1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch6
; use Exp_Ch6
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Fixd
; use Exp_Fixd
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Freeze
; use Freeze
;
46 with Inline
; use Inline
;
48 with Namet
; use Namet
;
49 with Nlists
; use Nlists
;
50 with Nmake
; use Nmake
;
52 with Par_SCO
; use Par_SCO
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
66 with Sem_Warn
; use Sem_Warn
;
67 with Sinfo
; use Sinfo
;
68 with Snames
; use Snames
;
69 with Stand
; use Stand
;
70 with SCIL_LL
; use SCIL_LL
;
71 with Targparm
; use Targparm
;
72 with Tbuild
; use Tbuild
;
73 with Ttypes
; use Ttypes
;
74 with Uintp
; use Uintp
;
75 with Urealp
; use Urealp
;
76 with Validsw
; use Validsw
;
78 package body Exp_Ch4
is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Binary_Op_Validity_Checks
(N
: Node_Id
);
85 pragma Inline
(Binary_Op_Validity_Checks
);
86 -- Performs validity checks for a binary operator
88 procedure Build_Boolean_Array_Proc_Call
92 -- If a boolean array assignment can be done in place, build call to
93 -- corresponding library procedure.
95 function Current_Anonymous_Master
return Entity_Id
;
96 -- Return the entity of the heterogeneous finalization master belonging to
97 -- the current unit (either function, package or procedure). This master
98 -- services all anonymous access-to-controlled types. If the current unit
99 -- does not have such master, create one.
101 procedure Displace_Allocator_Pointer
(N
: Node_Id
);
102 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
103 -- Expand_Allocator_Expression. Allocating class-wide interface objects
104 -- this routine displaces the pointer to the allocated object to reference
105 -- the component referencing the corresponding secondary dispatch table.
107 procedure Expand_Allocator_Expression
(N
: Node_Id
);
108 -- Subsidiary to Expand_N_Allocator, for the case when the expression
109 -- is a qualified expression or an aggregate.
111 procedure Expand_Array_Comparison
(N
: Node_Id
);
112 -- This routine handles expansion of the comparison operators (N_Op_Lt,
113 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
114 -- code for these operators is similar, differing only in the details of
115 -- the actual comparison call that is made. Special processing (call a
118 function Expand_Array_Equality
123 Typ
: Entity_Id
) return Node_Id
;
124 -- Expand an array equality into a call to a function implementing this
125 -- equality, and a call to it. Loc is the location for the generated nodes.
126 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
127 -- on which to attach bodies of local functions that are created in the
128 -- process. It is the responsibility of the caller to insert those bodies
129 -- at the right place. Nod provides the Sloc value for the generated code.
130 -- Normally the types used for the generated equality routine are taken
131 -- from Lhs and Rhs. However, in some situations of generated code, the
132 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
133 -- the type to be used for the formal parameters.
135 procedure Expand_Boolean_Operator
(N
: Node_Id
);
136 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
137 -- case of array type arguments.
139 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
);
140 -- Common expansion processing for short-circuit boolean operators
142 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
);
143 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
144 -- where we allow comparison of "out of range" values.
146 function Expand_Composite_Equality
151 Bodies
: List_Id
) return Node_Id
;
152 -- Local recursive function used to expand equality for nested composite
153 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
154 -- to attach bodies of local functions that are created in the process. It
155 -- is the responsibility of the caller to insert those bodies at the right
156 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
157 -- the left and right sides for the comparison, and Typ is the type of the
158 -- objects to compare.
160 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
);
161 -- Routine to expand concatenation of a sequence of two or more operands
162 -- (in the list Operands) and replace node Cnode with the result of the
163 -- concatenation. The operands can be of any appropriate type, and can
164 -- include both arrays and singleton elements.
166 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
);
167 -- N is an N_In membership test mode, with the overflow check mode set to
168 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
169 -- integer type. This is a case where top level processing is required to
170 -- handle overflow checks in subtrees.
172 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
);
173 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
174 -- fixed. We do not have such a type at runtime, so the purpose of this
175 -- routine is to find the real type by looking up the tree. We also
176 -- determine if the operation must be rounded.
178 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean;
179 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
180 -- discriminants if it has a constrained nominal type, unless the object
181 -- is a component of an enclosing Unchecked_Union object that is subject
182 -- to a per-object constraint and the enclosing object lacks inferable
185 -- An expression of an Unchecked_Union type has inferable discriminants
186 -- if it is either a name of an object with inferable discriminants or a
187 -- qualified expression whose subtype mark denotes a constrained subtype.
189 procedure Insert_Dereference_Action
(N
: Node_Id
);
190 -- N is an expression whose type is an access. When the type of the
191 -- associated storage pool is derived from Checked_Pool, generate a
192 -- call to the 'Dereference' primitive operation.
194 function Make_Array_Comparison_Op
196 Nod
: Node_Id
) return Node_Id
;
197 -- Comparisons between arrays are expanded in line. This function produces
198 -- the body of the implementation of (a > b), where a and b are one-
199 -- dimensional arrays of some discrete type. The original node is then
200 -- expanded into the appropriate call to this function. Nod provides the
201 -- Sloc value for the generated code.
203 function Make_Boolean_Array_Op
205 N
: Node_Id
) return Node_Id
;
206 -- Boolean operations on boolean arrays are expanded in line. This function
207 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
208 -- b). It is used only the normal case and not the packed case. The type
209 -- involved, Typ, is the Boolean array type, and the logical operations in
210 -- the body are simple boolean operations. Note that Typ is always a
211 -- constrained type (the caller has ensured this by using
212 -- Convert_To_Actual_Subtype if necessary).
214 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean;
215 -- For signed arithmetic operations when the current overflow mode is
216 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
217 -- as the first thing we do. We then return. We count on the recursive
218 -- apparatus for overflow checks to call us back with an equivalent
219 -- operation that is in CHECKED mode, avoiding a recursive entry into this
220 -- routine, and that is when we will proceed with the expansion of the
221 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
222 -- these optimizations without first making this check, since there may be
223 -- operands further down the tree that are relying on the recursive calls
224 -- triggered by the top level nodes to properly process overflow checking
225 -- and remaining expansion on these nodes. Note that this call back may be
226 -- skipped if the operation is done in Bignum mode but that's fine, since
227 -- the Bignum call takes care of everything.
229 procedure Optimize_Length_Comparison
(N
: Node_Id
);
230 -- Given an expression, if it is of the form X'Length op N (or the other
231 -- way round), where N is known at compile time to be 0 or 1, and X is a
232 -- simple entity, and op is a comparison operator, optimizes it into a
233 -- comparison of First and Last.
235 procedure Process_Transient_Object
238 -- Subsidiary routine to the expansion of expression_with_actions and if
239 -- expressions. Generate all the necessary code to finalize a transient
240 -- controlled object when the enclosing context is elaborated or evaluated.
241 -- Decl denotes the declaration of the transient controlled object which is
242 -- usually the result of a controlled function call. Rel_Node denotes the
243 -- context, either an expression_with_actions or an if expression.
245 procedure Rewrite_Comparison
(N
: Node_Id
);
246 -- If N is the node for a comparison whose outcome can be determined at
247 -- compile time, then the node N can be rewritten with True or False. If
248 -- the outcome cannot be determined at compile time, the call has no
249 -- effect. If N is a type conversion, then this processing is applied to
250 -- its expression. If N is neither comparison nor a type conversion, the
251 -- call has no effect.
253 procedure Tagged_Membership
255 SCIL_Node
: out Node_Id
;
256 Result
: out Node_Id
);
257 -- Construct the expression corresponding to the tagged membership test.
258 -- Deals with a second operand being (or not) a class-wide type.
260 function Safe_In_Place_Array_Op
263 Op2
: Node_Id
) return Boolean;
264 -- In the context of an assignment, where the right-hand side is a boolean
265 -- operation on arrays, check whether operation can be performed in place.
267 procedure Unary_Op_Validity_Checks
(N
: Node_Id
);
268 pragma Inline
(Unary_Op_Validity_Checks
);
269 -- Performs validity checks for a unary operator
271 -------------------------------
272 -- Binary_Op_Validity_Checks --
273 -------------------------------
275 procedure Binary_Op_Validity_Checks
(N
: Node_Id
) is
277 if Validity_Checks_On
and Validity_Check_Operands
then
278 Ensure_Valid
(Left_Opnd
(N
));
279 Ensure_Valid
(Right_Opnd
(N
));
281 end Binary_Op_Validity_Checks
;
283 ------------------------------------
284 -- Build_Boolean_Array_Proc_Call --
285 ------------------------------------
287 procedure Build_Boolean_Array_Proc_Call
292 Loc
: constant Source_Ptr
:= Sloc
(N
);
293 Kind
: constant Node_Kind
:= Nkind
(Expression
(N
));
294 Target
: constant Node_Id
:=
295 Make_Attribute_Reference
(Loc
,
297 Attribute_Name
=> Name_Address
);
299 Arg1
: Node_Id
:= Op1
;
300 Arg2
: Node_Id
:= Op2
;
302 Proc_Name
: Entity_Id
;
305 if Kind
= N_Op_Not
then
306 if Nkind
(Op1
) in N_Binary_Op
then
308 -- Use negated version of the binary operators
310 if Nkind
(Op1
) = N_Op_And
then
311 Proc_Name
:= RTE
(RE_Vector_Nand
);
313 elsif Nkind
(Op1
) = N_Op_Or
then
314 Proc_Name
:= RTE
(RE_Vector_Nor
);
316 else pragma Assert
(Nkind
(Op1
) = N_Op_Xor
);
317 Proc_Name
:= RTE
(RE_Vector_Xor
);
321 Make_Procedure_Call_Statement
(Loc
,
322 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
324 Parameter_Associations
=> New_List
(
326 Make_Attribute_Reference
(Loc
,
327 Prefix
=> Left_Opnd
(Op1
),
328 Attribute_Name
=> Name_Address
),
330 Make_Attribute_Reference
(Loc
,
331 Prefix
=> Right_Opnd
(Op1
),
332 Attribute_Name
=> Name_Address
),
334 Make_Attribute_Reference
(Loc
,
335 Prefix
=> Left_Opnd
(Op1
),
336 Attribute_Name
=> Name_Length
)));
339 Proc_Name
:= RTE
(RE_Vector_Not
);
342 Make_Procedure_Call_Statement
(Loc
,
343 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
344 Parameter_Associations
=> New_List
(
347 Make_Attribute_Reference
(Loc
,
349 Attribute_Name
=> Name_Address
),
351 Make_Attribute_Reference
(Loc
,
353 Attribute_Name
=> Name_Length
)));
357 -- We use the following equivalences:
359 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
360 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
361 -- (not X) xor (not Y) = X xor Y
362 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
364 if Nkind
(Op1
) = N_Op_Not
then
365 Arg1
:= Right_Opnd
(Op1
);
366 Arg2
:= Right_Opnd
(Op2
);
368 if Kind
= N_Op_And
then
369 Proc_Name
:= RTE
(RE_Vector_Nor
);
370 elsif Kind
= N_Op_Or
then
371 Proc_Name
:= RTE
(RE_Vector_Nand
);
373 Proc_Name
:= RTE
(RE_Vector_Xor
);
377 if Kind
= N_Op_And
then
378 Proc_Name
:= RTE
(RE_Vector_And
);
379 elsif Kind
= N_Op_Or
then
380 Proc_Name
:= RTE
(RE_Vector_Or
);
381 elsif Nkind
(Op2
) = N_Op_Not
then
382 Proc_Name
:= RTE
(RE_Vector_Nxor
);
383 Arg2
:= Right_Opnd
(Op2
);
385 Proc_Name
:= RTE
(RE_Vector_Xor
);
390 Make_Procedure_Call_Statement
(Loc
,
391 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
392 Parameter_Associations
=> New_List
(
394 Make_Attribute_Reference
(Loc
,
396 Attribute_Name
=> Name_Address
),
397 Make_Attribute_Reference
(Loc
,
399 Attribute_Name
=> Name_Address
),
400 Make_Attribute_Reference
(Loc
,
402 Attribute_Name
=> Name_Length
)));
405 Rewrite
(N
, Call_Node
);
409 when RE_Not_Available
=>
411 end Build_Boolean_Array_Proc_Call
;
413 ------------------------------
414 -- Current_Anonymous_Master --
415 ------------------------------
417 function Current_Anonymous_Master
return Entity_Id
is
418 function Create_Anonymous_Master
419 (Unit_Id
: Entity_Id
;
420 Unit_Decl
: Node_Id
) return Entity_Id
;
421 -- Create a new anonymous master for a compilation unit denoted by its
422 -- entity Unit_Id and declaration Unit_Decl. The declaration of the new
423 -- master along with any specialized initialization is inserted at the
424 -- top of the unit's declarations (see body for special cases). Return
425 -- the entity of the anonymous master.
427 -----------------------------
428 -- Create_Anonymous_Master --
429 -----------------------------
431 function Create_Anonymous_Master
432 (Unit_Id
: Entity_Id
;
433 Unit_Decl
: Node_Id
) return Entity_Id
435 Insert_Nod
: Node_Id
:= Empty
;
436 -- The point of insertion into the declarative list of the unit. All
437 -- nodes are inserted before Insert_Nod.
439 procedure Insert_And_Analyze
(Decls
: List_Id
; N
: Node_Id
);
440 -- Insert arbitrary node N in declarative list Decls and analyze it
442 ------------------------
443 -- Insert_And_Analyze --
444 ------------------------
446 procedure Insert_And_Analyze
(Decls
: List_Id
; N
: Node_Id
) is
448 -- The declarative list is already populated, the nodes are
449 -- inserted at the top of the list, preserving their order.
451 if Present
(Insert_Nod
) then
452 Insert_Before
(Insert_Nod
, N
);
454 -- Otherwise append to the declarations to preserve order
457 Append_To
(Decls
, N
);
461 end Insert_And_Analyze
;
465 Loc
: constant Source_Ptr
:= Sloc
(Unit_Id
);
466 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(Unit_Decl
);
472 -- Start of processing for Create_Anonymous_Master
475 -- Find the declarative list of the unit
477 if Nkind
(Unit_Decl
) = N_Package_Declaration
then
478 Unit_Spec
:= Specification
(Unit_Decl
);
479 Decls
:= Visible_Declarations
(Unit_Spec
);
482 Decls
:= New_List
(Make_Null_Statement
(Loc
));
483 Set_Visible_Declarations
(Unit_Spec
, Decls
);
486 -- Package or subprogram body
488 -- ??? A subprogram declaration that acts as a compilation unit may
489 -- contain a formal parameter of an anonymous access-to-controlled
490 -- type initialized by an allocator.
492 -- procedure Comp_Unit_Proc (Param : access Ctrl := new Ctrl);
494 -- There is no suitable place to create the anonymous master as the
495 -- subprogram is not in a declarative list.
498 Decls
:= Declarations
(Unit_Decl
);
501 Decls
:= New_List
(Make_Null_Statement
(Loc
));
502 Set_Declarations
(Unit_Decl
, Decls
);
506 -- The anonymous master and all initialization actions are inserted
507 -- before the first declaration (if any).
509 Insert_Nod
:= First
(Decls
);
511 -- Since the anonymous master and all its initialization actions are
512 -- inserted at top level, use the scope of the unit when analyzing.
514 Push_Scope
(Spec_Id
);
516 -- Step 1: Anonymous master creation
518 -- Use a unique prefix in case the same unit requires two anonymous
519 -- masters, one for the spec (S) and one for the body (B).
521 if Ekind_In
(Unit_Id
, E_Function
, E_Package
, E_Procedure
) then
528 Make_Defining_Identifier
(Loc
,
530 (Related_Id
=> Chars
(Unit_Id
),
534 Set_Anonymous_Master
(Unit_Id
, FM_Id
);
537 -- <FM_Id> : Finalization_Master;
539 Insert_And_Analyze
(Decls
,
540 Make_Object_Declaration
(Loc
,
541 Defining_Identifier
=> FM_Id
,
543 New_Occurrence_Of
(RTE
(RE_Finalization_Master
), Loc
)));
545 -- Step 2: Initialization actions
549 -- (<FM_Id>, Global_Pool_Object'Unrestricted_Access);
551 Insert_And_Analyze
(Decls
,
552 Make_Procedure_Call_Statement
(Loc
,
554 New_Occurrence_Of
(RTE
(RE_Set_Base_Pool
), Loc
),
555 Parameter_Associations
=> New_List
(
556 New_Occurrence_Of
(FM_Id
, Loc
),
557 Make_Attribute_Reference
(Loc
,
559 New_Occurrence_Of
(RTE
(RE_Global_Pool_Object
), Loc
),
560 Attribute_Name
=> Name_Unrestricted_Access
))));
563 -- Set_Is_Heterogeneous (<FM_Id>);
565 Insert_And_Analyze
(Decls
,
566 Make_Procedure_Call_Statement
(Loc
,
568 New_Occurrence_Of
(RTE
(RE_Set_Is_Heterogeneous
), Loc
),
569 Parameter_Associations
=> New_List
(
570 New_Occurrence_Of
(FM_Id
, Loc
))));
574 end Create_Anonymous_Master
;
576 -- Local declarations
581 -- Start of processing for Current_Anonymous_Master
584 Unit_Decl
:= Unit
(Cunit
(Current_Sem_Unit
));
585 Unit_Id
:= Defining_Entity
(Unit_Decl
);
587 -- The compilation unit is a package instantiation. In this case the
588 -- anonymous master is associated with the package spec as both the
589 -- spec and body appear at the same level.
591 if Nkind
(Unit_Decl
) = N_Package_Body
592 and then Nkind
(Original_Node
(Unit_Decl
)) = N_Package_Instantiation
594 Unit_Id
:= Corresponding_Spec
(Unit_Decl
);
595 Unit_Decl
:= Unit_Declaration_Node
(Unit_Id
);
598 if Present
(Anonymous_Master
(Unit_Id
)) then
599 return Anonymous_Master
(Unit_Id
);
601 -- Create a new anonymous master when allocating an object of anonymous
602 -- access-to-controlled type for the first time.
605 return Create_Anonymous_Master
(Unit_Id
, Unit_Decl
);
607 end Current_Anonymous_Master
;
609 --------------------------------
610 -- Displace_Allocator_Pointer --
611 --------------------------------
613 procedure Displace_Allocator_Pointer
(N
: Node_Id
) is
614 Loc
: constant Source_Ptr
:= Sloc
(N
);
615 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
621 -- Do nothing in case of VM targets: the virtual machine will handle
622 -- interfaces directly.
624 if not Tagged_Type_Expansion
then
628 pragma Assert
(Nkind
(N
) = N_Identifier
629 and then Nkind
(Orig_Node
) = N_Allocator
);
631 PtrT
:= Etype
(Orig_Node
);
632 Dtyp
:= Available_View
(Designated_Type
(PtrT
));
633 Etyp
:= Etype
(Expression
(Orig_Node
));
635 if Is_Class_Wide_Type
(Dtyp
) and then Is_Interface
(Dtyp
) then
637 -- If the type of the allocator expression is not an interface type
638 -- we can generate code to reference the record component containing
639 -- the pointer to the secondary dispatch table.
641 if not Is_Interface
(Etyp
) then
643 Saved_Typ
: constant Entity_Id
:= Etype
(Orig_Node
);
646 -- 1) Get access to the allocated object
649 Make_Explicit_Dereference
(Loc
, Relocate_Node
(N
)));
653 -- 2) Add the conversion to displace the pointer to reference
654 -- the secondary dispatch table.
656 Rewrite
(N
, Convert_To
(Dtyp
, Relocate_Node
(N
)));
657 Analyze_And_Resolve
(N
, Dtyp
);
659 -- 3) The 'access to the secondary dispatch table will be used
660 -- as the value returned by the allocator.
663 Make_Attribute_Reference
(Loc
,
664 Prefix
=> Relocate_Node
(N
),
665 Attribute_Name
=> Name_Access
));
666 Set_Etype
(N
, Saved_Typ
);
670 -- If the type of the allocator expression is an interface type we
671 -- generate a run-time call to displace "this" to reference the
672 -- component containing the pointer to the secondary dispatch table
673 -- or else raise Constraint_Error if the actual object does not
674 -- implement the target interface. This case corresponds to the
675 -- following example:
677 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
679 -- return new Iface_2'Class'(Obj);
684 Unchecked_Convert_To
(PtrT
,
685 Make_Function_Call
(Loc
,
686 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
687 Parameter_Associations
=> New_List
(
688 Unchecked_Convert_To
(RTE
(RE_Address
),
694 (Access_Disp_Table
(Etype
(Base_Type
(Dtyp
))))),
696 Analyze_And_Resolve
(N
, PtrT
);
699 end Displace_Allocator_Pointer
;
701 ---------------------------------
702 -- Expand_Allocator_Expression --
703 ---------------------------------
705 procedure Expand_Allocator_Expression
(N
: Node_Id
) is
706 Loc
: constant Source_Ptr
:= Sloc
(N
);
707 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
708 PtrT
: constant Entity_Id
:= Etype
(N
);
709 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
711 procedure Apply_Accessibility_Check
713 Built_In_Place
: Boolean := False);
714 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
715 -- type, generate an accessibility check to verify that the level of the
716 -- type of the created object is not deeper than the level of the access
717 -- type. If the type of the qualified expression is class-wide, then
718 -- always generate the check (except in the case where it is known to be
719 -- unnecessary, see comment below). Otherwise, only generate the check
720 -- if the level of the qualified expression type is statically deeper
721 -- than the access type.
723 -- Although the static accessibility will generally have been performed
724 -- as a legality check, it won't have been done in cases where the
725 -- allocator appears in generic body, so a run-time check is needed in
726 -- general. One special case is when the access type is declared in the
727 -- same scope as the class-wide allocator, in which case the check can
728 -- never fail, so it need not be generated.
730 -- As an open issue, there seem to be cases where the static level
731 -- associated with the class-wide object's underlying type is not
732 -- sufficient to perform the proper accessibility check, such as for
733 -- allocators in nested subprograms or accept statements initialized by
734 -- class-wide formals when the actual originates outside at a deeper
735 -- static level. The nested subprogram case might require passing
736 -- accessibility levels along with class-wide parameters, and the task
737 -- case seems to be an actual gap in the language rules that needs to
738 -- be fixed by the ARG. ???
740 -------------------------------
741 -- Apply_Accessibility_Check --
742 -------------------------------
744 procedure Apply_Accessibility_Check
746 Built_In_Place
: Boolean := False)
748 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
756 if Ada_Version
>= Ada_2005
757 and then Is_Class_Wide_Type
(DesigT
)
758 and then Tagged_Type_Expansion
759 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
761 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
763 (Is_Class_Wide_Type
(Etype
(Exp
))
764 and then Scope
(PtrT
) /= Current_Scope
))
766 -- If the allocator was built in place, Ref is already a reference
767 -- to the access object initialized to the result of the allocator
768 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
769 -- Remove_Side_Effects for cases where the build-in-place call may
770 -- still be the prefix of the reference (to avoid generating
771 -- duplicate calls). Otherwise, it is the entity associated with
772 -- the object containing the address of the allocated object.
774 if Built_In_Place
then
775 Remove_Side_Effects
(Ref
);
776 Obj_Ref
:= New_Copy_Tree
(Ref
);
778 Obj_Ref
:= New_Occurrence_Of
(Ref
, Loc
);
781 -- For access to interface types we must generate code to displace
782 -- the pointer to the base of the object since the subsequent code
783 -- references components located in the TSD of the object (which
784 -- is associated with the primary dispatch table --see a-tags.ads)
785 -- and also generates code invoking Free, which requires also a
786 -- reference to the base of the unallocated object.
788 if Is_Interface
(DesigT
) and then Tagged_Type_Expansion
then
790 Unchecked_Convert_To
(Etype
(Obj_Ref
),
791 Make_Function_Call
(Loc
,
793 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
794 Parameter_Associations
=> New_List
(
795 Unchecked_Convert_To
(RTE
(RE_Address
),
796 New_Copy_Tree
(Obj_Ref
)))));
799 -- Step 1: Create the object clean up code
803 -- Deallocate the object if the accessibility check fails. This
804 -- is done only on targets or profiles that support deallocation.
808 if RTE_Available
(RE_Free
) then
809 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
810 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
812 Append_To
(Stmts
, Free_Stmt
);
814 -- The target or profile cannot deallocate objects
820 -- Finalize the object if applicable. Generate:
822 -- [Deep_]Finalize (Obj_Ref.all);
824 if Needs_Finalization
(DesigT
) then
828 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
831 -- When the target or profile supports deallocation, wrap the
832 -- finalization call in a block to ensure proper deallocation
833 -- even if finalization fails. Generate:
843 if Present
(Free_Stmt
) then
845 Make_Block_Statement
(Loc
,
846 Handled_Statement_Sequence
=>
847 Make_Handled_Sequence_Of_Statements
(Loc
,
848 Statements
=> New_List
(Fin_Call
),
850 Exception_Handlers
=> New_List
(
851 Make_Exception_Handler
(Loc
,
852 Exception_Choices
=> New_List
(
853 Make_Others_Choice
(Loc
)),
854 Statements
=> New_List
(
855 New_Copy_Tree
(Free_Stmt
),
856 Make_Raise_Statement
(Loc
))))));
859 Prepend_To
(Stmts
, Fin_Call
);
862 -- Signal the accessibility failure through a Program_Error
865 Make_Raise_Program_Error
(Loc
,
866 Condition
=> New_Occurrence_Of
(Standard_True
, Loc
),
867 Reason
=> PE_Accessibility_Check_Failed
));
869 -- Step 2: Create the accessibility comparison
875 Make_Attribute_Reference
(Loc
,
877 Attribute_Name
=> Name_Tag
);
879 -- For tagged types, determine the accessibility level by looking
880 -- at the type specific data of the dispatch table. Generate:
882 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
884 if Tagged_Type_Expansion
then
885 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
887 -- Use a runtime call to determine the accessibility level when
888 -- compiling on virtual machine targets. Generate:
890 -- Get_Access_Level (Ref'Tag)
894 Make_Function_Call
(Loc
,
896 New_Occurrence_Of
(RTE
(RE_Get_Access_Level
), Loc
),
897 Parameter_Associations
=> New_List
(Obj_Ref
));
904 Make_Integer_Literal
(Loc
, Type_Access_Level
(PtrT
)));
906 -- Due to the complexity and side effects of the check, utilize an
907 -- if statement instead of the regular Program_Error circuitry.
910 Make_Implicit_If_Statement
(N
,
912 Then_Statements
=> Stmts
));
914 end Apply_Accessibility_Check
;
918 Aggr_In_Place
: constant Boolean := Is_Delayed_Aggregate
(Exp
);
919 Indic
: constant Node_Id
:= Subtype_Mark
(Expression
(N
));
920 T
: constant Entity_Id
:= Entity
(Indic
);
922 Tag_Assign
: Node_Id
;
926 TagT
: Entity_Id
:= Empty
;
927 -- Type used as source for tag assignment
929 TagR
: Node_Id
:= Empty
;
930 -- Target reference for tag assignment
932 -- Start of processing for Expand_Allocator_Expression
935 -- Handle call to C++ constructor
937 if Is_CPP_Constructor_Call
(Exp
) then
938 Make_CPP_Constructor_Call_In_Allocator
940 Function_Call
=> Exp
);
944 -- In the case of an Ada 2012 allocator whose initial value comes from a
945 -- function call, pass "the accessibility level determined by the point
946 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
947 -- Expand_Call but it couldn't be done there (because the Etype of the
948 -- allocator wasn't set then) so we generate the parameter here. See
949 -- the Boolean variable Defer in (a block within) Expand_Call.
951 if Ada_Version
>= Ada_2012
and then Nkind
(Exp
) = N_Function_Call
then
956 if Nkind
(Name
(Exp
)) = N_Explicit_Dereference
then
957 Subp
:= Designated_Type
(Etype
(Prefix
(Name
(Exp
))));
959 Subp
:= Entity
(Name
(Exp
));
962 Subp
:= Ultimate_Alias
(Subp
);
964 if Present
(Extra_Accessibility_Of_Result
(Subp
)) then
965 Add_Extra_Actual_To_Call
966 (Subprogram_Call
=> Exp
,
967 Extra_Formal
=> Extra_Accessibility_Of_Result
(Subp
),
968 Extra_Actual
=> Dynamic_Accessibility_Level
(PtrT
));
973 -- Case of tagged type or type requiring finalization
975 if Is_Tagged_Type
(T
) or else Needs_Finalization
(T
) then
977 -- Ada 2005 (AI-318-02): If the initialization expression is a call
978 -- to a build-in-place function, then access to the allocated object
979 -- must be passed to the function. Currently we limit such functions
980 -- to those with constrained limited result subtypes, but eventually
981 -- we plan to expand the allowed forms of functions that are treated
982 -- as build-in-place.
984 if Ada_Version
>= Ada_2005
985 and then Is_Build_In_Place_Function_Call
(Exp
)
987 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
988 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
992 -- Actions inserted before:
993 -- Temp : constant ptr_T := new T'(Expression);
994 -- Temp._tag = T'tag; -- when not class-wide
995 -- [Deep_]Adjust (Temp.all);
997 -- We analyze by hand the new internal allocator to avoid any
998 -- recursion and inappropriate call to Initialize.
1000 -- We don't want to remove side effects when the expression must be
1001 -- built in place. In the case of a build-in-place function call,
1002 -- that could lead to a duplication of the call, which was already
1003 -- substituted for the allocator.
1005 if not Aggr_In_Place
then
1006 Remove_Side_Effects
(Exp
);
1009 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1011 -- For a class wide allocation generate the following code:
1013 -- type Equiv_Record is record ... end record;
1014 -- implicit subtype CW is <Class_Wide_Subytpe>;
1015 -- temp : PtrT := new CW'(CW!(expr));
1017 if Is_Class_Wide_Type
(T
) then
1018 Expand_Subtype_From_Expr
(Empty
, T
, Indic
, Exp
);
1020 -- Ada 2005 (AI-251): If the expression is a class-wide interface
1021 -- object we generate code to move up "this" to reference the
1022 -- base of the object before allocating the new object.
1024 -- Note that Exp'Address is recursively expanded into a call
1025 -- to Base_Address (Exp.Tag)
1027 if Is_Class_Wide_Type
(Etype
(Exp
))
1028 and then Is_Interface
(Etype
(Exp
))
1029 and then Tagged_Type_Expansion
1033 Unchecked_Convert_To
(Entity
(Indic
),
1034 Make_Explicit_Dereference
(Loc
,
1035 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
1036 Make_Attribute_Reference
(Loc
,
1038 Attribute_Name
=> Name_Address
)))));
1042 Unchecked_Convert_To
(Entity
(Indic
), Exp
));
1045 Analyze_And_Resolve
(Expression
(N
), Entity
(Indic
));
1048 -- Processing for allocators returning non-interface types
1050 if not Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1051 if Aggr_In_Place
then
1053 Make_Object_Declaration
(Loc
,
1054 Defining_Identifier
=> Temp
,
1055 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1057 Make_Allocator
(Loc
,
1059 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1061 -- Copy the Comes_From_Source flag for the allocator we just
1062 -- built, since logically this allocator is a replacement of
1063 -- the original allocator node. This is for proper handling of
1064 -- restriction No_Implicit_Heap_Allocations.
1066 Set_Comes_From_Source
1067 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1069 Set_No_Initialization
(Expression
(Temp_Decl
));
1070 Insert_Action
(N
, Temp_Decl
);
1072 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1073 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1076 Node
:= Relocate_Node
(N
);
1077 Set_Analyzed
(Node
);
1080 Make_Object_Declaration
(Loc
,
1081 Defining_Identifier
=> Temp
,
1082 Constant_Present
=> True,
1083 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1084 Expression
=> Node
);
1086 Insert_Action
(N
, Temp_Decl
);
1087 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1090 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1091 -- interface type. In this case we use the type of the qualified
1092 -- expression to allocate the object.
1096 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1101 Make_Full_Type_Declaration
(Loc
,
1102 Defining_Identifier
=> Def_Id
,
1104 Make_Access_To_Object_Definition
(Loc
,
1105 All_Present
=> True,
1106 Null_Exclusion_Present
=> False,
1108 Is_Access_Constant
(Etype
(N
)),
1109 Subtype_Indication
=>
1110 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1112 Insert_Action
(N
, New_Decl
);
1114 -- Inherit the allocation-related attributes from the original
1117 Set_Finalization_Master
1118 (Def_Id
, Finalization_Master
(PtrT
));
1120 Set_Associated_Storage_Pool
1121 (Def_Id
, Associated_Storage_Pool
(PtrT
));
1123 -- Declare the object using the previous type declaration
1125 if Aggr_In_Place
then
1127 Make_Object_Declaration
(Loc
,
1128 Defining_Identifier
=> Temp
,
1129 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1131 Make_Allocator
(Loc
,
1132 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1134 -- Copy the Comes_From_Source flag for the allocator we just
1135 -- built, since logically this allocator is a replacement of
1136 -- the original allocator node. This is for proper handling
1137 -- of restriction No_Implicit_Heap_Allocations.
1139 Set_Comes_From_Source
1140 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1142 Set_No_Initialization
(Expression
(Temp_Decl
));
1143 Insert_Action
(N
, Temp_Decl
);
1145 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1146 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1149 Node
:= Relocate_Node
(N
);
1150 Set_Analyzed
(Node
);
1153 Make_Object_Declaration
(Loc
,
1154 Defining_Identifier
=> Temp
,
1155 Constant_Present
=> True,
1156 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1157 Expression
=> Node
);
1159 Insert_Action
(N
, Temp_Decl
);
1160 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1163 -- Generate an additional object containing the address of the
1164 -- returned object. The type of this second object declaration
1165 -- is the correct type required for the common processing that
1166 -- is still performed by this subprogram. The displacement of
1167 -- this pointer to reference the component associated with the
1168 -- interface type will be done at the end of common processing.
1171 Make_Object_Declaration
(Loc
,
1172 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
1173 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1175 Unchecked_Convert_To
(PtrT
,
1176 New_Occurrence_Of
(Temp
, Loc
)));
1178 Insert_Action
(N
, New_Decl
);
1180 Temp_Decl
:= New_Decl
;
1181 Temp
:= Defining_Identifier
(New_Decl
);
1185 Apply_Accessibility_Check
(Temp
);
1187 -- Generate the tag assignment
1189 -- Suppress the tag assignment for VM targets because VM tags are
1190 -- represented implicitly in objects.
1192 if not Tagged_Type_Expansion
then
1195 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1196 -- interface objects because in this case the tag does not change.
1198 elsif Is_Interface
(Directly_Designated_Type
(Etype
(N
))) then
1199 pragma Assert
(Is_Class_Wide_Type
1200 (Directly_Designated_Type
(Etype
(N
))));
1203 elsif Is_Tagged_Type
(T
) and then not Is_Class_Wide_Type
(T
) then
1205 TagR
:= New_Occurrence_Of
(Temp
, Loc
);
1207 elsif Is_Private_Type
(T
)
1208 and then Is_Tagged_Type
(Underlying_Type
(T
))
1210 TagT
:= Underlying_Type
(T
);
1212 Unchecked_Convert_To
(Underlying_Type
(T
),
1213 Make_Explicit_Dereference
(Loc
,
1214 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
1217 if Present
(TagT
) then
1219 Full_T
: constant Entity_Id
:= Underlying_Type
(TagT
);
1223 Make_Assignment_Statement
(Loc
,
1225 Make_Selected_Component
(Loc
,
1229 (First_Tag_Component
(Full_T
), Loc
)),
1232 Unchecked_Convert_To
(RTE
(RE_Tag
),
1235 (First_Elmt
(Access_Disp_Table
(Full_T
))), Loc
)));
1238 -- The previous assignment has to be done in any case
1240 Set_Assignment_OK
(Name
(Tag_Assign
));
1241 Insert_Action
(N
, Tag_Assign
);
1244 if Needs_Finalization
(DesigT
) and then Needs_Finalization
(T
) then
1246 -- Generate an Adjust call if the object will be moved. In Ada
1247 -- 2005, the object may be inherently limited, in which case
1248 -- there is no Adjust procedure, and the object is built in
1249 -- place. In Ada 95, the object can be limited but not
1250 -- inherently limited if this allocator came from a return
1251 -- statement (we're allocating the result on the secondary
1252 -- stack). In that case, the object will be moved, so we _do_
1255 if not Aggr_In_Place
1256 and then not Is_Limited_View
(T
)
1260 -- An unchecked conversion is needed in the classwide case
1261 -- because the designated type can be an ancestor of the
1262 -- subtype mark of the allocator.
1266 Unchecked_Convert_To
(T
,
1267 Make_Explicit_Dereference
(Loc
,
1268 Prefix
=> New_Occurrence_Of
(Temp
, Loc
))),
1273 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1274 Analyze_And_Resolve
(N
, PtrT
);
1276 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1277 -- component containing the secondary dispatch table of the interface
1280 if Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1281 Displace_Allocator_Pointer
(N
);
1284 elsif Aggr_In_Place
then
1285 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1287 Make_Object_Declaration
(Loc
,
1288 Defining_Identifier
=> Temp
,
1289 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1291 Make_Allocator
(Loc
,
1292 Expression
=> New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1294 -- Copy the Comes_From_Source flag for the allocator we just built,
1295 -- since logically this allocator is a replacement of the original
1296 -- allocator node. This is for proper handling of restriction
1297 -- No_Implicit_Heap_Allocations.
1299 Set_Comes_From_Source
1300 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1302 Set_No_Initialization
(Expression
(Temp_Decl
));
1303 Insert_Action
(N
, Temp_Decl
);
1305 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1306 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1308 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1309 Analyze_And_Resolve
(N
, PtrT
);
1311 elsif Is_Access_Type
(T
) and then Can_Never_Be_Null
(T
) then
1312 Install_Null_Excluding_Check
(Exp
);
1314 elsif Is_Access_Type
(DesigT
)
1315 and then Nkind
(Exp
) = N_Allocator
1316 and then Nkind
(Expression
(Exp
)) /= N_Qualified_Expression
1318 -- Apply constraint to designated subtype indication
1320 Apply_Constraint_Check
1321 (Expression
(Exp
), Designated_Type
(DesigT
), No_Sliding
=> True);
1323 if Nkind
(Expression
(Exp
)) = N_Raise_Constraint_Error
then
1325 -- Propagate constraint_error to enclosing allocator
1327 Rewrite
(Exp
, New_Copy
(Expression
(Exp
)));
1331 Build_Allocate_Deallocate_Proc
(N
, True);
1334 -- type A is access T1;
1335 -- X : A := new T2'(...);
1336 -- T1 and T2 can be different subtypes, and we might need to check
1337 -- both constraints. First check against the type of the qualified
1340 Apply_Constraint_Check
(Exp
, T
, No_Sliding
=> True);
1342 if Do_Range_Check
(Exp
) then
1343 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1346 -- A check is also needed in cases where the designated subtype is
1347 -- constrained and differs from the subtype given in the qualified
1348 -- expression. Note that the check on the qualified expression does
1349 -- not allow sliding, but this check does (a relaxation from Ada 83).
1351 if Is_Constrained
(DesigT
)
1352 and then not Subtypes_Statically_Match
(T
, DesigT
)
1354 Apply_Constraint_Check
1355 (Exp
, DesigT
, No_Sliding
=> False);
1357 if Do_Range_Check
(Exp
) then
1358 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1362 -- For an access to unconstrained packed array, GIGI needs to see an
1363 -- expression with a constrained subtype in order to compute the
1364 -- proper size for the allocator.
1366 if Is_Array_Type
(T
)
1367 and then not Is_Constrained
(T
)
1368 and then Is_Packed
(T
)
1371 ConstrT
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1372 Internal_Exp
: constant Node_Id
:= Relocate_Node
(Exp
);
1375 Make_Subtype_Declaration
(Loc
,
1376 Defining_Identifier
=> ConstrT
,
1377 Subtype_Indication
=>
1378 Make_Subtype_From_Expr
(Internal_Exp
, T
)));
1379 Freeze_Itype
(ConstrT
, Exp
);
1380 Rewrite
(Exp
, OK_Convert_To
(ConstrT
, Internal_Exp
));
1384 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1385 -- to a build-in-place function, then access to the allocated object
1386 -- must be passed to the function. Currently we limit such functions
1387 -- to those with constrained limited result subtypes, but eventually
1388 -- we plan to expand the allowed forms of functions that are treated
1389 -- as build-in-place.
1391 if Ada_Version
>= Ada_2005
1392 and then Is_Build_In_Place_Function_Call
(Exp
)
1394 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
1399 when RE_Not_Available
=>
1401 end Expand_Allocator_Expression
;
1403 -----------------------------
1404 -- Expand_Array_Comparison --
1405 -----------------------------
1407 -- Expansion is only required in the case of array types. For the unpacked
1408 -- case, an appropriate runtime routine is called. For packed cases, and
1409 -- also in some other cases where a runtime routine cannot be called, the
1410 -- form of the expansion is:
1412 -- [body for greater_nn; boolean_expression]
1414 -- The body is built by Make_Array_Comparison_Op, and the form of the
1415 -- Boolean expression depends on the operator involved.
1417 procedure Expand_Array_Comparison
(N
: Node_Id
) is
1418 Loc
: constant Source_Ptr
:= Sloc
(N
);
1419 Op1
: Node_Id
:= Left_Opnd
(N
);
1420 Op2
: Node_Id
:= Right_Opnd
(N
);
1421 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
1422 Ctyp
: constant Entity_Id
:= Component_Type
(Typ1
);
1425 Func_Body
: Node_Id
;
1426 Func_Name
: Entity_Id
;
1430 Byte_Addressable
: constant Boolean := System_Storage_Unit
= Byte
'Size;
1431 -- True for byte addressable target
1433 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean;
1434 -- Returns True if the length of the given operand is known to be less
1435 -- than 4. Returns False if this length is known to be four or greater
1436 -- or is not known at compile time.
1438 ------------------------
1439 -- Length_Less_Than_4 --
1440 ------------------------
1442 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean is
1443 Otyp
: constant Entity_Id
:= Etype
(Opnd
);
1446 if Ekind
(Otyp
) = E_String_Literal_Subtype
then
1447 return String_Literal_Length
(Otyp
) < 4;
1451 Ityp
: constant Entity_Id
:= Etype
(First_Index
(Otyp
));
1452 Lo
: constant Node_Id
:= Type_Low_Bound
(Ityp
);
1453 Hi
: constant Node_Id
:= Type_High_Bound
(Ityp
);
1458 if Compile_Time_Known_Value
(Lo
) then
1459 Lov
:= Expr_Value
(Lo
);
1464 if Compile_Time_Known_Value
(Hi
) then
1465 Hiv
:= Expr_Value
(Hi
);
1470 return Hiv
< Lov
+ 3;
1473 end Length_Less_Than_4
;
1475 -- Start of processing for Expand_Array_Comparison
1478 -- Deal first with unpacked case, where we can call a runtime routine
1479 -- except that we avoid this for targets for which are not addressable
1482 if not Is_Bit_Packed_Array
(Typ1
)
1483 and then Byte_Addressable
1485 -- The call we generate is:
1487 -- Compare_Array_xn[_Unaligned]
1488 -- (left'address, right'address, left'length, right'length) <op> 0
1490 -- x = U for unsigned, S for signed
1491 -- n = 8,16,32,64 for component size
1492 -- Add _Unaligned if length < 4 and component size is 8.
1493 -- <op> is the standard comparison operator
1495 if Component_Size
(Typ1
) = 8 then
1496 if Length_Less_Than_4
(Op1
)
1498 Length_Less_Than_4
(Op2
)
1500 if Is_Unsigned_Type
(Ctyp
) then
1501 Comp
:= RE_Compare_Array_U8_Unaligned
;
1503 Comp
:= RE_Compare_Array_S8_Unaligned
;
1507 if Is_Unsigned_Type
(Ctyp
) then
1508 Comp
:= RE_Compare_Array_U8
;
1510 Comp
:= RE_Compare_Array_S8
;
1514 elsif Component_Size
(Typ1
) = 16 then
1515 if Is_Unsigned_Type
(Ctyp
) then
1516 Comp
:= RE_Compare_Array_U16
;
1518 Comp
:= RE_Compare_Array_S16
;
1521 elsif Component_Size
(Typ1
) = 32 then
1522 if Is_Unsigned_Type
(Ctyp
) then
1523 Comp
:= RE_Compare_Array_U32
;
1525 Comp
:= RE_Compare_Array_S32
;
1528 else pragma Assert
(Component_Size
(Typ1
) = 64);
1529 if Is_Unsigned_Type
(Ctyp
) then
1530 Comp
:= RE_Compare_Array_U64
;
1532 Comp
:= RE_Compare_Array_S64
;
1536 if RTE_Available
(Comp
) then
1538 -- Expand to a call only if the runtime function is available,
1539 -- otherwise fall back to inline code.
1541 Remove_Side_Effects
(Op1
, Name_Req
=> True);
1542 Remove_Side_Effects
(Op2
, Name_Req
=> True);
1545 Make_Function_Call
(Sloc
(Op1
),
1546 Name
=> New_Occurrence_Of
(RTE
(Comp
), Loc
),
1548 Parameter_Associations
=> New_List
(
1549 Make_Attribute_Reference
(Loc
,
1550 Prefix
=> Relocate_Node
(Op1
),
1551 Attribute_Name
=> Name_Address
),
1553 Make_Attribute_Reference
(Loc
,
1554 Prefix
=> Relocate_Node
(Op2
),
1555 Attribute_Name
=> Name_Address
),
1557 Make_Attribute_Reference
(Loc
,
1558 Prefix
=> Relocate_Node
(Op1
),
1559 Attribute_Name
=> Name_Length
),
1561 Make_Attribute_Reference
(Loc
,
1562 Prefix
=> Relocate_Node
(Op2
),
1563 Attribute_Name
=> Name_Length
))));
1566 Make_Integer_Literal
(Sloc
(Op2
),
1569 Analyze_And_Resolve
(Op1
, Standard_Integer
);
1570 Analyze_And_Resolve
(Op2
, Standard_Integer
);
1575 -- Cases where we cannot make runtime call
1577 -- For (a <= b) we convert to not (a > b)
1579 if Chars
(N
) = Name_Op_Le
then
1585 Right_Opnd
=> Op2
)));
1586 Analyze_And_Resolve
(N
, Standard_Boolean
);
1589 -- For < the Boolean expression is
1590 -- greater__nn (op2, op1)
1592 elsif Chars
(N
) = Name_Op_Lt
then
1593 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1597 Op1
:= Right_Opnd
(N
);
1598 Op2
:= Left_Opnd
(N
);
1600 -- For (a >= b) we convert to not (a < b)
1602 elsif Chars
(N
) = Name_Op_Ge
then
1608 Right_Opnd
=> Op2
)));
1609 Analyze_And_Resolve
(N
, Standard_Boolean
);
1612 -- For > the Boolean expression is
1613 -- greater__nn (op1, op2)
1616 pragma Assert
(Chars
(N
) = Name_Op_Gt
);
1617 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1620 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
1622 Make_Function_Call
(Loc
,
1623 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
1624 Parameter_Associations
=> New_List
(Op1
, Op2
));
1626 Insert_Action
(N
, Func_Body
);
1628 Analyze_And_Resolve
(N
, Standard_Boolean
);
1629 end Expand_Array_Comparison
;
1631 ---------------------------
1632 -- Expand_Array_Equality --
1633 ---------------------------
1635 -- Expand an equality function for multi-dimensional arrays. Here is an
1636 -- example of such a function for Nb_Dimension = 2
1638 -- function Enn (A : atyp; B : btyp) return boolean is
1640 -- if (A'length (1) = 0 or else A'length (2) = 0)
1642 -- (B'length (1) = 0 or else B'length (2) = 0)
1644 -- return True; -- RM 4.5.2(22)
1647 -- if A'length (1) /= B'length (1)
1649 -- A'length (2) /= B'length (2)
1651 -- return False; -- RM 4.5.2(23)
1655 -- A1 : Index_T1 := A'first (1);
1656 -- B1 : Index_T1 := B'first (1);
1660 -- A2 : Index_T2 := A'first (2);
1661 -- B2 : Index_T2 := B'first (2);
1664 -- if A (A1, A2) /= B (B1, B2) then
1668 -- exit when A2 = A'last (2);
1669 -- A2 := Index_T2'succ (A2);
1670 -- B2 := Index_T2'succ (B2);
1674 -- exit when A1 = A'last (1);
1675 -- A1 := Index_T1'succ (A1);
1676 -- B1 := Index_T1'succ (B1);
1683 -- Note on the formal types used (atyp and btyp). If either of the arrays
1684 -- is of a private type, we use the underlying type, and do an unchecked
1685 -- conversion of the actual. If either of the arrays has a bound depending
1686 -- on a discriminant, then we use the base type since otherwise we have an
1687 -- escaped discriminant in the function.
1689 -- If both arrays are constrained and have the same bounds, we can generate
1690 -- a loop with an explicit iteration scheme using a 'Range attribute over
1693 function Expand_Array_Equality
1698 Typ
: Entity_Id
) return Node_Id
1700 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
1701 Decls
: constant List_Id
:= New_List
;
1702 Index_List1
: constant List_Id
:= New_List
;
1703 Index_List2
: constant List_Id
:= New_List
;
1707 Func_Name
: Entity_Id
;
1708 Func_Body
: Node_Id
;
1710 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
1711 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
1715 -- The parameter types to be used for the formals
1720 Num
: Int
) return Node_Id
;
1721 -- This builds the attribute reference Arr'Nam (Expr)
1723 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
;
1724 -- Create one statement to compare corresponding components, designated
1725 -- by a full set of indexes.
1727 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
;
1728 -- Given one of the arguments, computes the appropriate type to be used
1729 -- for that argument in the corresponding function formal
1731 function Handle_One_Dimension
1733 Index
: Node_Id
) return Node_Id
;
1734 -- This procedure returns the following code
1737 -- Bn : Index_T := B'First (N);
1741 -- exit when An = A'Last (N);
1742 -- An := Index_T'Succ (An)
1743 -- Bn := Index_T'Succ (Bn)
1747 -- If both indexes are constrained and identical, the procedure
1748 -- returns a simpler loop:
1750 -- for An in A'Range (N) loop
1754 -- N is the dimension for which we are generating a loop. Index is the
1755 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1756 -- xxx statement is either the loop or declare for the next dimension
1757 -- or if this is the last dimension the comparison of corresponding
1758 -- components of the arrays.
1760 -- The actual way the code works is to return the comparison of
1761 -- corresponding components for the N+1 call. That's neater.
1763 function Test_Empty_Arrays
return Node_Id
;
1764 -- This function constructs the test for both arrays being empty
1765 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1767 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1769 function Test_Lengths_Correspond
return Node_Id
;
1770 -- This function constructs the test for arrays having different lengths
1771 -- in at least one index position, in which case the resulting code is:
1773 -- A'length (1) /= B'length (1)
1775 -- A'length (2) /= B'length (2)
1786 Num
: Int
) return Node_Id
1790 Make_Attribute_Reference
(Loc
,
1791 Attribute_Name
=> Nam
,
1792 Prefix
=> New_Occurrence_Of
(Arr
, Loc
),
1793 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, Num
)));
1796 ------------------------
1797 -- Component_Equality --
1798 ------------------------
1800 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
is
1805 -- if a(i1...) /= b(j1...) then return false; end if;
1808 Make_Indexed_Component
(Loc
,
1809 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
1810 Expressions
=> Index_List1
);
1813 Make_Indexed_Component
(Loc
,
1814 Prefix
=> Make_Identifier
(Loc
, Chars
(B
)),
1815 Expressions
=> Index_List2
);
1817 Test
:= Expand_Composite_Equality
1818 (Nod
, Component_Type
(Typ
), L
, R
, Decls
);
1820 -- If some (sub)component is an unchecked_union, the whole operation
1821 -- will raise program error.
1823 if Nkind
(Test
) = N_Raise_Program_Error
then
1825 -- This node is going to be inserted at a location where a
1826 -- statement is expected: clear its Etype so analysis will set
1827 -- it to the expected Standard_Void_Type.
1829 Set_Etype
(Test
, Empty
);
1834 Make_Implicit_If_Statement
(Nod
,
1835 Condition
=> Make_Op_Not
(Loc
, Right_Opnd
=> Test
),
1836 Then_Statements
=> New_List
(
1837 Make_Simple_Return_Statement
(Loc
,
1838 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
1840 end Component_Equality
;
1846 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
is
1857 T
:= Underlying_Type
(T
);
1859 X
:= First_Index
(T
);
1860 while Present
(X
) loop
1861 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(X
)))
1863 Denotes_Discriminant
(Type_High_Bound
(Etype
(X
)))
1876 --------------------------
1877 -- Handle_One_Dimension --
1878 ---------------------------
1880 function Handle_One_Dimension
1882 Index
: Node_Id
) return Node_Id
1884 Need_Separate_Indexes
: constant Boolean :=
1885 Ltyp
/= Rtyp
or else not Is_Constrained
(Ltyp
);
1886 -- If the index types are identical, and we are working with
1887 -- constrained types, then we can use the same index for both
1890 An
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1893 Index_T
: Entity_Id
;
1898 if N
> Number_Dimensions
(Ltyp
) then
1899 return Component_Equality
(Ltyp
);
1902 -- Case where we generate a loop
1904 Index_T
:= Base_Type
(Etype
(Index
));
1906 if Need_Separate_Indexes
then
1907 Bn
:= Make_Temporary
(Loc
, 'B');
1912 Append
(New_Occurrence_Of
(An
, Loc
), Index_List1
);
1913 Append
(New_Occurrence_Of
(Bn
, Loc
), Index_List2
);
1915 Stm_List
:= New_List
(
1916 Handle_One_Dimension
(N
+ 1, Next_Index
(Index
)));
1918 if Need_Separate_Indexes
then
1920 -- Generate guard for loop, followed by increments of indexes
1922 Append_To
(Stm_List
,
1923 Make_Exit_Statement
(Loc
,
1926 Left_Opnd
=> New_Occurrence_Of
(An
, Loc
),
1927 Right_Opnd
=> Arr_Attr
(A
, Name_Last
, N
))));
1929 Append_To
(Stm_List
,
1930 Make_Assignment_Statement
(Loc
,
1931 Name
=> New_Occurrence_Of
(An
, Loc
),
1933 Make_Attribute_Reference
(Loc
,
1934 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1935 Attribute_Name
=> Name_Succ
,
1936 Expressions
=> New_List
(
1937 New_Occurrence_Of
(An
, Loc
)))));
1939 Append_To
(Stm_List
,
1940 Make_Assignment_Statement
(Loc
,
1941 Name
=> New_Occurrence_Of
(Bn
, Loc
),
1943 Make_Attribute_Reference
(Loc
,
1944 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1945 Attribute_Name
=> Name_Succ
,
1946 Expressions
=> New_List
(
1947 New_Occurrence_Of
(Bn
, Loc
)))));
1950 -- If separate indexes, we need a declare block for An and Bn, and a
1951 -- loop without an iteration scheme.
1953 if Need_Separate_Indexes
then
1955 Make_Implicit_Loop_Statement
(Nod
, Statements
=> Stm_List
);
1958 Make_Block_Statement
(Loc
,
1959 Declarations
=> New_List
(
1960 Make_Object_Declaration
(Loc
,
1961 Defining_Identifier
=> An
,
1962 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1963 Expression
=> Arr_Attr
(A
, Name_First
, N
)),
1965 Make_Object_Declaration
(Loc
,
1966 Defining_Identifier
=> Bn
,
1967 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1968 Expression
=> Arr_Attr
(B
, Name_First
, N
))),
1970 Handled_Statement_Sequence
=>
1971 Make_Handled_Sequence_Of_Statements
(Loc
,
1972 Statements
=> New_List
(Loop_Stm
)));
1974 -- If no separate indexes, return loop statement with explicit
1975 -- iteration scheme on its own
1979 Make_Implicit_Loop_Statement
(Nod
,
1980 Statements
=> Stm_List
,
1982 Make_Iteration_Scheme
(Loc
,
1983 Loop_Parameter_Specification
=>
1984 Make_Loop_Parameter_Specification
(Loc
,
1985 Defining_Identifier
=> An
,
1986 Discrete_Subtype_Definition
=>
1987 Arr_Attr
(A
, Name_Range
, N
))));
1990 end Handle_One_Dimension
;
1992 -----------------------
1993 -- Test_Empty_Arrays --
1994 -----------------------
1996 function Test_Empty_Arrays
return Node_Id
is
2006 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2009 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2010 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2014 Left_Opnd
=> Arr_Attr
(B
, Name_Length
, J
),
2015 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2024 Left_Opnd
=> Relocate_Node
(Alist
),
2025 Right_Opnd
=> Atest
);
2029 Left_Opnd
=> Relocate_Node
(Blist
),
2030 Right_Opnd
=> Btest
);
2037 Right_Opnd
=> Blist
);
2038 end Test_Empty_Arrays
;
2040 -----------------------------
2041 -- Test_Lengths_Correspond --
2042 -----------------------------
2044 function Test_Lengths_Correspond
return Node_Id
is
2050 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2053 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2054 Right_Opnd
=> Arr_Attr
(B
, Name_Length
, J
));
2061 Left_Opnd
=> Relocate_Node
(Result
),
2062 Right_Opnd
=> Rtest
);
2067 end Test_Lengths_Correspond
;
2069 -- Start of processing for Expand_Array_Equality
2072 Ltyp
:= Get_Arg_Type
(Lhs
);
2073 Rtyp
:= Get_Arg_Type
(Rhs
);
2075 -- For now, if the argument types are not the same, go to the base type,
2076 -- since the code assumes that the formals have the same type. This is
2077 -- fixable in future ???
2079 if Ltyp
/= Rtyp
then
2080 Ltyp
:= Base_Type
(Ltyp
);
2081 Rtyp
:= Base_Type
(Rtyp
);
2082 pragma Assert
(Ltyp
= Rtyp
);
2085 -- Build list of formals for function
2087 Formals
:= New_List
(
2088 Make_Parameter_Specification
(Loc
,
2089 Defining_Identifier
=> A
,
2090 Parameter_Type
=> New_Occurrence_Of
(Ltyp
, Loc
)),
2092 Make_Parameter_Specification
(Loc
,
2093 Defining_Identifier
=> B
,
2094 Parameter_Type
=> New_Occurrence_Of
(Rtyp
, Loc
)));
2096 Func_Name
:= Make_Temporary
(Loc
, 'E');
2098 -- Build statement sequence for function
2101 Make_Subprogram_Body
(Loc
,
2103 Make_Function_Specification
(Loc
,
2104 Defining_Unit_Name
=> Func_Name
,
2105 Parameter_Specifications
=> Formals
,
2106 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
2108 Declarations
=> Decls
,
2110 Handled_Statement_Sequence
=>
2111 Make_Handled_Sequence_Of_Statements
(Loc
,
2112 Statements
=> New_List
(
2114 Make_Implicit_If_Statement
(Nod
,
2115 Condition
=> Test_Empty_Arrays
,
2116 Then_Statements
=> New_List
(
2117 Make_Simple_Return_Statement
(Loc
,
2119 New_Occurrence_Of
(Standard_True
, Loc
)))),
2121 Make_Implicit_If_Statement
(Nod
,
2122 Condition
=> Test_Lengths_Correspond
,
2123 Then_Statements
=> New_List
(
2124 Make_Simple_Return_Statement
(Loc
,
2125 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))),
2127 Handle_One_Dimension
(1, First_Index
(Ltyp
)),
2129 Make_Simple_Return_Statement
(Loc
,
2130 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)))));
2132 Set_Has_Completion
(Func_Name
, True);
2133 Set_Is_Inlined
(Func_Name
);
2135 -- If the array type is distinct from the type of the arguments, it
2136 -- is the full view of a private type. Apply an unchecked conversion
2137 -- to insure that analysis of the call succeeds.
2147 or else Base_Type
(Etype
(Lhs
)) /= Base_Type
(Ltyp
)
2149 L
:= OK_Convert_To
(Ltyp
, Lhs
);
2153 or else Base_Type
(Etype
(Rhs
)) /= Base_Type
(Rtyp
)
2155 R
:= OK_Convert_To
(Rtyp
, Rhs
);
2158 Actuals
:= New_List
(L
, R
);
2161 Append_To
(Bodies
, Func_Body
);
2164 Make_Function_Call
(Loc
,
2165 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2166 Parameter_Associations
=> Actuals
);
2167 end Expand_Array_Equality
;
2169 -----------------------------
2170 -- Expand_Boolean_Operator --
2171 -----------------------------
2173 -- Note that we first get the actual subtypes of the operands, since we
2174 -- always want to deal with types that have bounds.
2176 procedure Expand_Boolean_Operator
(N
: Node_Id
) is
2177 Typ
: constant Entity_Id
:= Etype
(N
);
2180 -- Special case of bit packed array where both operands are known to be
2181 -- properly aligned. In this case we use an efficient run time routine
2182 -- to carry out the operation (see System.Bit_Ops).
2184 if Is_Bit_Packed_Array
(Typ
)
2185 and then not Is_Possibly_Unaligned_Object
(Left_Opnd
(N
))
2186 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
2188 Expand_Packed_Boolean_Operator
(N
);
2192 -- For the normal non-packed case, the general expansion is to build
2193 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2194 -- and then inserting it into the tree. The original operator node is
2195 -- then rewritten as a call to this function. We also use this in the
2196 -- packed case if either operand is a possibly unaligned object.
2199 Loc
: constant Source_Ptr
:= Sloc
(N
);
2200 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2201 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2202 Func_Body
: Node_Id
;
2203 Func_Name
: Entity_Id
;
2206 Convert_To_Actual_Subtype
(L
);
2207 Convert_To_Actual_Subtype
(R
);
2208 Ensure_Defined
(Etype
(L
), N
);
2209 Ensure_Defined
(Etype
(R
), N
);
2210 Apply_Length_Check
(R
, Etype
(L
));
2212 if Nkind
(N
) = N_Op_Xor
then
2213 Silly_Boolean_Array_Xor_Test
(N
, Etype
(L
));
2216 if Nkind
(Parent
(N
)) = N_Assignment_Statement
2217 and then Safe_In_Place_Array_Op
(Name
(Parent
(N
)), L
, R
)
2219 Build_Boolean_Array_Proc_Call
(Parent
(N
), L
, R
);
2221 elsif Nkind
(Parent
(N
)) = N_Op_Not
2222 and then Nkind
(N
) = N_Op_And
2223 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
2224 and then Safe_In_Place_Array_Op
(Name
(Parent
(Parent
(N
))), L
, R
)
2229 Func_Body
:= Make_Boolean_Array_Op
(Etype
(L
), N
);
2230 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
2231 Insert_Action
(N
, Func_Body
);
2233 -- Now rewrite the expression with a call
2236 Make_Function_Call
(Loc
,
2237 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2238 Parameter_Associations
=>
2241 Make_Type_Conversion
2242 (Loc
, New_Occurrence_Of
(Etype
(L
), Loc
), R
))));
2244 Analyze_And_Resolve
(N
, Typ
);
2247 end Expand_Boolean_Operator
;
2249 ------------------------------------------------
2250 -- Expand_Compare_Minimize_Eliminate_Overflow --
2251 ------------------------------------------------
2253 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
2254 Loc
: constant Source_Ptr
:= Sloc
(N
);
2256 Result_Type
: constant Entity_Id
:= Etype
(N
);
2257 -- Capture result type (could be a derived boolean type)
2262 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
2263 -- Entity for Long_Long_Integer'Base
2265 Check
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
2266 -- Current overflow checking mode
2269 procedure Set_False
;
2270 -- These procedures rewrite N with an occurrence of Standard_True or
2271 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2277 procedure Set_False
is
2279 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
2280 Warn_On_Known_Condition
(N
);
2287 procedure Set_True
is
2289 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
2290 Warn_On_Known_Condition
(N
);
2293 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2296 -- Nothing to do unless we have a comparison operator with operands
2297 -- that are signed integer types, and we are operating in either
2298 -- MINIMIZED or ELIMINATED overflow checking mode.
2300 if Nkind
(N
) not in N_Op_Compare
2301 or else Check
not in Minimized_Or_Eliminated
2302 or else not Is_Signed_Integer_Type
(Etype
(Left_Opnd
(N
)))
2307 -- OK, this is the case we are interested in. First step is to process
2308 -- our operands using the Minimize_Eliminate circuitry which applies
2309 -- this processing to the two operand subtrees.
2311 Minimize_Eliminate_Overflows
2312 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
2313 Minimize_Eliminate_Overflows
2314 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
2316 -- See if the range information decides the result of the comparison.
2317 -- We can only do this if we in fact have full range information (which
2318 -- won't be the case if either operand is bignum at this stage).
2320 if Llo
/= No_Uint
and then Rlo
/= No_Uint
then
2321 case N_Op_Compare
(Nkind
(N
)) is
2323 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2325 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2332 elsif Lhi
< Rlo
then
2339 elsif Lhi
<= Rlo
then
2346 elsif Lhi
<= Rlo
then
2353 elsif Lhi
< Rlo
then
2358 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2360 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2365 -- All done if we did the rewrite
2367 if Nkind
(N
) not in N_Op_Compare
then
2372 -- Otherwise, time to do the comparison
2375 Ltype
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
2376 Rtype
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
2379 -- If the two operands have the same signed integer type we are
2380 -- all set, nothing more to do. This is the case where either
2381 -- both operands were unchanged, or we rewrote both of them to
2382 -- be Long_Long_Integer.
2384 -- Note: Entity for the comparison may be wrong, but it's not worth
2385 -- the effort to change it, since the back end does not use it.
2387 if Is_Signed_Integer_Type
(Ltype
)
2388 and then Base_Type
(Ltype
) = Base_Type
(Rtype
)
2392 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2394 elsif Is_RTE
(Ltype
, RE_Bignum
) or else Is_RTE
(Rtype
, RE_Bignum
) then
2396 Left
: Node_Id
:= Left_Opnd
(N
);
2397 Right
: Node_Id
:= Right_Opnd
(N
);
2398 -- Bignum references for left and right operands
2401 if not Is_RTE
(Ltype
, RE_Bignum
) then
2402 Left
:= Convert_To_Bignum
(Left
);
2403 elsif not Is_RTE
(Rtype
, RE_Bignum
) then
2404 Right
:= Convert_To_Bignum
(Right
);
2407 -- We rewrite our node with:
2410 -- Bnn : Result_Type;
2412 -- M : Mark_Id := SS_Mark;
2414 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2422 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
2423 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
2427 case N_Op_Compare
(Nkind
(N
)) is
2428 when N_Op_Eq
=> Ent
:= RE_Big_EQ
;
2429 when N_Op_Ge
=> Ent
:= RE_Big_GE
;
2430 when N_Op_Gt
=> Ent
:= RE_Big_GT
;
2431 when N_Op_Le
=> Ent
:= RE_Big_LE
;
2432 when N_Op_Lt
=> Ent
:= RE_Big_LT
;
2433 when N_Op_Ne
=> Ent
:= RE_Big_NE
;
2436 -- Insert assignment to Bnn into the bignum block
2439 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
2440 Make_Assignment_Statement
(Loc
,
2441 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
2443 Make_Function_Call
(Loc
,
2445 New_Occurrence_Of
(RTE
(Ent
), Loc
),
2446 Parameter_Associations
=> New_List
(Left
, Right
))));
2448 -- Now do the rewrite with expression actions
2451 Make_Expression_With_Actions
(Loc
,
2452 Actions
=> New_List
(
2453 Make_Object_Declaration
(Loc
,
2454 Defining_Identifier
=> Bnn
,
2455 Object_Definition
=>
2456 New_Occurrence_Of
(Result_Type
, Loc
)),
2458 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
2459 Analyze_And_Resolve
(N
, Result_Type
);
2463 -- No bignums involved, but types are different, so we must have
2464 -- rewritten one of the operands as a Long_Long_Integer but not
2467 -- If left operand is Long_Long_Integer, convert right operand
2468 -- and we are done (with a comparison of two Long_Long_Integers).
2470 elsif Ltype
= LLIB
then
2471 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
2472 Analyze_And_Resolve
(Right_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2475 -- If right operand is Long_Long_Integer, convert left operand
2476 -- and we are done (with a comparison of two Long_Long_Integers).
2478 -- This is the only remaining possibility
2480 else pragma Assert
(Rtype
= LLIB
);
2481 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
2482 Analyze_And_Resolve
(Left_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2486 end Expand_Compare_Minimize_Eliminate_Overflow
;
2488 -------------------------------
2489 -- Expand_Composite_Equality --
2490 -------------------------------
2492 -- This function is only called for comparing internal fields of composite
2493 -- types when these fields are themselves composites. This is a special
2494 -- case because it is not possible to respect normal Ada visibility rules.
2496 function Expand_Composite_Equality
2501 Bodies
: List_Id
) return Node_Id
2503 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
2504 Full_Type
: Entity_Id
;
2508 function Find_Primitive_Eq
return Node_Id
;
2509 -- AI05-0123: Locate primitive equality for type if it exists, and
2510 -- build the corresponding call. If operation is abstract, replace
2511 -- call with an explicit raise. Return Empty if there is no primitive.
2513 -----------------------
2514 -- Find_Primitive_Eq --
2515 -----------------------
2517 function Find_Primitive_Eq
return Node_Id
is
2522 Prim_E
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2523 while Present
(Prim_E
) loop
2524 Prim
:= Node
(Prim_E
);
2526 -- Locate primitive equality with the right signature
2528 if Chars
(Prim
) = Name_Op_Eq
2529 and then Etype
(First_Formal
(Prim
)) =
2530 Etype
(Next_Formal
(First_Formal
(Prim
)))
2531 and then Etype
(Prim
) = Standard_Boolean
2533 if Is_Abstract_Subprogram
(Prim
) then
2535 Make_Raise_Program_Error
(Loc
,
2536 Reason
=> PE_Explicit_Raise
);
2540 Make_Function_Call
(Loc
,
2541 Name
=> New_Occurrence_Of
(Prim
, Loc
),
2542 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
2549 -- If not found, predefined operation will be used
2552 end Find_Primitive_Eq
;
2554 -- Start of processing for Expand_Composite_Equality
2557 if Is_Private_Type
(Typ
) then
2558 Full_Type
:= Underlying_Type
(Typ
);
2563 -- If the private type has no completion the context may be the
2564 -- expansion of a composite equality for a composite type with some
2565 -- still incomplete components. The expression will not be analyzed
2566 -- until the enclosing type is completed, at which point this will be
2567 -- properly expanded, unless there is a bona fide completion error.
2569 if No
(Full_Type
) then
2570 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2573 Full_Type
:= Base_Type
(Full_Type
);
2575 -- When the base type itself is private, use the full view to expand
2576 -- the composite equality.
2578 if Is_Private_Type
(Full_Type
) then
2579 Full_Type
:= Underlying_Type
(Full_Type
);
2582 -- Case of array types
2584 if Is_Array_Type
(Full_Type
) then
2586 -- If the operand is an elementary type other than a floating-point
2587 -- type, then we can simply use the built-in block bitwise equality,
2588 -- since the predefined equality operators always apply and bitwise
2589 -- equality is fine for all these cases.
2591 if Is_Elementary_Type
(Component_Type
(Full_Type
))
2592 and then not Is_Floating_Point_Type
(Component_Type
(Full_Type
))
2594 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2596 -- For composite component types, and floating-point types, use the
2597 -- expansion. This deals with tagged component types (where we use
2598 -- the applicable equality routine) and floating-point, (where we
2599 -- need to worry about negative zeroes), and also the case of any
2600 -- composite type recursively containing such fields.
2603 return Expand_Array_Equality
(Nod
, Lhs
, Rhs
, Bodies
, Full_Type
);
2606 -- Case of tagged record types
2608 elsif Is_Tagged_Type
(Full_Type
) then
2610 -- Call the primitive operation "=" of this type
2612 if Is_Class_Wide_Type
(Full_Type
) then
2613 Full_Type
:= Root_Type
(Full_Type
);
2616 -- If this is derived from an untagged private type completed with a
2617 -- tagged type, it does not have a full view, so we use the primitive
2618 -- operations of the private type. This check should no longer be
2619 -- necessary when these types receive their full views ???
2621 if Is_Private_Type
(Typ
)
2622 and then not Is_Tagged_Type
(Typ
)
2623 and then not Is_Controlled
(Typ
)
2624 and then Is_Derived_Type
(Typ
)
2625 and then No
(Full_View
(Typ
))
2627 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2629 Prim
:= First_Elmt
(Primitive_Operations
(Full_Type
));
2633 Eq_Op
:= Node
(Prim
);
2634 exit when Chars
(Eq_Op
) = Name_Op_Eq
2635 and then Etype
(First_Formal
(Eq_Op
)) =
2636 Etype
(Next_Formal
(First_Formal
(Eq_Op
)))
2637 and then Base_Type
(Etype
(Eq_Op
)) = Standard_Boolean
;
2639 pragma Assert
(Present
(Prim
));
2642 Eq_Op
:= Node
(Prim
);
2645 Make_Function_Call
(Loc
,
2646 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2647 Parameter_Associations
=>
2649 (Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Lhs
),
2650 Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Rhs
)));
2652 -- Case of untagged record types
2654 elsif Is_Record_Type
(Full_Type
) then
2655 Eq_Op
:= TSS
(Full_Type
, TSS_Composite_Equality
);
2657 if Present
(Eq_Op
) then
2658 if Etype
(First_Formal
(Eq_Op
)) /= Full_Type
then
2660 -- Inherited equality from parent type. Convert the actuals to
2661 -- match signature of operation.
2664 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2668 Make_Function_Call
(Loc
,
2669 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2670 Parameter_Associations
=> New_List
(
2671 OK_Convert_To
(T
, Lhs
),
2672 OK_Convert_To
(T
, Rhs
)));
2676 -- Comparison between Unchecked_Union components
2678 if Is_Unchecked_Union
(Full_Type
) then
2680 Lhs_Type
: Node_Id
:= Full_Type
;
2681 Rhs_Type
: Node_Id
:= Full_Type
;
2682 Lhs_Discr_Val
: Node_Id
;
2683 Rhs_Discr_Val
: Node_Id
;
2688 if Nkind
(Lhs
) = N_Selected_Component
then
2689 Lhs_Type
:= Etype
(Entity
(Selector_Name
(Lhs
)));
2694 if Nkind
(Rhs
) = N_Selected_Component
then
2695 Rhs_Type
:= Etype
(Entity
(Selector_Name
(Rhs
)));
2698 -- Lhs of the composite equality
2700 if Is_Constrained
(Lhs_Type
) then
2702 -- Since the enclosing record type can never be an
2703 -- Unchecked_Union (this code is executed for records
2704 -- that do not have variants), we may reference its
2707 if Nkind
(Lhs
) = N_Selected_Component
2708 and then Has_Per_Object_Constraint
2709 (Entity
(Selector_Name
(Lhs
)))
2712 Make_Selected_Component
(Loc
,
2713 Prefix
=> Prefix
(Lhs
),
2716 (Get_Discriminant_Value
2717 (First_Discriminant
(Lhs_Type
),
2719 Stored_Constraint
(Lhs_Type
))));
2724 (Get_Discriminant_Value
2725 (First_Discriminant
(Lhs_Type
),
2727 Stored_Constraint
(Lhs_Type
)));
2731 -- It is not possible to infer the discriminant since
2732 -- the subtype is not constrained.
2735 Make_Raise_Program_Error
(Loc
,
2736 Reason
=> PE_Unchecked_Union_Restriction
);
2739 -- Rhs of the composite equality
2741 if Is_Constrained
(Rhs_Type
) then
2742 if Nkind
(Rhs
) = N_Selected_Component
2743 and then Has_Per_Object_Constraint
2744 (Entity
(Selector_Name
(Rhs
)))
2747 Make_Selected_Component
(Loc
,
2748 Prefix
=> Prefix
(Rhs
),
2751 (Get_Discriminant_Value
2752 (First_Discriminant
(Rhs_Type
),
2754 Stored_Constraint
(Rhs_Type
))));
2759 (Get_Discriminant_Value
2760 (First_Discriminant
(Rhs_Type
),
2762 Stored_Constraint
(Rhs_Type
)));
2767 Make_Raise_Program_Error
(Loc
,
2768 Reason
=> PE_Unchecked_Union_Restriction
);
2771 -- Call the TSS equality function with the inferred
2772 -- discriminant values.
2775 Make_Function_Call
(Loc
,
2776 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2777 Parameter_Associations
=> New_List
(
2784 -- All cases other than comparing Unchecked_Union types
2788 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2791 Make_Function_Call
(Loc
,
2793 New_Occurrence_Of
(Eq_Op
, Loc
),
2794 Parameter_Associations
=> New_List
(
2795 OK_Convert_To
(T
, Lhs
),
2796 OK_Convert_To
(T
, Rhs
)));
2801 -- Equality composes in Ada 2012 for untagged record types. It also
2802 -- composes for bounded strings, because they are part of the
2803 -- predefined environment. We could make it compose for bounded
2804 -- strings by making them tagged, or by making sure all subcomponents
2805 -- are set to the same value, even when not used. Instead, we have
2806 -- this special case in the compiler, because it's more efficient.
2808 elsif Ada_Version
>= Ada_2012
or else Is_Bounded_String
(Typ
) then
2810 -- If no TSS has been created for the type, check whether there is
2811 -- a primitive equality declared for it.
2814 Op
: constant Node_Id
:= Find_Primitive_Eq
;
2817 -- Use user-defined primitive if it exists, otherwise use
2818 -- predefined equality.
2820 if Present
(Op
) then
2823 return Make_Op_Eq
(Loc
, Lhs
, Rhs
);
2828 return Expand_Record_Equality
(Nod
, Full_Type
, Lhs
, Rhs
, Bodies
);
2831 -- Non-composite types (always use predefined equality)
2834 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2836 end Expand_Composite_Equality
;
2838 ------------------------
2839 -- Expand_Concatenate --
2840 ------------------------
2842 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
) is
2843 Loc
: constant Source_Ptr
:= Sloc
(Cnode
);
2845 Atyp
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
2846 -- Result type of concatenation
2848 Ctyp
: constant Entity_Id
:= Base_Type
(Component_Type
(Etype
(Cnode
)));
2849 -- Component type. Elements of this component type can appear as one
2850 -- of the operands of concatenation as well as arrays.
2852 Istyp
: constant Entity_Id
:= Etype
(First_Index
(Atyp
));
2855 Ityp
: constant Entity_Id
:= Base_Type
(Istyp
);
2856 -- Index type. This is the base type of the index subtype, and is used
2857 -- for all computed bounds (which may be out of range of Istyp in the
2858 -- case of null ranges).
2861 -- This is the type we use to do arithmetic to compute the bounds and
2862 -- lengths of operands. The choice of this type is a little subtle and
2863 -- is discussed in a separate section at the start of the body code.
2865 Concatenation_Error
: exception;
2866 -- Raised if concatenation is sure to raise a CE
2868 Result_May_Be_Null
: Boolean := True;
2869 -- Reset to False if at least one operand is encountered which is known
2870 -- at compile time to be non-null. Used for handling the special case
2871 -- of setting the high bound to the last operand high bound for a null
2872 -- result, thus ensuring a proper high bound in the super-flat case.
2874 N
: constant Nat
:= List_Length
(Opnds
);
2875 -- Number of concatenation operands including possibly null operands
2878 -- Number of operands excluding any known to be null, except that the
2879 -- last operand is always retained, in case it provides the bounds for
2883 -- Current operand being processed in the loop through operands. After
2884 -- this loop is complete, always contains the last operand (which is not
2885 -- the same as Operands (NN), since null operands are skipped).
2887 -- Arrays describing the operands, only the first NN entries of each
2888 -- array are set (NN < N when we exclude known null operands).
2890 Is_Fixed_Length
: array (1 .. N
) of Boolean;
2891 -- True if length of corresponding operand known at compile time
2893 Operands
: array (1 .. N
) of Node_Id
;
2894 -- Set to the corresponding entry in the Opnds list (but note that null
2895 -- operands are excluded, so not all entries in the list are stored).
2897 Fixed_Length
: array (1 .. N
) of Uint
;
2898 -- Set to length of operand. Entries in this array are set only if the
2899 -- corresponding entry in Is_Fixed_Length is True.
2901 Opnd_Low_Bound
: array (1 .. N
) of Node_Id
;
2902 -- Set to lower bound of operand. Either an integer literal in the case
2903 -- where the bound is known at compile time, else actual lower bound.
2904 -- The operand low bound is of type Ityp.
2906 Var_Length
: array (1 .. N
) of Entity_Id
;
2907 -- Set to an entity of type Natural that contains the length of an
2908 -- operand whose length is not known at compile time. Entries in this
2909 -- array are set only if the corresponding entry in Is_Fixed_Length
2910 -- is False. The entity is of type Artyp.
2912 Aggr_Length
: array (0 .. N
) of Node_Id
;
2913 -- The J'th entry in an expression node that represents the total length
2914 -- of operands 1 through J. It is either an integer literal node, or a
2915 -- reference to a constant entity with the right value, so it is fine
2916 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2917 -- entry always is set to zero. The length is of type Artyp.
2919 Low_Bound
: Node_Id
;
2920 -- A tree node representing the low bound of the result (of type Ityp).
2921 -- This is either an integer literal node, or an identifier reference to
2922 -- a constant entity initialized to the appropriate value.
2924 Last_Opnd_Low_Bound
: Node_Id
;
2925 -- A tree node representing the low bound of the last operand. This
2926 -- need only be set if the result could be null. It is used for the
2927 -- special case of setting the right low bound for a null result.
2928 -- This is of type Ityp.
2930 Last_Opnd_High_Bound
: Node_Id
;
2931 -- A tree node representing the high bound of the last operand. This
2932 -- need only be set if the result could be null. It is used for the
2933 -- special case of setting the right high bound for a null result.
2934 -- This is of type Ityp.
2936 High_Bound
: Node_Id
;
2937 -- A tree node representing the high bound of the result (of type Ityp)
2940 -- Result of the concatenation (of type Ityp)
2942 Actions
: constant List_Id
:= New_List
;
2943 -- Collect actions to be inserted
2945 Known_Non_Null_Operand_Seen
: Boolean;
2946 -- Set True during generation of the assignments of operands into
2947 -- result once an operand known to be non-null has been seen.
2949 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
;
2950 -- This function makes an N_Integer_Literal node that is returned in
2951 -- analyzed form with the type set to Artyp. Importantly this literal
2952 -- is not flagged as static, so that if we do computations with it that
2953 -- result in statically detected out of range conditions, we will not
2954 -- generate error messages but instead warning messages.
2956 function To_Artyp
(X
: Node_Id
) return Node_Id
;
2957 -- Given a node of type Ityp, returns the corresponding value of type
2958 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2959 -- For enum types, the Pos of the value is returned.
2961 function To_Ityp
(X
: Node_Id
) return Node_Id
;
2962 -- The inverse function (uses Val in the case of enumeration types)
2964 ------------------------
2965 -- Make_Artyp_Literal --
2966 ------------------------
2968 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
is
2969 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Val
);
2971 Set_Etype
(Result
, Artyp
);
2972 Set_Analyzed
(Result
, True);
2973 Set_Is_Static_Expression
(Result
, False);
2975 end Make_Artyp_Literal
;
2981 function To_Artyp
(X
: Node_Id
) return Node_Id
is
2983 if Ityp
= Base_Type
(Artyp
) then
2986 elsif Is_Enumeration_Type
(Ityp
) then
2988 Make_Attribute_Reference
(Loc
,
2989 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2990 Attribute_Name
=> Name_Pos
,
2991 Expressions
=> New_List
(X
));
2994 return Convert_To
(Artyp
, X
);
3002 function To_Ityp
(X
: Node_Id
) return Node_Id
is
3004 if Is_Enumeration_Type
(Ityp
) then
3006 Make_Attribute_Reference
(Loc
,
3007 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3008 Attribute_Name
=> Name_Val
,
3009 Expressions
=> New_List
(X
));
3011 -- Case where we will do a type conversion
3014 if Ityp
= Base_Type
(Artyp
) then
3017 return Convert_To
(Ityp
, X
);
3022 -- Local Declarations
3024 Lib_Level_Target
: constant Boolean :=
3025 Nkind
(Parent
(Cnode
)) = N_Object_Declaration
3027 Is_Library_Level_Entity
(Defining_Identifier
(Parent
(Cnode
)));
3029 -- If the concatenation declares a library level entity, we call the
3030 -- built-in concatenation routines to prevent code bloat, regardless
3031 -- of optimization level. This is space-efficient, and prevent linking
3032 -- problems when units are compiled with different optimizations.
3034 Opnd_Typ
: Entity_Id
;
3041 -- Start of processing for Expand_Concatenate
3044 -- Choose an appropriate computational type
3046 -- We will be doing calculations of lengths and bounds in this routine
3047 -- and computing one from the other in some cases, e.g. getting the high
3048 -- bound by adding the length-1 to the low bound.
3050 -- We can't just use the index type, or even its base type for this
3051 -- purpose for two reasons. First it might be an enumeration type which
3052 -- is not suitable for computations of any kind, and second it may
3053 -- simply not have enough range. For example if the index type is
3054 -- -128..+127 then lengths can be up to 256, which is out of range of
3057 -- For enumeration types, we can simply use Standard_Integer, this is
3058 -- sufficient since the actual number of enumeration literals cannot
3059 -- possibly exceed the range of integer (remember we will be doing the
3060 -- arithmetic with POS values, not representation values).
3062 if Is_Enumeration_Type
(Ityp
) then
3063 Artyp
:= Standard_Integer
;
3065 -- If index type is Positive, we use the standard unsigned type, to give
3066 -- more room on the top of the range, obviating the need for an overflow
3067 -- check when creating the upper bound. This is needed to avoid junk
3068 -- overflow checks in the common case of String types.
3070 -- ??? Disabled for now
3072 -- elsif Istyp = Standard_Positive then
3073 -- Artyp := Standard_Unsigned;
3075 -- For modular types, we use a 32-bit modular type for types whose size
3076 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3077 -- identity type, and for larger unsigned types we use 64-bits.
3079 elsif Is_Modular_Integer_Type
(Ityp
) then
3080 if RM_Size
(Ityp
) < RM_Size
(Standard_Unsigned
) then
3081 Artyp
:= Standard_Unsigned
;
3082 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Unsigned
) then
3085 Artyp
:= RTE
(RE_Long_Long_Unsigned
);
3088 -- Similar treatment for signed types
3091 if RM_Size
(Ityp
) < RM_Size
(Standard_Integer
) then
3092 Artyp
:= Standard_Integer
;
3093 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Integer
) then
3096 Artyp
:= Standard_Long_Long_Integer
;
3100 -- Supply dummy entry at start of length array
3102 Aggr_Length
(0) := Make_Artyp_Literal
(0);
3104 -- Go through operands setting up the above arrays
3108 Opnd
:= Remove_Head
(Opnds
);
3109 Opnd_Typ
:= Etype
(Opnd
);
3111 -- The parent got messed up when we put the operands in a list,
3112 -- so now put back the proper parent for the saved operand, that
3113 -- is to say the concatenation node, to make sure that each operand
3114 -- is seen as a subexpression, e.g. if actions must be inserted.
3116 Set_Parent
(Opnd
, Cnode
);
3118 -- Set will be True when we have setup one entry in the array
3122 -- Singleton element (or character literal) case
3124 if Base_Type
(Opnd_Typ
) = Ctyp
then
3126 Operands
(NN
) := Opnd
;
3127 Is_Fixed_Length
(NN
) := True;
3128 Fixed_Length
(NN
) := Uint_1
;
3129 Result_May_Be_Null
:= False;
3131 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3132 -- since we know that the result cannot be null).
3134 Opnd_Low_Bound
(NN
) :=
3135 Make_Attribute_Reference
(Loc
,
3136 Prefix
=> New_Occurrence_Of
(Istyp
, Loc
),
3137 Attribute_Name
=> Name_First
);
3141 -- String literal case (can only occur for strings of course)
3143 elsif Nkind
(Opnd
) = N_String_Literal
then
3144 Len
:= String_Literal_Length
(Opnd_Typ
);
3147 Result_May_Be_Null
:= False;
3150 -- Capture last operand low and high bound if result could be null
3152 if J
= N
and then Result_May_Be_Null
then
3153 Last_Opnd_Low_Bound
:=
3154 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3156 Last_Opnd_High_Bound
:=
3157 Make_Op_Subtract
(Loc
,
3159 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
)),
3160 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
3163 -- Skip null string literal
3165 if J
< N
and then Len
= 0 then
3170 Operands
(NN
) := Opnd
;
3171 Is_Fixed_Length
(NN
) := True;
3173 -- Set length and bounds
3175 Fixed_Length
(NN
) := Len
;
3177 Opnd_Low_Bound
(NN
) :=
3178 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3185 -- Check constrained case with known bounds
3187 if Is_Constrained
(Opnd_Typ
) then
3189 Index
: constant Node_Id
:= First_Index
(Opnd_Typ
);
3190 Indx_Typ
: constant Entity_Id
:= Etype
(Index
);
3191 Lo
: constant Node_Id
:= Type_Low_Bound
(Indx_Typ
);
3192 Hi
: constant Node_Id
:= Type_High_Bound
(Indx_Typ
);
3195 -- Fixed length constrained array type with known at compile
3196 -- time bounds is last case of fixed length operand.
3198 if Compile_Time_Known_Value
(Lo
)
3200 Compile_Time_Known_Value
(Hi
)
3203 Loval
: constant Uint
:= Expr_Value
(Lo
);
3204 Hival
: constant Uint
:= Expr_Value
(Hi
);
3205 Len
: constant Uint
:=
3206 UI_Max
(Hival
- Loval
+ 1, Uint_0
);
3210 Result_May_Be_Null
:= False;
3213 -- Capture last operand bounds if result could be null
3215 if J
= N
and then Result_May_Be_Null
then
3216 Last_Opnd_Low_Bound
:=
3218 Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3220 Last_Opnd_High_Bound
:=
3222 Make_Integer_Literal
(Loc
, Expr_Value
(Hi
)));
3225 -- Exclude null length case unless last operand
3227 if J
< N
and then Len
= 0 then
3232 Operands
(NN
) := Opnd
;
3233 Is_Fixed_Length
(NN
) := True;
3234 Fixed_Length
(NN
) := Len
;
3236 Opnd_Low_Bound
(NN
) :=
3238 (Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3245 -- All cases where the length is not known at compile time, or the
3246 -- special case of an operand which is known to be null but has a
3247 -- lower bound other than 1 or is other than a string type.
3252 -- Capture operand bounds
3254 Opnd_Low_Bound
(NN
) :=
3255 Make_Attribute_Reference
(Loc
,
3257 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3258 Attribute_Name
=> Name_First
);
3260 -- Capture last operand bounds if result could be null
3262 if J
= N
and Result_May_Be_Null
then
3263 Last_Opnd_Low_Bound
:=
3265 Make_Attribute_Reference
(Loc
,
3267 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3268 Attribute_Name
=> Name_First
));
3270 Last_Opnd_High_Bound
:=
3272 Make_Attribute_Reference
(Loc
,
3274 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3275 Attribute_Name
=> Name_Last
));
3278 -- Capture length of operand in entity
3280 Operands
(NN
) := Opnd
;
3281 Is_Fixed_Length
(NN
) := False;
3283 Var_Length
(NN
) := Make_Temporary
(Loc
, 'L');
3286 Make_Object_Declaration
(Loc
,
3287 Defining_Identifier
=> Var_Length
(NN
),
3288 Constant_Present
=> True,
3289 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3291 Make_Attribute_Reference
(Loc
,
3293 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3294 Attribute_Name
=> Name_Length
)));
3298 -- Set next entry in aggregate length array
3300 -- For first entry, make either integer literal for fixed length
3301 -- or a reference to the saved length for variable length.
3304 if Is_Fixed_Length
(1) then
3305 Aggr_Length
(1) := Make_Integer_Literal
(Loc
, Fixed_Length
(1));
3307 Aggr_Length
(1) := New_Occurrence_Of
(Var_Length
(1), Loc
);
3310 -- If entry is fixed length and only fixed lengths so far, make
3311 -- appropriate new integer literal adding new length.
3313 elsif Is_Fixed_Length
(NN
)
3314 and then Nkind
(Aggr_Length
(NN
- 1)) = N_Integer_Literal
3317 Make_Integer_Literal
(Loc
,
3318 Intval
=> Fixed_Length
(NN
) + Intval
(Aggr_Length
(NN
- 1)));
3320 -- All other cases, construct an addition node for the length and
3321 -- create an entity initialized to this length.
3324 Ent
:= Make_Temporary
(Loc
, 'L');
3326 if Is_Fixed_Length
(NN
) then
3327 Clen
:= Make_Integer_Literal
(Loc
, Fixed_Length
(NN
));
3329 Clen
:= New_Occurrence_Of
(Var_Length
(NN
), Loc
);
3333 Make_Object_Declaration
(Loc
,
3334 Defining_Identifier
=> Ent
,
3335 Constant_Present
=> True,
3336 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3339 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
- 1)),
3340 Right_Opnd
=> Clen
)));
3342 Aggr_Length
(NN
) := Make_Identifier
(Loc
, Chars
=> Chars
(Ent
));
3349 -- If we have only skipped null operands, return the last operand
3356 -- If we have only one non-null operand, return it and we are done.
3357 -- There is one case in which this cannot be done, and that is when
3358 -- the sole operand is of the element type, in which case it must be
3359 -- converted to an array, and the easiest way of doing that is to go
3360 -- through the normal general circuit.
3362 if NN
= 1 and then Base_Type
(Etype
(Operands
(1))) /= Ctyp
then
3363 Result
:= Operands
(1);
3367 -- Cases where we have a real concatenation
3369 -- Next step is to find the low bound for the result array that we
3370 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3372 -- If the ultimate ancestor of the index subtype is a constrained array
3373 -- definition, then the lower bound is that of the index subtype as
3374 -- specified by (RM 4.5.3(6)).
3376 -- The right test here is to go to the root type, and then the ultimate
3377 -- ancestor is the first subtype of this root type.
3379 if Is_Constrained
(First_Subtype
(Root_Type
(Atyp
))) then
3381 Make_Attribute_Reference
(Loc
,
3383 New_Occurrence_Of
(First_Subtype
(Root_Type
(Atyp
)), Loc
),
3384 Attribute_Name
=> Name_First
);
3386 -- If the first operand in the list has known length we know that
3387 -- the lower bound of the result is the lower bound of this operand.
3389 elsif Is_Fixed_Length
(1) then
3390 Low_Bound
:= Opnd_Low_Bound
(1);
3392 -- OK, we don't know the lower bound, we have to build a horrible
3393 -- if expression node of the form
3395 -- if Cond1'Length /= 0 then
3398 -- if Opnd2'Length /= 0 then
3403 -- The nesting ends either when we hit an operand whose length is known
3404 -- at compile time, or on reaching the last operand, whose low bound we
3405 -- take unconditionally whether or not it is null. It's easiest to do
3406 -- this with a recursive procedure:
3410 function Get_Known_Bound
(J
: Nat
) return Node_Id
;
3411 -- Returns the lower bound determined by operands J .. NN
3413 ---------------------
3414 -- Get_Known_Bound --
3415 ---------------------
3417 function Get_Known_Bound
(J
: Nat
) return Node_Id
is
3419 if Is_Fixed_Length
(J
) or else J
= NN
then
3420 return New_Copy
(Opnd_Low_Bound
(J
));
3424 Make_If_Expression
(Loc
,
3425 Expressions
=> New_List
(
3429 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3431 Make_Integer_Literal
(Loc
, 0)),
3433 New_Copy
(Opnd_Low_Bound
(J
)),
3434 Get_Known_Bound
(J
+ 1)));
3436 end Get_Known_Bound
;
3439 Ent
:= Make_Temporary
(Loc
, 'L');
3442 Make_Object_Declaration
(Loc
,
3443 Defining_Identifier
=> Ent
,
3444 Constant_Present
=> True,
3445 Object_Definition
=> New_Occurrence_Of
(Ityp
, Loc
),
3446 Expression
=> Get_Known_Bound
(1)));
3448 Low_Bound
:= New_Occurrence_Of
(Ent
, Loc
);
3452 -- Now we can safely compute the upper bound, normally
3453 -- Low_Bound + Length - 1.
3458 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3460 Make_Op_Subtract
(Loc
,
3461 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3462 Right_Opnd
=> Make_Artyp_Literal
(1))));
3464 -- Note that calculation of the high bound may cause overflow in some
3465 -- very weird cases, so in the general case we need an overflow check on
3466 -- the high bound. We can avoid this for the common case of string types
3467 -- and other types whose index is Positive, since we chose a wider range
3468 -- for the arithmetic type.
3470 if Istyp
/= Standard_Positive
then
3471 Activate_Overflow_Check
(High_Bound
);
3474 -- Handle the exceptional case where the result is null, in which case
3475 -- case the bounds come from the last operand (so that we get the proper
3476 -- bounds if the last operand is super-flat).
3478 if Result_May_Be_Null
then
3480 Make_If_Expression
(Loc
,
3481 Expressions
=> New_List
(
3483 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3484 Right_Opnd
=> Make_Artyp_Literal
(0)),
3485 Last_Opnd_Low_Bound
,
3489 Make_If_Expression
(Loc
,
3490 Expressions
=> New_List
(
3492 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3493 Right_Opnd
=> Make_Artyp_Literal
(0)),
3494 Last_Opnd_High_Bound
,
3498 -- Here is where we insert the saved up actions
3500 Insert_Actions
(Cnode
, Actions
, Suppress
=> All_Checks
);
3502 -- Now we construct an array object with appropriate bounds. We mark
3503 -- the target as internal to prevent useless initialization when
3504 -- Initialize_Scalars is enabled. Also since this is the actual result
3505 -- entity, we make sure we have debug information for the result.
3507 Ent
:= Make_Temporary
(Loc
, 'S');
3508 Set_Is_Internal
(Ent
);
3509 Set_Needs_Debug_Info
(Ent
);
3511 -- If the bound is statically known to be out of range, we do not want
3512 -- to abort, we want a warning and a runtime constraint error. Note that
3513 -- we have arranged that the result will not be treated as a static
3514 -- constant, so we won't get an illegality during this insertion.
3516 Insert_Action
(Cnode
,
3517 Make_Object_Declaration
(Loc
,
3518 Defining_Identifier
=> Ent
,
3519 Object_Definition
=>
3520 Make_Subtype_Indication
(Loc
,
3521 Subtype_Mark
=> New_Occurrence_Of
(Atyp
, Loc
),
3523 Make_Index_Or_Discriminant_Constraint
(Loc
,
3524 Constraints
=> New_List
(
3526 Low_Bound
=> Low_Bound
,
3527 High_Bound
=> High_Bound
))))),
3528 Suppress
=> All_Checks
);
3530 -- If the result of the concatenation appears as the initializing
3531 -- expression of an object declaration, we can just rename the
3532 -- result, rather than copying it.
3534 Set_OK_To_Rename
(Ent
);
3536 -- Catch the static out of range case now
3538 if Raises_Constraint_Error
(High_Bound
) then
3539 raise Concatenation_Error
;
3542 -- Now we will generate the assignments to do the actual concatenation
3544 -- There is one case in which we will not do this, namely when all the
3545 -- following conditions are met:
3547 -- The result type is Standard.String
3549 -- There are nine or fewer retained (non-null) operands
3551 -- The optimization level is -O0
3553 -- The corresponding System.Concat_n.Str_Concat_n routine is
3554 -- available in the run time.
3556 -- The debug flag gnatd.c is not set
3558 -- If all these conditions are met then we generate a call to the
3559 -- relevant concatenation routine. The purpose of this is to avoid
3560 -- undesirable code bloat at -O0.
3562 if Atyp
= Standard_String
3563 and then NN
in 2 .. 9
3564 and then (Lib_Level_Target
3565 or else ((Optimization_Level
= 0 or else Debug_Flag_Dot_CC
)
3566 and then not Debug_Flag_Dot_C
))
3569 RR
: constant array (Nat
range 2 .. 9) of RE_Id
:=
3580 if RTE_Available
(RR
(NN
)) then
3582 Opnds
: constant List_Id
:=
3583 New_List
(New_Occurrence_Of
(Ent
, Loc
));
3586 for J
in 1 .. NN
loop
3587 if Is_List_Member
(Operands
(J
)) then
3588 Remove
(Operands
(J
));
3591 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3593 Make_Aggregate
(Loc
,
3594 Component_Associations
=> New_List
(
3595 Make_Component_Association
(Loc
,
3596 Choices
=> New_List
(
3597 Make_Integer_Literal
(Loc
, 1)),
3598 Expression
=> Operands
(J
)))));
3601 Append_To
(Opnds
, Operands
(J
));
3605 Insert_Action
(Cnode
,
3606 Make_Procedure_Call_Statement
(Loc
,
3607 Name
=> New_Occurrence_Of
(RTE
(RR
(NN
)), Loc
),
3608 Parameter_Associations
=> Opnds
));
3610 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3617 -- Not special case so generate the assignments
3619 Known_Non_Null_Operand_Seen
:= False;
3621 for J
in 1 .. NN
loop
3623 Lo
: constant Node_Id
:=
3625 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3626 Right_Opnd
=> Aggr_Length
(J
- 1));
3628 Hi
: constant Node_Id
:=
3630 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3632 Make_Op_Subtract
(Loc
,
3633 Left_Opnd
=> Aggr_Length
(J
),
3634 Right_Opnd
=> Make_Artyp_Literal
(1)));
3637 -- Singleton case, simple assignment
3639 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3640 Known_Non_Null_Operand_Seen
:= True;
3641 Insert_Action
(Cnode
,
3642 Make_Assignment_Statement
(Loc
,
3644 Make_Indexed_Component
(Loc
,
3645 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
3646 Expressions
=> New_List
(To_Ityp
(Lo
))),
3647 Expression
=> Operands
(J
)),
3648 Suppress
=> All_Checks
);
3650 -- Array case, slice assignment, skipped when argument is fixed
3651 -- length and known to be null.
3653 elsif (not Is_Fixed_Length
(J
)) or else (Fixed_Length
(J
) > 0) then
3656 Make_Assignment_Statement
(Loc
,
3660 New_Occurrence_Of
(Ent
, Loc
),
3663 Low_Bound
=> To_Ityp
(Lo
),
3664 High_Bound
=> To_Ityp
(Hi
))),
3665 Expression
=> Operands
(J
));
3667 if Is_Fixed_Length
(J
) then
3668 Known_Non_Null_Operand_Seen
:= True;
3670 elsif not Known_Non_Null_Operand_Seen
then
3672 -- Here if operand length is not statically known and no
3673 -- operand known to be non-null has been processed yet.
3674 -- If operand length is 0, we do not need to perform the
3675 -- assignment, and we must avoid the evaluation of the
3676 -- high bound of the slice, since it may underflow if the
3677 -- low bound is Ityp'First.
3680 Make_Implicit_If_Statement
(Cnode
,
3684 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3685 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3686 Then_Statements
=> New_List
(Assign
));
3689 Insert_Action
(Cnode
, Assign
, Suppress
=> All_Checks
);
3695 -- Finally we build the result, which is a reference to the array object
3697 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3700 Rewrite
(Cnode
, Result
);
3701 Analyze_And_Resolve
(Cnode
, Atyp
);
3704 when Concatenation_Error
=>
3706 -- Kill warning generated for the declaration of the static out of
3707 -- range high bound, and instead generate a Constraint_Error with
3708 -- an appropriate specific message.
3710 Kill_Dead_Code
(Declaration_Node
(Entity
(High_Bound
)));
3711 Apply_Compile_Time_Constraint_Error
3713 Msg
=> "concatenation result upper bound out of range??",
3714 Reason
=> CE_Range_Check_Failed
);
3715 end Expand_Concatenate
;
3717 ---------------------------------------------------
3718 -- Expand_Membership_Minimize_Eliminate_Overflow --
3719 ---------------------------------------------------
3721 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
3722 pragma Assert
(Nkind
(N
) = N_In
);
3723 -- Despite the name, this routine applies only to N_In, not to
3724 -- N_Not_In. The latter is always rewritten as not (X in Y).
3726 Result_Type
: constant Entity_Id
:= Etype
(N
);
3727 -- Capture result type, may be a derived boolean type
3729 Loc
: constant Source_Ptr
:= Sloc
(N
);
3730 Lop
: constant Node_Id
:= Left_Opnd
(N
);
3731 Rop
: constant Node_Id
:= Right_Opnd
(N
);
3733 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3734 -- is thus tempting to capture these values, but due to the rewrites
3735 -- that occur as a result of overflow checking, these values change
3736 -- as we go along, and it is safe just to always use Etype explicitly.
3738 Restype
: constant Entity_Id
:= Etype
(N
);
3742 -- Bounds in Minimize calls, not used currently
3744 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
3745 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3748 Minimize_Eliminate_Overflows
(Lop
, Lo
, Hi
, Top_Level
=> False);
3750 -- If right operand is a subtype name, and the subtype name has no
3751 -- predicate, then we can just replace the right operand with an
3752 -- explicit range T'First .. T'Last, and use the explicit range code.
3754 if Nkind
(Rop
) /= N_Range
3755 and then No
(Predicate_Function
(Etype
(Rop
)))
3758 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
3763 Make_Attribute_Reference
(Loc
,
3764 Attribute_Name
=> Name_First
,
3765 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
)),
3767 Make_Attribute_Reference
(Loc
,
3768 Attribute_Name
=> Name_Last
,
3769 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
))));
3770 Analyze_And_Resolve
(Rop
, Rtyp
, Suppress
=> All_Checks
);
3774 -- Here for the explicit range case. Note that the bounds of the range
3775 -- have not been processed for minimized or eliminated checks.
3777 if Nkind
(Rop
) = N_Range
then
3778 Minimize_Eliminate_Overflows
3779 (Low_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3780 Minimize_Eliminate_Overflows
3781 (High_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3783 -- We have A in B .. C, treated as A >= B and then A <= C
3787 if Is_RTE
(Etype
(Lop
), RE_Bignum
)
3788 or else Is_RTE
(Etype
(Low_Bound
(Rop
)), RE_Bignum
)
3789 or else Is_RTE
(Etype
(High_Bound
(Rop
)), RE_Bignum
)
3792 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3793 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3794 L
: constant Entity_Id
:=
3795 Make_Defining_Identifier
(Loc
, Name_uL
);
3796 Lopnd
: constant Node_Id
:= Convert_To_Bignum
(Lop
);
3797 Lbound
: constant Node_Id
:=
3798 Convert_To_Bignum
(Low_Bound
(Rop
));
3799 Hbound
: constant Node_Id
:=
3800 Convert_To_Bignum
(High_Bound
(Rop
));
3802 -- Now we rewrite the membership test node to look like
3805 -- Bnn : Result_Type;
3807 -- M : Mark_Id := SS_Mark;
3808 -- L : Bignum := Lopnd;
3810 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3818 -- Insert declaration of L into declarations of bignum block
3821 (Last
(Declarations
(Blk
)),
3822 Make_Object_Declaration
(Loc
,
3823 Defining_Identifier
=> L
,
3824 Object_Definition
=>
3825 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
),
3826 Expression
=> Lopnd
));
3828 -- Insert assignment to Bnn into expressions of bignum block
3831 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3832 Make_Assignment_Statement
(Loc
,
3833 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3837 Make_Function_Call
(Loc
,
3839 New_Occurrence_Of
(RTE
(RE_Big_GE
), Loc
),
3840 Parameter_Associations
=> New_List
(
3841 New_Occurrence_Of
(L
, Loc
),
3845 Make_Function_Call
(Loc
,
3847 New_Occurrence_Of
(RTE
(RE_Big_LE
), Loc
),
3848 Parameter_Associations
=> New_List
(
3849 New_Occurrence_Of
(L
, Loc
),
3852 -- Now rewrite the node
3855 Make_Expression_With_Actions
(Loc
,
3856 Actions
=> New_List
(
3857 Make_Object_Declaration
(Loc
,
3858 Defining_Identifier
=> Bnn
,
3859 Object_Definition
=>
3860 New_Occurrence_Of
(Result_Type
, Loc
)),
3862 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3863 Analyze_And_Resolve
(N
, Result_Type
);
3867 -- Here if no bignums around
3870 -- Case where types are all the same
3872 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Low_Bound
(Rop
)))
3874 Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(High_Bound
(Rop
)))
3878 -- If types are not all the same, it means that we have rewritten
3879 -- at least one of them to be of type Long_Long_Integer, and we
3880 -- will convert the other operands to Long_Long_Integer.
3883 Convert_To_And_Rewrite
(LLIB
, Lop
);
3884 Set_Analyzed
(Lop
, False);
3885 Analyze_And_Resolve
(Lop
, LLIB
);
3887 -- For the right operand, avoid unnecessary recursion into
3888 -- this routine, we know that overflow is not possible.
3890 Convert_To_And_Rewrite
(LLIB
, Low_Bound
(Rop
));
3891 Convert_To_And_Rewrite
(LLIB
, High_Bound
(Rop
));
3892 Set_Analyzed
(Rop
, False);
3893 Analyze_And_Resolve
(Rop
, LLIB
, Suppress
=> Overflow_Check
);
3896 -- Now the three operands are of the same signed integer type,
3897 -- so we can use the normal expansion routine for membership,
3898 -- setting the flag to prevent recursion into this procedure.
3900 Set_No_Minimize_Eliminate
(N
);
3904 -- Right operand is a subtype name and the subtype has a predicate. We
3905 -- have to make sure the predicate is checked, and for that we need to
3906 -- use the standard N_In circuitry with appropriate types.
3909 pragma Assert
(Present
(Predicate_Function
(Etype
(Rop
))));
3911 -- If types are "right", just call Expand_N_In preventing recursion
3913 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Rop
)) then
3914 Set_No_Minimize_Eliminate
(N
);
3919 elsif Is_RTE
(Etype
(Lop
), RE_Bignum
) then
3921 -- For X in T, we want to rewrite our node as
3924 -- Bnn : Result_Type;
3927 -- M : Mark_Id := SS_Mark;
3928 -- Lnn : Long_Long_Integer'Base
3934 -- if not Bignum_In_LLI_Range (Nnn) then
3937 -- Lnn := From_Bignum (Nnn);
3939 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3940 -- and then T'Base (Lnn) in T;
3949 -- A bit gruesome, but there doesn't seem to be a simpler way
3952 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3953 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3954 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L', N
);
3955 Nnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'N', N
);
3956 T
: constant Entity_Id
:= Etype
(Rop
);
3957 TB
: constant Entity_Id
:= Base_Type
(T
);
3961 -- Mark the last membership operation to prevent recursion
3965 Left_Opnd
=> Convert_To
(TB
, New_Occurrence_Of
(Lnn
, Loc
)),
3966 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3967 Set_No_Minimize_Eliminate
(Nin
);
3969 -- Now decorate the block
3972 (Last
(Declarations
(Blk
)),
3973 Make_Object_Declaration
(Loc
,
3974 Defining_Identifier
=> Lnn
,
3975 Object_Definition
=> New_Occurrence_Of
(LLIB
, Loc
)));
3978 (Last
(Declarations
(Blk
)),
3979 Make_Object_Declaration
(Loc
,
3980 Defining_Identifier
=> Nnn
,
3981 Object_Definition
=>
3982 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
)));
3985 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3987 Make_Assignment_Statement
(Loc
,
3988 Name
=> New_Occurrence_Of
(Nnn
, Loc
),
3989 Expression
=> Relocate_Node
(Lop
)),
3991 Make_Implicit_If_Statement
(N
,
3995 Make_Function_Call
(Loc
,
3998 (RTE
(RE_Bignum_In_LLI_Range
), Loc
),
3999 Parameter_Associations
=> New_List
(
4000 New_Occurrence_Of
(Nnn
, Loc
)))),
4002 Then_Statements
=> New_List
(
4003 Make_Assignment_Statement
(Loc
,
4004 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4006 New_Occurrence_Of
(Standard_False
, Loc
))),
4008 Else_Statements
=> New_List
(
4009 Make_Assignment_Statement
(Loc
,
4010 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4012 Make_Function_Call
(Loc
,
4014 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4015 Parameter_Associations
=> New_List
(
4016 New_Occurrence_Of
(Nnn
, Loc
)))),
4018 Make_Assignment_Statement
(Loc
,
4019 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4024 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4029 Make_Attribute_Reference
(Loc
,
4030 Attribute_Name
=> Name_First
,
4032 New_Occurrence_Of
(TB
, Loc
))),
4036 Make_Attribute_Reference
(Loc
,
4037 Attribute_Name
=> Name_Last
,
4039 New_Occurrence_Of
(TB
, Loc
))))),
4041 Right_Opnd
=> Nin
))))));
4043 -- Now we can do the rewrite
4046 Make_Expression_With_Actions
(Loc
,
4047 Actions
=> New_List
(
4048 Make_Object_Declaration
(Loc
,
4049 Defining_Identifier
=> Bnn
,
4050 Object_Definition
=>
4051 New_Occurrence_Of
(Result_Type
, Loc
)),
4053 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
4054 Analyze_And_Resolve
(N
, Result_Type
);
4058 -- Not bignum case, but types don't match (this means we rewrote the
4059 -- left operand to be Long_Long_Integer).
4062 pragma Assert
(Base_Type
(Etype
(Lop
)) = LLIB
);
4064 -- We rewrite the membership test as (where T is the type with
4065 -- the predicate, i.e. the type of the right operand)
4067 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4068 -- and then T'Base (Lop) in T
4071 T
: constant Entity_Id
:= Etype
(Rop
);
4072 TB
: constant Entity_Id
:= Base_Type
(T
);
4076 -- The last membership test is marked to prevent recursion
4080 Left_Opnd
=> Convert_To
(TB
, Duplicate_Subexpr
(Lop
)),
4081 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
4082 Set_No_Minimize_Eliminate
(Nin
);
4084 -- Now do the rewrite
4095 Make_Attribute_Reference
(Loc
,
4096 Attribute_Name
=> Name_First
,
4098 New_Occurrence_Of
(TB
, Loc
))),
4101 Make_Attribute_Reference
(Loc
,
4102 Attribute_Name
=> Name_Last
,
4104 New_Occurrence_Of
(TB
, Loc
))))),
4105 Right_Opnd
=> Nin
));
4106 Set_Analyzed
(N
, False);
4107 Analyze_And_Resolve
(N
, Restype
);
4111 end Expand_Membership_Minimize_Eliminate_Overflow
;
4113 ------------------------
4114 -- Expand_N_Allocator --
4115 ------------------------
4117 procedure Expand_N_Allocator
(N
: Node_Id
) is
4118 Etyp
: constant Entity_Id
:= Etype
(Expression
(N
));
4119 Loc
: constant Source_Ptr
:= Sloc
(N
);
4120 PtrT
: constant Entity_Id
:= Etype
(N
);
4122 procedure Rewrite_Coextension
(N
: Node_Id
);
4123 -- Static coextensions have the same lifetime as the entity they
4124 -- constrain. Such occurrences can be rewritten as aliased objects
4125 -- and their unrestricted access used instead of the coextension.
4127 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
;
4128 -- Given a constrained array type E, returns a node representing the
4129 -- code to compute the size in storage elements for the given type.
4130 -- This is done without using the attribute (which malfunctions for
4133 -------------------------
4134 -- Rewrite_Coextension --
4135 -------------------------
4137 procedure Rewrite_Coextension
(N
: Node_Id
) is
4138 Temp_Id
: constant Node_Id
:= Make_Temporary
(Loc
, 'C');
4139 Temp_Decl
: Node_Id
;
4143 -- Cnn : aliased Etyp;
4146 Make_Object_Declaration
(Loc
,
4147 Defining_Identifier
=> Temp_Id
,
4148 Aliased_Present
=> True,
4149 Object_Definition
=> New_Occurrence_Of
(Etyp
, Loc
));
4151 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4152 Set_Expression
(Temp_Decl
, Expression
(Expression
(N
)));
4155 Insert_Action
(N
, Temp_Decl
);
4157 Make_Attribute_Reference
(Loc
,
4158 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4159 Attribute_Name
=> Name_Unrestricted_Access
));
4161 Analyze_And_Resolve
(N
, PtrT
);
4162 end Rewrite_Coextension
;
4164 ------------------------------
4165 -- Size_In_Storage_Elements --
4166 ------------------------------
4168 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
is
4170 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4171 -- However, the reason for the existence of this function is
4172 -- to construct a test for sizes too large, which means near the
4173 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4174 -- is that we get overflows when sizes are greater than 2**31.
4176 -- So what we end up doing for array types is to use the expression:
4178 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4180 -- which avoids this problem. All this is a bit bogus, but it does
4181 -- mean we catch common cases of trying to allocate arrays that
4182 -- are too large, and which in the absence of a check results in
4183 -- undetected chaos ???
4185 -- Note in particular that this is a pessimistic estimate in the
4186 -- case of packed array types, where an array element might occupy
4187 -- just a fraction of a storage element???
4194 for J
in 1 .. Number_Dimensions
(E
) loop
4196 Make_Attribute_Reference
(Loc
,
4197 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4198 Attribute_Name
=> Name_Length
,
4199 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, J
)));
4206 Make_Op_Multiply
(Loc
,
4213 Make_Op_Multiply
(Loc
,
4216 Make_Attribute_Reference
(Loc
,
4217 Prefix
=> New_Occurrence_Of
(Component_Type
(E
), Loc
),
4218 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
));
4220 end Size_In_Storage_Elements
;
4224 Dtyp
: constant Entity_Id
:= Available_View
(Designated_Type
(PtrT
));
4228 Rel_Typ
: Entity_Id
;
4231 -- Start of processing for Expand_N_Allocator
4234 -- RM E.2.3(22). We enforce that the expected type of an allocator
4235 -- shall not be a remote access-to-class-wide-limited-private type
4237 -- Why is this being done at expansion time, seems clearly wrong ???
4239 Validate_Remote_Access_To_Class_Wide_Type
(N
);
4241 -- Processing for anonymous access-to-controlled types. These access
4242 -- types receive a special finalization master which appears in the
4243 -- declarations of the enclosing semantic unit. This expansion is done
4244 -- now to ensure that any additional types generated by this routine or
4245 -- Expand_Allocator_Expression inherit the proper type attributes.
4247 if (Ekind
(PtrT
) = E_Anonymous_Access_Type
4248 or else (Is_Itype
(PtrT
) and then No
(Finalization_Master
(PtrT
))))
4249 and then Needs_Finalization
(Dtyp
)
4251 -- Detect the allocation of an anonymous controlled object where the
4252 -- type of the context is named. For example:
4254 -- procedure Proc (Ptr : Named_Access_Typ);
4255 -- Proc (new Designated_Typ);
4257 -- Regardless of the anonymous-to-named access type conversion, the
4258 -- lifetime of the object must be associated with the named access
4259 -- type. Use the finalization-related attributes of this type.
4261 if Nkind_In
(Parent
(N
), N_Type_Conversion
,
4262 N_Unchecked_Type_Conversion
)
4263 and then Ekind_In
(Etype
(Parent
(N
)), E_Access_Subtype
,
4265 E_General_Access_Type
)
4267 Rel_Typ
:= Etype
(Parent
(N
));
4272 -- Anonymous access-to-controlled types allocate on the global pool.
4273 -- Note that this is a "root type only" attribute.
4275 if No
(Associated_Storage_Pool
(PtrT
)) then
4276 if Present
(Rel_Typ
) then
4277 Set_Associated_Storage_Pool
4278 (Root_Type
(PtrT
), Associated_Storage_Pool
(Rel_Typ
));
4280 Set_Associated_Storage_Pool
4281 (Root_Type
(PtrT
), RTE
(RE_Global_Pool_Object
));
4285 -- The finalization master must be inserted and analyzed as part of
4286 -- the current semantic unit. Note that the master is updated when
4287 -- analysis changes current units. Note that this is a "root type
4290 if Present
(Rel_Typ
) then
4291 Set_Finalization_Master
4292 (Root_Type
(PtrT
), Finalization_Master
(Rel_Typ
));
4294 Set_Finalization_Master
4295 (Root_Type
(PtrT
), Current_Anonymous_Master
);
4299 -- Set the storage pool and find the appropriate version of Allocate to
4300 -- call. Do not overwrite the storage pool if it is already set, which
4301 -- can happen for build-in-place function returns (see
4302 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4304 if No
(Storage_Pool
(N
)) then
4305 Pool
:= Associated_Storage_Pool
(Root_Type
(PtrT
));
4307 if Present
(Pool
) then
4308 Set_Storage_Pool
(N
, Pool
);
4310 if Is_RTE
(Pool
, RE_SS_Pool
) then
4311 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
4313 -- In the case of an allocator for a simple storage pool, locate
4314 -- and save a reference to the pool type's Allocate routine.
4316 elsif Present
(Get_Rep_Pragma
4317 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4320 Pool_Type
: constant Entity_Id
:= Base_Type
(Etype
(Pool
));
4321 Alloc_Op
: Entity_Id
;
4323 Alloc_Op
:= Get_Name_Entity_Id
(Name_Allocate
);
4324 while Present
(Alloc_Op
) loop
4325 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
4326 and then Present
(First_Formal
(Alloc_Op
))
4327 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
4329 Set_Procedure_To_Call
(N
, Alloc_Op
);
4332 Alloc_Op
:= Homonym
(Alloc_Op
);
4337 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
4338 Set_Procedure_To_Call
(N
, RTE
(RE_Allocate_Any
));
4341 Set_Procedure_To_Call
(N
,
4342 Find_Prim_Op
(Etype
(Pool
), Name_Allocate
));
4347 -- Under certain circumstances we can replace an allocator by an access
4348 -- to statically allocated storage. The conditions, as noted in AARM
4349 -- 3.10 (10c) are as follows:
4351 -- Size and initial value is known at compile time
4352 -- Access type is access-to-constant
4354 -- The allocator is not part of a constraint on a record component,
4355 -- because in that case the inserted actions are delayed until the
4356 -- record declaration is fully analyzed, which is too late for the
4357 -- analysis of the rewritten allocator.
4359 if Is_Access_Constant
(PtrT
)
4360 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4361 and then Compile_Time_Known_Value
(Expression
(Expression
(N
)))
4362 and then Size_Known_At_Compile_Time
4363 (Etype
(Expression
(Expression
(N
))))
4364 and then not Is_Record_Type
(Current_Scope
)
4366 -- Here we can do the optimization. For the allocator
4370 -- We insert an object declaration
4372 -- Tnn : aliased x := y;
4374 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4375 -- marked as requiring static allocation.
4377 Temp
:= Make_Temporary
(Loc
, 'T', Expression
(Expression
(N
)));
4378 Desig
:= Subtype_Mark
(Expression
(N
));
4380 -- If context is constrained, use constrained subtype directly,
4381 -- so that the constant is not labelled as having a nominally
4382 -- unconstrained subtype.
4384 if Entity
(Desig
) = Base_Type
(Dtyp
) then
4385 Desig
:= New_Occurrence_Of
(Dtyp
, Loc
);
4389 Make_Object_Declaration
(Loc
,
4390 Defining_Identifier
=> Temp
,
4391 Aliased_Present
=> True,
4392 Constant_Present
=> Is_Access_Constant
(PtrT
),
4393 Object_Definition
=> Desig
,
4394 Expression
=> Expression
(Expression
(N
))));
4397 Make_Attribute_Reference
(Loc
,
4398 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
4399 Attribute_Name
=> Name_Unrestricted_Access
));
4401 Analyze_And_Resolve
(N
, PtrT
);
4403 -- We set the variable as statically allocated, since we don't want
4404 -- it going on the stack of the current procedure.
4406 Set_Is_Statically_Allocated
(Temp
);
4410 -- Same if the allocator is an access discriminant for a local object:
4411 -- instead of an allocator we create a local value and constrain the
4412 -- enclosing object with the corresponding access attribute.
4414 if Is_Static_Coextension
(N
) then
4415 Rewrite_Coextension
(N
);
4419 -- Check for size too large, we do this because the back end misses
4420 -- proper checks here and can generate rubbish allocation calls when
4421 -- we are near the limit. We only do this for the 32-bit address case
4422 -- since that is from a practical point of view where we see a problem.
4424 if System_Address_Size
= 32
4425 and then not Storage_Checks_Suppressed
(PtrT
)
4426 and then not Storage_Checks_Suppressed
(Dtyp
)
4427 and then not Storage_Checks_Suppressed
(Etyp
)
4429 -- The check we want to generate should look like
4431 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4432 -- raise Storage_Error;
4435 -- where 3.5 gigabytes is a constant large enough to accommodate any
4436 -- reasonable request for. But we can't do it this way because at
4437 -- least at the moment we don't compute this attribute right, and
4438 -- can silently give wrong results when the result gets large. Since
4439 -- this is all about large results, that's bad, so instead we only
4440 -- apply the check for constrained arrays, and manually compute the
4441 -- value of the attribute ???
4443 if Is_Array_Type
(Etyp
) and then Is_Constrained
(Etyp
) then
4445 Make_Raise_Storage_Error
(Loc
,
4448 Left_Opnd
=> Size_In_Storage_Elements
(Etyp
),
4450 Make_Integer_Literal
(Loc
, Uint_7
* (Uint_2
** 29))),
4451 Reason
=> SE_Object_Too_Large
));
4455 -- If no storage pool has been specified and we have the restriction
4456 -- No_Standard_Allocators_After_Elaboration is present, then generate
4457 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4459 if Nkind
(N
) = N_Allocator
4460 and then No
(Storage_Pool
(N
))
4461 and then Restriction_Active
(No_Standard_Allocators_After_Elaboration
)
4464 Make_Procedure_Call_Statement
(Loc
,
4466 New_Occurrence_Of
(RTE
(RE_Check_Standard_Allocator
), Loc
)));
4469 -- Handle case of qualified expression (other than optimization above)
4470 -- First apply constraint checks, because the bounds or discriminants
4471 -- in the aggregate might not match the subtype mark in the allocator.
4473 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4474 Apply_Constraint_Check
4475 (Expression
(Expression
(N
)), Etype
(Expression
(N
)));
4477 Expand_Allocator_Expression
(N
);
4481 -- If the allocator is for a type which requires initialization, and
4482 -- there is no initial value (i.e. operand is a subtype indication
4483 -- rather than a qualified expression), then we must generate a call to
4484 -- the initialization routine using an expressions action node:
4486 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4488 -- Here ptr_T is the pointer type for the allocator, and T is the
4489 -- subtype of the allocator. A special case arises if the designated
4490 -- type of the access type is a task or contains tasks. In this case
4491 -- the call to Init (Temp.all ...) is replaced by code that ensures
4492 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4493 -- for details). In addition, if the type T is a task type, then the
4494 -- first argument to Init must be converted to the task record type.
4497 T
: constant Entity_Id
:= Entity
(Expression
(N
));
4503 Init_Arg1
: Node_Id
;
4504 Temp_Decl
: Node_Id
;
4505 Temp_Type
: Entity_Id
;
4508 if No_Initialization
(N
) then
4510 -- Even though this might be a simple allocation, create a custom
4511 -- Allocate if the context requires it.
4513 if Present
(Finalization_Master
(PtrT
)) then
4514 Build_Allocate_Deallocate_Proc
4516 Is_Allocate
=> True);
4519 -- Case of no initialization procedure present
4521 elsif not Has_Non_Null_Base_Init_Proc
(T
) then
4523 -- Case of simple initialization required
4525 if Needs_Simple_Initialization
(T
) then
4526 Check_Restriction
(No_Default_Initialization
, N
);
4527 Rewrite
(Expression
(N
),
4528 Make_Qualified_Expression
(Loc
,
4529 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4530 Expression
=> Get_Simple_Init_Val
(T
, N
)));
4532 Analyze_And_Resolve
(Expression
(Expression
(N
)), T
);
4533 Analyze_And_Resolve
(Expression
(N
), T
);
4534 Set_Paren_Count
(Expression
(Expression
(N
)), 1);
4535 Expand_N_Allocator
(N
);
4537 -- No initialization required
4543 -- Case of initialization procedure present, must be called
4546 Check_Restriction
(No_Default_Initialization
, N
);
4548 if not Restriction_Active
(No_Default_Initialization
) then
4549 Init
:= Base_Init_Proc
(T
);
4551 Temp
:= Make_Temporary
(Loc
, 'P');
4553 -- Construct argument list for the initialization routine call
4556 Make_Explicit_Dereference
(Loc
,
4558 New_Occurrence_Of
(Temp
, Loc
));
4560 Set_Assignment_OK
(Init_Arg1
);
4563 -- The initialization procedure expects a specific type. if the
4564 -- context is access to class wide, indicate that the object
4565 -- being allocated has the right specific type.
4567 if Is_Class_Wide_Type
(Dtyp
) then
4568 Init_Arg1
:= Unchecked_Convert_To
(T
, Init_Arg1
);
4571 -- If designated type is a concurrent type or if it is private
4572 -- type whose definition is a concurrent type, the first
4573 -- argument in the Init routine has to be unchecked conversion
4574 -- to the corresponding record type. If the designated type is
4575 -- a derived type, also convert the argument to its root type.
4577 if Is_Concurrent_Type
(T
) then
4579 Unchecked_Convert_To
(
4580 Corresponding_Record_Type
(T
), Init_Arg1
);
4582 elsif Is_Private_Type
(T
)
4583 and then Present
(Full_View
(T
))
4584 and then Is_Concurrent_Type
(Full_View
(T
))
4587 Unchecked_Convert_To
4588 (Corresponding_Record_Type
(Full_View
(T
)), Init_Arg1
);
4590 elsif Etype
(First_Formal
(Init
)) /= Base_Type
(T
) then
4592 Ftyp
: constant Entity_Id
:= Etype
(First_Formal
(Init
));
4595 Init_Arg1
:= OK_Convert_To
(Etype
(Ftyp
), Init_Arg1
);
4596 Set_Etype
(Init_Arg1
, Ftyp
);
4600 Args
:= New_List
(Init_Arg1
);
4602 -- For the task case, pass the Master_Id of the access type as
4603 -- the value of the _Master parameter, and _Chain as the value
4604 -- of the _Chain parameter (_Chain will be defined as part of
4605 -- the generated code for the allocator).
4607 -- In Ada 2005, the context may be a function that returns an
4608 -- anonymous access type. In that case the Master_Id has been
4609 -- created when expanding the function declaration.
4611 if Has_Task
(T
) then
4612 if No
(Master_Id
(Base_Type
(PtrT
))) then
4614 -- The designated type was an incomplete type, and the
4615 -- access type did not get expanded. Salvage it now.
4617 if not Restriction_Active
(No_Task_Hierarchy
) then
4618 if Present
(Parent
(Base_Type
(PtrT
))) then
4619 Expand_N_Full_Type_Declaration
4620 (Parent
(Base_Type
(PtrT
)));
4622 -- The only other possibility is an itype. For this
4623 -- case, the master must exist in the context. This is
4624 -- the case when the allocator initializes an access
4625 -- component in an init-proc.
4628 pragma Assert
(Is_Itype
(PtrT
));
4629 Build_Master_Renaming
(PtrT
, N
);
4634 -- If the context of the allocator is a declaration or an
4635 -- assignment, we can generate a meaningful image for it,
4636 -- even though subsequent assignments might remove the
4637 -- connection between task and entity. We build this image
4638 -- when the left-hand side is a simple variable, a simple
4639 -- indexed assignment or a simple selected component.
4641 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4643 Nam
: constant Node_Id
:= Name
(Parent
(N
));
4646 if Is_Entity_Name
(Nam
) then
4648 Build_Task_Image_Decls
4651 (Entity
(Nam
), Sloc
(Nam
)), T
);
4653 elsif Nkind_In
(Nam
, N_Indexed_Component
,
4654 N_Selected_Component
)
4655 and then Is_Entity_Name
(Prefix
(Nam
))
4658 Build_Task_Image_Decls
4659 (Loc
, Nam
, Etype
(Prefix
(Nam
)));
4661 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4665 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
4667 Build_Task_Image_Decls
4668 (Loc
, Defining_Identifier
(Parent
(N
)), T
);
4671 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4674 if Restriction_Active
(No_Task_Hierarchy
) then
4676 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
4680 (Master_Id
(Base_Type
(Root_Type
(PtrT
))), Loc
));
4683 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
4685 Decl
:= Last
(Decls
);
4687 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
4689 -- Has_Task is false, Decls not used
4695 -- Add discriminants if discriminated type
4698 Dis
: Boolean := False;
4702 if Has_Discriminants
(T
) then
4706 elsif Is_Private_Type
(T
)
4707 and then Present
(Full_View
(T
))
4708 and then Has_Discriminants
(Full_View
(T
))
4711 Typ
:= Full_View
(T
);
4716 -- If the allocated object will be constrained by the
4717 -- default values for discriminants, then build a subtype
4718 -- with those defaults, and change the allocated subtype
4719 -- to that. Note that this happens in fewer cases in Ada
4722 if not Is_Constrained
(Typ
)
4723 and then Present
(Discriminant_Default_Value
4724 (First_Discriminant
(Typ
)))
4725 and then (Ada_Version
< Ada_2005
4727 Object_Type_Has_Constrained_Partial_View
4728 (Typ
, Current_Scope
))
4730 Typ
:= Build_Default_Subtype
(Typ
, N
);
4731 Set_Expression
(N
, New_Occurrence_Of
(Typ
, Loc
));
4734 Discr
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4735 while Present
(Discr
) loop
4736 Nod
:= Node
(Discr
);
4737 Append
(New_Copy_Tree
(Node
(Discr
)), Args
);
4739 -- AI-416: when the discriminant constraint is an
4740 -- anonymous access type make sure an accessibility
4741 -- check is inserted if necessary (3.10.2(22.q/2))
4743 if Ada_Version
>= Ada_2005
4745 Ekind
(Etype
(Nod
)) = E_Anonymous_Access_Type
4747 Apply_Accessibility_Check
4748 (Nod
, Typ
, Insert_Node
=> Nod
);
4756 -- We set the allocator as analyzed so that when we analyze
4757 -- the if expression node, we do not get an unwanted recursive
4758 -- expansion of the allocator expression.
4760 Set_Analyzed
(N
, True);
4761 Nod
:= Relocate_Node
(N
);
4763 -- Here is the transformation:
4764 -- input: new Ctrl_Typ
4765 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4766 -- Ctrl_TypIP (Temp.all, ...);
4767 -- [Deep_]Initialize (Temp.all);
4769 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4770 -- is the subtype of the allocator.
4773 Make_Object_Declaration
(Loc
,
4774 Defining_Identifier
=> Temp
,
4775 Constant_Present
=> True,
4776 Object_Definition
=> New_Occurrence_Of
(Temp_Type
, Loc
),
4779 Set_Assignment_OK
(Temp_Decl
);
4780 Insert_Action
(N
, Temp_Decl
, Suppress
=> All_Checks
);
4782 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
4784 -- If the designated type is a task type or contains tasks,
4785 -- create block to activate created tasks, and insert
4786 -- declaration for Task_Image variable ahead of call.
4788 if Has_Task
(T
) then
4790 L
: constant List_Id
:= New_List
;
4793 Build_Task_Allocate_Block
(L
, Nod
, Args
);
4795 Insert_List_Before
(First
(Declarations
(Blk
)), Decls
);
4796 Insert_Actions
(N
, L
);
4801 Make_Procedure_Call_Statement
(Loc
,
4802 Name
=> New_Occurrence_Of
(Init
, Loc
),
4803 Parameter_Associations
=> Args
));
4806 if Needs_Finalization
(T
) then
4809 -- [Deep_]Initialize (Init_Arg1);
4813 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4817 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4818 Analyze_And_Resolve
(N
, PtrT
);
4823 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4824 -- object that has been rewritten as a reference, we displace "this"
4825 -- to reference properly its secondary dispatch table.
4827 if Nkind
(N
) = N_Identifier
and then Is_Interface
(Dtyp
) then
4828 Displace_Allocator_Pointer
(N
);
4832 when RE_Not_Available
=>
4834 end Expand_N_Allocator
;
4836 -----------------------
4837 -- Expand_N_And_Then --
4838 -----------------------
4840 procedure Expand_N_And_Then
(N
: Node_Id
)
4841 renames Expand_Short_Circuit_Operator
;
4843 ------------------------------
4844 -- Expand_N_Case_Expression --
4845 ------------------------------
4847 procedure Expand_N_Case_Expression
(N
: Node_Id
) is
4848 Loc
: constant Source_Ptr
:= Sloc
(N
);
4849 Typ
: constant Entity_Id
:= Etype
(N
);
4860 -- Check for MINIMIZED/ELIMINATED overflow mode
4862 if Minimized_Eliminated_Overflow_Check
(N
) then
4863 Apply_Arithmetic_Overflow_Check
(N
);
4867 -- If the case expression is a predicate specification, and the type
4868 -- to which it applies has a static predicate aspect, do not expand,
4869 -- because it will be converted to the proper predicate form later.
4871 if Ekind_In
(Current_Scope
, E_Function
, E_Procedure
)
4872 and then Is_Predicate_Function
(Current_Scope
)
4874 Has_Static_Predicate_Aspect
(Etype
(First_Entity
(Current_Scope
)))
4881 -- case X is when A => AX, when B => BX ...
4896 -- However, this expansion is wrong for limited types, and also
4897 -- wrong for unconstrained types (since the bounds may not be the
4898 -- same in all branches). Furthermore it involves an extra copy
4899 -- for large objects. So we take care of this by using the following
4900 -- modified expansion for non-elementary types:
4903 -- type Pnn is access all typ;
4907 -- T := AX'Unrestricted_Access;
4909 -- T := BX'Unrestricted_Access;
4915 Make_Case_Statement
(Loc
,
4916 Expression
=> Expression
(N
),
4917 Alternatives
=> New_List
);
4919 -- Preserve the original context for which the case statement is being
4920 -- generated. This is needed by the finalization machinery to prevent
4921 -- the premature finalization of controlled objects found within the
4924 Set_From_Conditional_Expression
(Cstmt
);
4926 Actions
:= New_List
;
4930 if Is_Elementary_Type
(Typ
) then
4934 Pnn
:= Make_Temporary
(Loc
, 'P');
4936 Make_Full_Type_Declaration
(Loc
,
4937 Defining_Identifier
=> Pnn
,
4939 Make_Access_To_Object_Definition
(Loc
,
4940 All_Present
=> True,
4941 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
4945 Tnn
:= Make_Temporary
(Loc
, 'T');
4947 -- Create declaration for target of expression, and indicate that it
4948 -- does not require initialization.
4951 Make_Object_Declaration
(Loc
,
4952 Defining_Identifier
=> Tnn
,
4953 Object_Definition
=> New_Occurrence_Of
(Ttyp
, Loc
));
4954 Set_No_Initialization
(Decl
);
4955 Append_To
(Actions
, Decl
);
4957 -- Now process the alternatives
4959 Alt
:= First
(Alternatives
(N
));
4960 while Present
(Alt
) loop
4962 Aexp
: Node_Id
:= Expression
(Alt
);
4963 Aloc
: constant Source_Ptr
:= Sloc
(Aexp
);
4967 -- As described above, take Unrestricted_Access for case of non-
4968 -- scalar types, to avoid big copies, and special cases.
4970 if not Is_Elementary_Type
(Typ
) then
4972 Make_Attribute_Reference
(Aloc
,
4973 Prefix
=> Relocate_Node
(Aexp
),
4974 Attribute_Name
=> Name_Unrestricted_Access
);
4978 Make_Assignment_Statement
(Aloc
,
4979 Name
=> New_Occurrence_Of
(Tnn
, Loc
),
4980 Expression
=> Aexp
));
4982 -- Propagate declarations inserted in the node by Insert_Actions
4983 -- (for example, temporaries generated to remove side effects).
4984 -- These actions must remain attached to the alternative, given
4985 -- that they are generated by the corresponding expression.
4987 if Present
(Sinfo
.Actions
(Alt
)) then
4988 Prepend_List
(Sinfo
.Actions
(Alt
), Stats
);
4992 (Alternatives
(Cstmt
),
4993 Make_Case_Statement_Alternative
(Sloc
(Alt
),
4994 Discrete_Choices
=> Discrete_Choices
(Alt
),
4995 Statements
=> Stats
));
5001 Append_To
(Actions
, Cstmt
);
5003 -- Construct and return final expression with actions
5005 if Is_Elementary_Type
(Typ
) then
5006 Fexp
:= New_Occurrence_Of
(Tnn
, Loc
);
5009 Make_Explicit_Dereference
(Loc
,
5010 Prefix
=> New_Occurrence_Of
(Tnn
, Loc
));
5014 Make_Expression_With_Actions
(Loc
,
5016 Actions
=> Actions
));
5018 Analyze_And_Resolve
(N
, Typ
);
5019 end Expand_N_Case_Expression
;
5021 -----------------------------------
5022 -- Expand_N_Explicit_Dereference --
5023 -----------------------------------
5025 procedure Expand_N_Explicit_Dereference
(N
: Node_Id
) is
5027 -- Insert explicit dereference call for the checked storage pool case
5029 Insert_Dereference_Action
(Prefix
(N
));
5031 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5032 -- we set the atomic sync flag.
5034 if Is_Atomic
(Etype
(N
))
5035 and then not Atomic_Synchronization_Disabled
(Etype
(N
))
5037 Activate_Atomic_Synchronization
(N
);
5039 end Expand_N_Explicit_Dereference
;
5041 --------------------------------------
5042 -- Expand_N_Expression_With_Actions --
5043 --------------------------------------
5045 procedure Expand_N_Expression_With_Actions
(N
: Node_Id
) is
5046 Acts
: constant List_Id
:= Actions
(N
);
5048 procedure Force_Boolean_Evaluation
(Expr
: Node_Id
);
5049 -- Force the evaluation of Boolean expression Expr
5051 function Process_Action
(Act
: Node_Id
) return Traverse_Result
;
5052 -- Inspect and process a single action of an expression_with_actions for
5053 -- transient controlled objects. If such objects are found, the routine
5054 -- generates code to clean them up when the context of the expression is
5055 -- evaluated or elaborated.
5057 ------------------------------
5058 -- Force_Boolean_Evaluation --
5059 ------------------------------
5061 procedure Force_Boolean_Evaluation
(Expr
: Node_Id
) is
5062 Loc
: constant Source_Ptr
:= Sloc
(N
);
5063 Flag_Decl
: Node_Id
;
5064 Flag_Id
: Entity_Id
;
5067 -- Relocate the expression to the actions list by capturing its value
5068 -- in a Boolean flag. Generate:
5069 -- Flag : constant Boolean := Expr;
5071 Flag_Id
:= Make_Temporary
(Loc
, 'F');
5074 Make_Object_Declaration
(Loc
,
5075 Defining_Identifier
=> Flag_Id
,
5076 Constant_Present
=> True,
5077 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
5078 Expression
=> Relocate_Node
(Expr
));
5080 Append
(Flag_Decl
, Acts
);
5081 Analyze
(Flag_Decl
);
5083 -- Replace the expression with a reference to the flag
5085 Rewrite
(Expression
(N
), New_Occurrence_Of
(Flag_Id
, Loc
));
5086 Analyze
(Expression
(N
));
5087 end Force_Boolean_Evaluation
;
5089 --------------------
5090 -- Process_Action --
5091 --------------------
5093 function Process_Action
(Act
: Node_Id
) return Traverse_Result
is
5095 if Nkind
(Act
) = N_Object_Declaration
5096 and then Is_Finalizable_Transient
(Act
, N
)
5098 Process_Transient_Object
(Act
, N
);
5101 -- Avoid processing temporary function results multiple times when
5102 -- dealing with nested expression_with_actions.
5104 elsif Nkind
(Act
) = N_Expression_With_Actions
then
5107 -- Do not process temporary function results in loops. This is done
5108 -- by Expand_N_Loop_Statement and Build_Finalizer.
5110 elsif Nkind
(Act
) = N_Loop_Statement
then
5117 procedure Process_Single_Action
is new Traverse_Proc
(Process_Action
);
5123 -- Start of processing for Expand_N_Expression_With_Actions
5126 -- Do not evaluate the expression when it denotes an entity because the
5127 -- expression_with_actions node will be replaced by the reference.
5129 if Is_Entity_Name
(Expression
(N
)) then
5132 -- Do not evaluate the expression when there are no actions because the
5133 -- expression_with_actions node will be replaced by the expression.
5135 elsif No
(Acts
) or else Is_Empty_List
(Acts
) then
5138 -- Force the evaluation of the expression by capturing its value in a
5139 -- temporary. This ensures that aliases of transient controlled objects
5140 -- do not leak to the expression of the expression_with_actions node:
5143 -- Trans_Id : Ctrl_Typ : ...;
5144 -- Alias : ... := Trans_Id;
5145 -- in ... Alias ... end;
5147 -- In the example above, Trans_Id cannot be finalized at the end of the
5148 -- actions list because this may affect the alias and the final value of
5149 -- the expression_with_actions. Forcing the evaluation encapsulates the
5150 -- reference to the Alias within the actions list:
5153 -- Trans_Id : Ctrl_Typ : ...;
5154 -- Alias : ... := Trans_Id;
5155 -- Val : constant Boolean := ... Alias ...;
5156 -- <finalize Trans_Id>
5159 -- Once this transformation is performed, it is safe to finalize the
5160 -- transient controlled object at the end of the actions list.
5162 -- Note that Force_Evaluation does not remove side effects in operators
5163 -- because it assumes that all operands are evaluated and side effect
5164 -- free. This is not the case when an operand depends implicitly on the
5165 -- transient controlled object through the use of access types.
5167 elsif Is_Boolean_Type
(Etype
(Expression
(N
))) then
5168 Force_Boolean_Evaluation
(Expression
(N
));
5170 -- The expression of an expression_with_actions node may not necessarily
5171 -- be Boolean when the node appears in an if expression. In this case do
5172 -- the usual forced evaluation to encapsulate potential aliasing.
5175 Force_Evaluation
(Expression
(N
));
5178 -- Process all transient controlled objects found within the actions of
5181 Act
:= First
(Acts
);
5182 while Present
(Act
) loop
5183 Process_Single_Action
(Act
);
5187 -- Deal with case where there are no actions. In this case we simply
5188 -- rewrite the node with its expression since we don't need the actions
5189 -- and the specification of this node does not allow a null action list.
5191 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5192 -- the expanded tree and relying on being able to retrieve the original
5193 -- tree in cases like this. This raises a whole lot of issues of whether
5194 -- we have problems elsewhere, which will be addressed in the future???
5196 if Is_Empty_List
(Acts
) then
5197 Rewrite
(N
, Relocate_Node
(Expression
(N
)));
5199 end Expand_N_Expression_With_Actions
;
5201 ----------------------------
5202 -- Expand_N_If_Expression --
5203 ----------------------------
5205 -- Deal with limited types and condition actions
5207 procedure Expand_N_If_Expression
(N
: Node_Id
) is
5208 procedure Process_Actions
(Actions
: List_Id
);
5209 -- Inspect and process a single action list of an if expression for
5210 -- transient controlled objects. If such objects are found, the routine
5211 -- generates code to clean them up when the context of the expression is
5212 -- evaluated or elaborated.
5214 ---------------------
5215 -- Process_Actions --
5216 ---------------------
5218 procedure Process_Actions
(Actions
: List_Id
) is
5222 Act
:= First
(Actions
);
5223 while Present
(Act
) loop
5224 if Nkind
(Act
) = N_Object_Declaration
5225 and then Is_Finalizable_Transient
(Act
, N
)
5227 Process_Transient_Object
(Act
, N
);
5232 end Process_Actions
;
5236 Loc
: constant Source_Ptr
:= Sloc
(N
);
5237 Cond
: constant Node_Id
:= First
(Expressions
(N
));
5238 Thenx
: constant Node_Id
:= Next
(Cond
);
5239 Elsex
: constant Node_Id
:= Next
(Thenx
);
5240 Typ
: constant Entity_Id
:= Etype
(N
);
5248 Ptr_Typ
: Entity_Id
;
5250 -- Start of processing for Expand_N_If_Expression
5253 -- Check for MINIMIZED/ELIMINATED overflow mode
5255 if Minimized_Eliminated_Overflow_Check
(N
) then
5256 Apply_Arithmetic_Overflow_Check
(N
);
5260 -- Fold at compile time if condition known. We have already folded
5261 -- static if expressions, but it is possible to fold any case in which
5262 -- the condition is known at compile time, even though the result is
5265 -- Note that we don't do the fold of such cases in Sem_Elab because
5266 -- it can cause infinite loops with the expander adding a conditional
5267 -- expression, and Sem_Elab circuitry removing it repeatedly.
5269 if Compile_Time_Known_Value
(Cond
) then
5270 if Is_True
(Expr_Value
(Cond
)) then
5272 Actions
:= Then_Actions
(N
);
5275 Actions
:= Else_Actions
(N
);
5280 if Present
(Actions
) then
5282 Make_Expression_With_Actions
(Loc
,
5283 Expression
=> Relocate_Node
(Expr
),
5284 Actions
=> Actions
));
5285 Analyze_And_Resolve
(N
, Typ
);
5287 Rewrite
(N
, Relocate_Node
(Expr
));
5290 -- Note that the result is never static (legitimate cases of static
5291 -- if expressions were folded in Sem_Eval).
5293 Set_Is_Static_Expression
(N
, False);
5297 -- If the type is limited, and the back end does not handle limited
5298 -- types, then we expand as follows to avoid the possibility of
5299 -- improper copying.
5301 -- type Ptr is access all Typ;
5305 -- Cnn := then-expr'Unrestricted_Access;
5308 -- Cnn := else-expr'Unrestricted_Access;
5311 -- and replace the if expression by a reference to Cnn.all.
5313 -- This special case can be skipped if the back end handles limited
5314 -- types properly and ensures that no incorrect copies are made.
5316 if Is_By_Reference_Type
(Typ
)
5317 and then not Back_End_Handles_Limited_Types
5319 -- When the "then" or "else" expressions involve controlled function
5320 -- calls, generated temporaries are chained on the corresponding list
5321 -- of actions. These temporaries need to be finalized after the if
5322 -- expression is evaluated.
5324 Process_Actions
(Then_Actions
(N
));
5325 Process_Actions
(Else_Actions
(N
));
5328 -- type Ann is access all Typ;
5330 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
5333 Make_Full_Type_Declaration
(Loc
,
5334 Defining_Identifier
=> Ptr_Typ
,
5336 Make_Access_To_Object_Definition
(Loc
,
5337 All_Present
=> True,
5338 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5343 Cnn
:= Make_Temporary
(Loc
, 'C', N
);
5346 Make_Object_Declaration
(Loc
,
5347 Defining_Identifier
=> Cnn
,
5348 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
));
5352 -- Cnn := <Thenx>'Unrestricted_Access;
5354 -- Cnn := <Elsex>'Unrestricted_Access;
5358 Make_Implicit_If_Statement
(N
,
5359 Condition
=> Relocate_Node
(Cond
),
5360 Then_Statements
=> New_List
(
5361 Make_Assignment_Statement
(Sloc
(Thenx
),
5362 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5364 Make_Attribute_Reference
(Loc
,
5365 Prefix
=> Relocate_Node
(Thenx
),
5366 Attribute_Name
=> Name_Unrestricted_Access
))),
5368 Else_Statements
=> New_List
(
5369 Make_Assignment_Statement
(Sloc
(Elsex
),
5370 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5372 Make_Attribute_Reference
(Loc
,
5373 Prefix
=> Relocate_Node
(Elsex
),
5374 Attribute_Name
=> Name_Unrestricted_Access
))));
5376 -- Preserve the original context for which the if statement is being
5377 -- generated. This is needed by the finalization machinery to prevent
5378 -- the premature finalization of controlled objects found within the
5381 Set_From_Conditional_Expression
(New_If
);
5384 Make_Explicit_Dereference
(Loc
,
5385 Prefix
=> New_Occurrence_Of
(Cnn
, Loc
));
5387 -- If the result is an unconstrained array and the if expression is in a
5388 -- context other than the initializing expression of the declaration of
5389 -- an object, then we pull out the if expression as follows:
5391 -- Cnn : constant typ := if-expression
5393 -- and then replace the if expression with an occurrence of Cnn. This
5394 -- avoids the need in the back end to create on-the-fly variable length
5395 -- temporaries (which it cannot do!)
5397 -- Note that the test for being in an object declaration avoids doing an
5398 -- unnecessary expansion, and also avoids infinite recursion.
5400 elsif Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
)
5401 and then (Nkind
(Parent
(N
)) /= N_Object_Declaration
5402 or else Expression
(Parent
(N
)) /= N
)
5405 Cnn
: constant Node_Id
:= Make_Temporary
(Loc
, 'C', N
);
5408 Make_Object_Declaration
(Loc
,
5409 Defining_Identifier
=> Cnn
,
5410 Constant_Present
=> True,
5411 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
5412 Expression
=> Relocate_Node
(N
),
5413 Has_Init_Expression
=> True));
5415 Rewrite
(N
, New_Occurrence_Of
(Cnn
, Loc
));
5419 -- For other types, we only need to expand if there are other actions
5420 -- associated with either branch.
5422 elsif Present
(Then_Actions
(N
)) or else Present
(Else_Actions
(N
)) then
5424 -- We now wrap the actions into the appropriate expression
5426 if Present
(Then_Actions
(N
)) then
5428 Make_Expression_With_Actions
(Sloc
(Thenx
),
5429 Actions
=> Then_Actions
(N
),
5430 Expression
=> Relocate_Node
(Thenx
)));
5432 Set_Then_Actions
(N
, No_List
);
5433 Analyze_And_Resolve
(Thenx
, Typ
);
5436 if Present
(Else_Actions
(N
)) then
5438 Make_Expression_With_Actions
(Sloc
(Elsex
),
5439 Actions
=> Else_Actions
(N
),
5440 Expression
=> Relocate_Node
(Elsex
)));
5442 Set_Else_Actions
(N
, No_List
);
5443 Analyze_And_Resolve
(Elsex
, Typ
);
5448 -- If no actions then no expansion needed, gigi will handle it using the
5449 -- same approach as a C conditional expression.
5455 -- Fall through here for either the limited expansion, or the case of
5456 -- inserting actions for non-limited types. In both these cases, we must
5457 -- move the SLOC of the parent If statement to the newly created one and
5458 -- change it to the SLOC of the expression which, after expansion, will
5459 -- correspond to what is being evaluated.
5461 if Present
(Parent
(N
)) and then Nkind
(Parent
(N
)) = N_If_Statement
then
5462 Set_Sloc
(New_If
, Sloc
(Parent
(N
)));
5463 Set_Sloc
(Parent
(N
), Loc
);
5466 -- Make sure Then_Actions and Else_Actions are appropriately moved
5467 -- to the new if statement.
5469 if Present
(Then_Actions
(N
)) then
5471 (First
(Then_Statements
(New_If
)), Then_Actions
(N
));
5474 if Present
(Else_Actions
(N
)) then
5476 (First
(Else_Statements
(New_If
)), Else_Actions
(N
));
5479 Insert_Action
(N
, Decl
);
5480 Insert_Action
(N
, New_If
);
5482 Analyze_And_Resolve
(N
, Typ
);
5483 end Expand_N_If_Expression
;
5489 procedure Expand_N_In
(N
: Node_Id
) is
5490 Loc
: constant Source_Ptr
:= Sloc
(N
);
5491 Restyp
: constant Entity_Id
:= Etype
(N
);
5492 Lop
: constant Node_Id
:= Left_Opnd
(N
);
5493 Rop
: constant Node_Id
:= Right_Opnd
(N
);
5494 Static
: constant Boolean := Is_OK_Static_Expression
(N
);
5496 procedure Substitute_Valid_Check
;
5497 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5498 -- test for the left operand being in range of its subtype.
5500 ----------------------------
5501 -- Substitute_Valid_Check --
5502 ----------------------------
5504 procedure Substitute_Valid_Check
is
5505 function Is_OK_Object_Reference
(Nod
: Node_Id
) return Boolean;
5506 -- Determine whether arbitrary node Nod denotes a source object that
5507 -- may safely act as prefix of attribute 'Valid.
5509 ----------------------------
5510 -- Is_OK_Object_Reference --
5511 ----------------------------
5513 function Is_OK_Object_Reference
(Nod
: Node_Id
) return Boolean is
5517 -- Inspect the original operand
5519 Obj_Ref
:= Original_Node
(Nod
);
5521 -- The object reference must be a source construct, otherwise the
5522 -- codefix suggestion may refer to nonexistent code from a user
5525 if Comes_From_Source
(Obj_Ref
) then
5527 -- Recover the actual object reference. There may be more cases
5531 if Nkind_In
(Obj_Ref
, N_Type_Conversion
,
5532 N_Unchecked_Type_Conversion
)
5534 Obj_Ref
:= Expression
(Obj_Ref
);
5540 return Is_Object_Reference
(Obj_Ref
);
5544 end Is_OK_Object_Reference
;
5546 -- Start of processing for Substitute_Valid_Check
5550 Make_Attribute_Reference
(Loc
,
5551 Prefix
=> Relocate_Node
(Lop
),
5552 Attribute_Name
=> Name_Valid
));
5554 Analyze_And_Resolve
(N
, Restyp
);
5556 -- Emit a warning when the left-hand operand of the membership test
5557 -- is a source object, otherwise the use of attribute 'Valid would be
5558 -- illegal. The warning is not given when overflow checking is either
5559 -- MINIMIZED or ELIMINATED, as the danger of optimization has been
5560 -- eliminated above.
5562 if Is_OK_Object_Reference
(Lop
)
5563 and then Overflow_Check_Mode
not in Minimized_Or_Eliminated
5566 ("??explicit membership test may be optimized away", N
);
5567 Error_Msg_N
-- CODEFIX
5568 ("\??use ''Valid attribute instead", N
);
5570 end Substitute_Valid_Check
;
5577 -- Start of processing for Expand_N_In
5580 -- If set membership case, expand with separate procedure
5582 if Present
(Alternatives
(N
)) then
5583 Expand_Set_Membership
(N
);
5587 -- Not set membership, proceed with expansion
5589 Ltyp
:= Etype
(Left_Opnd
(N
));
5590 Rtyp
:= Etype
(Right_Opnd
(N
));
5592 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5593 -- type, then expand with a separate procedure. Note the use of the
5594 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5596 if Overflow_Check_Mode
in Minimized_Or_Eliminated
5597 and then Is_Signed_Integer_Type
(Ltyp
)
5598 and then not No_Minimize_Eliminate
(N
)
5600 Expand_Membership_Minimize_Eliminate_Overflow
(N
);
5604 -- Check case of explicit test for an expression in range of its
5605 -- subtype. This is suspicious usage and we replace it with a 'Valid
5606 -- test and give a warning for scalar types.
5608 if Is_Scalar_Type
(Ltyp
)
5610 -- Only relevant for source comparisons
5612 and then Comes_From_Source
(N
)
5614 -- In floating-point this is a standard way to check for finite values
5615 -- and using 'Valid would typically be a pessimization.
5617 and then not Is_Floating_Point_Type
(Ltyp
)
5619 -- Don't give the message unless right operand is a type entity and
5620 -- the type of the left operand matches this type. Note that this
5621 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5622 -- checks have changed the type of the left operand.
5624 and then Nkind
(Rop
) in N_Has_Entity
5625 and then Ltyp
= Entity
(Rop
)
5627 -- Skip this for predicated types, where such expressions are a
5628 -- reasonable way of testing if something meets the predicate.
5630 and then not Present
(Predicate_Function
(Ltyp
))
5632 Substitute_Valid_Check
;
5636 -- Do validity check on operands
5638 if Validity_Checks_On
and Validity_Check_Operands
then
5639 Ensure_Valid
(Left_Opnd
(N
));
5640 Validity_Check_Range
(Right_Opnd
(N
));
5643 -- Case of explicit range
5645 if Nkind
(Rop
) = N_Range
then
5647 Lo
: constant Node_Id
:= Low_Bound
(Rop
);
5648 Hi
: constant Node_Id
:= High_Bound
(Rop
);
5650 Lo_Orig
: constant Node_Id
:= Original_Node
(Lo
);
5651 Hi_Orig
: constant Node_Id
:= Original_Node
(Hi
);
5653 Lcheck
: Compare_Result
;
5654 Ucheck
: Compare_Result
;
5656 Warn1
: constant Boolean :=
5657 Constant_Condition_Warnings
5658 and then Comes_From_Source
(N
)
5659 and then not In_Instance
;
5660 -- This must be true for any of the optimization warnings, we
5661 -- clearly want to give them only for source with the flag on. We
5662 -- also skip these warnings in an instance since it may be the
5663 -- case that different instantiations have different ranges.
5665 Warn2
: constant Boolean :=
5667 and then Nkind
(Original_Node
(Rop
)) = N_Range
5668 and then Is_Integer_Type
(Etype
(Lo
));
5669 -- For the case where only one bound warning is elided, we also
5670 -- insist on an explicit range and an integer type. The reason is
5671 -- that the use of enumeration ranges including an end point is
5672 -- common, as is the use of a subtype name, one of whose bounds is
5673 -- the same as the type of the expression.
5676 -- If test is explicit x'First .. x'Last, replace by valid check
5678 -- Could use some individual comments for this complex test ???
5680 if Is_Scalar_Type
(Ltyp
)
5682 -- And left operand is X'First where X matches left operand
5683 -- type (this eliminates cases of type mismatch, including
5684 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5685 -- type of the left operand.
5687 and then Nkind
(Lo_Orig
) = N_Attribute_Reference
5688 and then Attribute_Name
(Lo_Orig
) = Name_First
5689 and then Nkind
(Prefix
(Lo_Orig
)) in N_Has_Entity
5690 and then Entity
(Prefix
(Lo_Orig
)) = Ltyp
5692 -- Same tests for right operand
5694 and then Nkind
(Hi_Orig
) = N_Attribute_Reference
5695 and then Attribute_Name
(Hi_Orig
) = Name_Last
5696 and then Nkind
(Prefix
(Hi_Orig
)) in N_Has_Entity
5697 and then Entity
(Prefix
(Hi_Orig
)) = Ltyp
5699 -- Relevant only for source cases
5701 and then Comes_From_Source
(N
)
5703 Substitute_Valid_Check
;
5707 -- If bounds of type are known at compile time, and the end points
5708 -- are known at compile time and identical, this is another case
5709 -- for substituting a valid test. We only do this for discrete
5710 -- types, since it won't arise in practice for float types.
5712 if Comes_From_Source
(N
)
5713 and then Is_Discrete_Type
(Ltyp
)
5714 and then Compile_Time_Known_Value
(Type_High_Bound
(Ltyp
))
5715 and then Compile_Time_Known_Value
(Type_Low_Bound
(Ltyp
))
5716 and then Compile_Time_Known_Value
(Lo
)
5717 and then Compile_Time_Known_Value
(Hi
)
5718 and then Expr_Value
(Type_High_Bound
(Ltyp
)) = Expr_Value
(Hi
)
5719 and then Expr_Value
(Type_Low_Bound
(Ltyp
)) = Expr_Value
(Lo
)
5721 -- Kill warnings in instances, since they may be cases where we
5722 -- have a test in the generic that makes sense with some types
5723 -- and not with other types.
5725 and then not In_Instance
5727 Substitute_Valid_Check
;
5731 -- If we have an explicit range, do a bit of optimization based on
5732 -- range analysis (we may be able to kill one or both checks).
5734 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> False);
5735 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> False);
5737 -- If either check is known to fail, replace result by False since
5738 -- the other check does not matter. Preserve the static flag for
5739 -- legality checks, because we are constant-folding beyond RM 4.9.
5741 if Lcheck
= LT
or else Ucheck
= GT
then
5743 Error_Msg_N
("?c?range test optimized away", N
);
5744 Error_Msg_N
("\?c?value is known to be out of range", N
);
5747 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5748 Analyze_And_Resolve
(N
, Restyp
);
5749 Set_Is_Static_Expression
(N
, Static
);
5752 -- If both checks are known to succeed, replace result by True,
5753 -- since we know we are in range.
5755 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5757 Error_Msg_N
("?c?range test optimized away", N
);
5758 Error_Msg_N
("\?c?value is known to be in range", N
);
5761 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
5762 Analyze_And_Resolve
(N
, Restyp
);
5763 Set_Is_Static_Expression
(N
, Static
);
5766 -- If lower bound check succeeds and upper bound check is not
5767 -- known to succeed or fail, then replace the range check with
5768 -- a comparison against the upper bound.
5770 elsif Lcheck
in Compare_GE
then
5771 if Warn2
and then not In_Instance
then
5772 Error_Msg_N
("??lower bound test optimized away", Lo
);
5773 Error_Msg_N
("\??value is known to be in range", Lo
);
5779 Right_Opnd
=> High_Bound
(Rop
)));
5780 Analyze_And_Resolve
(N
, Restyp
);
5783 -- If upper bound check succeeds and lower bound check is not
5784 -- known to succeed or fail, then replace the range check with
5785 -- a comparison against the lower bound.
5787 elsif Ucheck
in Compare_LE
then
5788 if Warn2
and then not In_Instance
then
5789 Error_Msg_N
("??upper bound test optimized away", Hi
);
5790 Error_Msg_N
("\??value is known to be in range", Hi
);
5796 Right_Opnd
=> Low_Bound
(Rop
)));
5797 Analyze_And_Resolve
(N
, Restyp
);
5801 -- We couldn't optimize away the range check, but there is one
5802 -- more issue. If we are checking constant conditionals, then we
5803 -- see if we can determine the outcome assuming everything is
5804 -- valid, and if so give an appropriate warning.
5806 if Warn1
and then not Assume_No_Invalid_Values
then
5807 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> True);
5808 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> True);
5810 -- Result is out of range for valid value
5812 if Lcheck
= LT
or else Ucheck
= GT
then
5814 ("?c?value can only be in range if it is invalid", N
);
5816 -- Result is in range for valid value
5818 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5820 ("?c?value can only be out of range if it is invalid", N
);
5822 -- Lower bound check succeeds if value is valid
5824 elsif Warn2
and then Lcheck
in Compare_GE
then
5826 ("?c?lower bound check only fails if it is invalid", Lo
);
5828 -- Upper bound check succeeds if value is valid
5830 elsif Warn2
and then Ucheck
in Compare_LE
then
5832 ("?c?upper bound check only fails for invalid values", Hi
);
5837 -- For all other cases of an explicit range, nothing to be done
5841 -- Here right operand is a subtype mark
5845 Typ
: Entity_Id
:= Etype
(Rop
);
5846 Is_Acc
: constant Boolean := Is_Access_Type
(Typ
);
5847 Cond
: Node_Id
:= Empty
;
5849 Obj
: Node_Id
:= Lop
;
5850 SCIL_Node
: Node_Id
;
5853 Remove_Side_Effects
(Obj
);
5855 -- For tagged type, do tagged membership operation
5857 if Is_Tagged_Type
(Typ
) then
5859 -- No expansion will be performed for VM targets, as the VM
5860 -- back-ends will handle the membership tests directly.
5862 if Tagged_Type_Expansion
then
5863 Tagged_Membership
(N
, SCIL_Node
, New_N
);
5865 Analyze_And_Resolve
(N
, Restyp
);
5867 -- Update decoration of relocated node referenced by the
5870 if Generate_SCIL
and then Present
(SCIL_Node
) then
5871 Set_SCIL_Node
(N
, SCIL_Node
);
5877 -- If type is scalar type, rewrite as x in t'First .. t'Last.
5878 -- This reason we do this is that the bounds may have the wrong
5879 -- type if they come from the original type definition. Also this
5880 -- way we get all the processing above for an explicit range.
5882 -- Don't do this for predicated types, since in this case we
5883 -- want to check the predicate.
5885 elsif Is_Scalar_Type
(Typ
) then
5886 if No
(Predicate_Function
(Typ
)) then
5890 Make_Attribute_Reference
(Loc
,
5891 Attribute_Name
=> Name_First
,
5892 Prefix
=> New_Occurrence_Of
(Typ
, Loc
)),
5895 Make_Attribute_Reference
(Loc
,
5896 Attribute_Name
=> Name_Last
,
5897 Prefix
=> New_Occurrence_Of
(Typ
, Loc
))));
5898 Analyze_And_Resolve
(N
, Restyp
);
5903 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5904 -- a membership test if the subtype mark denotes a constrained
5905 -- Unchecked_Union subtype and the expression lacks inferable
5908 elsif Is_Unchecked_Union
(Base_Type
(Typ
))
5909 and then Is_Constrained
(Typ
)
5910 and then not Has_Inferable_Discriminants
(Lop
)
5913 Make_Raise_Program_Error
(Loc
,
5914 Reason
=> PE_Unchecked_Union_Restriction
));
5916 -- Prevent Gigi from generating incorrect code by rewriting the
5917 -- test as False. What is this undocumented thing about ???
5919 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5923 -- Here we have a non-scalar type
5926 Typ
:= Designated_Type
(Typ
);
5929 if not Is_Constrained
(Typ
) then
5930 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
5931 Analyze_And_Resolve
(N
, Restyp
);
5933 -- For the constrained array case, we have to check the subscripts
5934 -- for an exact match if the lengths are non-zero (the lengths
5935 -- must match in any case).
5937 elsif Is_Array_Type
(Typ
) then
5938 Check_Subscripts
: declare
5939 function Build_Attribute_Reference
5942 Dim
: Nat
) return Node_Id
;
5943 -- Build attribute reference E'Nam (Dim)
5945 -------------------------------
5946 -- Build_Attribute_Reference --
5947 -------------------------------
5949 function Build_Attribute_Reference
5952 Dim
: Nat
) return Node_Id
5956 Make_Attribute_Reference
(Loc
,
5958 Attribute_Name
=> Nam
,
5959 Expressions
=> New_List
(
5960 Make_Integer_Literal
(Loc
, Dim
)));
5961 end Build_Attribute_Reference
;
5963 -- Start of processing for Check_Subscripts
5966 for J
in 1 .. Number_Dimensions
(Typ
) loop
5967 Evolve_And_Then
(Cond
,
5970 Build_Attribute_Reference
5971 (Duplicate_Subexpr_No_Checks
(Obj
),
5974 Build_Attribute_Reference
5975 (New_Occurrence_Of
(Typ
, Loc
), Name_First
, J
)));
5977 Evolve_And_Then
(Cond
,
5980 Build_Attribute_Reference
5981 (Duplicate_Subexpr_No_Checks
(Obj
),
5984 Build_Attribute_Reference
5985 (New_Occurrence_Of
(Typ
, Loc
), Name_Last
, J
)));
5994 Right_Opnd
=> Make_Null
(Loc
)),
5995 Right_Opnd
=> Cond
);
5999 Analyze_And_Resolve
(N
, Restyp
);
6000 end Check_Subscripts
;
6002 -- These are the cases where constraint checks may be required,
6003 -- e.g. records with possible discriminants
6006 -- Expand the test into a series of discriminant comparisons.
6007 -- The expression that is built is the negation of the one that
6008 -- is used for checking discriminant constraints.
6010 Obj
:= Relocate_Node
(Left_Opnd
(N
));
6012 if Has_Discriminants
(Typ
) then
6013 Cond
:= Make_Op_Not
(Loc
,
6014 Right_Opnd
=> Build_Discriminant_Checks
(Obj
, Typ
));
6017 Cond
:= Make_Or_Else
(Loc
,
6021 Right_Opnd
=> Make_Null
(Loc
)),
6022 Right_Opnd
=> Cond
);
6026 Cond
:= New_Occurrence_Of
(Standard_True
, Loc
);
6030 Analyze_And_Resolve
(N
, Restyp
);
6033 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
6034 -- expression of an anonymous access type. This can involve an
6035 -- accessibility test and a tagged type membership test in the
6036 -- case of tagged designated types.
6038 if Ada_Version
>= Ada_2012
6040 and then Ekind
(Ltyp
) = E_Anonymous_Access_Type
6043 Expr_Entity
: Entity_Id
:= Empty
;
6045 Param_Level
: Node_Id
;
6046 Type_Level
: Node_Id
;
6049 if Is_Entity_Name
(Lop
) then
6050 Expr_Entity
:= Param_Entity
(Lop
);
6052 if not Present
(Expr_Entity
) then
6053 Expr_Entity
:= Entity
(Lop
);
6057 -- If a conversion of the anonymous access value to the
6058 -- tested type would be illegal, then the result is False.
6060 if not Valid_Conversion
6061 (Lop
, Rtyp
, Lop
, Report_Errs
=> False)
6063 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6064 Analyze_And_Resolve
(N
, Restyp
);
6066 -- Apply an accessibility check if the access object has an
6067 -- associated access level and when the level of the type is
6068 -- less deep than the level of the access parameter. This
6069 -- only occur for access parameters and stand-alone objects
6070 -- of an anonymous access type.
6073 if Present
(Expr_Entity
)
6076 (Effective_Extra_Accessibility
(Expr_Entity
))
6077 and then UI_Gt
(Object_Access_Level
(Lop
),
6078 Type_Access_Level
(Rtyp
))
6082 (Effective_Extra_Accessibility
(Expr_Entity
), Loc
);
6085 Make_Integer_Literal
(Loc
, Type_Access_Level
(Rtyp
));
6087 -- Return True only if the accessibility level of the
6088 -- expression entity is not deeper than the level of
6089 -- the tested access type.
6093 Left_Opnd
=> Relocate_Node
(N
),
6094 Right_Opnd
=> Make_Op_Le
(Loc
,
6095 Left_Opnd
=> Param_Level
,
6096 Right_Opnd
=> Type_Level
)));
6098 Analyze_And_Resolve
(N
);
6101 -- If the designated type is tagged, do tagged membership
6104 -- *** NOTE: we have to check not null before doing the
6105 -- tagged membership test (but maybe that can be done
6106 -- inside Tagged_Membership?).
6108 if Is_Tagged_Type
(Typ
) then
6111 Left_Opnd
=> Relocate_Node
(N
),
6115 Right_Opnd
=> Make_Null
(Loc
))));
6117 -- No expansion will be performed for VM targets, as
6118 -- the VM back-ends will handle the membership tests
6121 if Tagged_Type_Expansion
then
6123 -- Note that we have to pass Original_Node, because
6124 -- the membership test might already have been
6125 -- rewritten by earlier parts of membership test.
6128 (Original_Node
(N
), SCIL_Node
, New_N
);
6130 -- Update decoration of relocated node referenced
6131 -- by the SCIL node.
6133 if Generate_SCIL
and then Present
(SCIL_Node
) then
6134 Set_SCIL_Node
(New_N
, SCIL_Node
);
6139 Left_Opnd
=> Relocate_Node
(N
),
6140 Right_Opnd
=> New_N
));
6142 Analyze_And_Resolve
(N
, Restyp
);
6151 -- At this point, we have done the processing required for the basic
6152 -- membership test, but not yet dealt with the predicate.
6156 -- If a predicate is present, then we do the predicate test, but we
6157 -- most certainly want to omit this if we are within the predicate
6158 -- function itself, since otherwise we have an infinite recursion.
6159 -- The check should also not be emitted when testing against a range
6160 -- (the check is only done when the right operand is a subtype; see
6161 -- RM12-4.5.2 (28.1/3-30/3)).
6164 PFunc
: constant Entity_Id
:= Predicate_Function
(Rtyp
);
6168 and then Current_Scope
/= PFunc
6169 and then Nkind
(Rop
) /= N_Range
6173 Left_Opnd
=> Relocate_Node
(N
),
6174 Right_Opnd
=> Make_Predicate_Call
(Rtyp
, Lop
, Mem
=> True)));
6176 -- Analyze new expression, mark left operand as analyzed to
6177 -- avoid infinite recursion adding predicate calls. Similarly,
6178 -- suppress further range checks on the call.
6180 Set_Analyzed
(Left_Opnd
(N
));
6181 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6183 -- All done, skip attempt at compile time determination of result
6190 --------------------------------
6191 -- Expand_N_Indexed_Component --
6192 --------------------------------
6194 procedure Expand_N_Indexed_Component
(N
: Node_Id
) is
6195 Loc
: constant Source_Ptr
:= Sloc
(N
);
6196 Typ
: constant Entity_Id
:= Etype
(N
);
6197 P
: constant Node_Id
:= Prefix
(N
);
6198 T
: constant Entity_Id
:= Etype
(P
);
6202 -- A special optimization, if we have an indexed component that is
6203 -- selecting from a slice, then we can eliminate the slice, since, for
6204 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6205 -- the range check required by the slice. The range check for the slice
6206 -- itself has already been generated. The range check for the
6207 -- subscripting operation is ensured by converting the subject to
6208 -- the subtype of the slice.
6210 -- This optimization not only generates better code, avoiding slice
6211 -- messing especially in the packed case, but more importantly bypasses
6212 -- some problems in handling this peculiar case, for example, the issue
6213 -- of dealing specially with object renamings.
6215 if Nkind
(P
) = N_Slice
6217 -- This optimization is disabled for CodePeer because it can transform
6218 -- an index-check constraint_error into a range-check constraint_error
6219 -- and CodePeer cares about that distinction.
6221 and then not CodePeer_Mode
6224 Make_Indexed_Component
(Loc
,
6225 Prefix
=> Prefix
(P
),
6226 Expressions
=> New_List
(
6228 (Etype
(First_Index
(Etype
(P
))),
6229 First
(Expressions
(N
))))));
6230 Analyze_And_Resolve
(N
, Typ
);
6234 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6235 -- function, then additional actuals must be passed.
6237 if Ada_Version
>= Ada_2005
6238 and then Is_Build_In_Place_Function_Call
(P
)
6240 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
6243 -- If the prefix is an access type, then we unconditionally rewrite if
6244 -- as an explicit dereference. This simplifies processing for several
6245 -- cases, including packed array cases and certain cases in which checks
6246 -- must be generated. We used to try to do this only when it was
6247 -- necessary, but it cleans up the code to do it all the time.
6249 if Is_Access_Type
(T
) then
6250 Insert_Explicit_Dereference
(P
);
6251 Analyze_And_Resolve
(P
, Designated_Type
(T
));
6252 Atp
:= Designated_Type
(T
);
6257 -- Generate index and validity checks
6259 Generate_Index_Checks
(N
);
6261 if Validity_Checks_On
and then Validity_Check_Subscripts
then
6262 Apply_Subscript_Validity_Checks
(N
);
6265 -- If selecting from an array with atomic components, and atomic sync
6266 -- is not suppressed for this array type, set atomic sync flag.
6268 if (Has_Atomic_Components
(Atp
)
6269 and then not Atomic_Synchronization_Disabled
(Atp
))
6270 or else (Is_Atomic
(Typ
)
6271 and then not Atomic_Synchronization_Disabled
(Typ
))
6273 Activate_Atomic_Synchronization
(N
);
6276 -- All done for the non-packed case
6278 if not Is_Packed
(Etype
(Prefix
(N
))) then
6282 -- For packed arrays that are not bit-packed (i.e. the case of an array
6283 -- with one or more index types with a non-contiguous enumeration type),
6284 -- we can always use the normal packed element get circuit.
6286 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
6287 Expand_Packed_Element_Reference
(N
);
6291 -- For a reference to a component of a bit packed array, we convert it
6292 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6293 -- want to do this for simple references, and not for:
6295 -- Left side of assignment, or prefix of left side of assignment, or
6296 -- prefix of the prefix, to handle packed arrays of packed arrays,
6297 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6299 -- Renaming objects in renaming associations
6300 -- This case is handled when a use of the renamed variable occurs
6302 -- Actual parameters for a procedure call
6303 -- This case is handled in Exp_Ch6.Expand_Actuals
6305 -- The second expression in a 'Read attribute reference
6307 -- The prefix of an address or bit or size attribute reference
6309 -- The following circuit detects these exceptions. Note that we need to
6310 -- deal with implicit dereferences when climbing up the parent chain,
6311 -- with the additional difficulty that the type of parents may have yet
6312 -- to be resolved since prefixes are usually resolved first.
6315 Child
: Node_Id
:= N
;
6316 Parnt
: Node_Id
:= Parent
(N
);
6320 if Nkind
(Parnt
) = N_Unchecked_Expression
then
6323 elsif Nkind_In
(Parnt
, N_Object_Renaming_Declaration
,
6324 N_Procedure_Call_Statement
)
6325 or else (Nkind
(Parnt
) = N_Parameter_Association
6327 Nkind
(Parent
(Parnt
)) = N_Procedure_Call_Statement
)
6331 elsif Nkind
(Parnt
) = N_Attribute_Reference
6332 and then Nam_In
(Attribute_Name
(Parnt
), Name_Address
,
6335 and then Prefix
(Parnt
) = Child
6339 elsif Nkind
(Parnt
) = N_Assignment_Statement
6340 and then Name
(Parnt
) = Child
6344 -- If the expression is an index of an indexed component, it must
6345 -- be expanded regardless of context.
6347 elsif Nkind
(Parnt
) = N_Indexed_Component
6348 and then Child
/= Prefix
(Parnt
)
6350 Expand_Packed_Element_Reference
(N
);
6353 elsif Nkind
(Parent
(Parnt
)) = N_Assignment_Statement
6354 and then Name
(Parent
(Parnt
)) = Parnt
6358 elsif Nkind
(Parnt
) = N_Attribute_Reference
6359 and then Attribute_Name
(Parnt
) = Name_Read
6360 and then Next
(First
(Expressions
(Parnt
))) = Child
6364 elsif Nkind
(Parnt
) = N_Indexed_Component
6365 and then Prefix
(Parnt
) = Child
6369 elsif Nkind
(Parnt
) = N_Selected_Component
6370 and then Prefix
(Parnt
) = Child
6371 and then not (Present
(Etype
(Selector_Name
(Parnt
)))
6373 Is_Access_Type
(Etype
(Selector_Name
(Parnt
))))
6377 -- If the parent is a dereference, either implicit or explicit,
6378 -- then the packed reference needs to be expanded.
6381 Expand_Packed_Element_Reference
(N
);
6385 -- Keep looking up tree for unchecked expression, or if we are the
6386 -- prefix of a possible assignment left side.
6389 Parnt
:= Parent
(Child
);
6392 end Expand_N_Indexed_Component
;
6394 ---------------------
6395 -- Expand_N_Not_In --
6396 ---------------------
6398 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6399 -- can be done. This avoids needing to duplicate this expansion code.
6401 procedure Expand_N_Not_In
(N
: Node_Id
) is
6402 Loc
: constant Source_Ptr
:= Sloc
(N
);
6403 Typ
: constant Entity_Id
:= Etype
(N
);
6404 Cfs
: constant Boolean := Comes_From_Source
(N
);
6411 Left_Opnd
=> Left_Opnd
(N
),
6412 Right_Opnd
=> Right_Opnd
(N
))));
6414 -- If this is a set membership, preserve list of alternatives
6416 Set_Alternatives
(Right_Opnd
(N
), Alternatives
(Original_Node
(N
)));
6418 -- We want this to appear as coming from source if original does (see
6419 -- transformations in Expand_N_In).
6421 Set_Comes_From_Source
(N
, Cfs
);
6422 Set_Comes_From_Source
(Right_Opnd
(N
), Cfs
);
6424 -- Now analyze transformed node
6426 Analyze_And_Resolve
(N
, Typ
);
6427 end Expand_N_Not_In
;
6433 -- The only replacement required is for the case of a null of a type that
6434 -- is an access to protected subprogram, or a subtype thereof. We represent
6435 -- such access values as a record, and so we must replace the occurrence of
6436 -- null by the equivalent record (with a null address and a null pointer in
6437 -- it), so that the backend creates the proper value.
6439 procedure Expand_N_Null
(N
: Node_Id
) is
6440 Loc
: constant Source_Ptr
:= Sloc
(N
);
6441 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
6445 if Is_Access_Protected_Subprogram_Type
(Typ
) then
6447 Make_Aggregate
(Loc
,
6448 Expressions
=> New_List
(
6449 New_Occurrence_Of
(RTE
(RE_Null_Address
), Loc
),
6453 Analyze_And_Resolve
(N
, Equivalent_Type
(Typ
));
6455 -- For subsequent semantic analysis, the node must retain its type.
6456 -- Gigi in any case replaces this type by the corresponding record
6457 -- type before processing the node.
6463 when RE_Not_Available
=>
6467 ---------------------
6468 -- Expand_N_Op_Abs --
6469 ---------------------
6471 procedure Expand_N_Op_Abs
(N
: Node_Id
) is
6472 Loc
: constant Source_Ptr
:= Sloc
(N
);
6473 Expr
: constant Node_Id
:= Right_Opnd
(N
);
6476 Unary_Op_Validity_Checks
(N
);
6478 -- Check for MINIMIZED/ELIMINATED overflow mode
6480 if Minimized_Eliminated_Overflow_Check
(N
) then
6481 Apply_Arithmetic_Overflow_Check
(N
);
6485 -- Deal with software overflow checking
6487 if not Backend_Overflow_Checks_On_Target
6488 and then Is_Signed_Integer_Type
(Etype
(N
))
6489 and then Do_Overflow_Check
(N
)
6491 -- The only case to worry about is when the argument is equal to the
6492 -- largest negative number, so what we do is to insert the check:
6494 -- [constraint_error when Expr = typ'Base'First]
6496 -- with the usual Duplicate_Subexpr use coding for expr
6499 Make_Raise_Constraint_Error
(Loc
,
6502 Left_Opnd
=> Duplicate_Subexpr
(Expr
),
6504 Make_Attribute_Reference
(Loc
,
6506 New_Occurrence_Of
(Base_Type
(Etype
(Expr
)), Loc
),
6507 Attribute_Name
=> Name_First
)),
6508 Reason
=> CE_Overflow_Check_Failed
));
6510 end Expand_N_Op_Abs
;
6512 ---------------------
6513 -- Expand_N_Op_Add --
6514 ---------------------
6516 procedure Expand_N_Op_Add
(N
: Node_Id
) is
6517 Typ
: constant Entity_Id
:= Etype
(N
);
6520 Binary_Op_Validity_Checks
(N
);
6522 -- Check for MINIMIZED/ELIMINATED overflow mode
6524 if Minimized_Eliminated_Overflow_Check
(N
) then
6525 Apply_Arithmetic_Overflow_Check
(N
);
6529 -- N + 0 = 0 + N = N for integer types
6531 if Is_Integer_Type
(Typ
) then
6532 if Compile_Time_Known_Value
(Right_Opnd
(N
))
6533 and then Expr_Value
(Right_Opnd
(N
)) = Uint_0
6535 Rewrite
(N
, Left_Opnd
(N
));
6538 elsif Compile_Time_Known_Value
(Left_Opnd
(N
))
6539 and then Expr_Value
(Left_Opnd
(N
)) = Uint_0
6541 Rewrite
(N
, Right_Opnd
(N
));
6546 -- Arithmetic overflow checks for signed integer/fixed point types
6548 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
6549 Apply_Arithmetic_Overflow_Check
(N
);
6553 -- Overflow checks for floating-point if -gnateF mode active
6555 Check_Float_Op_Overflow
(N
);
6556 end Expand_N_Op_Add
;
6558 ---------------------
6559 -- Expand_N_Op_And --
6560 ---------------------
6562 procedure Expand_N_Op_And
(N
: Node_Id
) is
6563 Typ
: constant Entity_Id
:= Etype
(N
);
6566 Binary_Op_Validity_Checks
(N
);
6568 if Is_Array_Type
(Etype
(N
)) then
6569 Expand_Boolean_Operator
(N
);
6571 elsif Is_Boolean_Type
(Etype
(N
)) then
6572 Adjust_Condition
(Left_Opnd
(N
));
6573 Adjust_Condition
(Right_Opnd
(N
));
6574 Set_Etype
(N
, Standard_Boolean
);
6575 Adjust_Result_Type
(N
, Typ
);
6577 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
6578 Expand_Intrinsic_Call
(N
, Entity
(N
));
6581 end Expand_N_Op_And
;
6583 ------------------------
6584 -- Expand_N_Op_Concat --
6585 ------------------------
6587 procedure Expand_N_Op_Concat
(N
: Node_Id
) is
6589 -- List of operands to be concatenated
6592 -- Node which is to be replaced by the result of concatenating the nodes
6593 -- in the list Opnds.
6596 -- Ensure validity of both operands
6598 Binary_Op_Validity_Checks
(N
);
6600 -- If we are the left operand of a concatenation higher up the tree,
6601 -- then do nothing for now, since we want to deal with a series of
6602 -- concatenations as a unit.
6604 if Nkind
(Parent
(N
)) = N_Op_Concat
6605 and then N
= Left_Opnd
(Parent
(N
))
6610 -- We get here with a concatenation whose left operand may be a
6611 -- concatenation itself with a consistent type. We need to process
6612 -- these concatenation operands from left to right, which means
6613 -- from the deepest node in the tree to the highest node.
6616 while Nkind
(Left_Opnd
(Cnode
)) = N_Op_Concat
loop
6617 Cnode
:= Left_Opnd
(Cnode
);
6620 -- Now Cnode is the deepest concatenation, and its parents are the
6621 -- concatenation nodes above, so now we process bottom up, doing the
6624 -- The outer loop runs more than once if more than one concatenation
6625 -- type is involved.
6628 Opnds
:= New_List
(Left_Opnd
(Cnode
), Right_Opnd
(Cnode
));
6629 Set_Parent
(Opnds
, N
);
6631 -- The inner loop gathers concatenation operands
6633 Inner
: while Cnode
/= N
6634 and then Base_Type
(Etype
(Cnode
)) =
6635 Base_Type
(Etype
(Parent
(Cnode
)))
6637 Cnode
:= Parent
(Cnode
);
6638 Append
(Right_Opnd
(Cnode
), Opnds
);
6641 -- Note: The following code is a temporary workaround for N731-034
6642 -- and N829-028 and will be kept until the general issue of internal
6643 -- symbol serialization is addressed. The workaround is kept under a
6644 -- debug switch to avoid permiating into the general case.
6646 -- Wrap the node to concatenate into an expression actions node to
6647 -- keep it nicely packaged. This is useful in the case of an assert
6648 -- pragma with a concatenation where we want to be able to delete
6649 -- the concatenation and all its expansion stuff.
6651 if Debug_Flag_Dot_H
then
6653 Cnod
: constant Node_Id
:= Relocate_Node
(Cnode
);
6654 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
6657 -- Note: use Rewrite rather than Replace here, so that for
6658 -- example Why_Not_Static can find the original concatenation
6662 Make_Expression_With_Actions
(Sloc
(Cnode
),
6663 Actions
=> New_List
(Make_Null_Statement
(Sloc
(Cnode
))),
6664 Expression
=> Cnod
));
6666 Expand_Concatenate
(Cnod
, Opnds
);
6667 Analyze_And_Resolve
(Cnode
, Typ
);
6673 Expand_Concatenate
(Cnode
, Opnds
);
6676 exit Outer
when Cnode
= N
;
6677 Cnode
:= Parent
(Cnode
);
6679 end Expand_N_Op_Concat
;
6681 ------------------------
6682 -- Expand_N_Op_Divide --
6683 ------------------------
6685 procedure Expand_N_Op_Divide
(N
: Node_Id
) is
6686 Loc
: constant Source_Ptr
:= Sloc
(N
);
6687 Lopnd
: constant Node_Id
:= Left_Opnd
(N
);
6688 Ropnd
: constant Node_Id
:= Right_Opnd
(N
);
6689 Ltyp
: constant Entity_Id
:= Etype
(Lopnd
);
6690 Rtyp
: constant Entity_Id
:= Etype
(Ropnd
);
6691 Typ
: Entity_Id
:= Etype
(N
);
6692 Rknow
: constant Boolean := Is_Integer_Type
(Typ
)
6694 Compile_Time_Known_Value
(Ropnd
);
6698 Binary_Op_Validity_Checks
(N
);
6700 -- Check for MINIMIZED/ELIMINATED overflow mode
6702 if Minimized_Eliminated_Overflow_Check
(N
) then
6703 Apply_Arithmetic_Overflow_Check
(N
);
6707 -- Otherwise proceed with expansion of division
6710 Rval
:= Expr_Value
(Ropnd
);
6713 -- N / 1 = N for integer types
6715 if Rknow
and then Rval
= Uint_1
then
6720 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6721 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6722 -- operand is an unsigned integer, as required for this to work.
6724 if Nkind
(Ropnd
) = N_Op_Expon
6725 and then Is_Power_Of_2_For_Shift
(Ropnd
)
6727 -- We cannot do this transformation in configurable run time mode if we
6728 -- have 64-bit integers and long shifts are not available.
6730 and then (Esize
(Ltyp
) <= 32 or else Support_Long_Shifts_On_Target
)
6733 Make_Op_Shift_Right
(Loc
,
6736 Convert_To
(Standard_Natural
, Right_Opnd
(Ropnd
))));
6737 Analyze_And_Resolve
(N
, Typ
);
6741 -- Do required fixup of universal fixed operation
6743 if Typ
= Universal_Fixed
then
6744 Fixup_Universal_Fixed_Operation
(N
);
6748 -- Divisions with fixed-point results
6750 if Is_Fixed_Point_Type
(Typ
) then
6752 -- Deal with divide-by-zero check if back end cannot handle them
6753 -- and the flag is set indicating that we need such a check. Note
6754 -- that we don't need to bother here with the case of mixed-mode
6755 -- (Right operand an integer type), since these will be rewritten
6756 -- with conversions to a divide with a fixed-point right operand.
6758 if Do_Division_Check
(N
)
6759 and then not Backend_Divide_Checks_On_Target
6760 and then not Is_Integer_Type
(Rtyp
)
6762 Set_Do_Division_Check
(N
, False);
6764 Make_Raise_Constraint_Error
(Loc
,
6767 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ropnd
),
6768 Right_Opnd
=> Make_Real_Literal
(Loc
, Ureal_0
)),
6769 Reason
=> CE_Divide_By_Zero
));
6772 -- No special processing if Treat_Fixed_As_Integer is set, since
6773 -- from a semantic point of view such operations are simply integer
6774 -- operations and will be treated that way.
6776 if not Treat_Fixed_As_Integer
(N
) then
6777 if Is_Integer_Type
(Rtyp
) then
6778 Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
);
6780 Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
);
6784 -- Other cases of division of fixed-point operands. Again we exclude the
6785 -- case where Treat_Fixed_As_Integer is set.
6787 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
6788 and then not Treat_Fixed_As_Integer
(N
)
6790 if Is_Integer_Type
(Typ
) then
6791 Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
);
6793 pragma Assert
(Is_Floating_Point_Type
(Typ
));
6794 Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
);
6797 -- Mixed-mode operations can appear in a non-static universal context,
6798 -- in which case the integer argument must be converted explicitly.
6800 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
6802 Convert_To
(Universal_Real
, Relocate_Node
(Ropnd
)));
6804 Analyze_And_Resolve
(Ropnd
, Universal_Real
);
6806 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
6808 Convert_To
(Universal_Real
, Relocate_Node
(Lopnd
)));
6810 Analyze_And_Resolve
(Lopnd
, Universal_Real
);
6812 -- Non-fixed point cases, do integer zero divide and overflow checks
6814 elsif Is_Integer_Type
(Typ
) then
6815 Apply_Divide_Checks
(N
);
6818 -- Overflow checks for floating-point if -gnateF mode active
6820 Check_Float_Op_Overflow
(N
);
6821 end Expand_N_Op_Divide
;
6823 --------------------
6824 -- Expand_N_Op_Eq --
6825 --------------------
6827 procedure Expand_N_Op_Eq
(N
: Node_Id
) is
6828 Loc
: constant Source_Ptr
:= Sloc
(N
);
6829 Typ
: constant Entity_Id
:= Etype
(N
);
6830 Lhs
: constant Node_Id
:= Left_Opnd
(N
);
6831 Rhs
: constant Node_Id
:= Right_Opnd
(N
);
6832 Bodies
: constant List_Id
:= New_List
;
6833 A_Typ
: constant Entity_Id
:= Etype
(Lhs
);
6835 Typl
: Entity_Id
:= A_Typ
;
6836 Op_Name
: Entity_Id
;
6839 procedure Build_Equality_Call
(Eq
: Entity_Id
);
6840 -- If a constructed equality exists for the type or for its parent,
6841 -- build and analyze call, adding conversions if the operation is
6844 function Has_Unconstrained_UU_Component
(Typ
: Node_Id
) return Boolean;
6845 -- Determines whether a type has a subcomponent of an unconstrained
6846 -- Unchecked_Union subtype. Typ is a record type.
6848 -------------------------
6849 -- Build_Equality_Call --
6850 -------------------------
6852 procedure Build_Equality_Call
(Eq
: Entity_Id
) is
6853 Op_Type
: constant Entity_Id
:= Etype
(First_Formal
(Eq
));
6854 L_Exp
: Node_Id
:= Relocate_Node
(Lhs
);
6855 R_Exp
: Node_Id
:= Relocate_Node
(Rhs
);
6858 -- Adjust operands if necessary to comparison type
6860 if Base_Type
(Op_Type
) /= Base_Type
(A_Typ
)
6861 and then not Is_Class_Wide_Type
(A_Typ
)
6863 L_Exp
:= OK_Convert_To
(Op_Type
, L_Exp
);
6864 R_Exp
:= OK_Convert_To
(Op_Type
, R_Exp
);
6867 -- If we have an Unchecked_Union, we need to add the inferred
6868 -- discriminant values as actuals in the function call. At this
6869 -- point, the expansion has determined that both operands have
6870 -- inferable discriminants.
6872 if Is_Unchecked_Union
(Op_Type
) then
6874 Lhs_Type
: constant Node_Id
:= Etype
(L_Exp
);
6875 Rhs_Type
: constant Node_Id
:= Etype
(R_Exp
);
6877 Lhs_Discr_Vals
: Elist_Id
;
6878 -- List of inferred discriminant values for left operand.
6880 Rhs_Discr_Vals
: Elist_Id
;
6881 -- List of inferred discriminant values for right operand.
6886 Lhs_Discr_Vals
:= New_Elmt_List
;
6887 Rhs_Discr_Vals
:= New_Elmt_List
;
6889 -- Per-object constrained selected components require special
6890 -- attention. If the enclosing scope of the component is an
6891 -- Unchecked_Union, we cannot reference its discriminants
6892 -- directly. This is why we use the extra parameters of the
6893 -- equality function of the enclosing Unchecked_Union.
6895 -- type UU_Type (Discr : Integer := 0) is
6898 -- pragma Unchecked_Union (UU_Type);
6900 -- 1. Unchecked_Union enclosing record:
6902 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6904 -- Comp : UU_Type (Discr);
6906 -- end Enclosing_UU_Type;
6907 -- pragma Unchecked_Union (Enclosing_UU_Type);
6909 -- Obj1 : Enclosing_UU_Type;
6910 -- Obj2 : Enclosing_UU_Type (1);
6912 -- [. . .] Obj1 = Obj2 [. . .]
6916 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6918 -- A and B are the formal parameters of the equality function
6919 -- of Enclosing_UU_Type. The function always has two extra
6920 -- formals to capture the inferred discriminant values for
6921 -- each discriminant of the type.
6923 -- 2. Non-Unchecked_Union enclosing record:
6926 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6929 -- Comp : UU_Type (Discr);
6931 -- end Enclosing_Non_UU_Type;
6933 -- Obj1 : Enclosing_Non_UU_Type;
6934 -- Obj2 : Enclosing_Non_UU_Type (1);
6936 -- ... Obj1 = Obj2 ...
6940 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6941 -- obj1.discr, obj2.discr)) then
6943 -- In this case we can directly reference the discriminants of
6944 -- the enclosing record.
6946 -- Process left operand of equality
6948 if Nkind
(Lhs
) = N_Selected_Component
6950 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Lhs
)))
6952 -- If enclosing record is an Unchecked_Union, use formals
6953 -- corresponding to each discriminant. The name of the
6954 -- formal is that of the discriminant, with added suffix,
6955 -- see Exp_Ch3.Build_Record_Equality for details.
6957 if Is_Unchecked_Union
(Scope
(Entity
(Selector_Name
(Lhs
))))
6961 (Scope
(Entity
(Selector_Name
(Lhs
))));
6962 while Present
(Discr
) loop
6964 (Make_Identifier
(Loc
,
6965 Chars
=> New_External_Name
(Chars
(Discr
), 'A')),
6966 To
=> Lhs_Discr_Vals
);
6967 Next_Discriminant
(Discr
);
6970 -- If enclosing record is of a non-Unchecked_Union type, it
6971 -- is possible to reference its discriminants directly.
6974 Discr
:= First_Discriminant
(Lhs_Type
);
6975 while Present
(Discr
) loop
6977 (Make_Selected_Component
(Loc
,
6978 Prefix
=> Prefix
(Lhs
),
6981 (Get_Discriminant_Value
(Discr
,
6983 Stored_Constraint
(Lhs_Type
)))),
6984 To
=> Lhs_Discr_Vals
);
6985 Next_Discriminant
(Discr
);
6989 -- Otherwise operand is on object with a constrained type.
6990 -- Infer the discriminant values from the constraint.
6994 Discr
:= First_Discriminant
(Lhs_Type
);
6995 while Present
(Discr
) loop
6998 (Get_Discriminant_Value
(Discr
,
7000 Stored_Constraint
(Lhs_Type
))),
7001 To
=> Lhs_Discr_Vals
);
7002 Next_Discriminant
(Discr
);
7006 -- Similar processing for right operand of equality
7008 if Nkind
(Rhs
) = N_Selected_Component
7010 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Rhs
)))
7012 if Is_Unchecked_Union
7013 (Scope
(Entity
(Selector_Name
(Rhs
))))
7017 (Scope
(Entity
(Selector_Name
(Rhs
))));
7018 while Present
(Discr
) loop
7020 (Make_Identifier
(Loc
,
7021 Chars
=> New_External_Name
(Chars
(Discr
), 'B')),
7022 To
=> Rhs_Discr_Vals
);
7023 Next_Discriminant
(Discr
);
7027 Discr
:= First_Discriminant
(Rhs_Type
);
7028 while Present
(Discr
) loop
7030 (Make_Selected_Component
(Loc
,
7031 Prefix
=> Prefix
(Rhs
),
7033 New_Copy
(Get_Discriminant_Value
7036 Stored_Constraint
(Rhs_Type
)))),
7037 To
=> Rhs_Discr_Vals
);
7038 Next_Discriminant
(Discr
);
7043 Discr
:= First_Discriminant
(Rhs_Type
);
7044 while Present
(Discr
) loop
7046 (New_Copy
(Get_Discriminant_Value
7049 Stored_Constraint
(Rhs_Type
))),
7050 To
=> Rhs_Discr_Vals
);
7051 Next_Discriminant
(Discr
);
7055 -- Now merge the list of discriminant values so that values
7056 -- of corresponding discriminants are adjacent.
7064 Params
:= New_List
(L_Exp
, R_Exp
);
7065 L_Elmt
:= First_Elmt
(Lhs_Discr_Vals
);
7066 R_Elmt
:= First_Elmt
(Rhs_Discr_Vals
);
7067 while Present
(L_Elmt
) loop
7068 Append_To
(Params
, Node
(L_Elmt
));
7069 Append_To
(Params
, Node
(R_Elmt
));
7075 Make_Function_Call
(Loc
,
7076 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7077 Parameter_Associations
=> Params
));
7081 -- Normal case, not an unchecked union
7085 Make_Function_Call
(Loc
,
7086 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7087 Parameter_Associations
=> New_List
(L_Exp
, R_Exp
)));
7090 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7091 end Build_Equality_Call
;
7093 ------------------------------------
7094 -- Has_Unconstrained_UU_Component --
7095 ------------------------------------
7097 function Has_Unconstrained_UU_Component
7098 (Typ
: Node_Id
) return Boolean
7100 Tdef
: constant Node_Id
:=
7101 Type_Definition
(Declaration_Node
(Base_Type
(Typ
)));
7105 function Component_Is_Unconstrained_UU
7106 (Comp
: Node_Id
) return Boolean;
7107 -- Determines whether the subtype of the component is an
7108 -- unconstrained Unchecked_Union.
7110 function Variant_Is_Unconstrained_UU
7111 (Variant
: Node_Id
) return Boolean;
7112 -- Determines whether a component of the variant has an unconstrained
7113 -- Unchecked_Union subtype.
7115 -----------------------------------
7116 -- Component_Is_Unconstrained_UU --
7117 -----------------------------------
7119 function Component_Is_Unconstrained_UU
7120 (Comp
: Node_Id
) return Boolean
7123 if Nkind
(Comp
) /= N_Component_Declaration
then
7128 Sindic
: constant Node_Id
:=
7129 Subtype_Indication
(Component_Definition
(Comp
));
7132 -- Unconstrained nominal type. In the case of a constraint
7133 -- present, the node kind would have been N_Subtype_Indication.
7135 if Nkind
(Sindic
) = N_Identifier
then
7136 return Is_Unchecked_Union
(Base_Type
(Etype
(Sindic
)));
7141 end Component_Is_Unconstrained_UU
;
7143 ---------------------------------
7144 -- Variant_Is_Unconstrained_UU --
7145 ---------------------------------
7147 function Variant_Is_Unconstrained_UU
7148 (Variant
: Node_Id
) return Boolean
7150 Clist
: constant Node_Id
:= Component_List
(Variant
);
7153 if Is_Empty_List
(Component_Items
(Clist
)) then
7157 -- We only need to test one component
7160 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7163 while Present
(Comp
) loop
7164 if Component_Is_Unconstrained_UU
(Comp
) then
7172 -- None of the components withing the variant were of
7173 -- unconstrained Unchecked_Union type.
7176 end Variant_Is_Unconstrained_UU
;
7178 -- Start of processing for Has_Unconstrained_UU_Component
7181 if Null_Present
(Tdef
) then
7185 Clist
:= Component_List
(Tdef
);
7186 Vpart
:= Variant_Part
(Clist
);
7188 -- Inspect available components
7190 if Present
(Component_Items
(Clist
)) then
7192 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7195 while Present
(Comp
) loop
7197 -- One component is sufficient
7199 if Component_Is_Unconstrained_UU
(Comp
) then
7208 -- Inspect available components withing variants
7210 if Present
(Vpart
) then
7212 Variant
: Node_Id
:= First
(Variants
(Vpart
));
7215 while Present
(Variant
) loop
7217 -- One component within a variant is sufficient
7219 if Variant_Is_Unconstrained_UU
(Variant
) then
7228 -- Neither the available components, nor the components inside the
7229 -- variant parts were of an unconstrained Unchecked_Union subtype.
7232 end Has_Unconstrained_UU_Component
;
7234 -- Start of processing for Expand_N_Op_Eq
7237 Binary_Op_Validity_Checks
(N
);
7239 -- Deal with private types
7241 if Ekind
(Typl
) = E_Private_Type
then
7242 Typl
:= Underlying_Type
(Typl
);
7243 elsif Ekind
(Typl
) = E_Private_Subtype
then
7244 Typl
:= Underlying_Type
(Base_Type
(Typl
));
7249 -- It may happen in error situations that the underlying type is not
7250 -- set. The error will be detected later, here we just defend the
7257 -- Now get the implementation base type (note that plain Base_Type here
7258 -- might lead us back to the private type, which is not what we want!)
7260 Typl
:= Implementation_Base_Type
(Typl
);
7262 -- Equality between variant records results in a call to a routine
7263 -- that has conditional tests of the discriminant value(s), and hence
7264 -- violates the No_Implicit_Conditionals restriction.
7266 if Has_Variant_Part
(Typl
) then
7271 Check_Restriction
(Msg
, No_Implicit_Conditionals
, N
);
7275 ("\comparison of variant records tests discriminants", N
);
7281 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7282 -- means we no longer have a comparison operation, we are all done.
7284 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7286 if Nkind
(N
) /= N_Op_Eq
then
7290 -- Boolean types (requiring handling of non-standard case)
7292 if Is_Boolean_Type
(Typl
) then
7293 Adjust_Condition
(Left_Opnd
(N
));
7294 Adjust_Condition
(Right_Opnd
(N
));
7295 Set_Etype
(N
, Standard_Boolean
);
7296 Adjust_Result_Type
(N
, Typ
);
7300 elsif Is_Array_Type
(Typl
) then
7302 -- If we are doing full validity checking, and it is possible for the
7303 -- array elements to be invalid then expand out array comparisons to
7304 -- make sure that we check the array elements.
7306 if Validity_Check_Operands
7307 and then not Is_Known_Valid
(Component_Type
(Typl
))
7310 Save_Force_Validity_Checks
: constant Boolean :=
7311 Force_Validity_Checks
;
7313 Force_Validity_Checks
:= True;
7315 Expand_Array_Equality
7317 Relocate_Node
(Lhs
),
7318 Relocate_Node
(Rhs
),
7321 Insert_Actions
(N
, Bodies
);
7322 Analyze_And_Resolve
(N
, Standard_Boolean
);
7323 Force_Validity_Checks
:= Save_Force_Validity_Checks
;
7326 -- Packed case where both operands are known aligned
7328 elsif Is_Bit_Packed_Array
(Typl
)
7329 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7330 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7332 Expand_Packed_Eq
(N
);
7334 -- Where the component type is elementary we can use a block bit
7335 -- comparison (if supported on the target) exception in the case
7336 -- of floating-point (negative zero issues require element by
7337 -- element comparison), and atomic/VFA types (where we must be sure
7338 -- to load elements independently) and possibly unaligned arrays.
7340 elsif Is_Elementary_Type
(Component_Type
(Typl
))
7341 and then not Is_Floating_Point_Type
(Component_Type
(Typl
))
7342 and then not Is_Atomic_Or_VFA
(Component_Type
(Typl
))
7343 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7344 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7345 and then Support_Composite_Compare_On_Target
7349 -- For composite and floating-point cases, expand equality loop to
7350 -- make sure of using proper comparisons for tagged types, and
7351 -- correctly handling the floating-point case.
7355 Expand_Array_Equality
7357 Relocate_Node
(Lhs
),
7358 Relocate_Node
(Rhs
),
7361 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7362 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7367 elsif Is_Record_Type
(Typl
) then
7369 -- For tagged types, use the primitive "="
7371 if Is_Tagged_Type
(Typl
) then
7373 -- No need to do anything else compiling under restriction
7374 -- No_Dispatching_Calls. During the semantic analysis we
7375 -- already notified such violation.
7377 if Restriction_Active
(No_Dispatching_Calls
) then
7381 -- If this is derived from an untagged private type completed with
7382 -- a tagged type, it does not have a full view, so we use the
7383 -- primitive operations of the private type. This check should no
7384 -- longer be necessary when these types get their full views???
7386 if Is_Private_Type
(A_Typ
)
7387 and then not Is_Tagged_Type
(A_Typ
)
7388 and then Is_Derived_Type
(A_Typ
)
7389 and then No
(Full_View
(A_Typ
))
7391 -- Search for equality operation, checking that the operands
7392 -- have the same type. Note that we must find a matching entry,
7393 -- or something is very wrong.
7395 Prim
:= First_Elmt
(Collect_Primitive_Operations
(A_Typ
));
7397 while Present
(Prim
) loop
7398 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7399 and then Etype
(First_Formal
(Node
(Prim
))) =
7400 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7402 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7407 pragma Assert
(Present
(Prim
));
7408 Op_Name
:= Node
(Prim
);
7410 -- Find the type's predefined equality or an overriding
7411 -- user-defined equality. The reason for not simply calling
7412 -- Find_Prim_Op here is that there may be a user-defined
7413 -- overloaded equality op that precedes the equality that we
7414 -- want, so we have to explicitly search (e.g., there could be
7415 -- an equality with two different parameter types).
7418 if Is_Class_Wide_Type
(Typl
) then
7419 Typl
:= Find_Specific_Type
(Typl
);
7422 Prim
:= First_Elmt
(Primitive_Operations
(Typl
));
7423 while Present
(Prim
) loop
7424 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7425 and then Etype
(First_Formal
(Node
(Prim
))) =
7426 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7428 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7433 pragma Assert
(Present
(Prim
));
7434 Op_Name
:= Node
(Prim
);
7437 Build_Equality_Call
(Op_Name
);
7439 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7440 -- predefined equality operator for a type which has a subcomponent
7441 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7443 elsif Has_Unconstrained_UU_Component
(Typl
) then
7445 Make_Raise_Program_Error
(Loc
,
7446 Reason
=> PE_Unchecked_Union_Restriction
));
7448 -- Prevent Gigi from generating incorrect code by rewriting the
7449 -- equality as a standard False. (is this documented somewhere???)
7452 New_Occurrence_Of
(Standard_False
, Loc
));
7454 elsif Is_Unchecked_Union
(Typl
) then
7456 -- If we can infer the discriminants of the operands, we make a
7457 -- call to the TSS equality function.
7459 if Has_Inferable_Discriminants
(Lhs
)
7461 Has_Inferable_Discriminants
(Rhs
)
7464 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7467 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7468 -- the predefined equality operator for an Unchecked_Union type
7469 -- if either of the operands lack inferable discriminants.
7472 Make_Raise_Program_Error
(Loc
,
7473 Reason
=> PE_Unchecked_Union_Restriction
));
7475 -- Emit a warning on source equalities only, otherwise the
7476 -- message may appear out of place due to internal use. The
7477 -- warning is unconditional because it is required by the
7480 if Comes_From_Source
(N
) then
7482 ("Unchecked_Union discriminants cannot be determined??",
7485 ("\Program_Error will be raised for equality operation??",
7489 -- Prevent Gigi from generating incorrect code by rewriting
7490 -- the equality as a standard False (documented where???).
7493 New_Occurrence_Of
(Standard_False
, Loc
));
7496 -- If a type support function is present (for complex cases), use it
7498 elsif Present
(TSS
(Root_Type
(Typl
), TSS_Composite_Equality
)) then
7500 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7502 -- When comparing two Bounded_Strings, use the primitive equality of
7503 -- the root Super_String type.
7505 elsif Is_Bounded_String
(Typl
) then
7507 First_Elmt
(Collect_Primitive_Operations
(Root_Type
(Typl
)));
7509 while Present
(Prim
) loop
7510 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7511 and then Etype
(First_Formal
(Node
(Prim
))) =
7512 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7513 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7518 -- A Super_String type should always have a primitive equality
7520 pragma Assert
(Present
(Prim
));
7521 Build_Equality_Call
(Node
(Prim
));
7523 -- Otherwise expand the component by component equality. Note that
7524 -- we never use block-bit comparisons for records, because of the
7525 -- problems with gaps. The backend will often be able to recombine
7526 -- the separate comparisons that we generate here.
7529 Remove_Side_Effects
(Lhs
);
7530 Remove_Side_Effects
(Rhs
);
7532 Expand_Record_Equality
(N
, Typl
, Lhs
, Rhs
, Bodies
));
7534 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7535 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7539 -- Test if result is known at compile time
7541 Rewrite_Comparison
(N
);
7543 -- Special optimization of length comparison
7545 Optimize_Length_Comparison
(N
);
7547 -- One more special case: if we have a comparison of X'Result = expr
7548 -- in floating-point, then if not already there, change expr to be
7549 -- f'Machine (expr) to eliminate surprise from extra precision.
7551 if Is_Floating_Point_Type
(Typl
)
7552 and then Nkind
(Original_Node
(Lhs
)) = N_Attribute_Reference
7553 and then Attribute_Name
(Original_Node
(Lhs
)) = Name_Result
7555 -- Stick in the Typ'Machine call if not already there
7557 if Nkind
(Rhs
) /= N_Attribute_Reference
7558 or else Attribute_Name
(Rhs
) /= Name_Machine
7561 Make_Attribute_Reference
(Loc
,
7562 Prefix
=> New_Occurrence_Of
(Typl
, Loc
),
7563 Attribute_Name
=> Name_Machine
,
7564 Expressions
=> New_List
(Relocate_Node
(Rhs
))));
7565 Analyze_And_Resolve
(Rhs
, Typl
);
7570 -----------------------
7571 -- Expand_N_Op_Expon --
7572 -----------------------
7574 procedure Expand_N_Op_Expon
(N
: Node_Id
) is
7575 Loc
: constant Source_Ptr
:= Sloc
(N
);
7576 Typ
: constant Entity_Id
:= Etype
(N
);
7577 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
7578 Base
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
7579 Bastyp
: constant Node_Id
:= Etype
(Base
);
7580 Exp
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
7581 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
7582 Ovflo
: constant Boolean := Do_Overflow_Check
(N
);
7590 function Wrap_MA
(Exp
: Node_Id
) return Node_Id
;
7591 -- Given an expression Exp, if the root type is Float or Long_Float,
7592 -- then wrap the expression in a call of Bastyp'Machine, to stop any
7593 -- extra precision. This is done to ensure that X**A = X**B when A is
7594 -- a static constant and B is a variable with the same value. For any
7595 -- other type, the node Exp is returned unchanged.
7601 function Wrap_MA
(Exp
: Node_Id
) return Node_Id
is
7602 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
7604 if Rtyp
= Standard_Float
or else Rtyp
= Standard_Long_Float
then
7606 Make_Attribute_Reference
(Loc
,
7607 Attribute_Name
=> Name_Machine
,
7608 Prefix
=> New_Occurrence_Of
(Bastyp
, Loc
),
7609 Expressions
=> New_List
(Relocate_Node
(Exp
)));
7615 -- Start of processing for Expand_N_Op
7618 Binary_Op_Validity_Checks
(N
);
7620 -- CodePeer wants to see the unexpanded N_Op_Expon node
7622 if CodePeer_Mode
then
7626 -- If either operand is of a private type, then we have the use of an
7627 -- intrinsic operator, and we get rid of the privateness, by using root
7628 -- types of underlying types for the actual operation. Otherwise the
7629 -- private types will cause trouble if we expand multiplications or
7630 -- shifts etc. We also do this transformation if the result type is
7631 -- different from the base type.
7633 if Is_Private_Type
(Etype
(Base
))
7634 or else Is_Private_Type
(Typ
)
7635 or else Is_Private_Type
(Exptyp
)
7636 or else Rtyp
/= Root_Type
(Bastyp
)
7639 Bt
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Bastyp
));
7640 Et
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Exptyp
));
7643 Unchecked_Convert_To
(Typ
,
7645 Left_Opnd
=> Unchecked_Convert_To
(Bt
, Base
),
7646 Right_Opnd
=> Unchecked_Convert_To
(Et
, Exp
))));
7647 Analyze_And_Resolve
(N
, Typ
);
7652 -- Check for MINIMIZED/ELIMINATED overflow mode
7654 if Minimized_Eliminated_Overflow_Check
(N
) then
7655 Apply_Arithmetic_Overflow_Check
(N
);
7659 -- Test for case of known right argument where we can replace the
7660 -- exponentiation by an equivalent expression using multiplication.
7662 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7663 -- configurable run-time mode, we may not have the exponentiation
7664 -- routine available, and we don't want the legality of the program
7665 -- to depend on how clever the compiler is in knowing values.
7667 if CRT_Safe_Compile_Time_Known_Value
(Exp
) then
7668 Expv
:= Expr_Value
(Exp
);
7670 -- We only fold small non-negative exponents. You might think we
7671 -- could fold small negative exponents for the real case, but we
7672 -- can't because we are required to raise Constraint_Error for
7673 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7674 -- See ACVC test C4A012B, and it is not worth generating the test.
7676 if Expv
>= 0 and then Expv
<= 4 then
7678 -- X ** 0 = 1 (or 1.0)
7682 -- Call Remove_Side_Effects to ensure that any side effects
7683 -- in the ignored left operand (in particular function calls
7684 -- to user defined functions) are properly executed.
7686 Remove_Side_Effects
(Base
);
7688 if Ekind
(Typ
) in Integer_Kind
then
7689 Xnode
:= Make_Integer_Literal
(Loc
, Intval
=> 1);
7691 Xnode
:= Make_Real_Literal
(Loc
, Ureal_1
);
7704 Make_Op_Multiply
(Loc
,
7705 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7706 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)));
7708 -- X ** 3 = X * X * X
7713 Make_Op_Multiply
(Loc
,
7715 Make_Op_Multiply
(Loc
,
7716 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7717 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)),
7718 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)));
7723 -- En : constant base'type := base * base;
7728 pragma Assert
(Expv
= 4);
7729 Temp
:= Make_Temporary
(Loc
, 'E', Base
);
7732 Make_Expression_With_Actions
(Loc
,
7733 Actions
=> New_List
(
7734 Make_Object_Declaration
(Loc
,
7735 Defining_Identifier
=> Temp
,
7736 Constant_Present
=> True,
7737 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
7740 Make_Op_Multiply
(Loc
,
7742 Duplicate_Subexpr
(Base
),
7744 Duplicate_Subexpr_No_Checks
(Base
))))),
7748 Make_Op_Multiply
(Loc
,
7749 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
7750 Right_Opnd
=> New_Occurrence_Of
(Temp
, Loc
))));
7754 Analyze_And_Resolve
(N
, Typ
);
7759 -- Deal with optimizing 2 ** expression to shift where possible
7761 -- Note: we used to check that Exptyp was an unsigned type. But that is
7762 -- an unnecessary check, since if Exp is negative, we have a run-time
7763 -- error that is either caught (so we get the right result) or we have
7764 -- suppressed the check, in which case the code is erroneous anyway.
7766 if Is_Integer_Type
(Rtyp
)
7768 -- The base value must be "safe compile-time known", and exactly 2
7770 and then Nkind
(Base
) = N_Integer_Literal
7771 and then CRT_Safe_Compile_Time_Known_Value
(Base
)
7772 and then Expr_Value
(Base
) = Uint_2
7774 -- We only handle cases where the right type is a integer
7776 and then Is_Integer_Type
(Root_Type
(Exptyp
))
7777 and then Esize
(Root_Type
(Exptyp
)) <= Esize
(Standard_Integer
)
7779 -- This transformation is not applicable for a modular type with a
7780 -- nonbinary modulus because we do not handle modular reduction in
7781 -- a correct manner if we attempt this transformation in this case.
7783 and then not Non_Binary_Modulus
(Typ
)
7785 -- Handle the cases where our parent is a division or multiplication
7786 -- specially. In these cases we can convert to using a shift at the
7787 -- parent level if we are not doing overflow checking, since it is
7788 -- too tricky to combine the overflow check at the parent level.
7791 and then Nkind_In
(Parent
(N
), N_Op_Divide
, N_Op_Multiply
)
7794 P
: constant Node_Id
:= Parent
(N
);
7795 L
: constant Node_Id
:= Left_Opnd
(P
);
7796 R
: constant Node_Id
:= Right_Opnd
(P
);
7799 if (Nkind
(P
) = N_Op_Multiply
7801 ((Is_Integer_Type
(Etype
(L
)) and then R
= N
)
7803 (Is_Integer_Type
(Etype
(R
)) and then L
= N
))
7804 and then not Do_Overflow_Check
(P
))
7807 (Nkind
(P
) = N_Op_Divide
7808 and then Is_Integer_Type
(Etype
(L
))
7809 and then Is_Unsigned_Type
(Etype
(L
))
7811 and then not Do_Overflow_Check
(P
))
7813 Set_Is_Power_Of_2_For_Shift
(N
);
7818 -- Here we just have 2 ** N on its own, so we can convert this to a
7819 -- shift node. We are prepared to deal with overflow here, and we
7820 -- also have to handle proper modular reduction for binary modular.
7829 -- Maximum shift count with no overflow
7832 -- Set True if we must test the shift count
7835 -- Node for test against TestS
7838 -- Compute maximum shift based on the underlying size. For a
7839 -- modular type this is one less than the size.
7841 if Is_Modular_Integer_Type
(Typ
) then
7843 -- For modular integer types, this is the size of the value
7844 -- being shifted minus one. Any larger values will cause
7845 -- modular reduction to a result of zero. Note that we do
7846 -- want the RM_Size here (e.g. mod 2 ** 7, we want a result
7847 -- of 6, since 2**7 should be reduced to zero).
7849 MaxS
:= RM_Size
(Rtyp
) - 1;
7851 -- For signed integer types, we use the size of the value
7852 -- being shifted minus 2. Larger values cause overflow.
7855 MaxS
:= Esize
(Rtyp
) - 2;
7858 -- Determine range to see if it can be larger than MaxS
7861 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
7862 TestS
:= (not OK
) or else Hi
> MaxS
;
7864 -- Signed integer case
7866 if Is_Signed_Integer_Type
(Typ
) then
7868 -- Generate overflow check if overflow is active. Note that
7869 -- we can simply ignore the possibility of overflow if the
7870 -- flag is not set (means that overflow cannot happen or
7871 -- that overflow checks are suppressed).
7873 if Ovflo
and TestS
then
7875 Make_Raise_Constraint_Error
(Loc
,
7878 Left_Opnd
=> Duplicate_Subexpr
(Right_Opnd
(N
)),
7879 Right_Opnd
=> Make_Integer_Literal
(Loc
, MaxS
)),
7880 Reason
=> CE_Overflow_Check_Failed
));
7883 -- Now rewrite node as Shift_Left (1, right-operand)
7886 Make_Op_Shift_Left
(Loc
,
7887 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
7888 Right_Opnd
=> Right_Opnd
(N
)));
7890 -- Modular integer case
7892 else pragma Assert
(Is_Modular_Integer_Type
(Typ
));
7894 -- If shift count can be greater than MaxS, we need to wrap
7895 -- the shift in a test that will reduce the result value to
7896 -- zero if this shift count is exceeded.
7900 -- Note: build node for the comparison first, before we
7901 -- reuse the Right_Opnd, so that we have proper parents
7902 -- in place for the Duplicate_Subexpr call.
7906 Left_Opnd
=> Duplicate_Subexpr
(Right_Opnd
(N
)),
7907 Right_Opnd
=> Make_Integer_Literal
(Loc
, MaxS
));
7910 Make_If_Expression
(Loc
,
7911 Expressions
=> New_List
(
7913 Make_Integer_Literal
(Loc
, Uint_0
),
7914 Make_Op_Shift_Left
(Loc
,
7915 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
7916 Right_Opnd
=> Right_Opnd
(N
)))));
7918 -- If we know shift count cannot be greater than MaxS, then
7919 -- it is safe to just rewrite as a shift with no test.
7923 Make_Op_Shift_Left
(Loc
,
7924 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
7925 Right_Opnd
=> Right_Opnd
(N
)));
7929 Analyze_And_Resolve
(N
, Typ
);
7935 -- Fall through if exponentiation must be done using a runtime routine
7937 -- First deal with modular case
7939 if Is_Modular_Integer_Type
(Rtyp
) then
7941 -- Nonbinary modular case, we call the special exponentiation
7942 -- routine for the nonbinary case, converting the argument to
7943 -- Long_Long_Integer and passing the modulus value. Then the
7944 -- result is converted back to the base type.
7946 if Non_Binary_Modulus
(Rtyp
) then
7949 Make_Function_Call
(Loc
,
7951 New_Occurrence_Of
(RTE
(RE_Exp_Modular
), Loc
),
7952 Parameter_Associations
=> New_List
(
7953 Convert_To
(RTE
(RE_Unsigned
), Base
),
7954 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
)),
7957 -- Binary modular case, in this case, we call one of two routines,
7958 -- either the unsigned integer case, or the unsigned long long
7959 -- integer case, with a final "and" operation to do the required mod.
7962 if UI_To_Int
(Esize
(Rtyp
)) <= Standard_Integer_Size
then
7963 Ent
:= RTE
(RE_Exp_Unsigned
);
7965 Ent
:= RTE
(RE_Exp_Long_Long_Unsigned
);
7972 Make_Function_Call
(Loc
,
7973 Name
=> New_Occurrence_Of
(Ent
, Loc
),
7974 Parameter_Associations
=> New_List
(
7975 Convert_To
(Etype
(First_Formal
(Ent
)), Base
),
7978 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
) - 1))));
7982 -- Common exit point for modular type case
7984 Analyze_And_Resolve
(N
, Typ
);
7987 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7988 -- It is not worth having routines for Short_[Short_]Integer, since for
7989 -- most machines it would not help, and it would generate more code that
7990 -- might need certification when a certified run time is required.
7992 -- In the integer cases, we have two routines, one for when overflow
7993 -- checks are required, and one when they are not required, since there
7994 -- is a real gain in omitting checks on many machines.
7996 elsif Rtyp
= Base_Type
(Standard_Long_Long_Integer
)
7997 or else (Rtyp
= Base_Type
(Standard_Long_Integer
)
7999 Esize
(Standard_Long_Integer
) > Esize
(Standard_Integer
))
8000 or else Rtyp
= Universal_Integer
8002 Etyp
:= Standard_Long_Long_Integer
;
8004 -- Overflow checking is the only choice on the AAMP target, where
8005 -- arithmetic instructions check overflow automatically, so only
8006 -- one version of the exponentiation unit is needed.
8008 if Ovflo
or AAMP_On_Target
then
8009 Rent
:= RE_Exp_Long_Long_Integer
;
8011 Rent
:= RE_Exn_Long_Long_Integer
;
8014 elsif Is_Signed_Integer_Type
(Rtyp
) then
8015 Etyp
:= Standard_Integer
;
8017 -- Overflow checking is the only choice on the AAMP target, where
8018 -- arithmetic instructions check overflow automatically, so only
8019 -- one version of the exponentiation unit is needed.
8021 if Ovflo
or AAMP_On_Target
then
8022 Rent
:= RE_Exp_Integer
;
8024 Rent
:= RE_Exn_Integer
;
8027 -- Floating-point cases. We do not need separate routines for the
8028 -- overflow case here, since in the case of floating-point, we generate
8029 -- infinities anyway as a rule (either that or we automatically trap
8030 -- overflow), and if there is an infinity generated and a range check
8031 -- is required, the check will fail anyway.
8033 -- Historical note: we used to convert everything to Long_Long_Float
8034 -- and call a single common routine, but this had the undesirable effect
8035 -- of giving different results for small static exponent values and the
8036 -- same dynamic values.
8039 pragma Assert
(Is_Floating_Point_Type
(Rtyp
));
8041 if Rtyp
= Standard_Float
then
8042 Etyp
:= Standard_Float
;
8043 Rent
:= RE_Exn_Float
;
8045 elsif Rtyp
= Standard_Long_Float
then
8046 Etyp
:= Standard_Long_Float
;
8047 Rent
:= RE_Exn_Long_Float
;
8050 Etyp
:= Standard_Long_Long_Float
;
8051 Rent
:= RE_Exn_Long_Long_Float
;
8055 -- Common processing for integer cases and floating-point cases.
8056 -- If we are in the right type, we can call runtime routine directly
8059 and then Rtyp
/= Universal_Integer
8060 and then Rtyp
/= Universal_Real
8064 Make_Function_Call
(Loc
,
8065 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
8066 Parameter_Associations
=> New_List
(Base
, Exp
))));
8068 -- Otherwise we have to introduce conversions (conversions are also
8069 -- required in the universal cases, since the runtime routine is
8070 -- typed using one of the standard types).
8075 Make_Function_Call
(Loc
,
8076 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
8077 Parameter_Associations
=> New_List
(
8078 Convert_To
(Etyp
, Base
),
8082 Analyze_And_Resolve
(N
, Typ
);
8086 when RE_Not_Available
=>
8088 end Expand_N_Op_Expon
;
8090 --------------------
8091 -- Expand_N_Op_Ge --
8092 --------------------
8094 procedure Expand_N_Op_Ge
(N
: Node_Id
) is
8095 Typ
: constant Entity_Id
:= Etype
(N
);
8096 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8097 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8098 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8101 Binary_Op_Validity_Checks
(N
);
8103 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8104 -- means we no longer have a comparison operation, we are all done.
8106 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8108 if Nkind
(N
) /= N_Op_Ge
then
8114 if Is_Array_Type
(Typ1
) then
8115 Expand_Array_Comparison
(N
);
8119 -- Deal with boolean operands
8121 if Is_Boolean_Type
(Typ1
) then
8122 Adjust_Condition
(Op1
);
8123 Adjust_Condition
(Op2
);
8124 Set_Etype
(N
, Standard_Boolean
);
8125 Adjust_Result_Type
(N
, Typ
);
8128 Rewrite_Comparison
(N
);
8130 Optimize_Length_Comparison
(N
);
8133 --------------------
8134 -- Expand_N_Op_Gt --
8135 --------------------
8137 procedure Expand_N_Op_Gt
(N
: Node_Id
) is
8138 Typ
: constant Entity_Id
:= Etype
(N
);
8139 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8140 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8141 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8144 Binary_Op_Validity_Checks
(N
);
8146 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8147 -- means we no longer have a comparison operation, we are all done.
8149 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8151 if Nkind
(N
) /= N_Op_Gt
then
8155 -- Deal with array type operands
8157 if Is_Array_Type
(Typ1
) then
8158 Expand_Array_Comparison
(N
);
8162 -- Deal with boolean type operands
8164 if Is_Boolean_Type
(Typ1
) then
8165 Adjust_Condition
(Op1
);
8166 Adjust_Condition
(Op2
);
8167 Set_Etype
(N
, Standard_Boolean
);
8168 Adjust_Result_Type
(N
, Typ
);
8171 Rewrite_Comparison
(N
);
8173 Optimize_Length_Comparison
(N
);
8176 --------------------
8177 -- Expand_N_Op_Le --
8178 --------------------
8180 procedure Expand_N_Op_Le
(N
: Node_Id
) is
8181 Typ
: constant Entity_Id
:= Etype
(N
);
8182 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8183 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8184 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8187 Binary_Op_Validity_Checks
(N
);
8189 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8190 -- means we no longer have a comparison operation, we are all done.
8192 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8194 if Nkind
(N
) /= N_Op_Le
then
8198 -- Deal with array type operands
8200 if Is_Array_Type
(Typ1
) then
8201 Expand_Array_Comparison
(N
);
8205 -- Deal with Boolean type operands
8207 if Is_Boolean_Type
(Typ1
) then
8208 Adjust_Condition
(Op1
);
8209 Adjust_Condition
(Op2
);
8210 Set_Etype
(N
, Standard_Boolean
);
8211 Adjust_Result_Type
(N
, Typ
);
8214 Rewrite_Comparison
(N
);
8216 Optimize_Length_Comparison
(N
);
8219 --------------------
8220 -- Expand_N_Op_Lt --
8221 --------------------
8223 procedure Expand_N_Op_Lt
(N
: Node_Id
) is
8224 Typ
: constant Entity_Id
:= Etype
(N
);
8225 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8226 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8227 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8230 Binary_Op_Validity_Checks
(N
);
8232 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8233 -- means we no longer have a comparison operation, we are all done.
8235 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8237 if Nkind
(N
) /= N_Op_Lt
then
8241 -- Deal with array type operands
8243 if Is_Array_Type
(Typ1
) then
8244 Expand_Array_Comparison
(N
);
8248 -- Deal with Boolean type operands
8250 if Is_Boolean_Type
(Typ1
) then
8251 Adjust_Condition
(Op1
);
8252 Adjust_Condition
(Op2
);
8253 Set_Etype
(N
, Standard_Boolean
);
8254 Adjust_Result_Type
(N
, Typ
);
8257 Rewrite_Comparison
(N
);
8259 Optimize_Length_Comparison
(N
);
8262 -----------------------
8263 -- Expand_N_Op_Minus --
8264 -----------------------
8266 procedure Expand_N_Op_Minus
(N
: Node_Id
) is
8267 Loc
: constant Source_Ptr
:= Sloc
(N
);
8268 Typ
: constant Entity_Id
:= Etype
(N
);
8271 Unary_Op_Validity_Checks
(N
);
8273 -- Check for MINIMIZED/ELIMINATED overflow mode
8275 if Minimized_Eliminated_Overflow_Check
(N
) then
8276 Apply_Arithmetic_Overflow_Check
(N
);
8280 if not Backend_Overflow_Checks_On_Target
8281 and then Is_Signed_Integer_Type
(Etype
(N
))
8282 and then Do_Overflow_Check
(N
)
8284 -- Software overflow checking expands -expr into (0 - expr)
8287 Make_Op_Subtract
(Loc
,
8288 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
8289 Right_Opnd
=> Right_Opnd
(N
)));
8291 Analyze_And_Resolve
(N
, Typ
);
8293 end Expand_N_Op_Minus
;
8295 ---------------------
8296 -- Expand_N_Op_Mod --
8297 ---------------------
8299 procedure Expand_N_Op_Mod
(N
: Node_Id
) is
8300 Loc
: constant Source_Ptr
:= Sloc
(N
);
8301 Typ
: constant Entity_Id
:= Etype
(N
);
8302 DDC
: constant Boolean := Do_Division_Check
(N
);
8315 pragma Warnings
(Off
, Lhi
);
8318 Binary_Op_Validity_Checks
(N
);
8320 -- Check for MINIMIZED/ELIMINATED overflow mode
8322 if Minimized_Eliminated_Overflow_Check
(N
) then
8323 Apply_Arithmetic_Overflow_Check
(N
);
8327 if Is_Integer_Type
(Etype
(N
)) then
8328 Apply_Divide_Checks
(N
);
8330 -- All done if we don't have a MOD any more, which can happen as a
8331 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8333 if Nkind
(N
) /= N_Op_Mod
then
8338 -- Proceed with expansion of mod operator
8340 Left
:= Left_Opnd
(N
);
8341 Right
:= Right_Opnd
(N
);
8343 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
8344 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
8346 -- Convert mod to rem if operands are both known to be non-negative, or
8347 -- both known to be non-positive (these are the cases in which rem and
8348 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8349 -- likely that this will improve the quality of code, (the operation now
8350 -- corresponds to the hardware remainder), and it does not seem likely
8351 -- that it could be harmful. It also avoids some cases of the elaborate
8352 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8355 and then ((Llo
>= 0 and then Rlo
>= 0)
8357 (Lhi
<= 0 and then Rhi
<= 0))
8360 Make_Op_Rem
(Sloc
(N
),
8361 Left_Opnd
=> Left_Opnd
(N
),
8362 Right_Opnd
=> Right_Opnd
(N
)));
8364 -- Instead of reanalyzing the node we do the analysis manually. This
8365 -- avoids anomalies when the replacement is done in an instance and
8366 -- is epsilon more efficient.
8368 Set_Entity
(N
, Standard_Entity
(S_Op_Rem
));
8370 Set_Do_Division_Check
(N
, DDC
);
8371 Expand_N_Op_Rem
(N
);
8375 -- Otherwise, normal mod processing
8378 -- Apply optimization x mod 1 = 0. We don't really need that with
8379 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8380 -- certainly harmless.
8382 if Is_Integer_Type
(Etype
(N
))
8383 and then Compile_Time_Known_Value
(Right
)
8384 and then Expr_Value
(Right
) = Uint_1
8386 -- Call Remove_Side_Effects to ensure that any side effects in
8387 -- the ignored left operand (in particular function calls to
8388 -- user defined functions) are properly executed.
8390 Remove_Side_Effects
(Left
);
8392 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8393 Analyze_And_Resolve
(N
, Typ
);
8397 -- If we still have a mod operator and we are in Modify_Tree_For_C
8398 -- mode, and we have a signed integer type, then here is where we do
8399 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8400 -- for the special handling of the annoying case of largest negative
8401 -- number mod minus one.
8403 if Nkind
(N
) = N_Op_Mod
8404 and then Is_Signed_Integer_Type
(Typ
)
8405 and then Modify_Tree_For_C
8407 -- In the general case, we expand A mod B as
8409 -- Tnn : constant typ := A rem B;
8411 -- (if (A >= 0) = (B >= 0) then Tnn
8412 -- elsif Tnn = 0 then 0
8415 -- The comparison can be written simply as A >= 0 if we know that
8416 -- B >= 0 which is a very common case.
8418 -- An important optimization is when B is known at compile time
8419 -- to be 2**K for some constant. In this case we can simply AND
8420 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8421 -- and that works for both the positive and negative cases.
8424 P2
: constant Nat
:= Power_Of_Two
(Right
);
8429 Unchecked_Convert_To
(Typ
,
8432 Unchecked_Convert_To
8433 (Corresponding_Unsigned_Type
(Typ
), Left
),
8435 Make_Integer_Literal
(Loc
, 2 ** P2
- 1))));
8436 Analyze_And_Resolve
(N
, Typ
);
8441 -- Here for the full rewrite
8444 Tnn
: constant Entity_Id
:= Make_Temporary
(Sloc
(N
), 'T', N
);
8450 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
8451 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
8453 if not LOK
or else Rlo
< 0 then
8459 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
),
8460 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)));
8464 Make_Object_Declaration
(Loc
,
8465 Defining_Identifier
=> Tnn
,
8466 Constant_Present
=> True,
8467 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
8471 Right_Opnd
=> Right
)));
8474 Make_If_Expression
(Loc
,
8475 Expressions
=> New_List
(
8477 New_Occurrence_Of
(Tnn
, Loc
),
8478 Make_If_Expression
(Loc
,
8480 Expressions
=> New_List
(
8482 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8483 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
8484 Make_Integer_Literal
(Loc
, 0),
8486 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8488 Duplicate_Subexpr_No_Checks
(Right
)))))));
8490 Analyze_And_Resolve
(N
, Typ
);
8495 -- Deal with annoying case of largest negative number mod minus one.
8496 -- Gigi may not handle this case correctly, because on some targets,
8497 -- the mod value is computed using a divide instruction which gives
8498 -- an overflow trap for this case.
8500 -- It would be a bit more efficient to figure out which targets
8501 -- this is really needed for, but in practice it is reasonable
8502 -- to do the following special check in all cases, since it means
8503 -- we get a clearer message, and also the overhead is minimal given
8504 -- that division is expensive in any case.
8506 -- In fact the check is quite easy, if the right operand is -1, then
8507 -- the mod value is always 0, and we can just ignore the left operand
8508 -- completely in this case.
8510 -- This only applies if we still have a mod operator. Skip if we
8511 -- have already rewritten this (e.g. in the case of eliminated
8512 -- overflow checks which have driven us into bignum mode).
8514 if Nkind
(N
) = N_Op_Mod
then
8516 -- The operand type may be private (e.g. in the expansion of an
8517 -- intrinsic operation) so we must use the underlying type to get
8518 -- the bounds, and convert the literals explicitly.
8522 (Type_Low_Bound
(Base_Type
(Underlying_Type
(Etype
(Left
)))));
8524 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
8525 and then ((not LOK
) or else (Llo
= LLB
))
8528 Make_If_Expression
(Loc
,
8529 Expressions
=> New_List
(
8531 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8533 Unchecked_Convert_To
(Typ
,
8534 Make_Integer_Literal
(Loc
, -1))),
8535 Unchecked_Convert_To
(Typ
,
8536 Make_Integer_Literal
(Loc
, Uint_0
)),
8537 Relocate_Node
(N
))));
8539 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8540 Analyze_And_Resolve
(N
, Typ
);
8544 end Expand_N_Op_Mod
;
8546 --------------------------
8547 -- Expand_N_Op_Multiply --
8548 --------------------------
8550 procedure Expand_N_Op_Multiply
(N
: Node_Id
) is
8551 Loc
: constant Source_Ptr
:= Sloc
(N
);
8552 Lop
: constant Node_Id
:= Left_Opnd
(N
);
8553 Rop
: constant Node_Id
:= Right_Opnd
(N
);
8555 Lp2
: constant Boolean :=
8556 Nkind
(Lop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Lop
);
8557 Rp2
: constant Boolean :=
8558 Nkind
(Rop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Rop
);
8560 Ltyp
: constant Entity_Id
:= Etype
(Lop
);
8561 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
8562 Typ
: Entity_Id
:= Etype
(N
);
8565 Binary_Op_Validity_Checks
(N
);
8567 -- Check for MINIMIZED/ELIMINATED overflow mode
8569 if Minimized_Eliminated_Overflow_Check
(N
) then
8570 Apply_Arithmetic_Overflow_Check
(N
);
8574 -- Special optimizations for integer types
8576 if Is_Integer_Type
(Typ
) then
8578 -- N * 0 = 0 for integer types
8580 if Compile_Time_Known_Value
(Rop
)
8581 and then Expr_Value
(Rop
) = Uint_0
8583 -- Call Remove_Side_Effects to ensure that any side effects in
8584 -- the ignored left operand (in particular function calls to
8585 -- user defined functions) are properly executed.
8587 Remove_Side_Effects
(Lop
);
8589 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8590 Analyze_And_Resolve
(N
, Typ
);
8594 -- Similar handling for 0 * N = 0
8596 if Compile_Time_Known_Value
(Lop
)
8597 and then Expr_Value
(Lop
) = Uint_0
8599 Remove_Side_Effects
(Rop
);
8600 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8601 Analyze_And_Resolve
(N
, Typ
);
8605 -- N * 1 = 1 * N = N for integer types
8607 -- This optimisation is not done if we are going to
8608 -- rewrite the product 1 * 2 ** N to a shift.
8610 if Compile_Time_Known_Value
(Rop
)
8611 and then Expr_Value
(Rop
) = Uint_1
8617 elsif Compile_Time_Known_Value
(Lop
)
8618 and then Expr_Value
(Lop
) = Uint_1
8626 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8627 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8628 -- operand is an integer, as required for this to work.
8633 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8637 Left_Opnd
=> Make_Integer_Literal
(Loc
, 2),
8640 Left_Opnd
=> Right_Opnd
(Lop
),
8641 Right_Opnd
=> Right_Opnd
(Rop
))));
8642 Analyze_And_Resolve
(N
, Typ
);
8646 -- If the result is modular, perform the reduction of the result
8649 if Is_Modular_Integer_Type
(Typ
)
8650 and then not Non_Binary_Modulus
(Typ
)
8655 Make_Op_Shift_Left
(Loc
,
8658 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))),
8660 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8664 Make_Op_Shift_Left
(Loc
,
8667 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))));
8670 Analyze_And_Resolve
(N
, Typ
);
8674 -- Same processing for the operands the other way round
8677 if Is_Modular_Integer_Type
(Typ
)
8678 and then not Non_Binary_Modulus
(Typ
)
8683 Make_Op_Shift_Left
(Loc
,
8686 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))),
8688 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8692 Make_Op_Shift_Left
(Loc
,
8695 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))));
8698 Analyze_And_Resolve
(N
, Typ
);
8702 -- Do required fixup of universal fixed operation
8704 if Typ
= Universal_Fixed
then
8705 Fixup_Universal_Fixed_Operation
(N
);
8709 -- Multiplications with fixed-point results
8711 if Is_Fixed_Point_Type
(Typ
) then
8713 -- No special processing if Treat_Fixed_As_Integer is set, since from
8714 -- a semantic point of view such operations are simply integer
8715 -- operations and will be treated that way.
8717 if not Treat_Fixed_As_Integer
(N
) then
8719 -- Case of fixed * integer => fixed
8721 if Is_Integer_Type
(Rtyp
) then
8722 Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
);
8724 -- Case of integer * fixed => fixed
8726 elsif Is_Integer_Type
(Ltyp
) then
8727 Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
);
8729 -- Case of fixed * fixed => fixed
8732 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
);
8736 -- Other cases of multiplication of fixed-point operands. Again we
8737 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
8739 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
8740 and then not Treat_Fixed_As_Integer
(N
)
8742 if Is_Integer_Type
(Typ
) then
8743 Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
);
8745 pragma Assert
(Is_Floating_Point_Type
(Typ
));
8746 Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
);
8749 -- Mixed-mode operations can appear in a non-static universal context,
8750 -- in which case the integer argument must be converted explicitly.
8752 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
8753 Rewrite
(Rop
, Convert_To
(Universal_Real
, Relocate_Node
(Rop
)));
8754 Analyze_And_Resolve
(Rop
, Universal_Real
);
8756 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
8757 Rewrite
(Lop
, Convert_To
(Universal_Real
, Relocate_Node
(Lop
)));
8758 Analyze_And_Resolve
(Lop
, Universal_Real
);
8760 -- Non-fixed point cases, check software overflow checking required
8762 elsif Is_Signed_Integer_Type
(Etype
(N
)) then
8763 Apply_Arithmetic_Overflow_Check
(N
);
8766 -- Overflow checks for floating-point if -gnateF mode active
8768 Check_Float_Op_Overflow
(N
);
8769 end Expand_N_Op_Multiply
;
8771 --------------------
8772 -- Expand_N_Op_Ne --
8773 --------------------
8775 procedure Expand_N_Op_Ne
(N
: Node_Id
) is
8776 Typ
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
8779 -- Case of elementary type with standard operator
8781 if Is_Elementary_Type
(Typ
)
8782 and then Sloc
(Entity
(N
)) = Standard_Location
8784 Binary_Op_Validity_Checks
(N
);
8786 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8787 -- means we no longer have a /= operation, we are all done.
8789 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8791 if Nkind
(N
) /= N_Op_Ne
then
8795 -- Boolean types (requiring handling of non-standard case)
8797 if Is_Boolean_Type
(Typ
) then
8798 Adjust_Condition
(Left_Opnd
(N
));
8799 Adjust_Condition
(Right_Opnd
(N
));
8800 Set_Etype
(N
, Standard_Boolean
);
8801 Adjust_Result_Type
(N
, Typ
);
8804 Rewrite_Comparison
(N
);
8806 -- For all cases other than elementary types, we rewrite node as the
8807 -- negation of an equality operation, and reanalyze. The equality to be
8808 -- used is defined in the same scope and has the same signature. This
8809 -- signature must be set explicitly since in an instance it may not have
8810 -- the same visibility as in the generic unit. This avoids duplicating
8811 -- or factoring the complex code for record/array equality tests etc.
8815 Loc
: constant Source_Ptr
:= Sloc
(N
);
8817 Ne
: constant Entity_Id
:= Entity
(N
);
8820 Binary_Op_Validity_Checks
(N
);
8826 Left_Opnd
=> Left_Opnd
(N
),
8827 Right_Opnd
=> Right_Opnd
(N
)));
8828 Set_Paren_Count
(Right_Opnd
(Neg
), 1);
8830 if Scope
(Ne
) /= Standard_Standard
then
8831 Set_Entity
(Right_Opnd
(Neg
), Corresponding_Equality
(Ne
));
8834 -- For navigation purposes, we want to treat the inequality as an
8835 -- implicit reference to the corresponding equality. Preserve the
8836 -- Comes_From_ source flag to generate proper Xref entries.
8838 Preserve_Comes_From_Source
(Neg
, N
);
8839 Preserve_Comes_From_Source
(Right_Opnd
(Neg
), N
);
8841 Analyze_And_Resolve
(N
, Standard_Boolean
);
8845 Optimize_Length_Comparison
(N
);
8848 ---------------------
8849 -- Expand_N_Op_Not --
8850 ---------------------
8852 -- If the argument is other than a Boolean array type, there is no special
8853 -- expansion required, except for dealing with validity checks, and non-
8854 -- standard boolean representations.
8856 -- For the packed array case, we call the special routine in Exp_Pakd,
8857 -- except that if the component size is greater than one, we use the
8858 -- standard routine generating a gruesome loop (it is so peculiar to have
8859 -- packed arrays with non-standard Boolean representations anyway, so it
8860 -- does not matter that we do not handle this case efficiently).
8862 -- For the unpacked array case (and for the special packed case where we
8863 -- have non standard Booleans, as discussed above), we generate and insert
8864 -- into the tree the following function definition:
8866 -- function Nnnn (A : arr) is
8869 -- for J in a'range loop
8870 -- B (J) := not A (J);
8875 -- Here arr is the actual subtype of the parameter (and hence always
8876 -- constrained). Then we replace the not with a call to this function.
8878 procedure Expand_N_Op_Not
(N
: Node_Id
) is
8879 Loc
: constant Source_Ptr
:= Sloc
(N
);
8880 Typ
: constant Entity_Id
:= Etype
(N
);
8889 Func_Name
: Entity_Id
;
8890 Loop_Statement
: Node_Id
;
8893 Unary_Op_Validity_Checks
(N
);
8895 -- For boolean operand, deal with non-standard booleans
8897 if Is_Boolean_Type
(Typ
) then
8898 Adjust_Condition
(Right_Opnd
(N
));
8899 Set_Etype
(N
, Standard_Boolean
);
8900 Adjust_Result_Type
(N
, Typ
);
8904 -- Only array types need any other processing
8906 if not Is_Array_Type
(Typ
) then
8910 -- Case of array operand. If bit packed with a component size of 1,
8911 -- handle it in Exp_Pakd if the operand is known to be aligned.
8913 if Is_Bit_Packed_Array
(Typ
)
8914 and then Component_Size
(Typ
) = 1
8915 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
8917 Expand_Packed_Not
(N
);
8921 -- Case of array operand which is not bit-packed. If the context is
8922 -- a safe assignment, call in-place operation, If context is a larger
8923 -- boolean expression in the context of a safe assignment, expansion is
8924 -- done by enclosing operation.
8926 Opnd
:= Relocate_Node
(Right_Opnd
(N
));
8927 Convert_To_Actual_Subtype
(Opnd
);
8928 Arr
:= Etype
(Opnd
);
8929 Ensure_Defined
(Arr
, N
);
8930 Silly_Boolean_Array_Not_Test
(N
, Arr
);
8932 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
8933 if Safe_In_Place_Array_Op
(Name
(Parent
(N
)), N
, Empty
) then
8934 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8937 -- Special case the negation of a binary operation
8939 elsif Nkind_In
(Opnd
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
8940 and then Safe_In_Place_Array_Op
8941 (Name
(Parent
(N
)), Left_Opnd
(Opnd
), Right_Opnd
(Opnd
))
8943 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8947 elsif Nkind
(Parent
(N
)) in N_Binary_Op
8948 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
8951 Op1
: constant Node_Id
:= Left_Opnd
(Parent
(N
));
8952 Op2
: constant Node_Id
:= Right_Opnd
(Parent
(N
));
8953 Lhs
: constant Node_Id
:= Name
(Parent
(Parent
(N
)));
8956 if Safe_In_Place_Array_Op
(Lhs
, Op1
, Op2
) then
8958 -- (not A) op (not B) can be reduced to a single call
8960 if N
= Op1
and then Nkind
(Op2
) = N_Op_Not
then
8963 elsif N
= Op2
and then Nkind
(Op1
) = N_Op_Not
then
8966 -- A xor (not B) can also be special-cased
8968 elsif N
= Op2
and then Nkind
(Parent
(N
)) = N_Op_Xor
then
8975 A
:= Make_Defining_Identifier
(Loc
, Name_uA
);
8976 B
:= Make_Defining_Identifier
(Loc
, Name_uB
);
8977 J
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
8980 Make_Indexed_Component
(Loc
,
8981 Prefix
=> New_Occurrence_Of
(A
, Loc
),
8982 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
8985 Make_Indexed_Component
(Loc
,
8986 Prefix
=> New_Occurrence_Of
(B
, Loc
),
8987 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
8990 Make_Implicit_Loop_Statement
(N
,
8991 Identifier
=> Empty
,
8994 Make_Iteration_Scheme
(Loc
,
8995 Loop_Parameter_Specification
=>
8996 Make_Loop_Parameter_Specification
(Loc
,
8997 Defining_Identifier
=> J
,
8998 Discrete_Subtype_Definition
=>
8999 Make_Attribute_Reference
(Loc
,
9000 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
9001 Attribute_Name
=> Name_Range
))),
9003 Statements
=> New_List
(
9004 Make_Assignment_Statement
(Loc
,
9006 Expression
=> Make_Op_Not
(Loc
, A_J
))));
9008 Func_Name
:= Make_Temporary
(Loc
, 'N');
9009 Set_Is_Inlined
(Func_Name
);
9012 Make_Subprogram_Body
(Loc
,
9014 Make_Function_Specification
(Loc
,
9015 Defining_Unit_Name
=> Func_Name
,
9016 Parameter_Specifications
=> New_List
(
9017 Make_Parameter_Specification
(Loc
,
9018 Defining_Identifier
=> A
,
9019 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
9020 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
9022 Declarations
=> New_List
(
9023 Make_Object_Declaration
(Loc
,
9024 Defining_Identifier
=> B
,
9025 Object_Definition
=> New_Occurrence_Of
(Arr
, Loc
))),
9027 Handled_Statement_Sequence
=>
9028 Make_Handled_Sequence_Of_Statements
(Loc
,
9029 Statements
=> New_List
(
9031 Make_Simple_Return_Statement
(Loc
,
9032 Expression
=> Make_Identifier
(Loc
, Chars
(B
)))))));
9035 Make_Function_Call
(Loc
,
9036 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
9037 Parameter_Associations
=> New_List
(Opnd
)));
9039 Analyze_And_Resolve
(N
, Typ
);
9040 end Expand_N_Op_Not
;
9042 --------------------
9043 -- Expand_N_Op_Or --
9044 --------------------
9046 procedure Expand_N_Op_Or
(N
: Node_Id
) is
9047 Typ
: constant Entity_Id
:= Etype
(N
);
9050 Binary_Op_Validity_Checks
(N
);
9052 if Is_Array_Type
(Etype
(N
)) then
9053 Expand_Boolean_Operator
(N
);
9055 elsif Is_Boolean_Type
(Etype
(N
)) then
9056 Adjust_Condition
(Left_Opnd
(N
));
9057 Adjust_Condition
(Right_Opnd
(N
));
9058 Set_Etype
(N
, Standard_Boolean
);
9059 Adjust_Result_Type
(N
, Typ
);
9061 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9062 Expand_Intrinsic_Call
(N
, Entity
(N
));
9067 ----------------------
9068 -- Expand_N_Op_Plus --
9069 ----------------------
9071 procedure Expand_N_Op_Plus
(N
: Node_Id
) is
9073 Unary_Op_Validity_Checks
(N
);
9075 -- Check for MINIMIZED/ELIMINATED overflow mode
9077 if Minimized_Eliminated_Overflow_Check
(N
) then
9078 Apply_Arithmetic_Overflow_Check
(N
);
9081 end Expand_N_Op_Plus
;
9083 ---------------------
9084 -- Expand_N_Op_Rem --
9085 ---------------------
9087 procedure Expand_N_Op_Rem
(N
: Node_Id
) is
9088 Loc
: constant Source_Ptr
:= Sloc
(N
);
9089 Typ
: constant Entity_Id
:= Etype
(N
);
9100 -- Set if corresponding operand can be negative
9102 pragma Unreferenced
(Hi
);
9105 Binary_Op_Validity_Checks
(N
);
9107 -- Check for MINIMIZED/ELIMINATED overflow mode
9109 if Minimized_Eliminated_Overflow_Check
(N
) then
9110 Apply_Arithmetic_Overflow_Check
(N
);
9114 if Is_Integer_Type
(Etype
(N
)) then
9115 Apply_Divide_Checks
(N
);
9117 -- All done if we don't have a REM any more, which can happen as a
9118 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9120 if Nkind
(N
) /= N_Op_Rem
then
9125 -- Proceed with expansion of REM
9127 Left
:= Left_Opnd
(N
);
9128 Right
:= Right_Opnd
(N
);
9130 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
9131 -- but it is useful with other back ends (e.g. AAMP), and is certainly
9134 if Is_Integer_Type
(Etype
(N
))
9135 and then Compile_Time_Known_Value
(Right
)
9136 and then Expr_Value
(Right
) = Uint_1
9138 -- Call Remove_Side_Effects to ensure that any side effects in the
9139 -- ignored left operand (in particular function calls to user defined
9140 -- functions) are properly executed.
9142 Remove_Side_Effects
(Left
);
9144 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9145 Analyze_And_Resolve
(N
, Typ
);
9149 -- Deal with annoying case of largest negative number remainder minus
9150 -- one. Gigi may not handle this case correctly, because on some
9151 -- targets, the mod value is computed using a divide instruction
9152 -- which gives an overflow trap for this case.
9154 -- It would be a bit more efficient to figure out which targets this
9155 -- is really needed for, but in practice it is reasonable to do the
9156 -- following special check in all cases, since it means we get a clearer
9157 -- message, and also the overhead is minimal given that division is
9158 -- expensive in any case.
9160 -- In fact the check is quite easy, if the right operand is -1, then
9161 -- the remainder is always 0, and we can just ignore the left operand
9162 -- completely in this case.
9164 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9165 Lneg
:= (not OK
) or else Lo
< 0;
9167 Determine_Range
(Left
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9168 Rneg
:= (not OK
) or else Lo
< 0;
9170 -- We won't mess with trying to find out if the left operand can really
9171 -- be the largest negative number (that's a pain in the case of private
9172 -- types and this is really marginal). We will just assume that we need
9173 -- the test if the left operand can be negative at all.
9175 if Lneg
and Rneg
then
9177 Make_If_Expression
(Loc
,
9178 Expressions
=> New_List
(
9180 Left_Opnd
=> Duplicate_Subexpr
(Right
),
9182 Unchecked_Convert_To
(Typ
, Make_Integer_Literal
(Loc
, -1))),
9184 Unchecked_Convert_To
(Typ
,
9185 Make_Integer_Literal
(Loc
, Uint_0
)),
9187 Relocate_Node
(N
))));
9189 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
9190 Analyze_And_Resolve
(N
, Typ
);
9192 end Expand_N_Op_Rem
;
9194 -----------------------------
9195 -- Expand_N_Op_Rotate_Left --
9196 -----------------------------
9198 procedure Expand_N_Op_Rotate_Left
(N
: Node_Id
) is
9200 Binary_Op_Validity_Checks
(N
);
9202 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
9203 -- so we rewrite in terms of logical shifts
9205 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
9207 -- where Bits is the shift count mod Esize (the mod operation here
9208 -- deals with ludicrous large shift counts, which are apparently OK).
9210 -- What about nonbinary modulus ???
9213 Loc
: constant Source_Ptr
:= Sloc
(N
);
9214 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9215 Typ
: constant Entity_Id
:= Etype
(N
);
9218 if Modify_Tree_For_C
then
9219 Rewrite
(Right_Opnd
(N
),
9221 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9222 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9224 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9229 Make_Op_Shift_Left
(Loc
,
9230 Left_Opnd
=> Left_Opnd
(N
),
9231 Right_Opnd
=> Right_Opnd
(N
)),
9234 Make_Op_Shift_Right
(Loc
,
9235 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9237 Make_Op_Subtract
(Loc
,
9238 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9240 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9242 Analyze_And_Resolve
(N
, Typ
);
9245 end Expand_N_Op_Rotate_Left
;
9247 ------------------------------
9248 -- Expand_N_Op_Rotate_Right --
9249 ------------------------------
9251 procedure Expand_N_Op_Rotate_Right
(N
: Node_Id
) is
9253 Binary_Op_Validity_Checks
(N
);
9255 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
9256 -- so we rewrite in terms of logical shifts
9258 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
9260 -- where Bits is the shift count mod Esize (the mod operation here
9261 -- deals with ludicrous large shift counts, which are apparently OK).
9263 -- What about nonbinary modulus ???
9266 Loc
: constant Source_Ptr
:= Sloc
(N
);
9267 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9268 Typ
: constant Entity_Id
:= Etype
(N
);
9271 Rewrite
(Right_Opnd
(N
),
9273 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9274 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9276 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9278 if Modify_Tree_For_C
then
9282 Make_Op_Shift_Right
(Loc
,
9283 Left_Opnd
=> Left_Opnd
(N
),
9284 Right_Opnd
=> Right_Opnd
(N
)),
9287 Make_Op_Shift_Left
(Loc
,
9288 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9290 Make_Op_Subtract
(Loc
,
9291 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9293 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9295 Analyze_And_Resolve
(N
, Typ
);
9298 end Expand_N_Op_Rotate_Right
;
9300 ----------------------------
9301 -- Expand_N_Op_Shift_Left --
9302 ----------------------------
9304 -- Note: nothing in this routine depends on left as opposed to right shifts
9305 -- so we share the routine for expanding shift right operations.
9307 procedure Expand_N_Op_Shift_Left
(N
: Node_Id
) is
9309 Binary_Op_Validity_Checks
(N
);
9311 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9312 -- operand is not greater than the word size (since that would not
9313 -- be defined properly by the corresponding C shift operator).
9315 if Modify_Tree_For_C
then
9317 Right
: constant Node_Id
:= Right_Opnd
(N
);
9318 Loc
: constant Source_Ptr
:= Sloc
(Right
);
9319 Typ
: constant Entity_Id
:= Etype
(N
);
9320 Siz
: constant Uint
:= Esize
(Typ
);
9327 if Compile_Time_Known_Value
(Right
) then
9328 if Expr_Value
(Right
) >= Siz
then
9329 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9330 Analyze_And_Resolve
(N
, Typ
);
9333 -- Not compile time known, find range
9336 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9338 -- Nothing to do if known to be OK range, otherwise expand
9340 if not OK
or else Hi
>= Siz
then
9342 -- Prevent recursion on copy of shift node
9344 Orig
:= Relocate_Node
(N
);
9345 Set_Analyzed
(Orig
);
9347 -- Now do the rewrite
9350 Make_If_Expression
(Loc
,
9351 Expressions
=> New_List
(
9353 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
9354 Right_Opnd
=> Make_Integer_Literal
(Loc
, Siz
)),
9355 Make_Integer_Literal
(Loc
, 0),
9357 Analyze_And_Resolve
(N
, Typ
);
9362 end Expand_N_Op_Shift_Left
;
9364 -----------------------------
9365 -- Expand_N_Op_Shift_Right --
9366 -----------------------------
9368 procedure Expand_N_Op_Shift_Right
(N
: Node_Id
) is
9370 -- Share shift left circuit
9372 Expand_N_Op_Shift_Left
(N
);
9373 end Expand_N_Op_Shift_Right
;
9375 ----------------------------------------
9376 -- Expand_N_Op_Shift_Right_Arithmetic --
9377 ----------------------------------------
9379 procedure Expand_N_Op_Shift_Right_Arithmetic
(N
: Node_Id
) is
9381 Binary_Op_Validity_Checks
(N
);
9383 -- If we are in Modify_Tree_For_C mode, there is no shift right
9384 -- arithmetic in C, so we rewrite in terms of logical shifts.
9386 -- Shift_Right (Num, Bits) or
9388 -- then not (Shift_Right (Mask, bits))
9391 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9393 -- Note: in almost all C compilers it would work to just shift a
9394 -- signed integer right, but it's undefined and we cannot rely on it.
9396 -- Note: the above works fine for shift counts greater than or equal
9397 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9398 -- generates all 1'bits.
9400 -- What about nonbinary modulus ???
9403 Loc
: constant Source_Ptr
:= Sloc
(N
);
9404 Typ
: constant Entity_Id
:= Etype
(N
);
9405 Sign
: constant Uint
:= 2 ** (Esize
(Typ
) - 1);
9406 Mask
: constant Uint
:= (2 ** Esize
(Typ
)) - 1;
9407 Left
: constant Node_Id
:= Left_Opnd
(N
);
9408 Right
: constant Node_Id
:= Right_Opnd
(N
);
9412 if Modify_Tree_For_C
then
9414 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9415 -- compile time as a single constant.
9417 if Compile_Time_Known_Value
(Right
) then
9419 Val
: constant Uint
:= Expr_Value
(Right
);
9422 if Val
>= Esize
(Typ
) then
9423 Maskx
:= Make_Integer_Literal
(Loc
, Mask
);
9427 Make_Integer_Literal
(Loc
,
9428 Intval
=> Mask
- (Mask
/ (2 ** Expr_Value
(Right
))));
9436 Make_Op_Shift_Right
(Loc
,
9437 Left_Opnd
=> Make_Integer_Literal
(Loc
, Mask
),
9438 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
)));
9441 -- Now do the rewrite
9446 Make_Op_Shift_Right
(Loc
,
9448 Right_Opnd
=> Right
),
9450 Make_If_Expression
(Loc
,
9451 Expressions
=> New_List
(
9453 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
9454 Right_Opnd
=> Make_Integer_Literal
(Loc
, Sign
)),
9456 Make_Integer_Literal
(Loc
, 0)))));
9457 Analyze_And_Resolve
(N
, Typ
);
9460 end Expand_N_Op_Shift_Right_Arithmetic
;
9462 --------------------------
9463 -- Expand_N_Op_Subtract --
9464 --------------------------
9466 procedure Expand_N_Op_Subtract
(N
: Node_Id
) is
9467 Typ
: constant Entity_Id
:= Etype
(N
);
9470 Binary_Op_Validity_Checks
(N
);
9472 -- Check for MINIMIZED/ELIMINATED overflow mode
9474 if Minimized_Eliminated_Overflow_Check
(N
) then
9475 Apply_Arithmetic_Overflow_Check
(N
);
9479 -- N - 0 = N for integer types
9481 if Is_Integer_Type
(Typ
)
9482 and then Compile_Time_Known_Value
(Right_Opnd
(N
))
9483 and then Expr_Value
(Right_Opnd
(N
)) = 0
9485 Rewrite
(N
, Left_Opnd
(N
));
9489 -- Arithmetic overflow checks for signed integer/fixed point types
9491 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
9492 Apply_Arithmetic_Overflow_Check
(N
);
9495 -- Overflow checks for floating-point if -gnateF mode active
9497 Check_Float_Op_Overflow
(N
);
9498 end Expand_N_Op_Subtract
;
9500 ---------------------
9501 -- Expand_N_Op_Xor --
9502 ---------------------
9504 procedure Expand_N_Op_Xor
(N
: Node_Id
) is
9505 Typ
: constant Entity_Id
:= Etype
(N
);
9508 Binary_Op_Validity_Checks
(N
);
9510 if Is_Array_Type
(Etype
(N
)) then
9511 Expand_Boolean_Operator
(N
);
9513 elsif Is_Boolean_Type
(Etype
(N
)) then
9514 Adjust_Condition
(Left_Opnd
(N
));
9515 Adjust_Condition
(Right_Opnd
(N
));
9516 Set_Etype
(N
, Standard_Boolean
);
9517 Adjust_Result_Type
(N
, Typ
);
9519 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9520 Expand_Intrinsic_Call
(N
, Entity
(N
));
9523 end Expand_N_Op_Xor
;
9525 ----------------------
9526 -- Expand_N_Or_Else --
9527 ----------------------
9529 procedure Expand_N_Or_Else
(N
: Node_Id
)
9530 renames Expand_Short_Circuit_Operator
;
9532 -----------------------------------
9533 -- Expand_N_Qualified_Expression --
9534 -----------------------------------
9536 procedure Expand_N_Qualified_Expression
(N
: Node_Id
) is
9537 Operand
: constant Node_Id
:= Expression
(N
);
9538 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9541 -- Do validity check if validity checking operands
9543 if Validity_Checks_On
and Validity_Check_Operands
then
9544 Ensure_Valid
(Operand
);
9547 -- Apply possible constraint check
9549 Apply_Constraint_Check
(Operand
, Target_Type
, No_Sliding
=> True);
9551 if Do_Range_Check
(Operand
) then
9552 Set_Do_Range_Check
(Operand
, False);
9553 Generate_Range_Check
(Operand
, Target_Type
, CE_Range_Check_Failed
);
9555 end Expand_N_Qualified_Expression
;
9557 ------------------------------------
9558 -- Expand_N_Quantified_Expression --
9559 ------------------------------------
9563 -- for all X in range => Cond
9568 -- for X in range loop
9575 -- Similarly, an existentially quantified expression:
9577 -- for some X in range => Cond
9582 -- for X in range loop
9589 -- In both cases, the iteration may be over a container in which case it is
9590 -- given by an iterator specification, not a loop parameter specification.
9592 procedure Expand_N_Quantified_Expression
(N
: Node_Id
) is
9593 Actions
: constant List_Id
:= New_List
;
9594 For_All
: constant Boolean := All_Present
(N
);
9595 Iter_Spec
: constant Node_Id
:= Iterator_Specification
(N
);
9596 Loc
: constant Source_Ptr
:= Sloc
(N
);
9597 Loop_Spec
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
9604 -- Create the declaration of the flag which tracks the status of the
9605 -- quantified expression. Generate:
9607 -- Flag : Boolean := (True | False);
9609 Flag
:= Make_Temporary
(Loc
, 'T', N
);
9612 Make_Object_Declaration
(Loc
,
9613 Defining_Identifier
=> Flag
,
9614 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
9616 New_Occurrence_Of
(Boolean_Literals
(For_All
), Loc
)));
9618 -- Construct the circuitry which tracks the status of the quantified
9619 -- expression. Generate:
9621 -- if [not] Cond then
9622 -- Flag := (False | True);
9626 Cond
:= Relocate_Node
(Condition
(N
));
9629 Cond
:= Make_Op_Not
(Loc
, Cond
);
9633 Make_Implicit_If_Statement
(N
,
9635 Then_Statements
=> New_List
(
9636 Make_Assignment_Statement
(Loc
,
9637 Name
=> New_Occurrence_Of
(Flag
, Loc
),
9639 New_Occurrence_Of
(Boolean_Literals
(not For_All
), Loc
)),
9640 Make_Exit_Statement
(Loc
))));
9642 -- Build the loop equivalent of the quantified expression
9644 if Present
(Iter_Spec
) then
9646 Make_Iteration_Scheme
(Loc
,
9647 Iterator_Specification
=> Iter_Spec
);
9650 Make_Iteration_Scheme
(Loc
,
9651 Loop_Parameter_Specification
=> Loop_Spec
);
9655 Make_Loop_Statement
(Loc
,
9656 Iteration_Scheme
=> Scheme
,
9657 Statements
=> Stmts
,
9658 End_Label
=> Empty
));
9660 -- Transform the quantified expression
9663 Make_Expression_With_Actions
(Loc
,
9664 Expression
=> New_Occurrence_Of
(Flag
, Loc
),
9665 Actions
=> Actions
));
9666 Analyze_And_Resolve
(N
, Standard_Boolean
);
9667 end Expand_N_Quantified_Expression
;
9669 ---------------------------------
9670 -- Expand_N_Selected_Component --
9671 ---------------------------------
9673 procedure Expand_N_Selected_Component
(N
: Node_Id
) is
9674 Loc
: constant Source_Ptr
:= Sloc
(N
);
9675 Par
: constant Node_Id
:= Parent
(N
);
9676 P
: constant Node_Id
:= Prefix
(N
);
9677 S
: constant Node_Id
:= Selector_Name
(N
);
9678 Ptyp
: Entity_Id
:= Underlying_Type
(Etype
(P
));
9684 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean;
9685 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9686 -- unless the context of an assignment can provide size information.
9687 -- Don't we have a general routine that does this???
9689 function Is_Subtype_Declaration
return Boolean;
9690 -- The replacement of a discriminant reference by its value is required
9691 -- if this is part of the initialization of an temporary generated by a
9692 -- change of representation. This shows up as the construction of a
9693 -- discriminant constraint for a subtype declared at the same point as
9694 -- the entity in the prefix of the selected component. We recognize this
9695 -- case when the context of the reference is:
9696 -- subtype ST is T(Obj.D);
9697 -- where the entity for Obj comes from source, and ST has the same sloc.
9699 -----------------------
9700 -- In_Left_Hand_Side --
9701 -----------------------
9703 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean is
9705 return (Nkind
(Parent
(Comp
)) = N_Assignment_Statement
9706 and then Comp
= Name
(Parent
(Comp
)))
9707 or else (Present
(Parent
(Comp
))
9708 and then Nkind
(Parent
(Comp
)) in N_Subexpr
9709 and then In_Left_Hand_Side
(Parent
(Comp
)));
9710 end In_Left_Hand_Side
;
9712 -----------------------------
9713 -- Is_Subtype_Declaration --
9714 -----------------------------
9716 function Is_Subtype_Declaration
return Boolean is
9717 Par
: constant Node_Id
:= Parent
(N
);
9720 Nkind
(Par
) = N_Index_Or_Discriminant_Constraint
9721 and then Nkind
(Parent
(Parent
(Par
))) = N_Subtype_Declaration
9722 and then Comes_From_Source
(Entity
(Prefix
(N
)))
9723 and then Sloc
(Par
) = Sloc
(Entity
(Prefix
(N
)));
9724 end Is_Subtype_Declaration
;
9726 -- Start of processing for Expand_N_Selected_Component
9729 -- Insert explicit dereference if required
9731 if Is_Access_Type
(Ptyp
) then
9733 -- First set prefix type to proper access type, in case it currently
9734 -- has a private (non-access) view of this type.
9736 Set_Etype
(P
, Ptyp
);
9738 Insert_Explicit_Dereference
(P
);
9739 Analyze_And_Resolve
(P
, Designated_Type
(Ptyp
));
9741 if Ekind
(Etype
(P
)) = E_Private_Subtype
9742 and then Is_For_Access_Subtype
(Etype
(P
))
9744 Set_Etype
(P
, Base_Type
(Etype
(P
)));
9750 -- Deal with discriminant check required
9752 if Do_Discriminant_Check
(N
) then
9753 if Present
(Discriminant_Checking_Func
9754 (Original_Record_Component
(Entity
(S
))))
9756 -- Present the discriminant checking function to the backend, so
9757 -- that it can inline the call to the function.
9760 (Discriminant_Checking_Func
9761 (Original_Record_Component
(Entity
(S
))),
9764 -- Now reset the flag and generate the call
9766 Set_Do_Discriminant_Check
(N
, False);
9767 Generate_Discriminant_Check
(N
);
9769 -- In the case of Unchecked_Union, no discriminant checking is
9770 -- actually performed.
9773 Set_Do_Discriminant_Check
(N
, False);
9777 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9778 -- function, then additional actuals must be passed.
9780 if Ada_Version
>= Ada_2005
9781 and then Is_Build_In_Place_Function_Call
(P
)
9783 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
9786 -- Gigi cannot handle unchecked conversions that are the prefix of a
9787 -- selected component with discriminants. This must be checked during
9788 -- expansion, because during analysis the type of the selector is not
9789 -- known at the point the prefix is analyzed. If the conversion is the
9790 -- target of an assignment, then we cannot force the evaluation.
9792 if Nkind
(Prefix
(N
)) = N_Unchecked_Type_Conversion
9793 and then Has_Discriminants
(Etype
(N
))
9794 and then not In_Left_Hand_Side
(N
)
9796 Force_Evaluation
(Prefix
(N
));
9799 -- Remaining processing applies only if selector is a discriminant
9801 if Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
then
9803 -- If the selector is a discriminant of a constrained record type,
9804 -- we may be able to rewrite the expression with the actual value
9805 -- of the discriminant, a useful optimization in some cases.
9807 if Is_Record_Type
(Ptyp
)
9808 and then Has_Discriminants
(Ptyp
)
9809 and then Is_Constrained
(Ptyp
)
9811 -- Do this optimization for discrete types only, and not for
9812 -- access types (access discriminants get us into trouble).
9814 if not Is_Discrete_Type
(Etype
(N
)) then
9817 -- Don't do this on the left-hand side of an assignment statement.
9818 -- Normally one would think that references like this would not
9819 -- occur, but they do in generated code, and mean that we really
9820 -- do want to assign the discriminant.
9822 elsif Nkind
(Par
) = N_Assignment_Statement
9823 and then Name
(Par
) = N
9827 -- Don't do this optimization for the prefix of an attribute or
9828 -- the name of an object renaming declaration since these are
9829 -- contexts where we do not want the value anyway.
9831 elsif (Nkind
(Par
) = N_Attribute_Reference
9832 and then Prefix
(Par
) = N
)
9833 or else Is_Renamed_Object
(N
)
9837 -- Don't do this optimization if we are within the code for a
9838 -- discriminant check, since the whole point of such a check may
9839 -- be to verify the condition on which the code below depends.
9841 elsif Is_In_Discriminant_Check
(N
) then
9844 -- Green light to see if we can do the optimization. There is
9845 -- still one condition that inhibits the optimization below but
9846 -- now is the time to check the particular discriminant.
9849 -- Loop through discriminants to find the matching discriminant
9850 -- constraint to see if we can copy it.
9852 Disc
:= First_Discriminant
(Ptyp
);
9853 Dcon
:= First_Elmt
(Discriminant_Constraint
(Ptyp
));
9854 Discr_Loop
: while Present
(Dcon
) loop
9855 Dval
:= Node
(Dcon
);
9857 -- Check if this is the matching discriminant and if the
9858 -- discriminant value is simple enough to make sense to
9859 -- copy. We don't want to copy complex expressions, and
9860 -- indeed to do so can cause trouble (before we put in
9861 -- this guard, a discriminant expression containing an
9862 -- AND THEN was copied, causing problems for coverage
9865 -- However, if the reference is part of the initialization
9866 -- code generated for an object declaration, we must use
9867 -- the discriminant value from the subtype constraint,
9868 -- because the selected component may be a reference to the
9869 -- object being initialized, whose discriminant is not yet
9870 -- set. This only happens in complex cases involving changes
9871 -- or representation.
9873 if Disc
= Entity
(Selector_Name
(N
))
9874 and then (Is_Entity_Name
(Dval
)
9875 or else Compile_Time_Known_Value
(Dval
)
9876 or else Is_Subtype_Declaration
)
9878 -- Here we have the matching discriminant. Check for
9879 -- the case of a discriminant of a component that is
9880 -- constrained by an outer discriminant, which cannot
9881 -- be optimized away.
9883 if Denotes_Discriminant
9884 (Dval
, Check_Concurrent
=> True)
9888 elsif Nkind
(Original_Node
(Dval
)) = N_Selected_Component
9890 Denotes_Discriminant
9891 (Selector_Name
(Original_Node
(Dval
)), True)
9895 -- Do not retrieve value if constraint is not static. It
9896 -- is generally not useful, and the constraint may be a
9897 -- rewritten outer discriminant in which case it is in
9900 elsif Is_Entity_Name
(Dval
)
9902 Nkind
(Parent
(Entity
(Dval
))) = N_Object_Declaration
9903 and then Present
(Expression
(Parent
(Entity
(Dval
))))
9905 Is_OK_Static_Expression
9906 (Expression
(Parent
(Entity
(Dval
))))
9910 -- In the context of a case statement, the expression may
9911 -- have the base type of the discriminant, and we need to
9912 -- preserve the constraint to avoid spurious errors on
9915 elsif Nkind
(Parent
(N
)) = N_Case_Statement
9916 and then Etype
(Dval
) /= Etype
(Disc
)
9919 Make_Qualified_Expression
(Loc
,
9921 New_Occurrence_Of
(Etype
(Disc
), Loc
),
9923 New_Copy_Tree
(Dval
)));
9924 Analyze_And_Resolve
(N
, Etype
(Disc
));
9926 -- In case that comes out as a static expression,
9927 -- reset it (a selected component is never static).
9929 Set_Is_Static_Expression
(N
, False);
9932 -- Otherwise we can just copy the constraint, but the
9933 -- result is certainly not static. In some cases the
9934 -- discriminant constraint has been analyzed in the
9935 -- context of the original subtype indication, but for
9936 -- itypes the constraint might not have been analyzed
9937 -- yet, and this must be done now.
9940 Rewrite
(N
, New_Copy_Tree
(Dval
));
9941 Analyze_And_Resolve
(N
);
9942 Set_Is_Static_Expression
(N
, False);
9948 Next_Discriminant
(Disc
);
9949 end loop Discr_Loop
;
9951 -- Note: the above loop should always find a matching
9952 -- discriminant, but if it does not, we just missed an
9953 -- optimization due to some glitch (perhaps a previous
9954 -- error), so ignore.
9959 -- The only remaining processing is in the case of a discriminant of
9960 -- a concurrent object, where we rewrite the prefix to denote the
9961 -- corresponding record type. If the type is derived and has renamed
9962 -- discriminants, use corresponding discriminant, which is the one
9963 -- that appears in the corresponding record.
9965 if not Is_Concurrent_Type
(Ptyp
) then
9969 Disc
:= Entity
(Selector_Name
(N
));
9971 if Is_Derived_Type
(Ptyp
)
9972 and then Present
(Corresponding_Discriminant
(Disc
))
9974 Disc
:= Corresponding_Discriminant
(Disc
);
9978 Make_Selected_Component
(Loc
,
9980 Unchecked_Convert_To
(Corresponding_Record_Type
(Ptyp
),
9982 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc
)));
9988 -- Set Atomic_Sync_Required if necessary for atomic component
9990 if Nkind
(N
) = N_Selected_Component
then
9992 E
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
9996 -- If component is atomic, but type is not, setting depends on
9997 -- disable/enable state for the component.
9999 if Is_Atomic
(E
) and then not Is_Atomic
(Etype
(E
)) then
10000 Set
:= not Atomic_Synchronization_Disabled
(E
);
10002 -- If component is not atomic, but its type is atomic, setting
10003 -- depends on disable/enable state for the type.
10005 elsif not Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
10006 Set
:= not Atomic_Synchronization_Disabled
(Etype
(E
));
10008 -- If both component and type are atomic, we disable if either
10009 -- component or its type have sync disabled.
10011 elsif Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
10012 Set
:= (not Atomic_Synchronization_Disabled
(E
))
10014 (not Atomic_Synchronization_Disabled
(Etype
(E
)));
10020 -- Set flag if required
10023 Activate_Atomic_Synchronization
(N
);
10027 end Expand_N_Selected_Component
;
10029 --------------------
10030 -- Expand_N_Slice --
10031 --------------------
10033 procedure Expand_N_Slice
(N
: Node_Id
) is
10034 Loc
: constant Source_Ptr
:= Sloc
(N
);
10035 Typ
: constant Entity_Id
:= Etype
(N
);
10037 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean;
10038 -- Check whether the argument is an actual for a procedure call, in
10039 -- which case the expansion of a bit-packed slice is deferred until the
10040 -- call itself is expanded. The reason this is required is that we might
10041 -- have an IN OUT or OUT parameter, and the copy out is essential, and
10042 -- that copy out would be missed if we created a temporary here in
10043 -- Expand_N_Slice. Note that we don't bother to test specifically for an
10044 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
10045 -- is harmless to defer expansion in the IN case, since the call
10046 -- processing will still generate the appropriate copy in operation,
10047 -- which will take care of the slice.
10049 procedure Make_Temporary_For_Slice
;
10050 -- Create a named variable for the value of the slice, in cases where
10051 -- the back-end cannot handle it properly, e.g. when packed types or
10052 -- unaligned slices are involved.
10054 -------------------------
10055 -- Is_Procedure_Actual --
10056 -------------------------
10058 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean is
10059 Par
: Node_Id
:= Parent
(N
);
10063 -- If our parent is a procedure call we can return
10065 if Nkind
(Par
) = N_Procedure_Call_Statement
then
10068 -- If our parent is a type conversion, keep climbing the tree,
10069 -- since a type conversion can be a procedure actual. Also keep
10070 -- climbing if parameter association or a qualified expression,
10071 -- since these are additional cases that do can appear on
10072 -- procedure actuals.
10074 elsif Nkind_In
(Par
, N_Type_Conversion
,
10075 N_Parameter_Association
,
10076 N_Qualified_Expression
)
10078 Par
:= Parent
(Par
);
10080 -- Any other case is not what we are looking for
10086 end Is_Procedure_Actual
;
10088 ------------------------------
10089 -- Make_Temporary_For_Slice --
10090 ------------------------------
10092 procedure Make_Temporary_For_Slice
is
10093 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
10098 Make_Object_Declaration
(Loc
,
10099 Defining_Identifier
=> Ent
,
10100 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
10102 Set_No_Initialization
(Decl
);
10104 Insert_Actions
(N
, New_List
(
10106 Make_Assignment_Statement
(Loc
,
10107 Name
=> New_Occurrence_Of
(Ent
, Loc
),
10108 Expression
=> Relocate_Node
(N
))));
10110 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
10111 Analyze_And_Resolve
(N
, Typ
);
10112 end Make_Temporary_For_Slice
;
10116 Pref
: constant Node_Id
:= Prefix
(N
);
10117 Pref_Typ
: Entity_Id
:= Etype
(Pref
);
10119 -- Start of processing for Expand_N_Slice
10122 -- Special handling for access types
10124 if Is_Access_Type
(Pref_Typ
) then
10125 Pref_Typ
:= Designated_Type
(Pref_Typ
);
10128 Make_Explicit_Dereference
(Sloc
(N
),
10129 Prefix
=> Relocate_Node
(Pref
)));
10131 Analyze_And_Resolve
(Pref
, Pref_Typ
);
10134 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10135 -- function, then additional actuals must be passed.
10137 if Ada_Version
>= Ada_2005
10138 and then Is_Build_In_Place_Function_Call
(Pref
)
10140 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
10143 -- The remaining case to be handled is packed slices. We can leave
10144 -- packed slices as they are in the following situations:
10146 -- 1. Right or left side of an assignment (we can handle this
10147 -- situation correctly in the assignment statement expansion).
10149 -- 2. Prefix of indexed component (the slide is optimized away in this
10150 -- case, see the start of Expand_N_Slice.)
10152 -- 3. Object renaming declaration, since we want the name of the
10153 -- slice, not the value.
10155 -- 4. Argument to procedure call, since copy-in/copy-out handling may
10156 -- be required, and this is handled in the expansion of call
10159 -- 5. Prefix of an address attribute (this is an error which is caught
10160 -- elsewhere, and the expansion would interfere with generating the
10163 if not Is_Packed
(Typ
) then
10165 -- Apply transformation for actuals of a function call, where
10166 -- Expand_Actuals is not used.
10168 if Nkind
(Parent
(N
)) = N_Function_Call
10169 and then Is_Possibly_Unaligned_Slice
(N
)
10171 Make_Temporary_For_Slice
;
10174 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
10175 or else (Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
10176 and then Parent
(N
) = Name
(Parent
(Parent
(N
))))
10180 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
10181 or else Is_Renamed_Object
(N
)
10182 or else Is_Procedure_Actual
(N
)
10186 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
10187 and then Attribute_Name
(Parent
(N
)) = Name_Address
10192 Make_Temporary_For_Slice
;
10194 end Expand_N_Slice
;
10196 ------------------------------
10197 -- Expand_N_Type_Conversion --
10198 ------------------------------
10200 procedure Expand_N_Type_Conversion
(N
: Node_Id
) is
10201 Loc
: constant Source_Ptr
:= Sloc
(N
);
10202 Operand
: constant Node_Id
:= Expression
(N
);
10203 Target_Type
: constant Entity_Id
:= Etype
(N
);
10204 Operand_Type
: Entity_Id
:= Etype
(Operand
);
10206 procedure Handle_Changed_Representation
;
10207 -- This is called in the case of record and array type conversions to
10208 -- see if there is a change of representation to be handled. Change of
10209 -- representation is actually handled at the assignment statement level,
10210 -- and what this procedure does is rewrite node N conversion as an
10211 -- assignment to temporary. If there is no change of representation,
10212 -- then the conversion node is unchanged.
10214 procedure Raise_Accessibility_Error
;
10215 -- Called when we know that an accessibility check will fail. Rewrites
10216 -- node N to an appropriate raise statement and outputs warning msgs.
10217 -- The Etype of the raise node is set to Target_Type. Note that in this
10218 -- case the rest of the processing should be skipped (i.e. the call to
10219 -- this procedure will be followed by "goto Done").
10221 procedure Real_Range_Check
;
10222 -- Handles generation of range check for real target value
10224 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean;
10225 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
10226 -- evaluates to True.
10228 -----------------------------------
10229 -- Handle_Changed_Representation --
10230 -----------------------------------
10232 procedure Handle_Changed_Representation
is
10241 -- Nothing else to do if no change of representation
10243 if Same_Representation
(Operand_Type
, Target_Type
) then
10246 -- The real change of representation work is done by the assignment
10247 -- statement processing. So if this type conversion is appearing as
10248 -- the expression of an assignment statement, nothing needs to be
10249 -- done to the conversion.
10251 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
then
10254 -- Otherwise we need to generate a temporary variable, and do the
10255 -- change of representation assignment into that temporary variable.
10256 -- The conversion is then replaced by a reference to this variable.
10261 -- If type is unconstrained we have to add a constraint, copied
10262 -- from the actual value of the left-hand side.
10264 if not Is_Constrained
(Target_Type
) then
10265 if Has_Discriminants
(Operand_Type
) then
10266 Disc
:= First_Discriminant
(Operand_Type
);
10268 if Disc
/= First_Stored_Discriminant
(Operand_Type
) then
10269 Disc
:= First_Stored_Discriminant
(Operand_Type
);
10273 while Present
(Disc
) loop
10275 Make_Selected_Component
(Loc
,
10277 Duplicate_Subexpr_Move_Checks
(Operand
),
10279 Make_Identifier
(Loc
, Chars
(Disc
))));
10280 Next_Discriminant
(Disc
);
10283 elsif Is_Array_Type
(Operand_Type
) then
10284 N_Ix
:= First_Index
(Target_Type
);
10287 for J
in 1 .. Number_Dimensions
(Operand_Type
) loop
10289 -- We convert the bounds explicitly. We use an unchecked
10290 -- conversion because bounds checks are done elsewhere.
10295 Unchecked_Convert_To
(Etype
(N_Ix
),
10296 Make_Attribute_Reference
(Loc
,
10298 Duplicate_Subexpr_No_Checks
10299 (Operand
, Name_Req
=> True),
10300 Attribute_Name
=> Name_First
,
10301 Expressions
=> New_List
(
10302 Make_Integer_Literal
(Loc
, J
)))),
10305 Unchecked_Convert_To
(Etype
(N_Ix
),
10306 Make_Attribute_Reference
(Loc
,
10308 Duplicate_Subexpr_No_Checks
10309 (Operand
, Name_Req
=> True),
10310 Attribute_Name
=> Name_Last
,
10311 Expressions
=> New_List
(
10312 Make_Integer_Literal
(Loc
, J
))))));
10319 Odef
:= New_Occurrence_Of
(Target_Type
, Loc
);
10321 if Present
(Cons
) then
10323 Make_Subtype_Indication
(Loc
,
10324 Subtype_Mark
=> Odef
,
10326 Make_Index_Or_Discriminant_Constraint
(Loc
,
10327 Constraints
=> Cons
));
10330 Temp
:= Make_Temporary
(Loc
, 'C');
10332 Make_Object_Declaration
(Loc
,
10333 Defining_Identifier
=> Temp
,
10334 Object_Definition
=> Odef
);
10336 Set_No_Initialization
(Decl
, True);
10338 -- Insert required actions. It is essential to suppress checks
10339 -- since we have suppressed default initialization, which means
10340 -- that the variable we create may have no discriminants.
10345 Make_Assignment_Statement
(Loc
,
10346 Name
=> New_Occurrence_Of
(Temp
, Loc
),
10347 Expression
=> Relocate_Node
(N
))),
10348 Suppress
=> All_Checks
);
10350 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
10353 end Handle_Changed_Representation
;
10355 -------------------------------
10356 -- Raise_Accessibility_Error --
10357 -------------------------------
10359 procedure Raise_Accessibility_Error
is
10361 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10363 Make_Raise_Program_Error
(Sloc
(N
),
10364 Reason
=> PE_Accessibility_Check_Failed
));
10365 Set_Etype
(N
, Target_Type
);
10367 Error_Msg_N
("<<accessibility check failure", N
);
10368 Error_Msg_NE
("\<<& [", N
, Standard_Program_Error
);
10369 end Raise_Accessibility_Error
;
10371 ----------------------
10372 -- Real_Range_Check --
10373 ----------------------
10375 -- Case of conversions to floating-point or fixed-point. If range checks
10376 -- are enabled and the target type has a range constraint, we convert:
10382 -- Tnn : typ'Base := typ'Base (x);
10383 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10386 -- This is necessary when there is a conversion of integer to float or
10387 -- to fixed-point to ensure that the correct checks are made. It is not
10388 -- necessary for float to float where it is enough to simply set the
10389 -- Do_Range_Check flag.
10391 procedure Real_Range_Check
is
10392 Btyp
: constant Entity_Id
:= Base_Type
(Target_Type
);
10393 Lo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
10394 Hi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
10395 Xtyp
: constant Entity_Id
:= Etype
(Operand
);
10400 -- Nothing to do if conversion was rewritten
10402 if Nkind
(N
) /= N_Type_Conversion
then
10406 -- Nothing to do if range checks suppressed, or target has the same
10407 -- range as the base type (or is the base type).
10409 if Range_Checks_Suppressed
(Target_Type
)
10410 or else (Lo
= Type_Low_Bound
(Btyp
)
10412 Hi
= Type_High_Bound
(Btyp
))
10417 -- Nothing to do if expression is an entity on which checks have been
10420 if Is_Entity_Name
(Operand
)
10421 and then Range_Checks_Suppressed
(Entity
(Operand
))
10426 -- Nothing to do if bounds are all static and we can tell that the
10427 -- expression is within the bounds of the target. Note that if the
10428 -- operand is of an unconstrained floating-point type, then we do
10429 -- not trust it to be in range (might be infinite)
10432 S_Lo
: constant Node_Id
:= Type_Low_Bound
(Xtyp
);
10433 S_Hi
: constant Node_Id
:= Type_High_Bound
(Xtyp
);
10436 if (not Is_Floating_Point_Type
(Xtyp
)
10437 or else Is_Constrained
(Xtyp
))
10438 and then Compile_Time_Known_Value
(S_Lo
)
10439 and then Compile_Time_Known_Value
(S_Hi
)
10440 and then Compile_Time_Known_Value
(Hi
)
10441 and then Compile_Time_Known_Value
(Lo
)
10444 D_Lov
: constant Ureal
:= Expr_Value_R
(Lo
);
10445 D_Hiv
: constant Ureal
:= Expr_Value_R
(Hi
);
10450 if Is_Real_Type
(Xtyp
) then
10451 S_Lov
:= Expr_Value_R
(S_Lo
);
10452 S_Hiv
:= Expr_Value_R
(S_Hi
);
10454 S_Lov
:= UR_From_Uint
(Expr_Value
(S_Lo
));
10455 S_Hiv
:= UR_From_Uint
(Expr_Value
(S_Hi
));
10459 and then S_Lov
>= D_Lov
10460 and then S_Hiv
<= D_Hiv
10462 -- Unset the range check flag on the current value of
10463 -- Expression (N), since the captured Operand may have
10464 -- been rewritten (such as for the case of a conversion
10465 -- to a fixed-point type).
10467 Set_Do_Range_Check
(Expression
(N
), False);
10475 -- For float to float conversions, we are done
10477 if Is_Floating_Point_Type
(Xtyp
)
10479 Is_Floating_Point_Type
(Btyp
)
10484 -- Otherwise rewrite the conversion as described above
10486 Conv
:= Relocate_Node
(N
);
10487 Rewrite
(Subtype_Mark
(Conv
), New_Occurrence_Of
(Btyp
, Loc
));
10488 Set_Etype
(Conv
, Btyp
);
10490 -- Enable overflow except for case of integer to float conversions,
10491 -- where it is never required, since we can never have overflow in
10494 if not Is_Integer_Type
(Etype
(Operand
)) then
10495 Enable_Overflow_Check
(Conv
);
10498 Tnn
:= Make_Temporary
(Loc
, 'T', Conv
);
10500 Insert_Actions
(N
, New_List
(
10501 Make_Object_Declaration
(Loc
,
10502 Defining_Identifier
=> Tnn
,
10503 Object_Definition
=> New_Occurrence_Of
(Btyp
, Loc
),
10504 Constant_Present
=> True,
10505 Expression
=> Conv
),
10507 Make_Raise_Constraint_Error
(Loc
,
10512 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10514 Make_Attribute_Reference
(Loc
,
10515 Attribute_Name
=> Name_First
,
10517 New_Occurrence_Of
(Target_Type
, Loc
))),
10521 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10523 Make_Attribute_Reference
(Loc
,
10524 Attribute_Name
=> Name_Last
,
10526 New_Occurrence_Of
(Target_Type
, Loc
)))),
10527 Reason
=> CE_Range_Check_Failed
)));
10529 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
10530 Analyze_And_Resolve
(N
, Btyp
);
10531 end Real_Range_Check
;
10533 -----------------------------
10534 -- Has_Extra_Accessibility --
10535 -----------------------------
10537 -- Returns true for a formal of an anonymous access type or for
10538 -- an Ada 2012-style stand-alone object of an anonymous access type.
10540 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean is
10542 if Is_Formal
(Id
) or else Ekind_In
(Id
, E_Constant
, E_Variable
) then
10543 return Present
(Effective_Extra_Accessibility
(Id
));
10547 end Has_Extra_Accessibility
;
10549 -- Start of processing for Expand_N_Type_Conversion
10552 -- First remove check marks put by the semantic analysis on the type
10553 -- conversion between array types. We need these checks, and they will
10554 -- be generated by this expansion routine, but we do not depend on these
10555 -- flags being set, and since we do intend to expand the checks in the
10556 -- front end, we don't want them on the tree passed to the back end.
10558 if Is_Array_Type
(Target_Type
) then
10559 if Is_Constrained
(Target_Type
) then
10560 Set_Do_Length_Check
(N
, False);
10562 Set_Do_Range_Check
(Operand
, False);
10566 -- Nothing at all to do if conversion is to the identical type so remove
10567 -- the conversion completely, it is useless, except that it may carry
10568 -- an Assignment_OK attribute, which must be propagated to the operand.
10570 if Operand_Type
= Target_Type
then
10571 if Assignment_OK
(N
) then
10572 Set_Assignment_OK
(Operand
);
10575 Rewrite
(N
, Relocate_Node
(Operand
));
10579 -- Nothing to do if this is the second argument of read. This is a
10580 -- "backwards" conversion that will be handled by the specialized code
10581 -- in attribute processing.
10583 if Nkind
(Parent
(N
)) = N_Attribute_Reference
10584 and then Attribute_Name
(Parent
(N
)) = Name_Read
10585 and then Next
(First
(Expressions
(Parent
(N
)))) = N
10590 -- Check for case of converting to a type that has an invariant
10591 -- associated with it. This required an invariant check. We convert
10597 -- do invariant_check (typ (expr)) in typ (expr);
10599 -- using Duplicate_Subexpr to avoid multiple side effects
10601 -- Note: the Comes_From_Source check, and then the resetting of this
10602 -- flag prevents what would otherwise be an infinite recursion.
10604 if Has_Invariants
(Target_Type
)
10605 and then Present
(Invariant_Procedure
(Target_Type
))
10606 and then Comes_From_Source
(N
)
10608 Set_Comes_From_Source
(N
, False);
10610 Make_Expression_With_Actions
(Loc
,
10611 Actions
=> New_List
(
10612 Make_Invariant_Call
(Duplicate_Subexpr
(N
))),
10613 Expression
=> Duplicate_Subexpr_No_Checks
(N
)));
10614 Analyze_And_Resolve
(N
, Target_Type
);
10618 -- Here if we may need to expand conversion
10620 -- If the operand of the type conversion is an arithmetic operation on
10621 -- signed integers, and the based type of the signed integer type in
10622 -- question is smaller than Standard.Integer, we promote both of the
10623 -- operands to type Integer.
10625 -- For example, if we have
10627 -- target-type (opnd1 + opnd2)
10629 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10632 -- target-type (integer(opnd1) + integer(opnd2))
10634 -- We do this because we are always allowed to compute in a larger type
10635 -- if we do the right thing with the result, and in this case we are
10636 -- going to do a conversion which will do an appropriate check to make
10637 -- sure that things are in range of the target type in any case. This
10638 -- avoids some unnecessary intermediate overflows.
10640 -- We might consider a similar transformation in the case where the
10641 -- target is a real type or a 64-bit integer type, and the operand
10642 -- is an arithmetic operation using a 32-bit integer type. However,
10643 -- we do not bother with this case, because it could cause significant
10644 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
10645 -- much cheaper, but we don't want different behavior on 32-bit and
10646 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10647 -- handles the configurable run-time cases where 64-bit arithmetic
10648 -- may simply be unavailable.
10650 -- Note: this circuit is partially redundant with respect to the circuit
10651 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10652 -- the processing here. Also we still need the Checks circuit, since we
10653 -- have to be sure not to generate junk overflow checks in the first
10654 -- place, since it would be trick to remove them here.
10656 if Integer_Promotion_Possible
(N
) then
10658 -- All conditions met, go ahead with transformation
10666 Make_Type_Conversion
(Loc
,
10667 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
10668 Expression
=> Relocate_Node
(Right_Opnd
(Operand
)));
10670 Opnd
:= New_Op_Node
(Nkind
(Operand
), Loc
);
10671 Set_Right_Opnd
(Opnd
, R
);
10673 if Nkind
(Operand
) in N_Binary_Op
then
10675 Make_Type_Conversion
(Loc
,
10676 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
10677 Expression
=> Relocate_Node
(Left_Opnd
(Operand
)));
10679 Set_Left_Opnd
(Opnd
, L
);
10683 Make_Type_Conversion
(Loc
,
10684 Subtype_Mark
=> Relocate_Node
(Subtype_Mark
(N
)),
10685 Expression
=> Opnd
));
10687 Analyze_And_Resolve
(N
, Target_Type
);
10692 -- Do validity check if validity checking operands
10694 if Validity_Checks_On
and Validity_Check_Operands
then
10695 Ensure_Valid
(Operand
);
10698 -- Special case of converting from non-standard boolean type
10700 if Is_Boolean_Type
(Operand_Type
)
10701 and then (Nonzero_Is_True
(Operand_Type
))
10703 Adjust_Condition
(Operand
);
10704 Set_Etype
(Operand
, Standard_Boolean
);
10705 Operand_Type
:= Standard_Boolean
;
10708 -- Case of converting to an access type
10710 if Is_Access_Type
(Target_Type
) then
10712 -- Apply an accessibility check when the conversion operand is an
10713 -- access parameter (or a renaming thereof), unless conversion was
10714 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10715 -- Note that other checks may still need to be applied below (such
10716 -- as tagged type checks).
10718 if Is_Entity_Name
(Operand
)
10719 and then Has_Extra_Accessibility
(Entity
(Operand
))
10720 and then Ekind
(Etype
(Operand
)) = E_Anonymous_Access_Type
10721 and then (Nkind
(Original_Node
(N
)) /= N_Attribute_Reference
10722 or else Attribute_Name
(Original_Node
(N
)) = Name_Access
)
10724 Apply_Accessibility_Check
10725 (Operand
, Target_Type
, Insert_Node
=> Operand
);
10727 -- If the level of the operand type is statically deeper than the
10728 -- level of the target type, then force Program_Error. Note that this
10729 -- can only occur for cases where the attribute is within the body of
10730 -- an instantiation, otherwise the conversion will already have been
10731 -- rejected as illegal.
10733 -- Note: warnings are issued by the analyzer for the instance cases
10735 elsif In_Instance_Body
10737 -- The case where the target type is an anonymous access type of
10738 -- a discriminant is excluded, because the level of such a type
10739 -- depends on the context and currently the level returned for such
10740 -- types is zero, resulting in warnings about about check failures
10741 -- in certain legal cases involving class-wide interfaces as the
10742 -- designated type (some cases, such as return statements, are
10743 -- checked at run time, but not clear if these are handled right
10744 -- in general, see 3.10.2(12/2-12.5/3) ???).
10747 not (Ekind
(Target_Type
) = E_Anonymous_Access_Type
10748 and then Present
(Associated_Node_For_Itype
(Target_Type
))
10749 and then Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
10750 N_Discriminant_Specification
)
10752 Type_Access_Level
(Operand_Type
) > Type_Access_Level
(Target_Type
)
10754 Raise_Accessibility_Error
;
10757 -- When the operand is a selected access discriminant the check needs
10758 -- to be made against the level of the object denoted by the prefix
10759 -- of the selected name. Force Program_Error for this case as well
10760 -- (this accessibility violation can only happen if within the body
10761 -- of an instantiation).
10763 elsif In_Instance_Body
10764 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
10765 and then Nkind
(Operand
) = N_Selected_Component
10766 and then Object_Access_Level
(Operand
) >
10767 Type_Access_Level
(Target_Type
)
10769 Raise_Accessibility_Error
;
10774 -- Case of conversions of tagged types and access to tagged types
10776 -- When needed, that is to say when the expression is class-wide, Add
10777 -- runtime a tag check for (strict) downward conversion by using the
10778 -- membership test, generating:
10780 -- [constraint_error when Operand not in Target_Type'Class]
10782 -- or in the access type case
10784 -- [constraint_error
10785 -- when Operand /= null
10786 -- and then Operand.all not in
10787 -- Designated_Type (Target_Type)'Class]
10789 if (Is_Access_Type
(Target_Type
)
10790 and then Is_Tagged_Type
(Designated_Type
(Target_Type
)))
10791 or else Is_Tagged_Type
(Target_Type
)
10793 -- Do not do any expansion in the access type case if the parent is a
10794 -- renaming, since this is an error situation which will be caught by
10795 -- Sem_Ch8, and the expansion can interfere with this error check.
10797 if Is_Access_Type
(Target_Type
) and then Is_Renamed_Object
(N
) then
10801 -- Otherwise, proceed with processing tagged conversion
10803 Tagged_Conversion
: declare
10804 Actual_Op_Typ
: Entity_Id
;
10805 Actual_Targ_Typ
: Entity_Id
;
10806 Make_Conversion
: Boolean := False;
10807 Root_Op_Typ
: Entity_Id
;
10809 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
);
10810 -- Create a membership check to test whether Operand is a member
10811 -- of Targ_Typ. If the original Target_Type is an access, include
10812 -- a test for null value. The check is inserted at N.
10814 --------------------
10815 -- Make_Tag_Check --
10816 --------------------
10818 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
) is
10823 -- [Constraint_Error
10824 -- when Operand /= null
10825 -- and then Operand.all not in Targ_Typ]
10827 if Is_Access_Type
(Target_Type
) then
10829 Make_And_Then
(Loc
,
10832 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10833 Right_Opnd
=> Make_Null
(Loc
)),
10838 Make_Explicit_Dereference
(Loc
,
10839 Prefix
=> Duplicate_Subexpr_No_Checks
(Operand
)),
10840 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
)));
10843 -- [Constraint_Error when Operand not in Targ_Typ]
10848 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10849 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
));
10853 Make_Raise_Constraint_Error
(Loc
,
10855 Reason
=> CE_Tag_Check_Failed
));
10856 end Make_Tag_Check
;
10858 -- Start of processing for Tagged_Conversion
10861 -- Handle entities from the limited view
10863 if Is_Access_Type
(Operand_Type
) then
10865 Available_View
(Designated_Type
(Operand_Type
));
10867 Actual_Op_Typ
:= Operand_Type
;
10870 if Is_Access_Type
(Target_Type
) then
10872 Available_View
(Designated_Type
(Target_Type
));
10874 Actual_Targ_Typ
:= Target_Type
;
10877 Root_Op_Typ
:= Root_Type
(Actual_Op_Typ
);
10879 -- Ada 2005 (AI-251): Handle interface type conversion
10881 if Is_Interface
(Actual_Op_Typ
)
10883 Is_Interface
(Actual_Targ_Typ
)
10885 Expand_Interface_Conversion
(N
);
10889 if not Tag_Checks_Suppressed
(Actual_Targ_Typ
) then
10891 -- Create a runtime tag check for a downward class-wide type
10894 if Is_Class_Wide_Type
(Actual_Op_Typ
)
10895 and then Actual_Op_Typ
/= Actual_Targ_Typ
10896 and then Root_Op_Typ
/= Actual_Targ_Typ
10897 and then Is_Ancestor
(Root_Op_Typ
, Actual_Targ_Typ
,
10898 Use_Full_View
=> True)
10900 Make_Tag_Check
(Class_Wide_Type
(Actual_Targ_Typ
));
10901 Make_Conversion
:= True;
10904 -- AI05-0073: If the result subtype of the function is defined
10905 -- by an access_definition designating a specific tagged type
10906 -- T, a check is made that the result value is null or the tag
10907 -- of the object designated by the result value identifies T.
10908 -- Constraint_Error is raised if this check fails.
10910 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
10913 Func_Typ
: Entity_Id
;
10916 -- Climb scope stack looking for the enclosing function
10918 Func
:= Current_Scope
;
10919 while Present
(Func
)
10920 and then Ekind
(Func
) /= E_Function
10922 Func
:= Scope
(Func
);
10925 -- The function's return subtype must be defined using
10926 -- an access definition.
10928 if Nkind
(Result_Definition
(Parent
(Func
))) =
10929 N_Access_Definition
10931 Func_Typ
:= Directly_Designated_Type
(Etype
(Func
));
10933 -- The return subtype denotes a specific tagged type,
10934 -- in other words, a non class-wide type.
10936 if Is_Tagged_Type
(Func_Typ
)
10937 and then not Is_Class_Wide_Type
(Func_Typ
)
10939 Make_Tag_Check
(Actual_Targ_Typ
);
10940 Make_Conversion
:= True;
10946 -- We have generated a tag check for either a class-wide type
10947 -- conversion or for AI05-0073.
10949 if Make_Conversion
then
10954 Make_Unchecked_Type_Conversion
(Loc
,
10955 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
10956 Expression
=> Relocate_Node
(Expression
(N
)));
10958 Analyze_And_Resolve
(N
, Target_Type
);
10962 end Tagged_Conversion
;
10964 -- Case of other access type conversions
10966 elsif Is_Access_Type
(Target_Type
) then
10967 Apply_Constraint_Check
(Operand
, Target_Type
);
10969 -- Case of conversions from a fixed-point type
10971 -- These conversions require special expansion and processing, found in
10972 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10973 -- since from a semantic point of view, these are simple integer
10974 -- conversions, which do not need further processing.
10976 elsif Is_Fixed_Point_Type
(Operand_Type
)
10977 and then not Conversion_OK
(N
)
10979 -- We should never see universal fixed at this case, since the
10980 -- expansion of the constituent divide or multiply should have
10981 -- eliminated the explicit mention of universal fixed.
10983 pragma Assert
(Operand_Type
/= Universal_Fixed
);
10985 -- Check for special case of the conversion to universal real that
10986 -- occurs as a result of the use of a round attribute. In this case,
10987 -- the real type for the conversion is taken from the target type of
10988 -- the Round attribute and the result must be marked as rounded.
10990 if Target_Type
= Universal_Real
10991 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
10992 and then Attribute_Name
(Parent
(N
)) = Name_Round
10994 Set_Rounded_Result
(N
);
10995 Set_Etype
(N
, Etype
(Parent
(N
)));
10998 -- Otherwise do correct fixed-conversion, but skip these if the
10999 -- Conversion_OK flag is set, because from a semantic point of view
11000 -- these are simple integer conversions needing no further processing
11001 -- (the backend will simply treat them as integers).
11003 if not Conversion_OK
(N
) then
11004 if Is_Fixed_Point_Type
(Etype
(N
)) then
11005 Expand_Convert_Fixed_To_Fixed
(N
);
11008 elsif Is_Integer_Type
(Etype
(N
)) then
11009 Expand_Convert_Fixed_To_Integer
(N
);
11012 pragma Assert
(Is_Floating_Point_Type
(Etype
(N
)));
11013 Expand_Convert_Fixed_To_Float
(N
);
11018 -- Case of conversions to a fixed-point type
11020 -- These conversions require special expansion and processing, found in
11021 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
11022 -- since from a semantic point of view, these are simple integer
11023 -- conversions, which do not need further processing.
11025 elsif Is_Fixed_Point_Type
(Target_Type
)
11026 and then not Conversion_OK
(N
)
11028 if Is_Integer_Type
(Operand_Type
) then
11029 Expand_Convert_Integer_To_Fixed
(N
);
11032 pragma Assert
(Is_Floating_Point_Type
(Operand_Type
));
11033 Expand_Convert_Float_To_Fixed
(N
);
11037 -- Case of float-to-integer conversions
11039 -- We also handle float-to-fixed conversions with Conversion_OK set
11040 -- since semantically the fixed-point target is treated as though it
11041 -- were an integer in such cases.
11043 elsif Is_Floating_Point_Type
(Operand_Type
)
11045 (Is_Integer_Type
(Target_Type
)
11047 (Is_Fixed_Point_Type
(Target_Type
) and then Conversion_OK
(N
)))
11049 -- One more check here, gcc is still not able to do conversions of
11050 -- this type with proper overflow checking, and so gigi is doing an
11051 -- approximation of what is required by doing floating-point compares
11052 -- with the end-point. But that can lose precision in some cases, and
11053 -- give a wrong result. Converting the operand to Universal_Real is
11054 -- helpful, but still does not catch all cases with 64-bit integers
11055 -- on targets with only 64-bit floats.
11057 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
11058 -- Can this code be removed ???
11060 if Do_Range_Check
(Operand
) then
11062 Make_Type_Conversion
(Loc
,
11064 New_Occurrence_Of
(Universal_Real
, Loc
),
11066 Relocate_Node
(Operand
)));
11068 Set_Etype
(Operand
, Universal_Real
);
11069 Enable_Range_Check
(Operand
);
11070 Set_Do_Range_Check
(Expression
(Operand
), False);
11073 -- Case of array conversions
11075 -- Expansion of array conversions, add required length/range checks but
11076 -- only do this if there is no change of representation. For handling of
11077 -- this case, see Handle_Changed_Representation.
11079 elsif Is_Array_Type
(Target_Type
) then
11080 if Is_Constrained
(Target_Type
) then
11081 Apply_Length_Check
(Operand
, Target_Type
);
11083 Apply_Range_Check
(Operand
, Target_Type
);
11086 Handle_Changed_Representation
;
11088 -- Case of conversions of discriminated types
11090 -- Add required discriminant checks if target is constrained. Again this
11091 -- change is skipped if we have a change of representation.
11093 elsif Has_Discriminants
(Target_Type
)
11094 and then Is_Constrained
(Target_Type
)
11096 Apply_Discriminant_Check
(Operand
, Target_Type
);
11097 Handle_Changed_Representation
;
11099 -- Case of all other record conversions. The only processing required
11100 -- is to check for a change of representation requiring the special
11101 -- assignment processing.
11103 elsif Is_Record_Type
(Target_Type
) then
11105 -- Ada 2005 (AI-216): Program_Error is raised when converting from
11106 -- a derived Unchecked_Union type to an unconstrained type that is
11107 -- not Unchecked_Union if the operand lacks inferable discriminants.
11109 if Is_Derived_Type
(Operand_Type
)
11110 and then Is_Unchecked_Union
(Base_Type
(Operand_Type
))
11111 and then not Is_Constrained
(Target_Type
)
11112 and then not Is_Unchecked_Union
(Base_Type
(Target_Type
))
11113 and then not Has_Inferable_Discriminants
(Operand
)
11115 -- To prevent Gigi from generating illegal code, we generate a
11116 -- Program_Error node, but we give it the target type of the
11117 -- conversion (is this requirement documented somewhere ???)
11120 PE
: constant Node_Id
:= Make_Raise_Program_Error
(Loc
,
11121 Reason
=> PE_Unchecked_Union_Restriction
);
11124 Set_Etype
(PE
, Target_Type
);
11129 Handle_Changed_Representation
;
11132 -- Case of conversions of enumeration types
11134 elsif Is_Enumeration_Type
(Target_Type
) then
11136 -- Special processing is required if there is a change of
11137 -- representation (from enumeration representation clauses).
11139 if not Same_Representation
(Target_Type
, Operand_Type
) then
11141 -- Convert: x(y) to x'val (ytyp'val (y))
11144 Make_Attribute_Reference
(Loc
,
11145 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
11146 Attribute_Name
=> Name_Val
,
11147 Expressions
=> New_List
(
11148 Make_Attribute_Reference
(Loc
,
11149 Prefix
=> New_Occurrence_Of
(Operand_Type
, Loc
),
11150 Attribute_Name
=> Name_Pos
,
11151 Expressions
=> New_List
(Operand
)))));
11153 Analyze_And_Resolve
(N
, Target_Type
);
11156 -- Case of conversions to floating-point
11158 elsif Is_Floating_Point_Type
(Target_Type
) then
11162 -- At this stage, either the conversion node has been transformed into
11163 -- some other equivalent expression, or left as a conversion that can be
11164 -- handled by Gigi, in the following cases:
11166 -- Conversions with no change of representation or type
11168 -- Numeric conversions involving integer, floating- and fixed-point
11169 -- values. Fixed-point values are allowed only if Conversion_OK is
11170 -- set, i.e. if the fixed-point values are to be treated as integers.
11172 -- No other conversions should be passed to Gigi
11174 -- Check: are these rules stated in sinfo??? if so, why restate here???
11176 -- The only remaining step is to generate a range check if we still have
11177 -- a type conversion at this stage and Do_Range_Check is set. For now we
11178 -- do this only for conversions of discrete types and for float-to-float
11181 if Nkind
(N
) = N_Type_Conversion
then
11183 -- For now we only support floating-point cases where both source
11184 -- and target are floating-point types. Conversions where the source
11185 -- and target involve integer or fixed-point types are still TBD,
11186 -- though not clear whether those can even happen at this point, due
11187 -- to transformations above. ???
11189 if Is_Floating_Point_Type
(Etype
(N
))
11190 and then Is_Floating_Point_Type
(Etype
(Expression
(N
)))
11192 if Do_Range_Check
(Expression
(N
))
11193 and then Is_Floating_Point_Type
(Target_Type
)
11195 Generate_Range_Check
11196 (Expression
(N
), Target_Type
, CE_Range_Check_Failed
);
11199 -- Discrete-to-discrete conversions
11201 elsif Is_Discrete_Type
(Etype
(N
)) then
11203 Expr
: constant Node_Id
:= Expression
(N
);
11208 if Do_Range_Check
(Expr
)
11209 and then Is_Discrete_Type
(Etype
(Expr
))
11211 Set_Do_Range_Check
(Expr
, False);
11213 -- Before we do a range check, we have to deal with treating
11214 -- a fixed-point operand as an integer. The way we do this
11215 -- is simply to do an unchecked conversion to an appropriate
11216 -- integer type large enough to hold the result.
11218 -- This code is not active yet, because we are only dealing
11219 -- with discrete types so far ???
11221 if Nkind
(Expr
) in N_Has_Treat_Fixed_As_Integer
11222 and then Treat_Fixed_As_Integer
(Expr
)
11224 Ftyp
:= Base_Type
(Etype
(Expr
));
11226 if Esize
(Ftyp
) >= Esize
(Standard_Integer
) then
11227 Ityp
:= Standard_Long_Long_Integer
;
11229 Ityp
:= Standard_Integer
;
11232 Rewrite
(Expr
, Unchecked_Convert_To
(Ityp
, Expr
));
11235 -- Reset overflow flag, since the range check will include
11236 -- dealing with possible overflow, and generate the check.
11237 -- If Address is either a source type or target type,
11238 -- suppress range check to avoid typing anomalies when
11239 -- it is a visible integer type.
11241 Set_Do_Overflow_Check
(N
, False);
11243 if not Is_Descendent_Of_Address
(Etype
(Expr
))
11244 and then not Is_Descendent_Of_Address
(Target_Type
)
11246 Generate_Range_Check
11247 (Expr
, Target_Type
, CE_Range_Check_Failed
);
11254 -- Here at end of processing
11257 -- Apply predicate check if required. Note that we can't just call
11258 -- Apply_Predicate_Check here, because the type looks right after
11259 -- the conversion and it would omit the check. The Comes_From_Source
11260 -- guard is necessary to prevent infinite recursions when we generate
11261 -- internal conversions for the purpose of checking predicates.
11263 if Present
(Predicate_Function
(Target_Type
))
11264 and then Target_Type
/= Operand_Type
11265 and then Comes_From_Source
(N
)
11268 New_Expr
: constant Node_Id
:= Duplicate_Subexpr
(N
);
11271 -- Avoid infinite recursion on the subsequent expansion of
11272 -- of the copy of the original type conversion.
11274 Set_Comes_From_Source
(New_Expr
, False);
11275 Insert_Action
(N
, Make_Predicate_Check
(Target_Type
, New_Expr
));
11278 end Expand_N_Type_Conversion
;
11280 -----------------------------------
11281 -- Expand_N_Unchecked_Expression --
11282 -----------------------------------
11284 -- Remove the unchecked expression node from the tree. Its job was simply
11285 -- to make sure that its constituent expression was handled with checks
11286 -- off, and now that that is done, we can remove it from the tree, and
11287 -- indeed must, since Gigi does not expect to see these nodes.
11289 procedure Expand_N_Unchecked_Expression
(N
: Node_Id
) is
11290 Exp
: constant Node_Id
:= Expression
(N
);
11292 Set_Assignment_OK
(Exp
, Assignment_OK
(N
) or else Assignment_OK
(Exp
));
11294 end Expand_N_Unchecked_Expression
;
11296 ----------------------------------------
11297 -- Expand_N_Unchecked_Type_Conversion --
11298 ----------------------------------------
11300 -- If this cannot be handled by Gigi and we haven't already made a
11301 -- temporary for it, do it now.
11303 procedure Expand_N_Unchecked_Type_Conversion
(N
: Node_Id
) is
11304 Target_Type
: constant Entity_Id
:= Etype
(N
);
11305 Operand
: constant Node_Id
:= Expression
(N
);
11306 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11309 -- Nothing at all to do if conversion is to the identical type so remove
11310 -- the conversion completely, it is useless, except that it may carry
11311 -- an Assignment_OK indication which must be propagated to the operand.
11313 if Operand_Type
= Target_Type
then
11315 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
11317 if Assignment_OK
(N
) then
11318 Set_Assignment_OK
(Operand
);
11321 Rewrite
(N
, Relocate_Node
(Operand
));
11325 -- If we have a conversion of a compile time known value to a target
11326 -- type and the value is in range of the target type, then we can simply
11327 -- replace the construct by an integer literal of the correct type. We
11328 -- only apply this to integer types being converted. Possibly it may
11329 -- apply in other cases, but it is too much trouble to worry about.
11331 -- Note that we do not do this transformation if the Kill_Range_Check
11332 -- flag is set, since then the value may be outside the expected range.
11333 -- This happens in the Normalize_Scalars case.
11335 -- We also skip this if either the target or operand type is biased
11336 -- because in this case, the unchecked conversion is supposed to
11337 -- preserve the bit pattern, not the integer value.
11339 if Is_Integer_Type
(Target_Type
)
11340 and then not Has_Biased_Representation
(Target_Type
)
11341 and then Is_Integer_Type
(Operand_Type
)
11342 and then not Has_Biased_Representation
(Operand_Type
)
11343 and then Compile_Time_Known_Value
(Operand
)
11344 and then not Kill_Range_Check
(N
)
11347 Val
: constant Uint
:= Expr_Value
(Operand
);
11350 if Compile_Time_Known_Value
(Type_Low_Bound
(Target_Type
))
11352 Compile_Time_Known_Value
(Type_High_Bound
(Target_Type
))
11354 Val
>= Expr_Value
(Type_Low_Bound
(Target_Type
))
11356 Val
<= Expr_Value
(Type_High_Bound
(Target_Type
))
11358 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Val
));
11360 -- If Address is the target type, just set the type to avoid a
11361 -- spurious type error on the literal when Address is a visible
11364 if Is_Descendent_Of_Address
(Target_Type
) then
11365 Set_Etype
(N
, Target_Type
);
11367 Analyze_And_Resolve
(N
, Target_Type
);
11375 -- Nothing to do if conversion is safe
11377 if Safe_Unchecked_Type_Conversion
(N
) then
11381 -- Otherwise force evaluation unless Assignment_OK flag is set (this
11382 -- flag indicates ??? More comments needed here)
11384 if Assignment_OK
(N
) then
11387 Force_Evaluation
(N
);
11389 end Expand_N_Unchecked_Type_Conversion
;
11391 ----------------------------
11392 -- Expand_Record_Equality --
11393 ----------------------------
11395 -- For non-variant records, Equality is expanded when needed into:
11397 -- and then Lhs.Discr1 = Rhs.Discr1
11399 -- and then Lhs.Discrn = Rhs.Discrn
11400 -- and then Lhs.Cmp1 = Rhs.Cmp1
11402 -- and then Lhs.Cmpn = Rhs.Cmpn
11404 -- The expression is folded by the back-end for adjacent fields. This
11405 -- function is called for tagged record in only one occasion: for imple-
11406 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11407 -- otherwise the primitive "=" is used directly.
11409 function Expand_Record_Equality
11414 Bodies
: List_Id
) return Node_Id
11416 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11421 First_Time
: Boolean := True;
11423 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
;
11424 -- Return the next discriminant or component to compare, starting with
11425 -- C, skipping inherited components.
11427 ------------------------
11428 -- Element_To_Compare --
11429 ------------------------
11431 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
is
11437 -- Exit loop when the next element to be compared is found, or
11438 -- there is no more such element.
11440 exit when No
(Comp
);
11442 exit when Ekind_In
(Comp
, E_Discriminant
, E_Component
)
11445 -- Skip inherited components
11447 -- Note: for a tagged type, we always generate the "=" primitive
11448 -- for the base type (not on the first subtype), so the test for
11449 -- Comp /= Original_Record_Component (Comp) is True for
11450 -- inherited components only.
11452 (Is_Tagged_Type
(Typ
)
11453 and then Comp
/= Original_Record_Component
(Comp
))
11457 or else Chars
(Comp
) = Name_uTag
11459 -- Skip interface elements (secondary tags???)
11461 or else Is_Interface
(Etype
(Comp
)));
11463 Next_Entity
(Comp
);
11467 end Element_To_Compare
;
11469 -- Start of processing for Expand_Record_Equality
11472 -- Generates the following code: (assuming that Typ has one Discr and
11473 -- component C2 is also a record)
11476 -- and then Lhs.Discr1 = Rhs.Discr1
11477 -- and then Lhs.C1 = Rhs.C1
11478 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11480 -- and then Lhs.Cmpn = Rhs.Cmpn
11482 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
11483 C
:= Element_To_Compare
(First_Entity
(Typ
));
11484 while Present
(C
) loop
11492 First_Time
:= False;
11496 New_Lhs
:= New_Copy_Tree
(Lhs
);
11497 New_Rhs
:= New_Copy_Tree
(Rhs
);
11501 Expand_Composite_Equality
(Nod
, Etype
(C
),
11503 Make_Selected_Component
(Loc
,
11505 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11507 Make_Selected_Component
(Loc
,
11509 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11512 -- If some (sub)component is an unchecked_union, the whole
11513 -- operation will raise program error.
11515 if Nkind
(Check
) = N_Raise_Program_Error
then
11517 Set_Etype
(Result
, Standard_Boolean
);
11521 Make_And_Then
(Loc
,
11522 Left_Opnd
=> Result
,
11523 Right_Opnd
=> Check
);
11527 C
:= Element_To_Compare
(Next_Entity
(C
));
11531 end Expand_Record_Equality
;
11533 ---------------------------
11534 -- Expand_Set_Membership --
11535 ---------------------------
11537 procedure Expand_Set_Membership
(N
: Node_Id
) is
11538 Lop
: constant Node_Id
:= Left_Opnd
(N
);
11542 function Make_Cond
(Alt
: Node_Id
) return Node_Id
;
11543 -- If the alternative is a subtype mark, create a simple membership
11544 -- test. Otherwise create an equality test for it.
11550 function Make_Cond
(Alt
: Node_Id
) return Node_Id
is
11552 L
: constant Node_Id
:= New_Copy
(Lop
);
11553 R
: constant Node_Id
:= Relocate_Node
(Alt
);
11556 if (Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)))
11557 or else Nkind
(Alt
) = N_Range
11560 Make_In
(Sloc
(Alt
),
11565 Make_Op_Eq
(Sloc
(Alt
),
11573 -- Start of processing for Expand_Set_Membership
11576 Remove_Side_Effects
(Lop
);
11578 Alt
:= Last
(Alternatives
(N
));
11579 Res
:= Make_Cond
(Alt
);
11582 while Present
(Alt
) loop
11584 Make_Or_Else
(Sloc
(Alt
),
11585 Left_Opnd
=> Make_Cond
(Alt
),
11586 Right_Opnd
=> Res
);
11591 Analyze_And_Resolve
(N
, Standard_Boolean
);
11592 end Expand_Set_Membership
;
11594 -----------------------------------
11595 -- Expand_Short_Circuit_Operator --
11596 -----------------------------------
11598 -- Deal with special expansion if actions are present for the right operand
11599 -- and deal with optimizing case of arguments being True or False. We also
11600 -- deal with the special case of non-standard boolean values.
11602 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
) is
11603 Loc
: constant Source_Ptr
:= Sloc
(N
);
11604 Typ
: constant Entity_Id
:= Etype
(N
);
11605 Left
: constant Node_Id
:= Left_Opnd
(N
);
11606 Right
: constant Node_Id
:= Right_Opnd
(N
);
11607 LocR
: constant Source_Ptr
:= Sloc
(Right
);
11610 Shortcut_Value
: constant Boolean := Nkind
(N
) = N_Or_Else
;
11611 Shortcut_Ent
: constant Entity_Id
:= Boolean_Literals
(Shortcut_Value
);
11612 -- If Left = Shortcut_Value then Right need not be evaluated
11615 -- Deal with non-standard booleans
11617 if Is_Boolean_Type
(Typ
) then
11618 Adjust_Condition
(Left
);
11619 Adjust_Condition
(Right
);
11620 Set_Etype
(N
, Standard_Boolean
);
11623 -- Check for cases where left argument is known to be True or False
11625 if Compile_Time_Known_Value
(Left
) then
11627 -- Mark SCO for left condition as compile time known
11629 if Generate_SCO
and then Comes_From_Source
(Left
) then
11630 Set_SCO_Condition
(Left
, Expr_Value_E
(Left
) = Standard_True
);
11633 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11634 -- Any actions associated with Right will be executed unconditionally
11635 -- and can thus be inserted into the tree unconditionally.
11637 if Expr_Value_E
(Left
) /= Shortcut_Ent
then
11638 if Present
(Actions
(N
)) then
11639 Insert_Actions
(N
, Actions
(N
));
11642 Rewrite
(N
, Right
);
11644 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11645 -- In this case we can forget the actions associated with Right,
11646 -- since they will never be executed.
11649 Kill_Dead_Code
(Right
);
11650 Kill_Dead_Code
(Actions
(N
));
11651 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
11654 Adjust_Result_Type
(N
, Typ
);
11658 -- If Actions are present for the right operand, we have to do some
11659 -- special processing. We can't just let these actions filter back into
11660 -- code preceding the short circuit (which is what would have happened
11661 -- if we had not trapped them in the short-circuit form), since they
11662 -- must only be executed if the right operand of the short circuit is
11663 -- executed and not otherwise.
11665 if Present
(Actions
(N
)) then
11666 Actlist
:= Actions
(N
);
11668 -- We now use an Expression_With_Actions node for the right operand
11669 -- of the short-circuit form. Note that this solves the traceability
11670 -- problems for coverage analysis.
11673 Make_Expression_With_Actions
(LocR
,
11674 Expression
=> Relocate_Node
(Right
),
11675 Actions
=> Actlist
));
11677 Set_Actions
(N
, No_List
);
11678 Analyze_And_Resolve
(Right
, Standard_Boolean
);
11680 Adjust_Result_Type
(N
, Typ
);
11684 -- No actions present, check for cases of right argument True/False
11686 if Compile_Time_Known_Value
(Right
) then
11688 -- Mark SCO for left condition as compile time known
11690 if Generate_SCO
and then Comes_From_Source
(Right
) then
11691 Set_SCO_Condition
(Right
, Expr_Value_E
(Right
) = Standard_True
);
11694 -- Change (Left and then True), (Left or else False) to Left.
11695 -- Note that we know there are no actions associated with the right
11696 -- operand, since we just checked for this case above.
11698 if Expr_Value_E
(Right
) /= Shortcut_Ent
then
11701 -- Change (Left and then False), (Left or else True) to Right,
11702 -- making sure to preserve any side effects associated with the Left
11706 Remove_Side_Effects
(Left
);
11707 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
11711 Adjust_Result_Type
(N
, Typ
);
11712 end Expand_Short_Circuit_Operator
;
11714 -------------------------------------
11715 -- Fixup_Universal_Fixed_Operation --
11716 -------------------------------------
11718 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
) is
11719 Conv
: constant Node_Id
:= Parent
(N
);
11722 -- We must have a type conversion immediately above us
11724 pragma Assert
(Nkind
(Conv
) = N_Type_Conversion
);
11726 -- Normally the type conversion gives our target type. The exception
11727 -- occurs in the case of the Round attribute, where the conversion
11728 -- will be to universal real, and our real type comes from the Round
11729 -- attribute (as well as an indication that we must round the result)
11731 if Nkind
(Parent
(Conv
)) = N_Attribute_Reference
11732 and then Attribute_Name
(Parent
(Conv
)) = Name_Round
11734 Set_Etype
(N
, Etype
(Parent
(Conv
)));
11735 Set_Rounded_Result
(N
);
11737 -- Normal case where type comes from conversion above us
11740 Set_Etype
(N
, Etype
(Conv
));
11742 end Fixup_Universal_Fixed_Operation
;
11744 ---------------------------------
11745 -- Has_Inferable_Discriminants --
11746 ---------------------------------
11748 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean is
11750 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean;
11751 -- Determines whether the left-most prefix of a selected component is a
11752 -- formal parameter in a subprogram. Assumes N is a selected component.
11754 --------------------------------
11755 -- Prefix_Is_Formal_Parameter --
11756 --------------------------------
11758 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean is
11759 Sel_Comp
: Node_Id
;
11762 -- Move to the left-most prefix by climbing up the tree
11765 while Present
(Parent
(Sel_Comp
))
11766 and then Nkind
(Parent
(Sel_Comp
)) = N_Selected_Component
11768 Sel_Comp
:= Parent
(Sel_Comp
);
11771 return Ekind
(Entity
(Prefix
(Sel_Comp
))) in Formal_Kind
;
11772 end Prefix_Is_Formal_Parameter
;
11774 -- Start of processing for Has_Inferable_Discriminants
11777 -- For selected components, the subtype of the selector must be a
11778 -- constrained Unchecked_Union. If the component is subject to a
11779 -- per-object constraint, then the enclosing object must have inferable
11782 if Nkind
(N
) = N_Selected_Component
then
11783 if Has_Per_Object_Constraint
(Entity
(Selector_Name
(N
))) then
11785 -- A small hack. If we have a per-object constrained selected
11786 -- component of a formal parameter, return True since we do not
11787 -- know the actual parameter association yet.
11789 if Prefix_Is_Formal_Parameter
(N
) then
11792 -- Otherwise, check the enclosing object and the selector
11795 return Has_Inferable_Discriminants
(Prefix
(N
))
11796 and then Has_Inferable_Discriminants
(Selector_Name
(N
));
11799 -- The call to Has_Inferable_Discriminants will determine whether
11800 -- the selector has a constrained Unchecked_Union nominal type.
11803 return Has_Inferable_Discriminants
(Selector_Name
(N
));
11806 -- A qualified expression has inferable discriminants if its subtype
11807 -- mark is a constrained Unchecked_Union subtype.
11809 elsif Nkind
(N
) = N_Qualified_Expression
then
11810 return Is_Unchecked_Union
(Etype
(Subtype_Mark
(N
)))
11811 and then Is_Constrained
(Etype
(Subtype_Mark
(N
)));
11813 -- For all other names, it is sufficient to have a constrained
11814 -- Unchecked_Union nominal subtype.
11817 return Is_Unchecked_Union
(Base_Type
(Etype
(N
)))
11818 and then Is_Constrained
(Etype
(N
));
11820 end Has_Inferable_Discriminants
;
11822 -------------------------------
11823 -- Insert_Dereference_Action --
11824 -------------------------------
11826 procedure Insert_Dereference_Action
(N
: Node_Id
) is
11828 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean;
11829 -- Return true if type of P is derived from Checked_Pool;
11831 -----------------------------
11832 -- Is_Checked_Storage_Pool --
11833 -----------------------------
11835 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean is
11844 while T
/= Etype
(T
) loop
11845 if Is_RTE
(T
, RE_Checked_Pool
) then
11853 end Is_Checked_Storage_Pool
;
11857 Typ
: constant Entity_Id
:= Etype
(N
);
11858 Desig
: constant Entity_Id
:= Available_View
(Designated_Type
(Typ
));
11859 Loc
: constant Source_Ptr
:= Sloc
(N
);
11860 Pool
: constant Entity_Id
:= Associated_Storage_Pool
(Typ
);
11861 Pnod
: constant Node_Id
:= Parent
(N
);
11867 Size_Bits
: Node_Id
;
11870 -- Start of processing for Insert_Dereference_Action
11873 pragma Assert
(Nkind
(Pnod
) = N_Explicit_Dereference
);
11875 -- Do not re-expand a dereference which has already been processed by
11878 if Has_Dereference_Action
(Pnod
) then
11881 -- Do not perform this type of expansion for internally-generated
11884 elsif not Comes_From_Source
(Original_Node
(Pnod
)) then
11887 -- A dereference action is only applicable to objects which have been
11888 -- allocated on a checked pool.
11890 elsif not Is_Checked_Storage_Pool
(Pool
) then
11894 -- Extract the address of the dereferenced object. Generate:
11896 -- Addr : System.Address := <N>'Pool_Address;
11898 Addr
:= Make_Temporary
(Loc
, 'P');
11901 Make_Object_Declaration
(Loc
,
11902 Defining_Identifier
=> Addr
,
11903 Object_Definition
=>
11904 New_Occurrence_Of
(RTE
(RE_Address
), Loc
),
11906 Make_Attribute_Reference
(Loc
,
11907 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
),
11908 Attribute_Name
=> Name_Pool_Address
)));
11910 -- Calculate the size of the dereferenced object. Generate:
11912 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11915 Make_Explicit_Dereference
(Loc
,
11916 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11917 Set_Has_Dereference_Action
(Deref
);
11920 Make_Attribute_Reference
(Loc
,
11922 Attribute_Name
=> Name_Size
);
11924 -- Special case of an unconstrained array: need to add descriptor size
11926 if Is_Array_Type
(Desig
)
11927 and then not Is_Constrained
(First_Subtype
(Desig
))
11932 Make_Attribute_Reference
(Loc
,
11934 New_Occurrence_Of
(First_Subtype
(Desig
), Loc
),
11935 Attribute_Name
=> Name_Descriptor_Size
),
11936 Right_Opnd
=> Size_Bits
);
11939 Size
:= Make_Temporary
(Loc
, 'S');
11941 Make_Object_Declaration
(Loc
,
11942 Defining_Identifier
=> Size
,
11943 Object_Definition
=>
11944 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
11946 Make_Op_Divide
(Loc
,
11947 Left_Opnd
=> Size_Bits
,
11948 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
11950 -- Calculate the alignment of the dereferenced object. Generate:
11951 -- Alig : constant Storage_Count := <N>.all'Alignment;
11954 Make_Explicit_Dereference
(Loc
,
11955 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11956 Set_Has_Dereference_Action
(Deref
);
11958 Alig
:= Make_Temporary
(Loc
, 'A');
11960 Make_Object_Declaration
(Loc
,
11961 Defining_Identifier
=> Alig
,
11962 Object_Definition
=>
11963 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
11965 Make_Attribute_Reference
(Loc
,
11967 Attribute_Name
=> Name_Alignment
)));
11969 -- A dereference of a controlled object requires special processing. The
11970 -- finalization machinery requests additional space from the underlying
11971 -- pool to allocate and hide two pointers. As a result, a checked pool
11972 -- may mark the wrong memory as valid. Since checked pools do not have
11973 -- knowledge of hidden pointers, we have to bring the two pointers back
11974 -- in view in order to restore the original state of the object.
11976 if Needs_Finalization
(Desig
) then
11978 -- Adjust the address and size of the dereferenced object. Generate:
11979 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11982 Make_Procedure_Call_Statement
(Loc
,
11984 New_Occurrence_Of
(RTE
(RE_Adjust_Controlled_Dereference
), Loc
),
11985 Parameter_Associations
=> New_List
(
11986 New_Occurrence_Of
(Addr
, Loc
),
11987 New_Occurrence_Of
(Size
, Loc
),
11988 New_Occurrence_Of
(Alig
, Loc
)));
11990 -- Class-wide types complicate things because we cannot determine
11991 -- statically whether the actual object is truly controlled. We must
11992 -- generate a runtime check to detect this property. Generate:
11994 -- if Needs_Finalization (<N>.all'Tag) then
11998 if Is_Class_Wide_Type
(Desig
) then
12000 Make_Explicit_Dereference
(Loc
,
12001 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
12002 Set_Has_Dereference_Action
(Deref
);
12005 Make_Implicit_If_Statement
(N
,
12007 Make_Function_Call
(Loc
,
12009 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
12010 Parameter_Associations
=> New_List
(
12011 Make_Attribute_Reference
(Loc
,
12013 Attribute_Name
=> Name_Tag
))),
12014 Then_Statements
=> New_List
(Stmt
));
12017 Insert_Action
(N
, Stmt
);
12021 -- Dereference (Pool, Addr, Size, Alig);
12024 Make_Procedure_Call_Statement
(Loc
,
12027 (Find_Prim_Op
(Etype
(Pool
), Name_Dereference
), Loc
),
12028 Parameter_Associations
=> New_List
(
12029 New_Occurrence_Of
(Pool
, Loc
),
12030 New_Occurrence_Of
(Addr
, Loc
),
12031 New_Occurrence_Of
(Size
, Loc
),
12032 New_Occurrence_Of
(Alig
, Loc
))));
12034 -- Mark the explicit dereference as processed to avoid potential
12035 -- infinite expansion.
12037 Set_Has_Dereference_Action
(Pnod
);
12040 when RE_Not_Available
=>
12042 end Insert_Dereference_Action
;
12044 --------------------------------
12045 -- Integer_Promotion_Possible --
12046 --------------------------------
12048 function Integer_Promotion_Possible
(N
: Node_Id
) return Boolean is
12049 Operand
: constant Node_Id
:= Expression
(N
);
12050 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
12051 Root_Operand_Type
: constant Entity_Id
:= Root_Type
(Operand_Type
);
12054 pragma Assert
(Nkind
(N
) = N_Type_Conversion
);
12058 -- We only do the transformation for source constructs. We assume
12059 -- that the expander knows what it is doing when it generates code.
12061 Comes_From_Source
(N
)
12063 -- If the operand type is Short_Integer or Short_Short_Integer,
12064 -- then we will promote to Integer, which is available on all
12065 -- targets, and is sufficient to ensure no intermediate overflow.
12066 -- Furthermore it is likely to be as efficient or more efficient
12067 -- than using the smaller type for the computation so we do this
12068 -- unconditionally.
12071 (Root_Operand_Type
= Base_Type
(Standard_Short_Integer
)
12073 Root_Operand_Type
= Base_Type
(Standard_Short_Short_Integer
))
12075 -- Test for interesting operation, which includes addition,
12076 -- division, exponentiation, multiplication, subtraction, absolute
12077 -- value and unary negation. Unary "+" is omitted since it is a
12078 -- no-op and thus can't overflow.
12080 and then Nkind_In
(Operand
, N_Op_Abs
,
12087 end Integer_Promotion_Possible
;
12089 ------------------------------
12090 -- Make_Array_Comparison_Op --
12091 ------------------------------
12093 -- This is a hand-coded expansion of the following generic function:
12096 -- type elem is (<>);
12097 -- type index is (<>);
12098 -- type a is array (index range <>) of elem;
12100 -- function Gnnn (X : a; Y: a) return boolean is
12101 -- J : index := Y'first;
12104 -- if X'length = 0 then
12107 -- elsif Y'length = 0 then
12111 -- for I in X'range loop
12112 -- if X (I) = Y (J) then
12113 -- if J = Y'last then
12116 -- J := index'succ (J);
12120 -- return X (I) > Y (J);
12124 -- return X'length > Y'length;
12128 -- Note that since we are essentially doing this expansion by hand, we
12129 -- do not need to generate an actual or formal generic part, just the
12130 -- instantiated function itself.
12132 -- Perhaps we could have the actual generic available in the run-time,
12133 -- obtained by rtsfind, and actually expand a real instantiation ???
12135 function Make_Array_Comparison_Op
12137 Nod
: Node_Id
) return Node_Id
12139 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
12141 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uX
);
12142 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uY
);
12143 I
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uI
);
12144 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
12146 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
12148 Loop_Statement
: Node_Id
;
12149 Loop_Body
: Node_Id
;
12151 Inner_If
: Node_Id
;
12152 Final_Expr
: Node_Id
;
12153 Func_Body
: Node_Id
;
12154 Func_Name
: Entity_Id
;
12160 -- if J = Y'last then
12163 -- J := index'succ (J);
12167 Make_Implicit_If_Statement
(Nod
,
12170 Left_Opnd
=> New_Occurrence_Of
(J
, Loc
),
12172 Make_Attribute_Reference
(Loc
,
12173 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12174 Attribute_Name
=> Name_Last
)),
12176 Then_Statements
=> New_List
(
12177 Make_Exit_Statement
(Loc
)),
12181 Make_Assignment_Statement
(Loc
,
12182 Name
=> New_Occurrence_Of
(J
, Loc
),
12184 Make_Attribute_Reference
(Loc
,
12185 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
12186 Attribute_Name
=> Name_Succ
,
12187 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
))))));
12189 -- if X (I) = Y (J) then
12192 -- return X (I) > Y (J);
12196 Make_Implicit_If_Statement
(Nod
,
12200 Make_Indexed_Component
(Loc
,
12201 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12202 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
12205 Make_Indexed_Component
(Loc
,
12206 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12207 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)))),
12209 Then_Statements
=> New_List
(Inner_If
),
12211 Else_Statements
=> New_List
(
12212 Make_Simple_Return_Statement
(Loc
,
12216 Make_Indexed_Component
(Loc
,
12217 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12218 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
12221 Make_Indexed_Component
(Loc
,
12222 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12223 Expressions
=> New_List
(
12224 New_Occurrence_Of
(J
, Loc
)))))));
12226 -- for I in X'range loop
12231 Make_Implicit_Loop_Statement
(Nod
,
12232 Identifier
=> Empty
,
12234 Iteration_Scheme
=>
12235 Make_Iteration_Scheme
(Loc
,
12236 Loop_Parameter_Specification
=>
12237 Make_Loop_Parameter_Specification
(Loc
,
12238 Defining_Identifier
=> I
,
12239 Discrete_Subtype_Definition
=>
12240 Make_Attribute_Reference
(Loc
,
12241 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12242 Attribute_Name
=> Name_Range
))),
12244 Statements
=> New_List
(Loop_Body
));
12246 -- if X'length = 0 then
12248 -- elsif Y'length = 0 then
12251 -- for ... loop ... end loop;
12252 -- return X'length > Y'length;
12256 Make_Attribute_Reference
(Loc
,
12257 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12258 Attribute_Name
=> Name_Length
);
12261 Make_Attribute_Reference
(Loc
,
12262 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12263 Attribute_Name
=> Name_Length
);
12267 Left_Opnd
=> Length1
,
12268 Right_Opnd
=> Length2
);
12271 Make_Implicit_If_Statement
(Nod
,
12275 Make_Attribute_Reference
(Loc
,
12276 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12277 Attribute_Name
=> Name_Length
),
12279 Make_Integer_Literal
(Loc
, 0)),
12283 Make_Simple_Return_Statement
(Loc
,
12284 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))),
12286 Elsif_Parts
=> New_List
(
12287 Make_Elsif_Part
(Loc
,
12291 Make_Attribute_Reference
(Loc
,
12292 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12293 Attribute_Name
=> Name_Length
),
12295 Make_Integer_Literal
(Loc
, 0)),
12299 Make_Simple_Return_Statement
(Loc
,
12300 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
))))),
12302 Else_Statements
=> New_List
(
12304 Make_Simple_Return_Statement
(Loc
,
12305 Expression
=> Final_Expr
)));
12309 Formals
:= New_List
(
12310 Make_Parameter_Specification
(Loc
,
12311 Defining_Identifier
=> X
,
12312 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12314 Make_Parameter_Specification
(Loc
,
12315 Defining_Identifier
=> Y
,
12316 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12318 -- function Gnnn (...) return boolean is
12319 -- J : index := Y'first;
12324 Func_Name
:= Make_Temporary
(Loc
, 'G');
12327 Make_Subprogram_Body
(Loc
,
12329 Make_Function_Specification
(Loc
,
12330 Defining_Unit_Name
=> Func_Name
,
12331 Parameter_Specifications
=> Formals
,
12332 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
12334 Declarations
=> New_List
(
12335 Make_Object_Declaration
(Loc
,
12336 Defining_Identifier
=> J
,
12337 Object_Definition
=> New_Occurrence_Of
(Index
, Loc
),
12339 Make_Attribute_Reference
(Loc
,
12340 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12341 Attribute_Name
=> Name_First
))),
12343 Handled_Statement_Sequence
=>
12344 Make_Handled_Sequence_Of_Statements
(Loc
,
12345 Statements
=> New_List
(If_Stat
)));
12348 end Make_Array_Comparison_Op
;
12350 ---------------------------
12351 -- Make_Boolean_Array_Op --
12352 ---------------------------
12354 -- For logical operations on boolean arrays, expand in line the following,
12355 -- replacing 'and' with 'or' or 'xor' where needed:
12357 -- function Annn (A : typ; B: typ) return typ is
12360 -- for J in A'range loop
12361 -- C (J) := A (J) op B (J);
12366 -- Here typ is the boolean array type
12368 function Make_Boolean_Array_Op
12370 N
: Node_Id
) return Node_Id
12372 Loc
: constant Source_Ptr
:= Sloc
(N
);
12374 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
12375 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
12376 C
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uC
);
12377 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
12385 Func_Name
: Entity_Id
;
12386 Func_Body
: Node_Id
;
12387 Loop_Statement
: Node_Id
;
12391 Make_Indexed_Component
(Loc
,
12392 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12393 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12396 Make_Indexed_Component
(Loc
,
12397 Prefix
=> New_Occurrence_Of
(B
, Loc
),
12398 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12401 Make_Indexed_Component
(Loc
,
12402 Prefix
=> New_Occurrence_Of
(C
, Loc
),
12403 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12405 if Nkind
(N
) = N_Op_And
then
12409 Right_Opnd
=> B_J
);
12411 elsif Nkind
(N
) = N_Op_Or
then
12415 Right_Opnd
=> B_J
);
12421 Right_Opnd
=> B_J
);
12425 Make_Implicit_Loop_Statement
(N
,
12426 Identifier
=> Empty
,
12428 Iteration_Scheme
=>
12429 Make_Iteration_Scheme
(Loc
,
12430 Loop_Parameter_Specification
=>
12431 Make_Loop_Parameter_Specification
(Loc
,
12432 Defining_Identifier
=> J
,
12433 Discrete_Subtype_Definition
=>
12434 Make_Attribute_Reference
(Loc
,
12435 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12436 Attribute_Name
=> Name_Range
))),
12438 Statements
=> New_List
(
12439 Make_Assignment_Statement
(Loc
,
12441 Expression
=> Op
)));
12443 Formals
:= New_List
(
12444 Make_Parameter_Specification
(Loc
,
12445 Defining_Identifier
=> A
,
12446 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12448 Make_Parameter_Specification
(Loc
,
12449 Defining_Identifier
=> B
,
12450 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12452 Func_Name
:= Make_Temporary
(Loc
, 'A');
12453 Set_Is_Inlined
(Func_Name
);
12456 Make_Subprogram_Body
(Loc
,
12458 Make_Function_Specification
(Loc
,
12459 Defining_Unit_Name
=> Func_Name
,
12460 Parameter_Specifications
=> Formals
,
12461 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
12463 Declarations
=> New_List
(
12464 Make_Object_Declaration
(Loc
,
12465 Defining_Identifier
=> C
,
12466 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
))),
12468 Handled_Statement_Sequence
=>
12469 Make_Handled_Sequence_Of_Statements
(Loc
,
12470 Statements
=> New_List
(
12472 Make_Simple_Return_Statement
(Loc
,
12473 Expression
=> New_Occurrence_Of
(C
, Loc
)))));
12476 end Make_Boolean_Array_Op
;
12478 -----------------------------------------
12479 -- Minimized_Eliminated_Overflow_Check --
12480 -----------------------------------------
12482 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean is
12485 Is_Signed_Integer_Type
(Etype
(N
))
12486 and then Overflow_Check_Mode
in Minimized_Or_Eliminated
;
12487 end Minimized_Eliminated_Overflow_Check
;
12489 --------------------------------
12490 -- Optimize_Length_Comparison --
12491 --------------------------------
12493 procedure Optimize_Length_Comparison
(N
: Node_Id
) is
12494 Loc
: constant Source_Ptr
:= Sloc
(N
);
12495 Typ
: constant Entity_Id
:= Etype
(N
);
12500 -- First and Last attribute reference nodes, which end up as left and
12501 -- right operands of the optimized result.
12504 -- True for comparison operand of zero
12507 -- Comparison operand, set only if Is_Zero is false
12510 -- Entity whose length is being compared
12513 -- Integer_Literal node for length attribute expression, or Empty
12514 -- if there is no such expression present.
12517 -- Type of array index to which 'Length is applied
12519 Op
: Node_Kind
:= Nkind
(N
);
12520 -- Kind of comparison operator, gets flipped if operands backwards
12522 function Is_Optimizable
(N
: Node_Id
) return Boolean;
12523 -- Tests N to see if it is an optimizable comparison value (defined as
12524 -- constant zero or one, or something else where the value is known to
12525 -- be positive and in the range of 32-bits, and where the corresponding
12526 -- Length value is also known to be 32-bits. If result is true, sets
12527 -- Is_Zero, Ityp, and Comp accordingly.
12529 function Is_Entity_Length
(N
: Node_Id
) return Boolean;
12530 -- Tests if N is a length attribute applied to a simple entity. If so,
12531 -- returns True, and sets Ent to the entity, and Index to the integer
12532 -- literal provided as an attribute expression, or to Empty if none.
12533 -- Also returns True if the expression is a generated type conversion
12534 -- whose expression is of the desired form. This latter case arises
12535 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12536 -- to check for being in range, which is not needed in this context.
12537 -- Returns False if neither condition holds.
12539 function Prepare_64
(N
: Node_Id
) return Node_Id
;
12540 -- Given a discrete expression, returns a Long_Long_Integer typed
12541 -- expression representing the underlying value of the expression.
12542 -- This is done with an unchecked conversion to the result type. We
12543 -- use unchecked conversion to handle the enumeration type case.
12545 ----------------------
12546 -- Is_Entity_Length --
12547 ----------------------
12549 function Is_Entity_Length
(N
: Node_Id
) return Boolean is
12551 if Nkind
(N
) = N_Attribute_Reference
12552 and then Attribute_Name
(N
) = Name_Length
12553 and then Is_Entity_Name
(Prefix
(N
))
12555 Ent
:= Entity
(Prefix
(N
));
12557 if Present
(Expressions
(N
)) then
12558 Index
:= First
(Expressions
(N
));
12565 elsif Nkind
(N
) = N_Type_Conversion
12566 and then not Comes_From_Source
(N
)
12568 return Is_Entity_Length
(Expression
(N
));
12573 end Is_Entity_Length
;
12575 --------------------
12576 -- Is_Optimizable --
12577 --------------------
12579 function Is_Optimizable
(N
: Node_Id
) return Boolean is
12587 if Compile_Time_Known_Value
(N
) then
12588 Val
:= Expr_Value
(N
);
12590 if Val
= Uint_0
then
12595 elsif Val
= Uint_1
then
12602 -- Here we have to make sure of being within 32-bits
12604 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
12607 or else Lo
< Uint_1
12608 or else Hi
> UI_From_Int
(Int
'Last)
12613 -- Comparison value was within range, so now we must check the index
12614 -- value to make sure it is also within 32-bits.
12616 Indx
:= First_Index
(Etype
(Ent
));
12618 if Present
(Index
) then
12619 for J
in 2 .. UI_To_Int
(Intval
(Index
)) loop
12624 Ityp
:= Etype
(Indx
);
12626 if Esize
(Ityp
) > 32 then
12633 end Is_Optimizable
;
12639 function Prepare_64
(N
: Node_Id
) return Node_Id
is
12641 return Unchecked_Convert_To
(Standard_Long_Long_Integer
, N
);
12644 -- Start of processing for Optimize_Length_Comparison
12647 -- Nothing to do if not a comparison
12649 if Op
not in N_Op_Compare
then
12653 -- Nothing to do if special -gnatd.P debug flag set
12655 if Debug_Flag_Dot_PP
then
12659 -- Ent'Length op 0/1
12661 if Is_Entity_Length
(Left_Opnd
(N
))
12662 and then Is_Optimizable
(Right_Opnd
(N
))
12666 -- 0/1 op Ent'Length
12668 elsif Is_Entity_Length
(Right_Opnd
(N
))
12669 and then Is_Optimizable
(Left_Opnd
(N
))
12671 -- Flip comparison to opposite sense
12674 when N_Op_Lt
=> Op
:= N_Op_Gt
;
12675 when N_Op_Le
=> Op
:= N_Op_Ge
;
12676 when N_Op_Gt
=> Op
:= N_Op_Lt
;
12677 when N_Op_Ge
=> Op
:= N_Op_Le
;
12678 when others => null;
12681 -- Else optimization not possible
12687 -- Fall through if we will do the optimization
12689 -- Cases to handle:
12691 -- X'Length = 0 => X'First > X'Last
12692 -- X'Length = 1 => X'First = X'Last
12693 -- X'Length = n => X'First + (n - 1) = X'Last
12695 -- X'Length /= 0 => X'First <= X'Last
12696 -- X'Length /= 1 => X'First /= X'Last
12697 -- X'Length /= n => X'First + (n - 1) /= X'Last
12699 -- X'Length >= 0 => always true, warn
12700 -- X'Length >= 1 => X'First <= X'Last
12701 -- X'Length >= n => X'First + (n - 1) <= X'Last
12703 -- X'Length > 0 => X'First <= X'Last
12704 -- X'Length > 1 => X'First < X'Last
12705 -- X'Length > n => X'First + (n - 1) < X'Last
12707 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12708 -- X'Length <= 1 => X'First >= X'Last
12709 -- X'Length <= n => X'First + (n - 1) >= X'Last
12711 -- X'Length < 0 => always false (warn)
12712 -- X'Length < 1 => X'First > X'Last
12713 -- X'Length < n => X'First + (n - 1) > X'Last
12715 -- Note: for the cases of n (not constant 0,1), we require that the
12716 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12717 -- and the same for the comparison value. Then we do the comparison
12718 -- using 64-bit arithmetic (actually long long integer), so that we
12719 -- cannot have overflow intefering with the result.
12721 -- First deal with warning cases
12730 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Loc
)));
12731 Analyze_And_Resolve
(N
, Typ
);
12732 Warn_On_Known_Condition
(N
);
12739 Convert_To
(Typ
, New_Occurrence_Of
(Standard_False
, Loc
)));
12740 Analyze_And_Resolve
(N
, Typ
);
12741 Warn_On_Known_Condition
(N
);
12745 if Constant_Condition_Warnings
12746 and then Comes_From_Source
(Original_Node
(N
))
12748 Error_Msg_N
("could replace by ""'=""?c?", N
);
12758 -- Build the First reference we will use
12761 Make_Attribute_Reference
(Loc
,
12762 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12763 Attribute_Name
=> Name_First
);
12765 if Present
(Index
) then
12766 Set_Expressions
(Left
, New_List
(New_Copy
(Index
)));
12769 -- If general value case, then do the addition of (n - 1), and
12770 -- also add the needed conversions to type Long_Long_Integer.
12772 if Present
(Comp
) then
12775 Left_Opnd
=> Prepare_64
(Left
),
12777 Make_Op_Subtract
(Loc
,
12778 Left_Opnd
=> Prepare_64
(Comp
),
12779 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
12782 -- Build the Last reference we will use
12785 Make_Attribute_Reference
(Loc
,
12786 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12787 Attribute_Name
=> Name_Last
);
12789 if Present
(Index
) then
12790 Set_Expressions
(Right
, New_List
(New_Copy
(Index
)));
12793 -- If general operand, convert Last reference to Long_Long_Integer
12795 if Present
(Comp
) then
12796 Right
:= Prepare_64
(Right
);
12799 -- Check for cases to optimize
12801 -- X'Length = 0 => X'First > X'Last
12802 -- X'Length < 1 => X'First > X'Last
12803 -- X'Length < n => X'First + (n - 1) > X'Last
12805 if (Is_Zero
and then Op
= N_Op_Eq
)
12806 or else (not Is_Zero
and then Op
= N_Op_Lt
)
12811 Right_Opnd
=> Right
);
12813 -- X'Length = 1 => X'First = X'Last
12814 -- X'Length = n => X'First + (n - 1) = X'Last
12816 elsif not Is_Zero
and then Op
= N_Op_Eq
then
12820 Right_Opnd
=> Right
);
12822 -- X'Length /= 0 => X'First <= X'Last
12823 -- X'Length > 0 => X'First <= X'Last
12825 elsif Is_Zero
and (Op
= N_Op_Ne
or else Op
= N_Op_Gt
) then
12829 Right_Opnd
=> Right
);
12831 -- X'Length /= 1 => X'First /= X'Last
12832 -- X'Length /= n => X'First + (n - 1) /= X'Last
12834 elsif not Is_Zero
and then Op
= N_Op_Ne
then
12838 Right_Opnd
=> Right
);
12840 -- X'Length >= 1 => X'First <= X'Last
12841 -- X'Length >= n => X'First + (n - 1) <= X'Last
12843 elsif not Is_Zero
and then Op
= N_Op_Ge
then
12847 Right_Opnd
=> Right
);
12849 -- X'Length > 1 => X'First < X'Last
12850 -- X'Length > n => X'First + (n = 1) < X'Last
12852 elsif not Is_Zero
and then Op
= N_Op_Gt
then
12856 Right_Opnd
=> Right
);
12858 -- X'Length <= 1 => X'First >= X'Last
12859 -- X'Length <= n => X'First + (n - 1) >= X'Last
12861 elsif not Is_Zero
and then Op
= N_Op_Le
then
12865 Right_Opnd
=> Right
);
12867 -- Should not happen at this stage
12870 raise Program_Error
;
12873 -- Rewrite and finish up
12875 Rewrite
(N
, Result
);
12876 Analyze_And_Resolve
(N
, Typ
);
12878 end Optimize_Length_Comparison
;
12880 ------------------------------
12881 -- Process_Transient_Object --
12882 ------------------------------
12884 procedure Process_Transient_Object
12886 Rel_Node
: Node_Id
)
12888 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
12889 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
12890 Obj_Typ
: constant Node_Id
:= Etype
(Obj_Id
);
12891 Desig_Typ
: Entity_Id
;
12893 Hook_Id
: Entity_Id
;
12894 Hook_Insert
: Node_Id
;
12895 Ptr_Id
: Entity_Id
;
12897 Hook_Context
: constant Node_Id
:= Find_Hook_Context
(Rel_Node
);
12898 -- The node on which to insert the hook as an action. This is usually
12899 -- the innermost enclosing non-transient construct.
12901 Fin_Context
: Node_Id
;
12902 -- The node after which to insert the finalization actions of the
12903 -- transient controlled object.
12906 if Is_Boolean_Type
(Etype
(Rel_Node
)) then
12907 Fin_Context
:= Last
(Actions
(Rel_Node
));
12909 Fin_Context
:= Hook_Context
;
12912 -- Step 1: Create the access type which provides a reference to the
12913 -- transient controlled object.
12915 if Is_Access_Type
(Obj_Typ
) then
12916 Desig_Typ
:= Directly_Designated_Type
(Obj_Typ
);
12918 Desig_Typ
:= Obj_Typ
;
12921 Desig_Typ
:= Base_Type
(Desig_Typ
);
12924 -- Ann : access [all] <Desig_Typ>;
12926 Ptr_Id
:= Make_Temporary
(Loc
, 'A');
12928 Insert_Action
(Hook_Context
,
12929 Make_Full_Type_Declaration
(Loc
,
12930 Defining_Identifier
=> Ptr_Id
,
12932 Make_Access_To_Object_Definition
(Loc
,
12933 All_Present
=> Ekind
(Obj_Typ
) = E_General_Access_Type
,
12934 Subtype_Indication
=> New_Occurrence_Of
(Desig_Typ
, Loc
))));
12936 -- Step 2: Create a temporary which acts as a hook to the transient
12937 -- controlled object. Generate:
12939 -- Hook : Ptr_Id := null;
12941 Hook_Id
:= Make_Temporary
(Loc
, 'T');
12943 Insert_Action
(Hook_Context
,
12944 Make_Object_Declaration
(Loc
,
12945 Defining_Identifier
=> Hook_Id
,
12946 Object_Definition
=> New_Occurrence_Of
(Ptr_Id
, Loc
)));
12948 -- Mark the hook as created for the purposes of exporting the transient
12949 -- controlled object out of the expression_with_action or if expression.
12950 -- This signals the machinery in Build_Finalizer to treat this case in
12951 -- a special manner.
12953 Set_Status_Flag_Or_Transient_Decl
(Hook_Id
, Decl
);
12955 -- Step 3: Associate the transient object to the hook
12957 -- This must be inserted right after the object declaration, so that
12958 -- the assignment is executed if, and only if, the object is actually
12959 -- created (whereas the declaration of the hook pointer, and the
12960 -- finalization call, may be inserted at an outer level, and may
12961 -- remain unused for some executions, if the actual creation of
12962 -- the object is conditional).
12964 -- The use of unchecked conversion / unrestricted access is needed to
12965 -- avoid an accessibility violation. Note that the finalization code is
12966 -- structured in such a way that the "hook" is processed only when it
12967 -- points to an existing object.
12969 if Is_Access_Type
(Obj_Typ
) then
12971 Unchecked_Convert_To
12973 Expr
=> New_Occurrence_Of
(Obj_Id
, Loc
));
12976 Make_Attribute_Reference
(Loc
,
12977 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
12978 Attribute_Name
=> Name_Unrestricted_Access
);
12982 -- Hook := Ptr_Id (Obj_Id);
12984 -- Hook := Obj_Id'Unrestricted_Access;
12986 -- When the transient object is initialized by an aggregate, the hook
12987 -- must capture the object after the last component assignment takes
12988 -- place. Only then is the object fully initialized.
12990 if Ekind
(Obj_Id
) = E_Variable
12991 and then Present
(Last_Aggregate_Assignment
(Obj_Id
))
12993 Hook_Insert
:= Last_Aggregate_Assignment
(Obj_Id
);
12995 -- Otherwise the hook seizes the related object immediately
12998 Hook_Insert
:= Decl
;
13001 Insert_After_And_Analyze
(Hook_Insert
,
13002 Make_Assignment_Statement
(Loc
,
13003 Name
=> New_Occurrence_Of
(Hook_Id
, Loc
),
13004 Expression
=> Expr
));
13006 -- Step 4: Finalize the hook after the context has been evaluated or
13007 -- elaborated. Generate:
13009 -- if Hook /= null then
13010 -- [Deep_]Finalize (Hook.all);
13014 -- When the node is part of a return statement, there is no need to
13015 -- insert a finalization call, as the general finalization mechanism
13016 -- (see Build_Finalizer) would take care of the transient controlled
13017 -- object on subprogram exit. Note that it would also be impossible to
13018 -- insert the finalization code after the return statement as this will
13019 -- render it unreachable.
13021 if Nkind
(Fin_Context
) = N_Simple_Return_Statement
then
13024 -- Otherwise finalize the hook
13027 Insert_Action_After
(Fin_Context
,
13028 Make_Implicit_If_Statement
(Decl
,
13031 Left_Opnd
=> New_Occurrence_Of
(Hook_Id
, Loc
),
13032 Right_Opnd
=> Make_Null
(Loc
)),
13034 Then_Statements
=> New_List
(
13037 Make_Explicit_Dereference
(Loc
,
13038 Prefix
=> New_Occurrence_Of
(Hook_Id
, Loc
)),
13041 Make_Assignment_Statement
(Loc
,
13042 Name
=> New_Occurrence_Of
(Hook_Id
, Loc
),
13043 Expression
=> Make_Null
(Loc
)))));
13045 end Process_Transient_Object
;
13047 ------------------------
13048 -- Rewrite_Comparison --
13049 ------------------------
13051 procedure Rewrite_Comparison
(N
: Node_Id
) is
13052 Warning_Generated
: Boolean := False;
13053 -- Set to True if first pass with Assume_Valid generates a warning in
13054 -- which case we skip the second pass to avoid warning overloaded.
13057 -- Set to Standard_True or Standard_False
13060 if Nkind
(N
) = N_Type_Conversion
then
13061 Rewrite_Comparison
(Expression
(N
));
13064 elsif Nkind
(N
) not in N_Op_Compare
then
13068 -- Now start looking at the comparison in detail. We potentially go
13069 -- through this loop twice. The first time, Assume_Valid is set False
13070 -- in the call to Compile_Time_Compare. If this call results in a
13071 -- clear result of always True or Always False, that's decisive and
13072 -- we are done. Otherwise we repeat the processing with Assume_Valid
13073 -- set to True to generate additional warnings. We can skip that step
13074 -- if Constant_Condition_Warnings is False.
13076 for AV
in False .. True loop
13078 Typ
: constant Entity_Id
:= Etype
(N
);
13079 Op1
: constant Node_Id
:= Left_Opnd
(N
);
13080 Op2
: constant Node_Id
:= Right_Opnd
(N
);
13082 Res
: constant Compare_Result
:=
13083 Compile_Time_Compare
(Op1
, Op2
, Assume_Valid
=> AV
);
13084 -- Res indicates if compare outcome can be compile time determined
13086 True_Result
: Boolean;
13087 False_Result
: Boolean;
13090 case N_Op_Compare
(Nkind
(N
)) is
13092 True_Result
:= Res
= EQ
;
13093 False_Result
:= Res
= LT
or else Res
= GT
or else Res
= NE
;
13096 True_Result
:= Res
in Compare_GE
;
13097 False_Result
:= Res
= LT
;
13100 and then Constant_Condition_Warnings
13101 and then Comes_From_Source
(Original_Node
(N
))
13102 and then Nkind
(Original_Node
(N
)) = N_Op_Ge
13103 and then not In_Instance
13104 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
13105 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
13108 ("can never be greater than, could replace by ""'=""?c?",
13110 Warning_Generated
:= True;
13114 True_Result
:= Res
= GT
;
13115 False_Result
:= Res
in Compare_LE
;
13118 True_Result
:= Res
= LT
;
13119 False_Result
:= Res
in Compare_GE
;
13122 True_Result
:= Res
in Compare_LE
;
13123 False_Result
:= Res
= GT
;
13126 and then Constant_Condition_Warnings
13127 and then Comes_From_Source
(Original_Node
(N
))
13128 and then Nkind
(Original_Node
(N
)) = N_Op_Le
13129 and then not In_Instance
13130 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
13131 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
13134 ("can never be less than, could replace by ""'=""?c?", N
);
13135 Warning_Generated
:= True;
13139 True_Result
:= Res
= NE
or else Res
= GT
or else Res
= LT
;
13140 False_Result
:= Res
= EQ
;
13143 -- If this is the first iteration, then we actually convert the
13144 -- comparison into True or False, if the result is certain.
13147 if True_Result
or False_Result
then
13148 Result
:= Boolean_Literals
(True_Result
);
13151 New_Occurrence_Of
(Result
, Sloc
(N
))));
13152 Analyze_And_Resolve
(N
, Typ
);
13153 Warn_On_Known_Condition
(N
);
13157 -- If this is the second iteration (AV = True), and the original
13158 -- node comes from source and we are not in an instance, then give
13159 -- a warning if we know result would be True or False. Note: we
13160 -- know Constant_Condition_Warnings is set if we get here.
13162 elsif Comes_From_Source
(Original_Node
(N
))
13163 and then not In_Instance
13165 if True_Result
then
13167 ("condition can only be False if invalid values present??",
13169 elsif False_Result
then
13171 ("condition can only be True if invalid values present??",
13177 -- Skip second iteration if not warning on constant conditions or
13178 -- if the first iteration already generated a warning of some kind or
13179 -- if we are in any case assuming all values are valid (so that the
13180 -- first iteration took care of the valid case).
13182 exit when not Constant_Condition_Warnings
;
13183 exit when Warning_Generated
;
13184 exit when Assume_No_Invalid_Values
;
13186 end Rewrite_Comparison
;
13188 ----------------------------
13189 -- Safe_In_Place_Array_Op --
13190 ----------------------------
13192 function Safe_In_Place_Array_Op
13195 Op2
: Node_Id
) return Boolean
13197 Target
: Entity_Id
;
13199 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean;
13200 -- Operand is safe if it cannot overlap part of the target of the
13201 -- operation. If the operand and the target are identical, the operand
13202 -- is safe. The operand can be empty in the case of negation.
13204 function Is_Unaliased
(N
: Node_Id
) return Boolean;
13205 -- Check that N is a stand-alone entity
13211 function Is_Unaliased
(N
: Node_Id
) return Boolean is
13215 and then No
(Address_Clause
(Entity
(N
)))
13216 and then No
(Renamed_Object
(Entity
(N
)));
13219 ---------------------
13220 -- Is_Safe_Operand --
13221 ---------------------
13223 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean is
13228 elsif Is_Entity_Name
(Op
) then
13229 return Is_Unaliased
(Op
);
13231 elsif Nkind_In
(Op
, N_Indexed_Component
, N_Selected_Component
) then
13232 return Is_Unaliased
(Prefix
(Op
));
13234 elsif Nkind
(Op
) = N_Slice
then
13236 Is_Unaliased
(Prefix
(Op
))
13237 and then Entity
(Prefix
(Op
)) /= Target
;
13239 elsif Nkind
(Op
) = N_Op_Not
then
13240 return Is_Safe_Operand
(Right_Opnd
(Op
));
13245 end Is_Safe_Operand
;
13247 -- Start of processing for Safe_In_Place_Array_Op
13250 -- Skip this processing if the component size is different from system
13251 -- storage unit (since at least for NOT this would cause problems).
13253 if Component_Size
(Etype
(Lhs
)) /= System_Storage_Unit
then
13256 -- Cannot do in place stuff if non-standard Boolean representation
13258 elsif Has_Non_Standard_Rep
(Component_Type
(Etype
(Lhs
))) then
13261 elsif not Is_Unaliased
(Lhs
) then
13265 Target
:= Entity
(Lhs
);
13266 return Is_Safe_Operand
(Op1
) and then Is_Safe_Operand
(Op2
);
13268 end Safe_In_Place_Array_Op
;
13270 -----------------------
13271 -- Tagged_Membership --
13272 -----------------------
13274 -- There are two different cases to consider depending on whether the right
13275 -- operand is a class-wide type or not. If not we just compare the actual
13276 -- tag of the left expr to the target type tag:
13278 -- Left_Expr.Tag = Right_Type'Tag;
13280 -- If it is a class-wide type we use the RT function CW_Membership which is
13281 -- usually implemented by looking in the ancestor tables contained in the
13282 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13284 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13285 -- function IW_Membership which is usually implemented by looking in the
13286 -- table of abstract interface types plus the ancestor table contained in
13287 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13289 procedure Tagged_Membership
13291 SCIL_Node
: out Node_Id
;
13292 Result
: out Node_Id
)
13294 Left
: constant Node_Id
:= Left_Opnd
(N
);
13295 Right
: constant Node_Id
:= Right_Opnd
(N
);
13296 Loc
: constant Source_Ptr
:= Sloc
(N
);
13298 Full_R_Typ
: Entity_Id
;
13299 Left_Type
: Entity_Id
;
13300 New_Node
: Node_Id
;
13301 Right_Type
: Entity_Id
;
13305 SCIL_Node
:= Empty
;
13307 -- Handle entities from the limited view
13309 Left_Type
:= Available_View
(Etype
(Left
));
13310 Right_Type
:= Available_View
(Etype
(Right
));
13312 -- In the case where the type is an access type, the test is applied
13313 -- using the designated types (needed in Ada 2012 for implicit anonymous
13314 -- access conversions, for AI05-0149).
13316 if Is_Access_Type
(Right_Type
) then
13317 Left_Type
:= Designated_Type
(Left_Type
);
13318 Right_Type
:= Designated_Type
(Right_Type
);
13321 if Is_Class_Wide_Type
(Left_Type
) then
13322 Left_Type
:= Root_Type
(Left_Type
);
13325 if Is_Class_Wide_Type
(Right_Type
) then
13326 Full_R_Typ
:= Underlying_Type
(Root_Type
(Right_Type
));
13328 Full_R_Typ
:= Underlying_Type
(Right_Type
);
13332 Make_Selected_Component
(Loc
,
13333 Prefix
=> Relocate_Node
(Left
),
13335 New_Occurrence_Of
(First_Tag_Component
(Left_Type
), Loc
));
13337 if Is_Class_Wide_Type
(Right_Type
) then
13339 -- No need to issue a run-time check if we statically know that the
13340 -- result of this membership test is always true. For example,
13341 -- considering the following declarations:
13343 -- type Iface is interface;
13344 -- type T is tagged null record;
13345 -- type DT is new T and Iface with null record;
13350 -- These membership tests are always true:
13353 -- Obj2 in T'Class;
13354 -- Obj2 in Iface'Class;
13356 -- We do not need to handle cases where the membership is illegal.
13359 -- Obj1 in DT'Class; -- Compile time error
13360 -- Obj1 in Iface'Class; -- Compile time error
13362 if not Is_Class_Wide_Type
(Left_Type
)
13363 and then (Is_Ancestor
(Etype
(Right_Type
), Left_Type
,
13364 Use_Full_View
=> True)
13365 or else (Is_Interface
(Etype
(Right_Type
))
13366 and then Interface_Present_In_Ancestor
13368 Iface
=> Etype
(Right_Type
))))
13370 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
13374 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13376 if Is_Interface
(Etype
(Class_Wide_Type
(Right_Type
)))
13378 -- Support to: "Iface_CW_Typ in Typ'Class"
13380 or else Is_Interface
(Left_Type
)
13382 -- Issue error if IW_Membership operation not available in a
13383 -- configurable run time setting.
13385 if not RTE_Available
(RE_IW_Membership
) then
13387 ("dynamic membership test on interface types", N
);
13393 Make_Function_Call
(Loc
,
13394 Name
=> New_Occurrence_Of
(RTE
(RE_IW_Membership
), Loc
),
13395 Parameter_Associations
=> New_List
(
13396 Make_Attribute_Reference
(Loc
,
13398 Attribute_Name
=> Name_Address
),
13399 New_Occurrence_Of
(
13400 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))),
13403 -- Ada 95: Normal case
13406 Build_CW_Membership
(Loc
,
13407 Obj_Tag_Node
=> Obj_Tag
,
13409 New_Occurrence_Of
(
13410 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
),
13412 New_Node
=> New_Node
);
13414 -- Generate the SCIL node for this class-wide membership test.
13415 -- Done here because the previous call to Build_CW_Membership
13416 -- relocates Obj_Tag.
13418 if Generate_SCIL
then
13419 SCIL_Node
:= Make_SCIL_Membership_Test
(Sloc
(N
));
13420 Set_SCIL_Entity
(SCIL_Node
, Etype
(Right_Type
));
13421 Set_SCIL_Tag_Value
(SCIL_Node
, Obj_Tag
);
13424 Result
:= New_Node
;
13427 -- Right_Type is not a class-wide type
13430 -- No need to check the tag of the object if Right_Typ is abstract
13432 if Is_Abstract_Type
(Right_Type
) then
13433 Result
:= New_Occurrence_Of
(Standard_False
, Loc
);
13438 Left_Opnd
=> Obj_Tag
,
13441 (Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
));
13444 end Tagged_Membership
;
13446 ------------------------------
13447 -- Unary_Op_Validity_Checks --
13448 ------------------------------
13450 procedure Unary_Op_Validity_Checks
(N
: Node_Id
) is
13452 if Validity_Checks_On
and Validity_Check_Operands
then
13453 Ensure_Valid
(Right_Opnd
(N
));
13455 end Unary_Op_Validity_Checks
;