In gcc/objc/: 2011-04-12 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / libgo / runtime / cpuprof.c
blob3797e1ce1e08afed58896b47c6132a919e4c0ae5
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // CPU profiling.
6 // Based on algorithms and data structures used in
7 // http://code.google.com/p/google-perftools/.
8 //
9 // The main difference between this code and the google-perftools
10 // code is that this code is written to allow copying the profile data
11 // to an arbitrary io.Writer, while the google-perftools code always
12 // writes to an operating system file.
14 // The signal handler for the profiling clock tick adds a new stack trace
15 // to a hash table tracking counts for recent traces. Most clock ticks
16 // hit in the cache. In the event of a cache miss, an entry must be
17 // evicted from the hash table, copied to a log that will eventually be
18 // written as profile data. The google-perftools code flushed the
19 // log itself during the signal handler. This code cannot do that, because
20 // the io.Writer might block or need system calls or locks that are not
21 // safe to use from within the signal handler. Instead, we split the log
22 // into two halves and let the signal handler fill one half while a goroutine
23 // is writing out the other half. When the signal handler fills its half, it
24 // offers to swap with the goroutine. If the writer is not done with its half,
25 // we lose the stack trace for this clock tick (and record that loss).
26 // The goroutine interacts with the signal handler by calling getprofile() to
27 // get the next log piece to write, implicitly handing back the last log
28 // piece it obtained.
30 // The state of this dance between the signal handler and the goroutine
31 // is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
32 // is not using either log half and is waiting (or will soon be waiting) for
33 // a new piece by calling notesleep(&p->wait). If the signal handler
34 // changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
35 // to wake the goroutine. The value indicates the number of entries in the
36 // log half being handed off. The goroutine leaves the non-zero value in
37 // place until it has finished processing the log half and then flips the number
38 // back to zero. Setting the high bit in handoff means that the profiling is over,
39 // and the goroutine is now in charge of flushing the data left in the hash table
40 // to the log and returning that data.
42 // The handoff field is manipulated using atomic operations.
43 // For the most part, the manipulation of handoff is orderly: if handoff == 0
44 // then the signal handler owns it and can change it to non-zero.
45 // If handoff != 0 then the goroutine owns it and can change it to zero.
46 // If that were the end of the story then we would not need to manipulate
47 // handoff using atomic operations. The operations are needed, however,
48 // in order to let the log closer set the high bit to indicate "EOF" safely
49 // in the situation when normally the goroutine "owns" handoff.
51 #include "runtime.h"
52 #include "malloc.h"
54 #include "array.h"
55 typedef struct __go_open_array Slice;
56 #define array __values
57 #define len __count
58 #define cap __capacity
60 enum
62 HashSize = 1<<10,
63 LogSize = 1<<17,
64 Assoc = 4,
65 MaxStack = 64,
68 typedef struct Profile Profile;
69 typedef struct Bucket Bucket;
70 typedef struct Entry Entry;
72 struct Entry {
73 uintptr count;
74 uintptr depth;
75 uintptr stack[MaxStack];
78 struct Bucket {
79 Entry entry[Assoc];
82 struct Profile {
83 bool on; // profiling is on
84 Note wait; // goroutine waits here
85 uintptr count; // tick count
86 uintptr evicts; // eviction count
87 uintptr lost; // lost ticks that need to be logged
88 uintptr totallost; // total lost ticks
90 // Active recent stack traces.
91 Bucket hash[HashSize];
93 // Log of traces evicted from hash.
94 // Signal handler has filled log[toggle][:nlog].
95 // Goroutine is writing log[1-toggle][:handoff].
96 uintptr log[2][LogSize/2];
97 uintptr nlog;
98 int32 toggle;
99 uint32 handoff;
101 // Writer state.
102 // Writer maintains its own toggle to avoid races
103 // looking at signal handler's toggle.
104 uint32 wtoggle;
105 bool wholding; // holding & need to release a log half
106 bool flushing; // flushing hash table - profile is over
109 static Lock lk;
110 static Profile *prof;
112 static void tick(uintptr*, int32);
113 static void add(Profile*, uintptr*, int32);
114 static bool evict(Profile*, Entry*);
115 static bool flushlog(Profile*);
117 void
118 runtime_cpuprofinit(void)
120 runtime_initlock(&lk);
123 // LostProfileData is a no-op function used in profiles
124 // to mark the number of profiling stack traces that were
125 // discarded due to slow data writers.
126 static void LostProfileData(void) {
129 extern void runtime_SetCPUProfileRate(int32)
130 __asm__("libgo_runtime.runtime.SetCPUProfileRate");
132 // SetCPUProfileRate sets the CPU profiling rate.
133 // The user documentation is in debug.go.
134 void
135 runtime_SetCPUProfileRate(int32 hz)
137 uintptr *p;
138 uintptr n;
140 // Clamp hz to something reasonable.
141 if(hz < 0)
142 hz = 0;
143 if(hz > 1000000)
144 hz = 1000000;
146 runtime_lock(&lk);
147 if(hz > 0) {
148 if(prof == nil) {
149 prof = runtime_SysAlloc(sizeof *prof);
150 if(prof == nil) {
151 runtime_printf("runtime: cpu profiling cannot allocate memory\n");
152 runtime_unlock(&lk);
153 return;
156 if(prof->on || prof->handoff != 0) {
157 runtime_printf("runtime: cannot set cpu profile rate until previous profile has finished.\n");
158 runtime_unlock(&lk);
159 return;
162 prof->on = true;
163 p = prof->log[0];
164 // pprof binary header format.
165 // http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
166 *p++ = 0; // count for header
167 *p++ = 3; // depth for header
168 *p++ = 0; // version number
169 *p++ = 1000000 / hz; // period (microseconds)
170 *p++ = 0;
171 prof->nlog = p - prof->log[0];
172 prof->toggle = 0;
173 prof->wholding = false;
174 prof->wtoggle = 0;
175 prof->flushing = false;
176 runtime_noteclear(&prof->wait);
178 runtime_setcpuprofilerate(tick, hz);
179 } else if(prof->on) {
180 runtime_setcpuprofilerate(nil, 0);
181 prof->on = false;
183 // Now add is not running anymore, and getprofile owns the entire log.
184 // Set the high bit in prof->handoff to tell getprofile.
185 for(;;) {
186 n = prof->handoff;
187 if(n&0x80000000)
188 runtime_printf("runtime: setcpuprofile(off) twice");
189 if(runtime_cas(&prof->handoff, n, n|0x80000000))
190 break;
192 if(n == 0) {
193 // we did the transition from 0 -> nonzero so we wake getprofile
194 runtime_notewakeup(&prof->wait);
197 runtime_unlock(&lk);
200 static void
201 tick(uintptr *pc, int32 n)
203 add(prof, pc, n);
206 // add adds the stack trace to the profile.
207 // It is called from signal handlers and other limited environments
208 // and cannot allocate memory or acquire locks that might be
209 // held at the time of the signal, nor can it use substantial amounts
210 // of stack. It is allowed to call evict.
211 static void
212 add(Profile *p, uintptr *pc, int32 n)
214 int32 i, j;
215 uintptr h, x;
216 Bucket *b;
217 Entry *e;
219 if(n > MaxStack)
220 n = MaxStack;
222 // Compute hash.
223 h = 0;
224 for(i=0; i<n; i++) {
225 h = h<<8 | (h>>(8*(sizeof(h)-1)));
226 x = pc[i];
227 h += x*31 + x*7 + x*3;
229 p->count++;
231 // Add to entry count if already present in table.
232 b = &p->hash[h%HashSize];
233 for(i=0; i<Assoc; i++) {
234 e = &b->entry[i];
235 if(e->depth != (uintptr)n)
236 continue;
237 for(j=0; j<n; j++)
238 if(e->stack[j] != pc[j])
239 goto ContinueAssoc;
240 e->count++;
241 return;
242 ContinueAssoc:;
245 // Evict entry with smallest count.
246 e = &b->entry[0];
247 for(i=1; i<Assoc; i++)
248 if(b->entry[i].count < e->count)
249 e = &b->entry[i];
250 if(e->count > 0) {
251 if(!evict(p, e)) {
252 // Could not evict entry. Record lost stack.
253 p->lost++;
254 p->totallost++;
255 return;
257 p->evicts++;
260 // Reuse the newly evicted entry.
261 e->depth = n;
262 e->count = 1;
263 for(i=0; i<n; i++)
264 e->stack[i] = pc[i];
267 // evict copies the given entry's data into the log, so that
268 // the entry can be reused. evict is called from add, which
269 // is called from the profiling signal handler, so it must not
270 // allocate memory or block. It is safe to call flushLog.
271 // evict returns true if the entry was copied to the log,
272 // false if there was no room available.
273 static bool
274 evict(Profile *p, Entry *e)
276 int32 i, d, nslot;
277 uintptr *log, *q;
279 d = e->depth;
280 nslot = d+2;
281 log = p->log[p->toggle];
282 if(p->nlog+nslot > nelem(p->log[0])) {
283 if(!flushlog(p))
284 return false;
285 log = p->log[p->toggle];
288 q = log+p->nlog;
289 *q++ = e->count;
290 *q++ = d;
291 for(i=0; i<d; i++)
292 *q++ = e->stack[i];
293 p->nlog = q - log;
294 e->count = 0;
295 return true;
298 // flushlog tries to flush the current log and switch to the other one.
299 // flushlog is called from evict, called from add, called from the signal handler,
300 // so it cannot allocate memory or block. It can try to swap logs with
301 // the writing goroutine, as explained in the comment at the top of this file.
302 static bool
303 flushlog(Profile *p)
305 uintptr *log, *q;
307 if(!runtime_cas(&p->handoff, 0, p->nlog))
308 return false;
309 runtime_notewakeup(&p->wait);
311 p->toggle = 1 - p->toggle;
312 log = p->log[p->toggle];
313 q = log;
314 if(p->lost > 0) {
315 *q++ = p->lost;
316 *q++ = 1;
317 *q++ = (uintptr)LostProfileData;
319 p->nlog = q - log;
320 return true;
323 // getprofile blocks until the next block of profiling data is available
324 // and returns it as a []byte. It is called from the writing goroutine.
325 Slice
326 getprofile(Profile *p)
328 uint32 i, j, n;
329 Slice ret;
330 Bucket *b;
331 Entry *e;
333 ret.array = nil;
334 ret.len = 0;
335 ret.cap = 0;
337 if(p == nil)
338 return ret;
340 if(p->wholding) {
341 // Release previous log to signal handling side.
342 // Loop because we are racing against setprofile(off).
343 for(;;) {
344 n = p->handoff;
345 if(n == 0) {
346 runtime_printf("runtime: phase error during cpu profile handoff\n");
347 return ret;
349 if(n & 0x80000000) {
350 p->wtoggle = 1 - p->wtoggle;
351 p->wholding = false;
352 p->flushing = true;
353 goto flush;
355 if(runtime_cas(&p->handoff, n, 0))
356 break;
358 p->wtoggle = 1 - p->wtoggle;
359 p->wholding = false;
362 if(p->flushing)
363 goto flush;
365 if(!p->on && p->handoff == 0)
366 return ret;
368 // Wait for new log.
369 // runtime·entersyscall();
370 runtime_notesleep(&p->wait);
371 // runtime·exitsyscall();
372 runtime_noteclear(&p->wait);
374 n = p->handoff;
375 if(n == 0) {
376 runtime_printf("runtime: phase error during cpu profile wait\n");
377 return ret;
379 if(n == 0x80000000) {
380 p->flushing = true;
381 goto flush;
383 n &= ~0x80000000;
385 // Return new log to caller.
386 p->wholding = true;
388 ret.array = (byte*)p->log[p->wtoggle];
389 ret.len = n*sizeof(uintptr);
390 ret.cap = ret.len;
391 return ret;
393 flush:
394 // In flush mode.
395 // Add is no longer being called. We own the log.
396 // Also, p->handoff is non-zero, so flushlog will return false.
397 // Evict the hash table into the log and return it.
398 for(i=0; i<HashSize; i++) {
399 b = &p->hash[i];
400 for(j=0; j<Assoc; j++) {
401 e = &b->entry[j];
402 if(e->count > 0 && !evict(p, e)) {
403 // Filled the log. Stop the loop and return what we've got.
404 goto breakflush;
408 breakflush:
410 // Return pending log data.
411 if(p->nlog > 0) {
412 // Note that we're using toggle now, not wtoggle,
413 // because we're working on the log directly.
414 ret.array = (byte*)p->log[p->toggle];
415 ret.len = p->nlog*sizeof(uintptr);
416 ret.cap = ret.len;
417 p->nlog = 0;
418 return ret;
421 // Made it through the table without finding anything to log.
422 // Finally done. Clean up and return nil.
423 p->flushing = false;
424 if(!runtime_cas(&p->handoff, p->handoff, 0))
425 runtime_printf("runtime: profile flush racing with something\n");
426 return ret; // set to nil at top of function
429 extern Slice runtime_CPUProfile(void)
430 __asm__("libgo_runtime.runtime.CPUProfile");
432 // CPUProfile returns the next cpu profile block as a []byte.
433 // The user documentation is in debug.go.
434 Slice
435 runtime_CPUProfile(void)
437 return getprofile(prof);