1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2017 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences.
13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
33 /* @(#) $Id: trees.c,v 1.1.1.2 2002/03/11 21:53:27 tromey Exp $ */
35 /* #define GEN_TREES_H */
43 /* ===========================================================================
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
51 /* end of block literal code */
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
59 #define REPZ_11_138 18
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
62 local
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65 local
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68 local
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71 local
const uch bl_order
[BL_CODES
]
72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
77 /* ===========================================================================
78 * Local data. These are initialized only once.
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
86 local ct_data static_ltree
[L_CODES
+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88 * need for the L_CODES extra codes used during heap construction. However
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
93 local ct_data static_dtree
[D_CODES
];
94 /* The static distance tree. (Actually a trivial tree since all codes use
98 uch _dist_code
[DIST_CODE_LEN
];
99 /* Distance codes. The first 256 values correspond to the distances
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101 * the 15 bit distances.
104 uch _length_code
[MAX_MATCH
-MIN_MATCH
+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
107 local
int base_length
[LENGTH_CODES
];
108 /* First normalized length for each code (0 = MIN_MATCH) */
110 local
int base_dist
[D_CODES
];
111 /* First normalized distance for each code (0 = distance of 1) */
115 #endif /* GEN_TREES_H */
117 struct static_tree_desc_s
{
118 const ct_data
*static_tree
; /* static tree or NULL */
119 const intf
*extra_bits
; /* extra bits for each code or NULL */
120 int extra_base
; /* base index for extra_bits */
121 int elems
; /* max number of elements in the tree */
122 int max_length
; /* max bit length for the codes */
125 local
const static_tree_desc static_l_desc
=
126 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
128 local
const static_tree_desc static_d_desc
=
129 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
131 local
const static_tree_desc static_bl_desc
=
132 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
134 /* ===========================================================================
135 * Local (static) routines in this file.
138 local
void tr_static_init
OF((void));
139 local
void init_block
OF((deflate_state
*s
));
140 local
void pqdownheap
OF((deflate_state
*s
, ct_data
*tree
, int k
));
141 local
void gen_bitlen
OF((deflate_state
*s
, tree_desc
*desc
));
142 local
void gen_codes
OF((ct_data
*tree
, int max_code
, ushf
*bl_count
));
143 local
void build_tree
OF((deflate_state
*s
, tree_desc
*desc
));
144 local
void scan_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
145 local
void send_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
146 local
int build_bl_tree
OF((deflate_state
*s
));
147 local
void send_all_trees
OF((deflate_state
*s
, int lcodes
, int dcodes
,
149 local
void compress_block
OF((deflate_state
*s
, const ct_data
*ltree
,
150 const ct_data
*dtree
));
151 local
int detect_data_type
OF((deflate_state
*s
));
152 local
unsigned bi_reverse
OF((unsigned value
, int length
));
153 local
void bi_windup
OF((deflate_state
*s
));
154 local
void bi_flush
OF((deflate_state
*s
));
157 local
void gen_trees_header
OF((void));
161 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
162 /* Send a code of the given tree. c and tree must not have side effects */
164 #else /* !ZLIB_DEBUG */
165 # define send_code(s, c, tree) \
166 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
167 send_bits(s, tree[c].Code, tree[c].Len); }
170 /* ===========================================================================
171 * Output a short LSB first on the stream.
172 * IN assertion: there is enough room in pendingBuf.
174 #define put_short(s, w) { \
175 put_byte(s, (uch)((w) & 0xff)); \
176 put_byte(s, (uch)((ush)(w) >> 8)); \
179 /* ===========================================================================
180 * Send a value on a given number of bits.
181 * IN assertion: length <= 16 and value fits in length bits.
184 local
void send_bits
OF((deflate_state
*s
, int value
, int length
));
186 local
void send_bits(s
, value
, length
)
188 int value
; /* value to send */
189 int length
; /* number of bits */
191 Tracevv((stderr
," l %2d v %4x ", length
, value
));
192 Assert(length
> 0 && length
<= 15, "invalid length");
193 s
->bits_sent
+= (ulg
)length
;
195 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
196 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
197 * unused bits in value.
199 if (s
->bi_valid
> (int)Buf_size
- length
) {
200 s
->bi_buf
|= (ush
)value
<< s
->bi_valid
;
201 put_short(s
, s
->bi_buf
);
202 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
203 s
->bi_valid
+= length
- Buf_size
;
205 s
->bi_buf
|= (ush
)value
<< s
->bi_valid
;
206 s
->bi_valid
+= length
;
209 #else /* !ZLIB_DEBUG */
211 #define send_bits(s, value, length) \
213 if (s->bi_valid > (int)Buf_size - len) {\
214 int val = (int)value;\
215 s->bi_buf |= (ush)val << s->bi_valid;\
216 put_short(s, s->bi_buf);\
217 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
218 s->bi_valid += len - Buf_size;\
220 s->bi_buf |= (ush)(value) << s->bi_valid;\
224 #endif /* ZLIB_DEBUG */
227 /* the arguments must not have side effects */
229 /* ===========================================================================
230 * Initialize the various 'constant' tables.
232 local
void tr_static_init()
234 #if defined(GEN_TREES_H) || !defined(STDC)
235 static int static_init_done
= 0;
236 int n
; /* iterates over tree elements */
237 int bits
; /* bit counter */
238 int length
; /* length value */
239 int code
; /* code value */
240 int dist
; /* distance index */
241 ush bl_count
[MAX_BITS
+1];
242 /* number of codes at each bit length for an optimal tree */
244 if (static_init_done
) return;
246 /* For some embedded targets, global variables are not initialized: */
247 #ifdef NO_INIT_GLOBAL_POINTERS
248 static_l_desc
.static_tree
= static_ltree
;
249 static_l_desc
.extra_bits
= extra_lbits
;
250 static_d_desc
.static_tree
= static_dtree
;
251 static_d_desc
.extra_bits
= extra_dbits
;
252 static_bl_desc
.extra_bits
= extra_blbits
;
255 /* Initialize the mapping length (0..255) -> length code (0..28) */
257 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
258 base_length
[code
] = length
;
259 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
260 _length_code
[length
++] = (uch
)code
;
263 Assert (length
== 256, "tr_static_init: length != 256");
264 /* Note that the length 255 (match length 258) can be represented
265 * in two different ways: code 284 + 5 bits or code 285, so we
266 * overwrite length_code[255] to use the best encoding:
268 _length_code
[length
-1] = (uch
)code
;
270 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
272 for (code
= 0 ; code
< 16; code
++) {
273 base_dist
[code
] = dist
;
274 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
275 _dist_code
[dist
++] = (uch
)code
;
278 Assert (dist
== 256, "tr_static_init: dist != 256");
279 dist
>>= 7; /* from now on, all distances are divided by 128 */
280 for ( ; code
< D_CODES
; code
++) {
281 base_dist
[code
] = dist
<< 7;
282 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
283 _dist_code
[256 + dist
++] = (uch
)code
;
286 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
288 /* Construct the codes of the static literal tree */
289 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
291 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
292 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
293 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
294 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
295 /* Codes 286 and 287 do not exist, but we must include them in the
296 * tree construction to get a canonical Huffman tree (longest code
299 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
301 /* The static distance tree is trivial: */
302 for (n
= 0; n
< D_CODES
; n
++) {
303 static_dtree
[n
].Len
= 5;
304 static_dtree
[n
].Code
= bi_reverse((unsigned)n
, 5);
306 static_init_done
= 1;
311 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
314 /* ===========================================================================
315 * Genererate the file trees.h describing the static trees.
322 # define SEPARATOR(i, last, width) \
323 ((i) == (last)? "\n};\n\n" : \
324 ((i) % (width) == (width)-1 ? ",\n" : ", "))
326 void gen_trees_header()
328 FILE *header
= fopen("trees.h", "w");
331 Assert (header
!= NULL
, "Can't open trees.h");
333 "/* header created automatically with -DGEN_TREES_H */\n\n");
335 fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n");
336 for (i
= 0; i
< L_CODES
+2; i
++) {
337 fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].Code
,
338 static_ltree
[i
].Len
, SEPARATOR(i
, L_CODES
+1, 5));
341 fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n");
342 for (i
= 0; i
< D_CODES
; i
++) {
343 fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].Code
,
344 static_dtree
[i
].Len
, SEPARATOR(i
, D_CODES
-1, 5));
347 fprintf(header
, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
348 for (i
= 0; i
< DIST_CODE_LEN
; i
++) {
349 fprintf(header
, "%2u%s", _dist_code
[i
],
350 SEPARATOR(i
, DIST_CODE_LEN
-1, 20));
354 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355 for (i
= 0; i
< MAX_MATCH
-MIN_MATCH
+1; i
++) {
356 fprintf(header
, "%2u%s", _length_code
[i
],
357 SEPARATOR(i
, MAX_MATCH
-MIN_MATCH
, 20));
360 fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n");
361 for (i
= 0; i
< LENGTH_CODES
; i
++) {
362 fprintf(header
, "%1u%s", base_length
[i
],
363 SEPARATOR(i
, LENGTH_CODES
-1, 20));
366 fprintf(header
, "local const int base_dist[D_CODES] = {\n");
367 for (i
= 0; i
< D_CODES
; i
++) {
368 fprintf(header
, "%5u%s", base_dist
[i
],
369 SEPARATOR(i
, D_CODES
-1, 10));
374 #endif /* GEN_TREES_H */
376 /* ===========================================================================
377 * Initialize the tree data structures for a new zlib stream.
379 void ZLIB_INTERNAL
_tr_init(s
)
384 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
385 s
->l_desc
.stat_desc
= &static_l_desc
;
387 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
388 s
->d_desc
.stat_desc
= &static_d_desc
;
390 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
391 s
->bl_desc
.stat_desc
= &static_bl_desc
;
396 s
->compressed_len
= 0L;
400 /* Initialize the first block of the first file: */
404 /* ===========================================================================
405 * Initialize a new block.
407 local
void init_block(s
)
410 int n
; /* iterates over tree elements */
412 /* Initialize the trees. */
413 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
414 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
415 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
417 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
418 s
->opt_len
= s
->static_len
= 0L;
419 s
->last_lit
= s
->matches
= 0;
423 /* Index within the heap array of least frequent node in the Huffman tree */
426 /* ===========================================================================
427 * Remove the smallest element from the heap and recreate the heap with
428 * one less element. Updates heap and heap_len.
430 #define pqremove(s, tree, top) \
432 top = s->heap[SMALLEST]; \
433 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
434 pqdownheap(s, tree, SMALLEST); \
437 /* ===========================================================================
438 * Compares to subtrees, using the tree depth as tie breaker when
439 * the subtrees have equal frequency. This minimizes the worst case length.
441 #define smaller(tree, n, m, depth) \
442 (tree[n].Freq < tree[m].Freq || \
443 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
445 /* ===========================================================================
446 * Restore the heap property by moving down the tree starting at node k,
447 * exchanging a node with the smallest of its two sons if necessary, stopping
448 * when the heap property is re-established (each father smaller than its
451 local
void pqdownheap(s
, tree
, k
)
453 ct_data
*tree
; /* the tree to restore */
454 int k
; /* node to move down */
457 int j
= k
<< 1; /* left son of k */
458 while (j
<= s
->heap_len
) {
459 /* Set j to the smallest of the two sons: */
460 if (j
< s
->heap_len
&&
461 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
464 /* Exit if v is smaller than both sons */
465 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
467 /* Exchange v with the smallest son */
468 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
470 /* And continue down the tree, setting j to the left son of k */
476 /* ===========================================================================
477 * Compute the optimal bit lengths for a tree and update the total bit length
478 * for the current block.
479 * IN assertion: the fields freq and dad are set, heap[heap_max] and
480 * above are the tree nodes sorted by increasing frequency.
481 * OUT assertions: the field len is set to the optimal bit length, the
482 * array bl_count contains the frequencies for each bit length.
483 * The length opt_len is updated; static_len is also updated if stree is
486 local
void gen_bitlen(s
, desc
)
488 tree_desc
*desc
; /* the tree descriptor */
490 ct_data
*tree
= desc
->dyn_tree
;
491 int max_code
= desc
->max_code
;
492 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
493 const intf
*extra
= desc
->stat_desc
->extra_bits
;
494 int base
= desc
->stat_desc
->extra_base
;
495 int max_length
= desc
->stat_desc
->max_length
;
496 int h
; /* heap index */
497 int n
, m
; /* iterate over the tree elements */
498 int bits
; /* bit length */
499 int xbits
; /* extra bits */
500 ush f
; /* frequency */
501 int overflow
= 0; /* number of elements with bit length too large */
503 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
505 /* In a first pass, compute the optimal bit lengths (which may
506 * overflow in the case of the bit length tree).
508 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
510 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
512 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
513 if (bits
> max_length
) bits
= max_length
, overflow
++;
514 tree
[n
].Len
= (ush
)bits
;
515 /* We overwrite tree[n].Dad which is no longer needed */
517 if (n
> max_code
) continue; /* not a leaf node */
521 if (n
>= base
) xbits
= extra
[n
-base
];
523 s
->opt_len
+= (ulg
)f
* (unsigned)(bits
+ xbits
);
524 if (stree
) s
->static_len
+= (ulg
)f
* (unsigned)(stree
[n
].Len
+ xbits
);
526 if (overflow
== 0) return;
528 Tracev((stderr
,"\nbit length overflow\n"));
529 /* This happens for example on obj2 and pic of the Calgary corpus */
531 /* Find the first bit length which could increase: */
534 while (s
->bl_count
[bits
] == 0) bits
--;
535 s
->bl_count
[bits
]--; /* move one leaf down the tree */
536 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
537 s
->bl_count
[max_length
]--;
538 /* The brother of the overflow item also moves one step up,
539 * but this does not affect bl_count[max_length]
542 } while (overflow
> 0);
544 /* Now recompute all bit lengths, scanning in increasing frequency.
545 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
546 * lengths instead of fixing only the wrong ones. This idea is taken
547 * from 'ar' written by Haruhiko Okumura.)
549 for (bits
= max_length
; bits
!= 0; bits
--) {
550 n
= s
->bl_count
[bits
];
553 if (m
> max_code
) continue;
554 if ((unsigned) tree
[m
].Len
!= (unsigned) bits
) {
555 Tracev((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
556 s
->opt_len
+= ((ulg
)bits
- tree
[m
].Len
) * tree
[m
].Freq
;
557 tree
[m
].Len
= (ush
)bits
;
564 /* ===========================================================================
565 * Generate the codes for a given tree and bit counts (which need not be
567 * IN assertion: the array bl_count contains the bit length statistics for
568 * the given tree and the field len is set for all tree elements.
569 * OUT assertion: the field code is set for all tree elements of non
572 local
void gen_codes (tree
, max_code
, bl_count
)
573 ct_data
*tree
; /* the tree to decorate */
574 int max_code
; /* largest code with non zero frequency */
575 ushf
*bl_count
; /* number of codes at each bit length */
577 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
578 unsigned code
= 0; /* running code value */
579 int bits
; /* bit index */
580 int n
; /* code index */
582 /* The distribution counts are first used to generate the code values
583 * without bit reversal.
585 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
586 code
= (code
+ bl_count
[bits
-1]) << 1;
587 next_code
[bits
] = (ush
)code
;
589 /* Check that the bit counts in bl_count are consistent. The last code
592 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
593 "inconsistent bit counts");
594 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
596 for (n
= 0; n
<= max_code
; n
++) {
597 int len
= tree
[n
].Len
;
598 if (len
== 0) continue;
599 /* Now reverse the bits */
600 tree
[n
].Code
= (ush
)bi_reverse(next_code
[len
]++, len
);
602 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
603 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
607 /* ===========================================================================
608 * Construct one Huffman tree and assigns the code bit strings and lengths.
609 * Update the total bit length for the current block.
610 * IN assertion: the field freq is set for all tree elements.
611 * OUT assertions: the fields len and code are set to the optimal bit length
612 * and corresponding code. The length opt_len is updated; static_len is
613 * also updated if stree is not null. The field max_code is set.
615 local
void build_tree(s
, desc
)
617 tree_desc
*desc
; /* the tree descriptor */
619 ct_data
*tree
= desc
->dyn_tree
;
620 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
621 int elems
= desc
->stat_desc
->elems
;
622 int n
, m
; /* iterate over heap elements */
623 int max_code
= -1; /* largest code with non zero frequency */
624 int node
; /* new node being created */
626 /* Construct the initial heap, with least frequent element in
627 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
628 * heap[0] is not used.
630 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
632 for (n
= 0; n
< elems
; n
++) {
633 if (tree
[n
].Freq
!= 0) {
634 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
641 /* The pkzip format requires that at least one distance code exists,
642 * and that at least one bit should be sent even if there is only one
643 * possible code. So to avoid special checks later on we force at least
644 * two codes of non zero frequency.
646 while (s
->heap_len
< 2) {
647 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
650 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
651 /* node is 0 or 1 so it does not have extra bits */
653 desc
->max_code
= max_code
;
655 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
656 * establish sub-heaps of increasing lengths:
658 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
660 /* Construct the Huffman tree by repeatedly combining the least two
663 node
= elems
; /* next internal node of the tree */
665 pqremove(s
, tree
, n
); /* n = node of least frequency */
666 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
668 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
669 s
->heap
[--(s
->heap_max
)] = m
;
671 /* Create a new node father of n and m */
672 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
673 s
->depth
[node
] = (uch
)((s
->depth
[n
] >= s
->depth
[m
] ?
674 s
->depth
[n
] : s
->depth
[m
]) + 1);
675 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
677 if (tree
== s
->bl_tree
) {
678 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
679 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
682 /* and insert the new node in the heap */
683 s
->heap
[SMALLEST
] = node
++;
684 pqdownheap(s
, tree
, SMALLEST
);
686 } while (s
->heap_len
>= 2);
688 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
690 /* At this point, the fields freq and dad are set. We can now
691 * generate the bit lengths.
693 gen_bitlen(s
, (tree_desc
*)desc
);
695 /* The field len is now set, we can generate the bit codes */
696 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
699 /* ===========================================================================
700 * Scan a literal or distance tree to determine the frequencies of the codes
701 * in the bit length tree.
703 local
void scan_tree (s
, tree
, max_code
)
705 ct_data
*tree
; /* the tree to be scanned */
706 int max_code
; /* and its largest code of non zero frequency */
708 int n
; /* iterates over all tree elements */
709 int prevlen
= -1; /* last emitted length */
710 int curlen
; /* length of current code */
711 int nextlen
= tree
[0].Len
; /* length of next code */
712 int count
= 0; /* repeat count of the current code */
713 int max_count
= 7; /* max repeat count */
714 int min_count
= 4; /* min repeat count */
716 if (nextlen
== 0) max_count
= 138, min_count
= 3;
717 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
719 for (n
= 0; n
<= max_code
; n
++) {
720 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
721 if (++count
< max_count
&& curlen
== nextlen
) {
723 } else if (count
< min_count
) {
724 s
->bl_tree
[curlen
].Freq
+= count
;
725 } else if (curlen
!= 0) {
726 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
727 s
->bl_tree
[REP_3_6
].Freq
++;
728 } else if (count
<= 10) {
729 s
->bl_tree
[REPZ_3_10
].Freq
++;
731 s
->bl_tree
[REPZ_11_138
].Freq
++;
733 count
= 0; prevlen
= curlen
;
735 max_count
= 138, min_count
= 3;
736 } else if (curlen
== nextlen
) {
737 max_count
= 6, min_count
= 3;
739 max_count
= 7, min_count
= 4;
744 /* ===========================================================================
745 * Send a literal or distance tree in compressed form, using the codes in
748 local
void send_tree (s
, tree
, max_code
)
750 ct_data
*tree
; /* the tree to be scanned */
751 int max_code
; /* and its largest code of non zero frequency */
753 int n
; /* iterates over all tree elements */
754 int prevlen
= -1; /* last emitted length */
755 int curlen
; /* length of current code */
756 int nextlen
= tree
[0].Len
; /* length of next code */
757 int count
= 0; /* repeat count of the current code */
758 int max_count
= 7; /* max repeat count */
759 int min_count
= 4; /* min repeat count */
761 /* tree[max_code+1].Len = -1; */ /* guard already set */
762 if (nextlen
== 0) max_count
= 138, min_count
= 3;
764 for (n
= 0; n
<= max_code
; n
++) {
765 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
766 if (++count
< max_count
&& curlen
== nextlen
) {
768 } else if (count
< min_count
) {
769 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
771 } else if (curlen
!= 0) {
772 if (curlen
!= prevlen
) {
773 send_code(s
, curlen
, s
->bl_tree
); count
--;
775 Assert(count
>= 3 && count
<= 6, " 3_6?");
776 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
778 } else if (count
<= 10) {
779 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
782 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
784 count
= 0; prevlen
= curlen
;
786 max_count
= 138, min_count
= 3;
787 } else if (curlen
== nextlen
) {
788 max_count
= 6, min_count
= 3;
790 max_count
= 7, min_count
= 4;
795 /* ===========================================================================
796 * Construct the Huffman tree for the bit lengths and return the index in
797 * bl_order of the last bit length code to send.
799 local
int build_bl_tree(s
)
802 int max_blindex
; /* index of last bit length code of non zero freq */
804 /* Determine the bit length frequencies for literal and distance trees */
805 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
806 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
808 /* Build the bit length tree: */
809 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
810 /* opt_len now includes the length of the tree representations, except
811 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
814 /* Determine the number of bit length codes to send. The pkzip format
815 * requires that at least 4 bit length codes be sent. (appnote.txt says
816 * 3 but the actual value used is 4.)
818 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
819 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
821 /* Update opt_len to include the bit length tree and counts */
822 s
->opt_len
+= 3*((ulg
)max_blindex
+1) + 5+5+4;
823 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
824 s
->opt_len
, s
->static_len
));
829 /* ===========================================================================
830 * Send the header for a block using dynamic Huffman trees: the counts, the
831 * lengths of the bit length codes, the literal tree and the distance tree.
832 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
834 local
void send_all_trees(s
, lcodes
, dcodes
, blcodes
)
836 int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */
838 int rank
; /* index in bl_order */
840 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
841 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
843 Tracev((stderr
, "\nbl counts: "));
844 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
845 send_bits(s
, dcodes
-1, 5);
846 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
847 for (rank
= 0; rank
< blcodes
; rank
++) {
848 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
849 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
851 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
853 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
854 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
856 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
857 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
860 /* ===========================================================================
861 * Send a stored block
863 void ZLIB_INTERNAL
_tr_stored_block(s
, buf
, stored_len
, last
)
865 charf
*buf
; /* input block */
866 ulg stored_len
; /* length of input block */
867 int last
; /* one if this is the last block for a file */
869 send_bits(s
, (STORED_BLOCK
<<1)+last
, 3); /* send block type */
870 bi_windup(s
); /* align on byte boundary */
871 put_short(s
, (ush
)stored_len
);
872 put_short(s
, (ush
)~stored_len
);
873 zmemcpy(s
->pending_buf
+ s
->pending
, (Bytef
*)buf
, stored_len
);
874 s
->pending
+= stored_len
;
876 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
877 s
->compressed_len
+= (stored_len
+ 4) << 3;
878 s
->bits_sent
+= 2*16;
879 s
->bits_sent
+= stored_len
<<3;
883 /* ===========================================================================
884 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
886 void ZLIB_INTERNAL
_tr_flush_bits(s
)
892 /* ===========================================================================
893 * Send one empty static block to give enough lookahead for inflate.
894 * This takes 10 bits, of which 7 may remain in the bit buffer.
896 void ZLIB_INTERNAL
_tr_align(s
)
899 send_bits(s
, STATIC_TREES
<<1, 3);
900 send_code(s
, END_BLOCK
, static_ltree
);
902 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
907 /* ===========================================================================
908 * Determine the best encoding for the current block: dynamic trees, static
909 * trees or store, and write out the encoded block.
911 void ZLIB_INTERNAL
_tr_flush_block(s
, buf
, stored_len
, last
)
913 charf
*buf
; /* input block, or NULL if too old */
914 ulg stored_len
; /* length of input block */
915 int last
; /* one if this is the last block for a file */
917 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
918 int max_blindex
= 0; /* index of last bit length code of non zero freq */
920 /* Build the Huffman trees unless a stored block is forced */
923 /* Check if the file is binary or text */
924 if (s
->strm
->data_type
== Z_UNKNOWN
)
925 s
->strm
->data_type
= detect_data_type(s
);
927 /* Construct the literal and distance trees */
928 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
929 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
932 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
933 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
935 /* At this point, opt_len and static_len are the total bit lengths of
936 * the compressed block data, excluding the tree representations.
939 /* Build the bit length tree for the above two trees, and get the index
940 * in bl_order of the last bit length code to send.
942 max_blindex
= build_bl_tree(s
);
944 /* Determine the best encoding. Compute the block lengths in bytes. */
945 opt_lenb
= (s
->opt_len
+3+7)>>3;
946 static_lenb
= (s
->static_len
+3+7)>>3;
948 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
949 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
952 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
955 Assert(buf
!= (char*)0, "lost buf");
956 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
960 if (buf
!= (char*)0) { /* force stored block */
962 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
963 /* 4: two words for the lengths */
965 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
966 * Otherwise we can't have processed more than WSIZE input bytes since
967 * the last block flush, because compression would have been
968 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
969 * transform a block into a stored block.
971 _tr_stored_block(s
, buf
, stored_len
, last
);
974 } else if (static_lenb
>= 0) { /* force static trees */
976 } else if (s
->strategy
== Z_FIXED
|| static_lenb
== opt_lenb
) {
978 send_bits(s
, (STATIC_TREES
<<1)+last
, 3);
979 compress_block(s
, (const ct_data
*)static_ltree
,
980 (const ct_data
*)static_dtree
);
982 s
->compressed_len
+= 3 + s
->static_len
;
985 send_bits(s
, (DYN_TREES
<<1)+last
, 3);
986 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
988 compress_block(s
, (const ct_data
*)s
->dyn_ltree
,
989 (const ct_data
*)s
->dyn_dtree
);
991 s
->compressed_len
+= 3 + s
->opt_len
;
994 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
995 /* The above check is made mod 2^32, for files larger than 512 MB
996 * and uLong implemented on 32 bits.
1003 s
->compressed_len
+= 7; /* align on byte boundary */
1006 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
1007 s
->compressed_len
-7*last
));
1010 /* ===========================================================================
1011 * Save the match info and tally the frequency counts. Return true if
1012 * the current block must be flushed.
1014 int ZLIB_INTERNAL
_tr_tally (s
, dist
, lc
)
1016 unsigned dist
; /* distance of matched string */
1017 unsigned lc
; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1019 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
1020 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
1022 /* lc is the unmatched char */
1023 s
->dyn_ltree
[lc
].Freq
++;
1026 /* Here, lc is the match length - MIN_MATCH */
1027 dist
--; /* dist = match distance - 1 */
1028 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
1029 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
1030 (ush
)d_code(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
1032 s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].Freq
++;
1033 s
->dyn_dtree
[d_code(dist
)].Freq
++;
1036 #ifdef TRUNCATE_BLOCK
1037 /* Try to guess if it is profitable to stop the current block here */
1038 if ((s
->last_lit
& 0x1fff) == 0 && s
->level
> 2) {
1039 /* Compute an upper bound for the compressed length */
1040 ulg out_length
= (ulg
)s
->last_lit
*8L;
1041 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
1043 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
1044 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
1045 (5L+extra_dbits
[dcode
]);
1048 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1049 s
->last_lit
, in_length
, out_length
,
1050 100L - out_length
*100L/in_length
));
1051 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
1054 return (s
->last_lit
== s
->lit_bufsize
-1);
1055 /* We avoid equality with lit_bufsize because of wraparound at 64K
1056 * on 16 bit machines and because stored blocks are restricted to
1061 /* ===========================================================================
1062 * Send the block data compressed using the given Huffman trees
1064 local
void compress_block(s
, ltree
, dtree
)
1066 const ct_data
*ltree
; /* literal tree */
1067 const ct_data
*dtree
; /* distance tree */
1069 unsigned dist
; /* distance of matched string */
1070 int lc
; /* match length or unmatched char (if dist == 0) */
1071 unsigned lx
= 0; /* running index in l_buf */
1072 unsigned code
; /* the code to send */
1073 int extra
; /* number of extra bits to send */
1075 if (s
->last_lit
!= 0) do {
1076 dist
= s
->d_buf
[lx
];
1077 lc
= s
->l_buf
[lx
++];
1079 send_code(s
, lc
, ltree
); /* send a literal byte */
1080 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
1082 /* Here, lc is the match length - MIN_MATCH */
1083 code
= _length_code
[lc
];
1084 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
1085 extra
= extra_lbits
[code
];
1087 lc
-= base_length
[code
];
1088 send_bits(s
, lc
, extra
); /* send the extra length bits */
1090 dist
--; /* dist is now the match distance - 1 */
1091 code
= d_code(dist
);
1092 Assert (code
< D_CODES
, "bad d_code");
1094 send_code(s
, code
, dtree
); /* send the distance code */
1095 extra
= extra_dbits
[code
];
1097 dist
-= (unsigned)base_dist
[code
];
1098 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1100 } /* literal or match pair ? */
1102 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1103 Assert((uInt
)(s
->pending
) < s
->lit_bufsize
+ 2*lx
,
1104 "pendingBuf overflow");
1106 } while (lx
< s
->last_lit
);
1108 send_code(s
, END_BLOCK
, ltree
);
1111 /* ===========================================================================
1112 * Check if the data type is TEXT or BINARY, using the following algorithm:
1113 * - TEXT if the two conditions below are satisfied:
1114 * a) There are no non-portable control characters belonging to the
1115 * "black list" (0..6, 14..25, 28..31).
1116 * b) There is at least one printable character belonging to the
1117 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1118 * - BINARY otherwise.
1119 * - The following partially-portable control characters form a
1120 * "gray list" that is ignored in this detection algorithm:
1121 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1122 * IN assertion: the fields Freq of dyn_ltree are set.
1124 local
int detect_data_type(s
)
1127 /* black_mask is the bit mask of black-listed bytes
1128 * set bits 0..6, 14..25, and 28..31
1129 * 0xf3ffc07f = binary 11110011111111111100000001111111
1131 unsigned long black_mask
= 0xf3ffc07fUL
;
1134 /* Check for non-textual ("black-listed") bytes. */
1135 for (n
= 0; n
<= 31; n
++, black_mask
>>= 1)
1136 if ((black_mask
& 1) && (s
->dyn_ltree
[n
].Freq
!= 0))
1139 /* Check for textual ("white-listed") bytes. */
1140 if (s
->dyn_ltree
[9].Freq
!= 0 || s
->dyn_ltree
[10].Freq
!= 0
1141 || s
->dyn_ltree
[13].Freq
!= 0)
1143 for (n
= 32; n
< LITERALS
; n
++)
1144 if (s
->dyn_ltree
[n
].Freq
!= 0)
1147 /* There are no "black-listed" or "white-listed" bytes:
1148 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1153 /* ===========================================================================
1154 * Reverse the first len bits of a code, using straightforward code (a faster
1155 * method would use a table)
1156 * IN assertion: 1 <= len <= 15
1158 local
unsigned bi_reverse(code
, len
)
1159 unsigned code
; /* the value to invert */
1160 int len
; /* its bit length */
1162 register unsigned res
= 0;
1165 code
>>= 1, res
<<= 1;
1166 } while (--len
> 0);
1170 /* ===========================================================================
1171 * Flush the bit buffer, keeping at most 7 bits in it.
1173 local
void bi_flush(s
)
1176 if (s
->bi_valid
== 16) {
1177 put_short(s
, s
->bi_buf
);
1180 } else if (s
->bi_valid
>= 8) {
1181 put_byte(s
, (Byte
)s
->bi_buf
);
1187 /* ===========================================================================
1188 * Flush the bit buffer and align the output on a byte boundary
1190 local
void bi_windup(s
)
1193 if (s
->bi_valid
> 8) {
1194 put_short(s
, s
->bi_buf
);
1195 } else if (s
->bi_valid
> 0) {
1196 put_byte(s
, (Byte
)s
->bi_buf
);
1201 s
->bits_sent
= (s
->bits_sent
+7) & ~7;