1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Ch6
; use Exp_Ch6
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
35 with Ghost
; use Ghost
;
37 with Lib
.Xref
; use Lib
.Xref
;
38 with Namet
; use Namet
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Aux
; use Sem_Aux
;
46 with Sem_Case
; use Sem_Case
;
47 with Sem_Ch3
; use Sem_Ch3
;
48 with Sem_Ch6
; use Sem_Ch6
;
49 with Sem_Ch8
; use Sem_Ch8
;
50 with Sem_Dim
; use Sem_Dim
;
51 with Sem_Disp
; use Sem_Disp
;
52 with Sem_Elab
; use Sem_Elab
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Res
; use Sem_Res
;
55 with Sem_Type
; use Sem_Type
;
56 with Sem_Util
; use Sem_Util
;
57 with Sem_Warn
; use Sem_Warn
;
58 with Snames
; use Snames
;
59 with Stand
; use Stand
;
60 with Sinfo
; use Sinfo
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Uintp
; use Uintp
;
65 package body Sem_Ch5
is
67 Unblocked_Exit_Count
: Nat
:= 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range
(R_Copy
: Node_Id
);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment
(N
: Node_Id
) is
92 Lhs
: constant Node_Id
:= Name
(N
);
93 Rhs
: constant Node_Id
:= Expression
(N
);
98 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
110 Opnd_Type
: in out Entity_Id
);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted
(N
) then
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name
(N
) then
131 Ent
: constant Entity_Id
:= Entity
(N
);
134 if Ekind
(Ent
) = E_In_Parameter
then
136 ("assignment to IN mode parameter not allowed", N
);
139 -- Renamings of protected private components are turned into
140 -- constants when compiling a protected function. In the case
141 -- of single protected types, the private component appears
144 elsif (Is_Prival
(Ent
)
146 (Ekind
(Current_Scope
) = E_Function
147 or else Ekind
(Enclosing_Dynamic_Scope
148 (Current_Scope
)) = E_Function
))
150 (Ekind
(Ent
) = E_Component
151 and then Is_Protected_Type
(Scope
(Ent
)))
154 ("protected function cannot modify protected object", N
);
157 elsif Ekind
(Ent
) = E_Loop_Parameter
then
158 Error_Msg_N
("assignment to loop parameter not allowed", N
);
163 -- For indexed components, test prefix if it is in array. We do not
164 -- want to recurse for cases where the prefix is a pointer, since we
165 -- may get a message confusing the pointer and what it references.
167 elsif Nkind
(N
) = N_Indexed_Component
168 and then Is_Array_Type
(Etype
(Prefix
(N
)))
170 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
173 -- Another special case for assignment to discriminant
175 elsif Nkind
(N
) = N_Selected_Component
then
176 if Present
(Entity
(Selector_Name
(N
)))
177 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
179 Error_Msg_N
("assignment to discriminant not allowed", N
);
182 -- For selection from record, diagnose prefix, but note that again
183 -- we only do this for a record, not e.g. for a pointer.
185 elsif Is_Record_Type
(Etype
(Prefix
(N
))) then
186 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
191 -- If we fall through, we have no special message to issue
193 Error_Msg_N
("left hand side of assignment must be a variable", N
);
194 end Diagnose_Non_Variable_Lhs
;
200 procedure Kill_Lhs
is
202 if Is_Entity_Name
(Lhs
) then
204 Ent
: constant Entity_Id
:= Entity
(Lhs
);
206 if Present
(Ent
) then
207 Kill_Current_Values
(Ent
);
213 -------------------------
214 -- Set_Assignment_Type --
215 -------------------------
217 procedure Set_Assignment_Type
219 Opnd_Type
: in out Entity_Id
)
222 Require_Entity
(Opnd
);
224 -- If the assignment operand is an in-out or out parameter, then we
225 -- get the actual subtype (needed for the unconstrained case). If the
226 -- operand is the actual in an entry declaration, then within the
227 -- accept statement it is replaced with a local renaming, which may
228 -- also have an actual subtype.
230 if Is_Entity_Name
(Opnd
)
231 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
232 or else Ekind_In
(Entity
(Opnd
),
234 E_Generic_In_Out_Parameter
)
236 (Ekind
(Entity
(Opnd
)) = E_Variable
237 and then Nkind
(Parent
(Entity
(Opnd
))) =
238 N_Object_Renaming_Declaration
239 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
242 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
244 -- If assignment operand is a component reference, then we get the
245 -- actual subtype of the component for the unconstrained case.
247 elsif Nkind_In
(Opnd
, N_Selected_Component
, N_Explicit_Dereference
)
248 and then not Is_Unchecked_Union
(Opnd_Type
)
250 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
252 if Present
(Decl
) then
253 Insert_Action
(N
, Decl
);
254 Mark_Rewrite_Insertion
(Decl
);
256 Opnd_Type
:= Defining_Identifier
(Decl
);
257 Set_Etype
(Opnd
, Opnd_Type
);
258 Freeze_Itype
(Opnd_Type
, N
);
260 elsif Is_Constrained
(Etype
(Opnd
)) then
261 Opnd_Type
:= Etype
(Opnd
);
264 -- For slice, use the constrained subtype created for the slice
266 elsif Nkind
(Opnd
) = N_Slice
then
267 Opnd_Type
:= Etype
(Opnd
);
269 end Set_Assignment_Type
;
273 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
275 -- Start of processing for Analyze_Assignment
278 Mark_Coextensions
(N
, Rhs
);
280 -- Analyze the target of the assignment first in case the expression
281 -- contains references to Ghost entities. The checks that verify the
282 -- proper use of a Ghost entity need to know the enclosing context.
286 -- An assignment statement is Ghost when the left hand side denotes a
287 -- Ghost entity. Set the mode now to ensure that any nodes generated
288 -- during analysis and expansion are properly marked as Ghost.
293 -- Ensure that we never do an assignment on a variable marked as
294 -- as Safe_To_Reevaluate.
296 pragma Assert
(not Is_Entity_Name
(Lhs
)
297 or else Ekind
(Entity
(Lhs
)) /= E_Variable
298 or else not Is_Safe_To_Reevaluate
(Entity
(Lhs
)));
300 -- Start type analysis for assignment
304 -- In the most general case, both Lhs and Rhs can be overloaded, and we
305 -- must compute the intersection of the possible types on each side.
307 if Is_Overloaded
(Lhs
) then
314 Get_First_Interp
(Lhs
, I
, It
);
316 while Present
(It
.Typ
) loop
318 -- An indexed component with generalized indexing is always
319 -- overloaded with the corresponding dereference. Discard the
320 -- interpretation that yields a reference type, which is not
323 if Nkind
(Lhs
) = N_Indexed_Component
324 and then Present
(Generalized_Indexing
(Lhs
))
325 and then Has_Implicit_Dereference
(It
.Typ
)
329 elsif Has_Compatible_Type
(Rhs
, It
.Typ
) then
330 if T1
/= Any_Type
then
332 -- An explicit dereference is overloaded if the prefix
333 -- is. Try to remove the ambiguity on the prefix, the
334 -- error will be posted there if the ambiguity is real.
336 if Nkind
(Lhs
) = N_Explicit_Dereference
then
339 PI1
: Interp_Index
:= 0;
345 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
347 while Present
(PIt
.Typ
) loop
348 if Is_Access_Type
(PIt
.Typ
)
349 and then Has_Compatible_Type
350 (Rhs
, Designated_Type
(PIt
.Typ
))
354 Disambiguate
(Prefix
(Lhs
),
357 if PIt
= No_Interp
then
359 ("ambiguous left-hand side"
360 & " in assignment", Lhs
);
363 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
373 Get_Next_Interp
(PI
, PIt
);
379 ("ambiguous left-hand side in assignment", Lhs
);
387 Get_Next_Interp
(I
, It
);
391 if T1
= Any_Type
then
393 ("no valid types for left-hand side for assignment", Lhs
);
395 Ghost_Mode
:= Save_Ghost_Mode
;
400 -- The resulting assignment type is T1, so now we will resolve the left
401 -- hand side of the assignment using this determined type.
405 -- Cases where Lhs is not a variable
407 -- Cases where Lhs is not a variable. In an instance or an inlined body
408 -- no need for further check because assignment was legal in template.
410 if In_Inlined_Body
then
413 elsif not Is_Variable
(Lhs
) then
415 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
423 if Ada_Version
>= Ada_2005
then
425 -- Handle chains of renamings
428 while Nkind
(Ent
) in N_Has_Entity
429 and then Present
(Entity
(Ent
))
430 and then Present
(Renamed_Object
(Entity
(Ent
)))
432 Ent
:= Renamed_Object
(Entity
(Ent
));
435 if (Nkind
(Ent
) = N_Attribute_Reference
436 and then Attribute_Name
(Ent
) = Name_Priority
)
438 -- Renamings of the attribute Priority applied to protected
439 -- objects have been previously expanded into calls to the
440 -- Get_Ceiling run-time subprogram.
442 or else Is_Expanded_Priority_Attribute
(Ent
)
444 -- The enclosing subprogram cannot be a protected function
447 while not (Is_Subprogram
(S
)
448 and then Convention
(S
) = Convention_Protected
)
449 and then S
/= Standard_Standard
454 if Ekind
(S
) = E_Function
455 and then Convention
(S
) = Convention_Protected
458 ("protected function cannot modify protected object",
462 -- Changes of the ceiling priority of the protected object
463 -- are only effective if the Ceiling_Locking policy is in
464 -- effect (AARM D.5.2 (5/2)).
466 if Locking_Policy
/= 'C' then
467 Error_Msg_N
("assignment to the attribute PRIORITY has " &
469 Error_Msg_N
("\since no Locking_Policy has been " &
473 Ghost_Mode
:= Save_Ghost_Mode
;
479 Diagnose_Non_Variable_Lhs
(Lhs
);
480 Ghost_Mode
:= Save_Ghost_Mode
;
483 -- Error of assigning to limited type. We do however allow this in
484 -- certain cases where the front end generates the assignments.
486 elsif Is_Limited_Type
(T1
)
487 and then not Assignment_OK
(Lhs
)
488 and then not Assignment_OK
(Original_Node
(Lhs
))
490 -- CPP constructors can only be called in declarations
492 if Is_CPP_Constructor_Call
(Rhs
) then
493 Error_Msg_N
("invalid use of 'C'P'P constructor", Rhs
);
496 ("left hand of assignment must not be limited type", Lhs
);
497 Explain_Limited_Type
(T1
, Lhs
);
500 Ghost_Mode
:= Save_Ghost_Mode
;
503 -- A class-wide type may be a limited view. This illegal case is not
504 -- caught by previous checks.
506 elsif Ekind
(T1
) = E_Class_Wide_Type
507 and then From_Limited_With
(T1
)
509 Error_Msg_NE
("invalid use of limited view of&", Lhs
, T1
);
512 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
513 -- abstract. This is only checked when the assignment Comes_From_Source,
514 -- because in some cases the expander generates such assignments (such
515 -- in the _assign operation for an abstract type).
517 elsif Is_Abstract_Type
(T1
) and then Comes_From_Source
(N
) then
519 ("target of assignment operation must not be abstract", Lhs
);
522 -- Resolution may have updated the subtype, in case the left-hand side
523 -- is a private protected component. Use the correct subtype to avoid
524 -- scoping issues in the back-end.
528 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
529 -- type. For example:
533 -- type Acc is access P.T;
536 -- with Pkg; use Acc;
537 -- procedure Example is
540 -- A.all := B.all; -- ERROR
543 if Nkind
(Lhs
) = N_Explicit_Dereference
544 and then Ekind
(T1
) = E_Incomplete_Type
546 Error_Msg_N
("invalid use of incomplete type", Lhs
);
548 Ghost_Mode
:= Save_Ghost_Mode
;
552 -- Now we can complete the resolution of the right hand side
554 Set_Assignment_Type
(Lhs
, T1
);
557 -- This is the point at which we check for an unset reference
559 Check_Unset_Reference
(Rhs
);
560 Check_Unprotected_Access
(Lhs
, Rhs
);
562 -- Remaining steps are skipped if Rhs was syntactically in error
566 Ghost_Mode
:= Save_Ghost_Mode
;
572 if not Covers
(T1
, T2
) then
573 Wrong_Type
(Rhs
, Etype
(Lhs
));
575 Ghost_Mode
:= Save_Ghost_Mode
;
579 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
580 -- types, use the non-limited view if available
582 if Nkind
(Rhs
) = N_Explicit_Dereference
583 and then Is_Tagged_Type
(T2
)
584 and then Has_Non_Limited_View
(T2
)
586 T2
:= Non_Limited_View
(T2
);
589 Set_Assignment_Type
(Rhs
, T2
);
591 if Total_Errors_Detected
/= 0 then
601 if T1
= Any_Type
or else T2
= Any_Type
then
603 Ghost_Mode
:= Save_Ghost_Mode
;
607 -- If the rhs is class-wide or dynamically tagged, then require the lhs
608 -- to be class-wide. The case where the rhs is a dynamically tagged call
609 -- to a dispatching operation with a controlling access result is
610 -- excluded from this check, since the target has an access type (and
611 -- no tag propagation occurs in that case).
613 if (Is_Class_Wide_Type
(T2
)
614 or else (Is_Dynamically_Tagged
(Rhs
)
615 and then not Is_Access_Type
(T1
)))
616 and then not Is_Class_Wide_Type
(T1
)
618 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
620 elsif Is_Class_Wide_Type
(T1
)
621 and then not Is_Class_Wide_Type
(T2
)
622 and then not Is_Tag_Indeterminate
(Rhs
)
623 and then not Is_Dynamically_Tagged
(Rhs
)
625 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
628 -- Propagate the tag from a class-wide target to the rhs when the rhs
629 -- is a tag-indeterminate call.
631 if Is_Tag_Indeterminate
(Rhs
) then
632 if Is_Class_Wide_Type
(T1
) then
633 Propagate_Tag
(Lhs
, Rhs
);
635 elsif Nkind
(Rhs
) = N_Function_Call
636 and then Is_Entity_Name
(Name
(Rhs
))
637 and then Is_Abstract_Subprogram
(Entity
(Name
(Rhs
)))
640 ("call to abstract function must be dispatching", Name
(Rhs
));
642 elsif Nkind
(Rhs
) = N_Qualified_Expression
643 and then Nkind
(Expression
(Rhs
)) = N_Function_Call
644 and then Is_Entity_Name
(Name
(Expression
(Rhs
)))
646 Is_Abstract_Subprogram
(Entity
(Name
(Expression
(Rhs
))))
649 ("call to abstract function must be dispatching",
650 Name
(Expression
(Rhs
)));
654 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
655 -- apply an implicit conversion of the rhs to that type to force
656 -- appropriate static and run-time accessibility checks. This applies
657 -- as well to anonymous access-to-subprogram types that are component
658 -- subtypes or formal parameters.
660 if Ada_Version
>= Ada_2005
and then Is_Access_Type
(T1
) then
661 if Is_Local_Anonymous_Access
(T1
)
662 or else Ekind
(T2
) = E_Anonymous_Access_Subprogram_Type
664 -- Handle assignment to an Ada 2012 stand-alone object
665 -- of an anonymous access type.
667 or else (Ekind
(T1
) = E_Anonymous_Access_Type
668 and then Nkind
(Associated_Node_For_Itype
(T1
)) =
669 N_Object_Declaration
)
672 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
673 Analyze_And_Resolve
(Rhs
, T1
);
677 -- Ada 2005 (AI-231): Assignment to not null variable
679 if Ada_Version
>= Ada_2005
680 and then Can_Never_Be_Null
(T1
)
681 and then not Assignment_OK
(Lhs
)
683 -- Case where we know the right hand side is null
685 if Known_Null
(Rhs
) then
686 Apply_Compile_Time_Constraint_Error
689 "(Ada 2005) null not allowed in null-excluding objects??",
690 Reason
=> CE_Null_Not_Allowed
);
692 -- We still mark this as a possible modification, that's necessary
693 -- to reset Is_True_Constant, and desirable for xref purposes.
695 Note_Possible_Modification
(Lhs
, Sure
=> True);
696 Ghost_Mode
:= Save_Ghost_Mode
;
699 -- If we know the right hand side is non-null, then we convert to the
700 -- target type, since we don't need a run time check in that case.
702 elsif not Can_Never_Be_Null
(T2
) then
703 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
704 Analyze_And_Resolve
(Rhs
, T1
);
708 if Is_Scalar_Type
(T1
) then
709 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
711 -- For array types, verify that lengths match. If the right hand side
712 -- is a function call that has been inlined, the assignment has been
713 -- rewritten as a block, and the constraint check will be applied to the
714 -- assignment within the block.
716 elsif Is_Array_Type
(T1
)
717 and then (Nkind
(Rhs
) /= N_Type_Conversion
718 or else Is_Constrained
(Etype
(Rhs
)))
719 and then (Nkind
(Rhs
) /= N_Function_Call
720 or else Nkind
(N
) /= N_Block_Statement
)
722 -- Assignment verifies that the length of the Lsh and Rhs are equal,
723 -- but of course the indexes do not have to match. If the right-hand
724 -- side is a type conversion to an unconstrained type, a length check
725 -- is performed on the expression itself during expansion. In rare
726 -- cases, the redundant length check is computed on an index type
727 -- with a different representation, triggering incorrect code in the
730 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
733 -- Discriminant checks are applied in the course of expansion
738 -- Note: modifications of the Lhs may only be recorded after
739 -- checks have been applied.
741 Note_Possible_Modification
(Lhs
, Sure
=> True);
743 -- ??? a real accessibility check is needed when ???
745 -- Post warning for redundant assignment or variable to itself
747 if Warn_On_Redundant_Constructs
749 -- We only warn for source constructs
751 and then Comes_From_Source
(N
)
753 -- Where the object is the same on both sides
755 and then Same_Object
(Lhs
, Original_Node
(Rhs
))
757 -- But exclude the case where the right side was an operation that
758 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
759 -- don't want to warn in such a case, since it is reasonable to write
760 -- such expressions especially when K is defined symbolically in some
763 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
765 if Nkind
(Lhs
) in N_Has_Entity
then
766 Error_Msg_NE
-- CODEFIX
767 ("?r?useless assignment of & to itself!", N
, Entity
(Lhs
));
769 Error_Msg_N
-- CODEFIX
770 ("?r?useless assignment of object to itself!", N
);
774 -- Check for non-allowed composite assignment
776 if not Support_Composite_Assign_On_Target
777 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
778 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
780 Error_Msg_CRT
("composite assignment", N
);
783 -- Check elaboration warning for left side if not in elab code
785 if not In_Subprogram_Or_Concurrent_Unit
then
786 Check_Elab_Assign
(Lhs
);
789 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
790 -- assignment is a source assignment in the extended main source unit.
791 -- We are not interested in any reference information outside this
792 -- context, or in compiler generated assignment statements.
794 if Comes_From_Source
(N
)
795 and then In_Extended_Main_Source_Unit
(Lhs
)
797 Set_Referenced_Modified
(Lhs
, Out_Param
=> False);
800 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type
801 -- to one of its ancestors) requires an invariant check. Apply check
802 -- only if expression comes from source, otherwise it will be applied
803 -- when value is assigned to source entity.
805 if Nkind
(Lhs
) = N_Type_Conversion
806 and then Has_Invariants
(Etype
(Expression
(Lhs
)))
807 and then Comes_From_Source
(Expression
(Lhs
))
809 Insert_After
(N
, Make_Invariant_Call
(Expression
(Lhs
)));
812 -- Final step. If left side is an entity, then we may be able to reset
813 -- the current tracked values to new safe values. We only have something
814 -- to do if the left side is an entity name, and expansion has not
815 -- modified the node into something other than an assignment, and of
816 -- course we only capture values if it is safe to do so.
818 if Is_Entity_Name
(Lhs
)
819 and then Nkind
(N
) = N_Assignment_Statement
822 Ent
: constant Entity_Id
:= Entity
(Lhs
);
825 if Safe_To_Capture_Value
(N
, Ent
) then
827 -- If simple variable on left side, warn if this assignment
828 -- blots out another one (rendering it useless). We only do
829 -- this for source assignments, otherwise we can generate bogus
830 -- warnings when an assignment is rewritten as another
831 -- assignment, and gets tied up with itself.
833 -- There may have been a previous reference to a component of
834 -- the variable, which in general removes the Last_Assignment
835 -- field of the variable to indicate a relevant use of the
836 -- previous assignment. However, if the assignment is to a
837 -- subcomponent the reference may not have registered, because
838 -- it is not possible to determine whether the context is an
839 -- assignment. In those cases we generate a Deferred_Reference,
840 -- to be used at the end of compilation to generate the right
841 -- kind of reference, and we suppress a potential warning for
842 -- a useless assignment, which might be premature. This may
843 -- lose a warning in rare cases, but seems preferable to a
844 -- misleading warning.
846 if Warn_On_Modified_Unread
847 and then Is_Assignable
(Ent
)
848 and then Comes_From_Source
(N
)
849 and then In_Extended_Main_Source_Unit
(Ent
)
850 and then not Has_Deferred_Reference
(Ent
)
852 Warn_On_Useless_Assignment
(Ent
, N
);
855 -- If we are assigning an access type and the left side is an
856 -- entity, then make sure that the Is_Known_[Non_]Null flags
857 -- properly reflect the state of the entity after assignment.
859 if Is_Access_Type
(T1
) then
860 if Known_Non_Null
(Rhs
) then
861 Set_Is_Known_Non_Null
(Ent
, True);
863 elsif Known_Null
(Rhs
)
864 and then not Can_Never_Be_Null
(Ent
)
866 Set_Is_Known_Null
(Ent
, True);
869 Set_Is_Known_Null
(Ent
, False);
871 if not Can_Never_Be_Null
(Ent
) then
872 Set_Is_Known_Non_Null
(Ent
, False);
876 -- For discrete types, we may be able to set the current value
877 -- if the value is known at compile time.
879 elsif Is_Discrete_Type
(T1
)
880 and then Compile_Time_Known_Value
(Rhs
)
882 Set_Current_Value
(Ent
, Rhs
);
884 Set_Current_Value
(Ent
, Empty
);
887 -- If not safe to capture values, kill them
895 -- If assigning to an object in whole or in part, note location of
896 -- assignment in case no one references value. We only do this for
897 -- source assignments, otherwise we can generate bogus warnings when an
898 -- assignment is rewritten as another assignment, and gets tied up with
902 Ent
: constant Entity_Id
:= Get_Enclosing_Object
(Lhs
);
905 and then Safe_To_Capture_Value
(N
, Ent
)
906 and then Nkind
(N
) = N_Assignment_Statement
907 and then Warn_On_Modified_Unread
908 and then Is_Assignable
(Ent
)
909 and then Comes_From_Source
(N
)
910 and then In_Extended_Main_Source_Unit
(Ent
)
912 Set_Last_Assignment
(Ent
, Lhs
);
916 Analyze_Dimension
(N
);
917 Ghost_Mode
:= Save_Ghost_Mode
;
918 end Analyze_Assignment
;
920 -----------------------------
921 -- Analyze_Block_Statement --
922 -----------------------------
924 procedure Analyze_Block_Statement
(N
: Node_Id
) is
925 procedure Install_Return_Entities
(Scop
: Entity_Id
);
926 -- Install all entities of return statement scope Scop in the visibility
927 -- chain except for the return object since its entity is reused in a
930 -----------------------------
931 -- Install_Return_Entities --
932 -----------------------------
934 procedure Install_Return_Entities
(Scop
: Entity_Id
) is
938 Id
:= First_Entity
(Scop
);
939 while Present
(Id
) loop
941 -- Do not install the return object
943 if not Ekind_In
(Id
, E_Constant
, E_Variable
)
944 or else not Is_Return_Object
(Id
)
951 end Install_Return_Entities
;
953 -- Local constants and variables
955 Decls
: constant List_Id
:= Declarations
(N
);
956 Id
: constant Node_Id
:= Identifier
(N
);
957 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
959 Is_BIP_Return_Statement
: Boolean;
961 -- Start of processing for Analyze_Block_Statement
964 -- In SPARK mode, we reject block statements. Note that the case of
965 -- block statements generated by the expander is fine.
967 if Nkind
(Original_Node
(N
)) = N_Block_Statement
then
968 Check_SPARK_05_Restriction
("block statement is not allowed", N
);
971 -- If no handled statement sequence is present, things are really messed
972 -- up, and we just return immediately (defence against previous errors).
975 Check_Error_Detected
;
979 -- Detect whether the block is actually a rewritten return statement of
980 -- a build-in-place function.
982 Is_BIP_Return_Statement
:=
984 and then Present
(Entity
(Id
))
985 and then Ekind
(Entity
(Id
)) = E_Return_Statement
986 and then Is_Build_In_Place_Function
987 (Return_Applies_To
(Entity
(Id
)));
989 -- Normal processing with HSS present
992 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
993 Ent
: Entity_Id
:= Empty
;
996 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
997 -- Recursively save value of this global, will be restored on exit
1000 -- Initialize unblocked exit count for statements of begin block
1001 -- plus one for each exception handler that is present.
1003 Unblocked_Exit_Count
:= 1;
1005 if Present
(EH
) then
1006 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
1009 -- If a label is present analyze it and mark it as referenced
1011 if Present
(Id
) then
1015 -- An error defense. If we have an identifier, but no entity, then
1016 -- something is wrong. If previous errors, then just remove the
1017 -- identifier and continue, otherwise raise an exception.
1020 Check_Error_Detected
;
1021 Set_Identifier
(N
, Empty
);
1024 Set_Ekind
(Ent
, E_Block
);
1025 Generate_Reference
(Ent
, N
, ' ');
1026 Generate_Definition
(Ent
);
1028 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
1029 Set_Label_Construct
(Parent
(Ent
), N
);
1034 -- If no entity set, create a label entity
1037 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
1038 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
1039 Set_Parent
(Ent
, N
);
1042 Set_Etype
(Ent
, Standard_Void_Type
);
1043 Set_Block_Node
(Ent
, Identifier
(N
));
1046 -- The block served as an extended return statement. Ensure that any
1047 -- entities created during the analysis and expansion of the return
1048 -- object declaration are once again visible.
1050 if Is_BIP_Return_Statement
then
1051 Install_Return_Entities
(Ent
);
1054 if Present
(Decls
) then
1055 Analyze_Declarations
(Decls
);
1057 Inspect_Deferred_Constant_Completion
(Decls
);
1061 Process_End_Label
(HSS
, 'e', Ent
);
1063 -- If exception handlers are present, then we indicate that enclosing
1064 -- scopes contain a block with handlers. We only need to mark non-
1067 if Present
(EH
) then
1070 Set_Has_Nested_Block_With_Handler
(S
);
1071 exit when Is_Overloadable
(S
)
1072 or else Ekind
(S
) = E_Package
1073 or else Is_Generic_Unit
(S
);
1078 Check_References
(Ent
);
1081 if Unblocked_Exit_Count
= 0 then
1082 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1083 Check_Unreachable_Code
(N
);
1085 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1088 end Analyze_Block_Statement
;
1090 --------------------------------
1091 -- Analyze_Compound_Statement --
1092 --------------------------------
1094 procedure Analyze_Compound_Statement
(N
: Node_Id
) is
1096 Analyze_List
(Actions
(N
));
1097 end Analyze_Compound_Statement
;
1099 ----------------------------
1100 -- Analyze_Case_Statement --
1101 ----------------------------
1103 procedure Analyze_Case_Statement
(N
: Node_Id
) is
1105 Exp_Type
: Entity_Id
;
1106 Exp_Btype
: Entity_Id
;
1109 Others_Present
: Boolean;
1110 -- Indicates if Others was present
1112 pragma Warnings
(Off
, Last_Choice
);
1113 -- Don't care about assigned value
1115 Statements_Analyzed
: Boolean := False;
1116 -- Set True if at least some statement sequences get analyzed. If False
1117 -- on exit, means we had a serious error that prevented full analysis of
1118 -- the case statement, and as a result it is not a good idea to output
1119 -- warning messages about unreachable code.
1121 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1122 -- Recursively save value of this global, will be restored on exit
1124 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1125 -- Error routine invoked by the generic instantiation below when the
1126 -- case statement has a non static choice.
1128 procedure Process_Statements
(Alternative
: Node_Id
);
1129 -- Analyzes the statements associated with a case alternative. Needed
1130 -- by instantiation below.
1132 package Analyze_Case_Choices
is new
1133 Generic_Analyze_Choices
1134 (Process_Associated_Node
=> Process_Statements
);
1135 use Analyze_Case_Choices
;
1136 -- Instantiation of the generic choice analysis package
1138 package Check_Case_Choices
is new
1139 Generic_Check_Choices
1140 (Process_Empty_Choice
=> No_OP
,
1141 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1142 Process_Associated_Node
=> No_OP
);
1143 use Check_Case_Choices
;
1144 -- Instantiation of the generic choice processing package
1146 -----------------------------
1147 -- Non_Static_Choice_Error --
1148 -----------------------------
1150 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1152 Flag_Non_Static_Expr
1153 ("choice given in case statement is not static!", Choice
);
1154 end Non_Static_Choice_Error
;
1156 ------------------------
1157 -- Process_Statements --
1158 ------------------------
1160 procedure Process_Statements
(Alternative
: Node_Id
) is
1161 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
1165 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1166 Statements_Analyzed
:= True;
1168 -- An interesting optimization. If the case statement expression
1169 -- is a simple entity, then we can set the current value within an
1170 -- alternative if the alternative has one possible value.
1174 -- when 2 | 3 => beta
1175 -- when others => gamma
1177 -- Here we know that N is initially 1 within alpha, but for beta and
1178 -- gamma, we do not know anything more about the initial value.
1180 if Is_Entity_Name
(Exp
) then
1181 Ent
:= Entity
(Exp
);
1183 if Ekind_In
(Ent
, E_Variable
,
1187 if List_Length
(Choices
) = 1
1188 and then Nkind
(First
(Choices
)) in N_Subexpr
1189 and then Compile_Time_Known_Value
(First
(Choices
))
1191 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
1194 Analyze_Statements
(Statements
(Alternative
));
1196 -- After analyzing the case, set the current value to empty
1197 -- since we won't know what it is for the next alternative
1198 -- (unless reset by this same circuit), or after the case.
1200 Set_Current_Value
(Entity
(Exp
), Empty
);
1205 -- Case where expression is not an entity name of a variable
1207 Analyze_Statements
(Statements
(Alternative
));
1208 end Process_Statements
;
1210 -- Start of processing for Analyze_Case_Statement
1213 Unblocked_Exit_Count
:= 0;
1214 Exp
:= Expression
(N
);
1217 -- The expression must be of any discrete type. In rare cases, the
1218 -- expander constructs a case statement whose expression has a private
1219 -- type whose full view is discrete. This can happen when generating
1220 -- a stream operation for a variant type after the type is frozen,
1221 -- when the partial of view of the type of the discriminant is private.
1222 -- In that case, use the full view to analyze case alternatives.
1224 if not Is_Overloaded
(Exp
)
1225 and then not Comes_From_Source
(N
)
1226 and then Is_Private_Type
(Etype
(Exp
))
1227 and then Present
(Full_View
(Etype
(Exp
)))
1228 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
1230 Resolve
(Exp
, Etype
(Exp
));
1231 Exp_Type
:= Full_View
(Etype
(Exp
));
1234 Analyze_And_Resolve
(Exp
, Any_Discrete
);
1235 Exp_Type
:= Etype
(Exp
);
1238 Check_Unset_Reference
(Exp
);
1239 Exp_Btype
:= Base_Type
(Exp_Type
);
1241 -- The expression must be of a discrete type which must be determinable
1242 -- independently of the context in which the expression occurs, but
1243 -- using the fact that the expression must be of a discrete type.
1244 -- Moreover, the type this expression must not be a character literal
1245 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1247 -- If error already reported by Resolve, nothing more to do
1249 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1252 elsif Exp_Btype
= Any_Character
then
1254 ("character literal as case expression is ambiguous", Exp
);
1257 elsif Ada_Version
= Ada_83
1258 and then (Is_Generic_Type
(Exp_Btype
)
1259 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
1262 ("(Ada 83) case expression cannot be of a generic type", Exp
);
1266 -- If the case expression is a formal object of mode in out, then treat
1267 -- it as having a nonstatic subtype by forcing use of the base type
1268 -- (which has to get passed to Check_Case_Choices below). Also use base
1269 -- type when the case expression is parenthesized.
1271 if Paren_Count
(Exp
) > 0
1272 or else (Is_Entity_Name
(Exp
)
1273 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
1275 Exp_Type
:= Exp_Btype
;
1278 -- Call instantiated procedures to analyzwe and check discrete choices
1280 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1281 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1283 -- Case statement with single OTHERS alternative not allowed in SPARK
1285 if Others_Present
and then List_Length
(Alternatives
(N
)) = 1 then
1286 Check_SPARK_05_Restriction
1287 ("OTHERS as unique case alternative is not allowed", N
);
1290 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1291 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
1294 -- If all our exits were blocked by unconditional transfers of control,
1295 -- then the entire CASE statement acts as an unconditional transfer of
1296 -- control, so treat it like one, and check unreachable code. Skip this
1297 -- test if we had serious errors preventing any statement analysis.
1299 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
1300 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1301 Check_Unreachable_Code
(N
);
1303 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1306 -- If the expander is active it will detect the case of a statically
1307 -- determined single alternative and remove warnings for the case, but
1308 -- if we are not doing expansion, that circuit won't be active. Here we
1309 -- duplicate the effect of removing warnings in the same way, so that
1310 -- we will get the same set of warnings in -gnatc mode.
1312 if not Expander_Active
1313 and then Compile_Time_Known_Value
(Expression
(N
))
1314 and then Serious_Errors_Detected
= 0
1317 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
1321 Alt
:= First
(Alternatives
(N
));
1322 while Present
(Alt
) loop
1323 if Alt
/= Chosen
then
1324 Remove_Warning_Messages
(Statements
(Alt
));
1331 end Analyze_Case_Statement
;
1333 ----------------------------
1334 -- Analyze_Exit_Statement --
1335 ----------------------------
1337 -- If the exit includes a name, it must be the name of a currently open
1338 -- loop. Otherwise there must be an innermost open loop on the stack, to
1339 -- which the statement implicitly refers.
1341 -- Additionally, in SPARK mode:
1343 -- The exit can only name the closest enclosing loop;
1345 -- An exit with a when clause must be directly contained in a loop;
1347 -- An exit without a when clause must be directly contained in an
1348 -- if-statement with no elsif or else, which is itself directly contained
1349 -- in a loop. The exit must be the last statement in the if-statement.
1351 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
1352 Target
: constant Node_Id
:= Name
(N
);
1353 Cond
: constant Node_Id
:= Condition
(N
);
1354 Scope_Id
: Entity_Id
;
1360 Check_Unreachable_Code
(N
);
1363 if Present
(Target
) then
1365 U_Name
:= Entity
(Target
);
1367 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
1368 Error_Msg_N
("invalid loop name in exit statement", N
);
1372 if Has_Loop_In_Inner_Open_Scopes
(U_Name
) then
1373 Check_SPARK_05_Restriction
1374 ("exit label must name the closest enclosing loop", N
);
1377 Set_Has_Exit
(U_Name
);
1384 for J
in reverse 0 .. Scope_Stack
.Last
loop
1385 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1386 Kind
:= Ekind
(Scope_Id
);
1388 if Kind
= E_Loop
and then (No
(Target
) or else Scope_Id
= U_Name
) then
1389 Set_Has_Exit
(Scope_Id
);
1392 elsif Kind
= E_Block
1393 or else Kind
= E_Loop
1394 or else Kind
= E_Return_Statement
1400 ("cannot exit from program unit or accept statement", N
);
1405 -- Verify that if present the condition is a Boolean expression
1407 if Present
(Cond
) then
1408 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1409 Check_Unset_Reference
(Cond
);
1412 -- In SPARK mode, verify that the exit statement respects the SPARK
1415 if Present
(Cond
) then
1416 if Nkind
(Parent
(N
)) /= N_Loop_Statement
then
1417 Check_SPARK_05_Restriction
1418 ("exit with when clause must be directly in loop", N
);
1422 if Nkind
(Parent
(N
)) /= N_If_Statement
then
1423 if Nkind
(Parent
(N
)) = N_Elsif_Part
then
1424 Check_SPARK_05_Restriction
1425 ("exit must be in IF without ELSIF", N
);
1427 Check_SPARK_05_Restriction
("exit must be directly in IF", N
);
1430 elsif Nkind
(Parent
(Parent
(N
))) /= N_Loop_Statement
then
1431 Check_SPARK_05_Restriction
1432 ("exit must be in IF directly in loop", N
);
1434 -- First test the presence of ELSE, so that an exit in an ELSE leads
1435 -- to an error mentioning the ELSE.
1437 elsif Present
(Else_Statements
(Parent
(N
))) then
1438 Check_SPARK_05_Restriction
("exit must be in IF without ELSE", N
);
1440 -- An exit in an ELSIF does not reach here, as it would have been
1441 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1443 elsif Present
(Elsif_Parts
(Parent
(N
))) then
1444 Check_SPARK_05_Restriction
("exit must be in IF without ELSIF", N
);
1448 -- Chain exit statement to associated loop entity
1450 Set_Next_Exit_Statement
(N
, First_Exit_Statement
(Scope_Id
));
1451 Set_First_Exit_Statement
(Scope_Id
, N
);
1453 -- Since the exit may take us out of a loop, any previous assignment
1454 -- statement is not useless, so clear last assignment indications. It
1455 -- is OK to keep other current values, since if the exit statement
1456 -- does not exit, then the current values are still valid.
1458 Kill_Current_Values
(Last_Assignment_Only
=> True);
1459 end Analyze_Exit_Statement
;
1461 ----------------------------
1462 -- Analyze_Goto_Statement --
1463 ----------------------------
1465 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
1466 Label
: constant Node_Id
:= Name
(N
);
1467 Scope_Id
: Entity_Id
;
1468 Label_Scope
: Entity_Id
;
1469 Label_Ent
: Entity_Id
;
1472 Check_SPARK_05_Restriction
("goto statement is not allowed", N
);
1474 -- Actual semantic checks
1476 Check_Unreachable_Code
(N
);
1477 Kill_Current_Values
(Last_Assignment_Only
=> True);
1480 Label_Ent
:= Entity
(Label
);
1482 -- Ignore previous error
1484 if Label_Ent
= Any_Id
then
1485 Check_Error_Detected
;
1488 -- We just have a label as the target of a goto
1490 elsif Ekind
(Label_Ent
) /= E_Label
then
1491 Error_Msg_N
("target of goto statement must be a label", Label
);
1494 -- Check that the target of the goto is reachable according to Ada
1495 -- scoping rules. Note: the special gotos we generate for optimizing
1496 -- local handling of exceptions would violate these rules, but we mark
1497 -- such gotos as analyzed when built, so this code is never entered.
1499 elsif not Reachable
(Label_Ent
) then
1500 Error_Msg_N
("target of goto statement is not reachable", Label
);
1504 -- Here if goto passes initial validity checks
1506 Label_Scope
:= Enclosing_Scope
(Label_Ent
);
1508 for J
in reverse 0 .. Scope_Stack
.Last
loop
1509 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1511 if Label_Scope
= Scope_Id
1512 or else not Ekind_In
(Scope_Id
, E_Block
, E_Loop
, E_Return_Statement
)
1514 if Scope_Id
/= Label_Scope
then
1516 ("cannot exit from program unit or accept statement", N
);
1523 raise Program_Error
;
1524 end Analyze_Goto_Statement
;
1526 --------------------------
1527 -- Analyze_If_Statement --
1528 --------------------------
1530 -- A special complication arises in the analysis of if statements
1532 -- The expander has circuitry to completely delete code that it can tell
1533 -- will not be executed (as a result of compile time known conditions). In
1534 -- the analyzer, we ensure that code that will be deleted in this manner
1535 -- is analyzed but not expanded. This is obviously more efficient, but
1536 -- more significantly, difficulties arise if code is expanded and then
1537 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1538 -- generated in deleted code must be frozen from start, because the nodes
1539 -- on which they depend will not be available at the freeze point.
1541 procedure Analyze_If_Statement
(N
: Node_Id
) is
1544 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1545 -- Recursively save value of this global, will be restored on exit
1547 Save_In_Deleted_Code
: Boolean;
1549 Del
: Boolean := False;
1550 -- This flag gets set True if a True condition has been found, which
1551 -- means that remaining ELSE/ELSIF parts are deleted.
1553 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1554 -- This is applied to either the N_If_Statement node itself or to an
1555 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1556 -- statements associated with it.
1558 -----------------------
1559 -- Analyze_Cond_Then --
1560 -----------------------
1562 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1563 Cond
: constant Node_Id
:= Condition
(Cnode
);
1564 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1567 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1568 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1569 Check_Unset_Reference
(Cond
);
1570 Set_Current_Value_Condition
(Cnode
);
1572 -- If already deleting, then just analyze then statements
1575 Analyze_Statements
(Tstm
);
1577 -- Compile time known value, not deleting yet
1579 elsif Compile_Time_Known_Value
(Cond
) then
1580 Save_In_Deleted_Code
:= In_Deleted_Code
;
1582 -- If condition is True, then analyze the THEN statements and set
1583 -- no expansion for ELSE and ELSIF parts.
1585 if Is_True
(Expr_Value
(Cond
)) then
1586 Analyze_Statements
(Tstm
);
1588 Expander_Mode_Save_And_Set
(False);
1589 In_Deleted_Code
:= True;
1591 -- If condition is False, analyze THEN with expansion off
1593 else -- Is_False (Expr_Value (Cond))
1594 Expander_Mode_Save_And_Set
(False);
1595 In_Deleted_Code
:= True;
1596 Analyze_Statements
(Tstm
);
1597 Expander_Mode_Restore
;
1598 In_Deleted_Code
:= Save_In_Deleted_Code
;
1601 -- Not known at compile time, not deleting, normal analysis
1604 Analyze_Statements
(Tstm
);
1606 end Analyze_Cond_Then
;
1608 -- Start of processing for Analyze_If_Statement
1611 -- Initialize exit count for else statements. If there is no else part,
1612 -- this count will stay non-zero reflecting the fact that the uncovered
1613 -- else case is an unblocked exit.
1615 Unblocked_Exit_Count
:= 1;
1616 Analyze_Cond_Then
(N
);
1618 -- Now to analyze the elsif parts if any are present
1620 if Present
(Elsif_Parts
(N
)) then
1621 E
:= First
(Elsif_Parts
(N
));
1622 while Present
(E
) loop
1623 Analyze_Cond_Then
(E
);
1628 if Present
(Else_Statements
(N
)) then
1629 Analyze_Statements
(Else_Statements
(N
));
1632 -- If all our exits were blocked by unconditional transfers of control,
1633 -- then the entire IF statement acts as an unconditional transfer of
1634 -- control, so treat it like one, and check unreachable code.
1636 if Unblocked_Exit_Count
= 0 then
1637 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1638 Check_Unreachable_Code
(N
);
1640 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1644 Expander_Mode_Restore
;
1645 In_Deleted_Code
:= Save_In_Deleted_Code
;
1648 if not Expander_Active
1649 and then Compile_Time_Known_Value
(Condition
(N
))
1650 and then Serious_Errors_Detected
= 0
1652 if Is_True
(Expr_Value
(Condition
(N
))) then
1653 Remove_Warning_Messages
(Else_Statements
(N
));
1655 if Present
(Elsif_Parts
(N
)) then
1656 E
:= First
(Elsif_Parts
(N
));
1657 while Present
(E
) loop
1658 Remove_Warning_Messages
(Then_Statements
(E
));
1664 Remove_Warning_Messages
(Then_Statements
(N
));
1668 -- Warn on redundant if statement that has no effect
1670 -- Note, we could also check empty ELSIF parts ???
1672 if Warn_On_Redundant_Constructs
1674 -- If statement must be from source
1676 and then Comes_From_Source
(N
)
1678 -- Condition must not have obvious side effect
1680 and then Has_No_Obvious_Side_Effects
(Condition
(N
))
1682 -- No elsif parts of else part
1684 and then No
(Elsif_Parts
(N
))
1685 and then No
(Else_Statements
(N
))
1687 -- Then must be a single null statement
1689 and then List_Length
(Then_Statements
(N
)) = 1
1691 -- Go to original node, since we may have rewritten something as
1692 -- a null statement (e.g. a case we could figure the outcome of).
1695 T
: constant Node_Id
:= First
(Then_Statements
(N
));
1696 S
: constant Node_Id
:= Original_Node
(T
);
1699 if Comes_From_Source
(S
) and then Nkind
(S
) = N_Null_Statement
then
1700 Error_Msg_N
("if statement has no effect?r?", N
);
1704 end Analyze_If_Statement
;
1706 ----------------------------------------
1707 -- Analyze_Implicit_Label_Declaration --
1708 ----------------------------------------
1710 -- An implicit label declaration is generated in the innermost enclosing
1711 -- declarative part. This is done for labels, and block and loop names.
1713 -- Note: any changes in this routine may need to be reflected in
1714 -- Analyze_Label_Entity.
1716 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1717 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1720 Set_Ekind
(Id
, E_Label
);
1721 Set_Etype
(Id
, Standard_Void_Type
);
1722 Set_Enclosing_Scope
(Id
, Current_Scope
);
1723 end Analyze_Implicit_Label_Declaration
;
1725 ------------------------------
1726 -- Analyze_Iteration_Scheme --
1727 ------------------------------
1729 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1731 Iter_Spec
: Node_Id
;
1732 Loop_Spec
: Node_Id
;
1735 -- For an infinite loop, there is no iteration scheme
1741 Cond
:= Condition
(N
);
1742 Iter_Spec
:= Iterator_Specification
(N
);
1743 Loop_Spec
:= Loop_Parameter_Specification
(N
);
1745 if Present
(Cond
) then
1746 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1747 Check_Unset_Reference
(Cond
);
1748 Set_Current_Value_Condition
(N
);
1750 elsif Present
(Iter_Spec
) then
1751 Analyze_Iterator_Specification
(Iter_Spec
);
1754 Analyze_Loop_Parameter_Specification
(Loop_Spec
);
1756 end Analyze_Iteration_Scheme
;
1758 ------------------------------------
1759 -- Analyze_Iterator_Specification --
1760 ------------------------------------
1762 procedure Analyze_Iterator_Specification
(N
: Node_Id
) is
1763 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
);
1764 -- For an iteration over a container, if the loop carries the Reverse
1765 -- indicator, verify that the container type has an Iterate aspect that
1766 -- implements the reversible iterator interface.
1768 function Get_Cursor_Type
(Typ
: Entity_Id
) return Entity_Id
;
1769 -- For containers with Iterator and related aspects, the cursor is
1770 -- obtained by locating an entity with the proper name in the scope
1773 -----------------------------
1774 -- Check_Reverse_Iteration --
1775 -----------------------------
1777 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
) is
1779 if Reverse_Present
(N
)
1780 and then not Is_Array_Type
(Typ
)
1781 and then not Is_Reversible_Iterator
(Typ
)
1784 ("container type does not support reverse iteration", N
, Typ
);
1786 end Check_Reverse_Iteration
;
1788 ---------------------
1789 -- Get_Cursor_Type --
1790 ---------------------
1792 function Get_Cursor_Type
(Typ
: Entity_Id
) return Entity_Id
is
1796 -- If iterator type is derived, the cursor is declared in the scope
1797 -- of the parent type.
1799 if Is_Derived_Type
(Typ
) then
1800 Ent
:= First_Entity
(Scope
(Etype
(Typ
)));
1802 Ent
:= First_Entity
(Scope
(Typ
));
1805 while Present
(Ent
) loop
1806 exit when Chars
(Ent
) = Name_Cursor
;
1814 -- The cursor is the target of generated assignments in the
1815 -- loop, and cannot have a limited type.
1817 if Is_Limited_Type
(Etype
(Ent
)) then
1818 Error_Msg_N
("cursor type cannot be limited", N
);
1822 end Get_Cursor_Type
;
1826 Def_Id
: constant Node_Id
:= Defining_Identifier
(N
);
1827 Iter_Name
: constant Node_Id
:= Name
(N
);
1828 Loc
: constant Source_Ptr
:= Sloc
(N
);
1829 Subt
: constant Node_Id
:= Subtype_Indication
(N
);
1834 -- Start of processing for Analyze_Iterator_Specification
1837 Enter_Name
(Def_Id
);
1839 -- AI12-0151 specifies that when the subtype indication is present, it
1840 -- must statically match the type of the array or container element.
1841 -- To simplify this check, we introduce a subtype declaration with the
1842 -- given subtype indication when it carries a constraint, and rewrite
1843 -- the original as a reference to the created subtype entity.
1845 if Present
(Subt
) then
1846 if Nkind
(Subt
) = N_Subtype_Indication
then
1848 S
: constant Entity_Id
:= Make_Temporary
(Sloc
(Subt
), 'S');
1849 Decl
: constant Node_Id
:=
1850 Make_Subtype_Declaration
(Loc
,
1851 Defining_Identifier
=> S
,
1852 Subtype_Indication
=> New_Copy_Tree
(Subt
));
1854 Insert_Before
(Parent
(Parent
(N
)), Decl
);
1856 Rewrite
(Subt
, New_Occurrence_Of
(S
, Sloc
(Subt
)));
1862 -- Save entity of subtype indication for subsequent check
1864 Bas
:= Entity
(Subt
);
1867 Preanalyze_Range
(Iter_Name
);
1869 -- Set the kind of the loop variable, which is not visible within
1870 -- the iterator name.
1872 Set_Ekind
(Def_Id
, E_Variable
);
1874 -- Provide a link between the iterator variable and the container, for
1875 -- subsequent use in cross-reference and modification information.
1877 if Of_Present
(N
) then
1878 Set_Related_Expression
(Def_Id
, Iter_Name
);
1880 -- For a container, the iterator is specified through the aspect
1882 if not Is_Array_Type
(Etype
(Iter_Name
)) then
1884 Iterator
: constant Entity_Id
:=
1885 Find_Value_Of_Aspect
1886 (Etype
(Iter_Name
), Aspect_Default_Iterator
);
1892 if No
(Iterator
) then
1893 null; -- error reported below.
1895 elsif not Is_Overloaded
(Iterator
) then
1896 Check_Reverse_Iteration
(Etype
(Iterator
));
1898 -- If Iterator is overloaded, use reversible iterator if
1899 -- one is available.
1901 elsif Is_Overloaded
(Iterator
) then
1902 Get_First_Interp
(Iterator
, I
, It
);
1903 while Present
(It
.Nam
) loop
1904 if Ekind
(It
.Nam
) = E_Function
1905 and then Is_Reversible_Iterator
(Etype
(It
.Nam
))
1907 Set_Etype
(Iterator
, It
.Typ
);
1908 Set_Entity
(Iterator
, It
.Nam
);
1912 Get_Next_Interp
(I
, It
);
1915 Check_Reverse_Iteration
(Etype
(Iterator
));
1921 -- If the domain of iteration is an expression, create a declaration for
1922 -- it, so that finalization actions are introduced outside of the loop.
1923 -- The declaration must be a renaming because the body of the loop may
1924 -- assign to elements.
1926 if not Is_Entity_Name
(Iter_Name
)
1928 -- When the context is a quantified expression, the renaming
1929 -- declaration is delayed until the expansion phase if we are
1932 and then (Nkind
(Parent
(N
)) /= N_Quantified_Expression
1933 or else Operating_Mode
= Check_Semantics
)
1935 -- Do not perform this expansion in SPARK mode, since the formal
1936 -- verification directly deals with the source form of the iterator.
1937 -- Ditto for ASIS and when expansion is disabled, where the temporary
1938 -- may hide the transformation of a selected component into a prefixed
1939 -- function call, and references need to see the original expression.
1941 and then not GNATprove_Mode
1942 and then Expander_Active
1945 Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Iter_Name
);
1951 -- If the domain of iteration is an array component that depends
1952 -- on a discriminant, create actual subtype for it. Pre-analysis
1953 -- does not generate the actual subtype of a selected component.
1955 if Nkind
(Iter_Name
) = N_Selected_Component
1956 and then Is_Array_Type
(Etype
(Iter_Name
))
1959 Build_Actual_Subtype_Of_Component
1960 (Etype
(Selector_Name
(Iter_Name
)), Iter_Name
);
1961 Insert_Action
(N
, Act_S
);
1963 if Present
(Act_S
) then
1964 Typ
:= Defining_Identifier
(Act_S
);
1966 Typ
:= Etype
(Iter_Name
);
1970 Typ
:= Etype
(Iter_Name
);
1972 -- Verify that the expression produces an iterator
1974 if not Of_Present
(N
) and then not Is_Iterator
(Typ
)
1975 and then not Is_Array_Type
(Typ
)
1976 and then No
(Find_Aspect
(Typ
, Aspect_Iterable
))
1979 ("expect object that implements iterator interface",
1984 -- Protect against malformed iterator
1986 if Typ
= Any_Type
then
1987 Error_Msg_N
("invalid expression in loop iterator", Iter_Name
);
1991 if not Of_Present
(N
) then
1992 Check_Reverse_Iteration
(Typ
);
1995 -- The name in the renaming declaration may be a function call.
1996 -- Indicate that it does not come from source, to suppress
1997 -- spurious warnings on renamings of parameterless functions,
1998 -- a common enough idiom in user-defined iterators.
2001 Make_Object_Renaming_Declaration
(Loc
,
2002 Defining_Identifier
=> Id
,
2003 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
2005 New_Copy_Tree
(Iter_Name
, New_Sloc
=> Loc
));
2007 Insert_Actions
(Parent
(Parent
(N
)), New_List
(Decl
));
2008 Rewrite
(Name
(N
), New_Occurrence_Of
(Id
, Loc
));
2009 Set_Etype
(Id
, Typ
);
2010 Set_Etype
(Name
(N
), Typ
);
2013 -- Container is an entity or an array with uncontrolled components, or
2014 -- else it is a container iterator given by a function call, typically
2015 -- called Iterate in the case of predefined containers, even though
2016 -- Iterate is not a reserved name. What matters is that the return type
2017 -- of the function is an iterator type.
2019 elsif Is_Entity_Name
(Iter_Name
) then
2020 Analyze
(Iter_Name
);
2022 if Nkind
(Iter_Name
) = N_Function_Call
then
2024 C
: constant Node_Id
:= Name
(Iter_Name
);
2029 if not Is_Overloaded
(Iter_Name
) then
2030 Resolve
(Iter_Name
, Etype
(C
));
2033 Get_First_Interp
(C
, I
, It
);
2034 while It
.Typ
/= Empty
loop
2035 if Reverse_Present
(N
) then
2036 if Is_Reversible_Iterator
(It
.Typ
) then
2037 Resolve
(Iter_Name
, It
.Typ
);
2041 elsif Is_Iterator
(It
.Typ
) then
2042 Resolve
(Iter_Name
, It
.Typ
);
2046 Get_Next_Interp
(I
, It
);
2051 -- Domain of iteration is not overloaded
2054 Resolve
(Iter_Name
, Etype
(Iter_Name
));
2057 if not Of_Present
(N
) then
2058 Check_Reverse_Iteration
(Etype
(Iter_Name
));
2062 -- Get base type of container, for proper retrieval of Cursor type
2063 -- and primitive operations.
2065 Typ
:= Base_Type
(Etype
(Iter_Name
));
2067 if Is_Array_Type
(Typ
) then
2068 if Of_Present
(N
) then
2069 Set_Etype
(Def_Id
, Component_Type
(Typ
));
2071 -- The loop variable is aliased if the array components are
2074 Set_Is_Aliased
(Def_Id
, Has_Aliased_Components
(Typ
));
2076 -- AI12-0047 stipulates that the domain (array or container)
2077 -- cannot be a component that depends on a discriminant if the
2078 -- enclosing object is mutable, to prevent a modification of the
2079 -- dowmain of iteration in the course of an iteration.
2081 -- If the object is an expression it has been captured in a
2082 -- temporary, so examine original node.
2084 if Nkind
(Original_Node
(Iter_Name
)) = N_Selected_Component
2085 and then Is_Dependent_Component_Of_Mutable_Object
2086 (Original_Node
(Iter_Name
))
2089 ("iterable name cannot be a discriminant-dependent "
2090 & "component of a mutable object", N
);
2095 (Base_Type
(Bas
) /= Base_Type
(Component_Type
(Typ
))
2097 not Subtypes_Statically_Match
(Bas
, Component_Type
(Typ
)))
2100 ("subtype indication does not match component type", Subt
);
2103 -- Here we have a missing Range attribute
2107 ("missing Range attribute in iteration over an array", N
);
2109 -- In Ada 2012 mode, this may be an attempt at an iterator
2111 if Ada_Version
>= Ada_2012
then
2113 ("\if& is meant to designate an element of the array, use OF",
2117 -- Prevent cascaded errors
2119 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
2120 Set_Etype
(Def_Id
, Etype
(First_Index
(Typ
)));
2123 -- Check for type error in iterator
2125 elsif Typ
= Any_Type
then
2128 -- Iteration over a container
2131 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
2132 Error_Msg_Ada_2012_Feature
("container iterator", Sloc
(N
));
2136 if Of_Present
(N
) then
2137 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2139 Elt
: constant Entity_Id
:=
2140 Get_Iterable_Type_Primitive
(Typ
, Name_Element
);
2144 ("missing Element primitive for iteration", N
);
2146 Set_Etype
(Def_Id
, Etype
(Elt
));
2150 -- For a predefined container, The type of the loop variable is
2151 -- the Iterator_Element aspect of the container type.
2155 Element
: constant Entity_Id
:=
2156 Find_Value_Of_Aspect
2157 (Typ
, Aspect_Iterator_Element
);
2158 Iterator
: constant Entity_Id
:=
2159 Find_Value_Of_Aspect
2160 (Typ
, Aspect_Default_Iterator
);
2161 Orig_Iter_Name
: constant Node_Id
:=
2162 Original_Node
(Iter_Name
);
2163 Cursor_Type
: Entity_Id
;
2166 if No
(Element
) then
2167 Error_Msg_NE
("cannot iterate over&", N
, Typ
);
2171 Set_Etype
(Def_Id
, Entity
(Element
));
2172 Cursor_Type
:= Get_Cursor_Type
(Typ
);
2173 pragma Assert
(Present
(Cursor_Type
));
2175 -- If subtype indication was given, verify that it covers
2176 -- the element type of the container.
2179 and then (not Covers
(Bas
, Etype
(Def_Id
))
2180 or else not Subtypes_Statically_Match
2181 (Bas
, Etype
(Def_Id
)))
2184 ("subtype indication does not match element type",
2188 -- If the container has a variable indexing aspect, the
2189 -- element is a variable and is modifiable in the loop.
2191 if Has_Aspect
(Typ
, Aspect_Variable_Indexing
) then
2192 Set_Ekind
(Def_Id
, E_Variable
);
2195 -- If the container is a constant, iterating over it
2196 -- requires a Constant_Indexing operation.
2198 if not Is_Variable
(Iter_Name
)
2199 and then not Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
2202 ("iteration over constant container require "
2203 & "constant_indexing aspect", N
);
2205 -- The Iterate function may have an in_out parameter,
2206 -- and a constant container is thus illegal.
2208 elsif Present
(Iterator
)
2209 and then Ekind
(Entity
(Iterator
)) = E_Function
2210 and then Ekind
(First_Formal
(Entity
(Iterator
))) /=
2212 and then not Is_Variable
(Iter_Name
)
2214 Error_Msg_N
("variable container expected", N
);
2217 -- Detect a case where the iterator denotes a component
2218 -- of a mutable object which depends on a discriminant.
2219 -- Note that the iterator may denote a function call in
2220 -- qualified form, in which case this check should not
2223 if Nkind
(Orig_Iter_Name
) = N_Selected_Component
2225 Present
(Entity
(Selector_Name
(Orig_Iter_Name
)))
2227 (Entity
(Selector_Name
(Orig_Iter_Name
)),
2230 and then Is_Dependent_Component_Of_Mutable_Object
2234 ("container cannot be a discriminant-dependent "
2235 & "component of a mutable object", N
);
2241 -- IN iterator, domain is a range, or a call to Iterate function
2244 -- For an iteration of the form IN, the name must denote an
2245 -- iterator, typically the result of a call to Iterate. Give a
2246 -- useful error message when the name is a container by itself.
2248 -- The type may be a formal container type, which has to have
2249 -- an Iterable aspect detailing the required primitives.
2251 if Is_Entity_Name
(Original_Node
(Name
(N
)))
2252 and then not Is_Iterator
(Typ
)
2254 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2257 elsif not Has_Aspect
(Typ
, Aspect_Iterator_Element
) then
2259 ("cannot iterate over&", Name
(N
), Typ
);
2262 ("name must be an iterator, not a container", Name
(N
));
2265 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2269 ("\to iterate directly over the elements of a container, "
2270 & "write `of &`", Name
(N
), Original_Node
(Name
(N
)));
2272 -- No point in continuing analysis of iterator spec
2278 -- If the name is a call (typically prefixed) to some Iterate
2279 -- function, it has been rewritten as an object declaration.
2280 -- If that object is a selected component, verify that it is not
2281 -- a component of an unconstrained mutable object.
2283 if Nkind
(Iter_Name
) = N_Identifier
2284 or else (not Expander_Active
and Comes_From_Source
(Iter_Name
))
2287 Orig_Node
: constant Node_Id
:= Original_Node
(Iter_Name
);
2288 Iter_Kind
: constant Node_Kind
:= Nkind
(Orig_Node
);
2292 if Iter_Kind
= N_Selected_Component
then
2293 Obj
:= Prefix
(Orig_Node
);
2295 elsif Iter_Kind
= N_Function_Call
then
2296 Obj
:= First_Actual
(Orig_Node
);
2298 -- If neither, the name comes from source
2304 if Nkind
(Obj
) = N_Selected_Component
2305 and then Is_Dependent_Component_Of_Mutable_Object
(Obj
)
2308 ("container cannot be a discriminant-dependent "
2309 & "component of a mutable object", N
);
2314 -- The result type of Iterate function is the classwide type of
2315 -- the interface parent. We need the specific Cursor type defined
2316 -- in the container package. We obtain it by name for a predefined
2317 -- container, or through the Iterable aspect for a formal one.
2319 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2322 (Parent
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)),
2326 Set_Etype
(Def_Id
, Get_Cursor_Type
(Typ
));
2327 Check_Reverse_Iteration
(Etype
(Iter_Name
));
2332 end Analyze_Iterator_Specification
;
2338 -- Note: the semantic work required for analyzing labels (setting them as
2339 -- reachable) was done in a prepass through the statements in the block,
2340 -- so that forward gotos would be properly handled. See Analyze_Statements
2341 -- for further details. The only processing required here is to deal with
2342 -- optimizations that depend on an assumption of sequential control flow,
2343 -- since of course the occurrence of a label breaks this assumption.
2345 procedure Analyze_Label
(N
: Node_Id
) is
2346 pragma Warnings
(Off
, N
);
2348 Kill_Current_Values
;
2351 --------------------------
2352 -- Analyze_Label_Entity --
2353 --------------------------
2355 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
2357 Set_Ekind
(E
, E_Label
);
2358 Set_Etype
(E
, Standard_Void_Type
);
2359 Set_Enclosing_Scope
(E
, Current_Scope
);
2360 Set_Reachable
(E
, True);
2361 end Analyze_Label_Entity
;
2363 ------------------------------------------
2364 -- Analyze_Loop_Parameter_Specification --
2365 ------------------------------------------
2367 procedure Analyze_Loop_Parameter_Specification
(N
: Node_Id
) is
2368 Loop_Nod
: constant Node_Id
:= Parent
(Parent
(N
));
2370 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
2371 -- If the bounds are given by a 'Range reference on a function call
2372 -- that returns a controlled array, introduce an explicit declaration
2373 -- to capture the bounds, so that the function result can be finalized
2374 -- in timely fashion.
2376 procedure Check_Predicate_Use
(T
: Entity_Id
);
2377 -- Diagnose Attempt to iterate through non-static predicate. Note that
2378 -- a type with inherited predicates may have both static and dynamic
2379 -- forms. In this case it is not sufficent to check the static predicate
2380 -- function only, look for a dynamic predicate aspect as well.
2382 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean;
2383 -- N is the node for an arbitrary construct. This function searches the
2384 -- construct N to see if any expressions within it contain function
2385 -- calls that use the secondary stack, returning True if any such call
2386 -- is found, and False otherwise.
2388 procedure Process_Bounds
(R
: Node_Id
);
2389 -- If the iteration is given by a range, create temporaries and
2390 -- assignment statements block to capture the bounds and perform
2391 -- required finalization actions in case a bound includes a function
2392 -- call that uses the temporary stack. We first pre-analyze a copy of
2393 -- the range in order to determine the expected type, and analyze and
2394 -- resolve the original bounds.
2396 --------------------------------------
2397 -- Check_Controlled_Array_Attribute --
2398 --------------------------------------
2400 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
2402 if Nkind
(DS
) = N_Attribute_Reference
2403 and then Is_Entity_Name
(Prefix
(DS
))
2404 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
2405 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
2407 Is_Controlled
(Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
2408 and then Expander_Active
2411 Loc
: constant Source_Ptr
:= Sloc
(N
);
2412 Arr
: constant Entity_Id
:= Etype
(Entity
(Prefix
(DS
)));
2413 Indx
: constant Entity_Id
:=
2414 Base_Type
(Etype
(First_Index
(Arr
)));
2415 Subt
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
2420 Make_Subtype_Declaration
(Loc
,
2421 Defining_Identifier
=> Subt
,
2422 Subtype_Indication
=>
2423 Make_Subtype_Indication
(Loc
,
2424 Subtype_Mark
=> New_Occurrence_Of
(Indx
, Loc
),
2426 Make_Range_Constraint
(Loc
, Relocate_Node
(DS
))));
2427 Insert_Before
(Loop_Nod
, Decl
);
2431 Make_Attribute_Reference
(Loc
,
2432 Prefix
=> New_Occurrence_Of
(Subt
, Loc
),
2433 Attribute_Name
=> Attribute_Name
(DS
)));
2438 end Check_Controlled_Array_Attribute
;
2440 -------------------------
2441 -- Check_Predicate_Use --
2442 -------------------------
2444 procedure Check_Predicate_Use
(T
: Entity_Id
) is
2446 -- A predicated subtype is illegal in loops and related constructs
2447 -- if the predicate is not static, or if it is a non-static subtype
2448 -- of a statically predicated subtype.
2450 if Is_Discrete_Type
(T
)
2451 and then Has_Predicates
(T
)
2452 and then (not Has_Static_Predicate
(T
)
2453 or else not Is_Static_Subtype
(T
)
2454 or else Has_Dynamic_Predicate_Aspect
(T
))
2456 -- Seems a confusing message for the case of a static predicate
2457 -- with a non-static subtype???
2459 Bad_Predicated_Subtype_Use
2460 ("cannot use subtype& with non-static predicate for loop "
2461 & "iteration", Discrete_Subtype_Definition
(N
),
2462 T
, Suggest_Static
=> True);
2464 elsif Inside_A_Generic
and then Is_Generic_Formal
(T
) then
2465 Set_No_Dynamic_Predicate_On_Actual
(T
);
2467 end Check_Predicate_Use
;
2469 ------------------------------------
2470 -- Has_Call_Using_Secondary_Stack --
2471 ------------------------------------
2473 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean is
2475 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
2476 -- Check if N is a function call which uses the secondary stack
2482 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
2485 Return_Typ
: Entity_Id
;
2488 if Nkind
(N
) = N_Function_Call
then
2491 -- Call using access to subprogram with explicit dereference
2493 if Nkind
(Nam
) = N_Explicit_Dereference
then
2494 Subp
:= Etype
(Nam
);
2496 -- Call using a selected component notation or Ada 2005 object
2497 -- operation notation
2499 elsif Nkind
(Nam
) = N_Selected_Component
then
2500 Subp
:= Entity
(Selector_Name
(Nam
));
2505 Subp
:= Entity
(Nam
);
2508 Return_Typ
:= Etype
(Subp
);
2510 if Is_Composite_Type
(Return_Typ
)
2511 and then not Is_Constrained
(Return_Typ
)
2515 elsif Sec_Stack_Needed_For_Return
(Subp
) then
2520 -- Continue traversing the tree
2525 function Check_Calls
is new Traverse_Func
(Check_Call
);
2527 -- Start of processing for Has_Call_Using_Secondary_Stack
2530 return Check_Calls
(N
) = Abandon
;
2531 end Has_Call_Using_Secondary_Stack
;
2533 --------------------
2534 -- Process_Bounds --
2535 --------------------
2537 procedure Process_Bounds
(R
: Node_Id
) is
2538 Loc
: constant Source_Ptr
:= Sloc
(N
);
2541 (Original_Bound
: Node_Id
;
2542 Analyzed_Bound
: Node_Id
;
2543 Typ
: Entity_Id
) return Node_Id
;
2544 -- Capture value of bound and return captured value
2551 (Original_Bound
: Node_Id
;
2552 Analyzed_Bound
: Node_Id
;
2553 Typ
: Entity_Id
) return Node_Id
2560 -- If the bound is a constant or an object, no need for a separate
2561 -- declaration. If the bound is the result of previous expansion
2562 -- it is already analyzed and should not be modified. Note that
2563 -- the Bound will be resolved later, if needed, as part of the
2564 -- call to Make_Index (literal bounds may need to be resolved to
2567 if Analyzed
(Original_Bound
) then
2568 return Original_Bound
;
2570 elsif Nkind_In
(Analyzed_Bound
, N_Integer_Literal
,
2571 N_Character_Literal
)
2572 or else Is_Entity_Name
(Analyzed_Bound
)
2574 Analyze_And_Resolve
(Original_Bound
, Typ
);
2575 return Original_Bound
;
2578 -- Normally, the best approach is simply to generate a constant
2579 -- declaration that captures the bound. However, there is a nasty
2580 -- case where this is wrong. If the bound is complex, and has a
2581 -- possible use of the secondary stack, we need to generate a
2582 -- separate assignment statement to ensure the creation of a block
2583 -- which will release the secondary stack.
2585 -- We prefer the constant declaration, since it leaves us with a
2586 -- proper trace of the value, useful in optimizations that get rid
2587 -- of junk range checks.
2589 if not Has_Call_Using_Secondary_Stack
(Analyzed_Bound
) then
2590 Analyze_And_Resolve
(Original_Bound
, Typ
);
2592 -- Ensure that the bound is valid. This check should not be
2593 -- generated when the range belongs to a quantified expression
2594 -- as the construct is still not expanded into its final form.
2596 if Nkind
(Parent
(R
)) /= N_Loop_Parameter_Specification
2597 or else Nkind
(Parent
(Parent
(R
))) /= N_Quantified_Expression
2599 Ensure_Valid
(Original_Bound
);
2602 Force_Evaluation
(Original_Bound
);
2603 return Original_Bound
;
2606 Id
:= Make_Temporary
(Loc
, 'R', Original_Bound
);
2608 -- Here we make a declaration with a separate assignment
2609 -- statement, and insert before loop header.
2612 Make_Object_Declaration
(Loc
,
2613 Defining_Identifier
=> Id
,
2614 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
2617 Make_Assignment_Statement
(Loc
,
2618 Name
=> New_Occurrence_Of
(Id
, Loc
),
2619 Expression
=> Relocate_Node
(Original_Bound
));
2621 Insert_Actions
(Loop_Nod
, New_List
(Decl
, Assign
));
2623 -- Now that this temporary variable is initialized we decorate it
2624 -- as safe-to-reevaluate to inform to the backend that no further
2625 -- asignment will be issued and hence it can be handled as side
2626 -- effect free. Note that this decoration must be done when the
2627 -- assignment has been analyzed because otherwise it will be
2628 -- rejected (see Analyze_Assignment).
2630 Set_Is_Safe_To_Reevaluate
(Id
);
2632 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
2634 if Nkind
(Assign
) = N_Assignment_Statement
then
2635 return Expression
(Assign
);
2637 return Original_Bound
;
2641 Hi
: constant Node_Id
:= High_Bound
(R
);
2642 Lo
: constant Node_Id
:= Low_Bound
(R
);
2643 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
2648 -- Start of processing for Process_Bounds
2651 Set_Parent
(R_Copy
, Parent
(R
));
2652 Preanalyze_Range
(R_Copy
);
2653 Typ
:= Etype
(R_Copy
);
2655 -- If the type of the discrete range is Universal_Integer, then the
2656 -- bound's type must be resolved to Integer, and any object used to
2657 -- hold the bound must also have type Integer, unless the literal
2658 -- bounds are constant-folded expressions with a user-defined type.
2660 if Typ
= Universal_Integer
then
2661 if Nkind
(Lo
) = N_Integer_Literal
2662 and then Present
(Etype
(Lo
))
2663 and then Scope
(Etype
(Lo
)) /= Standard_Standard
2667 elsif Nkind
(Hi
) = N_Integer_Literal
2668 and then Present
(Etype
(Hi
))
2669 and then Scope
(Etype
(Hi
)) /= Standard_Standard
2674 Typ
:= Standard_Integer
;
2680 New_Lo
:= One_Bound
(Lo
, Low_Bound
(R_Copy
), Typ
);
2681 New_Hi
:= One_Bound
(Hi
, High_Bound
(R_Copy
), Typ
);
2683 -- Propagate staticness to loop range itself, in case the
2684 -- corresponding subtype is static.
2686 if New_Lo
/= Lo
and then Is_OK_Static_Expression
(New_Lo
) then
2687 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo
));
2690 if New_Hi
/= Hi
and then Is_OK_Static_Expression
(New_Hi
) then
2691 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi
));
2697 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(N
);
2698 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2702 -- Start of processing for Analyze_Loop_Parameter_Specification
2707 -- We always consider the loop variable to be referenced, since the loop
2708 -- may be used just for counting purposes.
2710 Generate_Reference
(Id
, N
, ' ');
2712 -- Check for the case of loop variable hiding a local variable (used
2713 -- later on to give a nice warning if the hidden variable is never
2717 H
: constant Entity_Id
:= Homonym
(Id
);
2720 and then Ekind
(H
) = E_Variable
2721 and then Is_Discrete_Type
(Etype
(H
))
2722 and then Enclosing_Dynamic_Scope
(H
) = Enclosing_Dynamic_Scope
(Id
)
2724 Set_Hiding_Loop_Variable
(H
, Id
);
2728 -- Loop parameter specification must include subtype mark in SPARK
2730 if Nkind
(DS
) = N_Range
then
2731 Check_SPARK_05_Restriction
2732 ("loop parameter specification must include subtype mark", N
);
2735 -- Analyze the subtype definition and create temporaries for the bounds.
2736 -- Do not evaluate the range when preanalyzing a quantified expression
2737 -- because bounds expressed as function calls with side effects will be
2738 -- incorrectly replicated.
2740 if Nkind
(DS
) = N_Range
2741 and then Expander_Active
2742 and then Nkind
(Parent
(N
)) /= N_Quantified_Expression
2744 Process_Bounds
(DS
);
2746 -- Either the expander not active or the range of iteration is a subtype
2747 -- indication, an entity, or a function call that yields an aggregate or
2751 DS_Copy
:= New_Copy_Tree
(DS
);
2752 Set_Parent
(DS_Copy
, Parent
(DS
));
2753 Preanalyze_Range
(DS_Copy
);
2755 -- Ada 2012: If the domain of iteration is:
2757 -- a) a function call,
2758 -- b) an identifier that is not a type,
2759 -- c) an attribute reference 'Old (within a postcondition),
2760 -- d) an unchecked conversion or a qualified expression with
2761 -- the proper iterator type.
2763 -- then it is an iteration over a container. It was classified as
2764 -- a loop specification by the parser, and must be rewritten now
2765 -- to activate container iteration. The last case will occur within
2766 -- an expanded inlined call, where the expansion wraps an actual in
2767 -- an unchecked conversion when needed. The expression of the
2768 -- conversion is always an object.
2770 if Nkind
(DS_Copy
) = N_Function_Call
2772 or else (Is_Entity_Name
(DS_Copy
)
2773 and then not Is_Type
(Entity
(DS_Copy
)))
2775 or else (Nkind
(DS_Copy
) = N_Attribute_Reference
2776 and then Nam_In
(Attribute_Name
(DS_Copy
),
2777 Name_Loop_Entry
, Name_Old
))
2779 or else Has_Aspect
(Etype
(DS_Copy
), Aspect_Iterable
)
2781 or else Nkind
(DS_Copy
) = N_Unchecked_Type_Conversion
2782 or else (Nkind
(DS_Copy
) = N_Qualified_Expression
2783 and then Is_Iterator
(Etype
(DS_Copy
)))
2785 -- This is an iterator specification. Rewrite it as such and
2786 -- analyze it to capture function calls that may require
2787 -- finalization actions.
2790 I_Spec
: constant Node_Id
:=
2791 Make_Iterator_Specification
(Sloc
(N
),
2792 Defining_Identifier
=> Relocate_Node
(Id
),
2794 Subtype_Indication
=> Empty
,
2795 Reverse_Present
=> Reverse_Present
(N
));
2796 Scheme
: constant Node_Id
:= Parent
(N
);
2799 Set_Iterator_Specification
(Scheme
, I_Spec
);
2800 Set_Loop_Parameter_Specification
(Scheme
, Empty
);
2801 Analyze_Iterator_Specification
(I_Spec
);
2803 -- In a generic context, analyze the original domain of
2804 -- iteration, for name capture.
2806 if not Expander_Active
then
2810 -- Set kind of loop parameter, which may be used in the
2811 -- subsequent analysis of the condition in a quantified
2814 Set_Ekind
(Id
, E_Loop_Parameter
);
2818 -- Domain of iteration is not a function call, and is side-effect
2822 -- A quantified expression that appears in a pre/post condition
2823 -- is pre-analyzed several times. If the range is given by an
2824 -- attribute reference it is rewritten as a range, and this is
2825 -- done even with expansion disabled. If the type is already set
2826 -- do not reanalyze, because a range with static bounds may be
2827 -- typed Integer by default.
2829 if Nkind
(Parent
(N
)) = N_Quantified_Expression
2830 and then Present
(Etype
(DS
))
2843 -- Some additional checks if we are iterating through a type
2845 if Is_Entity_Name
(DS
)
2846 and then Present
(Entity
(DS
))
2847 and then Is_Type
(Entity
(DS
))
2849 -- The subtype indication may denote the completion of an incomplete
2850 -- type declaration.
2852 if Ekind
(Entity
(DS
)) = E_Incomplete_Type
then
2853 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
2854 Set_Etype
(DS
, Entity
(DS
));
2857 Check_Predicate_Use
(Entity
(DS
));
2860 -- Error if not discrete type
2862 if not Is_Discrete_Type
(Etype
(DS
)) then
2863 Wrong_Type
(DS
, Any_Discrete
);
2864 Set_Etype
(DS
, Any_Type
);
2867 Check_Controlled_Array_Attribute
(DS
);
2869 if Nkind
(DS
) = N_Subtype_Indication
then
2870 Check_Predicate_Use
(Entity
(Subtype_Mark
(DS
)));
2873 Make_Index
(DS
, N
, In_Iter_Schm
=> True);
2874 Set_Ekind
(Id
, E_Loop_Parameter
);
2876 -- A quantified expression which appears in a pre- or post-condition may
2877 -- be analyzed multiple times. The analysis of the range creates several
2878 -- itypes which reside in different scopes depending on whether the pre-
2879 -- or post-condition has been expanded. Update the type of the loop
2880 -- variable to reflect the proper itype at each stage of analysis.
2883 or else Etype
(Id
) = Any_Type
2885 (Present
(Etype
(Id
))
2886 and then Is_Itype
(Etype
(Id
))
2887 and then Nkind
(Parent
(Loop_Nod
)) = N_Expression_With_Actions
2888 and then Nkind
(Original_Node
(Parent
(Loop_Nod
))) =
2889 N_Quantified_Expression
)
2891 Set_Etype
(Id
, Etype
(DS
));
2894 -- Treat a range as an implicit reference to the type, to inhibit
2895 -- spurious warnings.
2897 Generate_Reference
(Base_Type
(Etype
(DS
)), N
, ' ');
2898 Set_Is_Known_Valid
(Id
, True);
2900 -- The loop is not a declarative part, so the loop variable must be
2901 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2902 -- expression because the freeze node will not be inserted into the
2903 -- tree due to flag Is_Spec_Expression being set.
2905 if Nkind
(Parent
(N
)) /= N_Quantified_Expression
then
2907 Flist
: constant List_Id
:= Freeze_Entity
(Id
, N
);
2909 if Is_Non_Empty_List
(Flist
) then
2910 Insert_Actions
(N
, Flist
);
2915 -- Case where we have a range or a subtype, get type bounds
2917 if Nkind_In
(DS
, N_Range
, N_Subtype_Indication
)
2918 and then not Error_Posted
(DS
)
2919 and then Etype
(DS
) /= Any_Type
2920 and then Is_Discrete_Type
(Etype
(DS
))
2927 if Nkind
(DS
) = N_Range
then
2928 L
:= Low_Bound
(DS
);
2929 H
:= High_Bound
(DS
);
2932 Type_Low_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2934 Type_High_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2937 -- Check for null or possibly null range and issue warning. We
2938 -- suppress such messages in generic templates and instances,
2939 -- because in practice they tend to be dubious in these cases. The
2940 -- check applies as well to rewritten array element loops where a
2941 -- null range may be detected statically.
2943 if Compile_Time_Compare
(L
, H
, Assume_Valid
=> True) = GT
then
2945 -- Suppress the warning if inside a generic template or
2946 -- instance, since in practice they tend to be dubious in these
2947 -- cases since they can result from intended parameterization.
2949 if not Inside_A_Generic
and then not In_Instance
then
2951 -- Specialize msg if invalid values could make the loop
2952 -- non-null after all.
2954 if Compile_Time_Compare
2955 (L
, H
, Assume_Valid
=> False) = GT
2957 -- Since we know the range of the loop is null, set the
2958 -- appropriate flag to remove the loop entirely during
2961 Set_Is_Null_Loop
(Loop_Nod
);
2963 if Comes_From_Source
(N
) then
2965 ("??loop range is null, loop will not execute", DS
);
2968 -- Here is where the loop could execute because of
2969 -- invalid values, so issue appropriate message and in
2970 -- this case we do not set the Is_Null_Loop flag since
2971 -- the loop may execute.
2973 elsif Comes_From_Source
(N
) then
2975 ("??loop range may be null, loop may not execute",
2978 ("??can only execute if invalid values are present",
2983 -- In either case, suppress warnings in the body of the loop,
2984 -- since it is likely that these warnings will be inappropriate
2985 -- if the loop never actually executes, which is likely.
2987 Set_Suppress_Loop_Warnings
(Loop_Nod
);
2989 -- The other case for a warning is a reverse loop where the
2990 -- upper bound is the integer literal zero or one, and the
2991 -- lower bound may exceed this value.
2993 -- For example, we have
2995 -- for J in reverse N .. 1 loop
2997 -- In practice, this is very likely to be a case of reversing
2998 -- the bounds incorrectly in the range.
3000 elsif Reverse_Present
(N
)
3001 and then Nkind
(Original_Node
(H
)) = N_Integer_Literal
3003 (Intval
(Original_Node
(H
)) = Uint_0
3005 Intval
(Original_Node
(H
)) = Uint_1
)
3007 -- Lower bound may in fact be known and known not to exceed
3008 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3010 if Compile_Time_Known_Value
(L
)
3011 and then Expr_Value
(L
) <= Expr_Value
(H
)
3015 -- Otherwise warning is warranted
3018 Error_Msg_N
("??loop range may be null", DS
);
3019 Error_Msg_N
("\??bounds may be wrong way round", DS
);
3023 -- Check if either bound is known to be outside the range of the
3024 -- loop parameter type, this is e.g. the case of a loop from
3025 -- 20..X where the type is 1..19.
3027 -- Such a loop is dubious since either it raises CE or it executes
3028 -- zero times, and that cannot be useful!
3030 if Etype
(DS
) /= Any_Type
3031 and then not Error_Posted
(DS
)
3032 and then Nkind
(DS
) = N_Subtype_Indication
3033 and then Nkind
(Constraint
(DS
)) = N_Range_Constraint
3036 LLo
: constant Node_Id
:=
3037 Low_Bound
(Range_Expression
(Constraint
(DS
)));
3038 LHi
: constant Node_Id
:=
3039 High_Bound
(Range_Expression
(Constraint
(DS
)));
3041 Bad_Bound
: Node_Id
:= Empty
;
3042 -- Suspicious loop bound
3045 -- At this stage L, H are the bounds of the type, and LLo
3046 -- Lhi are the low bound and high bound of the loop.
3048 if Compile_Time_Compare
(LLo
, L
, Assume_Valid
=> True) = LT
3050 Compile_Time_Compare
(LLo
, H
, Assume_Valid
=> True) = GT
3055 if Compile_Time_Compare
(LHi
, L
, Assume_Valid
=> True) = LT
3057 Compile_Time_Compare
(LHi
, H
, Assume_Valid
=> True) = GT
3062 if Present
(Bad_Bound
) then
3064 ("suspicious loop bound out of range of "
3065 & "loop subtype??", Bad_Bound
);
3067 ("\loop executes zero times or raises "
3068 & "Constraint_Error??", Bad_Bound
);
3073 -- This declare block is about warnings, if we get an exception while
3074 -- testing for warnings, we simply abandon the attempt silently. This
3075 -- most likely occurs as the result of a previous error, but might
3076 -- just be an obscure case we have missed. In either case, not giving
3077 -- the warning is perfectly acceptable.
3080 when others => null;
3084 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3085 -- This check is relevant only when SPARK_Mode is on as it is not a
3086 -- standard Ada legality check.
3088 if SPARK_Mode
= On
and then Is_Effectively_Volatile
(Id
) then
3089 Error_Msg_N
("loop parameter cannot be volatile", Id
);
3091 end Analyze_Loop_Parameter_Specification
;
3093 ----------------------------
3094 -- Analyze_Loop_Statement --
3095 ----------------------------
3097 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
3099 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean;
3100 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3101 -- container iteration.
3103 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean;
3104 -- Determine whether loop statement N has been wrapped in a block to
3105 -- capture finalization actions that may be generated for container
3106 -- iterators. Prevents infinite recursion when block is analyzed.
3107 -- Routine is a noop if loop is single statement within source block.
3109 ---------------------------
3110 -- Is_Container_Iterator --
3111 ---------------------------
3113 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean is
3122 elsif Present
(Condition
(Iter
)) then
3125 -- for Def_Id in [reverse] Name loop
3126 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3128 elsif Present
(Iterator_Specification
(Iter
)) then
3130 Nam
: constant Node_Id
:= Name
(Iterator_Specification
(Iter
));
3134 Nam_Copy
:= New_Copy_Tree
(Nam
);
3135 Set_Parent
(Nam_Copy
, Parent
(Nam
));
3136 Preanalyze_Range
(Nam_Copy
);
3138 -- The only two options here are iteration over a container or
3141 return not Is_Array_Type
(Etype
(Nam_Copy
));
3144 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3148 LP
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
3149 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
3153 DS_Copy
:= New_Copy_Tree
(DS
);
3154 Set_Parent
(DS_Copy
, Parent
(DS
));
3155 Preanalyze_Range
(DS_Copy
);
3157 -- Check for a call to Iterate () or an expression with
3158 -- an iterator type.
3161 (Nkind
(DS_Copy
) = N_Function_Call
3162 and then Needs_Finalization
(Etype
(DS_Copy
)))
3163 or else Is_Iterator
(Etype
(DS_Copy
));
3166 end Is_Container_Iterator
;
3168 -------------------------
3169 -- Is_Wrapped_In_Block --
3170 -------------------------
3172 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean is
3178 -- Check if current scope is a block that is not a transient block.
3180 if Ekind
(Current_Scope
) /= E_Block
3181 or else No
(Block_Node
(Current_Scope
))
3187 Handled_Statement_Sequence
(Parent
(Block_Node
(Current_Scope
)));
3189 -- Skip leading pragmas that may be introduced for invariant and
3190 -- predicate checks.
3192 Stat
:= First
(Statements
(HSS
));
3193 while Present
(Stat
) and then Nkind
(Stat
) = N_Pragma
loop
3194 Stat
:= Next
(Stat
);
3197 return Stat
= N
and then No
(Next
(Stat
));
3199 end Is_Wrapped_In_Block
;
3201 -- Local declarations
3203 Id
: constant Node_Id
:= Identifier
(N
);
3204 Iter
: constant Node_Id
:= Iteration_Scheme
(N
);
3205 Loc
: constant Source_Ptr
:= Sloc
(N
);
3209 -- Start of processing for Analyze_Loop_Statement
3212 if Present
(Id
) then
3214 -- Make name visible, e.g. for use in exit statements. Loop labels
3215 -- are always considered to be referenced.
3220 -- Guard against serious error (typically, a scope mismatch when
3221 -- semantic analysis is requested) by creating loop entity to
3222 -- continue analysis.
3225 if Total_Errors_Detected
/= 0 then
3226 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3228 raise Program_Error
;
3231 -- Verify that the loop name is hot hidden by an unrelated
3232 -- declaration in an inner scope.
3234 elsif Ekind
(Ent
) /= E_Label
and then Ekind
(Ent
) /= E_Loop
then
3235 Error_Msg_Sloc
:= Sloc
(Ent
);
3236 Error_Msg_N
("implicit label declaration for & is hidden#", Id
);
3238 if Present
(Homonym
(Ent
))
3239 and then Ekind
(Homonym
(Ent
)) = E_Label
3241 Set_Entity
(Id
, Ent
);
3242 Set_Ekind
(Ent
, E_Loop
);
3246 Generate_Reference
(Ent
, N
, ' ');
3247 Generate_Definition
(Ent
);
3249 -- If we found a label, mark its type. If not, ignore it, since it
3250 -- means we have a conflicting declaration, which would already
3251 -- have been diagnosed at declaration time. Set Label_Construct
3252 -- of the implicit label declaration, which is not created by the
3253 -- parser for generic units.
3255 if Ekind
(Ent
) = E_Label
then
3256 Set_Ekind
(Ent
, E_Loop
);
3258 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
3259 Set_Label_Construct
(Parent
(Ent
), N
);
3264 -- Case of no identifier present. Create one and attach it to the
3265 -- loop statement for use as a scope and as a reference for later
3266 -- expansions. Indicate that the label does not come from source,
3267 -- and attach it to the loop statement so it is part of the tree,
3268 -- even without a full declaration.
3271 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3272 Set_Etype
(Ent
, Standard_Void_Type
);
3273 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Loc
));
3274 Set_Parent
(Ent
, N
);
3275 Set_Has_Created_Identifier
(N
);
3278 -- Iteration over a container in Ada 2012 involves the creation of a
3279 -- controlled iterator object. Wrap the loop in a block to ensure the
3280 -- timely finalization of the iterator and release of container locks.
3281 -- The same applies to the use of secondary stack when obtaining an
3284 if Ada_Version
>= Ada_2012
3285 and then Is_Container_Iterator
(Iter
)
3286 and then not Is_Wrapped_In_Block
(N
)
3289 Block_Nod
: Node_Id
;
3290 Block_Id
: Entity_Id
;
3294 Make_Block_Statement
(Loc
,
3295 Declarations
=> New_List
,
3296 Handled_Statement_Sequence
=>
3297 Make_Handled_Sequence_Of_Statements
(Loc
,
3298 Statements
=> New_List
(Relocate_Node
(N
))));
3300 Add_Block_Identifier
(Block_Nod
, Block_Id
);
3302 -- The expansion of iterator loops generates an iterator in order
3303 -- to traverse the elements of a container:
3305 -- Iter : <iterator type> := Iterate (Container)'reference;
3307 -- The iterator is controlled and returned on the secondary stack.
3308 -- The analysis of the call to Iterate establishes a transient
3309 -- scope to deal with the secondary stack management, but never
3310 -- really creates a physical block as this would kill the iterator
3311 -- too early (see Wrap_Transient_Declaration). To address this
3312 -- case, mark the generated block as needing secondary stack
3315 Set_Uses_Sec_Stack
(Block_Id
);
3317 Rewrite
(N
, Block_Nod
);
3323 -- Kill current values on entry to loop, since statements in the body of
3324 -- the loop may have been executed before the loop is entered. Similarly
3325 -- we kill values after the loop, since we do not know that the body of
3326 -- the loop was executed.
3328 Kill_Current_Values
;
3330 Analyze_Iteration_Scheme
(Iter
);
3332 -- Check for following case which merits a warning if the type E of is
3333 -- a multi-dimensional array (and no explicit subscript ranges present).
3339 and then Present
(Loop_Parameter_Specification
(Iter
))
3342 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
3343 DSD
: constant Node_Id
:=
3344 Original_Node
(Discrete_Subtype_Definition
(LPS
));
3346 if Nkind
(DSD
) = N_Attribute_Reference
3347 and then Attribute_Name
(DSD
) = Name_Range
3348 and then No
(Expressions
(DSD
))
3351 Typ
: constant Entity_Id
:= Etype
(Prefix
(DSD
));
3353 if Is_Array_Type
(Typ
)
3354 and then Number_Dimensions
(Typ
) > 1
3355 and then Nkind
(Parent
(N
)) = N_Loop_Statement
3356 and then Present
(Iteration_Scheme
(Parent
(N
)))
3359 OIter
: constant Node_Id
:=
3360 Iteration_Scheme
(Parent
(N
));
3361 OLPS
: constant Node_Id
:=
3362 Loop_Parameter_Specification
(OIter
);
3363 ODSD
: constant Node_Id
:=
3364 Original_Node
(Discrete_Subtype_Definition
(OLPS
));
3366 if Nkind
(ODSD
) = N_Attribute_Reference
3367 and then Attribute_Name
(ODSD
) = Name_Range
3368 and then No
(Expressions
(ODSD
))
3369 and then Etype
(Prefix
(ODSD
)) = Typ
3371 Error_Msg_Sloc
:= Sloc
(ODSD
);
3373 ("inner range same as outer range#??", DSD
);
3382 -- Analyze the statements of the body except in the case of an Ada 2012
3383 -- iterator with the expander active. In this case the expander will do
3384 -- a rewrite of the loop into a while loop. We will then analyze the
3385 -- loop body when we analyze this while loop.
3387 -- We need to do this delay because if the container is for indefinite
3388 -- types the actual subtype of the components will only be determined
3389 -- when the cursor declaration is analyzed.
3391 -- If the expander is not active then we want to analyze the loop body
3392 -- now even in the Ada 2012 iterator case, since the rewriting will not
3393 -- be done. Insert the loop variable in the current scope, if not done
3394 -- when analysing the iteration scheme. Set its kind properly to detect
3395 -- improper uses in the loop body.
3397 -- In GNATprove mode, we do one of the above depending on the kind of
3398 -- loop. If it is an iterator over an array, then we do not analyze the
3399 -- loop now. We will analyze it after it has been rewritten by the
3400 -- special SPARK expansion which is activated in GNATprove mode. We need
3401 -- to do this so that other expansions that should occur in GNATprove
3402 -- mode take into account the specificities of the rewritten loop, in
3403 -- particular the introduction of a renaming (which needs to be
3406 -- In other cases in GNATprove mode then we want to analyze the loop
3407 -- body now, since no rewriting will occur.
3410 and then Present
(Iterator_Specification
(Iter
))
3413 and then Is_Iterator_Over_Array
(Iterator_Specification
(Iter
))
3417 elsif not Expander_Active
then
3419 I_Spec
: constant Node_Id
:= Iterator_Specification
(Iter
);
3420 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3423 if Scope
(Id
) /= Current_Scope
then
3427 -- In an element iterator, The loop parameter is a variable if
3428 -- the domain of iteration (container or array) is a variable.
3430 if not Of_Present
(I_Spec
)
3431 or else not Is_Variable
(Name
(I_Spec
))
3433 Set_Ekind
(Id
, E_Loop_Parameter
);
3437 Analyze_Statements
(Statements
(N
));
3442 -- Pre-Ada2012 for-loops and while loops.
3444 Analyze_Statements
(Statements
(N
));
3447 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3448 -- the loop is transformed into a conditional block. Retrieve the loop.
3452 if Subject_To_Loop_Entry_Attributes
(Stmt
) then
3453 Stmt
:= Find_Loop_In_Conditional_Block
(Stmt
);
3456 -- Finish up processing for the loop. We kill all current values, since
3457 -- in general we don't know if the statements in the loop have been
3458 -- executed. We could do a bit better than this with a loop that we
3459 -- know will execute at least once, but it's not worth the trouble and
3460 -- the front end is not in the business of flow tracing.
3462 Process_End_Label
(Stmt
, 'e', Ent
);
3464 Kill_Current_Values
;
3466 -- Check for infinite loop. Skip check for generated code, since it
3467 -- justs waste time and makes debugging the routine called harder.
3469 -- Note that we have to wait till the body of the loop is fully analyzed
3470 -- before making this call, since Check_Infinite_Loop_Warning relies on
3471 -- being able to use semantic visibility information to find references.
3473 if Comes_From_Source
(Stmt
) then
3474 Check_Infinite_Loop_Warning
(Stmt
);
3477 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3478 -- contains no EXIT statements within the body of the loop.
3480 if No
(Iter
) and then not Has_Exit
(Ent
) then
3481 Check_Unreachable_Code
(Stmt
);
3483 end Analyze_Loop_Statement
;
3485 ----------------------------
3486 -- Analyze_Null_Statement --
3487 ----------------------------
3489 -- Note: the semantics of the null statement is implemented by a single
3490 -- null statement, too bad everything isn't as simple as this.
3492 procedure Analyze_Null_Statement
(N
: Node_Id
) is
3493 pragma Warnings
(Off
, N
);
3496 end Analyze_Null_Statement
;
3498 ------------------------
3499 -- Analyze_Statements --
3500 ------------------------
3502 procedure Analyze_Statements
(L
: List_Id
) is
3507 -- The labels declared in the statement list are reachable from
3508 -- statements in the list. We do this as a prepass so that any goto
3509 -- statement will be properly flagged if its target is not reachable.
3510 -- This is not required, but is nice behavior.
3513 while Present
(S
) loop
3514 if Nkind
(S
) = N_Label
then
3515 Analyze
(Identifier
(S
));
3516 Lab
:= Entity
(Identifier
(S
));
3518 -- If we found a label mark it as reachable
3520 if Ekind
(Lab
) = E_Label
then
3521 Generate_Definition
(Lab
);
3522 Set_Reachable
(Lab
);
3524 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
3525 Set_Label_Construct
(Parent
(Lab
), S
);
3528 -- If we failed to find a label, it means the implicit declaration
3529 -- of the label was hidden. A for-loop parameter can do this to
3530 -- a label with the same name inside the loop, since the implicit
3531 -- label declaration is in the innermost enclosing body or block
3535 Error_Msg_Sloc
:= Sloc
(Lab
);
3537 ("implicit label declaration for & is hidden#",
3545 -- Perform semantic analysis on all statements
3547 Conditional_Statements_Begin
;
3550 while Present
(S
) loop
3553 -- Remove dimension in all statements
3555 Remove_Dimension_In_Statement
(S
);
3559 Conditional_Statements_End
;
3561 -- Make labels unreachable. Visibility is not sufficient, because labels
3562 -- in one if-branch for example are not reachable from the other branch,
3563 -- even though their declarations are in the enclosing declarative part.
3566 while Present
(S
) loop
3567 if Nkind
(S
) = N_Label
then
3568 Set_Reachable
(Entity
(Identifier
(S
)), False);
3573 end Analyze_Statements
;
3575 ----------------------------
3576 -- Check_Unreachable_Code --
3577 ----------------------------
3579 procedure Check_Unreachable_Code
(N
: Node_Id
) is
3580 Error_Node
: Node_Id
;
3584 if Is_List_Member
(N
) and then Comes_From_Source
(N
) then
3589 Nxt
:= Original_Node
(Next
(N
));
3591 -- Skip past pragmas
3593 while Nkind
(Nxt
) = N_Pragma
loop
3594 Nxt
:= Original_Node
(Next
(Nxt
));
3597 -- If a label follows us, then we never have dead code, since
3598 -- someone could branch to the label, so we just ignore it, unless
3599 -- we are in formal mode where goto statements are not allowed.
3601 if Nkind
(Nxt
) = N_Label
3602 and then not Restriction_Check_Required
(SPARK_05
)
3606 -- Otherwise see if we have a real statement following us
3609 and then Comes_From_Source
(Nxt
)
3610 and then Is_Statement
(Nxt
)
3612 -- Special very annoying exception. If we have a return that
3613 -- follows a raise, then we allow it without a warning, since
3614 -- the Ada RM annoyingly requires a useless return here.
3616 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
3617 or else Nkind
(Nxt
) /= N_Simple_Return_Statement
3619 -- The rather strange shenanigans with the warning message
3620 -- here reflects the fact that Kill_Dead_Code is very good
3621 -- at removing warnings in deleted code, and this is one
3622 -- warning we would prefer NOT to have removed.
3626 -- If we have unreachable code, analyze and remove the
3627 -- unreachable code, since it is useless and we don't
3628 -- want to generate junk warnings.
3630 -- We skip this step if we are not in code generation mode
3631 -- or CodePeer mode.
3633 -- This is the one case where we remove dead code in the
3634 -- semantics as opposed to the expander, and we do not want
3635 -- to remove code if we are not in code generation mode,
3636 -- since this messes up the ASIS trees or loses useful
3637 -- information in the CodePeer tree.
3639 -- Note that one might react by moving the whole circuit to
3640 -- exp_ch5, but then we lose the warning in -gnatc mode.
3642 if Operating_Mode
= Generate_Code
3643 and then not CodePeer_Mode
3648 -- Quit deleting when we have nothing more to delete
3649 -- or if we hit a label (since someone could transfer
3650 -- control to a label, so we should not delete it).
3652 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
3654 -- Statement/declaration is to be deleted
3658 Kill_Dead_Code
(Nxt
);
3662 -- Now issue the warning (or error in formal mode)
3664 if Restriction_Check_Required
(SPARK_05
) then
3665 Check_SPARK_05_Restriction
3666 ("unreachable code is not allowed", Error_Node
);
3668 Error_Msg
("??unreachable code!", Sloc
(Error_Node
));
3672 -- If the unconditional transfer of control instruction is the
3673 -- last statement of a sequence, then see if our parent is one of
3674 -- the constructs for which we count unblocked exits, and if so,
3675 -- adjust the count.
3680 -- Statements in THEN part or ELSE part of IF statement
3682 if Nkind
(P
) = N_If_Statement
then
3685 -- Statements in ELSIF part of an IF statement
3687 elsif Nkind
(P
) = N_Elsif_Part
then
3689 pragma Assert
(Nkind
(P
) = N_If_Statement
);
3691 -- Statements in CASE statement alternative
3693 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
3695 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
3697 -- Statements in body of block
3699 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
3700 and then Nkind
(Parent
(P
)) = N_Block_Statement
3702 -- The original loop is now placed inside a block statement
3703 -- due to the expansion of attribute 'Loop_Entry. Return as
3704 -- this is not a "real" block for the purposes of exit
3707 if Nkind
(N
) = N_Loop_Statement
3708 and then Subject_To_Loop_Entry_Attributes
(N
)
3713 -- Statements in exception handler in a block
3715 elsif Nkind
(P
) = N_Exception_Handler
3716 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
3717 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
3721 -- None of these cases, so return
3727 -- This was one of the cases we are looking for (i.e. the
3728 -- parent construct was IF, CASE or block) so decrement count.
3730 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
3734 end Check_Unreachable_Code
;
3736 ----------------------
3737 -- Preanalyze_Range --
3738 ----------------------
3740 procedure Preanalyze_Range
(R_Copy
: Node_Id
) is
3741 Save_Analysis
: constant Boolean := Full_Analysis
;
3745 Full_Analysis
:= False;
3746 Expander_Mode_Save_And_Set
(False);
3750 if Nkind
(R_Copy
) in N_Subexpr
and then Is_Overloaded
(R_Copy
) then
3752 -- Apply preference rules for range of predefined integer types, or
3753 -- diagnose true ambiguity.
3758 Found
: Entity_Id
:= Empty
;
3761 Get_First_Interp
(R_Copy
, I
, It
);
3762 while Present
(It
.Typ
) loop
3763 if Is_Discrete_Type
(It
.Typ
) then
3767 if Scope
(Found
) = Standard_Standard
then
3770 elsif Scope
(It
.Typ
) = Standard_Standard
then
3774 -- Both of them are user-defined
3777 ("ambiguous bounds in range of iteration", R_Copy
);
3778 Error_Msg_N
("\possible interpretations:", R_Copy
);
3779 Error_Msg_NE
("\\} ", R_Copy
, Found
);
3780 Error_Msg_NE
("\\} ", R_Copy
, It
.Typ
);
3786 Get_Next_Interp
(I
, It
);
3791 -- Subtype mark in iteration scheme
3793 if Is_Entity_Name
(R_Copy
) and then Is_Type
(Entity
(R_Copy
)) then
3796 -- Expression in range, or Ada 2012 iterator
3798 elsif Nkind
(R_Copy
) in N_Subexpr
then
3800 Typ
:= Etype
(R_Copy
);
3802 if Is_Discrete_Type
(Typ
) then
3805 -- Check that the resulting object is an iterable container
3807 elsif Has_Aspect
(Typ
, Aspect_Iterator_Element
)
3808 or else Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
3809 or else Has_Aspect
(Typ
, Aspect_Variable_Indexing
)
3813 -- The expression may yield an implicit reference to an iterable
3814 -- container. Insert explicit dereference so that proper type is
3815 -- visible in the loop.
3817 elsif Has_Implicit_Dereference
(Etype
(R_Copy
)) then
3822 Disc
:= First_Discriminant
(Typ
);
3823 while Present
(Disc
) loop
3824 if Has_Implicit_Dereference
(Disc
) then
3825 Build_Explicit_Dereference
(R_Copy
, Disc
);
3829 Next_Discriminant
(Disc
);
3836 Expander_Mode_Restore
;
3837 Full_Analysis
:= Save_Analysis
;
3838 end Preanalyze_Range
;