* gimplify.c (gimplify_call_expr): Don't set CALL_CANNOT_INLINE_P
[official-gcc.git] / gcc / tree-into-ssa.c
blob928333ba4baaa681ace12ffacd44944c157e258b
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
53 /* This file builds the SSA form for a function as described in:
54 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
55 Computing Static Single Assignment Form and the Control Dependence
56 Graph. ACM Transactions on Programming Languages and Systems,
57 13(4):451-490, October 1991. */
59 /* Structure to map a variable VAR to the set of blocks that contain
60 definitions for VAR. */
61 struct def_blocks_d
63 /* The variable. */
64 tree var;
66 /* Blocks that contain definitions of VAR. Bit I will be set if the
67 Ith block contains a definition of VAR. */
68 bitmap def_blocks;
70 /* Blocks that contain a PHI node for VAR. */
71 bitmap phi_blocks;
73 /* Blocks where VAR is live-on-entry. Similar semantics as
74 DEF_BLOCKS. */
75 bitmap livein_blocks;
79 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
80 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
81 basic blocks where VAR is defined (assigned a new value). It also
82 contains a bitmap of all the blocks where VAR is live-on-entry
83 (i.e., there is a use of VAR in block B without a preceding
84 definition in B). The live-on-entry information is used when
85 computing PHI pruning heuristics. */
86 static htab_t def_blocks;
88 /* Stack of trees used to restore the global currdefs to its original
89 state after completing rewriting of a block and its dominator
90 children. Its elements have the following properties:
92 - An SSA_NAME (N) indicates that the current definition of the
93 underlying variable should be set to the given SSA_NAME. If the
94 symbol associated with the SSA_NAME is not a GIMPLE register, the
95 next slot in the stack must be a _DECL node (SYM). In this case,
96 the name N in the previous slot is the current reaching
97 definition for SYM.
99 - A _DECL node indicates that the underlying variable has no
100 current definition.
102 - A NULL node at the top entry is used to mark the last slot
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
107 /* Set of existing SSA names being replaced by update_ssa. */
108 static sbitmap old_ssa_names;
110 /* Set of new SSA names being added by update_ssa. Note that both
111 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112 the operations done on them are presence tests. */
113 static sbitmap new_ssa_names;
116 /* Symbols whose SSA form needs to be updated or created for the first
117 time. */
118 static bitmap syms_to_rename;
120 /* Subset of SYMS_TO_RENAME. Contains all the GIMPLE register symbols
121 that have been marked for renaming. */
122 static bitmap regs_to_rename;
124 /* Subset of SYMS_TO_RENAME. Contains all the memory symbols
125 that have been marked for renaming. */
126 static bitmap mem_syms_to_rename;
128 /* Set of SSA names that have been marked to be released after they
129 were registered in the replacement table. They will be finally
130 released after we finish updating the SSA web. */
131 static bitmap names_to_release;
133 static VEC(gimple_vec, heap) *phis_to_rewrite;
135 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
136 static bitmap blocks_with_phis_to_rewrite;
138 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
139 to grow as the callers to register_new_name_mapping will typically
140 create new names on the fly. FIXME. Currently set to 1/3 to avoid
141 frequent reallocations but still need to find a reasonable growth
142 strategy. */
143 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
145 /* Tuple used to represent replacement mappings. */
146 struct repl_map_d
148 tree name;
149 bitmap set;
153 /* NEW -> OLD_SET replacement table. If we are replacing several
154 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
155 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
156 static htab_t repl_tbl;
158 /* true if register_new_name_mapping needs to initialize the data
159 structures needed by update_ssa. */
160 static bool need_to_initialize_update_ssa_p = true;
162 /* true if update_ssa needs to update virtual operands. */
163 static bool need_to_update_vops_p = false;
165 /* Statistics kept by update_ssa to use in the virtual mapping
166 heuristic. If the number of virtual mappings is beyond certain
167 threshold, the updater will switch from using the mappings into
168 renaming the virtual symbols from scratch. In some cases, the
169 large number of name mappings for virtual names causes significant
170 slowdowns in the PHI insertion code. */
171 struct update_ssa_stats_d
173 unsigned num_virtual_mappings;
174 unsigned num_total_mappings;
175 bitmap virtual_symbols;
176 unsigned num_virtual_symbols;
178 static struct update_ssa_stats_d update_ssa_stats;
180 /* Global data to attach to the main dominator walk structure. */
181 struct mark_def_sites_global_data
183 /* This bitmap contains the variables which are set before they
184 are used in a basic block. */
185 bitmap kills;
187 /* Bitmap of names to rename. */
188 sbitmap names_to_rename;
190 /* Set of blocks that mark_def_sites deems interesting for the
191 renamer to process. */
192 sbitmap interesting_blocks;
196 /* Information stored for SSA names. */
197 struct ssa_name_info
199 /* The current reaching definition replacing this SSA name. */
200 tree current_def;
202 /* This field indicates whether or not the variable may need PHI nodes.
203 See the enum's definition for more detailed information about the
204 states. */
205 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
207 /* Age of this record (so that info_for_ssa_name table can be cleared
208 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
209 are assumed to be null. */
210 unsigned age;
213 /* The information associated with names. */
214 typedef struct ssa_name_info *ssa_name_info_p;
215 DEF_VEC_P (ssa_name_info_p);
216 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
218 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
219 static unsigned current_info_for_ssa_name_age;
221 /* The set of blocks affected by update_ssa. */
222 static bitmap blocks_to_update;
224 /* The main entry point to the SSA renamer (rewrite_blocks) may be
225 called several times to do different, but related, tasks.
226 Initially, we need it to rename the whole program into SSA form.
227 At other times, we may need it to only rename into SSA newly
228 exposed symbols. Finally, we can also call it to incrementally fix
229 an already built SSA web. */
230 enum rewrite_mode {
231 /* Convert the whole function into SSA form. */
232 REWRITE_ALL,
234 /* Incrementally update the SSA web by replacing existing SSA
235 names with new ones. See update_ssa for details. */
236 REWRITE_UPDATE
242 /* Prototypes for debugging functions. */
243 extern void dump_tree_ssa (FILE *);
244 extern void debug_tree_ssa (void);
245 extern void debug_def_blocks (void);
246 extern void dump_tree_ssa_stats (FILE *);
247 extern void debug_tree_ssa_stats (void);
248 extern void dump_update_ssa (FILE *);
249 extern void debug_update_ssa (void);
250 extern void dump_names_replaced_by (FILE *, tree);
251 extern void debug_names_replaced_by (tree);
252 extern void dump_def_blocks (FILE *);
253 extern void debug_def_blocks (void);
254 extern void dump_defs_stack (FILE *, int);
255 extern void debug_defs_stack (int);
256 extern void dump_currdefs (FILE *);
257 extern void debug_currdefs (void);
259 /* Return true if STMT needs to be rewritten. When renaming a subset
260 of the variables, not all statements will be processed. This is
261 decided in mark_def_sites. */
263 static inline bool
264 rewrite_uses_p (gimple stmt)
266 return gimple_visited_p (stmt);
270 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
272 static inline void
273 set_rewrite_uses (gimple stmt, bool rewrite_p)
275 gimple_set_visited (stmt, rewrite_p);
279 /* Return true if the DEFs created by statement STMT should be
280 registered when marking new definition sites. This is slightly
281 different than rewrite_uses_p: it's used by update_ssa to
282 distinguish statements that need to have both uses and defs
283 processed from those that only need to have their defs processed.
284 Statements that define new SSA names only need to have their defs
285 registered, but they don't need to have their uses renamed. */
287 static inline bool
288 register_defs_p (gimple stmt)
290 return gimple_plf (stmt, GF_PLF_1) != 0;
294 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
296 static inline void
297 set_register_defs (gimple stmt, bool register_defs_p)
299 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
303 /* Get the information associated with NAME. */
305 static inline ssa_name_info_p
306 get_ssa_name_ann (tree name)
308 unsigned ver = SSA_NAME_VERSION (name);
309 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
310 struct ssa_name_info *info;
312 if (ver >= len)
314 unsigned new_len = num_ssa_names;
316 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
317 while (len++ < new_len)
319 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
320 info->age = current_info_for_ssa_name_age;
321 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
325 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
326 if (info->age < current_info_for_ssa_name_age)
328 info->need_phi_state = 0;
329 info->current_def = NULL_TREE;
330 info->age = current_info_for_ssa_name_age;
333 return info;
337 /* Clears info for SSA names. */
339 static void
340 clear_ssa_name_info (void)
342 current_info_for_ssa_name_age++;
346 /* Get phi_state field for VAR. */
348 static inline enum need_phi_state
349 get_phi_state (tree var)
351 if (TREE_CODE (var) == SSA_NAME)
352 return get_ssa_name_ann (var)->need_phi_state;
353 else
354 return var_ann (var)->need_phi_state;
358 /* Sets phi_state field for VAR to STATE. */
360 static inline void
361 set_phi_state (tree var, enum need_phi_state state)
363 if (TREE_CODE (var) == SSA_NAME)
364 get_ssa_name_ann (var)->need_phi_state = state;
365 else
366 var_ann (var)->need_phi_state = state;
370 /* Return the current definition for VAR. */
372 tree
373 get_current_def (tree var)
375 if (TREE_CODE (var) == SSA_NAME)
376 return get_ssa_name_ann (var)->current_def;
377 else
378 return var_ann (var)->current_def;
382 /* Sets current definition of VAR to DEF. */
384 void
385 set_current_def (tree var, tree def)
387 if (TREE_CODE (var) == SSA_NAME)
388 get_ssa_name_ann (var)->current_def = def;
389 else
390 var_ann (var)->current_def = def;
394 /* Compute global livein information given the set of blocks where
395 an object is locally live at the start of the block (LIVEIN)
396 and the set of blocks where the object is defined (DEF_BLOCKS).
398 Note: This routine augments the existing local livein information
399 to include global livein (i.e., it modifies the underlying bitmap
400 for LIVEIN). */
402 void
403 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
405 basic_block bb, *worklist, *tos;
406 unsigned i;
407 bitmap_iterator bi;
409 tos = worklist
410 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
412 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
413 *tos++ = BASIC_BLOCK (i);
415 /* Iterate until the worklist is empty. */
416 while (tos != worklist)
418 edge e;
419 edge_iterator ei;
421 /* Pull a block off the worklist. */
422 bb = *--tos;
424 /* For each predecessor block. */
425 FOR_EACH_EDGE (e, ei, bb->preds)
427 basic_block pred = e->src;
428 int pred_index = pred->index;
430 /* None of this is necessary for the entry block. */
431 if (pred != ENTRY_BLOCK_PTR
432 && ! bitmap_bit_p (livein, pred_index)
433 && ! bitmap_bit_p (def_blocks, pred_index))
435 *tos++ = pred;
436 bitmap_set_bit (livein, pred_index);
441 free (worklist);
445 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
446 all statements in basic block BB. */
448 static void
449 initialize_flags_in_bb (basic_block bb)
451 gimple stmt;
452 gimple_stmt_iterator gsi;
454 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
456 gimple phi = gsi_stmt (gsi);
457 set_rewrite_uses (phi, false);
458 set_register_defs (phi, false);
461 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
463 stmt = gsi_stmt (gsi);
465 /* We are going to use the operand cache API, such as
466 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
467 cache for each statement should be up-to-date. */
468 gcc_assert (!gimple_modified_p (stmt));
469 set_rewrite_uses (stmt, false);
470 set_register_defs (stmt, false);
474 /* Mark block BB as interesting for update_ssa. */
476 static void
477 mark_block_for_update (basic_block bb)
479 gcc_assert (blocks_to_update != NULL);
480 if (bitmap_bit_p (blocks_to_update, bb->index))
481 return;
482 bitmap_set_bit (blocks_to_update, bb->index);
483 initialize_flags_in_bb (bb);
486 /* Return the set of blocks where variable VAR is defined and the blocks
487 where VAR is live on entry (livein). If no entry is found in
488 DEF_BLOCKS, a new one is created and returned. */
490 static inline struct def_blocks_d *
491 get_def_blocks_for (tree var)
493 struct def_blocks_d db, *db_p;
494 void **slot;
496 db.var = var;
497 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
498 if (*slot == NULL)
500 db_p = XNEW (struct def_blocks_d);
501 db_p->var = var;
502 db_p->def_blocks = BITMAP_ALLOC (NULL);
503 db_p->phi_blocks = BITMAP_ALLOC (NULL);
504 db_p->livein_blocks = BITMAP_ALLOC (NULL);
505 *slot = (void *) db_p;
507 else
508 db_p = (struct def_blocks_d *) *slot;
510 return db_p;
514 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
515 VAR is defined by a PHI node. */
517 static void
518 set_def_block (tree var, basic_block bb, bool phi_p)
520 struct def_blocks_d *db_p;
521 enum need_phi_state state;
523 state = get_phi_state (var);
524 db_p = get_def_blocks_for (var);
526 /* Set the bit corresponding to the block where VAR is defined. */
527 bitmap_set_bit (db_p->def_blocks, bb->index);
528 if (phi_p)
529 bitmap_set_bit (db_p->phi_blocks, bb->index);
531 /* Keep track of whether or not we may need to insert PHI nodes.
533 If we are in the UNKNOWN state, then this is the first definition
534 of VAR. Additionally, we have not seen any uses of VAR yet, so
535 we do not need a PHI node for this variable at this time (i.e.,
536 transition to NEED_PHI_STATE_NO).
538 If we are in any other state, then we either have multiple definitions
539 of this variable occurring in different blocks or we saw a use of the
540 variable which was not dominated by the block containing the
541 definition(s). In this case we may need a PHI node, so enter
542 state NEED_PHI_STATE_MAYBE. */
543 if (state == NEED_PHI_STATE_UNKNOWN)
544 set_phi_state (var, NEED_PHI_STATE_NO);
545 else
546 set_phi_state (var, NEED_PHI_STATE_MAYBE);
550 /* Mark block BB as having VAR live at the entry to BB. */
552 static void
553 set_livein_block (tree var, basic_block bb)
555 struct def_blocks_d *db_p;
556 enum need_phi_state state = get_phi_state (var);
558 db_p = get_def_blocks_for (var);
560 /* Set the bit corresponding to the block where VAR is live in. */
561 bitmap_set_bit (db_p->livein_blocks, bb->index);
563 /* Keep track of whether or not we may need to insert PHI nodes.
565 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
566 by the single block containing the definition(s) of this variable. If
567 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
568 NEED_PHI_STATE_MAYBE. */
569 if (state == NEED_PHI_STATE_NO)
571 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
573 if (def_block_index == -1
574 || ! dominated_by_p (CDI_DOMINATORS, bb,
575 BASIC_BLOCK (def_block_index)))
576 set_phi_state (var, NEED_PHI_STATE_MAYBE);
578 else
579 set_phi_state (var, NEED_PHI_STATE_MAYBE);
583 /* Return true if symbol SYM is marked for renaming. */
585 static inline bool
586 symbol_marked_for_renaming (tree sym)
588 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
592 /* Return true if NAME is in OLD_SSA_NAMES. */
594 static inline bool
595 is_old_name (tree name)
597 unsigned ver = SSA_NAME_VERSION (name);
598 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
602 /* Return true if NAME is in NEW_SSA_NAMES. */
604 static inline bool
605 is_new_name (tree name)
607 unsigned ver = SSA_NAME_VERSION (name);
608 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
612 /* Hashing and equality functions for REPL_TBL. */
614 static hashval_t
615 repl_map_hash (const void *p)
617 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
620 static int
621 repl_map_eq (const void *p1, const void *p2)
623 return ((const struct repl_map_d *)p1)->name
624 == ((const struct repl_map_d *)p2)->name;
627 static void
628 repl_map_free (void *p)
630 BITMAP_FREE (((struct repl_map_d *)p)->set);
631 free (p);
635 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
637 static inline bitmap
638 names_replaced_by (tree new_tree)
640 struct repl_map_d m;
641 void **slot;
643 m.name = new_tree;
644 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
646 /* If N was not registered in the replacement table, return NULL. */
647 if (slot == NULL || *slot == NULL)
648 return NULL;
650 return ((struct repl_map_d *) *slot)->set;
654 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
656 static inline void
657 add_to_repl_tbl (tree new_tree, tree old)
659 struct repl_map_d m, *mp;
660 void **slot;
662 m.name = new_tree;
663 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
664 if (*slot == NULL)
666 mp = XNEW (struct repl_map_d);
667 mp->name = new_tree;
668 mp->set = BITMAP_ALLOC (NULL);
669 *slot = (void *) mp;
671 else
672 mp = (struct repl_map_d *) *slot;
674 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
678 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
679 represents the set of names O_1 ... O_j replaced by N_i. This is
680 used by update_ssa and its helpers to introduce new SSA names in an
681 already formed SSA web. */
683 static void
684 add_new_name_mapping (tree new_tree, tree old)
686 timevar_push (TV_TREE_SSA_INCREMENTAL);
688 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
689 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
691 /* If this mapping is for virtual names, we will need to update
692 virtual operands. If this is a mapping for .MEM, then we gather
693 the symbols associated with each name. */
694 if (!is_gimple_reg (new_tree))
696 tree sym;
698 need_to_update_vops_p = true;
700 update_ssa_stats.num_virtual_mappings++;
701 update_ssa_stats.num_virtual_symbols++;
703 /* Keep counts of virtual mappings and symbols to use in the
704 virtual mapping heuristic. If we have large numbers of
705 virtual mappings for a relatively low number of symbols, it
706 will make more sense to rename the symbols from scratch.
707 Otherwise, the insertion of PHI nodes for each of the old
708 names in these mappings will be very slow. */
709 sym = SSA_NAME_VAR (new_tree);
710 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
713 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
714 caller may have created new names since the set was created. */
715 if (new_ssa_names->n_bits <= num_ssa_names - 1)
717 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
718 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
719 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
722 /* Update the REPL_TBL table. */
723 add_to_repl_tbl (new_tree, old);
725 /* If OLD had already been registered as a new name, then all the
726 names that OLD replaces should also be replaced by NEW_TREE. */
727 if (is_new_name (old))
728 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
730 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
731 respectively. */
732 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
733 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
735 /* Update mapping counter to use in the virtual mapping heuristic. */
736 update_ssa_stats.num_total_mappings++;
738 timevar_pop (TV_TREE_SSA_INCREMENTAL);
742 /* Call back for walk_dominator_tree used to collect definition sites
743 for every variable in the function. For every statement S in block
746 1- Variables defined by S in the DEFS of S are marked in the bitmap
747 WALK_DATA->GLOBAL_DATA->KILLS.
749 2- If S uses a variable VAR and there is no preceding kill of VAR,
750 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
752 This information is used to determine which variables are live
753 across block boundaries to reduce the number of PHI nodes
754 we create. */
756 static void
757 mark_def_sites (struct dom_walk_data *walk_data, basic_block bb,
758 gimple_stmt_iterator gsi)
760 struct mark_def_sites_global_data *gd;
761 bitmap kills;
762 tree def;
763 gimple stmt;
764 use_operand_p use_p;
765 ssa_op_iter iter;
767 /* Since this is the first time that we rewrite the program into SSA
768 form, force an operand scan on every statement. */
769 stmt = gsi_stmt (gsi);
770 update_stmt (stmt);
772 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
773 kills = gd->kills;
775 gcc_assert (blocks_to_update == NULL);
776 set_register_defs (stmt, false);
777 set_rewrite_uses (stmt, false);
779 /* If a variable is used before being set, then the variable is live
780 across a block boundary, so mark it live-on-entry to BB. */
781 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
783 tree sym = USE_FROM_PTR (use_p);
784 gcc_assert (DECL_P (sym));
785 if (!bitmap_bit_p (kills, DECL_UID (sym)))
786 set_livein_block (sym, bb);
787 set_rewrite_uses (stmt, true);
790 /* Now process the defs. Mark BB as the definition block and add
791 each def to the set of killed symbols. */
792 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
794 gcc_assert (DECL_P (def));
795 set_def_block (def, bb, false);
796 bitmap_set_bit (kills, DECL_UID (def));
797 set_register_defs (stmt, true);
800 /* If we found the statement interesting then also mark the block BB
801 as interesting. */
802 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
803 SET_BIT (gd->interesting_blocks, bb->index);
806 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
807 in the dfs numbering of the dominance tree. */
809 struct dom_dfsnum
811 /* Basic block whose index this entry corresponds to. */
812 unsigned bb_index;
814 /* The dfs number of this node. */
815 unsigned dfs_num;
818 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
819 for qsort. */
821 static int
822 cmp_dfsnum (const void *a, const void *b)
824 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
825 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
827 return (int) da->dfs_num - (int) db->dfs_num;
830 /* Among the intervals starting at the N points specified in DEFS, find
831 the one that contains S, and return its bb_index. */
833 static unsigned
834 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
836 unsigned f = 0, t = n, m;
838 while (t > f + 1)
840 m = (f + t) / 2;
841 if (defs[m].dfs_num <= s)
842 f = m;
843 else
844 t = m;
847 return defs[f].bb_index;
850 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
851 KILLS is a bitmap of blocks where the value is defined before any use. */
853 static void
854 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
856 VEC(int, heap) *worklist;
857 bitmap_iterator bi;
858 unsigned i, b, p, u, top;
859 bitmap live_phis;
860 basic_block def_bb, use_bb;
861 edge e;
862 edge_iterator ei;
863 bitmap to_remove;
864 struct dom_dfsnum *defs;
865 unsigned n_defs, adef;
867 if (bitmap_empty_p (uses))
869 bitmap_clear (phis);
870 return;
873 /* The phi must dominate a use, or an argument of a live phi. Also, we
874 do not create any phi nodes in def blocks, unless they are also livein. */
875 to_remove = BITMAP_ALLOC (NULL);
876 bitmap_and_compl (to_remove, kills, uses);
877 bitmap_and_compl_into (phis, to_remove);
878 if (bitmap_empty_p (phis))
880 BITMAP_FREE (to_remove);
881 return;
884 /* We want to remove the unnecessary phi nodes, but we do not want to compute
885 liveness information, as that may be linear in the size of CFG, and if
886 there are lot of different variables to rewrite, this may lead to quadratic
887 behavior.
889 Instead, we basically emulate standard dce. We put all uses to worklist,
890 then for each of them find the nearest def that dominates them. If this
891 def is a phi node, we mark it live, and if it was not live before, we
892 add the predecessors of its basic block to the worklist.
894 To quickly locate the nearest def that dominates use, we use dfs numbering
895 of the dominance tree (that is already available in order to speed up
896 queries). For each def, we have the interval given by the dfs number on
897 entry to and on exit from the corresponding subtree in the dominance tree.
898 The nearest dominator for a given use is the smallest of these intervals
899 that contains entry and exit dfs numbers for the basic block with the use.
900 If we store the bounds for all the uses to an array and sort it, we can
901 locate the nearest dominating def in logarithmic time by binary search.*/
902 bitmap_ior (to_remove, kills, phis);
903 n_defs = bitmap_count_bits (to_remove);
904 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
905 defs[0].bb_index = 1;
906 defs[0].dfs_num = 0;
907 adef = 1;
908 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
910 def_bb = BASIC_BLOCK (i);
911 defs[adef].bb_index = i;
912 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
913 defs[adef + 1].bb_index = i;
914 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
915 adef += 2;
917 BITMAP_FREE (to_remove);
918 gcc_assert (adef == 2 * n_defs + 1);
919 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
920 gcc_assert (defs[0].bb_index == 1);
922 /* Now each DEFS entry contains the number of the basic block to that the
923 dfs number corresponds. Change them to the number of basic block that
924 corresponds to the interval following the dfs number. Also, for the
925 dfs_out numbers, increase the dfs number by one (so that it corresponds
926 to the start of the following interval, not to the end of the current
927 one). We use WORKLIST as a stack. */
928 worklist = VEC_alloc (int, heap, n_defs + 1);
929 VEC_quick_push (int, worklist, 1);
930 top = 1;
931 n_defs = 1;
932 for (i = 1; i < adef; i++)
934 b = defs[i].bb_index;
935 if (b == top)
937 /* This is a closing element. Interval corresponding to the top
938 of the stack after removing it follows. */
939 VEC_pop (int, worklist);
940 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
941 defs[n_defs].bb_index = top;
942 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
944 else
946 /* Opening element. Nothing to do, just push it to the stack and move
947 it to the correct position. */
948 defs[n_defs].bb_index = defs[i].bb_index;
949 defs[n_defs].dfs_num = defs[i].dfs_num;
950 VEC_quick_push (int, worklist, b);
951 top = b;
954 /* If this interval starts at the same point as the previous one, cancel
955 the previous one. */
956 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
957 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
958 else
959 n_defs++;
961 VEC_pop (int, worklist);
962 gcc_assert (VEC_empty (int, worklist));
964 /* Now process the uses. */
965 live_phis = BITMAP_ALLOC (NULL);
966 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
968 VEC_safe_push (int, heap, worklist, i);
971 while (!VEC_empty (int, worklist))
973 b = VEC_pop (int, worklist);
974 if (b == ENTRY_BLOCK)
975 continue;
977 /* If there is a phi node in USE_BB, it is made live. Otherwise,
978 find the def that dominates the immediate dominator of USE_BB
979 (the kill in USE_BB does not dominate the use). */
980 if (bitmap_bit_p (phis, b))
981 p = b;
982 else
984 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
985 p = find_dfsnum_interval (defs, n_defs,
986 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
987 if (!bitmap_bit_p (phis, p))
988 continue;
991 /* If the phi node is already live, there is nothing to do. */
992 if (bitmap_bit_p (live_phis, p))
993 continue;
995 /* Mark the phi as live, and add the new uses to the worklist. */
996 bitmap_set_bit (live_phis, p);
997 def_bb = BASIC_BLOCK (p);
998 FOR_EACH_EDGE (e, ei, def_bb->preds)
1000 u = e->src->index;
1001 if (bitmap_bit_p (uses, u))
1002 continue;
1004 /* In case there is a kill directly in the use block, do not record
1005 the use (this is also necessary for correctness, as we assume that
1006 uses dominated by a def directly in their block have been filtered
1007 out before). */
1008 if (bitmap_bit_p (kills, u))
1009 continue;
1011 bitmap_set_bit (uses, u);
1012 VEC_safe_push (int, heap, worklist, u);
1016 VEC_free (int, heap, worklist);
1017 bitmap_copy (phis, live_phis);
1018 BITMAP_FREE (live_phis);
1019 free (defs);
1022 /* Return the set of blocks where variable VAR is defined and the blocks
1023 where VAR is live on entry (livein). Return NULL, if no entry is
1024 found in DEF_BLOCKS. */
1026 static inline struct def_blocks_d *
1027 find_def_blocks_for (tree var)
1029 struct def_blocks_d dm;
1030 dm.var = var;
1031 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1035 /* Retrieve or create a default definition for symbol SYM. */
1037 static inline tree
1038 get_default_def_for (tree sym)
1040 tree ddef = gimple_default_def (cfun, sym);
1042 if (ddef == NULL_TREE)
1044 ddef = make_ssa_name (sym, gimple_build_nop ());
1045 set_default_def (sym, ddef);
1048 return ddef;
1052 /* Marks phi node PHI in basic block BB for rewrite. */
1054 static void
1055 mark_phi_for_rewrite (basic_block bb, gimple phi)
1057 gimple_vec phis;
1058 unsigned i, idx = bb->index;
1060 if (rewrite_uses_p (phi))
1061 return;
1063 set_rewrite_uses (phi, true);
1065 if (!blocks_with_phis_to_rewrite)
1066 return;
1068 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1069 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1070 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1071 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1073 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1074 if (!phis)
1075 phis = VEC_alloc (gimple, heap, 10);
1077 VEC_safe_push (gimple, heap, phis, phi);
1078 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1082 /* Insert PHI nodes for variable VAR using the iterated dominance
1083 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1084 function assumes that the caller is incrementally updating the
1085 existing SSA form, in which case VAR may be an SSA name instead of
1086 a symbol.
1088 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1089 PHI node for VAR. On exit, only the nodes that received a PHI node
1090 for VAR will be present in PHI_INSERTION_POINTS. */
1092 static void
1093 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1095 unsigned bb_index;
1096 edge e;
1097 gimple phi;
1098 basic_block bb;
1099 bitmap_iterator bi;
1100 struct def_blocks_d *def_map;
1102 def_map = find_def_blocks_for (var);
1103 gcc_assert (def_map);
1105 /* Remove the blocks where we already have PHI nodes for VAR. */
1106 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1108 /* Remove obviously useless phi nodes. */
1109 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1110 def_map->livein_blocks);
1112 /* And insert the PHI nodes. */
1113 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1115 bb = BASIC_BLOCK (bb_index);
1116 if (update_p)
1117 mark_block_for_update (bb);
1119 phi = NULL;
1121 if (TREE_CODE (var) == SSA_NAME)
1123 /* If we are rewriting SSA names, create the LHS of the PHI
1124 node by duplicating VAR. This is useful in the case of
1125 pointers, to also duplicate pointer attributes (alias
1126 information, in particular). */
1127 edge_iterator ei;
1128 tree new_lhs;
1130 gcc_assert (update_p);
1131 phi = create_phi_node (var, bb);
1133 new_lhs = duplicate_ssa_name (var, phi);
1134 gimple_phi_set_result (phi, new_lhs);
1135 add_new_name_mapping (new_lhs, var);
1137 /* Add VAR to every argument slot of PHI. We need VAR in
1138 every argument so that rewrite_update_phi_arguments knows
1139 which name is this PHI node replacing. If VAR is a
1140 symbol marked for renaming, this is not necessary, the
1141 renamer will use the symbol on the LHS to get its
1142 reaching definition. */
1143 FOR_EACH_EDGE (e, ei, bb->preds)
1144 add_phi_arg (phi, var, e);
1146 else
1148 gcc_assert (DECL_P (var));
1149 phi = create_phi_node (var, bb);
1152 /* Mark this PHI node as interesting for update_ssa. */
1153 set_register_defs (phi, true);
1154 mark_phi_for_rewrite (bb, phi);
1159 /* Insert PHI nodes at the dominance frontier of blocks with variable
1160 definitions. DFS contains the dominance frontier information for
1161 the flowgraph. */
1163 static void
1164 insert_phi_nodes (bitmap *dfs)
1166 referenced_var_iterator rvi;
1167 tree var;
1169 timevar_push (TV_TREE_INSERT_PHI_NODES);
1171 FOR_EACH_REFERENCED_VAR (var, rvi)
1173 struct def_blocks_d *def_map;
1174 bitmap idf;
1176 def_map = find_def_blocks_for (var);
1177 if (def_map == NULL)
1178 continue;
1180 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1182 idf = compute_idf (def_map->def_blocks, dfs);
1183 insert_phi_nodes_for (var, idf, false);
1184 BITMAP_FREE (idf);
1188 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1192 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1193 register DEF (an SSA_NAME) to be a new definition for SYM. */
1195 static void
1196 register_new_def (tree def, tree sym)
1198 tree currdef;
1200 /* If this variable is set in a single basic block and all uses are
1201 dominated by the set(s) in that single basic block, then there is
1202 no reason to record anything for this variable in the block local
1203 definition stacks. Doing so just wastes time and memory.
1205 This is the same test to prune the set of variables which may
1206 need PHI nodes. So we just use that information since it's already
1207 computed and available for us to use. */
1208 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1210 set_current_def (sym, def);
1211 return;
1214 currdef = get_current_def (sym);
1216 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1217 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1218 in the stack so that we know which symbol is being defined by
1219 this SSA name when we unwind the stack. */
1220 if (currdef && !is_gimple_reg (sym))
1221 VEC_safe_push (tree, heap, block_defs_stack, sym);
1223 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1224 stack is later used by the dominator tree callbacks to restore
1225 the reaching definitions for all the variables defined in the
1226 block after a recursive visit to all its immediately dominated
1227 blocks. If there is no current reaching definition, then just
1228 record the underlying _DECL node. */
1229 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1231 /* Set the current reaching definition for SYM to be DEF. */
1232 set_current_def (sym, def);
1236 /* Perform a depth-first traversal of the dominator tree looking for
1237 variables to rename. BB is the block where to start searching.
1238 Renaming is a five step process:
1240 1- Every definition made by PHI nodes at the start of the blocks is
1241 registered as the current definition for the corresponding variable.
1243 2- Every statement in BB is rewritten. USE and VUSE operands are
1244 rewritten with their corresponding reaching definition. DEF and
1245 VDEF targets are registered as new definitions.
1247 3- All the PHI nodes in successor blocks of BB are visited. The
1248 argument corresponding to BB is replaced with its current reaching
1249 definition.
1251 4- Recursively rewrite every dominator child block of BB.
1253 5- Restore (in reverse order) the current reaching definition for every
1254 new definition introduced in this block. This is done so that when
1255 we return from the recursive call, all the current reaching
1256 definitions are restored to the names that were valid in the
1257 dominator parent of BB. */
1259 /* SSA Rewriting Step 1. Initialization, create a block local stack
1260 of reaching definitions for new SSA names produced in this block
1261 (BLOCK_DEFS). Register new definitions for every PHI node in the
1262 block. */
1264 static void
1265 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1266 basic_block bb)
1268 gimple phi;
1269 gimple_stmt_iterator gsi;
1271 if (dump_file && (dump_flags & TDF_DETAILS))
1272 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1274 /* Mark the unwind point for this block. */
1275 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1277 /* Step 1. Register new definitions for every PHI node in the block.
1278 Conceptually, all the PHI nodes are executed in parallel and each PHI
1279 node introduces a new version for the associated variable. */
1280 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1282 tree result;
1284 phi = gsi_stmt (gsi);
1285 result = gimple_phi_result (phi);
1286 gcc_assert (is_gimple_reg (result));
1287 register_new_def (result, SSA_NAME_VAR (result));
1292 /* Return the current definition for variable VAR. If none is found,
1293 create a new SSA name to act as the zeroth definition for VAR. */
1295 static tree
1296 get_reaching_def (tree var)
1298 tree currdef;
1300 /* Lookup the current reaching definition for VAR. */
1301 currdef = get_current_def (var);
1303 /* If there is no reaching definition for VAR, create and register a
1304 default definition for it (if needed). */
1305 if (currdef == NULL_TREE)
1307 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1308 currdef = get_default_def_for (sym);
1309 set_current_def (var, currdef);
1312 /* Return the current reaching definition for VAR, or the default
1313 definition, if we had to create one. */
1314 return currdef;
1318 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1319 the block with its immediate reaching definitions. Update the current
1320 definition of a variable when a new real or virtual definition is found. */
1322 static void
1323 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1324 basic_block bb ATTRIBUTE_UNUSED, gimple_stmt_iterator si)
1326 gimple stmt;
1327 use_operand_p use_p;
1328 def_operand_p def_p;
1329 ssa_op_iter iter;
1331 stmt = gsi_stmt (si);
1333 /* If mark_def_sites decided that we don't need to rewrite this
1334 statement, ignore it. */
1335 gcc_assert (blocks_to_update == NULL);
1336 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1337 return;
1339 if (dump_file && (dump_flags & TDF_DETAILS))
1341 fprintf (dump_file, "Renaming statement ");
1342 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1343 fprintf (dump_file, "\n");
1346 /* Step 1. Rewrite USES in the statement. */
1347 if (rewrite_uses_p (stmt))
1348 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1350 tree var = USE_FROM_PTR (use_p);
1351 gcc_assert (DECL_P (var));
1352 SET_USE (use_p, get_reaching_def (var));
1355 /* Step 2. Register the statement's DEF operands. */
1356 if (register_defs_p (stmt))
1357 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1359 tree var = DEF_FROM_PTR (def_p);
1360 gcc_assert (DECL_P (var));
1361 SET_DEF (def_p, make_ssa_name (var, stmt));
1362 register_new_def (DEF_FROM_PTR (def_p), var);
1367 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1368 PHI nodes. For every PHI node found, add a new argument containing the
1369 current reaching definition for the variable and the edge through which
1370 that definition is reaching the PHI node. */
1372 static void
1373 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1374 basic_block bb)
1376 edge e;
1377 edge_iterator ei;
1379 FOR_EACH_EDGE (e, ei, bb->succs)
1381 gimple phi;
1382 gimple_stmt_iterator gsi;
1384 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1385 gsi_next (&gsi))
1387 tree currdef;
1388 phi = gsi_stmt (gsi);
1389 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1390 add_phi_arg (phi, currdef, e);
1396 /* Called after visiting all the statements in basic block BB and all
1397 of its dominator children. Restore CURRDEFS to its original value. */
1399 static void
1400 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1401 basic_block bb ATTRIBUTE_UNUSED)
1403 /* Restore CURRDEFS to its original state. */
1404 while (VEC_length (tree, block_defs_stack) > 0)
1406 tree tmp = VEC_pop (tree, block_defs_stack);
1407 tree saved_def, var;
1409 if (tmp == NULL_TREE)
1410 break;
1412 if (TREE_CODE (tmp) == SSA_NAME)
1414 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1415 current definition of its underlying variable. Note that
1416 if the SSA_NAME is not for a GIMPLE register, the symbol
1417 being defined is stored in the next slot in the stack.
1418 This mechanism is needed because an SSA name for a
1419 non-register symbol may be the definition for more than
1420 one symbol (e.g., SFTs, aliased variables, etc). */
1421 saved_def = tmp;
1422 var = SSA_NAME_VAR (saved_def);
1423 if (!is_gimple_reg (var))
1424 var = VEC_pop (tree, block_defs_stack);
1426 else
1428 /* If we recorded anything else, it must have been a _DECL
1429 node and its current reaching definition must have been
1430 NULL. */
1431 saved_def = NULL;
1432 var = tmp;
1435 set_current_def (var, saved_def);
1440 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1442 void
1443 dump_decl_set (FILE *file, bitmap set)
1445 if (set)
1447 bitmap_iterator bi;
1448 unsigned i;
1450 fprintf (file, "{ ");
1452 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1454 print_generic_expr (file, referenced_var (i), 0);
1455 fprintf (file, " ");
1458 fprintf (file, "}\n");
1460 else
1461 fprintf (file, "NIL\n");
1465 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1467 void
1468 debug_decl_set (bitmap set)
1470 dump_decl_set (stderr, set);
1474 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1475 stack up to a maximum of N levels. If N is -1, the whole stack is
1476 dumped. New levels are created when the dominator tree traversal
1477 used for renaming enters a new sub-tree. */
1479 void
1480 dump_defs_stack (FILE *file, int n)
1482 int i, j;
1484 fprintf (file, "\n\nRenaming stack");
1485 if (n > 0)
1486 fprintf (file, " (up to %d levels)", n);
1487 fprintf (file, "\n\n");
1489 i = 1;
1490 fprintf (file, "Level %d (current level)\n", i);
1491 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1493 tree name, var;
1495 name = VEC_index (tree, block_defs_stack, j);
1496 if (name == NULL_TREE)
1498 i++;
1499 if (n > 0 && i > n)
1500 break;
1501 fprintf (file, "\nLevel %d\n", i);
1502 continue;
1505 if (DECL_P (name))
1507 var = name;
1508 name = NULL_TREE;
1510 else
1512 var = SSA_NAME_VAR (name);
1513 if (!is_gimple_reg (var))
1515 j--;
1516 var = VEC_index (tree, block_defs_stack, j);
1520 fprintf (file, " Previous CURRDEF (");
1521 print_generic_expr (file, var, 0);
1522 fprintf (file, ") = ");
1523 if (name)
1524 print_generic_expr (file, name, 0);
1525 else
1526 fprintf (file, "<NIL>");
1527 fprintf (file, "\n");
1532 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1533 stack up to a maximum of N levels. If N is -1, the whole stack is
1534 dumped. New levels are created when the dominator tree traversal
1535 used for renaming enters a new sub-tree. */
1537 void
1538 debug_defs_stack (int n)
1540 dump_defs_stack (stderr, n);
1544 /* Dump the current reaching definition of every symbol to FILE. */
1546 void
1547 dump_currdefs (FILE *file)
1549 referenced_var_iterator i;
1550 tree var;
1552 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1553 FOR_EACH_REFERENCED_VAR (var, i)
1554 if (syms_to_rename == NULL || bitmap_bit_p (syms_to_rename, DECL_UID (var)))
1556 fprintf (file, "CURRDEF (");
1557 print_generic_expr (file, var, 0);
1558 fprintf (file, ") = ");
1559 if (get_current_def (var))
1560 print_generic_expr (file, get_current_def (var), 0);
1561 else
1562 fprintf (file, "<NIL>");
1563 fprintf (file, "\n");
1568 /* Dump the current reaching definition of every symbol to stderr. */
1570 void
1571 debug_currdefs (void)
1573 dump_currdefs (stderr);
1577 /* Dump SSA information to FILE. */
1579 void
1580 dump_tree_ssa (FILE *file)
1582 const char *funcname
1583 = lang_hooks.decl_printable_name (current_function_decl, 2);
1585 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1587 dump_def_blocks (file);
1588 dump_defs_stack (file, -1);
1589 dump_currdefs (file);
1590 dump_tree_ssa_stats (file);
1594 /* Dump SSA information to stderr. */
1596 void
1597 debug_tree_ssa (void)
1599 dump_tree_ssa (stderr);
1603 /* Dump statistics for the hash table HTAB. */
1605 static void
1606 htab_statistics (FILE *file, htab_t htab)
1608 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1609 (long) htab_size (htab),
1610 (long) htab_elements (htab),
1611 htab_collisions (htab));
1615 /* Dump SSA statistics on FILE. */
1617 void
1618 dump_tree_ssa_stats (FILE *file)
1620 if (def_blocks || repl_tbl)
1621 fprintf (file, "\nHash table statistics:\n");
1623 if (def_blocks)
1625 fprintf (file, " def_blocks: ");
1626 htab_statistics (file, def_blocks);
1629 if (repl_tbl)
1631 fprintf (file, " repl_tbl: ");
1632 htab_statistics (file, repl_tbl);
1635 if (def_blocks || repl_tbl)
1636 fprintf (file, "\n");
1640 /* Dump SSA statistics on stderr. */
1642 void
1643 debug_tree_ssa_stats (void)
1645 dump_tree_ssa_stats (stderr);
1649 /* Hashing and equality functions for DEF_BLOCKS. */
1651 static hashval_t
1652 def_blocks_hash (const void *p)
1654 return htab_hash_pointer
1655 ((const void *)((const struct def_blocks_d *)p)->var);
1658 static int
1659 def_blocks_eq (const void *p1, const void *p2)
1661 return ((const struct def_blocks_d *)p1)->var
1662 == ((const struct def_blocks_d *)p2)->var;
1666 /* Free memory allocated by one entry in DEF_BLOCKS. */
1668 static void
1669 def_blocks_free (void *p)
1671 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1672 BITMAP_FREE (entry->def_blocks);
1673 BITMAP_FREE (entry->phi_blocks);
1674 BITMAP_FREE (entry->livein_blocks);
1675 free (entry);
1679 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1681 static int
1682 debug_def_blocks_r (void **slot, void *data)
1684 FILE *file = (FILE *) data;
1685 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1687 fprintf (file, "VAR: ");
1688 print_generic_expr (file, db_p->var, dump_flags);
1689 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1690 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1691 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1693 return 1;
1697 /* Dump the DEF_BLOCKS hash table on FILE. */
1699 void
1700 dump_def_blocks (FILE *file)
1702 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1703 if (def_blocks)
1704 htab_traverse (def_blocks, debug_def_blocks_r, file);
1708 /* Dump the DEF_BLOCKS hash table on stderr. */
1710 void
1711 debug_def_blocks (void)
1713 dump_def_blocks (stderr);
1717 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1719 static inline void
1720 register_new_update_single (tree new_name, tree old_name)
1722 tree currdef = get_current_def (old_name);
1724 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1725 This stack is later used by the dominator tree callbacks to
1726 restore the reaching definitions for all the variables
1727 defined in the block after a recursive visit to all its
1728 immediately dominated blocks. */
1729 VEC_reserve (tree, heap, block_defs_stack, 2);
1730 VEC_quick_push (tree, block_defs_stack, currdef);
1731 VEC_quick_push (tree, block_defs_stack, old_name);
1733 /* Set the current reaching definition for OLD_NAME to be
1734 NEW_NAME. */
1735 set_current_def (old_name, new_name);
1739 /* Register NEW_NAME to be the new reaching definition for all the
1740 names in OLD_NAMES. Used by the incremental SSA update routines to
1741 replace old SSA names with new ones. */
1743 static inline void
1744 register_new_update_set (tree new_name, bitmap old_names)
1746 bitmap_iterator bi;
1747 unsigned i;
1749 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1750 register_new_update_single (new_name, ssa_name (i));
1754 /* Initialization of block data structures for the incremental SSA
1755 update pass. Create a block local stack of reaching definitions
1756 for new SSA names produced in this block (BLOCK_DEFS). Register
1757 new definitions for every PHI node in the block. */
1759 static void
1760 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1761 basic_block bb)
1763 edge e;
1764 edge_iterator ei;
1765 bool is_abnormal_phi;
1766 gimple_stmt_iterator gsi;
1768 if (dump_file && (dump_flags & TDF_DETAILS))
1769 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1770 bb->index);
1772 /* Mark the unwind point for this block. */
1773 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1775 if (!bitmap_bit_p (blocks_to_update, bb->index))
1776 return;
1778 /* Mark the LHS if any of the arguments flows through an abnormal
1779 edge. */
1780 is_abnormal_phi = false;
1781 FOR_EACH_EDGE (e, ei, bb->preds)
1782 if (e->flags & EDGE_ABNORMAL)
1784 is_abnormal_phi = true;
1785 break;
1788 /* If any of the PHI nodes is a replacement for a name in
1789 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1790 register it as a new definition for its corresponding name. Also
1791 register definitions for names whose underlying symbols are
1792 marked for renaming. */
1793 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1795 tree lhs, lhs_sym;
1796 gimple phi = gsi_stmt (gsi);
1798 if (!register_defs_p (phi))
1799 continue;
1801 lhs = gimple_phi_result (phi);
1802 lhs_sym = SSA_NAME_VAR (lhs);
1804 if (symbol_marked_for_renaming (lhs_sym))
1805 register_new_update_single (lhs, lhs_sym);
1806 else
1809 /* If LHS is a new name, register a new definition for all
1810 the names replaced by LHS. */
1811 if (is_new_name (lhs))
1812 register_new_update_set (lhs, names_replaced_by (lhs));
1814 /* If LHS is an OLD name, register it as a new definition
1815 for itself. */
1816 if (is_old_name (lhs))
1817 register_new_update_single (lhs, lhs);
1820 if (is_abnormal_phi)
1821 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1826 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1827 the current reaching definition of every name re-written in BB to
1828 the original reaching definition before visiting BB. This
1829 unwinding must be done in the opposite order to what is done in
1830 register_new_update_set. */
1832 static void
1833 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1834 basic_block bb ATTRIBUTE_UNUSED)
1836 while (VEC_length (tree, block_defs_stack) > 0)
1838 tree var = VEC_pop (tree, block_defs_stack);
1839 tree saved_def;
1841 /* NULL indicates the unwind stop point for this block (see
1842 rewrite_update_init_block). */
1843 if (var == NULL)
1844 return;
1846 saved_def = VEC_pop (tree, block_defs_stack);
1847 set_current_def (var, saved_def);
1852 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1853 it is a symbol marked for renaming, replace it with USE_P's current
1854 reaching definition. */
1856 static inline void
1857 maybe_replace_use (use_operand_p use_p)
1859 tree rdef = NULL_TREE;
1860 tree use = USE_FROM_PTR (use_p);
1861 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1863 if (symbol_marked_for_renaming (sym))
1864 rdef = get_reaching_def (sym);
1865 else if (is_old_name (use))
1866 rdef = get_reaching_def (use);
1868 if (rdef && rdef != use)
1869 SET_USE (use_p, rdef);
1873 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1874 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1875 register it as the current definition for the names replaced by
1876 DEF_P. */
1878 static inline void
1879 maybe_register_def (def_operand_p def_p, gimple stmt)
1881 tree def = DEF_FROM_PTR (def_p);
1882 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1884 /* If DEF is a naked symbol that needs renaming, create a new
1885 name for it. */
1886 if (symbol_marked_for_renaming (sym))
1888 if (DECL_P (def))
1890 def = make_ssa_name (def, stmt);
1891 SET_DEF (def_p, def);
1894 register_new_update_single (def, sym);
1896 else
1898 /* If DEF is a new name, register it as a new definition
1899 for all the names replaced by DEF. */
1900 if (is_new_name (def))
1901 register_new_update_set (def, names_replaced_by (def));
1903 /* If DEF is an old name, register DEF as a new
1904 definition for itself. */
1905 if (is_old_name (def))
1906 register_new_update_single (def, def);
1911 /* Update every variable used in the statement pointed-to by SI. The
1912 statement is assumed to be in SSA form already. Names in
1913 OLD_SSA_NAMES used by SI will be updated to their current reaching
1914 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1915 will be registered as a new definition for their corresponding name
1916 in OLD_SSA_NAMES. */
1918 static void
1919 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1920 basic_block bb ATTRIBUTE_UNUSED,
1921 gimple_stmt_iterator si)
1923 gimple stmt;
1924 use_operand_p use_p;
1925 def_operand_p def_p;
1926 ssa_op_iter iter;
1928 stmt = gsi_stmt (si);
1930 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
1932 /* Only update marked statements. */
1933 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1934 return;
1936 if (dump_file && (dump_flags & TDF_DETAILS))
1938 fprintf (dump_file, "Updating SSA information for statement ");
1939 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1940 fprintf (dump_file, "\n");
1943 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1944 symbol is marked for renaming. */
1945 if (rewrite_uses_p (stmt))
1947 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1948 maybe_replace_use (use_p);
1950 if (need_to_update_vops_p)
1951 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VIRTUAL_USES)
1952 maybe_replace_use (use_p);
1955 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1956 Also register definitions for names whose underlying symbol is
1957 marked for renaming. */
1958 if (register_defs_p (stmt))
1960 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1961 maybe_register_def (def_p, stmt);
1963 if (need_to_update_vops_p)
1964 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1965 maybe_register_def (def_p, stmt);
1970 /* Visit all the successor blocks of BB looking for PHI nodes. For
1971 every PHI node found, check if any of its arguments is in
1972 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1973 definition, replace it. */
1975 static void
1976 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1977 basic_block bb)
1979 edge e;
1980 edge_iterator ei;
1981 unsigned i;
1983 FOR_EACH_EDGE (e, ei, bb->succs)
1985 gimple phi;
1986 gimple_vec phis;
1988 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1989 continue;
1991 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1992 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1994 tree arg, lhs_sym;
1995 use_operand_p arg_p;
1997 gcc_assert (rewrite_uses_p (phi));
1999 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2000 arg = USE_FROM_PTR (arg_p);
2002 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2003 continue;
2005 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2007 if (arg == NULL_TREE)
2009 /* When updating a PHI node for a recently introduced
2010 symbol we may find NULL arguments. That's why we
2011 take the symbol from the LHS of the PHI node. */
2012 SET_USE (arg_p, get_reaching_def (lhs_sym));
2014 else
2016 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2018 if (symbol_marked_for_renaming (sym))
2019 SET_USE (arg_p, get_reaching_def (sym));
2020 else if (is_old_name (arg))
2021 SET_USE (arg_p, get_reaching_def (arg));
2024 if (e->flags & EDGE_ABNORMAL)
2025 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2031 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2032 form.
2034 ENTRY indicates the block where to start. Every block dominated by
2035 ENTRY will be rewritten.
2037 WHAT indicates what actions will be taken by the renamer (see enum
2038 rewrite_mode).
2040 BLOCKS are the set of interesting blocks for the dominator walker
2041 to process. If this set is NULL, then all the nodes dominated
2042 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2043 are not present in BLOCKS are ignored. */
2045 static void
2046 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
2048 struct dom_walk_data walk_data;
2050 /* Rewrite all the basic blocks in the program. */
2051 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2053 /* Setup callbacks for the generic dominator tree walker. */
2054 memset (&walk_data, 0, sizeof (walk_data));
2056 walk_data.dom_direction = CDI_DOMINATORS;
2057 walk_data.interesting_blocks = blocks;
2059 if (what == REWRITE_ALL)
2060 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
2061 else
2062 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
2064 if (what == REWRITE_ALL)
2065 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
2066 else if (what == REWRITE_UPDATE)
2067 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
2068 else
2069 gcc_unreachable ();
2071 if (what == REWRITE_ALL)
2072 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
2073 else if (what == REWRITE_UPDATE)
2074 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
2075 else
2076 gcc_unreachable ();
2078 if (what == REWRITE_ALL)
2079 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
2080 else if (what == REWRITE_UPDATE)
2081 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
2082 else
2083 gcc_unreachable ();
2085 block_defs_stack = VEC_alloc (tree, heap, 10);
2087 /* Initialize the dominator walker. */
2088 init_walk_dominator_tree (&walk_data);
2090 /* Recursively walk the dominator tree rewriting each statement in
2091 each basic block. */
2092 walk_dominator_tree (&walk_data, entry);
2094 /* Finalize the dominator walker. */
2095 fini_walk_dominator_tree (&walk_data);
2097 /* Debugging dumps. */
2098 if (dump_file && (dump_flags & TDF_STATS))
2100 dump_dfa_stats (dump_file);
2101 if (def_blocks)
2102 dump_tree_ssa_stats (dump_file);
2105 VEC_free (tree, heap, block_defs_stack);
2107 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2111 /* Block initialization routine for mark_def_sites. Clear the
2112 KILLS bitmap at the start of each block. */
2114 static void
2115 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
2116 basic_block bb ATTRIBUTE_UNUSED)
2118 struct mark_def_sites_global_data *gd;
2119 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2120 bitmap_clear (gd->kills);
2124 /* Mark the definition site blocks for each variable, so that we know
2125 where the variable is actually live.
2127 INTERESTING_BLOCKS will be filled in with all the blocks that
2128 should be processed by the renamer. It is assumed to be
2129 initialized and zeroed by the caller. */
2131 static void
2132 mark_def_site_blocks (sbitmap interesting_blocks)
2134 struct dom_walk_data walk_data;
2135 struct mark_def_sites_global_data mark_def_sites_global_data;
2137 /* Setup callbacks for the generic dominator tree walker to find and
2138 mark definition sites. */
2139 walk_data.walk_stmts_backward = false;
2140 walk_data.dom_direction = CDI_DOMINATORS;
2141 walk_data.initialize_block_local_data = NULL;
2142 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
2143 walk_data.before_dom_children_walk_stmts = mark_def_sites;
2144 walk_data.before_dom_children_after_stmts = NULL;
2145 walk_data.after_dom_children_before_stmts = NULL;
2146 walk_data.after_dom_children_walk_stmts = NULL;
2147 walk_data.after_dom_children_after_stmts = NULL;
2148 walk_data.interesting_blocks = NULL;
2150 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2151 large enough to accommodate all the variables referenced in the
2152 function, not just the ones we are renaming. */
2153 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2155 /* Create the set of interesting blocks that will be filled by
2156 mark_def_sites. */
2157 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
2158 walk_data.global_data = &mark_def_sites_global_data;
2160 /* We do not have any local data. */
2161 walk_data.block_local_data_size = 0;
2163 /* Initialize the dominator walker. */
2164 init_walk_dominator_tree (&walk_data);
2166 /* Recursively walk the dominator tree. */
2167 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2169 /* Finalize the dominator walker. */
2170 fini_walk_dominator_tree (&walk_data);
2172 /* We no longer need this bitmap, clear and free it. */
2173 BITMAP_FREE (mark_def_sites_global_data.kills);
2177 /* Initialize internal data needed during renaming. */
2179 static void
2180 init_ssa_renamer (void)
2182 tree var;
2183 referenced_var_iterator rvi;
2185 cfun->gimple_df->in_ssa_p = false;
2187 /* Allocate memory for the DEF_BLOCKS hash table. */
2188 gcc_assert (def_blocks == NULL);
2189 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2190 def_blocks_eq, def_blocks_free);
2192 FOR_EACH_REFERENCED_VAR(var, rvi)
2193 set_current_def (var, NULL_TREE);
2197 /* Deallocate internal data structures used by the renamer. */
2199 static void
2200 fini_ssa_renamer (void)
2202 if (def_blocks)
2204 htab_delete (def_blocks);
2205 def_blocks = NULL;
2208 cfun->gimple_df->in_ssa_p = true;
2211 /* Main entry point into the SSA builder. The renaming process
2212 proceeds in four main phases:
2214 1- Compute dominance frontier and immediate dominators, needed to
2215 insert PHI nodes and rename the function in dominator tree
2216 order.
2218 2- Find and mark all the blocks that define variables
2219 (mark_def_site_blocks).
2221 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2223 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2225 Steps 3 and 4 are done using the dominator tree walker
2226 (walk_dominator_tree). */
2228 static unsigned int
2229 rewrite_into_ssa (void)
2231 bitmap *dfs;
2232 basic_block bb;
2233 sbitmap interesting_blocks;
2235 timevar_push (TV_TREE_SSA_OTHER);
2237 /* Initialize operand data structures. */
2238 init_ssa_operands ();
2240 /* Initialize internal data needed by the renamer. */
2241 init_ssa_renamer ();
2243 /* Initialize the set of interesting blocks. The callback
2244 mark_def_sites will add to this set those blocks that the renamer
2245 should process. */
2246 interesting_blocks = sbitmap_alloc (last_basic_block);
2247 sbitmap_zero (interesting_blocks);
2249 /* Initialize dominance frontier. */
2250 dfs = XNEWVEC (bitmap, last_basic_block);
2251 FOR_EACH_BB (bb)
2252 dfs[bb->index] = BITMAP_ALLOC (NULL);
2254 /* 1- Compute dominance frontiers. */
2255 calculate_dominance_info (CDI_DOMINATORS);
2256 compute_dominance_frontiers (dfs);
2258 /* 2- Find and mark definition sites. */
2259 mark_def_site_blocks (interesting_blocks);
2261 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2262 insert_phi_nodes (dfs);
2264 /* 4- Rename all the blocks. */
2265 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
2267 /* Free allocated memory. */
2268 FOR_EACH_BB (bb)
2269 BITMAP_FREE (dfs[bb->index]);
2270 free (dfs);
2271 sbitmap_free (interesting_blocks);
2273 fini_ssa_renamer ();
2275 timevar_pop (TV_TREE_SSA_OTHER);
2276 return 0;
2280 struct gimple_opt_pass pass_build_ssa =
2283 GIMPLE_PASS,
2284 "ssa", /* name */
2285 NULL, /* gate */
2286 rewrite_into_ssa, /* execute */
2287 NULL, /* sub */
2288 NULL, /* next */
2289 0, /* static_pass_number */
2290 0, /* tv_id */
2291 PROP_cfg | PROP_referenced_vars, /* properties_required */
2292 PROP_ssa, /* properties_provided */
2293 0, /* properties_destroyed */
2294 0, /* todo_flags_start */
2295 TODO_dump_func
2296 | TODO_verify_ssa
2297 | TODO_remove_unused_locals /* todo_flags_finish */
2302 /* Mark the definition of VAR at STMT and BB as interesting for the
2303 renamer. BLOCKS is the set of blocks that need updating. */
2305 static void
2306 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2308 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2309 set_register_defs (stmt, true);
2311 if (insert_phi_p)
2313 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2315 set_def_block (var, bb, is_phi_p);
2317 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2318 site for both itself and all the old names replaced by it. */
2319 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2321 bitmap_iterator bi;
2322 unsigned i;
2323 bitmap set = names_replaced_by (var);
2324 if (set)
2325 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2326 set_def_block (ssa_name (i), bb, is_phi_p);
2332 /* Mark the use of VAR at STMT and BB as interesting for the
2333 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2334 nodes. */
2336 static inline void
2337 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2339 basic_block def_bb = gimple_bb (stmt);
2341 mark_block_for_update (def_bb);
2342 mark_block_for_update (bb);
2344 if (gimple_code (stmt) == GIMPLE_PHI)
2345 mark_phi_for_rewrite (def_bb, stmt);
2346 else
2347 set_rewrite_uses (stmt, true);
2349 /* If VAR has not been defined in BB, then it is live-on-entry
2350 to BB. Note that we cannot just use the block holding VAR's
2351 definition because if VAR is one of the names in OLD_SSA_NAMES,
2352 it will have several definitions (itself and all the names that
2353 replace it). */
2354 if (insert_phi_p)
2356 struct def_blocks_d *db_p = get_def_blocks_for (var);
2357 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2358 set_livein_block (var, bb);
2363 /* Do a dominator walk starting at BB processing statements that
2364 reference symbols in SYMS_TO_RENAME. This is very similar to
2365 mark_def_sites, but the scan handles statements whose operands may
2366 already be SSA names.
2368 If INSERT_PHI_P is true, mark those uses as live in the
2369 corresponding block. This is later used by the PHI placement
2370 algorithm to make PHI pruning decisions.
2372 FIXME. Most of this would be unnecessary if we could associate a
2373 symbol to all the SSA names that reference it. But that
2374 sounds like it would be expensive to maintain. Still, it
2375 would be interesting to see if it makes better sense to do
2376 that. */
2378 static void
2379 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2381 basic_block son;
2382 gimple_stmt_iterator si;
2383 edge e;
2384 edge_iterator ei;
2386 mark_block_for_update (bb);
2388 /* Process PHI nodes marking interesting those that define or use
2389 the symbols that we are interested in. */
2390 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2392 gimple phi = gsi_stmt (si);
2393 tree lhs_sym, lhs = gimple_phi_result (phi);
2395 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2397 if (!symbol_marked_for_renaming (lhs_sym))
2398 continue;
2400 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2402 /* Mark the uses in phi nodes as interesting. It would be more correct
2403 to process the arguments of the phi nodes of the successor edges of
2404 BB at the end of prepare_block_for_update, however, that turns out
2405 to be significantly more expensive. Doing it here is conservatively
2406 correct -- it may only cause us to believe a value to be live in a
2407 block that also contains its definition, and thus insert a few more
2408 phi nodes for it. */
2409 FOR_EACH_EDGE (e, ei, bb->preds)
2410 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2413 /* Process the statements. */
2414 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2416 gimple stmt;
2417 ssa_op_iter i;
2418 use_operand_p use_p;
2419 def_operand_p def_p;
2421 stmt = gsi_stmt (si);
2423 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2425 tree use = USE_FROM_PTR (use_p);
2426 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2427 if (symbol_marked_for_renaming (sym))
2428 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2431 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2433 tree def = DEF_FROM_PTR (def_p);
2434 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2435 if (symbol_marked_for_renaming (sym))
2436 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2440 /* Now visit all the blocks dominated by BB. */
2441 for (son = first_dom_son (CDI_DOMINATORS, bb);
2442 son;
2443 son = next_dom_son (CDI_DOMINATORS, son))
2444 prepare_block_for_update (son, insert_phi_p);
2448 /* Helper for prepare_names_to_update. Mark all the use sites for
2449 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2450 prepare_names_to_update. */
2452 static void
2453 prepare_use_sites_for (tree name, bool insert_phi_p)
2455 use_operand_p use_p;
2456 imm_use_iterator iter;
2458 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2460 gimple stmt = USE_STMT (use_p);
2461 basic_block bb = gimple_bb (stmt);
2463 if (gimple_code (stmt) == GIMPLE_PHI)
2465 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2466 edge e = gimple_phi_arg_edge (stmt, ix);
2467 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2469 else
2471 /* For regular statements, mark this as an interesting use
2472 for NAME. */
2473 mark_use_interesting (name, stmt, bb, insert_phi_p);
2479 /* Helper for prepare_names_to_update. Mark the definition site for
2480 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2481 prepare_names_to_update. */
2483 static void
2484 prepare_def_site_for (tree name, bool insert_phi_p)
2486 gimple stmt;
2487 basic_block bb;
2489 gcc_assert (names_to_release == NULL
2490 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2492 stmt = SSA_NAME_DEF_STMT (name);
2493 bb = gimple_bb (stmt);
2494 if (bb)
2496 gcc_assert (bb->index < last_basic_block);
2497 mark_block_for_update (bb);
2498 mark_def_interesting (name, stmt, bb, insert_phi_p);
2503 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2504 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2505 PHI nodes for newly created names. */
2507 static void
2508 prepare_names_to_update (bool insert_phi_p)
2510 unsigned i = 0;
2511 bitmap_iterator bi;
2512 sbitmap_iterator sbi;
2514 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2515 remove it from NEW_SSA_NAMES so that we don't try to visit its
2516 defining basic block (which most likely doesn't exist). Notice
2517 that we cannot do the same with names in OLD_SSA_NAMES because we
2518 want to replace existing instances. */
2519 if (names_to_release)
2520 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2521 RESET_BIT (new_ssa_names, i);
2523 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2524 names may be considered to be live-in on blocks that contain
2525 definitions for their replacements. */
2526 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2527 prepare_def_site_for (ssa_name (i), insert_phi_p);
2529 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2530 OLD_SSA_NAMES, but we have to ignore its definition site. */
2531 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2533 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2534 prepare_def_site_for (ssa_name (i), insert_phi_p);
2535 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2540 /* Dump all the names replaced by NAME to FILE. */
2542 void
2543 dump_names_replaced_by (FILE *file, tree name)
2545 unsigned i;
2546 bitmap old_set;
2547 bitmap_iterator bi;
2549 print_generic_expr (file, name, 0);
2550 fprintf (file, " -> { ");
2552 old_set = names_replaced_by (name);
2553 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2555 print_generic_expr (file, ssa_name (i), 0);
2556 fprintf (file, " ");
2559 fprintf (file, "}\n");
2563 /* Dump all the names replaced by NAME to stderr. */
2565 void
2566 debug_names_replaced_by (tree name)
2568 dump_names_replaced_by (stderr, name);
2572 /* Dump SSA update information to FILE. */
2574 void
2575 dump_update_ssa (FILE *file)
2577 unsigned i = 0;
2578 bitmap_iterator bi;
2580 if (!need_ssa_update_p ())
2581 return;
2583 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2585 sbitmap_iterator sbi;
2587 fprintf (file, "\nSSA replacement table\n");
2588 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2589 "O_1, ..., O_j\n\n");
2591 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2592 dump_names_replaced_by (file, ssa_name (i));
2594 fprintf (file, "\n");
2595 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2596 update_ssa_stats.num_virtual_mappings);
2597 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2598 update_ssa_stats.num_total_mappings
2599 - update_ssa_stats.num_virtual_mappings);
2600 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2601 update_ssa_stats.num_total_mappings);
2603 fprintf (file, "\nNumber of virtual symbols: %u\n",
2604 update_ssa_stats.num_virtual_symbols);
2607 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2609 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2610 dump_decl_set (file, syms_to_rename);
2613 if (names_to_release && !bitmap_empty_p (names_to_release))
2615 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2616 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2618 print_generic_expr (file, ssa_name (i), 0);
2619 fprintf (file, " ");
2623 fprintf (file, "\n\n");
2627 /* Dump SSA update information to stderr. */
2629 void
2630 debug_update_ssa (void)
2632 dump_update_ssa (stderr);
2636 /* Initialize data structures used for incremental SSA updates. */
2638 static void
2639 init_update_ssa (void)
2641 /* Reserve more space than the current number of names. The calls to
2642 add_new_name_mapping are typically done after creating new SSA
2643 names, so we'll need to reallocate these arrays. */
2644 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2645 sbitmap_zero (old_ssa_names);
2647 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2648 sbitmap_zero (new_ssa_names);
2650 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2651 need_to_initialize_update_ssa_p = false;
2652 need_to_update_vops_p = false;
2653 syms_to_rename = BITMAP_ALLOC (NULL);
2654 regs_to_rename = BITMAP_ALLOC (NULL);
2655 mem_syms_to_rename = BITMAP_ALLOC (NULL);
2656 names_to_release = NULL;
2657 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2658 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2662 /* Deallocate data structures used for incremental SSA updates. */
2664 void
2665 delete_update_ssa (void)
2667 unsigned i;
2668 bitmap_iterator bi;
2670 sbitmap_free (old_ssa_names);
2671 old_ssa_names = NULL;
2673 sbitmap_free (new_ssa_names);
2674 new_ssa_names = NULL;
2676 htab_delete (repl_tbl);
2677 repl_tbl = NULL;
2679 need_to_initialize_update_ssa_p = true;
2680 need_to_update_vops_p = false;
2681 BITMAP_FREE (syms_to_rename);
2682 BITMAP_FREE (regs_to_rename);
2683 BITMAP_FREE (mem_syms_to_rename);
2684 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2686 if (names_to_release)
2688 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2689 release_ssa_name (ssa_name (i));
2690 BITMAP_FREE (names_to_release);
2693 clear_ssa_name_info ();
2695 fini_ssa_renamer ();
2697 if (blocks_with_phis_to_rewrite)
2698 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2700 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2702 VEC_free (gimple, heap, phis);
2703 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2706 BITMAP_FREE (blocks_with_phis_to_rewrite);
2707 BITMAP_FREE (blocks_to_update);
2711 /* Create a new name for OLD_NAME in statement STMT and replace the
2712 operand pointed to by DEF_P with the newly created name. Return
2713 the new name and register the replacement mapping <NEW, OLD> in
2714 update_ssa's tables. */
2716 tree
2717 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2719 tree new_name = duplicate_ssa_name (old_name, stmt);
2721 SET_DEF (def, new_name);
2723 if (gimple_code (stmt) == GIMPLE_PHI)
2725 edge e;
2726 edge_iterator ei;
2727 basic_block bb = gimple_bb (stmt);
2729 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2730 FOR_EACH_EDGE (e, ei, bb->preds)
2731 if (e->flags & EDGE_ABNORMAL)
2733 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2734 break;
2738 register_new_name_mapping (new_name, old_name);
2740 /* For the benefit of passes that will be updating the SSA form on
2741 their own, set the current reaching definition of OLD_NAME to be
2742 NEW_NAME. */
2743 set_current_def (old_name, new_name);
2745 return new_name;
2749 /* Register name NEW to be a replacement for name OLD. This function
2750 must be called for every replacement that should be performed by
2751 update_ssa. */
2753 void
2754 register_new_name_mapping (tree new_Tree ATTRIBUTE_UNUSED, tree old ATTRIBUTE_UNUSED)
2756 if (need_to_initialize_update_ssa_p)
2757 init_update_ssa ();
2759 add_new_name_mapping (new_Tree, old);
2763 /* Register symbol SYM to be renamed by update_ssa. */
2765 void
2766 mark_sym_for_renaming (tree sym)
2768 if (need_to_initialize_update_ssa_p)
2769 init_update_ssa ();
2771 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2773 if (!is_gimple_reg (sym))
2775 need_to_update_vops_p = true;
2776 if (memory_partition (sym))
2777 bitmap_set_bit (syms_to_rename, DECL_UID (memory_partition (sym)));
2782 /* Register all the symbols in SET to be renamed by update_ssa. */
2784 void
2785 mark_set_for_renaming (bitmap set)
2787 bitmap_iterator bi;
2788 unsigned i;
2790 if (set == NULL || bitmap_empty_p (set))
2791 return;
2793 if (need_to_initialize_update_ssa_p)
2794 init_update_ssa ();
2796 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2797 mark_sym_for_renaming (referenced_var (i));
2801 /* Return true if there is any work to be done by update_ssa. */
2803 bool
2804 need_ssa_update_p (void)
2806 return syms_to_rename || old_ssa_names || new_ssa_names;
2809 /* Return true if SSA name mappings have been registered for SSA updating. */
2811 bool
2812 name_mappings_registered_p (void)
2814 return repl_tbl && htab_elements (repl_tbl) > 0;
2817 /* Return true if name N has been registered in the replacement table. */
2819 bool
2820 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2822 if (!need_ssa_update_p ())
2823 return false;
2825 return is_new_name (n)
2826 || is_old_name (n)
2827 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2831 /* Return the set of all the SSA names marked to be replaced. */
2833 bitmap
2834 ssa_names_to_replace (void)
2836 unsigned i = 0;
2837 bitmap ret;
2838 sbitmap_iterator sbi;
2840 ret = BITMAP_ALLOC (NULL);
2841 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2842 bitmap_set_bit (ret, i);
2844 return ret;
2848 /* Mark NAME to be released after update_ssa has finished. */
2850 void
2851 release_ssa_name_after_update_ssa (tree name)
2853 gcc_assert (!need_to_initialize_update_ssa_p);
2855 if (names_to_release == NULL)
2856 names_to_release = BITMAP_ALLOC (NULL);
2858 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2862 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2863 frontier information. BLOCKS is the set of blocks to be updated.
2865 This is slightly different than the regular PHI insertion
2866 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2867 real names (i.e., GIMPLE registers) are inserted:
2869 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2870 nodes inside the region affected by the block that defines VAR
2871 and the blocks that define all its replacements. All these
2872 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2874 First, we compute the entry point to the region (ENTRY). This is
2875 given by the nearest common dominator to all the definition
2876 blocks. When computing the iterated dominance frontier (IDF), any
2877 block not strictly dominated by ENTRY is ignored.
2879 We then call the standard PHI insertion algorithm with the pruned
2880 IDF.
2882 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2883 names is not pruned. PHI nodes are inserted at every IDF block. */
2885 static void
2886 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2887 unsigned update_flags)
2889 basic_block entry;
2890 struct def_blocks_d *db;
2891 bitmap idf, pruned_idf;
2892 bitmap_iterator bi;
2893 unsigned i;
2895 #if defined ENABLE_CHECKING
2896 if (TREE_CODE (var) == SSA_NAME)
2897 gcc_assert (is_old_name (var));
2898 else
2899 gcc_assert (symbol_marked_for_renaming (var));
2900 #endif
2902 /* Get all the definition sites for VAR. */
2903 db = find_def_blocks_for (var);
2905 /* No need to do anything if there were no definitions to VAR. */
2906 if (db == NULL || bitmap_empty_p (db->def_blocks))
2907 return;
2909 /* Compute the initial iterated dominance frontier. */
2910 idf = compute_idf (db->def_blocks, dfs);
2911 pruned_idf = BITMAP_ALLOC (NULL);
2913 if (TREE_CODE (var) == SSA_NAME)
2915 if (update_flags == TODO_update_ssa)
2917 /* If doing regular SSA updates for GIMPLE registers, we are
2918 only interested in IDF blocks dominated by the nearest
2919 common dominator of all the definition blocks. */
2920 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2921 db->def_blocks);
2922 if (entry != ENTRY_BLOCK_PTR)
2923 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2924 if (BASIC_BLOCK (i) != entry
2925 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2926 bitmap_set_bit (pruned_idf, i);
2928 else
2930 /* Otherwise, do not prune the IDF for VAR. */
2931 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2932 bitmap_copy (pruned_idf, idf);
2935 else
2937 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2938 for the first time, so we need to compute the full IDF for
2939 it. */
2940 bitmap_copy (pruned_idf, idf);
2943 if (!bitmap_empty_p (pruned_idf))
2945 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2946 are included in the region to be updated. The feeding blocks
2947 are important to guarantee that the PHI arguments are renamed
2948 properly. */
2950 /* FIXME, this is not needed if we are updating symbols. We are
2951 already starting at the ENTRY block anyway. */
2952 bitmap_ior_into (blocks, pruned_idf);
2953 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2955 edge e;
2956 edge_iterator ei;
2957 basic_block bb = BASIC_BLOCK (i);
2959 FOR_EACH_EDGE (e, ei, bb->preds)
2960 if (e->src->index >= 0)
2961 bitmap_set_bit (blocks, e->src->index);
2964 insert_phi_nodes_for (var, pruned_idf, true);
2967 BITMAP_FREE (pruned_idf);
2968 BITMAP_FREE (idf);
2972 /* Heuristic to determine whether SSA name mappings for virtual names
2973 should be discarded and their symbols rewritten from scratch. When
2974 there is a large number of mappings for virtual names, the
2975 insertion of PHI nodes for the old names in the mappings takes
2976 considerable more time than if we inserted PHI nodes for the
2977 symbols instead.
2979 Currently the heuristic takes these stats into account:
2981 - Number of mappings for virtual SSA names.
2982 - Number of distinct virtual symbols involved in those mappings.
2984 If the number of virtual mappings is much larger than the number of
2985 virtual symbols, then it will be faster to compute PHI insertion
2986 spots for the symbols. Even if this involves traversing the whole
2987 CFG, which is what happens when symbols are renamed from scratch. */
2989 static bool
2990 switch_virtuals_to_full_rewrite_p (void)
2992 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2993 return false;
2995 if (update_ssa_stats.num_virtual_mappings
2996 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2997 * update_ssa_stats.num_virtual_symbols)
2998 return true;
3000 return false;
3004 /* Remove every virtual mapping and mark all the affected virtual
3005 symbols for renaming. */
3007 static void
3008 switch_virtuals_to_full_rewrite (void)
3010 unsigned i = 0;
3011 sbitmap_iterator sbi;
3013 if (dump_file)
3015 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3016 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3017 update_ssa_stats.num_virtual_mappings);
3018 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3019 update_ssa_stats.num_virtual_symbols);
3020 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3021 "faster than processing\nthe name mappings.\n\n");
3024 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3025 Note that it is not really necessary to remove the mappings from
3026 REPL_TBL, that would only waste time. */
3027 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3028 if (!is_gimple_reg (ssa_name (i)))
3029 RESET_BIT (new_ssa_names, i);
3031 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3032 if (!is_gimple_reg (ssa_name (i)))
3033 RESET_BIT (old_ssa_names, i);
3035 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3039 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3040 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3042 1- The names in OLD_SSA_NAMES dominated by the definitions of
3043 NEW_SSA_NAMES are all re-written to be reached by the
3044 appropriate definition from NEW_SSA_NAMES.
3046 2- If needed, new PHI nodes are added to the iterated dominance
3047 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3049 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3050 calling register_new_name_mapping for every pair of names that the
3051 caller wants to replace.
3053 The caller identifies the new names that have been inserted and the
3054 names that need to be replaced by calling register_new_name_mapping
3055 for every pair <NEW, OLD>. Note that the function assumes that the
3056 new names have already been inserted in the IL.
3058 For instance, given the following code:
3060 1 L0:
3061 2 x_1 = PHI (0, x_5)
3062 3 if (x_1 < 10)
3063 4 if (x_1 > 7)
3064 5 y_2 = 0
3065 6 else
3066 7 y_3 = x_1 + x_7
3067 8 endif
3068 9 x_5 = x_1 + 1
3069 10 goto L0;
3070 11 endif
3072 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3074 1 L0:
3075 2 x_1 = PHI (0, x_5)
3076 3 if (x_1 < 10)
3077 4 x_10 = ...
3078 5 if (x_1 > 7)
3079 6 y_2 = 0
3080 7 else
3081 8 x_11 = ...
3082 9 y_3 = x_1 + x_7
3083 10 endif
3084 11 x_5 = x_1 + 1
3085 12 goto L0;
3086 13 endif
3088 We want to replace all the uses of x_1 with the new definitions of
3089 x_10 and x_11. Note that the only uses that should be replaced are
3090 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3091 *not* be replaced (this is why we cannot just mark symbol 'x' for
3092 renaming).
3094 Additionally, we may need to insert a PHI node at line 11 because
3095 that is a merge point for x_10 and x_11. So the use of x_1 at line
3096 11 will be replaced with the new PHI node. The insertion of PHI
3097 nodes is optional. They are not strictly necessary to preserve the
3098 SSA form, and depending on what the caller inserted, they may not
3099 even be useful for the optimizers. UPDATE_FLAGS controls various
3100 aspects of how update_ssa operates, see the documentation for
3101 TODO_update_ssa*. */
3103 void
3104 update_ssa (unsigned update_flags)
3106 basic_block bb, start_bb;
3107 bitmap_iterator bi;
3108 unsigned i = 0;
3109 sbitmap tmp;
3110 bool insert_phi_p;
3111 sbitmap_iterator sbi;
3113 if (!need_ssa_update_p ())
3114 return;
3116 timevar_push (TV_TREE_SSA_INCREMENTAL);
3118 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3119 if (!phis_to_rewrite)
3120 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3121 blocks_to_update = BITMAP_ALLOC (NULL);
3123 /* Ensure that the dominance information is up-to-date. */
3124 calculate_dominance_info (CDI_DOMINATORS);
3126 /* Only one update flag should be set. */
3127 gcc_assert (update_flags == TODO_update_ssa
3128 || update_flags == TODO_update_ssa_no_phi
3129 || update_flags == TODO_update_ssa_full_phi
3130 || update_flags == TODO_update_ssa_only_virtuals);
3132 /* If we only need to update virtuals, remove all the mappings for
3133 real names before proceeding. The caller is responsible for
3134 having dealt with the name mappings before calling update_ssa. */
3135 if (update_flags == TODO_update_ssa_only_virtuals)
3137 sbitmap_zero (old_ssa_names);
3138 sbitmap_zero (new_ssa_names);
3139 htab_empty (repl_tbl);
3142 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3144 if (insert_phi_p)
3146 /* If the caller requested PHI nodes to be added, initialize
3147 live-in information data structures (DEF_BLOCKS). */
3149 /* For each SSA name N, the DEF_BLOCKS table describes where the
3150 name is defined, which blocks have PHI nodes for N, and which
3151 blocks have uses of N (i.e., N is live-on-entry in those
3152 blocks). */
3153 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3154 def_blocks_eq, def_blocks_free);
3156 else
3158 def_blocks = NULL;
3161 /* Heuristic to avoid massive slow downs when the replacement
3162 mappings include lots of virtual names. */
3163 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3164 switch_virtuals_to_full_rewrite ();
3166 /* If there are symbols to rename, identify those symbols that are
3167 GIMPLE registers into the set REGS_TO_RENAME and those that are
3168 memory symbols into the set MEM_SYMS_TO_RENAME. */
3169 if (!bitmap_empty_p (syms_to_rename))
3171 unsigned i;
3172 bitmap_iterator bi;
3174 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3176 tree sym = referenced_var (i);
3177 if (is_gimple_reg (sym))
3178 bitmap_set_bit (regs_to_rename, i);
3179 else
3181 /* Memory partitioning information may have been
3182 computed after the symbol was marked for renaming,
3183 if SYM is inside a partition also mark the partition
3184 for renaming. */
3185 tree mpt = memory_partition (sym);
3186 if (mpt)
3187 bitmap_set_bit (syms_to_rename, DECL_UID (mpt));
3191 /* Memory symbols are those not in REGS_TO_RENAME. */
3192 bitmap_and_compl (mem_syms_to_rename, syms_to_rename, regs_to_rename);
3195 /* If there are names defined in the replacement table, prepare
3196 definition and use sites for all the names in NEW_SSA_NAMES and
3197 OLD_SSA_NAMES. */
3198 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3200 prepare_names_to_update (insert_phi_p);
3202 /* If all the names in NEW_SSA_NAMES had been marked for
3203 removal, and there are no symbols to rename, then there's
3204 nothing else to do. */
3205 if (sbitmap_first_set_bit (new_ssa_names) < 0
3206 && bitmap_empty_p (syms_to_rename))
3207 goto done;
3210 /* Next, determine the block at which to start the renaming process. */
3211 if (!bitmap_empty_p (syms_to_rename))
3213 /* If we have to rename some symbols from scratch, we need to
3214 start the process at the root of the CFG. FIXME, it should
3215 be possible to determine the nearest block that had a
3216 definition for each of the symbols that are marked for
3217 updating. For now this seems more work than it's worth. */
3218 start_bb = ENTRY_BLOCK_PTR;
3220 /* Traverse the CFG looking for existing definitions and uses of
3221 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3222 statements and set local live-in information for the PHI
3223 placement heuristics. */
3224 prepare_block_for_update (start_bb, insert_phi_p);
3226 else
3228 /* Otherwise, the entry block to the region is the nearest
3229 common dominator for the blocks in BLOCKS. */
3230 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3231 blocks_to_update);
3234 /* If requested, insert PHI nodes at the iterated dominance frontier
3235 of every block, creating new definitions for names in OLD_SSA_NAMES
3236 and for symbols in SYMS_TO_RENAME. */
3237 if (insert_phi_p)
3239 bitmap *dfs;
3241 /* If the caller requested PHI nodes to be added, compute
3242 dominance frontiers. */
3243 dfs = XNEWVEC (bitmap, last_basic_block);
3244 FOR_EACH_BB (bb)
3245 dfs[bb->index] = BITMAP_ALLOC (NULL);
3246 compute_dominance_frontiers (dfs);
3248 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3250 sbitmap_iterator sbi;
3252 /* insert_update_phi_nodes_for will call add_new_name_mapping
3253 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3254 will grow while we are traversing it (but it will not
3255 gain any new members). Copy OLD_SSA_NAMES to a temporary
3256 for traversal. */
3257 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3258 sbitmap_copy (tmp, old_ssa_names);
3259 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3260 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3261 update_flags);
3262 sbitmap_free (tmp);
3265 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3266 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3267 update_flags);
3269 FOR_EACH_BB (bb)
3270 BITMAP_FREE (dfs[bb->index]);
3271 free (dfs);
3273 /* Insertion of PHI nodes may have added blocks to the region.
3274 We need to re-compute START_BB to include the newly added
3275 blocks. */
3276 if (start_bb != ENTRY_BLOCK_PTR)
3277 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3278 blocks_to_update);
3281 /* Reset the current definition for name and symbol before renaming
3282 the sub-graph. */
3283 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3284 set_current_def (ssa_name (i), NULL_TREE);
3286 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3287 set_current_def (referenced_var (i), NULL_TREE);
3289 /* Now start the renaming process at START_BB. */
3290 tmp = sbitmap_alloc (last_basic_block);
3291 sbitmap_zero (tmp);
3292 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3293 SET_BIT (tmp, i);
3295 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
3297 sbitmap_free (tmp);
3299 /* Debugging dumps. */
3300 if (dump_file)
3302 int c;
3303 unsigned i;
3305 dump_update_ssa (dump_file);
3307 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3308 start_bb->index);
3310 c = 0;
3311 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3312 c++;
3313 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3314 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3315 c, PERCENT (c, last_basic_block));
3317 if (dump_flags & TDF_DETAILS)
3319 fprintf (dump_file, "Affected blocks: ");
3320 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3321 fprintf (dump_file, "%u ", i);
3322 fprintf (dump_file, "\n");
3325 fprintf (dump_file, "\n\n");
3328 /* Free allocated memory. */
3329 done:
3330 delete_update_ssa ();
3332 timevar_pop (TV_TREE_SSA_INCREMENTAL);