ);
8965 end if;
8966 end if;
8968 -- For all subprograms, check formals
8970 Formal := First_Formal (S);
8971 while Present (Formal) loop
8972 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8973 F_Typ := Designated_Type (Etype (Formal));
8974 else
8975 F_Typ := Etype (Formal);
8976 end if;
8978 B_Typ := Base_Type (F_Typ);
8980 if Ekind (B_Typ) = E_Access_Subtype then
8981 B_Typ := Base_Type (B_Typ);
8982 end if;
8984 if Scope (B_Typ) = Current_Scope
8985 and then not Is_Class_Wide_Type (B_Typ)
8986 and then not Is_Generic_Type (B_Typ)
8987 then
8988 Is_Primitive := True;
8989 Set_Is_Primitive (S);
8990 Set_Has_Primitive_Operations (B_Typ);
8991 Check_Private_Overriding (B_Typ);
8992 end if;
8994 Next_Formal (Formal);
8995 end loop;
8997 -- Special case: An equality function can be redefined for a type
8998 -- occurring in a declarative part, and won't otherwise be treated as
8999 -- a primitive because it doesn't occur in a package spec and doesn't
9000 -- override an inherited subprogram. It's important that we mark it
9001 -- primitive so it can be returned by Collect_Primitive_Operations
9002 -- and be used in composing the equality operation of later types
9003 -- that have a component of the type.
9005 elsif Chars (S) = Name_Op_Eq
9006 and then Etype (S) = Standard_Boolean
9007 then
9008 B_Typ := Base_Type (Etype (First_Formal (S)));
9010 if Scope (B_Typ) = Current_Scope
9011 and then
9012 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
9013 and then not Is_Limited_Type (B_Typ)
9014 then
9015 Is_Primitive := True;
9016 Set_Is_Primitive (S);
9017 Set_Has_Primitive_Operations (B_Typ);
9018 Check_Private_Overriding (B_Typ);
9019 end if;
9020 end if;
9021 end Check_For_Primitive_Subprogram;
9023 -----------------------------------
9024 -- Check_Synchronized_Overriding --
9025 -----------------------------------
9027 procedure Check_Synchronized_Overriding
9028 (Def_Id : Entity_Id;
9029 Overridden_Subp : out Entity_Id)
9031 Ifaces_List : Elist_Id;
9032 In_Scope : Boolean;
9033 Typ : Entity_Id;
9035 function Matches_Prefixed_View_Profile
9036 (Prim_Params : List_Id;
9037 Iface_Params : List_Id) return Boolean;
9038 -- Determine whether a subprogram's parameter profile Prim_Params
9039 -- matches that of a potentially overridden interface subprogram
9040 -- Iface_Params. Also determine if the type of first parameter of
9041 -- Iface_Params is an implemented interface.
9043 -----------------------------------
9044 -- Matches_Prefixed_View_Profile --
9045 -----------------------------------
9047 function Matches_Prefixed_View_Profile
9048 (Prim_Params : List_Id;
9049 Iface_Params : List_Id) return Boolean
9051 Iface_Id : Entity_Id;
9052 Iface_Param : Node_Id;
9053 Iface_Typ : Entity_Id;
9054 Prim_Id : Entity_Id;
9055 Prim_Param : Node_Id;
9056 Prim_Typ : Entity_Id;
9058 function Is_Implemented
9059 (Ifaces_List : Elist_Id;
9060 Iface : Entity_Id) return Boolean;
9061 -- Determine if Iface is implemented by the current task or
9062 -- protected type.
9064 --------------------
9065 -- Is_Implemented --
9066 --------------------
9068 function Is_Implemented
9069 (Ifaces_List : Elist_Id;
9070 Iface : Entity_Id) return Boolean
9072 Iface_Elmt : Elmt_Id;
9074 begin
9075 Iface_Elmt := First_Elmt (Ifaces_List);
9076 while Present (Iface_Elmt) loop
9077 if Node (Iface_Elmt) = Iface then
9078 return True;
9079 end if;
9081 Next_Elmt (Iface_Elmt);
9082 end loop;
9084 return False;
9085 end Is_Implemented;
9087 -- Start of processing for Matches_Prefixed_View_Profile
9089 begin
9090 Iface_Param := First (Iface_Params);
9091 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
9093 if Is_Access_Type (Iface_Typ) then
9094 Iface_Typ := Designated_Type (Iface_Typ);
9095 end if;
9097 Prim_Param := First (Prim_Params);
9099 -- The first parameter of the potentially overridden subprogram
9100 -- must be an interface implemented by Prim.
9102 if not Is_Interface (Iface_Typ)
9103 or else not Is_Implemented (Ifaces_List, Iface_Typ)
9104 then
9105 return False;
9106 end if;
9108 -- The checks on the object parameters are done, move onto the
9109 -- rest of the parameters.
9111 if not In_Scope then
9112 Prim_Param := Next (Prim_Param);
9113 end if;
9115 Iface_Param := Next (Iface_Param);
9116 while Present (Iface_Param) and then Present (Prim_Param) loop
9117 Iface_Id := Defining_Identifier (Iface_Param);
9118 Iface_Typ := Find_Parameter_Type (Iface_Param);
9120 Prim_Id := Defining_Identifier (Prim_Param);
9121 Prim_Typ := Find_Parameter_Type (Prim_Param);
9123 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9124 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9125 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9126 then
9127 Iface_Typ := Designated_Type (Iface_Typ);
9128 Prim_Typ := Designated_Type (Prim_Typ);
9129 end if;
9131 -- Case of multiple interface types inside a parameter profile
9133 -- (Obj_Param : in out Iface; ...; Param : Iface)
9135 -- If the interface type is implemented, then the matching type
9136 -- in the primitive should be the implementing record type.
9138 if Ekind (Iface_Typ) = E_Record_Type
9139 and then Is_Interface (Iface_Typ)
9140 and then Is_Implemented (Ifaces_List, Iface_Typ)
9141 then
9142 if Prim_Typ /= Typ then
9143 return False;
9144 end if;
9146 -- The two parameters must be both mode and subtype conformant
9148 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9149 or else not
9150 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9151 then
9152 return False;
9153 end if;
9155 Next (Iface_Param);
9156 Next (Prim_Param);
9157 end loop;
9159 -- One of the two lists contains more parameters than the other
9161 if Present (Iface_Param) or else Present (Prim_Param) then
9162 return False;
9163 end if;
9165 return True;
9166 end Matches_Prefixed_View_Profile;
9168 -- Start of processing for Check_Synchronized_Overriding
9170 begin
9171 Overridden_Subp := Empty;
9173 -- Def_Id must be an entry or a subprogram. We should skip predefined
9174 -- primitives internally generated by the frontend; however at this
9175 -- stage predefined primitives are still not fully decorated. As a
9176 -- minor optimization we skip here internally generated subprograms.
9178 if (Ekind (Def_Id) /= E_Entry
9179 and then Ekind (Def_Id) /= E_Function
9180 and then Ekind (Def_Id) /= E_Procedure)
9181 or else not Comes_From_Source (Def_Id)
9182 then
9183 return;
9184 end if;
9186 -- Search for the concurrent declaration since it contains the list
9187 -- of all implemented interfaces. In this case, the subprogram is
9188 -- declared within the scope of a protected or a task type.
9190 if Present (Scope (Def_Id))
9191 and then Is_Concurrent_Type (Scope (Def_Id))
9192 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9193 then
9194 Typ := Scope (Def_Id);
9195 In_Scope := True;
9197 -- The enclosing scope is not a synchronized type and the subprogram
9198 -- has no formals.
9200 elsif No (First_Formal (Def_Id)) then
9201 return;
9203 -- The subprogram has formals and hence it may be a primitive of a
9204 -- concurrent type.
9206 else
9207 Typ := Etype (First_Formal (Def_Id));
9209 if Is_Access_Type (Typ) then
9210 Typ := Directly_Designated_Type (Typ);
9211 end if;
9213 if Is_Concurrent_Type (Typ)
9214 and then not Is_Generic_Actual_Type (Typ)
9215 then
9216 In_Scope := False;
9218 -- This case occurs when the concurrent type is declared within
9219 -- a generic unit. As a result the corresponding record has been
9220 -- built and used as the type of the first formal, we just have
9221 -- to retrieve the corresponding concurrent type.
9223 elsif Is_Concurrent_Record_Type (Typ)
9224 and then not Is_Class_Wide_Type (Typ)
9225 and then Present (Corresponding_Concurrent_Type (Typ))
9226 then
9227 Typ := Corresponding_Concurrent_Type (Typ);
9228 In_Scope := False;
9230 else
9231 return;
9232 end if;
9233 end if;
9235 -- There is no overriding to check if is an inherited operation in a
9236 -- type derivation on for a generic actual.
9238 Collect_Interfaces (Typ, Ifaces_List);
9240 if Is_Empty_Elmt_List (Ifaces_List) then
9241 return;
9242 end if;
9244 -- Determine whether entry or subprogram Def_Id overrides a primitive
9245 -- operation that belongs to one of the interfaces in Ifaces_List.
9247 declare
9248 Candidate : Entity_Id := Empty;
9249 Hom : Entity_Id := Empty;
9250 Subp : Entity_Id := Empty;
9252 begin
9253 -- Traverse the homonym chain, looking for a potentially
9254 -- overridden subprogram that belongs to an implemented
9255 -- interface.
9257 Hom := Current_Entity_In_Scope (Def_Id);
9258 while Present (Hom) loop
9259 Subp := Hom;
9261 if Subp = Def_Id
9262 or else not Is_Overloadable (Subp)
9263 or else not Is_Primitive (Subp)
9264 or else not Is_Dispatching_Operation (Subp)
9265 or else not Present (Find_Dispatching_Type (Subp))
9266 or else not Is_Interface (Find_Dispatching_Type (Subp))
9267 then
9268 null;
9270 -- Entries and procedures can override abstract or null
9271 -- interface procedures.
9273 elsif (Ekind (Def_Id) = E_Procedure
9274 or else Ekind (Def_Id) = E_Entry)
9275 and then Ekind (Subp) = E_Procedure
9276 and then Matches_Prefixed_View_Profile
9277 (Parameter_Specifications (Parent (Def_Id)),
9278 Parameter_Specifications (Parent (Subp)))
9279 then
9280 Candidate := Subp;
9282 -- For an overridden subprogram Subp, check whether the mode
9283 -- of its first parameter is correct depending on the kind
9284 -- of synchronized type.
9286 declare
9287 Formal : constant Node_Id := First_Formal (Candidate);
9289 begin
9290 -- In order for an entry or a protected procedure to
9291 -- override, the first parameter of the overridden
9292 -- routine must be of mode "out", "in out" or
9293 -- access-to-variable.
9295 if Ekind_In (Candidate, E_Entry, E_Procedure)
9296 and then Is_Protected_Type (Typ)
9297 and then Ekind (Formal) /= E_In_Out_Parameter
9298 and then Ekind (Formal) /= E_Out_Parameter
9299 and then Nkind (Parameter_Type (Parent (Formal))) /=
9300 N_Access_Definition
9301 then
9302 null;
9304 -- All other cases are OK since a task entry or routine
9305 -- does not have a restriction on the mode of the first
9306 -- parameter of the overridden interface routine.
9308 else
9309 Overridden_Subp := Candidate;
9310 return;
9311 end if;
9312 end;
9314 -- Functions can override abstract interface functions
9316 elsif Ekind (Def_Id) = E_Function
9317 and then Ekind (Subp) = E_Function
9318 and then Matches_Prefixed_View_Profile
9319 (Parameter_Specifications (Parent (Def_Id)),
9320 Parameter_Specifications (Parent (Subp)))
9321 and then Etype (Result_Definition (Parent (Def_Id))) =
9322 Etype (Result_Definition (Parent (Subp)))
9323 then
9324 Candidate := Subp;
9326 -- If an inherited subprogram is implemented by a protected
9327 -- function, then the first parameter of the inherited
9328 -- subprogram shall be of mode in, but not an
9329 -- access-to-variable parameter (RM 9.4(11/9)
9331 if Present (First_Formal (Subp))
9332 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9333 and then
9334 (not Is_Access_Type (Etype (First_Formal (Subp)))
9335 or else
9336 Is_Access_Constant (Etype (First_Formal (Subp))))
9337 then
9338 Overridden_Subp := Subp;
9339 return;
9340 end if;
9341 end if;
9343 Hom := Homonym (Hom);
9344 end loop;
9346 -- After examining all candidates for overriding, we are left with
9347 -- the best match which is a mode incompatible interface routine.
9349 if In_Scope and then Present (Candidate) then
9350 Error_Msg_PT (Def_Id, Candidate);
9351 end if;
9353 Overridden_Subp := Candidate;
9354 return;
9355 end;
9356 end Check_Synchronized_Overriding;
9358 ----------------------------
9359 -- Is_Private_Declaration --
9360 ----------------------------
9362 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9363 Priv_Decls : List_Id;
9364 Decl : constant Node_Id := Unit_Declaration_Node (E);
9366 begin
9367 if Is_Package_Or_Generic_Package (Current_Scope)
9368 and then In_Private_Part (Current_Scope)
9369 then
9370 Priv_Decls :=
9371 Private_Declarations (Package_Specification (Current_Scope));
9373 return In_Package_Body (Current_Scope)
9374 or else
9375 (Is_List_Member (Decl)
9376 and then List_Containing (Decl) = Priv_Decls)
9377 or else (Nkind (Parent (Decl)) = N_Package_Specification
9378 and then not
9379 Is_Compilation_Unit
9380 (Defining_Entity (Parent (Decl)))
9381 and then List_Containing (Parent (Parent (Decl))) =
9382 Priv_Decls);
9383 else
9384 return False;
9385 end if;
9386 end Is_Private_Declaration;
9388 --------------------------
9389 -- Is_Overriding_Alias --
9390 --------------------------
9392 function Is_Overriding_Alias
9393 (Old_E : Entity_Id;
9394 New_E : Entity_Id) return Boolean
9396 AO : constant Entity_Id := Alias (Old_E);
9397 AN : constant Entity_Id := Alias (New_E);
9398 begin
9399 return Scope (AO) /= Scope (AN)
9400 or else No (DTC_Entity (AO))
9401 or else No (DTC_Entity (AN))
9402 or else DT_Position (AO) = DT_Position (AN);
9403 end Is_Overriding_Alias;
9405 -- Start of processing for New_Overloaded_Entity
9407 begin
9408 -- We need to look for an entity that S may override. This must be a
9409 -- homonym in the current scope, so we look for the first homonym of
9410 -- S in the current scope as the starting point for the search.
9412 E := Current_Entity_In_Scope (S);
9414 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9415 -- They are directly added to the list of primitive operations of
9416 -- Derived_Type, unless this is a rederivation in the private part
9417 -- of an operation that was already derived in the visible part of
9418 -- the current package.
9420 if Ada_Version >= Ada_2005
9421 and then Present (Derived_Type)
9422 and then Present (Alias (S))
9423 and then Is_Dispatching_Operation (Alias (S))
9424 and then Present (Find_Dispatching_Type (Alias (S)))
9425 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9426 then
9427 -- For private types, when the full-view is processed we propagate to
9428 -- the full view the non-overridden entities whose attribute "alias"
9429 -- references an interface primitive. These entities were added by
9430 -- Derive_Subprograms to ensure that interface primitives are
9431 -- covered.
9433 -- Inside_Freeze_Actions is non zero when S corresponds with an
9434 -- internal entity that links an interface primitive with its
9435 -- covering primitive through attribute Interface_Alias (see
9436 -- Add_Internal_Interface_Entities).
9438 if Inside_Freezing_Actions = 0
9439 and then Is_Package_Or_Generic_Package (Current_Scope)
9440 and then In_Private_Part (Current_Scope)
9441 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9442 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9443 and then Full_View (Defining_Identifier (Parent (E)))
9444 = Defining_Identifier (Parent (S))
9445 and then Alias (E) = Alias (S)
9446 then
9447 Check_Operation_From_Private_View (S, E);
9448 Set_Is_Dispatching_Operation (S);
9450 -- Common case
9452 else
9453 Enter_Overloaded_Entity (S);
9454 Check_Dispatching_Operation (S, Empty);
9455 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9456 end if;
9458 return;
9459 end if;
9461 -- If there is no homonym then this is definitely not overriding
9463 if No (E) then
9464 Enter_Overloaded_Entity (S);
9465 Check_Dispatching_Operation (S, Empty);
9466 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9468 -- If subprogram has an explicit declaration, check whether it has an
9469 -- overriding indicator.
9471 if Comes_From_Source (S) then
9472 Check_Synchronized_Overriding (S, Overridden_Subp);
9474 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9475 -- it may have overridden some hidden inherited primitive. Update
9476 -- Overridden_Subp to avoid spurious errors when checking the
9477 -- overriding indicator.
9479 if Ada_Version >= Ada_2012
9480 and then No (Overridden_Subp)
9481 and then Is_Dispatching_Operation (S)
9482 and then Present (Overridden_Operation (S))
9483 then
9484 Overridden_Subp := Overridden_Operation (S);
9485 end if;
9487 Check_Overriding_Indicator
9488 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9490 -- The Ghost policy in effect at the point of declaration of a
9491 -- parent subprogram and an overriding subprogram must match
9492 -- (SPARK RM 6.9(17)).
9494 Check_Ghost_Overriding (S, Overridden_Subp);
9495 end if;
9497 -- If there is a homonym that is not overloadable, then we have an
9498 -- error, except for the special cases checked explicitly below.
9500 elsif not Is_Overloadable (E) then
9502 -- Check for spurious conflict produced by a subprogram that has the
9503 -- same name as that of the enclosing generic package. The conflict
9504 -- occurs within an instance, between the subprogram and the renaming
9505 -- declaration for the package. After the subprogram, the package
9506 -- renaming declaration becomes hidden.
9508 if Ekind (E) = E_Package
9509 and then Present (Renamed_Object (E))
9510 and then Renamed_Object (E) = Current_Scope
9511 and then Nkind (Parent (Renamed_Object (E))) =
9512 N_Package_Specification
9513 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9514 then
9515 Set_Is_Hidden (E);
9516 Set_Is_Immediately_Visible (E, False);
9517 Enter_Overloaded_Entity (S);
9518 Set_Homonym (S, Homonym (E));
9519 Check_Dispatching_Operation (S, Empty);
9520 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9522 -- If the subprogram is implicit it is hidden by the previous
9523 -- declaration. However if it is dispatching, it must appear in the
9524 -- dispatch table anyway, because it can be dispatched to even if it
9525 -- cannot be called directly.
9527 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9528 Set_Scope (S, Current_Scope);
9530 if Is_Dispatching_Operation (Alias (S)) then
9531 Check_Dispatching_Operation (S, Empty);
9532 end if;
9534 return;
9536 else
9537 Error_Msg_Sloc := Sloc (E);
9539 -- Generate message, with useful additional warning if in generic
9541 if Is_Generic_Unit (E) then
9542 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9543 Error_Msg_N ("\& conflicts with declaration#", S);
9544 else
9545 Error_Msg_N ("& conflicts with declaration#", S);
9546 end if;
9548 return;
9549 end if;
9551 -- E exists and is overloadable
9553 else
9554 Check_Synchronized_Overriding (S, Overridden_Subp);
9556 -- Loop through E and its homonyms to determine if any of them is
9557 -- the candidate for overriding by S.
9559 while Present (E) loop
9561 -- Definitely not interesting if not in the current scope
9563 if Scope (E) /= Current_Scope then
9564 null;
9566 -- A function can overload the name of an abstract state. The
9567 -- state can be viewed as a function with a profile that cannot
9568 -- be matched by anything.
9570 elsif Ekind (S) = E_Function
9571 and then Ekind (E) = E_Abstract_State
9572 then
9573 Enter_Overloaded_Entity (S);
9574 return;
9576 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9577 -- procedures locate the internally generated spec. We enforce
9578 -- mode conformance since a tagged type may inherit from
9579 -- interfaces several null primitives which differ only in
9580 -- the mode of the formals.
9582 elsif not Comes_From_Source (S)
9583 and then Is_Null_Procedure (S)
9584 and then not Mode_Conformant (E, S)
9585 then
9586 null;
9588 -- Check if we have type conformance
9590 elsif Type_Conformant (E, S) then
9592 -- If the old and new entities have the same profile and one
9593 -- is not the body of the other, then this is an error, unless
9594 -- one of them is implicitly declared.
9596 -- There are some cases when both can be implicit, for example
9597 -- when both a literal and a function that overrides it are
9598 -- inherited in a derivation, or when an inherited operation
9599 -- of a tagged full type overrides the inherited operation of
9600 -- a private extension. Ada 83 had a special rule for the
9601 -- literal case. In Ada 95, the later implicit operation hides
9602 -- the former, and the literal is always the former. In the
9603 -- odd case where both are derived operations declared at the
9604 -- same point, both operations should be declared, and in that
9605 -- case we bypass the following test and proceed to the next
9606 -- part. This can only occur for certain obscure cases in
9607 -- instances, when an operation on a type derived from a formal
9608 -- private type does not override a homograph inherited from
9609 -- the actual. In subsequent derivations of such a type, the
9610 -- DT positions of these operations remain distinct, if they
9611 -- have been set.
9613 if Present (Alias (S))
9614 and then (No (Alias (E))
9615 or else Comes_From_Source (E)
9616 or else Is_Abstract_Subprogram (S)
9617 or else
9618 (Is_Dispatching_Operation (E)
9619 and then Is_Overriding_Alias (E, S)))
9620 and then Ekind (E) /= E_Enumeration_Literal
9621 then
9622 -- When an derived operation is overloaded it may be due to
9623 -- the fact that the full view of a private extension
9624 -- re-inherits. It has to be dealt with.
9626 if Is_Package_Or_Generic_Package (Current_Scope)
9627 and then In_Private_Part (Current_Scope)
9628 then
9629 Check_Operation_From_Private_View (S, E);
9630 end if;
9632 -- In any case the implicit operation remains hidden by the
9633 -- existing declaration, which is overriding. Indicate that
9634 -- E overrides the operation from which S is inherited.
9636 if Present (Alias (S)) then
9637 Set_Overridden_Operation (E, Alias (S));
9638 Inherit_Subprogram_Contract (E, Alias (S));
9640 else
9641 Set_Overridden_Operation (E, S);
9642 Inherit_Subprogram_Contract (E, S);
9643 end if;
9645 if Comes_From_Source (E) then
9646 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9648 -- The Ghost policy in effect at the point of declaration
9649 -- of a parent subprogram and an overriding subprogram
9650 -- must match (SPARK RM 6.9(17)).
9652 Check_Ghost_Overriding (E, S);
9653 end if;
9655 return;
9657 -- Within an instance, the renaming declarations for actual
9658 -- subprograms may become ambiguous, but they do not hide each
9659 -- other.
9661 elsif Ekind (E) /= E_Entry
9662 and then not Comes_From_Source (E)
9663 and then not Is_Generic_Instance (E)
9664 and then (Present (Alias (E))
9665 or else Is_Intrinsic_Subprogram (E))
9666 and then (not In_Instance
9667 or else No (Parent (E))
9668 or else Nkind (Unit_Declaration_Node (E)) /=
9669 N_Subprogram_Renaming_Declaration)
9670 then
9671 -- A subprogram child unit is not allowed to override an
9672 -- inherited subprogram (10.1.1(20)).
9674 if Is_Child_Unit (S) then
9675 Error_Msg_N
9676 ("child unit overrides inherited subprogram in parent",
9678 return;
9679 end if;
9681 if Is_Non_Overriding_Operation (E, S) then
9682 Enter_Overloaded_Entity (S);
9684 if No (Derived_Type)
9685 or else Is_Tagged_Type (Derived_Type)
9686 then
9687 Check_Dispatching_Operation (S, Empty);
9688 end if;
9690 return;
9691 end if;
9693 -- E is a derived operation or an internal operator which
9694 -- is being overridden. Remove E from further visibility.
9695 -- Furthermore, if E is a dispatching operation, it must be
9696 -- replaced in the list of primitive operations of its type
9697 -- (see Override_Dispatching_Operation).
9699 Overridden_Subp := E;
9701 declare
9702 Prev : Entity_Id;
9704 begin
9705 Prev := First_Entity (Current_Scope);
9706 while Present (Prev) and then Next_Entity (Prev) /= E loop
9707 Next_Entity (Prev);
9708 end loop;
9710 -- It is possible for E to be in the current scope and
9711 -- yet not in the entity chain. This can only occur in a
9712 -- generic context where E is an implicit concatenation
9713 -- in the formal part, because in a generic body the
9714 -- entity chain starts with the formals.
9716 -- In GNATprove mode, a wrapper for an operation with
9717 -- axiomatization may be a homonym of another declaration
9718 -- for an actual subprogram (needs refinement ???).
9720 if No (Prev) then
9721 if In_Instance
9722 and then GNATprove_Mode
9723 and then
9724 Nkind (Original_Node (Unit_Declaration_Node (S))) =
9725 N_Subprogram_Renaming_Declaration
9726 then
9727 return;
9728 else
9729 pragma Assert (Chars (E) = Name_Op_Concat);
9730 null;
9731 end if;
9732 end if;
9734 -- E must be removed both from the entity_list of the
9735 -- current scope, and from the visibility chain.
9737 if Debug_Flag_E then
9738 Write_Str ("Override implicit operation ");
9739 Write_Int (Int (E));
9740 Write_Eol;
9741 end if;
9743 -- If E is a predefined concatenation, it stands for four
9744 -- different operations. As a result, a single explicit
9745 -- declaration does not hide it. In a possible ambiguous
9746 -- situation, Disambiguate chooses the user-defined op,
9747 -- so it is correct to retain the previous internal one.
9749 if Chars (E) /= Name_Op_Concat
9750 or else Ekind (E) /= E_Operator
9751 then
9752 -- For nondispatching derived operations that are
9753 -- overridden by a subprogram declared in the private
9754 -- part of a package, we retain the derived subprogram
9755 -- but mark it as not immediately visible. If the
9756 -- derived operation was declared in the visible part
9757 -- then this ensures that it will still be visible
9758 -- outside the package with the proper signature
9759 -- (calls from outside must also be directed to this
9760 -- version rather than the overriding one, unlike the
9761 -- dispatching case). Calls from inside the package
9762 -- will still resolve to the overriding subprogram
9763 -- since the derived one is marked as not visible
9764 -- within the package.
9766 -- If the private operation is dispatching, we achieve
9767 -- the overriding by keeping the implicit operation
9768 -- but setting its alias to be the overriding one. In
9769 -- this fashion the proper body is executed in all
9770 -- cases, but the original signature is used outside
9771 -- of the package.
9773 -- If the overriding is not in the private part, we
9774 -- remove the implicit operation altogether.
9776 if Is_Private_Declaration (S) then
9777 if not Is_Dispatching_Operation (E) then
9778 Set_Is_Immediately_Visible (E, False);
9779 else
9780 -- Work done in Override_Dispatching_Operation,
9781 -- so nothing else needs to be done here.
9783 null;
9784 end if;
9786 else
9787 -- Find predecessor of E in Homonym chain
9789 if E = Current_Entity (E) then
9790 Prev_Vis := Empty;
9791 else
9792 Prev_Vis := Current_Entity (E);
9793 while Homonym (Prev_Vis) /= E loop
9794 Prev_Vis := Homonym (Prev_Vis);
9795 end loop;
9796 end if;
9798 if Prev_Vis /= Empty then
9800 -- Skip E in the visibility chain
9802 Set_Homonym (Prev_Vis, Homonym (E));
9804 else
9805 Set_Name_Entity_Id (Chars (E), Homonym (E));
9806 end if;
9808 Set_Next_Entity (Prev, Next_Entity (E));
9810 if No (Next_Entity (Prev)) then
9811 Set_Last_Entity (Current_Scope, Prev);
9812 end if;
9813 end if;
9814 end if;
9816 Enter_Overloaded_Entity (S);
9818 -- For entities generated by Derive_Subprograms the
9819 -- overridden operation is the inherited primitive
9820 -- (which is available through the attribute alias).
9822 if not (Comes_From_Source (E))
9823 and then Is_Dispatching_Operation (E)
9824 and then Find_Dispatching_Type (E) =
9825 Find_Dispatching_Type (S)
9826 and then Present (Alias (E))
9827 and then Comes_From_Source (Alias (E))
9828 then
9829 Set_Overridden_Operation (S, Alias (E));
9830 Inherit_Subprogram_Contract (S, Alias (E));
9832 -- Normal case of setting entity as overridden
9834 -- Note: Static_Initialization and Overridden_Operation
9835 -- attributes use the same field in subprogram entities.
9836 -- Static_Initialization is only defined for internal
9837 -- initialization procedures, where Overridden_Operation
9838 -- is irrelevant. Therefore the setting of this attribute
9839 -- must check whether the target is an init_proc.
9841 elsif not Is_Init_Proc (S) then
9842 Set_Overridden_Operation (S, E);
9843 Inherit_Subprogram_Contract (S, E);
9844 end if;
9846 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9848 -- The Ghost policy in effect at the point of declaration
9849 -- of a parent subprogram and an overriding subprogram
9850 -- must match (SPARK RM 6.9(17)).
9852 Check_Ghost_Overriding (S, E);
9854 -- If S is a user-defined subprogram or a null procedure
9855 -- expanded to override an inherited null procedure, or a
9856 -- predefined dispatching primitive then indicate that E
9857 -- overrides the operation from which S is inherited.
9859 if Comes_From_Source (S)
9860 or else
9861 (Present (Parent (S))
9862 and then
9863 Nkind (Parent (S)) = N_Procedure_Specification
9864 and then
9865 Null_Present (Parent (S)))
9866 or else
9867 (Present (Alias (E))
9868 and then
9869 Is_Predefined_Dispatching_Operation (Alias (E)))
9870 then
9871 if Present (Alias (E)) then
9872 Set_Overridden_Operation (S, Alias (E));
9873 Inherit_Subprogram_Contract (S, Alias (E));
9874 end if;
9875 end if;
9877 if Is_Dispatching_Operation (E) then
9879 -- An overriding dispatching subprogram inherits the
9880 -- convention of the overridden subprogram (AI-117).
9882 Set_Convention (S, Convention (E));
9883 Check_Dispatching_Operation (S, E);
9885 else
9886 Check_Dispatching_Operation (S, Empty);
9887 end if;
9889 Check_For_Primitive_Subprogram
9890 (Is_Primitive_Subp, Is_Overriding => True);
9891 goto Check_Inequality;
9892 end;
9894 -- Apparent redeclarations in instances can occur when two
9895 -- formal types get the same actual type. The subprograms in
9896 -- in the instance are legal, even if not callable from the
9897 -- outside. Calls from within are disambiguated elsewhere.
9898 -- For dispatching operations in the visible part, the usual
9899 -- rules apply, and operations with the same profile are not
9900 -- legal (B830001).
9902 elsif (In_Instance_Visible_Part
9903 and then not Is_Dispatching_Operation (E))
9904 or else In_Instance_Not_Visible
9905 then
9906 null;
9908 -- Here we have a real error (identical profile)
9910 else
9911 Error_Msg_Sloc := Sloc (E);
9913 -- Avoid cascaded errors if the entity appears in
9914 -- subsequent calls.
9916 Set_Scope (S, Current_Scope);
9918 -- Generate error, with extra useful warning for the case
9919 -- of a generic instance with no completion.
9921 if Is_Generic_Instance (S)
9922 and then not Has_Completion (E)
9923 then
9924 Error_Msg_N
9925 ("instantiation cannot provide body for&", S);
9926 Error_Msg_N ("\& conflicts with declaration#", S);
9927 else
9928 Error_Msg_N ("& conflicts with declaration#", S);
9929 end if;
9931 return;
9932 end if;
9934 else
9935 -- If one subprogram has an access parameter and the other
9936 -- a parameter of an access type, calls to either might be
9937 -- ambiguous. Verify that parameters match except for the
9938 -- access parameter.
9940 if May_Hide_Profile then
9941 declare
9942 F1 : Entity_Id;
9943 F2 : Entity_Id;
9945 begin
9946 F1 := First_Formal (S);
9947 F2 := First_Formal (E);
9948 while Present (F1) and then Present (F2) loop
9949 if Is_Access_Type (Etype (F1)) then
9950 if not Is_Access_Type (Etype (F2))
9951 or else not Conforming_Types
9952 (Designated_Type (Etype (F1)),
9953 Designated_Type (Etype (F2)),
9954 Type_Conformant)
9955 then
9956 May_Hide_Profile := False;
9957 end if;
9959 elsif
9960 not Conforming_Types
9961 (Etype (F1), Etype (F2), Type_Conformant)
9962 then
9963 May_Hide_Profile := False;
9964 end if;
9966 Next_Formal (F1);
9967 Next_Formal (F2);
9968 end loop;
9970 if May_Hide_Profile
9971 and then No (F1)
9972 and then No (F2)
9973 then
9974 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
9975 end if;
9976 end;
9977 end if;
9978 end if;
9980 E := Homonym (E);
9981 end loop;
9983 -- On exit, we know that S is a new entity
9985 Enter_Overloaded_Entity (S);
9986 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9987 Check_Overriding_Indicator
9988 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9990 -- The Ghost policy in effect at the point of declaration of a parent
9991 -- subprogram and an overriding subprogram must match
9992 -- (SPARK RM 6.9(17)).
9994 Check_Ghost_Overriding (S, Overridden_Subp);
9996 -- Overloading is not allowed in SPARK, except for operators
9998 if Nkind (S) /= N_Defining_Operator_Symbol then
9999 Error_Msg_Sloc := Sloc (Homonym (S));
10000 Check_SPARK_05_Restriction
10001 ("overloading not allowed with entity#", S);
10002 end if;
10004 -- If S is a derived operation for an untagged type then by
10005 -- definition it's not a dispatching operation (even if the parent
10006 -- operation was dispatching), so Check_Dispatching_Operation is not
10007 -- called in that case.
10009 if No (Derived_Type)
10010 or else Is_Tagged_Type (Derived_Type)
10011 then
10012 Check_Dispatching_Operation (S, Empty);
10013 end if;
10014 end if;
10016 -- If this is a user-defined equality operator that is not a derived
10017 -- subprogram, create the corresponding inequality. If the operation is
10018 -- dispatching, the expansion is done elsewhere, and we do not create
10019 -- an explicit inequality operation.
10021 <<Check_Inequality>>
10022 if Chars (S) = Name_Op_Eq
10023 and then Etype (S) = Standard_Boolean
10024 and then Present (Parent (S))
10025 and then not Is_Dispatching_Operation (S)
10026 then
10027 Make_Inequality_Operator (S);
10028 Check_Untagged_Equality (S);
10029 end if;
10030 end New_Overloaded_Entity;
10032 ---------------------
10033 -- Process_Formals --
10034 ---------------------
10036 procedure Process_Formals
10037 (T : List_Id;
10038 Related_Nod : Node_Id)
10040 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
10041 -- Determine whether an access type designates a type coming from a
10042 -- limited view.
10044 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10045 -- Check whether the default has a class-wide type. After analysis the
10046 -- default has the type of the formal, so we must also check explicitly
10047 -- for an access attribute.
10049 ----------------------------------
10050 -- Designates_From_Limited_With --
10051 ----------------------------------
10053 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
10054 Desig : Entity_Id := Typ;
10056 begin
10057 if Is_Access_Type (Desig) then
10058 Desig := Directly_Designated_Type (Desig);
10059 end if;
10061 if Is_Class_Wide_Type (Desig) then
10062 Desig := Root_Type (Desig);
10063 end if;
10065 return
10066 Ekind (Desig) = E_Incomplete_Type
10067 and then From_Limited_With (Desig);
10068 end Designates_From_Limited_With;
10070 ---------------------------
10071 -- Is_Class_Wide_Default --
10072 ---------------------------
10074 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
10075 begin
10076 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
10077 or else (Nkind (D) = N_Attribute_Reference
10078 and then Attribute_Name (D) = Name_Access
10079 and then Is_Class_Wide_Type (Etype (Prefix (D))));
10080 end Is_Class_Wide_Default;
10082 -- Local variables
10084 Context : constant Node_Id := Parent (Parent (T));
10085 Default : Node_Id;
10086 Formal : Entity_Id;
10087 Formal_Type : Entity_Id;
10088 Param_Spec : Node_Id;
10089 Ptype : Entity_Id;
10091 Num_Out_Params : Nat := 0;
10092 First_Out_Param : Entity_Id := Empty;
10093 -- Used for setting Is_Only_Out_Parameter
10095 -- Start of processing for Process_Formals
10097 begin
10098 -- In order to prevent premature use of the formals in the same formal
10099 -- part, the Ekind is left undefined until all default expressions are
10100 -- analyzed. The Ekind is established in a separate loop at the end.
10102 Param_Spec := First (T);
10103 while Present (Param_Spec) loop
10104 Formal := Defining_Identifier (Param_Spec);
10105 Set_Never_Set_In_Source (Formal, True);
10106 Enter_Name (Formal);
10108 -- Case of ordinary parameters
10110 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
10111 Find_Type (Parameter_Type (Param_Spec));
10112 Ptype := Parameter_Type (Param_Spec);
10114 if Ptype = Error then
10115 goto Continue;
10116 end if;
10118 Formal_Type := Entity (Ptype);
10120 if Is_Incomplete_Type (Formal_Type)
10121 or else
10122 (Is_Class_Wide_Type (Formal_Type)
10123 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
10124 then
10125 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10126 -- primitive operations, as long as their completion is
10127 -- in the same declarative part. If in the private part
10128 -- this means that the type cannot be a Taft-amendment type.
10129 -- Check is done on package exit. For access to subprograms,
10130 -- the use is legal for Taft-amendment types.
10132 -- Ada 2012: tagged incomplete types are allowed as generic
10133 -- formal types. They do not introduce dependencies and the
10134 -- corresponding generic subprogram does not have a delayed
10135 -- freeze, because it does not need a freeze node. However,
10136 -- it is still the case that untagged incomplete types cannot
10137 -- be Taft-amendment types and must be completed in private
10138 -- part, so the subprogram must appear in the list of private
10139 -- dependents of the type. If the type is class-wide, it is
10140 -- not a primitive, but the freezing of the subprogram must
10141 -- also be delayed to force the creation of a freeze node.
10143 if Is_Tagged_Type (Formal_Type)
10144 or else (Ada_Version >= Ada_2012
10145 and then not From_Limited_With (Formal_Type)
10146 and then not Is_Generic_Type (Formal_Type))
10147 then
10148 if Ekind (Scope (Current_Scope)) = E_Package
10149 and then not Is_Generic_Type (Formal_Type)
10150 then
10151 if not Nkind_In
10152 (Parent (T), N_Access_Function_Definition,
10153 N_Access_Procedure_Definition)
10154 then
10155 -- A limited view has no private dependents
10157 if not Is_Class_Wide_Type (Formal_Type)
10158 and then not From_Limited_With (Formal_Type)
10159 then
10160 Append_Elmt (Current_Scope,
10161 Private_Dependents (Base_Type (Formal_Type)));
10162 end if;
10164 -- Freezing is delayed to ensure that Register_Prim
10165 -- will get called for this operation, which is needed
10166 -- in cases where static dispatch tables aren't built.
10167 -- (Note that the same is done for controlling access
10168 -- parameter cases in function Access_Definition.)
10170 if not Is_Thunk (Current_Scope) then
10171 Set_Has_Delayed_Freeze (Current_Scope);
10172 end if;
10173 end if;
10174 end if;
10176 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10177 N_Access_Procedure_Definition)
10178 then
10179 -- AI05-0151: Tagged incomplete types are allowed in all
10180 -- formal parts. Untagged incomplete types are not allowed
10181 -- in bodies. Limited views of either kind are not allowed
10182 -- if there is no place at which the non-limited view can
10183 -- become available.
10185 -- Incomplete formal untagged types are not allowed in
10186 -- subprogram bodies (but are legal in their declarations).
10187 -- This excludes bodies created for null procedures, which
10188 -- are basic declarations.
10190 if Is_Generic_Type (Formal_Type)
10191 and then not Is_Tagged_Type (Formal_Type)
10192 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10193 then
10194 Error_Msg_N
10195 ("invalid use of formal incomplete type", Param_Spec);
10197 elsif Ada_Version >= Ada_2012 then
10198 if Is_Tagged_Type (Formal_Type)
10199 and then (not From_Limited_With (Formal_Type)
10200 or else not In_Package_Body)
10201 then
10202 null;
10204 elsif Nkind_In (Context, N_Accept_Statement,
10205 N_Accept_Alternative,
10206 N_Entry_Body)
10207 or else (Nkind (Context) = N_Subprogram_Body
10208 and then Comes_From_Source (Context))
10209 then
10210 Error_Msg_NE
10211 ("invalid use of untagged incomplete type &",
10212 Ptype, Formal_Type);
10213 end if;
10215 else
10216 Error_Msg_NE
10217 ("invalid use of incomplete type&",
10218 Param_Spec, Formal_Type);
10220 -- Further checks on the legality of incomplete types
10221 -- in formal parts are delayed until the freeze point
10222 -- of the enclosing subprogram or access to subprogram.
10223 end if;
10224 end if;
10226 elsif Ekind (Formal_Type) = E_Void then
10227 Error_Msg_NE
10228 ("premature use of&",
10229 Parameter_Type (Param_Spec), Formal_Type);
10230 end if;
10232 -- Ada 2012 (AI-142): Handle aliased parameters
10234 if Ada_Version >= Ada_2012
10235 and then Aliased_Present (Param_Spec)
10236 then
10237 Set_Is_Aliased (Formal);
10238 end if;
10240 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10241 -- declaration corresponding to the null-excluding type of the
10242 -- formal in the enclosing scope. Finally, replace the parameter
10243 -- type of the formal with the internal subtype.
10245 if Ada_Version >= Ada_2005
10246 and then Null_Exclusion_Present (Param_Spec)
10247 then
10248 if not Is_Access_Type (Formal_Type) then
10249 Error_Msg_N
10250 ("`NOT NULL` allowed only for an access type", Param_Spec);
10252 else
10253 if Can_Never_Be_Null (Formal_Type)
10254 and then Comes_From_Source (Related_Nod)
10255 then
10256 Error_Msg_NE
10257 ("`NOT NULL` not allowed (& already excludes null)",
10258 Param_Spec, Formal_Type);
10259 end if;
10261 Formal_Type :=
10262 Create_Null_Excluding_Itype
10263 (T => Formal_Type,
10264 Related_Nod => Related_Nod,
10265 Scope_Id => Scope (Current_Scope));
10267 -- If the designated type of the itype is an itype that is
10268 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10269 -- on the access subtype, to prevent order-of-elaboration
10270 -- issues in the backend.
10272 -- Example:
10273 -- type T is access procedure;
10274 -- procedure Op (O : not null T);
10276 if Is_Itype (Directly_Designated_Type (Formal_Type))
10277 and then
10278 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10279 then
10280 Set_Has_Delayed_Freeze (Formal_Type);
10281 end if;
10282 end if;
10283 end if;
10285 -- An access formal type
10287 else
10288 Formal_Type :=
10289 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10291 -- No need to continue if we already notified errors
10293 if not Present (Formal_Type) then
10294 return;
10295 end if;
10297 -- Ada 2005 (AI-254)
10299 declare
10300 AD : constant Node_Id :=
10301 Access_To_Subprogram_Definition
10302 (Parameter_Type (Param_Spec));
10303 begin
10304 if Present (AD) and then Protected_Present (AD) then
10305 Formal_Type :=
10306 Replace_Anonymous_Access_To_Protected_Subprogram
10307 (Param_Spec);
10308 end if;
10309 end;
10310 end if;
10312 Set_Etype (Formal, Formal_Type);
10314 -- Deal with default expression if present
10316 Default := Expression (Param_Spec);
10318 if Present (Default) then
10319 Check_SPARK_05_Restriction
10320 ("default expression is not allowed", Default);
10322 if Out_Present (Param_Spec) then
10323 Error_Msg_N
10324 ("default initialization only allowed for IN parameters",
10325 Param_Spec);
10326 end if;
10328 -- Do the special preanalysis of the expression (see section on
10329 -- "Handling of Default Expressions" in the spec of package Sem).
10331 Preanalyze_Spec_Expression (Default, Formal_Type);
10333 -- An access to constant cannot be the default for
10334 -- an access parameter that is an access to variable.
10336 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10337 and then not Is_Access_Constant (Formal_Type)
10338 and then Is_Access_Type (Etype (Default))
10339 and then Is_Access_Constant (Etype (Default))
10340 then
10341 Error_Msg_N
10342 ("formal that is access to variable cannot be initialized "
10343 & "with an access-to-constant expression", Default);
10344 end if;
10346 -- Check that the designated type of an access parameter's default
10347 -- is not a class-wide type unless the parameter's designated type
10348 -- is also class-wide.
10350 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10351 and then not Designates_From_Limited_With (Formal_Type)
10352 and then Is_Class_Wide_Default (Default)
10353 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10354 then
10355 Error_Msg_N
10356 ("access to class-wide expression not allowed here", Default);
10357 end if;
10359 -- Check incorrect use of dynamically tagged expressions
10361 if Is_Tagged_Type (Formal_Type) then
10362 Check_Dynamically_Tagged_Expression
10363 (Expr => Default,
10364 Typ => Formal_Type,
10365 Related_Nod => Default);
10366 end if;
10367 end if;
10369 -- Ada 2005 (AI-231): Static checks
10371 if Ada_Version >= Ada_2005
10372 and then Is_Access_Type (Etype (Formal))
10373 and then Can_Never_Be_Null (Etype (Formal))
10374 then
10375 Null_Exclusion_Static_Checks (Param_Spec);
10376 end if;
10378 -- The following checks are relevant only when SPARK_Mode is on as
10379 -- these are not standard Ada legality rules.
10381 if SPARK_Mode = On then
10382 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10384 -- A function cannot have a parameter of mode IN OUT or OUT
10385 -- (SPARK RM 6.1).
10387 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10388 Error_Msg_N
10389 ("function cannot have parameter of mode `OUT` or "
10390 & "`IN OUT`", Formal);
10391 end if;
10393 -- A procedure cannot have an effectively volatile formal
10394 -- parameter of mode IN because it behaves as a constant
10395 -- (SPARK RM 7.1.3(6)).
10397 elsif Ekind (Scope (Formal)) = E_Procedure
10398 and then Ekind (Formal) = E_In_Parameter
10399 and then Is_Effectively_Volatile (Formal)
10400 then
10401 Error_Msg_N
10402 ("formal parameter of mode `IN` cannot be volatile", Formal);
10403 end if;
10404 end if;
10406 <<Continue>>
10407 Next (Param_Spec);
10408 end loop;
10410 -- If this is the formal part of a function specification, analyze the
10411 -- subtype mark in the context where the formals are visible but not
10412 -- yet usable, and may hide outer homographs.
10414 if Nkind (Related_Nod) = N_Function_Specification then
10415 Analyze_Return_Type (Related_Nod);
10417 -- If return type is class-wide, subprogram freezing may be
10418 -- delayed as well.
10420 if Is_Class_Wide_Type (Etype (Current_Scope))
10421 and then not Is_Thunk (Current_Scope)
10422 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
10423 N_Subprogram_Declaration
10424 then
10425 Set_Has_Delayed_Freeze (Current_Scope);
10426 end if;
10427 end if;
10429 -- Now set the kind (mode) of each formal
10431 Param_Spec := First (T);
10432 while Present (Param_Spec) loop
10433 Formal := Defining_Identifier (Param_Spec);
10434 Set_Formal_Mode (Formal);
10436 if Ekind (Formal) = E_In_Parameter then
10437 Set_Default_Value (Formal, Expression (Param_Spec));
10439 if Present (Expression (Param_Spec)) then
10440 Default := Expression (Param_Spec);
10442 if Is_Scalar_Type (Etype (Default)) then
10443 if Nkind (Parameter_Type (Param_Spec)) /=
10444 N_Access_Definition
10445 then
10446 Formal_Type := Entity (Parameter_Type (Param_Spec));
10447 else
10448 Formal_Type :=
10449 Access_Definition
10450 (Related_Nod, Parameter_Type (Param_Spec));
10451 end if;
10453 Apply_Scalar_Range_Check (Default, Formal_Type);
10454 end if;
10455 end if;
10457 elsif Ekind (Formal) = E_Out_Parameter then
10458 Num_Out_Params := Num_Out_Params + 1;
10460 if Num_Out_Params = 1 then
10461 First_Out_Param := Formal;
10462 end if;
10464 elsif Ekind (Formal) = E_In_Out_Parameter then
10465 Num_Out_Params := Num_Out_Params + 1;
10466 end if;
10468 -- Skip remaining processing if formal type was in error
10470 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10471 goto Next_Parameter;
10472 end if;
10474 -- Force call by reference if aliased
10476 if Is_Aliased (Formal) then
10477 Set_Mechanism (Formal, By_Reference);
10479 -- Warn if user asked this to be passed by copy
10481 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10482 Error_Msg_N
10483 ("cannot pass aliased parameter & by copy??", Formal);
10484 end if;
10486 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10488 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10489 Set_Mechanism (Formal, By_Copy);
10491 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10492 Set_Mechanism (Formal, By_Reference);
10493 end if;
10495 <<Next_Parameter>>
10496 Next (Param_Spec);
10497 end loop;
10499 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10500 Set_Is_Only_Out_Parameter (First_Out_Param);
10501 end if;
10502 end Process_Formals;
10504 ----------------------------
10505 -- Reference_Body_Formals --
10506 ----------------------------
10508 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10509 Fs : Entity_Id;
10510 Fb : Entity_Id;
10512 begin
10513 if Error_Posted (Spec) then
10514 return;
10515 end if;
10517 -- Iterate over both lists. They may be of different lengths if the two
10518 -- specs are not conformant.
10520 Fs := First_Formal (Spec);
10521 Fb := First_Formal (Bod);
10522 while Present (Fs) and then Present (Fb) loop
10523 Generate_Reference (Fs, Fb, 'b');
10525 if Style_Check then
10526 Style.Check_Identifier (Fb, Fs);
10527 end if;
10529 Set_Spec_Entity (Fb, Fs);
10530 Set_Referenced (Fs, False);
10531 Next_Formal (Fs);
10532 Next_Formal (Fb);
10533 end loop;
10534 end Reference_Body_Formals;
10536 -------------------------
10537 -- Set_Actual_Subtypes --
10538 -------------------------
10540 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10541 Decl : Node_Id;
10542 Formal : Entity_Id;
10543 T : Entity_Id;
10544 First_Stmt : Node_Id := Empty;
10545 AS_Needed : Boolean;
10547 begin
10548 -- If this is an empty initialization procedure, no need to create
10549 -- actual subtypes (small optimization).
10551 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10552 return;
10553 end if;
10555 Formal := First_Formal (Subp);
10556 while Present (Formal) loop
10557 T := Etype (Formal);
10559 -- We never need an actual subtype for a constrained formal
10561 if Is_Constrained (T) then
10562 AS_Needed := False;
10564 -- If we have unknown discriminants, then we do not need an actual
10565 -- subtype, or more accurately we cannot figure it out. Note that
10566 -- all class-wide types have unknown discriminants.
10568 elsif Has_Unknown_Discriminants (T) then
10569 AS_Needed := False;
10571 -- At this stage we have an unconstrained type that may need an
10572 -- actual subtype. For sure the actual subtype is needed if we have
10573 -- an unconstrained array type.
10575 elsif Is_Array_Type (T) then
10576 AS_Needed := True;
10578 -- The only other case needing an actual subtype is an unconstrained
10579 -- record type which is an IN parameter (we cannot generate actual
10580 -- subtypes for the OUT or IN OUT case, since an assignment can
10581 -- change the discriminant values. However we exclude the case of
10582 -- initialization procedures, since discriminants are handled very
10583 -- specially in this context, see the section entitled "Handling of
10584 -- Discriminants" in Einfo.
10586 -- We also exclude the case of Discrim_SO_Functions (functions used
10587 -- in front end layout mode for size/offset values), since in such
10588 -- functions only discriminants are referenced, and not only are such
10589 -- subtypes not needed, but they cannot always be generated, because
10590 -- of order of elaboration issues.
10592 elsif Is_Record_Type (T)
10593 and then Ekind (Formal) = E_In_Parameter
10594 and then Chars (Formal) /= Name_uInit
10595 and then not Is_Unchecked_Union (T)
10596 and then not Is_Discrim_SO_Function (Subp)
10597 then
10598 AS_Needed := True;
10600 -- All other cases do not need an actual subtype
10602 else
10603 AS_Needed := False;
10604 end if;
10606 -- Generate actual subtypes for unconstrained arrays and
10607 -- unconstrained discriminated records.
10609 if AS_Needed then
10610 if Nkind (N) = N_Accept_Statement then
10612 -- If expansion is active, the formal is replaced by a local
10613 -- variable that renames the corresponding entry of the
10614 -- parameter block, and it is this local variable that may
10615 -- require an actual subtype.
10617 if Expander_Active then
10618 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10619 else
10620 Decl := Build_Actual_Subtype (T, Formal);
10621 end if;
10623 if Present (Handled_Statement_Sequence (N)) then
10624 First_Stmt :=
10625 First (Statements (Handled_Statement_Sequence (N)));
10626 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10627 Mark_Rewrite_Insertion (Decl);
10628 else
10629 -- If the accept statement has no body, there will be no
10630 -- reference to the actuals, so no need to compute actual
10631 -- subtypes.
10633 return;
10634 end if;
10636 else
10637 Decl := Build_Actual_Subtype (T, Formal);
10638 Prepend (Decl, Declarations (N));
10639 Mark_Rewrite_Insertion (Decl);
10640 end if;
10642 -- The declaration uses the bounds of an existing object, and
10643 -- therefore needs no constraint checks.
10645 Analyze (Decl, Suppress => All_Checks);
10647 -- We need to freeze manually the generated type when it is
10648 -- inserted anywhere else than in a declarative part.
10650 if Present (First_Stmt) then
10651 Insert_List_Before_And_Analyze (First_Stmt,
10652 Freeze_Entity (Defining_Identifier (Decl), N));
10654 -- Ditto if the type has a dynamic predicate, because the
10655 -- generated function will mention the actual subtype.
10657 elsif Has_Dynamic_Predicate_Aspect (T) then
10658 Insert_List_Before_And_Analyze (Decl,
10659 Freeze_Entity (Defining_Identifier (Decl), N));
10660 end if;
10662 if Nkind (N) = N_Accept_Statement
10663 and then Expander_Active
10664 then
10665 Set_Actual_Subtype (Renamed_Object (Formal),
10666 Defining_Identifier (Decl));
10667 else
10668 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10669 end if;
10670 end if;
10672 Next_Formal (Formal);
10673 end loop;
10674 end Set_Actual_Subtypes;
10676 ---------------------
10677 -- Set_Formal_Mode --
10678 ---------------------
10680 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10681 Spec : constant Node_Id := Parent (Formal_Id);
10682 Id : constant Entity_Id := Scope (Formal_Id);
10684 begin
10685 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10686 -- since we ensure that corresponding actuals are always valid at the
10687 -- point of the call.
10689 if Out_Present (Spec) then
10690 if Ekind_In (Id, E_Entry, E_Entry_Family)
10691 or else Is_Subprogram_Or_Generic_Subprogram (Id)
10692 then
10693 Set_Has_Out_Or_In_Out_Parameter (Id, True);
10694 end if;
10696 if Ekind_In (Id, E_Function, E_Generic_Function) then
10698 -- [IN] OUT parameters allowed for functions in Ada 2012
10700 if Ada_Version >= Ada_2012 then
10702 -- Even in Ada 2012 operators can only have IN parameters
10704 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10705 Error_Msg_N ("operators can only have IN parameters", Spec);
10706 end if;
10708 if In_Present (Spec) then
10709 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10710 else
10711 Set_Ekind (Formal_Id, E_Out_Parameter);
10712 end if;
10714 -- But not in earlier versions of Ada
10716 else
10717 Error_Msg_N ("functions can only have IN parameters", Spec);
10718 Set_Ekind (Formal_Id, E_In_Parameter);
10719 end if;
10721 elsif In_Present (Spec) then
10722 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10724 else
10725 Set_Ekind (Formal_Id, E_Out_Parameter);
10726 Set_Never_Set_In_Source (Formal_Id, True);
10727 Set_Is_True_Constant (Formal_Id, False);
10728 Set_Current_Value (Formal_Id, Empty);
10729 end if;
10731 else
10732 Set_Ekind (Formal_Id, E_In_Parameter);
10733 end if;
10735 -- Set Is_Known_Non_Null for access parameters since the language
10736 -- guarantees that access parameters are always non-null. We also set
10737 -- Can_Never_Be_Null, since there is no way to change the value.
10739 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10741 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10742 -- null; In Ada 2005, only if then null_exclusion is explicit.
10744 if Ada_Version < Ada_2005
10745 or else Can_Never_Be_Null (Etype (Formal_Id))
10746 then
10747 Set_Is_Known_Non_Null (Formal_Id);
10748 Set_Can_Never_Be_Null (Formal_Id);
10749 end if;
10751 -- Ada 2005 (AI-231): Null-exclusion access subtype
10753 elsif Is_Access_Type (Etype (Formal_Id))
10754 and then Can_Never_Be_Null (Etype (Formal_Id))
10755 then
10756 Set_Is_Known_Non_Null (Formal_Id);
10758 -- We can also set Can_Never_Be_Null (thus preventing some junk
10759 -- access checks) for the case of an IN parameter, which cannot
10760 -- be changed, or for an IN OUT parameter, which can be changed but
10761 -- not to a null value. But for an OUT parameter, the initial value
10762 -- passed in can be null, so we can't set this flag in that case.
10764 if Ekind (Formal_Id) /= E_Out_Parameter then
10765 Set_Can_Never_Be_Null (Formal_Id);
10766 end if;
10767 end if;
10769 Set_Mechanism (Formal_Id, Default_Mechanism);
10770 Set_Formal_Validity (Formal_Id);
10771 end Set_Formal_Mode;
10773 -------------------------
10774 -- Set_Formal_Validity --
10775 -------------------------
10777 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10778 begin
10779 -- If no validity checking, then we cannot assume anything about the
10780 -- validity of parameters, since we do not know there is any checking
10781 -- of the validity on the call side.
10783 if not Validity_Checks_On then
10784 return;
10786 -- If validity checking for parameters is enabled, this means we are
10787 -- not supposed to make any assumptions about argument values.
10789 elsif Validity_Check_Parameters then
10790 return;
10792 -- If we are checking in parameters, we will assume that the caller is
10793 -- also checking parameters, so we can assume the parameter is valid.
10795 elsif Ekind (Formal_Id) = E_In_Parameter
10796 and then Validity_Check_In_Params
10797 then
10798 Set_Is_Known_Valid (Formal_Id, True);
10800 -- Similar treatment for IN OUT parameters
10802 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10803 and then Validity_Check_In_Out_Params
10804 then
10805 Set_Is_Known_Valid (Formal_Id, True);
10806 end if;
10807 end Set_Formal_Validity;
10809 ------------------------
10810 -- Subtype_Conformant --
10811 ------------------------
10813 function Subtype_Conformant
10814 (New_Id : Entity_Id;
10815 Old_Id : Entity_Id;
10816 Skip_Controlling_Formals : Boolean := False) return Boolean
10818 Result : Boolean;
10819 begin
10820 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10821 Skip_Controlling_Formals => Skip_Controlling_Formals);
10822 return Result;
10823 end Subtype_Conformant;
10825 ---------------------
10826 -- Type_Conformant --
10827 ---------------------
10829 function Type_Conformant
10830 (New_Id : Entity_Id;
10831 Old_Id : Entity_Id;
10832 Skip_Controlling_Formals : Boolean := False) return Boolean
10834 Result : Boolean;
10835 begin
10836 May_Hide_Profile := False;
10837 Check_Conformance
10838 (New_Id, Old_Id, Type_Conformant, False, Result,
10839 Skip_Controlling_Formals => Skip_Controlling_Formals);
10840 return Result;
10841 end Type_Conformant;
10843 -------------------------------
10844 -- Valid_Operator_Definition --
10845 -------------------------------
10847 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10848 N : Integer := 0;
10849 F : Entity_Id;
10850 Id : constant Name_Id := Chars (Designator);
10851 N_OK : Boolean;
10853 begin
10854 F := First_Formal (Designator);
10855 while Present (F) loop
10856 N := N + 1;
10858 if Present (Default_Value (F)) then
10859 Error_Msg_N
10860 ("default values not allowed for operator parameters",
10861 Parent (F));
10863 -- For function instantiations that are operators, we must check
10864 -- separately that the corresponding generic only has in-parameters.
10865 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10866 -- an error could not arise in earlier versions of the language.
10868 elsif Ekind (F) /= E_In_Parameter then
10869 Error_Msg_N ("operators can only have IN parameters", F);
10870 end if;
10872 Next_Formal (F);
10873 end loop;
10875 -- Verify that user-defined operators have proper number of arguments
10876 -- First case of operators which can only be unary
10878 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10879 N_OK := (N = 1);
10881 -- Case of operators which can be unary or binary
10883 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10884 N_OK := (N in 1 .. 2);
10886 -- All other operators can only be binary
10888 else
10889 N_OK := (N = 2);
10890 end if;
10892 if not N_OK then
10893 Error_Msg_N
10894 ("incorrect number of arguments for operator", Designator);
10895 end if;
10897 if Id = Name_Op_Ne
10898 and then Base_Type (Etype (Designator)) = Standard_Boolean
10899 and then not Is_Intrinsic_Subprogram (Designator)
10900 then
10901 Error_Msg_N
10902 ("explicit definition of inequality not allowed", Designator);
10903 end if;
10904 end Valid_Operator_Definition;
10906 end Sem_Ch6;