1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Aggr
; use Exp_Aggr
;
32 with Exp_Atag
; use Exp_Atag
;
33 with Exp_Ch4
; use Exp_Ch4
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Dist
; use Exp_Dist
;
40 with Exp_Smem
; use Exp_Smem
;
41 with Exp_Strm
; use Exp_Strm
;
42 with Exp_Tss
; use Exp_Tss
;
43 with Exp_Util
; use Exp_Util
;
44 with Freeze
; use Freeze
;
45 with Ghost
; use Ghost
;
46 with Namet
; use Namet
;
47 with Nlists
; use Nlists
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Attr
; use Sem_Attr
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch3
; use Sem_Ch3
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Disp
; use Sem_Disp
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Mech
; use Sem_Mech
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_SCIL
; use Sem_SCIL
;
65 with Sem_Type
; use Sem_Type
;
66 with Sem_Util
; use Sem_Util
;
67 with Sinfo
; use Sinfo
;
68 with Stand
; use Stand
;
69 with Snames
; use Snames
;
70 with Targparm
; use Targparm
;
71 with Tbuild
; use Tbuild
;
72 with Ttypes
; use Ttypes
;
73 with Validsw
; use Validsw
;
75 package body Exp_Ch3
is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
82 -- This is used when freezing a record type. It attempts to construct
83 -- more restrictive subtypes for discriminants so that the max size of
84 -- the record can be calculated more accurately. See the body of this
85 -- procedure for details.
87 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
88 -- Build initialization procedure for given array type. Nod is a node
89 -- used for attachment of any actions required in its construction.
90 -- It also supplies the source location used for the procedure.
92 function Build_Discriminant_Formals
94 Use_Dl
: Boolean) return List_Id
;
95 -- This function uses the discriminants of a type to build a list of
96 -- formal parameters, used in Build_Init_Procedure among other places.
97 -- If the flag Use_Dl is set, the list is built using the already
98 -- defined discriminals of the type, as is the case for concurrent
99 -- types with discriminants. Otherwise new identifiers are created,
100 -- with the source names of the discriminants.
102 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
;
103 -- This function builds a static aggregate that can serve as the initial
104 -- value for an array type whose bounds are static, and whose component
105 -- type is a composite type that has a static equivalent aggregate.
106 -- The equivalent array aggregate is used both for object initialization
107 -- and for component initialization, when used in the following function.
109 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
;
110 -- This function builds a static aggregate that can serve as the initial
111 -- value for a record type whose components are scalar and initialized
112 -- with compile-time values, or arrays with similar initialization or
113 -- defaults. When possible, initialization of an object of the type can
114 -- be achieved by using a copy of the aggregate as an initial value, thus
115 -- removing the implicit call that would otherwise constitute elaboration
118 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
);
119 -- Build record initialization procedure. N is the type declaration
120 -- node, and Rec_Ent is the corresponding entity for the record type.
122 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
123 -- Build assignment procedure for one-dimensional arrays of controlled
124 -- types. Other array and slice assignments are expanded in-line, but
125 -- the code expansion for controlled components (when control actions
126 -- are active) can lead to very large blocks that GCC3 handles poorly.
128 procedure Build_Untagged_Equality
(Typ
: Entity_Id
);
129 -- AI05-0123: Equality on untagged records composes. This procedure
130 -- builds the equality routine for an untagged record that has components
131 -- of a record type that has user-defined primitive equality operations.
132 -- The resulting operation is a TSS subprogram.
134 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
135 -- Create An Equality function for the untagged variant record Typ and
136 -- attach it to the TSS list
138 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
139 -- Check that if a limited extension has a parent with user-defined stream
140 -- attributes, and does not itself have user-defined stream-attributes,
141 -- then any limited component of the extension also has the corresponding
142 -- user-defined stream attributes.
144 procedure Clean_Task_Names
146 Proc_Id
: Entity_Id
);
147 -- If an initialization procedure includes calls to generate names
148 -- for task subcomponents, indicate that secondary stack cleanup is
149 -- needed after an initialization. Typ is the component type, and Proc_Id
150 -- the initialization procedure for the enclosing composite type.
152 procedure Expand_Freeze_Array_Type
(N
: Node_Id
);
153 -- Freeze an array type. Deals with building the initialization procedure,
154 -- creating the packed array type for a packed array and also with the
155 -- creation of the controlling procedures for the controlled case. The
156 -- argument N is the N_Freeze_Entity node for the type.
158 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
);
159 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
160 -- of finalizing controlled derivations from the class-wide's root type.
162 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
);
163 -- Freeze enumeration type with non-standard representation. Builds the
164 -- array and function needed to convert between enumeration pos and
165 -- enumeration representation values. N is the N_Freeze_Entity node
168 procedure Expand_Freeze_Record_Type
(N
: Node_Id
);
169 -- Freeze record type. Builds all necessary discriminant checking
170 -- and other ancillary functions, and builds dispatch tables where
171 -- needed. The argument N is the N_Freeze_Entity node. This processing
172 -- applies only to E_Record_Type entities, not to class wide types,
173 -- record subtypes, or private types.
175 procedure Expand_Tagged_Root
(T
: Entity_Id
);
176 -- Add a field _Tag at the beginning of the record. This field carries
177 -- the value of the access to the Dispatch table. This procedure is only
178 -- called on root type, the _Tag field being inherited by the descendants.
180 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
181 -- Treat user-defined stream operations as renaming_as_body if the
182 -- subprogram they rename is not frozen when the type is frozen.
184 procedure Initialization_Warning
(E
: Entity_Id
);
185 -- If static elaboration of the package is requested, indicate
186 -- when a type does meet the conditions for static initialization. If
187 -- E is a type, it has components that have no static initialization.
188 -- if E is an entity, its initial expression is not compile-time known.
190 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
191 -- This function builds the list of formals for an initialization routine.
192 -- The first formal is always _Init with the given type. For task value
193 -- record types and types containing tasks, three additional formals are
196 -- _Master : Master_Id
197 -- _Chain : in out Activation_Chain
198 -- _Task_Name : String
200 -- The caller must append additional entries for discriminants if required.
202 function Inline_Init_Proc
(Typ
: Entity_Id
) return Boolean;
203 -- Returns true if the initialization procedure of Typ should be inlined
205 function In_Runtime
(E
: Entity_Id
) return Boolean;
206 -- Check if E is defined in the RTL (in a child of Ada or System). Used
207 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
209 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean;
210 -- Returns true if Prim is a user defined equality function
212 function Make_Eq_Body
214 Eq_Name
: Name_Id
) return Node_Id
;
215 -- Build the body of a primitive equality operation for a tagged record
216 -- type, or in Ada 2012 for any record type that has components with a
217 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
219 function Make_Eq_Case
222 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
;
223 -- Building block for variant record equality. Defined to share the code
224 -- between the tagged and untagged case. Given a Component_List node CL,
225 -- it generates an 'if' followed by a 'case' statement that compares all
226 -- components of local temporaries named X and Y (that are declared as
227 -- formals at some upper level). E provides the Sloc to be used for the
230 -- IF E is an unchecked_union, Discrs is the list of formals created for
231 -- the inferred discriminants of one operand. These formals are used in
232 -- the generated case statements for each variant of the unchecked union.
236 L
: List_Id
) return Node_Id
;
237 -- Building block for variant record equality. Defined to share the code
238 -- between the tagged and untagged case. Given the list of components
239 -- (or discriminants) L, it generates a return statement that compares all
240 -- components of local temporaries named X and Y (that are declared as
241 -- formals at some upper level). E provides the Sloc to be used for the
244 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
;
245 -- Search for a renaming of the inequality dispatching primitive of
246 -- this tagged type. If found then build and return the corresponding
247 -- rename-as-body inequality subprogram; otherwise return Empty.
249 procedure Make_Predefined_Primitive_Specs
250 (Tag_Typ
: Entity_Id
;
251 Predef_List
: out List_Id
;
252 Renamed_Eq
: out Entity_Id
);
253 -- Create a list with the specs of the predefined primitive operations.
254 -- For tagged types that are interfaces all these primitives are defined
257 -- The following entries are present for all tagged types, and provide
258 -- the results of the corresponding attribute applied to the object.
259 -- Dispatching is required in general, since the result of the attribute
260 -- will vary with the actual object subtype.
262 -- _size provides result of 'Size attribute
263 -- typSR provides result of 'Read attribute
264 -- typSW provides result of 'Write attribute
265 -- typSI provides result of 'Input attribute
266 -- typSO provides result of 'Output attribute
268 -- The following entries are additionally present for non-limited tagged
269 -- types, and implement additional dispatching operations for predefined
272 -- _equality implements "=" operator
273 -- _assign implements assignment operation
274 -- typDF implements deep finalization
275 -- typDA implements deep adjust
277 -- The latter two are empty procedures unless the type contains some
278 -- controlled components that require finalization actions (the deep
279 -- in the name refers to the fact that the action applies to components).
281 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
282 -- returns the value Empty, or else the defining unit name for the
283 -- predefined equality function in the case where the type has a primitive
284 -- operation that is a renaming of predefined equality (but only if there
285 -- is also an overriding user-defined equality function). The returned
286 -- Renamed_Eq will be passed to the corresponding parameter of
287 -- Predefined_Primitive_Bodies.
289 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
290 -- Returns True if there are representation clauses for type T that are not
291 -- inherited. If the result is false, the init_proc and the discriminant
292 -- checking functions of the parent can be reused by a derived type.
294 procedure Make_Controlling_Function_Wrappers
295 (Tag_Typ
: Entity_Id
;
296 Decl_List
: out List_Id
;
297 Body_List
: out List_Id
);
298 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
299 -- associated with inherited functions with controlling results which
300 -- are not overridden. The body of each wrapper function consists solely
301 -- of a return statement whose expression is an extension aggregate
302 -- invoking the inherited subprogram's parent subprogram and extended
303 -- with a null association list.
305 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
;
306 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
307 -- null procedures inherited from an interface type that have not been
308 -- overridden. Only one null procedure will be created for a given set of
309 -- inherited null procedures with homographic profiles.
311 function Predef_Spec_Or_Body
316 Ret_Type
: Entity_Id
:= Empty
;
317 For_Body
: Boolean := False) return Node_Id
;
318 -- This function generates the appropriate expansion for a predefined
319 -- primitive operation specified by its name, parameter profile and
320 -- return type (Empty means this is a procedure). If For_Body is false,
321 -- then the returned node is a subprogram declaration. If For_Body is
322 -- true, then the returned node is a empty subprogram body containing
323 -- no declarations and no statements.
325 function Predef_Stream_Attr_Spec
328 Name
: TSS_Name_Type
;
329 For_Body
: Boolean := False) return Node_Id
;
330 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
331 -- input and output attribute whose specs are constructed in Exp_Strm.
333 function Predef_Deep_Spec
336 Name
: TSS_Name_Type
;
337 For_Body
: Boolean := False) return Node_Id
;
338 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
339 -- and _deep_finalize
341 function Predefined_Primitive_Bodies
342 (Tag_Typ
: Entity_Id
;
343 Renamed_Eq
: Entity_Id
) return List_Id
;
344 -- Create the bodies of the predefined primitives that are described in
345 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
346 -- the defining unit name of the type's predefined equality as returned
347 -- by Make_Predefined_Primitive_Specs.
349 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
350 -- Freeze entities of all predefined primitive operations. This is needed
351 -- because the bodies of these operations do not normally do any freezing.
353 function Stream_Operation_OK
355 Operation
: TSS_Name_Type
) return Boolean;
356 -- Check whether the named stream operation must be emitted for a given
357 -- type. The rules for inheritance of stream attributes by type extensions
358 -- are enforced by this function. Furthermore, various restrictions prevent
359 -- the generation of these operations, as a useful optimization or for
360 -- certification purposes and to save unnecessary generated code.
362 --------------------------
363 -- Adjust_Discriminants --
364 --------------------------
366 -- This procedure attempts to define subtypes for discriminants that are
367 -- more restrictive than those declared. Such a replacement is possible if
368 -- we can demonstrate that values outside the restricted range would cause
369 -- constraint errors in any case. The advantage of restricting the
370 -- discriminant types in this way is that the maximum size of the variant
371 -- record can be calculated more conservatively.
373 -- An example of a situation in which we can perform this type of
374 -- restriction is the following:
376 -- subtype B is range 1 .. 10;
377 -- type Q is array (B range <>) of Integer;
379 -- type V (N : Natural) is record
383 -- In this situation, we can restrict the upper bound of N to 10, since
384 -- any larger value would cause a constraint error in any case.
386 -- There are many situations in which such restriction is possible, but
387 -- for now, we just look for cases like the above, where the component
388 -- in question is a one dimensional array whose upper bound is one of
389 -- the record discriminants. Also the component must not be part of
390 -- any variant part, since then the component does not always exist.
392 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
393 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
410 Comp
:= First_Component
(Rtype
);
411 while Present
(Comp
) loop
413 -- If our parent is a variant, quit, we do not look at components
414 -- that are in variant parts, because they may not always exist.
416 P
:= Parent
(Comp
); -- component declaration
417 P
:= Parent
(P
); -- component list
419 exit when Nkind
(Parent
(P
)) = N_Variant
;
421 -- We are looking for a one dimensional array type
423 Ctyp
:= Etype
(Comp
);
425 if not Is_Array_Type
(Ctyp
) or else Number_Dimensions
(Ctyp
) > 1 then
429 -- The lower bound must be constant, and the upper bound is a
430 -- discriminant (which is a discriminant of the current record).
432 Ityp
:= Etype
(First_Index
(Ctyp
));
433 Lo
:= Type_Low_Bound
(Ityp
);
434 Hi
:= Type_High_Bound
(Ityp
);
436 if not Compile_Time_Known_Value
(Lo
)
437 or else Nkind
(Hi
) /= N_Identifier
438 or else No
(Entity
(Hi
))
439 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
444 -- We have an array with appropriate bounds
446 Loval
:= Expr_Value
(Lo
);
447 Discr
:= Entity
(Hi
);
448 Dtyp
:= Etype
(Discr
);
450 -- See if the discriminant has a known upper bound
452 Dhi
:= Type_High_Bound
(Dtyp
);
454 if not Compile_Time_Known_Value
(Dhi
) then
458 Dhiv
:= Expr_Value
(Dhi
);
460 -- See if base type of component array has known upper bound
462 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
464 if not Compile_Time_Known_Value
(Ahi
) then
468 Ahiv
:= Expr_Value
(Ahi
);
470 -- The condition for doing the restriction is that the high bound
471 -- of the discriminant is greater than the low bound of the array,
472 -- and is also greater than the high bound of the base type index.
474 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
476 -- We can reset the upper bound of the discriminant type to
477 -- whichever is larger, the low bound of the component, or
478 -- the high bound of the base type array index.
480 -- We build a subtype that is declared as
482 -- subtype Tnn is discr_type range discr_type'First .. max;
484 -- And insert this declaration into the tree. The type of the
485 -- discriminant is then reset to this more restricted subtype.
487 Tnn
:= Make_Temporary
(Loc
, 'T');
489 Insert_Action
(Declaration_Node
(Rtype
),
490 Make_Subtype_Declaration
(Loc
,
491 Defining_Identifier
=> Tnn
,
492 Subtype_Indication
=>
493 Make_Subtype_Indication
(Loc
,
494 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
496 Make_Range_Constraint
(Loc
,
500 Make_Attribute_Reference
(Loc
,
501 Attribute_Name
=> Name_First
,
502 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
504 Make_Integer_Literal
(Loc
,
505 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
507 Set_Etype
(Discr
, Tnn
);
511 Next_Component
(Comp
);
513 end Adjust_Discriminants
;
515 ---------------------------
516 -- Build_Array_Init_Proc --
517 ---------------------------
519 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
520 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
521 Body_Stmts
: List_Id
;
522 Has_Default_Init
: Boolean;
523 Index_List
: List_Id
;
527 function Init_Component
return List_Id
;
528 -- Create one statement to initialize one array component, designated
529 -- by a full set of indexes.
531 function Init_One_Dimension
(N
: Int
) return List_Id
;
532 -- Create loop to initialize one dimension of the array. The single
533 -- statement in the loop body initializes the inner dimensions if any,
534 -- or else the single component. Note that this procedure is called
535 -- recursively, with N being the dimension to be initialized. A call
536 -- with N greater than the number of dimensions simply generates the
537 -- component initialization, terminating the recursion.
543 function Init_Component
return List_Id
is
548 Make_Indexed_Component
(Loc
,
549 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
550 Expressions
=> Index_List
);
552 if Has_Default_Aspect
(A_Type
) then
553 Set_Assignment_OK
(Comp
);
555 Make_Assignment_Statement
(Loc
,
558 Convert_To
(Comp_Type
,
559 Default_Aspect_Component_Value
(First_Subtype
(A_Type
)))));
561 elsif Needs_Simple_Initialization
(Comp_Type
) then
562 Set_Assignment_OK
(Comp
);
564 Make_Assignment_Statement
(Loc
,
568 (Comp_Type
, Nod
, Component_Size
(A_Type
))));
571 Clean_Task_Names
(Comp_Type
, Proc_Id
);
573 Build_Initialization_Call
574 (Loc
, Comp
, Comp_Type
,
575 In_Init_Proc
=> True,
576 Enclos_Type
=> A_Type
);
580 ------------------------
581 -- Init_One_Dimension --
582 ------------------------
584 function Init_One_Dimension
(N
: Int
) return List_Id
is
588 -- If the component does not need initializing, then there is nothing
589 -- to do here, so we return a null body. This occurs when generating
590 -- the dummy Init_Proc needed for Initialize_Scalars processing.
592 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
593 and then not Needs_Simple_Initialization
(Comp_Type
)
594 and then not Has_Task
(Comp_Type
)
595 and then not Has_Default_Aspect
(A_Type
)
597 return New_List
(Make_Null_Statement
(Loc
));
599 -- If all dimensions dealt with, we simply initialize the component
601 elsif N
> Number_Dimensions
(A_Type
) then
602 return Init_Component
;
604 -- Here we generate the required loop
608 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
610 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
613 Make_Implicit_Loop_Statement
(Nod
,
616 Make_Iteration_Scheme
(Loc
,
617 Loop_Parameter_Specification
=>
618 Make_Loop_Parameter_Specification
(Loc
,
619 Defining_Identifier
=> Index
,
620 Discrete_Subtype_Definition
=>
621 Make_Attribute_Reference
(Loc
,
623 Make_Identifier
(Loc
, Name_uInit
),
624 Attribute_Name
=> Name_Range
,
625 Expressions
=> New_List
(
626 Make_Integer_Literal
(Loc
, N
))))),
627 Statements
=> Init_One_Dimension
(N
+ 1)));
629 end Init_One_Dimension
;
631 -- Start of processing for Build_Array_Init_Proc
634 -- The init proc is created when analyzing the freeze node for the type,
635 -- but it properly belongs with the array type declaration. However, if
636 -- the freeze node is for a subtype of a type declared in another unit
637 -- it seems preferable to use the freeze node as the source location of
638 -- the init proc. In any case this is preferable for gcov usage, and
639 -- the Sloc is not otherwise used by the compiler.
641 if In_Open_Scopes
(Scope
(A_Type
)) then
642 Loc
:= Sloc
(A_Type
);
647 -- Nothing to generate in the following cases:
649 -- 1. Initialization is suppressed for the type
650 -- 2. An initialization already exists for the base type
652 if Initialization_Suppressed
(A_Type
)
653 or else Present
(Base_Init_Proc
(A_Type
))
658 Index_List
:= New_List
;
660 -- We need an initialization procedure if any of the following is true:
662 -- 1. The component type has an initialization procedure
663 -- 2. The component type needs simple initialization
664 -- 3. Tasks are present
665 -- 4. The type is marked as a public entity
666 -- 5. The array type has a Default_Component_Value aspect
668 -- The reason for the public entity test is to deal properly with the
669 -- Initialize_Scalars pragma. This pragma can be set in the client and
670 -- not in the declaring package, this means the client will make a call
671 -- to the initialization procedure (because one of conditions 1-3 must
672 -- apply in this case), and we must generate a procedure (even if it is
673 -- null) to satisfy the call in this case.
675 -- Exception: do not build an array init_proc for a type whose root
676 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
677 -- is no place to put the code, and in any case we handle initialization
678 -- of such types (in the Initialize_Scalars case, that's the only time
679 -- the issue arises) in a special manner anyway which does not need an
682 Has_Default_Init
:= Has_Non_Null_Base_Init_Proc
(Comp_Type
)
683 or else Needs_Simple_Initialization
(Comp_Type
)
684 or else Has_Task
(Comp_Type
)
685 or else Has_Default_Aspect
(A_Type
);
688 or else (not Restriction_Active
(No_Initialize_Scalars
)
689 and then Is_Public
(A_Type
)
690 and then not Is_Standard_String_Type
(A_Type
))
693 Make_Defining_Identifier
(Loc
,
694 Chars
=> Make_Init_Proc_Name
(A_Type
));
696 -- If No_Default_Initialization restriction is active, then we don't
697 -- want to build an init_proc, but we need to mark that an init_proc
698 -- would be needed if this restriction was not active (so that we can
699 -- detect attempts to call it), so set a dummy init_proc in place.
700 -- This is only done though when actual default initialization is
701 -- needed (and not done when only Is_Public is True), since otherwise
702 -- objects such as arrays of scalars could be wrongly flagged as
703 -- violating the restriction.
705 if Restriction_Active
(No_Default_Initialization
) then
706 if Has_Default_Init
then
707 Set_Init_Proc
(A_Type
, Proc_Id
);
713 Body_Stmts
:= Init_One_Dimension
(1);
716 Make_Subprogram_Body
(Loc
,
718 Make_Procedure_Specification
(Loc
,
719 Defining_Unit_Name
=> Proc_Id
,
720 Parameter_Specifications
=> Init_Formals
(A_Type
)),
721 Declarations
=> New_List
,
722 Handled_Statement_Sequence
=>
723 Make_Handled_Sequence_Of_Statements
(Loc
,
724 Statements
=> Body_Stmts
)));
726 Set_Ekind
(Proc_Id
, E_Procedure
);
727 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
728 Set_Is_Internal
(Proc_Id
);
729 Set_Has_Completion
(Proc_Id
);
731 if not Debug_Generated_Code
then
732 Set_Debug_Info_Off
(Proc_Id
);
735 -- Set Inlined on Init_Proc if it is set on the Init_Proc of the
736 -- component type itself (see also Build_Record_Init_Proc).
738 Set_Is_Inlined
(Proc_Id
, Inline_Init_Proc
(Comp_Type
));
740 -- Associate Init_Proc with type, and determine if the procedure
741 -- is null (happens because of the Initialize_Scalars pragma case,
742 -- where we have to generate a null procedure in case it is called
743 -- by a client with Initialize_Scalars set). Such procedures have
744 -- to be generated, but do not have to be called, so we mark them
745 -- as null to suppress the call.
747 Set_Init_Proc
(A_Type
, Proc_Id
);
749 if List_Length
(Body_Stmts
) = 1
751 -- We must skip SCIL nodes because they may have been added to this
752 -- list by Insert_Actions.
754 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
756 Set_Is_Null_Init_Proc
(Proc_Id
);
759 -- Try to build a static aggregate to statically initialize
760 -- objects of the type. This can only be done for constrained
761 -- one-dimensional arrays with static bounds.
763 Set_Static_Initialization
765 Build_Equivalent_Array_Aggregate
(First_Subtype
(A_Type
)));
768 end Build_Array_Init_Proc
;
770 --------------------------------
771 -- Build_Discr_Checking_Funcs --
772 --------------------------------
774 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
777 Enclosing_Func_Id
: Entity_Id
;
782 function Build_Case_Statement
783 (Case_Id
: Entity_Id
;
784 Variant
: Node_Id
) return Node_Id
;
785 -- Build a case statement containing only two alternatives. The first
786 -- alternative corresponds exactly to the discrete choices given on the
787 -- variant with contains the components that we are generating the
788 -- checks for. If the discriminant is one of these return False. The
789 -- second alternative is an OTHERS choice that will return True
790 -- indicating the discriminant did not match.
792 function Build_Dcheck_Function
793 (Case_Id
: Entity_Id
;
794 Variant
: Node_Id
) return Entity_Id
;
795 -- Build the discriminant checking function for a given variant
797 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
798 -- Builds the discriminant checking function for each variant of the
799 -- given variant part of the record type.
801 --------------------------
802 -- Build_Case_Statement --
803 --------------------------
805 function Build_Case_Statement
806 (Case_Id
: Entity_Id
;
807 Variant
: Node_Id
) return Node_Id
809 Alt_List
: constant List_Id
:= New_List
;
810 Actuals_List
: List_Id
;
812 Case_Alt_Node
: Node_Id
;
814 Choice_List
: List_Id
;
816 Return_Node
: Node_Id
;
819 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
821 -- Replace the discriminant which controls the variant with the name
822 -- of the formal of the checking function.
824 Set_Expression
(Case_Node
, Make_Identifier
(Loc
, Chars
(Case_Id
)));
826 Choice
:= First
(Discrete_Choices
(Variant
));
828 if Nkind
(Choice
) = N_Others_Choice
then
829 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
831 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
834 if not Is_Empty_List
(Choice_List
) then
835 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
836 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
838 -- In case this is a nested variant, we need to return the result
839 -- of the discriminant checking function for the immediately
840 -- enclosing variant.
842 if Present
(Enclosing_Func_Id
) then
843 Actuals_List
:= New_List
;
845 D
:= First_Discriminant
(Rec_Id
);
846 while Present
(D
) loop
847 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
848 Next_Discriminant
(D
);
852 Make_Simple_Return_Statement
(Loc
,
854 Make_Function_Call
(Loc
,
856 New_Occurrence_Of
(Enclosing_Func_Id
, Loc
),
857 Parameter_Associations
=>
862 Make_Simple_Return_Statement
(Loc
,
864 New_Occurrence_Of
(Standard_False
, Loc
));
867 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
868 Append
(Case_Alt_Node
, Alt_List
);
871 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
872 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
873 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
876 Make_Simple_Return_Statement
(Loc
,
878 New_Occurrence_Of
(Standard_True
, Loc
));
880 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
881 Append
(Case_Alt_Node
, Alt_List
);
883 Set_Alternatives
(Case_Node
, Alt_List
);
885 end Build_Case_Statement
;
887 ---------------------------
888 -- Build_Dcheck_Function --
889 ---------------------------
891 function Build_Dcheck_Function
892 (Case_Id
: Entity_Id
;
893 Variant
: Node_Id
) return Entity_Id
897 Parameter_List
: List_Id
;
901 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
902 Sequence
:= Sequence
+ 1;
905 Make_Defining_Identifier
(Loc
,
906 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
907 Set_Is_Discriminant_Check_Function
(Func_Id
);
909 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
910 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
912 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
914 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
915 Set_Result_Definition
(Spec_Node
,
916 New_Occurrence_Of
(Standard_Boolean
, Loc
));
917 Set_Specification
(Body_Node
, Spec_Node
);
918 Set_Declarations
(Body_Node
, New_List
);
920 Set_Handled_Statement_Sequence
(Body_Node
,
921 Make_Handled_Sequence_Of_Statements
(Loc
,
922 Statements
=> New_List
(
923 Build_Case_Statement
(Case_Id
, Variant
))));
925 Set_Ekind
(Func_Id
, E_Function
);
926 Set_Mechanism
(Func_Id
, Default_Mechanism
);
927 Set_Is_Inlined
(Func_Id
, True);
928 Set_Is_Pure
(Func_Id
, True);
929 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
930 Set_Is_Internal
(Func_Id
, True);
932 if not Debug_Generated_Code
then
933 Set_Debug_Info_Off
(Func_Id
);
938 Append_Freeze_Action
(Rec_Id
, Body_Node
);
939 Set_Dcheck_Function
(Variant
, Func_Id
);
941 end Build_Dcheck_Function
;
943 ----------------------------
944 -- Build_Dcheck_Functions --
945 ----------------------------
947 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
948 Component_List_Node
: Node_Id
;
950 Discr_Name
: Entity_Id
;
953 Saved_Enclosing_Func_Id
: Entity_Id
;
956 -- Build the discriminant-checking function for each variant, and
957 -- label all components of that variant with the function's name.
958 -- We only Generate a discriminant-checking function when the
959 -- variant is not empty, to prevent the creation of dead code.
960 -- The exception to that is when Frontend_Layout_On_Target is set,
961 -- because the variant record size function generated in package
962 -- Layout needs to generate calls to all discriminant-checking
963 -- functions, including those for empty variants.
965 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
966 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
968 while Present
(Variant
) loop
969 Component_List_Node
:= Component_List
(Variant
);
971 if not Null_Present
(Component_List_Node
)
972 or else Frontend_Layout_On_Target
974 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
977 First_Non_Pragma
(Component_Items
(Component_List_Node
));
978 while Present
(Decl
) loop
979 Set_Discriminant_Checking_Func
980 (Defining_Identifier
(Decl
), Func_Id
);
981 Next_Non_Pragma
(Decl
);
984 if Present
(Variant_Part
(Component_List_Node
)) then
985 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
986 Enclosing_Func_Id
:= Func_Id
;
987 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
988 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
992 Next_Non_Pragma
(Variant
);
994 end Build_Dcheck_Functions
;
996 -- Start of processing for Build_Discr_Checking_Funcs
999 -- Only build if not done already
1001 if not Discr_Check_Funcs_Built
(N
) then
1002 Type_Def
:= Type_Definition
(N
);
1004 if Nkind
(Type_Def
) = N_Record_Definition
then
1005 if No
(Component_List
(Type_Def
)) then -- null record.
1008 V
:= Variant_Part
(Component_List
(Type_Def
));
1011 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
1012 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
1016 (Component_List
(Record_Extension_Part
(Type_Def
)));
1020 Rec_Id
:= Defining_Identifier
(N
);
1022 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
1024 Enclosing_Func_Id
:= Empty
;
1025 Build_Dcheck_Functions
(V
);
1028 Set_Discr_Check_Funcs_Built
(N
);
1030 end Build_Discr_Checking_Funcs
;
1032 --------------------------------
1033 -- Build_Discriminant_Formals --
1034 --------------------------------
1036 function Build_Discriminant_Formals
1037 (Rec_Id
: Entity_Id
;
1038 Use_Dl
: Boolean) return List_Id
1040 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1041 Parameter_List
: constant List_Id
:= New_List
;
1044 Formal_Type
: Entity_Id
;
1045 Param_Spec_Node
: Node_Id
;
1048 if Has_Discriminants
(Rec_Id
) then
1049 D
:= First_Discriminant
(Rec_Id
);
1050 while Present
(D
) loop
1054 Formal
:= Discriminal
(D
);
1055 Formal_Type
:= Etype
(Formal
);
1057 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1058 Formal_Type
:= Etype
(D
);
1062 Make_Parameter_Specification
(Loc
,
1063 Defining_Identifier
=> Formal
,
1065 New_Occurrence_Of
(Formal_Type
, Loc
));
1066 Append
(Param_Spec_Node
, Parameter_List
);
1067 Next_Discriminant
(D
);
1071 return Parameter_List
;
1072 end Build_Discriminant_Formals
;
1074 --------------------------------------
1075 -- Build_Equivalent_Array_Aggregate --
1076 --------------------------------------
1078 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
is
1079 Loc
: constant Source_Ptr
:= Sloc
(T
);
1080 Comp_Type
: constant Entity_Id
:= Component_Type
(T
);
1081 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(T
));
1082 Proc
: constant Entity_Id
:= Base_Init_Proc
(T
);
1088 if not Is_Constrained
(T
)
1089 or else Number_Dimensions
(T
) > 1
1092 Initialization_Warning
(T
);
1096 Lo
:= Type_Low_Bound
(Index_Type
);
1097 Hi
:= Type_High_Bound
(Index_Type
);
1099 if not Compile_Time_Known_Value
(Lo
)
1100 or else not Compile_Time_Known_Value
(Hi
)
1102 Initialization_Warning
(T
);
1106 if Is_Record_Type
(Comp_Type
)
1107 and then Present
(Base_Init_Proc
(Comp_Type
))
1109 Expr
:= Static_Initialization
(Base_Init_Proc
(Comp_Type
));
1112 Initialization_Warning
(T
);
1117 Initialization_Warning
(T
);
1121 Aggr
:= Make_Aggregate
(Loc
, No_List
, New_List
);
1122 Set_Etype
(Aggr
, T
);
1123 Set_Aggregate_Bounds
(Aggr
,
1125 Low_Bound
=> New_Copy
(Lo
),
1126 High_Bound
=> New_Copy
(Hi
)));
1127 Set_Parent
(Aggr
, Parent
(Proc
));
1129 Append_To
(Component_Associations
(Aggr
),
1130 Make_Component_Association
(Loc
,
1134 Low_Bound
=> New_Copy
(Lo
),
1135 High_Bound
=> New_Copy
(Hi
))),
1136 Expression
=> Expr
));
1138 if Static_Array_Aggregate
(Aggr
) then
1141 Initialization_Warning
(T
);
1144 end Build_Equivalent_Array_Aggregate
;
1146 ---------------------------------------
1147 -- Build_Equivalent_Record_Aggregate --
1148 ---------------------------------------
1150 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
is
1153 Comp_Type
: Entity_Id
;
1155 -- Start of processing for Build_Equivalent_Record_Aggregate
1158 if not Is_Record_Type
(T
)
1159 or else Has_Discriminants
(T
)
1160 or else Is_Limited_Type
(T
)
1161 or else Has_Non_Standard_Rep
(T
)
1163 Initialization_Warning
(T
);
1167 Comp
:= First_Component
(T
);
1169 -- A null record needs no warning
1175 while Present
(Comp
) loop
1177 -- Array components are acceptable if initialized by a positional
1178 -- aggregate with static components.
1180 if Is_Array_Type
(Etype
(Comp
)) then
1181 Comp_Type
:= Component_Type
(Etype
(Comp
));
1183 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1184 or else No
(Expression
(Parent
(Comp
)))
1185 or else Nkind
(Expression
(Parent
(Comp
))) /= N_Aggregate
1187 Initialization_Warning
(T
);
1190 elsif Is_Scalar_Type
(Component_Type
(Etype
(Comp
)))
1192 (not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1194 not Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
)))
1196 Initialization_Warning
(T
);
1200 not Static_Array_Aggregate
(Expression
(Parent
(Comp
)))
1202 Initialization_Warning
(T
);
1206 elsif Is_Scalar_Type
(Etype
(Comp
)) then
1207 Comp_Type
:= Etype
(Comp
);
1209 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1210 or else No
(Expression
(Parent
(Comp
)))
1211 or else not Compile_Time_Known_Value
(Expression
(Parent
(Comp
)))
1212 or else not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1214 Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
))
1216 Initialization_Warning
(T
);
1220 -- For now, other types are excluded
1223 Initialization_Warning
(T
);
1227 Next_Component
(Comp
);
1230 -- All components have static initialization. Build positional aggregate
1231 -- from the given expressions or defaults.
1233 Agg
:= Make_Aggregate
(Sloc
(T
), New_List
, New_List
);
1234 Set_Parent
(Agg
, Parent
(T
));
1236 Comp
:= First_Component
(T
);
1237 while Present
(Comp
) loop
1239 (New_Copy_Tree
(Expression
(Parent
(Comp
))), Expressions
(Agg
));
1240 Next_Component
(Comp
);
1243 Analyze_And_Resolve
(Agg
, T
);
1245 end Build_Equivalent_Record_Aggregate
;
1247 -------------------------------
1248 -- Build_Initialization_Call --
1249 -------------------------------
1251 -- References to a discriminant inside the record type declaration can
1252 -- appear either in the subtype_indication to constrain a record or an
1253 -- array, or as part of a larger expression given for the initial value
1254 -- of a component. In both of these cases N appears in the record
1255 -- initialization procedure and needs to be replaced by the formal
1256 -- parameter of the initialization procedure which corresponds to that
1259 -- In the example below, references to discriminants D1 and D2 in proc_1
1260 -- are replaced by references to formals with the same name
1263 -- A similar replacement is done for calls to any record initialization
1264 -- procedure for any components that are themselves of a record type.
1266 -- type R (D1, D2 : Integer) is record
1267 -- X : Integer := F * D1;
1268 -- Y : Integer := F * D2;
1271 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1275 -- Out_2.X := F * D1;
1276 -- Out_2.Y := F * D2;
1279 function Build_Initialization_Call
1283 In_Init_Proc
: Boolean := False;
1284 Enclos_Type
: Entity_Id
:= Empty
;
1285 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1286 With_Default_Init
: Boolean := False;
1287 Constructor_Ref
: Node_Id
:= Empty
) return List_Id
1289 Res
: constant List_Id
:= New_List
;
1295 First_Arg
: Node_Id
;
1296 Full_Init_Type
: Entity_Id
;
1297 Full_Type
: Entity_Id
;
1298 Init_Type
: Entity_Id
;
1302 pragma Assert
(Constructor_Ref
= Empty
1303 or else Is_CPP_Constructor_Call
(Constructor_Ref
));
1305 if No
(Constructor_Ref
) then
1306 Proc
:= Base_Init_Proc
(Typ
);
1308 Proc
:= Base_Init_Proc
(Typ
, Entity
(Name
(Constructor_Ref
)));
1311 pragma Assert
(Present
(Proc
));
1312 Init_Type
:= Etype
(First_Formal
(Proc
));
1313 Full_Init_Type
:= Underlying_Type
(Init_Type
);
1315 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1316 -- is active (in which case we make the call anyway, since in the
1317 -- actual compiled client it may be non null).
1319 if Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
then
1323 -- Use the [underlying] full view when dealing with a private type. This
1324 -- may require several steps depending on derivations.
1328 if Is_Private_Type
(Full_Type
) then
1329 if Present
(Full_View
(Full_Type
)) then
1330 Full_Type
:= Full_View
(Full_Type
);
1332 elsif Present
(Underlying_Full_View
(Full_Type
)) then
1333 Full_Type
:= Underlying_Full_View
(Full_Type
);
1335 -- When a private type acts as a generic actual and lacks a full
1336 -- view, use the base type.
1338 elsif Is_Generic_Actual_Type
(Full_Type
) then
1339 Full_Type
:= Base_Type
(Full_Type
);
1341 -- The loop has recovered the [underlying] full view, stop the
1348 -- The type is not private, nothing to do
1355 -- If Typ is derived, the procedure is the initialization procedure for
1356 -- the root type. Wrap the argument in an conversion to make it type
1357 -- honest. Actually it isn't quite type honest, because there can be
1358 -- conflicts of views in the private type case. That is why we set
1359 -- Conversion_OK in the conversion node.
1361 if (Is_Record_Type
(Typ
)
1362 or else Is_Array_Type
(Typ
)
1363 or else Is_Private_Type
(Typ
))
1364 and then Init_Type
/= Base_Type
(Typ
)
1366 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1367 Set_Etype
(First_Arg
, Init_Type
);
1370 First_Arg
:= Id_Ref
;
1373 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1375 -- In the tasks case, add _Master as the value of the _Master parameter
1376 -- and _Chain as the value of the _Chain parameter. At the outer level,
1377 -- these will be variables holding the corresponding values obtained
1378 -- from GNARL. At inner levels, they will be the parameters passed down
1379 -- through the outer routines.
1381 if Has_Task
(Full_Type
) then
1382 if Restriction_Active
(No_Task_Hierarchy
) then
1384 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1386 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1389 -- Add _Chain (not done for sequential elaboration policy, see
1390 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1392 if Partition_Elaboration_Policy
/= 'S' then
1393 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1396 -- Ada 2005 (AI-287): In case of default initialized components
1397 -- with tasks, we generate a null string actual parameter.
1398 -- This is just a workaround that must be improved later???
1400 if With_Default_Init
then
1402 Make_String_Literal
(Loc
,
1407 Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
, In_Init_Proc
);
1408 Decl
:= Last
(Decls
);
1411 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1412 Append_List
(Decls
, Res
);
1420 -- Add discriminant values if discriminants are present
1422 if Has_Discriminants
(Full_Init_Type
) then
1423 Discr
:= First_Discriminant
(Full_Init_Type
);
1424 while Present
(Discr
) loop
1426 -- If this is a discriminated concurrent type, the init_proc
1427 -- for the corresponding record is being called. Use that type
1428 -- directly to find the discriminant value, to handle properly
1429 -- intervening renamed discriminants.
1432 T
: Entity_Id
:= Full_Type
;
1435 if Is_Protected_Type
(T
) then
1436 T
:= Corresponding_Record_Type
(T
);
1440 Get_Discriminant_Value
(
1443 Discriminant_Constraint
(Full_Type
));
1446 -- If the target has access discriminants, and is constrained by
1447 -- an access to the enclosing construct, i.e. a current instance,
1448 -- replace the reference to the type by a reference to the object.
1450 if Nkind
(Arg
) = N_Attribute_Reference
1451 and then Is_Access_Type
(Etype
(Arg
))
1452 and then Is_Entity_Name
(Prefix
(Arg
))
1453 and then Is_Type
(Entity
(Prefix
(Arg
)))
1456 Make_Attribute_Reference
(Loc
,
1457 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1458 Attribute_Name
=> Name_Unrestricted_Access
);
1460 elsif In_Init_Proc
then
1462 -- Replace any possible references to the discriminant in the
1463 -- call to the record initialization procedure with references
1464 -- to the appropriate formal parameter.
1466 if Nkind
(Arg
) = N_Identifier
1467 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1469 Arg
:= New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
);
1471 -- Otherwise make a copy of the default expression. Note that
1472 -- we use the current Sloc for this, because we do not want the
1473 -- call to appear to be at the declaration point. Within the
1474 -- expression, replace discriminants with their discriminals.
1478 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1482 if Is_Constrained
(Full_Type
) then
1483 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1485 -- The constraints come from the discriminant default exps,
1486 -- they must be reevaluated, so we use New_Copy_Tree but we
1487 -- ensure the proper Sloc (for any embedded calls).
1489 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1493 -- Ada 2005 (AI-287): In case of default initialized components,
1494 -- if the component is constrained with a discriminant of the
1495 -- enclosing type, we need to generate the corresponding selected
1496 -- component node to access the discriminant value. In other cases
1497 -- this is not required, either because we are inside the init
1498 -- proc and we use the corresponding formal, or else because the
1499 -- component is constrained by an expression.
1501 if With_Default_Init
1502 and then Nkind
(Id_Ref
) = N_Selected_Component
1503 and then Nkind
(Arg
) = N_Identifier
1504 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1507 Make_Selected_Component
(Loc
,
1508 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1509 Selector_Name
=> Arg
));
1511 Append_To
(Args
, Arg
);
1514 Next_Discriminant
(Discr
);
1518 -- If this is a call to initialize the parent component of a derived
1519 -- tagged type, indicate that the tag should not be set in the parent.
1521 if Is_Tagged_Type
(Full_Init_Type
)
1522 and then not Is_CPP_Class
(Full_Init_Type
)
1523 and then Nkind
(Id_Ref
) = N_Selected_Component
1524 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1526 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1528 elsif Present
(Constructor_Ref
) then
1529 Append_List_To
(Args
,
1530 New_Copy_List
(Parameter_Associations
(Constructor_Ref
)));
1534 Make_Procedure_Call_Statement
(Loc
,
1535 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1536 Parameter_Associations
=> Args
));
1538 if Needs_Finalization
(Typ
)
1539 and then Nkind
(Id_Ref
) = N_Selected_Component
1541 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1544 (Obj_Ref
=> New_Copy_Tree
(First_Arg
),
1552 when RE_Not_Available
=>
1554 end Build_Initialization_Call
;
1556 ----------------------------
1557 -- Build_Record_Init_Proc --
1558 ----------------------------
1560 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
) is
1561 Decls
: constant List_Id
:= New_List
;
1562 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1563 Loc
: constant Source_Ptr
:= Sloc
(Rec_Ent
);
1565 Proc_Id
: Entity_Id
;
1566 Rec_Type
: Entity_Id
;
1567 Set_Tag
: Entity_Id
:= Empty
;
1569 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1570 -- Build an assignment statement which assigns the default expression
1571 -- to its corresponding record component if defined. The left hand side
1572 -- of the assignment is marked Assignment_OK so that initialization of
1573 -- limited private records works correctly. This routine may also build
1574 -- an adjustment call if the component is controlled.
1576 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1577 -- If the record has discriminants, add assignment statements to
1578 -- Statement_List to initialize the discriminant values from the
1579 -- arguments of the initialization procedure.
1581 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1582 -- Build a list representing a sequence of statements which initialize
1583 -- components of the given component list. This may involve building
1584 -- case statements for the variant parts. Append any locally declared
1585 -- objects on list Decls.
1587 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
1588 -- Given an untagged type-derivation that declares discriminants, e.g.
1590 -- type R (R1, R2 : Integer) is record ... end record;
1591 -- type D (D1 : Integer) is new R (1, D1);
1593 -- we make the _init_proc of D be
1595 -- procedure _init_proc (X : D; D1 : Integer) is
1597 -- _init_proc (R (X), 1, D1);
1600 -- This function builds the call statement in this _init_proc.
1602 procedure Build_CPP_Init_Procedure
;
1603 -- Build the tree corresponding to the procedure specification and body
1604 -- of the IC procedure that initializes the C++ part of the dispatch
1605 -- table of an Ada tagged type that is a derivation of a CPP type.
1606 -- Install it as the CPP_Init TSS.
1608 procedure Build_Init_Procedure
;
1609 -- Build the tree corresponding to the procedure specification and body
1610 -- of the initialization procedure and install it as the _init TSS.
1612 procedure Build_Offset_To_Top_Functions
;
1613 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1614 -- and body of Offset_To_Top, a function used in conjuction with types
1615 -- having secondary dispatch tables.
1617 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1618 -- Add range checks to components of discriminated records. S is a
1619 -- subtype indication of a record component. Check_List is a list
1620 -- to which the check actions are appended.
1622 function Component_Needs_Simple_Initialization
1623 (T
: Entity_Id
) return Boolean;
1624 -- Determine if a component needs simple initialization, given its type
1625 -- T. This routine is the same as Needs_Simple_Initialization except for
1626 -- components of type Tag and Interface_Tag. These two access types do
1627 -- not require initialization since they are explicitly initialized by
1630 function Parent_Subtype_Renaming_Discrims
return Boolean;
1631 -- Returns True for base types N that rename discriminants, else False
1633 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1634 -- Determine whether a record initialization procedure needs to be
1635 -- generated for the given record type.
1637 ----------------------
1638 -- Build_Assignment --
1639 ----------------------
1641 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1642 N_Loc
: constant Source_Ptr
:= Sloc
(N
);
1643 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1645 Kind
: Node_Kind
:= Nkind
(N
);
1651 Make_Selected_Component
(N_Loc
,
1652 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1653 Selector_Name
=> New_Occurrence_Of
(Id
, N_Loc
));
1654 Set_Assignment_OK
(Lhs
);
1656 -- Case of an access attribute applied to the current instance.
1657 -- Replace the reference to the type by a reference to the actual
1658 -- object. (Note that this handles the case of the top level of
1659 -- the expression being given by such an attribute, but does not
1660 -- cover uses nested within an initial value expression. Nested
1661 -- uses are unlikely to occur in practice, but are theoretically
1662 -- possible.) It is not clear how to handle them without fully
1663 -- traversing the expression. ???
1665 if Kind
= N_Attribute_Reference
1666 and then Nam_In
(Attribute_Name
(N
), Name_Unchecked_Access
,
1667 Name_Unrestricted_Access
)
1668 and then Is_Entity_Name
(Prefix
(N
))
1669 and then Is_Type
(Entity
(Prefix
(N
)))
1670 and then Entity
(Prefix
(N
)) = Rec_Type
1673 Make_Attribute_Reference
(N_Loc
,
1675 Make_Identifier
(N_Loc
, Name_uInit
),
1676 Attribute_Name
=> Name_Unrestricted_Access
);
1679 -- Take a copy of Exp to ensure that later copies of this component
1680 -- declaration in derived types see the original tree, not a node
1681 -- rewritten during expansion of the init_proc. If the copy contains
1682 -- itypes, the scope of the new itypes is the init_proc being built.
1684 Exp
:= New_Copy_Tree
(Exp
, New_Scope
=> Proc_Id
);
1687 Make_Assignment_Statement
(Loc
,
1689 Expression
=> Exp
));
1691 Set_No_Ctrl_Actions
(First
(Res
));
1693 -- Adjust the tag if tagged (because of possible view conversions).
1694 -- Suppress the tag adjustment when not Tagged_Type_Expansion because
1695 -- tags are represented implicitly in objects.
1697 if Is_Tagged_Type
(Typ
) and then Tagged_Type_Expansion
then
1699 Make_Assignment_Statement
(N_Loc
,
1701 Make_Selected_Component
(N_Loc
,
1703 New_Copy_Tree
(Lhs
, New_Scope
=> Proc_Id
),
1705 New_Occurrence_Of
(First_Tag_Component
(Typ
), N_Loc
)),
1708 Unchecked_Convert_To
(RTE
(RE_Tag
),
1712 (Access_Disp_Table
(Underlying_Type
(Typ
)))),
1716 -- Adjust the component if controlled except if it is an aggregate
1717 -- that will be expanded inline.
1719 if Kind
= N_Qualified_Expression
then
1720 Kind
:= Nkind
(Expression
(N
));
1723 if Needs_Finalization
(Typ
)
1724 and then not (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
))
1725 and then not Is_Limited_View
(Typ
)
1729 (Obj_Ref
=> New_Copy_Tree
(Lhs
),
1730 Typ
=> Etype
(Id
)));
1736 when RE_Not_Available
=>
1738 end Build_Assignment
;
1740 ------------------------------------
1741 -- Build_Discriminant_Assignments --
1742 ------------------------------------
1744 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1745 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1750 if Has_Discriminants
(Rec_Type
)
1751 and then not Is_Unchecked_Union
(Rec_Type
)
1753 D
:= First_Discriminant
(Rec_Type
);
1754 while Present
(D
) loop
1756 -- Don't generate the assignment for discriminants in derived
1757 -- tagged types if the discriminant is a renaming of some
1758 -- ancestor discriminant. This initialization will be done
1759 -- when initializing the _parent field of the derived record.
1762 and then Present
(Corresponding_Discriminant
(D
))
1768 Append_List_To
(Statement_List
,
1769 Build_Assignment
(D
,
1770 New_Occurrence_Of
(Discriminal
(D
), D_Loc
)));
1773 Next_Discriminant
(D
);
1776 end Build_Discriminant_Assignments
;
1778 --------------------------
1779 -- Build_Init_Call_Thru --
1780 --------------------------
1782 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
1783 Parent_Proc
: constant Entity_Id
:=
1784 Base_Init_Proc
(Etype
(Rec_Type
));
1786 Parent_Type
: constant Entity_Id
:=
1787 Etype
(First_Formal
(Parent_Proc
));
1789 Uparent_Type
: constant Entity_Id
:=
1790 Underlying_Type
(Parent_Type
);
1792 First_Discr_Param
: Node_Id
;
1796 First_Arg
: Node_Id
;
1797 Parent_Discr
: Entity_Id
;
1801 -- First argument (_Init) is the object to be initialized.
1802 -- ??? not sure where to get a reasonable Loc for First_Arg
1805 OK_Convert_To
(Parent_Type
,
1807 (Defining_Identifier
(First
(Parameters
)), Loc
));
1809 Set_Etype
(First_Arg
, Parent_Type
);
1811 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1813 -- In the tasks case,
1814 -- add _Master as the value of the _Master parameter
1815 -- add _Chain as the value of the _Chain parameter.
1816 -- add _Task_Name as the value of the _Task_Name parameter.
1817 -- At the outer level, these will be variables holding the
1818 -- corresponding values obtained from GNARL or the expander.
1820 -- At inner levels, they will be the parameters passed down through
1821 -- the outer routines.
1823 First_Discr_Param
:= Next
(First
(Parameters
));
1825 if Has_Task
(Rec_Type
) then
1826 if Restriction_Active
(No_Task_Hierarchy
) then
1828 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1830 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1833 -- Add _Chain (not done for sequential elaboration policy, see
1834 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1836 if Partition_Elaboration_Policy
/= 'S' then
1837 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1840 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
1841 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
1844 -- Append discriminant values
1846 if Has_Discriminants
(Uparent_Type
) then
1847 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
1849 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
1850 while Present
(Parent_Discr
) loop
1852 -- Get the initial value for this discriminant
1853 -- ??? needs to be cleaned up to use parent_Discr_Constr
1857 Discr
: Entity_Id
:=
1858 First_Stored_Discriminant
(Uparent_Type
);
1860 Discr_Value
: Elmt_Id
:=
1861 First_Elmt
(Stored_Constraint
(Rec_Type
));
1864 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
1865 Next_Stored_Discriminant
(Discr
);
1866 Next_Elmt
(Discr_Value
);
1869 Arg
:= Node
(Discr_Value
);
1872 -- Append it to the list
1874 if Nkind
(Arg
) = N_Identifier
1875 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1878 New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
));
1880 -- Case of access discriminants. We replace the reference
1881 -- to the type by a reference to the actual object.
1883 -- Is above comment right??? Use of New_Copy below seems mighty
1887 Append_To
(Args
, New_Copy
(Arg
));
1890 Next_Discriminant
(Parent_Discr
);
1896 Make_Procedure_Call_Statement
(Loc
,
1898 New_Occurrence_Of
(Parent_Proc
, Loc
),
1899 Parameter_Associations
=> Args
));
1902 end Build_Init_Call_Thru
;
1904 -----------------------------------
1905 -- Build_Offset_To_Top_Functions --
1906 -----------------------------------
1908 procedure Build_Offset_To_Top_Functions
is
1910 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
);
1912 -- function Fxx (O : Address) return Storage_Offset is
1913 -- type Acc is access all <Typ>;
1915 -- return Acc!(O).Iface_Comp'Position;
1918 ----------------------------------
1919 -- Build_Offset_To_Top_Function --
1920 ----------------------------------
1922 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
) is
1923 Body_Node
: Node_Id
;
1924 Func_Id
: Entity_Id
;
1925 Spec_Node
: Node_Id
;
1926 Acc_Type
: Entity_Id
;
1929 Func_Id
:= Make_Temporary
(Loc
, 'F');
1930 Set_DT_Offset_To_Top_Func
(Iface_Comp
, Func_Id
);
1933 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
1935 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
1936 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
1937 Set_Parameter_Specifications
(Spec_Node
, New_List
(
1938 Make_Parameter_Specification
(Loc
,
1939 Defining_Identifier
=>
1940 Make_Defining_Identifier
(Loc
, Name_uO
),
1943 New_Occurrence_Of
(RTE
(RE_Address
), Loc
))));
1944 Set_Result_Definition
(Spec_Node
,
1945 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1948 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
1950 -- return O.Iface_Comp'Position;
1953 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1954 Set_Specification
(Body_Node
, Spec_Node
);
1956 Acc_Type
:= Make_Temporary
(Loc
, 'T');
1957 Set_Declarations
(Body_Node
, New_List
(
1958 Make_Full_Type_Declaration
(Loc
,
1959 Defining_Identifier
=> Acc_Type
,
1961 Make_Access_To_Object_Definition
(Loc
,
1962 All_Present
=> True,
1963 Null_Exclusion_Present
=> False,
1964 Constant_Present
=> False,
1965 Subtype_Indication
=>
1966 New_Occurrence_Of
(Rec_Type
, Loc
)))));
1968 Set_Handled_Statement_Sequence
(Body_Node
,
1969 Make_Handled_Sequence_Of_Statements
(Loc
,
1970 Statements
=> New_List
(
1971 Make_Simple_Return_Statement
(Loc
,
1973 Make_Attribute_Reference
(Loc
,
1975 Make_Selected_Component
(Loc
,
1977 Unchecked_Convert_To
(Acc_Type
,
1978 Make_Identifier
(Loc
, Name_uO
)),
1980 New_Occurrence_Of
(Iface_Comp
, Loc
)),
1981 Attribute_Name
=> Name_Position
)))));
1983 Set_Ekind
(Func_Id
, E_Function
);
1984 Set_Mechanism
(Func_Id
, Default_Mechanism
);
1985 Set_Is_Internal
(Func_Id
, True);
1987 if not Debug_Generated_Code
then
1988 Set_Debug_Info_Off
(Func_Id
);
1991 Analyze
(Body_Node
);
1993 Append_Freeze_Action
(Rec_Type
, Body_Node
);
1994 end Build_Offset_To_Top_Function
;
1998 Iface_Comp
: Node_Id
;
1999 Iface_Comp_Elmt
: Elmt_Id
;
2000 Ifaces_Comp_List
: Elist_Id
;
2002 -- Start of processing for Build_Offset_To_Top_Functions
2005 -- Offset_To_Top_Functions are built only for derivations of types
2006 -- with discriminants that cover interface types.
2007 -- Nothing is needed either in case of virtual targets, since
2008 -- interfaces are handled directly by the target.
2010 if not Is_Tagged_Type
(Rec_Type
)
2011 or else Etype
(Rec_Type
) = Rec_Type
2012 or else not Has_Discriminants
(Etype
(Rec_Type
))
2013 or else not Tagged_Type_Expansion
2018 Collect_Interface_Components
(Rec_Type
, Ifaces_Comp_List
);
2020 -- For each interface type with secondary dispatch table we generate
2021 -- the Offset_To_Top_Functions (required to displace the pointer in
2022 -- interface conversions)
2024 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
2025 while Present
(Iface_Comp_Elmt
) loop
2026 Iface_Comp
:= Node
(Iface_Comp_Elmt
);
2027 pragma Assert
(Is_Interface
(Related_Type
(Iface_Comp
)));
2029 -- If the interface is a parent of Rec_Type it shares the primary
2030 -- dispatch table and hence there is no need to build the function
2032 if not Is_Ancestor
(Related_Type
(Iface_Comp
), Rec_Type
,
2033 Use_Full_View
=> True)
2035 Build_Offset_To_Top_Function
(Iface_Comp
);
2038 Next_Elmt
(Iface_Comp_Elmt
);
2040 end Build_Offset_To_Top_Functions
;
2042 ------------------------------
2043 -- Build_CPP_Init_Procedure --
2044 ------------------------------
2046 procedure Build_CPP_Init_Procedure
is
2047 Body_Node
: Node_Id
;
2048 Body_Stmts
: List_Id
;
2049 Flag_Id
: Entity_Id
;
2050 Handled_Stmt_Node
: Node_Id
;
2051 Init_Tags_List
: List_Id
;
2052 Proc_Id
: Entity_Id
;
2053 Proc_Spec_Node
: Node_Id
;
2056 -- Check cases requiring no IC routine
2058 if not Is_CPP_Class
(Root_Type
(Rec_Type
))
2059 or else Is_CPP_Class
(Rec_Type
)
2060 or else CPP_Num_Prims
(Rec_Type
) = 0
2061 or else not Tagged_Type_Expansion
2062 or else No_Run_Time_Mode
2069 -- Flag : Boolean := False;
2071 -- procedure Typ_IC is
2074 -- Copy C++ dispatch table slots from parent
2075 -- Update C++ slots of overridden primitives
2079 Flag_Id
:= Make_Temporary
(Loc
, 'F');
2081 Append_Freeze_Action
(Rec_Type
,
2082 Make_Object_Declaration
(Loc
,
2083 Defining_Identifier
=> Flag_Id
,
2084 Object_Definition
=>
2085 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2087 New_Occurrence_Of
(Standard_True
, Loc
)));
2089 Body_Stmts
:= New_List
;
2090 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2092 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2095 Make_Defining_Identifier
(Loc
,
2096 Chars
=> Make_TSS_Name
(Rec_Type
, TSS_CPP_Init_Proc
));
2098 Set_Ekind
(Proc_Id
, E_Procedure
);
2099 Set_Is_Internal
(Proc_Id
);
2101 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2103 Set_Parameter_Specifications
(Proc_Spec_Node
, New_List
);
2104 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2105 Set_Declarations
(Body_Node
, New_List
);
2107 Init_Tags_List
:= Build_Inherit_CPP_Prims
(Rec_Type
);
2109 Append_To
(Init_Tags_List
,
2110 Make_Assignment_Statement
(Loc
,
2112 New_Occurrence_Of
(Flag_Id
, Loc
),
2114 New_Occurrence_Of
(Standard_False
, Loc
)));
2116 Append_To
(Body_Stmts
,
2117 Make_If_Statement
(Loc
,
2118 Condition
=> New_Occurrence_Of
(Flag_Id
, Loc
),
2119 Then_Statements
=> Init_Tags_List
));
2121 Handled_Stmt_Node
:=
2122 New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2123 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2124 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2125 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2127 if not Debug_Generated_Code
then
2128 Set_Debug_Info_Off
(Proc_Id
);
2131 -- Associate CPP_Init_Proc with type
2133 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2134 end Build_CPP_Init_Procedure
;
2136 --------------------------
2137 -- Build_Init_Procedure --
2138 --------------------------
2140 procedure Build_Init_Procedure
is
2141 Body_Stmts
: List_Id
;
2142 Body_Node
: Node_Id
;
2143 Handled_Stmt_Node
: Node_Id
;
2144 Init_Tags_List
: List_Id
;
2145 Parameters
: List_Id
;
2146 Proc_Spec_Node
: Node_Id
;
2147 Record_Extension_Node
: Node_Id
;
2150 Body_Stmts
:= New_List
;
2151 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2152 Set_Ekind
(Proc_Id
, E_Procedure
);
2154 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2155 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2157 Parameters
:= Init_Formals
(Rec_Type
);
2158 Append_List_To
(Parameters
,
2159 Build_Discriminant_Formals
(Rec_Type
, True));
2161 -- For tagged types, we add a flag to indicate whether the routine
2162 -- is called to initialize a parent component in the init_proc of
2163 -- a type extension. If the flag is false, we do not set the tag
2164 -- because it has been set already in the extension.
2166 if Is_Tagged_Type
(Rec_Type
) then
2167 Set_Tag
:= Make_Temporary
(Loc
, 'P');
2169 Append_To
(Parameters
,
2170 Make_Parameter_Specification
(Loc
,
2171 Defining_Identifier
=> Set_Tag
,
2173 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2175 New_Occurrence_Of
(Standard_True
, Loc
)));
2178 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
2179 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2180 Set_Declarations
(Body_Node
, Decls
);
2182 -- N is a Derived_Type_Definition that renames the parameters of the
2183 -- ancestor type. We initialize it by expanding our discriminants and
2184 -- call the ancestor _init_proc with a type-converted object.
2186 if Parent_Subtype_Renaming_Discrims
then
2187 Append_List_To
(Body_Stmts
, Build_Init_Call_Thru
(Parameters
));
2189 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
2190 Build_Discriminant_Assignments
(Body_Stmts
);
2192 if not Null_Present
(Type_Definition
(N
)) then
2193 Append_List_To
(Body_Stmts
,
2194 Build_Init_Statements
(Component_List
(Type_Definition
(N
))));
2197 -- N is a Derived_Type_Definition with a possible non-empty
2198 -- extension. The initialization of a type extension consists in the
2199 -- initialization of the components in the extension.
2202 Build_Discriminant_Assignments
(Body_Stmts
);
2204 Record_Extension_Node
:=
2205 Record_Extension_Part
(Type_Definition
(N
));
2207 if not Null_Present
(Record_Extension_Node
) then
2209 Stmts
: constant List_Id
:=
2210 Build_Init_Statements
(
2211 Component_List
(Record_Extension_Node
));
2214 -- The parent field must be initialized first because the
2215 -- offset of the new discriminants may depend on it. This is
2216 -- not needed if the parent is an interface type because in
2217 -- such case the initialization of the _parent field was not
2220 if not Is_Interface
(Etype
(Rec_Ent
)) then
2222 Parent_IP
: constant Name_Id
:=
2223 Make_Init_Proc_Name
(Etype
(Rec_Ent
));
2229 -- Look for a call to the parent IP at the beginning
2230 -- of Stmts associated with the record extension
2232 Stmt
:= First
(Stmts
);
2234 while Present
(Stmt
) loop
2235 if Nkind
(Stmt
) = N_Procedure_Call_Statement
2236 and then Chars
(Name
(Stmt
)) = Parent_IP
2245 -- If found then move it to the beginning of the
2246 -- statements of this IP routine
2248 if Present
(IP_Call
) then
2249 IP_Stmts
:= New_List
;
2251 Stmt
:= Remove_Head
(Stmts
);
2252 Append_To
(IP_Stmts
, Stmt
);
2253 exit when Stmt
= IP_Call
;
2256 Prepend_List_To
(Body_Stmts
, IP_Stmts
);
2261 Append_List_To
(Body_Stmts
, Stmts
);
2266 -- Add here the assignment to instantiate the Tag
2268 -- The assignment corresponds to the code:
2270 -- _Init._Tag := Typ'Tag;
2272 -- Suppress the tag assignment when not Tagged_Type_Expansion because
2273 -- tags are represented implicitly in objects. It is also suppressed
2274 -- in case of CPP_Class types because in this case the tag is
2275 -- initialized in the C++ side.
2277 if Is_Tagged_Type
(Rec_Type
)
2278 and then Tagged_Type_Expansion
2279 and then not No_Run_Time_Mode
2281 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2282 -- the actual object and invoke the IP of the parent (in this
2283 -- order). The tag must be initialized before the call to the IP
2284 -- of the parent and the assignments to other components because
2285 -- the initial value of the components may depend on the tag (eg.
2286 -- through a dispatching operation on an access to the current
2287 -- type). The tag assignment is not done when initializing the
2288 -- parent component of a type extension, because in that case the
2289 -- tag is set in the extension.
2291 if not Is_CPP_Class
(Root_Type
(Rec_Type
)) then
2293 -- Initialize the primary tag component
2295 Init_Tags_List
:= New_List
(
2296 Make_Assignment_Statement
(Loc
,
2298 Make_Selected_Component
(Loc
,
2299 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2302 (First_Tag_Component
(Rec_Type
), Loc
)),
2306 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2308 -- Ada 2005 (AI-251): Initialize the secondary tags components
2309 -- located at fixed positions (tags whose position depends on
2310 -- variable size components are initialized later ---see below)
2312 if Ada_Version
>= Ada_2005
2313 and then not Is_Interface
(Rec_Type
)
2314 and then Has_Interfaces
(Rec_Type
)
2318 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2319 Stmts_List
=> Init_Tags_List
,
2320 Fixed_Comps
=> True,
2321 Variable_Comps
=> False);
2324 Prepend_To
(Body_Stmts
,
2325 Make_If_Statement
(Loc
,
2326 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2327 Then_Statements
=> Init_Tags_List
));
2329 -- Case 2: CPP type. The imported C++ constructor takes care of
2330 -- tags initialization. No action needed here because the IP
2331 -- is built by Set_CPP_Constructors; in this case the IP is a
2332 -- wrapper that invokes the C++ constructor and copies the C++
2333 -- tags locally. Done to inherit the C++ slots in Ada derivations
2336 elsif Is_CPP_Class
(Rec_Type
) then
2337 pragma Assert
(False);
2340 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2341 -- type derivations. Derivations of imported C++ classes add a
2342 -- complication, because we cannot inhibit tag setting in the
2343 -- constructor for the parent. Hence we initialize the tag after
2344 -- the call to the parent IP (that is, in reverse order compared
2345 -- with pure Ada hierarchies ---see comment on case 1).
2348 -- Initialize the primary tag
2350 Init_Tags_List
:= New_List
(
2351 Make_Assignment_Statement
(Loc
,
2353 Make_Selected_Component
(Loc
,
2354 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2357 (First_Tag_Component
(Rec_Type
), Loc
)),
2361 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2363 -- Ada 2005 (AI-251): Initialize the secondary tags components
2364 -- located at fixed positions (tags whose position depends on
2365 -- variable size components are initialized later ---see below)
2367 if Ada_Version
>= Ada_2005
2368 and then not Is_Interface
(Rec_Type
)
2369 and then Has_Interfaces
(Rec_Type
)
2373 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2374 Stmts_List
=> Init_Tags_List
,
2375 Fixed_Comps
=> True,
2376 Variable_Comps
=> False);
2379 -- Initialize the tag component after invocation of parent IP.
2382 -- parent_IP(_init.parent); // Invokes the C++ constructor
2383 -- [ typIC; ] // Inherit C++ slots from parent
2390 -- Search for the call to the IP of the parent. We assume
2391 -- that the first init_proc call is for the parent.
2393 Ins_Nod
:= First
(Body_Stmts
);
2394 while Present
(Next
(Ins_Nod
))
2395 and then (Nkind
(Ins_Nod
) /= N_Procedure_Call_Statement
2396 or else not Is_Init_Proc
(Name
(Ins_Nod
)))
2401 -- The IC routine copies the inherited slots of the C+ part
2402 -- of the dispatch table from the parent and updates the
2403 -- overridden C++ slots.
2405 if CPP_Num_Prims
(Rec_Type
) > 0 then
2407 Init_DT
: Entity_Id
;
2411 Init_DT
:= CPP_Init_Proc
(Rec_Type
);
2412 pragma Assert
(Present
(Init_DT
));
2415 Make_Procedure_Call_Statement
(Loc
,
2416 New_Occurrence_Of
(Init_DT
, Loc
));
2417 Insert_After
(Ins_Nod
, New_Nod
);
2419 -- Update location of init tag statements
2425 Insert_List_After
(Ins_Nod
, Init_Tags_List
);
2429 -- Ada 2005 (AI-251): Initialize the secondary tag components
2430 -- located at variable positions. We delay the generation of this
2431 -- code until here because the value of the attribute 'Position
2432 -- applied to variable size components of the parent type that
2433 -- depend on discriminants is only safely read at runtime after
2434 -- the parent components have been initialized.
2436 if Ada_Version
>= Ada_2005
2437 and then not Is_Interface
(Rec_Type
)
2438 and then Has_Interfaces
(Rec_Type
)
2439 and then Has_Discriminants
(Etype
(Rec_Type
))
2440 and then Is_Variable_Size_Record
(Etype
(Rec_Type
))
2442 Init_Tags_List
:= New_List
;
2446 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2447 Stmts_List
=> Init_Tags_List
,
2448 Fixed_Comps
=> False,
2449 Variable_Comps
=> True);
2451 if Is_Non_Empty_List
(Init_Tags_List
) then
2452 Append_List_To
(Body_Stmts
, Init_Tags_List
);
2457 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2458 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2461 -- Deep_Finalize (_init, C1, ..., CN);
2465 and then Needs_Finalization
(Rec_Type
)
2466 and then not Is_Abstract_Type
(Rec_Type
)
2467 and then not Restriction_Active
(No_Exception_Propagation
)
2474 -- Create a local version of Deep_Finalize which has indication
2475 -- of partial initialization state.
2477 DF_Id
:= Make_Temporary
(Loc
, 'F');
2479 Append_To
(Decls
, Make_Local_Deep_Finalize
(Rec_Type
, DF_Id
));
2482 Make_Procedure_Call_Statement
(Loc
,
2483 Name
=> New_Occurrence_Of
(DF_Id
, Loc
),
2484 Parameter_Associations
=> New_List
(
2485 Make_Identifier
(Loc
, Name_uInit
),
2486 New_Occurrence_Of
(Standard_False
, Loc
)));
2488 -- Do not emit warnings related to the elaboration order when a
2489 -- controlled object is declared before the body of Finalize is
2492 Set_No_Elaboration_Check
(DF_Call
);
2494 Set_Exception_Handlers
(Handled_Stmt_Node
, New_List
(
2495 Make_Exception_Handler
(Loc
,
2496 Exception_Choices
=> New_List
(
2497 Make_Others_Choice
(Loc
)),
2498 Statements
=> New_List
(
2500 Make_Raise_Statement
(Loc
)))));
2503 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2506 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2508 if not Debug_Generated_Code
then
2509 Set_Debug_Info_Off
(Proc_Id
);
2512 -- Associate Init_Proc with type, and determine if the procedure
2513 -- is null (happens because of the Initialize_Scalars pragma case,
2514 -- where we have to generate a null procedure in case it is called
2515 -- by a client with Initialize_Scalars set). Such procedures have
2516 -- to be generated, but do not have to be called, so we mark them
2517 -- as null to suppress the call.
2519 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2521 if List_Length
(Body_Stmts
) = 1
2523 -- We must skip SCIL nodes because they may have been added to this
2524 -- list by Insert_Actions.
2526 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
2528 Set_Is_Null_Init_Proc
(Proc_Id
);
2530 end Build_Init_Procedure
;
2532 ---------------------------
2533 -- Build_Init_Statements --
2534 ---------------------------
2536 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
2537 Checks
: constant List_Id
:= New_List
;
2538 Actions
: List_Id
:= No_List
;
2539 Counter_Id
: Entity_Id
:= Empty
;
2540 Comp_Loc
: Source_Ptr
;
2544 Parent_Stmts
: List_Id
;
2548 procedure Increment_Counter
(Loc
: Source_Ptr
);
2549 -- Generate an "increment by one" statement for the current counter
2550 -- and append it to the list Stmts.
2552 procedure Make_Counter
(Loc
: Source_Ptr
);
2553 -- Create a new counter for the current component list. The routine
2554 -- creates a new defining Id, adds an object declaration and sets
2555 -- the Id generator for the next variant.
2557 -----------------------
2558 -- Increment_Counter --
2559 -----------------------
2561 procedure Increment_Counter
(Loc
: Source_Ptr
) is
2564 -- Counter := Counter + 1;
2567 Make_Assignment_Statement
(Loc
,
2568 Name
=> New_Occurrence_Of
(Counter_Id
, Loc
),
2571 Left_Opnd
=> New_Occurrence_Of
(Counter_Id
, Loc
),
2572 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
2573 end Increment_Counter
;
2579 procedure Make_Counter
(Loc
: Source_Ptr
) is
2581 -- Increment the Id generator
2583 Counter
:= Counter
+ 1;
2585 -- Create the entity and declaration
2588 Make_Defining_Identifier
(Loc
,
2589 Chars
=> New_External_Name
('C', Counter
));
2592 -- Cnn : Integer := 0;
2595 Make_Object_Declaration
(Loc
,
2596 Defining_Identifier
=> Counter_Id
,
2597 Object_Definition
=>
2598 New_Occurrence_Of
(Standard_Integer
, Loc
),
2600 Make_Integer_Literal
(Loc
, 0)));
2603 -- Start of processing for Build_Init_Statements
2606 if Null_Present
(Comp_List
) then
2607 return New_List
(Make_Null_Statement
(Loc
));
2610 Parent_Stmts
:= New_List
;
2613 -- Loop through visible declarations of task types and protected
2614 -- types moving any expanded code from the spec to the body of the
2617 if Is_Task_Record_Type
(Rec_Type
)
2618 or else Is_Protected_Record_Type
(Rec_Type
)
2621 Decl
: constant Node_Id
:=
2622 Parent
(Corresponding_Concurrent_Type
(Rec_Type
));
2628 if Is_Task_Record_Type
(Rec_Type
) then
2629 Def
:= Task_Definition
(Decl
);
2631 Def
:= Protected_Definition
(Decl
);
2634 if Present
(Def
) then
2635 N1
:= First
(Visible_Declarations
(Def
));
2636 while Present
(N1
) loop
2640 if Nkind
(N2
) in N_Statement_Other_Than_Procedure_Call
2641 or else Nkind
(N2
) in N_Raise_xxx_Error
2642 or else Nkind
(N2
) = N_Procedure_Call_Statement
2645 New_Copy_Tree
(N2
, New_Scope
=> Proc_Id
));
2646 Rewrite
(N2
, Make_Null_Statement
(Sloc
(N2
)));
2654 -- Loop through components, skipping pragmas, in 2 steps. The first
2655 -- step deals with regular components. The second step deals with
2656 -- components that have per object constraints and no explicit
2661 -- First pass : regular components
2663 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2664 while Present
(Decl
) loop
2665 Comp_Loc
:= Sloc
(Decl
);
2667 (Subtype_Indication
(Component_Definition
(Decl
)), Checks
);
2669 Id
:= Defining_Identifier
(Decl
);
2672 -- Leave any processing of per-object constrained component for
2675 if Has_Access_Constraint
(Id
) and then No
(Expression
(Decl
)) then
2678 -- Regular component cases
2681 -- In the context of the init proc, references to discriminants
2682 -- resolve to denote the discriminals: this is where we can
2683 -- freeze discriminant dependent component subtypes.
2685 if not Is_Frozen
(Typ
) then
2686 Append_List_To
(Stmts
, Freeze_Entity
(Typ
, N
));
2689 -- Explicit initialization
2691 if Present
(Expression
(Decl
)) then
2692 if Is_CPP_Constructor_Call
(Expression
(Decl
)) then
2694 Build_Initialization_Call
2697 Make_Selected_Component
(Comp_Loc
,
2699 Make_Identifier
(Comp_Loc
, Name_uInit
),
2701 New_Occurrence_Of
(Id
, Comp_Loc
)),
2703 In_Init_Proc
=> True,
2704 Enclos_Type
=> Rec_Type
,
2705 Discr_Map
=> Discr_Map
,
2706 Constructor_Ref
=> Expression
(Decl
));
2708 Actions
:= Build_Assignment
(Id
, Expression
(Decl
));
2711 -- CPU, Dispatching_Domain, Priority and Size components are
2712 -- filled with the corresponding rep item expression of the
2713 -- concurrent type (if any).
2715 elsif Ekind
(Scope
(Id
)) = E_Record_Type
2716 and then Present
(Corresponding_Concurrent_Type
(Scope
(Id
)))
2717 and then Nam_In
(Chars
(Id
), Name_uCPU
,
2718 Name_uDispatching_Domain
,
2727 if Chars
(Id
) = Name_uCPU
then
2730 elsif Chars
(Id
) = Name_uDispatching_Domain
then
2731 Nam
:= Name_Dispatching_Domain
;
2733 elsif Chars
(Id
) = Name_uPriority
then
2734 Nam
:= Name_Priority
;
2737 -- Get the Rep Item (aspect specification, attribute
2738 -- definition clause or pragma) of the corresponding
2743 (Corresponding_Concurrent_Type
(Scope
(Id
)),
2745 Check_Parents
=> False);
2747 if Present
(Ritem
) then
2751 if Nkind
(Ritem
) = N_Pragma
then
2752 Exp
:= First
(Pragma_Argument_Associations
(Ritem
));
2754 if Nkind
(Exp
) = N_Pragma_Argument_Association
then
2755 Exp
:= Expression
(Exp
);
2758 -- Conversion for Priority expression
2760 if Nam
= Name_Priority
then
2761 if Pragma_Name
(Ritem
) = Name_Priority
2762 and then not GNAT_Mode
2764 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2767 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2771 -- Aspect/Attribute definition clause case
2774 Exp
:= Expression
(Ritem
);
2776 -- Conversion for Priority expression
2778 if Nam
= Name_Priority
then
2779 if Chars
(Ritem
) = Name_Priority
2780 and then not GNAT_Mode
2782 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2785 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2790 -- Conversion for Dispatching_Domain value
2792 if Nam
= Name_Dispatching_Domain
then
2794 Unchecked_Convert_To
2795 (RTE
(RE_Dispatching_Domain_Access
), Exp
);
2798 Actions
:= Build_Assignment
(Id
, Exp
);
2800 -- Nothing needed if no Rep Item
2807 -- Composite component with its own Init_Proc
2809 elsif not Is_Interface
(Typ
)
2810 and then Has_Non_Null_Base_Init_Proc
(Typ
)
2813 Build_Initialization_Call
2815 Make_Selected_Component
(Comp_Loc
,
2817 Make_Identifier
(Comp_Loc
, Name_uInit
),
2818 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
2820 In_Init_Proc
=> True,
2821 Enclos_Type
=> Rec_Type
,
2822 Discr_Map
=> Discr_Map
);
2824 Clean_Task_Names
(Typ
, Proc_Id
);
2826 -- Simple initialization
2828 elsif Component_Needs_Simple_Initialization
(Typ
) then
2831 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
)));
2833 -- Nothing needed for this case
2839 if Present
(Checks
) then
2840 if Chars
(Id
) = Name_uParent
then
2841 Append_List_To
(Parent_Stmts
, Checks
);
2843 Append_List_To
(Stmts
, Checks
);
2847 if Present
(Actions
) then
2848 if Chars
(Id
) = Name_uParent
then
2849 Append_List_To
(Parent_Stmts
, Actions
);
2852 Append_List_To
(Stmts
, Actions
);
2854 -- Preserve initialization state in the current counter
2856 if Needs_Finalization
(Typ
) then
2857 if No
(Counter_Id
) then
2858 Make_Counter
(Comp_Loc
);
2861 Increment_Counter
(Comp_Loc
);
2867 Next_Non_Pragma
(Decl
);
2870 -- The parent field must be initialized first because variable
2871 -- size components of the parent affect the location of all the
2874 Prepend_List_To
(Stmts
, Parent_Stmts
);
2876 -- Set up tasks and protected object support. This needs to be done
2877 -- before any component with a per-object access discriminant
2878 -- constraint, or any variant part (which may contain such
2879 -- components) is initialized, because the initialization of these
2880 -- components may reference the enclosing concurrent object.
2882 -- For a task record type, add the task create call and calls to bind
2883 -- any interrupt (signal) entries.
2885 if Is_Task_Record_Type
(Rec_Type
) then
2887 -- In the case of the restricted run time the ATCB has already
2888 -- been preallocated.
2890 if Restricted_Profile
then
2892 Make_Assignment_Statement
(Loc
,
2894 Make_Selected_Component
(Loc
,
2895 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2896 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
2898 Make_Attribute_Reference
(Loc
,
2900 Make_Selected_Component
(Loc
,
2901 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2902 Selector_Name
=> Make_Identifier
(Loc
, Name_uATCB
)),
2903 Attribute_Name
=> Name_Unchecked_Access
)));
2906 Append_To
(Stmts
, Make_Task_Create_Call
(Rec_Type
));
2909 Task_Type
: constant Entity_Id
:=
2910 Corresponding_Concurrent_Type
(Rec_Type
);
2911 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
2912 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
2913 Decl_Loc
: Source_Ptr
;
2918 if Present
(Task_Def
) then
2919 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
2920 while Present
(Vis_Decl
) loop
2921 Decl_Loc
:= Sloc
(Vis_Decl
);
2923 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
2924 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
2927 Ent
:= Entity
(Name
(Vis_Decl
));
2929 if Ekind
(Ent
) = E_Entry
then
2931 Make_Procedure_Call_Statement
(Decl_Loc
,
2933 New_Occurrence_Of
(RTE
(
2934 RE_Bind_Interrupt_To_Entry
), Decl_Loc
),
2935 Parameter_Associations
=> New_List
(
2936 Make_Selected_Component
(Decl_Loc
,
2938 Make_Identifier
(Decl_Loc
, Name_uInit
),
2941 (Decl_Loc
, Name_uTask_Id
)),
2942 Entry_Index_Expression
2943 (Decl_Loc
, Ent
, Empty
, Task_Type
),
2944 Expression
(Vis_Decl
))));
2955 -- For a protected type, add statements generated by
2956 -- Make_Initialize_Protection.
2958 if Is_Protected_Record_Type
(Rec_Type
) then
2959 Append_List_To
(Stmts
,
2960 Make_Initialize_Protection
(Rec_Type
));
2963 -- Second pass: components with per-object constraints
2966 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2967 while Present
(Decl
) loop
2968 Comp_Loc
:= Sloc
(Decl
);
2969 Id
:= Defining_Identifier
(Decl
);
2972 if Has_Access_Constraint
(Id
)
2973 and then No
(Expression
(Decl
))
2975 if Has_Non_Null_Base_Init_Proc
(Typ
) then
2976 Append_List_To
(Stmts
,
2977 Build_Initialization_Call
(Comp_Loc
,
2978 Make_Selected_Component
(Comp_Loc
,
2980 Make_Identifier
(Comp_Loc
, Name_uInit
),
2981 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
2983 In_Init_Proc
=> True,
2984 Enclos_Type
=> Rec_Type
,
2985 Discr_Map
=> Discr_Map
));
2987 Clean_Task_Names
(Typ
, Proc_Id
);
2989 -- Preserve initialization state in the current counter
2991 if Needs_Finalization
(Typ
) then
2992 if No
(Counter_Id
) then
2993 Make_Counter
(Comp_Loc
);
2996 Increment_Counter
(Comp_Loc
);
2999 elsif Component_Needs_Simple_Initialization
(Typ
) then
3000 Append_List_To
(Stmts
,
3002 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
))));
3006 Next_Non_Pragma
(Decl
);
3010 -- Process the variant part
3012 if Present
(Variant_Part
(Comp_List
)) then
3014 Variant_Alts
: constant List_Id
:= New_List
;
3015 Var_Loc
: Source_Ptr
;
3020 First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
3021 while Present
(Variant
) loop
3022 Var_Loc
:= Sloc
(Variant
);
3023 Append_To
(Variant_Alts
,
3024 Make_Case_Statement_Alternative
(Var_Loc
,
3026 New_Copy_List
(Discrete_Choices
(Variant
)),
3028 Build_Init_Statements
(Component_List
(Variant
))));
3029 Next_Non_Pragma
(Variant
);
3032 -- The expression of the case statement which is a reference
3033 -- to one of the discriminants is replaced by the appropriate
3034 -- formal parameter of the initialization procedure.
3037 Make_Case_Statement
(Var_Loc
,
3039 New_Occurrence_Of
(Discriminal
(
3040 Entity
(Name
(Variant_Part
(Comp_List
)))), Var_Loc
),
3041 Alternatives
=> Variant_Alts
));
3045 -- If no initializations when generated for component declarations
3046 -- corresponding to this Stmts, append a null statement to Stmts to
3047 -- to make it a valid Ada tree.
3049 if Is_Empty_List
(Stmts
) then
3050 Append
(Make_Null_Statement
(Loc
), Stmts
);
3056 when RE_Not_Available
=>
3058 end Build_Init_Statements
;
3060 -------------------------
3061 -- Build_Record_Checks --
3062 -------------------------
3064 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
3065 Subtype_Mark_Id
: Entity_Id
;
3067 procedure Constrain_Array
3069 Check_List
: List_Id
);
3070 -- Apply a list of index constraints to an unconstrained array type.
3071 -- The first parameter is the entity for the resulting subtype.
3072 -- Check_List is a list to which the check actions are appended.
3074 ---------------------
3075 -- Constrain_Array --
3076 ---------------------
3078 procedure Constrain_Array
3080 Check_List
: List_Id
)
3082 C
: constant Node_Id
:= Constraint
(SI
);
3083 Number_Of_Constraints
: Nat
:= 0;
3087 procedure Constrain_Index
3090 Check_List
: List_Id
);
3091 -- Process an index constraint in a constrained array declaration.
3092 -- The constraint can be either a subtype name or a range with or
3093 -- without an explicit subtype mark. Index is the corresponding
3094 -- index of the unconstrained array. S is the range expression.
3095 -- Check_List is a list to which the check actions are appended.
3097 ---------------------
3098 -- Constrain_Index --
3099 ---------------------
3101 procedure Constrain_Index
3104 Check_List
: List_Id
)
3106 T
: constant Entity_Id
:= Etype
(Index
);
3109 if Nkind
(S
) = N_Range
then
3110 Process_Range_Expr_In_Decl
(S
, T
, Check_List
=> Check_List
);
3112 end Constrain_Index
;
3114 -- Start of processing for Constrain_Array
3117 T
:= Entity
(Subtype_Mark
(SI
));
3119 if Is_Access_Type
(T
) then
3120 T
:= Designated_Type
(T
);
3123 S
:= First
(Constraints
(C
));
3124 while Present
(S
) loop
3125 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
3129 -- In either case, the index constraint must provide a discrete
3130 -- range for each index of the array type and the type of each
3131 -- discrete range must be the same as that of the corresponding
3132 -- index. (RM 3.6.1)
3134 S
:= First
(Constraints
(C
));
3135 Index
:= First_Index
(T
);
3138 -- Apply constraints to each index type
3140 for J
in 1 .. Number_Of_Constraints
loop
3141 Constrain_Index
(Index
, S
, Check_List
);
3145 end Constrain_Array
;
3147 -- Start of processing for Build_Record_Checks
3150 if Nkind
(S
) = N_Subtype_Indication
then
3151 Find_Type
(Subtype_Mark
(S
));
3152 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
3154 -- Remaining processing depends on type
3156 case Ekind
(Subtype_Mark_Id
) is
3159 Constrain_Array
(S
, Check_List
);
3165 end Build_Record_Checks
;
3167 -------------------------------------------
3168 -- Component_Needs_Simple_Initialization --
3169 -------------------------------------------
3171 function Component_Needs_Simple_Initialization
3172 (T
: Entity_Id
) return Boolean
3176 Needs_Simple_Initialization
(T
)
3177 and then not Is_RTE
(T
, RE_Tag
)
3179 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3181 and then not Is_RTE
(T
, RE_Interface_Tag
);
3182 end Component_Needs_Simple_Initialization
;
3184 --------------------------------------
3185 -- Parent_Subtype_Renaming_Discrims --
3186 --------------------------------------
3188 function Parent_Subtype_Renaming_Discrims
return Boolean is
3193 if Base_Type
(Rec_Ent
) /= Rec_Ent
then
3197 if Etype
(Rec_Ent
) = Rec_Ent
3198 or else not Has_Discriminants
(Rec_Ent
)
3199 or else Is_Constrained
(Rec_Ent
)
3200 or else Is_Tagged_Type
(Rec_Ent
)
3205 -- If there are no explicit stored discriminants we have inherited
3206 -- the root type discriminants so far, so no renamings occurred.
3208 if First_Discriminant
(Rec_Ent
) =
3209 First_Stored_Discriminant
(Rec_Ent
)
3214 -- Check if we have done some trivial renaming of the parent
3215 -- discriminants, i.e. something like
3217 -- type DT (X1, X2: int) is new PT (X1, X2);
3219 De
:= First_Discriminant
(Rec_Ent
);
3220 Dp
:= First_Discriminant
(Etype
(Rec_Ent
));
3221 while Present
(De
) loop
3222 pragma Assert
(Present
(Dp
));
3224 if Corresponding_Discriminant
(De
) /= Dp
then
3228 Next_Discriminant
(De
);
3229 Next_Discriminant
(Dp
);
3232 return Present
(Dp
);
3233 end Parent_Subtype_Renaming_Discrims
;
3235 ------------------------
3236 -- Requires_Init_Proc --
3237 ------------------------
3239 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
3240 Comp_Decl
: Node_Id
;
3245 -- Definitely do not need one if specifically suppressed
3247 if Initialization_Suppressed
(Rec_Id
) then
3251 -- If it is a type derived from a type with unknown discriminants,
3252 -- we cannot build an initialization procedure for it.
3254 if Has_Unknown_Discriminants
(Rec_Id
)
3255 or else Has_Unknown_Discriminants
(Etype
(Rec_Id
))
3260 -- Otherwise we need to generate an initialization procedure if
3261 -- Is_CPP_Class is False and at least one of the following applies:
3263 -- 1. Discriminants are present, since they need to be initialized
3264 -- with the appropriate discriminant constraint expressions.
3265 -- However, the discriminant of an unchecked union does not
3266 -- count, since the discriminant is not present.
3268 -- 2. The type is a tagged type, since the implicit Tag component
3269 -- needs to be initialized with a pointer to the dispatch table.
3271 -- 3. The type contains tasks
3273 -- 4. One or more components has an initial value
3275 -- 5. One or more components is for a type which itself requires
3276 -- an initialization procedure.
3278 -- 6. One or more components is a type that requires simple
3279 -- initialization (see Needs_Simple_Initialization), except
3280 -- that types Tag and Interface_Tag are excluded, since fields
3281 -- of these types are initialized by other means.
3283 -- 7. The type is the record type built for a task type (since at
3284 -- the very least, Create_Task must be called)
3286 -- 8. The type is the record type built for a protected type (since
3287 -- at least Initialize_Protection must be called)
3289 -- 9. The type is marked as a public entity. The reason we add this
3290 -- case (even if none of the above apply) is to properly handle
3291 -- Initialize_Scalars. If a package is compiled without an IS
3292 -- pragma, and the client is compiled with an IS pragma, then
3293 -- the client will think an initialization procedure is present
3294 -- and call it, when in fact no such procedure is required, but
3295 -- since the call is generated, there had better be a routine
3296 -- at the other end of the call, even if it does nothing).
3298 -- Note: the reason we exclude the CPP_Class case is because in this
3299 -- case the initialization is performed by the C++ constructors, and
3300 -- the IP is built by Set_CPP_Constructors.
3302 if Is_CPP_Class
(Rec_Id
) then
3305 elsif Is_Interface
(Rec_Id
) then
3308 elsif (Has_Discriminants
(Rec_Id
)
3309 and then not Is_Unchecked_Union
(Rec_Id
))
3310 or else Is_Tagged_Type
(Rec_Id
)
3311 or else Is_Concurrent_Record_Type
(Rec_Id
)
3312 or else Has_Task
(Rec_Id
)
3317 Id
:= First_Component
(Rec_Id
);
3318 while Present
(Id
) loop
3319 Comp_Decl
:= Parent
(Id
);
3322 if Present
(Expression
(Comp_Decl
))
3323 or else Has_Non_Null_Base_Init_Proc
(Typ
)
3324 or else Component_Needs_Simple_Initialization
(Typ
)
3329 Next_Component
(Id
);
3332 -- As explained above, a record initialization procedure is needed
3333 -- for public types in case Initialize_Scalars applies to a client.
3334 -- However, such a procedure is not needed in the case where either
3335 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3336 -- applies. No_Initialize_Scalars excludes the possibility of using
3337 -- Initialize_Scalars in any partition, and No_Default_Initialization
3338 -- implies that no initialization should ever be done for objects of
3339 -- the type, so is incompatible with Initialize_Scalars.
3341 if not Restriction_Active
(No_Initialize_Scalars
)
3342 and then not Restriction_Active
(No_Default_Initialization
)
3343 and then Is_Public
(Rec_Id
)
3349 end Requires_Init_Proc
;
3351 -- Start of processing for Build_Record_Init_Proc
3354 Rec_Type
:= Defining_Identifier
(N
);
3356 -- This may be full declaration of a private type, in which case
3357 -- the visible entity is a record, and the private entity has been
3358 -- exchanged with it in the private part of the current package.
3359 -- The initialization procedure is built for the record type, which
3360 -- is retrievable from the private entity.
3362 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
3363 Rec_Type
:= Underlying_Type
(Rec_Type
);
3366 -- If we have a variant record with restriction No_Implicit_Conditionals
3367 -- in effect, then we skip building the procedure. This is safe because
3368 -- if we can see the restriction, so can any caller, calls to initialize
3369 -- such records are not allowed for variant records if this restriction
3372 if Has_Variant_Part
(Rec_Type
)
3373 and then Restriction_Active
(No_Implicit_Conditionals
)
3378 -- If there are discriminants, build the discriminant map to replace
3379 -- discriminants by their discriminals in complex bound expressions.
3380 -- These only arise for the corresponding records of synchronized types.
3382 if Is_Concurrent_Record_Type
(Rec_Type
)
3383 and then Has_Discriminants
(Rec_Type
)
3388 Disc
:= First_Discriminant
(Rec_Type
);
3389 while Present
(Disc
) loop
3390 Append_Elmt
(Disc
, Discr_Map
);
3391 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
3392 Next_Discriminant
(Disc
);
3397 -- Derived types that have no type extension can use the initialization
3398 -- procedure of their parent and do not need a procedure of their own.
3399 -- This is only correct if there are no representation clauses for the
3400 -- type or its parent, and if the parent has in fact been frozen so
3401 -- that its initialization procedure exists.
3403 if Is_Derived_Type
(Rec_Type
)
3404 and then not Is_Tagged_Type
(Rec_Type
)
3405 and then not Is_Unchecked_Union
(Rec_Type
)
3406 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
3407 and then not Parent_Subtype_Renaming_Discrims
3408 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
3410 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
3412 -- Otherwise if we need an initialization procedure, then build one,
3413 -- mark it as public and inlinable and as having a completion.
3415 elsif Requires_Init_Proc
(Rec_Type
)
3416 or else Is_Unchecked_Union
(Rec_Type
)
3419 Make_Defining_Identifier
(Loc
,
3420 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
3422 -- If No_Default_Initialization restriction is active, then we don't
3423 -- want to build an init_proc, but we need to mark that an init_proc
3424 -- would be needed if this restriction was not active (so that we can
3425 -- detect attempts to call it), so set a dummy init_proc in place.
3427 if Restriction_Active
(No_Default_Initialization
) then
3428 Set_Init_Proc
(Rec_Type
, Proc_Id
);
3432 Build_Offset_To_Top_Functions
;
3433 Build_CPP_Init_Procedure
;
3434 Build_Init_Procedure
;
3436 Set_Is_Public
(Proc_Id
, Is_Public
(Rec_Ent
));
3437 Set_Is_Internal
(Proc_Id
);
3438 Set_Has_Completion
(Proc_Id
);
3440 if not Debug_Generated_Code
then
3441 Set_Debug_Info_Off
(Proc_Id
);
3444 Set_Is_Inlined
(Proc_Id
, Inline_Init_Proc
(Rec_Type
));
3446 -- Do not build an aggregate if Modify_Tree_For_C, this isn't
3447 -- needed and may generate early references to non frozen types
3448 -- since we expand aggregate much more systematically.
3450 if Modify_Tree_For_C
then
3455 Agg
: constant Node_Id
:=
3456 Build_Equivalent_Record_Aggregate
(Rec_Type
);
3458 procedure Collect_Itypes
(Comp
: Node_Id
);
3459 -- Generate references to itypes in the aggregate, because
3460 -- the first use of the aggregate may be in a nested scope.
3462 --------------------
3463 -- Collect_Itypes --
3464 --------------------
3466 procedure Collect_Itypes
(Comp
: Node_Id
) is
3469 Typ
: constant Entity_Id
:= Etype
(Comp
);
3472 if Is_Array_Type
(Typ
) and then Is_Itype
(Typ
) then
3473 Ref
:= Make_Itype_Reference
(Loc
);
3474 Set_Itype
(Ref
, Typ
);
3475 Append_Freeze_Action
(Rec_Type
, Ref
);
3477 Ref
:= Make_Itype_Reference
(Loc
);
3478 Set_Itype
(Ref
, Etype
(First_Index
(Typ
)));
3479 Append_Freeze_Action
(Rec_Type
, Ref
);
3481 -- Recurse on nested arrays
3483 Sub_Aggr
:= First
(Expressions
(Comp
));
3484 while Present
(Sub_Aggr
) loop
3485 Collect_Itypes
(Sub_Aggr
);
3492 -- If there is a static initialization aggregate for the type,
3493 -- generate itype references for the types of its (sub)components,
3494 -- to prevent out-of-scope errors in the resulting tree.
3495 -- The aggregate may have been rewritten as a Raise node, in which
3496 -- case there are no relevant itypes.
3498 if Present
(Agg
) and then Nkind
(Agg
) = N_Aggregate
then
3499 Set_Static_Initialization
(Proc_Id
, Agg
);
3504 Comp
:= First
(Component_Associations
(Agg
));
3505 while Present
(Comp
) loop
3506 Collect_Itypes
(Expression
(Comp
));
3513 end Build_Record_Init_Proc
;
3515 ----------------------------
3516 -- Build_Slice_Assignment --
3517 ----------------------------
3519 -- Generates the following subprogram:
3522 -- (Source, Target : Array_Type,
3523 -- Left_Lo, Left_Hi : Index;
3524 -- Right_Lo, Right_Hi : Index;
3532 -- if Left_Hi < Left_Lo then
3545 -- Target (Li1) := Source (Ri1);
3548 -- exit when Li1 = Left_Lo;
3549 -- Li1 := Index'pred (Li1);
3550 -- Ri1 := Index'pred (Ri1);
3552 -- exit when Li1 = Left_Hi;
3553 -- Li1 := Index'succ (Li1);
3554 -- Ri1 := Index'succ (Ri1);
3559 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
3560 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3561 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
3563 Larray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
3564 Rarray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3565 Left_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3566 Left_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3567 Right_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3568 Right_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3569 Rev
: constant Entity_Id
:= Make_Temporary
(Loc
, 'D');
3570 -- Formal parameters of procedure
3572 Proc_Name
: constant Entity_Id
:=
3573 Make_Defining_Identifier
(Loc
,
3574 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
3576 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3577 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3578 -- Subscripts for left and right sides
3585 -- Build declarations for indexes
3590 Make_Object_Declaration
(Loc
,
3591 Defining_Identifier
=> Lnn
,
3592 Object_Definition
=>
3593 New_Occurrence_Of
(Index
, Loc
)));
3596 Make_Object_Declaration
(Loc
,
3597 Defining_Identifier
=> Rnn
,
3598 Object_Definition
=>
3599 New_Occurrence_Of
(Index
, Loc
)));
3603 -- Build test for empty slice case
3606 Make_If_Statement
(Loc
,
3609 Left_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
),
3610 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
)),
3611 Then_Statements
=> New_List
(Make_Simple_Return_Statement
(Loc
))));
3613 -- Build initializations for indexes
3616 F_Init
: constant List_Id
:= New_List
;
3617 B_Init
: constant List_Id
:= New_List
;
3621 Make_Assignment_Statement
(Loc
,
3622 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3623 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
3626 Make_Assignment_Statement
(Loc
,
3627 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3628 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
3631 Make_Assignment_Statement
(Loc
,
3632 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3633 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
3636 Make_Assignment_Statement
(Loc
,
3637 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3638 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
3641 Make_If_Statement
(Loc
,
3642 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3643 Then_Statements
=> B_Init
,
3644 Else_Statements
=> F_Init
));
3647 -- Now construct the assignment statement
3650 Make_Loop_Statement
(Loc
,
3651 Statements
=> New_List
(
3652 Make_Assignment_Statement
(Loc
,
3654 Make_Indexed_Component
(Loc
,
3655 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
3656 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
3658 Make_Indexed_Component
(Loc
,
3659 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
3660 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
3661 End_Label
=> Empty
);
3663 -- Build the exit condition and increment/decrement statements
3666 F_Ass
: constant List_Id
:= New_List
;
3667 B_Ass
: constant List_Id
:= New_List
;
3671 Make_Exit_Statement
(Loc
,
3674 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3675 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
3678 Make_Assignment_Statement
(Loc
,
3679 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3681 Make_Attribute_Reference
(Loc
,
3683 New_Occurrence_Of
(Index
, Loc
),
3684 Attribute_Name
=> Name_Succ
,
3685 Expressions
=> New_List
(
3686 New_Occurrence_Of
(Lnn
, Loc
)))));
3689 Make_Assignment_Statement
(Loc
,
3690 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3692 Make_Attribute_Reference
(Loc
,
3694 New_Occurrence_Of
(Index
, Loc
),
3695 Attribute_Name
=> Name_Succ
,
3696 Expressions
=> New_List
(
3697 New_Occurrence_Of
(Rnn
, Loc
)))));
3700 Make_Exit_Statement
(Loc
,
3703 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3704 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
3707 Make_Assignment_Statement
(Loc
,
3708 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3710 Make_Attribute_Reference
(Loc
,
3712 New_Occurrence_Of
(Index
, Loc
),
3713 Attribute_Name
=> Name_Pred
,
3714 Expressions
=> New_List
(
3715 New_Occurrence_Of
(Lnn
, Loc
)))));
3718 Make_Assignment_Statement
(Loc
,
3719 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3721 Make_Attribute_Reference
(Loc
,
3723 New_Occurrence_Of
(Index
, Loc
),
3724 Attribute_Name
=> Name_Pred
,
3725 Expressions
=> New_List
(
3726 New_Occurrence_Of
(Rnn
, Loc
)))));
3728 Append_To
(Statements
(Loops
),
3729 Make_If_Statement
(Loc
,
3730 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3731 Then_Statements
=> B_Ass
,
3732 Else_Statements
=> F_Ass
));
3735 Append_To
(Stats
, Loops
);
3739 Formals
: List_Id
:= New_List
;
3742 Formals
:= New_List
(
3743 Make_Parameter_Specification
(Loc
,
3744 Defining_Identifier
=> Larray
,
3745 Out_Present
=> True,
3747 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
3749 Make_Parameter_Specification
(Loc
,
3750 Defining_Identifier
=> Rarray
,
3752 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
3754 Make_Parameter_Specification
(Loc
,
3755 Defining_Identifier
=> Left_Lo
,
3757 New_Occurrence_Of
(Index
, Loc
)),
3759 Make_Parameter_Specification
(Loc
,
3760 Defining_Identifier
=> Left_Hi
,
3762 New_Occurrence_Of
(Index
, Loc
)),
3764 Make_Parameter_Specification
(Loc
,
3765 Defining_Identifier
=> Right_Lo
,
3767 New_Occurrence_Of
(Index
, Loc
)),
3769 Make_Parameter_Specification
(Loc
,
3770 Defining_Identifier
=> Right_Hi
,
3772 New_Occurrence_Of
(Index
, Loc
)));
3775 Make_Parameter_Specification
(Loc
,
3776 Defining_Identifier
=> Rev
,
3778 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
3781 Make_Procedure_Specification
(Loc
,
3782 Defining_Unit_Name
=> Proc_Name
,
3783 Parameter_Specifications
=> Formals
);
3786 Make_Subprogram_Body
(Loc
,
3787 Specification
=> Spec
,
3788 Declarations
=> Decls
,
3789 Handled_Statement_Sequence
=>
3790 Make_Handled_Sequence_Of_Statements
(Loc
,
3791 Statements
=> Stats
)));
3794 Set_TSS
(Typ
, Proc_Name
);
3795 Set_Is_Pure
(Proc_Name
);
3796 end Build_Slice_Assignment
;
3798 -----------------------------
3799 -- Build_Untagged_Equality --
3800 -----------------------------
3802 procedure Build_Untagged_Equality
(Typ
: Entity_Id
) is
3810 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
;
3811 -- Check whether the type T has a user-defined primitive equality. If so
3812 -- return it, else return Empty. If true for a component of Typ, we have
3813 -- to build the primitive equality for it.
3815 ---------------------
3816 -- User_Defined_Eq --
3817 ---------------------
3819 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
is
3824 Op
:= TSS
(T
, TSS_Composite_Equality
);
3826 if Present
(Op
) then
3830 Prim
:= First_Elmt
(Collect_Primitive_Operations
(T
));
3831 while Present
(Prim
) loop
3834 if Chars
(Op
) = Name_Op_Eq
3835 and then Etype
(Op
) = Standard_Boolean
3836 and then Etype
(First_Formal
(Op
)) = T
3837 and then Etype
(Next_Formal
(First_Formal
(Op
))) = T
3846 end User_Defined_Eq
;
3848 -- Start of processing for Build_Untagged_Equality
3851 -- If a record component has a primitive equality operation, we must
3852 -- build the corresponding one for the current type.
3855 Comp
:= First_Component
(Typ
);
3856 while Present
(Comp
) loop
3857 if Is_Record_Type
(Etype
(Comp
))
3858 and then Present
(User_Defined_Eq
(Etype
(Comp
)))
3863 Next_Component
(Comp
);
3866 -- If there is a user-defined equality for the type, we do not create
3867 -- the implicit one.
3869 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
3871 while Present
(Prim
) loop
3872 if Chars
(Node
(Prim
)) = Name_Op_Eq
3873 and then Comes_From_Source
(Node
(Prim
))
3875 -- Don't we also need to check formal types and return type as in
3876 -- User_Defined_Eq above???
3879 Eq_Op
:= Node
(Prim
);
3887 -- If the type is derived, inherit the operation, if present, from the
3888 -- parent type. It may have been declared after the type derivation. If
3889 -- the parent type itself is derived, it may have inherited an operation
3890 -- that has itself been overridden, so update its alias and related
3891 -- flags. Ditto for inequality.
3893 if No
(Eq_Op
) and then Is_Derived_Type
(Typ
) then
3894 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Etype
(Typ
)));
3895 while Present
(Prim
) loop
3896 if Chars
(Node
(Prim
)) = Name_Op_Eq
then
3897 Copy_TSS
(Node
(Prim
), Typ
);
3901 Op
: constant Entity_Id
:= User_Defined_Eq
(Typ
);
3902 Eq_Op
: constant Entity_Id
:= Node
(Prim
);
3903 NE_Op
: constant Entity_Id
:= Next_Entity
(Eq_Op
);
3906 if Present
(Op
) then
3907 Set_Alias
(Op
, Eq_Op
);
3908 Set_Is_Abstract_Subprogram
3909 (Op
, Is_Abstract_Subprogram
(Eq_Op
));
3911 if Chars
(Next_Entity
(Op
)) = Name_Op_Ne
then
3912 Set_Is_Abstract_Subprogram
3913 (Next_Entity
(Op
), Is_Abstract_Subprogram
(NE_Op
));
3925 -- If not inherited and not user-defined, build body as for a type with
3926 -- tagged components.
3930 Make_Eq_Body
(Typ
, Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
3931 Op
:= Defining_Entity
(Decl
);
3935 if Is_Library_Level_Entity
(Typ
) then
3939 end Build_Untagged_Equality
;
3941 -----------------------------------
3942 -- Build_Variant_Record_Equality --
3943 -----------------------------------
3947 -- function _Equality (X, Y : T) return Boolean is
3949 -- -- Compare discriminants
3951 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
3955 -- -- Compare components
3957 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
3961 -- -- Compare variant part
3965 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
3970 -- if X.Cn /= Y.Cn or else ... then
3978 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
3979 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3981 F
: constant Entity_Id
:=
3982 Make_Defining_Identifier
(Loc
,
3983 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
3985 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_X
);
3986 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_Y
);
3988 Def
: constant Node_Id
:= Parent
(Typ
);
3989 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
3990 Stmts
: constant List_Id
:= New_List
;
3991 Pspecs
: constant List_Id
:= New_List
;
3994 -- If we have a variant record with restriction No_Implicit_Conditionals
3995 -- in effect, then we skip building the procedure. This is safe because
3996 -- if we can see the restriction, so can any caller, calls to equality
3997 -- test routines are not allowed for variant records if this restriction
4000 if Restriction_Active
(No_Implicit_Conditionals
) then
4004 -- Derived Unchecked_Union types no longer inherit the equality function
4007 if Is_Derived_Type
(Typ
)
4008 and then not Is_Unchecked_Union
(Typ
)
4009 and then not Has_New_Non_Standard_Rep
(Typ
)
4012 Parent_Eq
: constant Entity_Id
:=
4013 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
4015 if Present
(Parent_Eq
) then
4016 Copy_TSS
(Parent_Eq
, Typ
);
4023 Make_Subprogram_Body
(Loc
,
4025 Make_Function_Specification
(Loc
,
4026 Defining_Unit_Name
=> F
,
4027 Parameter_Specifications
=> Pspecs
,
4028 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
4029 Declarations
=> New_List
,
4030 Handled_Statement_Sequence
=>
4031 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stmts
)));
4034 Make_Parameter_Specification
(Loc
,
4035 Defining_Identifier
=> X
,
4036 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
4039 Make_Parameter_Specification
(Loc
,
4040 Defining_Identifier
=> Y
,
4041 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
4043 -- Unchecked_Unions require additional machinery to support equality.
4044 -- Two extra parameters (A and B) are added to the equality function
4045 -- parameter list for each discriminant of the type, in order to
4046 -- capture the inferred values of the discriminants in equality calls.
4047 -- The names of the parameters match the names of the corresponding
4048 -- discriminant, with an added suffix.
4050 if Is_Unchecked_Union
(Typ
) then
4053 Discr_Type
: Entity_Id
;
4055 New_Discrs
: Elist_Id
;
4058 New_Discrs
:= New_Elmt_List
;
4060 Discr
:= First_Discriminant
(Typ
);
4061 while Present
(Discr
) loop
4062 Discr_Type
:= Etype
(Discr
);
4063 A
:= Make_Defining_Identifier
(Loc
,
4064 Chars
=> New_External_Name
(Chars
(Discr
), 'A'));
4066 B
:= Make_Defining_Identifier
(Loc
,
4067 Chars
=> New_External_Name
(Chars
(Discr
), 'B'));
4069 -- Add new parameters to the parameter list
4072 Make_Parameter_Specification
(Loc
,
4073 Defining_Identifier
=> A
,
4075 New_Occurrence_Of
(Discr_Type
, Loc
)));
4078 Make_Parameter_Specification
(Loc
,
4079 Defining_Identifier
=> B
,
4081 New_Occurrence_Of
(Discr_Type
, Loc
)));
4083 Append_Elmt
(A
, New_Discrs
);
4085 -- Generate the following code to compare each of the inferred
4093 Make_If_Statement
(Loc
,
4096 Left_Opnd
=> New_Occurrence_Of
(A
, Loc
),
4097 Right_Opnd
=> New_Occurrence_Of
(B
, Loc
)),
4098 Then_Statements
=> New_List
(
4099 Make_Simple_Return_Statement
(Loc
,
4101 New_Occurrence_Of
(Standard_False
, Loc
)))));
4102 Next_Discriminant
(Discr
);
4105 -- Generate component-by-component comparison. Note that we must
4106 -- propagate the inferred discriminants formals to act as
4107 -- the case statement switch. Their value is added when an
4108 -- equality call on unchecked unions is expanded.
4110 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
, New_Discrs
));
4113 -- Normal case (not unchecked union)
4117 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
4118 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
4122 Make_Simple_Return_Statement
(Loc
,
4123 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4128 if not Debug_Generated_Code
then
4129 Set_Debug_Info_Off
(F
);
4131 end Build_Variant_Record_Equality
;
4133 -----------------------------
4134 -- Check_Stream_Attributes --
4135 -----------------------------
4137 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
4139 Par_Read
: constant Boolean :=
4140 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
4141 and then not Has_Specified_Stream_Read
(Typ
);
4142 Par_Write
: constant Boolean :=
4143 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
4144 and then not Has_Specified_Stream_Write
(Typ
);
4146 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
4147 -- Check that Comp has a user-specified Nam stream attribute
4153 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
4155 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
4156 Error_Msg_Name_1
:= Nam
;
4158 ("|component& in limited extension must have% attribute", Comp
);
4162 -- Start of processing for Check_Stream_Attributes
4165 if Par_Read
or else Par_Write
then
4166 Comp
:= First_Component
(Typ
);
4167 while Present
(Comp
) loop
4168 if Comes_From_Source
(Comp
)
4169 and then Original_Record_Component
(Comp
) = Comp
4170 and then Is_Limited_Type
(Etype
(Comp
))
4173 Check_Attr
(Name_Read
, TSS_Stream_Read
);
4177 Check_Attr
(Name_Write
, TSS_Stream_Write
);
4181 Next_Component
(Comp
);
4184 end Check_Stream_Attributes
;
4186 ----------------------
4187 -- Clean_Task_Names --
4188 ----------------------
4190 procedure Clean_Task_Names
4192 Proc_Id
: Entity_Id
)
4196 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
4197 and then not Global_Discard_Names
4198 and then Tagged_Type_Expansion
4200 Set_Uses_Sec_Stack
(Proc_Id
);
4202 end Clean_Task_Names
;
4204 ------------------------------
4205 -- Expand_Freeze_Array_Type --
4206 ------------------------------
4208 procedure Expand_Freeze_Array_Type
(N
: Node_Id
) is
4209 Typ
: constant Entity_Id
:= Entity
(N
);
4210 Base
: constant Entity_Id
:= Base_Type
(Typ
);
4211 Comp_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
4213 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4216 -- Ensure that all freezing activities are properly flagged as Ghost
4218 Set_Ghost_Mode_From_Entity
(Typ
);
4220 if not Is_Bit_Packed_Array
(Typ
) then
4222 -- If the component contains tasks, so does the array type. This may
4223 -- not be indicated in the array type because the component may have
4224 -- been a private type at the point of definition. Same if component
4225 -- type is controlled or contains protected objects.
4227 Propagate_Concurrent_Flags
(Base
, Comp_Typ
);
4228 Set_Has_Controlled_Component
4229 (Base
, Has_Controlled_Component
(Comp_Typ
)
4230 or else Is_Controlled
(Comp_Typ
));
4232 if No
(Init_Proc
(Base
)) then
4234 -- If this is an anonymous array created for a declaration with
4235 -- an initial value, its init_proc will never be called. The
4236 -- initial value itself may have been expanded into assignments,
4237 -- in which case the object declaration is carries the
4238 -- No_Initialization flag.
4241 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
4242 N_Object_Declaration
4244 (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
4245 or else No_Initialization
(Associated_Node_For_Itype
(Base
)))
4249 -- We do not need an init proc for string or wide [wide] string,
4250 -- since the only time these need initialization in normalize or
4251 -- initialize scalars mode, and these types are treated specially
4252 -- and do not need initialization procedures.
4254 elsif Is_Standard_String_Type
(Base
) then
4257 -- Otherwise we have to build an init proc for the subtype
4260 Build_Array_Init_Proc
(Base
, N
);
4264 if Typ
= Base
and then Has_Controlled_Component
(Base
) then
4265 Build_Controlling_Procs
(Base
);
4267 if not Is_Limited_Type
(Comp_Typ
)
4268 and then Number_Dimensions
(Typ
) = 1
4270 Build_Slice_Assignment
(Typ
);
4274 -- For packed case, default initialization, except if the component type
4275 -- is itself a packed structure with an initialization procedure, or
4276 -- initialize/normalize scalars active, and we have a base type, or the
4277 -- type is public, because in that case a client might specify
4278 -- Normalize_Scalars and there better be a public Init_Proc for it.
4280 elsif (Present
(Init_Proc
(Component_Type
(Base
)))
4281 and then No
(Base_Init_Proc
(Base
)))
4282 or else (Init_Or_Norm_Scalars
and then Base
= Typ
)
4283 or else Is_Public
(Typ
)
4285 Build_Array_Init_Proc
(Base
, N
);
4288 Ghost_Mode
:= Save_Ghost_Mode
;
4289 end Expand_Freeze_Array_Type
;
4291 -----------------------------------
4292 -- Expand_Freeze_Class_Wide_Type --
4293 -----------------------------------
4295 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
) is
4296 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean;
4297 -- Given a type, determine whether it is derived from a C or C++ root
4299 ---------------------
4300 -- Is_C_Derivation --
4301 ---------------------
4303 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean is
4310 or else Convention
(T
) = Convention_C
4311 or else Convention
(T
) = Convention_CPP
4316 exit when T
= Etype
(T
);
4322 end Is_C_Derivation
;
4326 Typ
: constant Entity_Id
:= Entity
(N
);
4327 Root
: constant Entity_Id
:= Root_Type
(Typ
);
4329 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4331 -- Start of processing for Expand_Freeze_Class_Wide_Type
4334 -- Certain run-time configurations and targets do not provide support
4335 -- for controlled types.
4337 if Restriction_Active
(No_Finalization
) then
4340 -- Do not create TSS routine Finalize_Address when dispatching calls are
4341 -- disabled since the core of the routine is a dispatching call.
4343 elsif Restriction_Active
(No_Dispatching_Calls
) then
4346 -- Do not create TSS routine Finalize_Address for concurrent class-wide
4347 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
4348 -- non-Ada side will handle their destruction.
4350 elsif Is_Concurrent_Type
(Root
)
4351 or else Is_C_Derivation
(Root
)
4352 or else Convention
(Typ
) = Convention_CPP
4356 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
4357 -- mode since the routine contains an Unchecked_Conversion.
4359 elsif CodePeer_Mode
then
4363 -- Ensure that all freezing activities are properly flagged as Ghost
4365 Set_Ghost_Mode_From_Entity
(Typ
);
4367 -- Create the body of TSS primitive Finalize_Address. This automatically
4368 -- sets the TSS entry for the class-wide type.
4370 Make_Finalize_Address_Body
(Typ
);
4371 Ghost_Mode
:= Save_Ghost_Mode
;
4372 end Expand_Freeze_Class_Wide_Type
;
4374 ------------------------------------
4375 -- Expand_Freeze_Enumeration_Type --
4376 ------------------------------------
4378 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
) is
4379 Typ
: constant Entity_Id
:= Entity
(N
);
4380 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4382 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4387 Is_Contiguous
: Boolean;
4395 pragma Warnings
(Off
, Func
);
4398 -- Ensure that all freezing activities are properly flagged as Ghost
4400 Set_Ghost_Mode_From_Entity
(Typ
);
4402 -- Various optimizations possible if given representation is contiguous
4404 Is_Contiguous
:= True;
4406 Ent
:= First_Literal
(Typ
);
4407 Last_Repval
:= Enumeration_Rep
(Ent
);
4410 while Present
(Ent
) loop
4411 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
4412 Is_Contiguous
:= False;
4415 Last_Repval
:= Enumeration_Rep
(Ent
);
4421 if Is_Contiguous
then
4422 Set_Has_Contiguous_Rep
(Typ
);
4423 Ent
:= First_Literal
(Typ
);
4425 Lst
:= New_List
(New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
4428 -- Build list of literal references
4433 Ent
:= First_Literal
(Typ
);
4434 while Present
(Ent
) loop
4435 Append_To
(Lst
, New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
4441 -- Now build an array declaration
4443 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4444 -- (v, v, v, v, v, ....)
4446 -- where ctype is the corresponding integer type. If the representation
4447 -- is contiguous, we only keep the first literal, which provides the
4448 -- offset for Pos_To_Rep computations.
4451 Make_Defining_Identifier
(Loc
,
4452 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
4454 Append_Freeze_Action
(Typ
,
4455 Make_Object_Declaration
(Loc
,
4456 Defining_Identifier
=> Arr
,
4457 Constant_Present
=> True,
4459 Object_Definition
=>
4460 Make_Constrained_Array_Definition
(Loc
,
4461 Discrete_Subtype_Definitions
=> New_List
(
4462 Make_Subtype_Indication
(Loc
,
4463 Subtype_Mark
=> New_Occurrence_Of
(Standard_Natural
, Loc
),
4465 Make_Range_Constraint
(Loc
,
4469 Make_Integer_Literal
(Loc
, 0),
4471 Make_Integer_Literal
(Loc
, Num
- 1))))),
4473 Component_Definition
=>
4474 Make_Component_Definition
(Loc
,
4475 Aliased_Present
=> False,
4476 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))),
4479 Make_Aggregate
(Loc
,
4480 Expressions
=> Lst
)));
4482 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
4484 -- Now we build the function that converts representation values to
4485 -- position values. This function has the form:
4487 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4490 -- when enum-lit'Enum_Rep => return posval;
4491 -- when enum-lit'Enum_Rep => return posval;
4494 -- [raise Constraint_Error when F "invalid data"]
4499 -- Note: the F parameter determines whether the others case (no valid
4500 -- representation) raises Constraint_Error or returns a unique value
4501 -- of minus one. The latter case is used, e.g. in 'Valid code.
4503 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4504 -- the code generator making inappropriate assumptions about the range
4505 -- of the values in the case where the value is invalid. ityp is a
4506 -- signed or unsigned integer type of appropriate width.
4508 -- Note: if exceptions are not supported, then we suppress the raise
4509 -- and return -1 unconditionally (this is an erroneous program in any
4510 -- case and there is no obligation to raise Constraint_Error here). We
4511 -- also do this if pragma Restrictions (No_Exceptions) is active.
4513 -- Is this right??? What about No_Exception_Propagation???
4515 -- Representations are signed
4517 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
4519 -- The underlying type is signed. Reset the Is_Unsigned_Type
4520 -- explicitly, because it might have been inherited from
4523 Set_Is_Unsigned_Type
(Typ
, False);
4525 if Esize
(Typ
) <= Standard_Integer_Size
then
4526 Ityp
:= Standard_Integer
;
4528 Ityp
:= Universal_Integer
;
4531 -- Representations are unsigned
4534 if Esize
(Typ
) <= Standard_Integer_Size
then
4535 Ityp
:= RTE
(RE_Unsigned
);
4537 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
4541 -- The body of the function is a case statement. First collect case
4542 -- alternatives, or optimize the contiguous case.
4546 -- If representation is contiguous, Pos is computed by subtracting
4547 -- the representation of the first literal.
4549 if Is_Contiguous
then
4550 Ent
:= First_Literal
(Typ
);
4552 if Enumeration_Rep
(Ent
) = Last_Repval
then
4554 -- Another special case: for a single literal, Pos is zero
4556 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
4560 Convert_To
(Standard_Integer
,
4561 Make_Op_Subtract
(Loc
,
4563 Unchecked_Convert_To
4564 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
4566 Make_Integer_Literal
(Loc
,
4567 Intval
=> Enumeration_Rep
(First_Literal
(Typ
)))));
4571 Make_Case_Statement_Alternative
(Loc
,
4572 Discrete_Choices
=> New_List
(
4573 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4575 Make_Integer_Literal
(Loc
,
4576 Intval
=> Enumeration_Rep
(Ent
)),
4578 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
4580 Statements
=> New_List
(
4581 Make_Simple_Return_Statement
(Loc
,
4582 Expression
=> Pos_Expr
))));
4585 Ent
:= First_Literal
(Typ
);
4586 while Present
(Ent
) loop
4588 Make_Case_Statement_Alternative
(Loc
,
4589 Discrete_Choices
=> New_List
(
4590 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4591 Intval
=> Enumeration_Rep
(Ent
))),
4593 Statements
=> New_List
(
4594 Make_Simple_Return_Statement
(Loc
,
4596 Make_Integer_Literal
(Loc
,
4597 Intval
=> Enumeration_Pos
(Ent
))))));
4603 -- In normal mode, add the others clause with the test.
4604 -- If Predicates_Ignored is True, validity checks do not apply to
4607 if not No_Exception_Handlers_Set
4608 and then not Predicates_Ignored
(Typ
)
4611 Make_Case_Statement_Alternative
(Loc
,
4612 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4613 Statements
=> New_List
(
4614 Make_Raise_Constraint_Error
(Loc
,
4615 Condition
=> Make_Identifier
(Loc
, Name_uF
),
4616 Reason
=> CE_Invalid_Data
),
4617 Make_Simple_Return_Statement
(Loc
,
4618 Expression
=> Make_Integer_Literal
(Loc
, -1)))));
4620 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
4621 -- active then return -1 (we cannot usefully raise Constraint_Error in
4622 -- this case). See description above for further details.
4626 Make_Case_Statement_Alternative
(Loc
,
4627 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4628 Statements
=> New_List
(
4629 Make_Simple_Return_Statement
(Loc
,
4630 Expression
=> Make_Integer_Literal
(Loc
, -1)))));
4633 -- Now we can build the function body
4636 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
4639 Make_Subprogram_Body
(Loc
,
4641 Make_Function_Specification
(Loc
,
4642 Defining_Unit_Name
=> Fent
,
4643 Parameter_Specifications
=> New_List
(
4644 Make_Parameter_Specification
(Loc
,
4645 Defining_Identifier
=>
4646 Make_Defining_Identifier
(Loc
, Name_uA
),
4647 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
4648 Make_Parameter_Specification
(Loc
,
4649 Defining_Identifier
=>
4650 Make_Defining_Identifier
(Loc
, Name_uF
),
4652 New_Occurrence_Of
(Standard_Boolean
, Loc
))),
4654 Result_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
)),
4656 Declarations
=> Empty_List
,
4658 Handled_Statement_Sequence
=>
4659 Make_Handled_Sequence_Of_Statements
(Loc
,
4660 Statements
=> New_List
(
4661 Make_Case_Statement
(Loc
,
4663 Unchecked_Convert_To
4664 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
4665 Alternatives
=> Lst
))));
4667 Set_TSS
(Typ
, Fent
);
4669 -- Set Pure flag (it will be reset if the current context is not Pure).
4670 -- We also pretend there was a pragma Pure_Function so that for purposes
4671 -- of optimization and constant-folding, we will consider the function
4672 -- Pure even if we are not in a Pure context).
4675 Set_Has_Pragma_Pure_Function
(Fent
);
4677 -- Unless we are in -gnatD mode, where we are debugging generated code,
4678 -- this is an internal entity for which we don't need debug info.
4680 if not Debug_Generated_Code
then
4681 Set_Debug_Info_Off
(Fent
);
4684 Ghost_Mode
:= Save_Ghost_Mode
;
4687 when RE_Not_Available
=>
4688 Ghost_Mode
:= Save_Ghost_Mode
;
4690 end Expand_Freeze_Enumeration_Type
;
4692 -------------------------------
4693 -- Expand_Freeze_Record_Type --
4694 -------------------------------
4696 procedure Expand_Freeze_Record_Type
(N
: Node_Id
) is
4697 Typ
: constant Node_Id
:= Entity
(N
);
4698 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
4700 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4703 Comp_Typ
: Entity_Id
;
4704 Predef_List
: List_Id
;
4706 Wrapper_Decl_List
: List_Id
:= No_List
;
4707 Wrapper_Body_List
: List_Id
:= No_List
;
4709 Renamed_Eq
: Node_Id
:= Empty
;
4710 -- Defining unit name for the predefined equality function in the case
4711 -- where the type has a primitive operation that is a renaming of
4712 -- predefined equality (but only if there is also an overriding
4713 -- user-defined equality function). Used to pass this entity from
4714 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
4716 -- Start of processing for Expand_Freeze_Record_Type
4719 -- Ensure that all freezing activities are properly flagged as Ghost
4721 Set_Ghost_Mode_From_Entity
(Typ
);
4723 -- Build discriminant checking functions if not a derived type (for
4724 -- derived types that are not tagged types, always use the discriminant
4725 -- checking functions of the parent type). However, for untagged types
4726 -- the derivation may have taken place before the parent was frozen, so
4727 -- we copy explicitly the discriminant checking functions from the
4728 -- parent into the components of the derived type.
4730 if not Is_Derived_Type
(Typ
)
4731 or else Has_New_Non_Standard_Rep
(Typ
)
4732 or else Is_Tagged_Type
(Typ
)
4734 Build_Discr_Checking_Funcs
(Typ_Decl
);
4736 elsif Is_Derived_Type
(Typ
)
4737 and then not Is_Tagged_Type
(Typ
)
4739 -- If we have a derived Unchecked_Union, we do not inherit the
4740 -- discriminant checking functions from the parent type since the
4741 -- discriminants are non existent.
4743 and then not Is_Unchecked_Union
(Typ
)
4744 and then Has_Discriminants
(Typ
)
4747 Old_Comp
: Entity_Id
;
4751 First_Component
(Base_Type
(Underlying_Type
(Etype
(Typ
))));
4752 Comp
:= First_Component
(Typ
);
4753 while Present
(Comp
) loop
4754 if Ekind
(Comp
) = E_Component
4755 and then Chars
(Comp
) = Chars
(Old_Comp
)
4757 Set_Discriminant_Checking_Func
4758 (Comp
, Discriminant_Checking_Func
(Old_Comp
));
4761 Next_Component
(Old_Comp
);
4762 Next_Component
(Comp
);
4767 if Is_Derived_Type
(Typ
)
4768 and then Is_Limited_Type
(Typ
)
4769 and then Is_Tagged_Type
(Typ
)
4771 Check_Stream_Attributes
(Typ
);
4774 -- Update task, protected, and controlled component flags, because some
4775 -- of the component types may have been private at the point of the
4776 -- record declaration. Detect anonymous access-to-controlled components.
4778 Comp
:= First_Component
(Typ
);
4779 while Present
(Comp
) loop
4780 Comp_Typ
:= Etype
(Comp
);
4782 Propagate_Concurrent_Flags
(Typ
, Comp_Typ
);
4784 -- Do not set Has_Controlled_Component on a class-wide equivalent
4785 -- type. See Make_CW_Equivalent_Type.
4787 if not Is_Class_Wide_Equivalent_Type
(Typ
)
4789 (Has_Controlled_Component
(Comp_Typ
)
4790 or else (Chars
(Comp
) /= Name_uParent
4791 and then (Is_Controlled_Active
(Comp_Typ
))))
4793 Set_Has_Controlled_Component
(Typ
);
4796 Next_Component
(Comp
);
4799 -- Handle constructors of untagged CPP_Class types
4801 if not Is_Tagged_Type
(Typ
) and then Is_CPP_Class
(Typ
) then
4802 Set_CPP_Constructors
(Typ
);
4805 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
4806 -- for regular tagged types as well as for Ada types deriving from a C++
4807 -- Class, but not for tagged types directly corresponding to C++ classes
4808 -- In the later case we assume that it is created in the C++ side and we
4811 if Is_Tagged_Type
(Typ
) then
4813 -- Add the _Tag component
4815 if Underlying_Type
(Etype
(Typ
)) = Typ
then
4816 Expand_Tagged_Root
(Typ
);
4819 if Is_CPP_Class
(Typ
) then
4820 Set_All_DT_Position
(Typ
);
4822 -- Create the tag entities with a minimum decoration
4824 if Tagged_Type_Expansion
then
4825 Append_Freeze_Actions
(Typ
, Make_Tags
(Typ
));
4828 Set_CPP_Constructors
(Typ
);
4831 if not Building_Static_DT
(Typ
) then
4833 -- Usually inherited primitives are not delayed but the first
4834 -- Ada extension of a CPP_Class is an exception since the
4835 -- address of the inherited subprogram has to be inserted in
4836 -- the new Ada Dispatch Table and this is a freezing action.
4838 -- Similarly, if this is an inherited operation whose parent is
4839 -- not frozen yet, it is not in the DT of the parent, and we
4840 -- generate an explicit freeze node for the inherited operation
4841 -- so it is properly inserted in the DT of the current type.
4848 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
4849 while Present
(Elmt
) loop
4850 Subp
:= Node
(Elmt
);
4852 if Present
(Alias
(Subp
)) then
4853 if Is_CPP_Class
(Etype
(Typ
)) then
4854 Set_Has_Delayed_Freeze
(Subp
);
4856 elsif Has_Delayed_Freeze
(Alias
(Subp
))
4857 and then not Is_Frozen
(Alias
(Subp
))
4859 Set_Is_Frozen
(Subp
, False);
4860 Set_Has_Delayed_Freeze
(Subp
);
4869 -- Unfreeze momentarily the type to add the predefined primitives
4870 -- operations. The reason we unfreeze is so that these predefined
4871 -- operations will indeed end up as primitive operations (which
4872 -- must be before the freeze point).
4874 Set_Is_Frozen
(Typ
, False);
4876 -- Do not add the spec of predefined primitives in case of
4877 -- CPP tagged type derivations that have convention CPP.
4879 if Is_CPP_Class
(Root_Type
(Typ
))
4880 and then Convention
(Typ
) = Convention_CPP
4884 -- Do not add the spec of the predefined primitives if we are
4885 -- compiling under restriction No_Dispatching_Calls.
4887 elsif not Restriction_Active
(No_Dispatching_Calls
) then
4888 Make_Predefined_Primitive_Specs
(Typ
, Predef_List
, Renamed_Eq
);
4889 Insert_List_Before_And_Analyze
(N
, Predef_List
);
4892 -- Ada 2005 (AI-391): For a nonabstract null extension, create
4893 -- wrapper functions for each nonoverridden inherited function
4894 -- with a controlling result of the type. The wrapper for such
4895 -- a function returns an extension aggregate that invokes the
4898 if Ada_Version
>= Ada_2005
4899 and then not Is_Abstract_Type
(Typ
)
4900 and then Is_Null_Extension
(Typ
)
4902 Make_Controlling_Function_Wrappers
4903 (Typ
, Wrapper_Decl_List
, Wrapper_Body_List
);
4904 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
4907 -- Ada 2005 (AI-251): For a nonabstract type extension, build
4908 -- null procedure declarations for each set of homographic null
4909 -- procedures that are inherited from interface types but not
4910 -- overridden. This is done to ensure that the dispatch table
4911 -- entry associated with such null primitives are properly filled.
4913 if Ada_Version
>= Ada_2005
4914 and then Etype
(Typ
) /= Typ
4915 and then not Is_Abstract_Type
(Typ
)
4916 and then Has_Interfaces
(Typ
)
4918 Insert_Actions
(N
, Make_Null_Procedure_Specs
(Typ
));
4921 Set_Is_Frozen
(Typ
);
4923 if not Is_Derived_Type
(Typ
)
4924 or else Is_Tagged_Type
(Etype
(Typ
))
4926 Set_All_DT_Position
(Typ
);
4928 -- If this is a type derived from an untagged private type whose
4929 -- full view is tagged, the type is marked tagged for layout
4930 -- reasons, but it has no dispatch table.
4932 elsif Is_Derived_Type
(Typ
)
4933 and then Is_Private_Type
(Etype
(Typ
))
4934 and then not Is_Tagged_Type
(Etype
(Typ
))
4939 -- Create and decorate the tags. Suppress their creation when
4940 -- not Tagged_Type_Expansion because the dispatching mechanism is
4941 -- handled internally by the virtual target.
4943 if Tagged_Type_Expansion
then
4944 Append_Freeze_Actions
(Typ
, Make_Tags
(Typ
));
4946 -- Generate dispatch table of locally defined tagged type.
4947 -- Dispatch tables of library level tagged types are built
4948 -- later (see Analyze_Declarations).
4950 if not Building_Static_DT
(Typ
) then
4951 Append_Freeze_Actions
(Typ
, Make_DT
(Typ
));
4955 -- If the type has unknown discriminants, propagate dispatching
4956 -- information to its underlying record view, which does not get
4957 -- its own dispatch table.
4959 if Is_Derived_Type
(Typ
)
4960 and then Has_Unknown_Discriminants
(Typ
)
4961 and then Present
(Underlying_Record_View
(Typ
))
4964 Rep
: constant Entity_Id
:= Underlying_Record_View
(Typ
);
4966 Set_Access_Disp_Table
4967 (Rep
, Access_Disp_Table
(Typ
));
4968 Set_Dispatch_Table_Wrappers
4969 (Rep
, Dispatch_Table_Wrappers
(Typ
));
4970 Set_Direct_Primitive_Operations
4971 (Rep
, Direct_Primitive_Operations
(Typ
));
4975 -- Make sure that the primitives Initialize, Adjust and Finalize
4976 -- are Frozen before other TSS subprograms. We don't want them
4979 if Is_Controlled
(Typ
) then
4980 if not Is_Limited_Type
(Typ
) then
4981 Append_Freeze_Actions
(Typ
,
4982 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Adjust
), Typ
));
4985 Append_Freeze_Actions
(Typ
,
4986 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Initialize
), Typ
));
4988 Append_Freeze_Actions
(Typ
,
4989 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Finalize
), Typ
));
4992 -- Freeze rest of primitive operations. There is no need to handle
4993 -- the predefined primitives if we are compiling under restriction
4994 -- No_Dispatching_Calls.
4996 if not Restriction_Active
(No_Dispatching_Calls
) then
4997 Append_Freeze_Actions
(Typ
, Predefined_Primitive_Freeze
(Typ
));
5001 -- In the untagged case, ever since Ada 83 an equality function must
5002 -- be provided for variant records that are not unchecked unions.
5003 -- In Ada 2012 the equality function composes, and thus must be built
5004 -- explicitly just as for tagged records.
5006 elsif Has_Discriminants
(Typ
)
5007 and then not Is_Limited_Type
(Typ
)
5010 Comps
: constant Node_Id
:=
5011 Component_List
(Type_Definition
(Typ_Decl
));
5014 and then Present
(Variant_Part
(Comps
))
5016 Build_Variant_Record_Equality
(Typ
);
5020 -- Otherwise create primitive equality operation (AI05-0123)
5022 -- This is done unconditionally to ensure that tools can be linked
5023 -- properly with user programs compiled with older language versions.
5024 -- In addition, this is needed because "=" composes for bounded strings
5025 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
5027 elsif Comes_From_Source
(Typ
)
5028 and then Convention
(Typ
) = Convention_Ada
5029 and then not Is_Limited_Type
(Typ
)
5031 Build_Untagged_Equality
(Typ
);
5034 -- Before building the record initialization procedure, if we are
5035 -- dealing with a concurrent record value type, then we must go through
5036 -- the discriminants, exchanging discriminals between the concurrent
5037 -- type and the concurrent record value type. See the section "Handling
5038 -- of Discriminants" in the Einfo spec for details.
5040 if Is_Concurrent_Record_Type
(Typ
)
5041 and then Has_Discriminants
(Typ
)
5044 Ctyp
: constant Entity_Id
:=
5045 Corresponding_Concurrent_Type
(Typ
);
5046 Conc_Discr
: Entity_Id
;
5047 Rec_Discr
: Entity_Id
;
5051 Conc_Discr
:= First_Discriminant
(Ctyp
);
5052 Rec_Discr
:= First_Discriminant
(Typ
);
5053 while Present
(Conc_Discr
) loop
5054 Temp
:= Discriminal
(Conc_Discr
);
5055 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
5056 Set_Discriminal
(Rec_Discr
, Temp
);
5058 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
5059 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
5061 Next_Discriminant
(Conc_Discr
);
5062 Next_Discriminant
(Rec_Discr
);
5067 if Has_Controlled_Component
(Typ
) then
5068 Build_Controlling_Procs
(Typ
);
5071 Adjust_Discriminants
(Typ
);
5073 -- Do not need init for interfaces on virtual targets since they're
5076 if Tagged_Type_Expansion
or else not Is_Interface
(Typ
) then
5077 Build_Record_Init_Proc
(Typ_Decl
, Typ
);
5080 -- For tagged type that are not interfaces, build bodies of primitive
5081 -- operations. Note: do this after building the record initialization
5082 -- procedure, since the primitive operations may need the initialization
5083 -- routine. There is no need to add predefined primitives of interfaces
5084 -- because all their predefined primitives are abstract.
5086 if Is_Tagged_Type
(Typ
) and then not Is_Interface
(Typ
) then
5088 -- Do not add the body of predefined primitives in case of CPP tagged
5089 -- type derivations that have convention CPP.
5091 if Is_CPP_Class
(Root_Type
(Typ
))
5092 and then Convention
(Typ
) = Convention_CPP
5096 -- Do not add the body of the predefined primitives if we are
5097 -- compiling under restriction No_Dispatching_Calls or if we are
5098 -- compiling a CPP tagged type.
5100 elsif not Restriction_Active
(No_Dispatching_Calls
) then
5102 -- Create the body of TSS primitive Finalize_Address. This must
5103 -- be done before the bodies of all predefined primitives are
5104 -- created. If Typ is limited, Stream_Input and Stream_Read may
5105 -- produce build-in-place allocations and for those the expander
5106 -- needs Finalize_Address.
5108 Make_Finalize_Address_Body
(Typ
);
5109 Predef_List
:= Predefined_Primitive_Bodies
(Typ
, Renamed_Eq
);
5110 Append_Freeze_Actions
(Typ
, Predef_List
);
5113 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5114 -- inherited functions, then add their bodies to the freeze actions.
5116 if Present
(Wrapper_Body_List
) then
5117 Append_Freeze_Actions
(Typ
, Wrapper_Body_List
);
5120 -- Create extra formals for the primitive operations of the type.
5121 -- This must be done before analyzing the body of the initialization
5122 -- procedure, because a self-referential type might call one of these
5123 -- primitives in the body of the init_proc itself.
5130 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5131 while Present
(Elmt
) loop
5132 Subp
:= Node
(Elmt
);
5133 if not Has_Foreign_Convention
(Subp
)
5134 and then not Is_Predefined_Dispatching_Operation
(Subp
)
5136 Create_Extra_Formals
(Subp
);
5144 Ghost_Mode
:= Save_Ghost_Mode
;
5145 end Expand_Freeze_Record_Type
;
5147 ------------------------------------
5148 -- Expand_N_Full_Type_Declaration --
5149 ------------------------------------
5151 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
5152 procedure Build_Master
(Ptr_Typ
: Entity_Id
);
5153 -- Create the master associated with Ptr_Typ
5159 procedure Build_Master
(Ptr_Typ
: Entity_Id
) is
5160 Desig_Typ
: Entity_Id
:= Designated_Type
(Ptr_Typ
);
5163 -- If the designated type is an incomplete view coming from a
5164 -- limited-with'ed package, we need to use the nonlimited view in
5165 -- case it has tasks.
5167 if Ekind
(Desig_Typ
) in Incomplete_Kind
5168 and then Present
(Non_Limited_View
(Desig_Typ
))
5170 Desig_Typ
:= Non_Limited_View
(Desig_Typ
);
5173 -- Anonymous access types are created for the components of the
5174 -- record parameter for an entry declaration. No master is created
5177 if Comes_From_Source
(N
) and then Has_Task
(Desig_Typ
) then
5178 Build_Master_Entity
(Ptr_Typ
);
5179 Build_Master_Renaming
(Ptr_Typ
);
5181 -- Create a class-wide master because a Master_Id must be generated
5182 -- for access-to-limited-class-wide types whose root may be extended
5183 -- with task components.
5185 -- Note: This code covers access-to-limited-interfaces because they
5186 -- can be used to reference tasks implementing them.
5188 elsif Is_Limited_Class_Wide_Type
(Desig_Typ
)
5189 and then Tasking_Allowed
5191 Build_Class_Wide_Master
(Ptr_Typ
);
5195 -- Local declarations
5197 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5198 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
5202 -- Start of processing for Expand_N_Full_Type_Declaration
5205 if Is_Access_Type
(Def_Id
) then
5206 Build_Master
(Def_Id
);
5208 if Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
5209 Expand_Access_Protected_Subprogram_Type
(N
);
5212 -- Array of anonymous access-to-task pointers
5214 elsif Ada_Version
>= Ada_2005
5215 and then Is_Array_Type
(Def_Id
)
5216 and then Is_Access_Type
(Component_Type
(Def_Id
))
5217 and then Ekind
(Component_Type
(Def_Id
)) = E_Anonymous_Access_Type
5219 Build_Master
(Component_Type
(Def_Id
));
5221 elsif Has_Task
(Def_Id
) then
5222 Expand_Previous_Access_Type
(Def_Id
);
5224 -- Check the components of a record type or array of records for
5225 -- anonymous access-to-task pointers.
5227 elsif Ada_Version
>= Ada_2005
5228 and then (Is_Record_Type
(Def_Id
)
5230 (Is_Array_Type
(Def_Id
)
5231 and then Is_Record_Type
(Component_Type
(Def_Id
))))
5240 if Is_Array_Type
(Def_Id
) then
5241 Comp
:= First_Entity
(Component_Type
(Def_Id
));
5243 Comp
:= First_Entity
(Def_Id
);
5246 -- Examine all components looking for anonymous access-to-task
5250 while Present
(Comp
) loop
5251 Typ
:= Etype
(Comp
);
5253 if Ekind
(Typ
) = E_Anonymous_Access_Type
5254 and then Has_Task
(Available_View
(Designated_Type
(Typ
)))
5255 and then No
(Master_Id
(Typ
))
5257 -- Ensure that the record or array type have a _master
5260 Build_Master_Entity
(Def_Id
);
5261 Build_Master_Renaming
(Typ
);
5262 M_Id
:= Master_Id
(Typ
);
5266 -- Reuse the same master to service any additional types
5269 Set_Master_Id
(Typ
, M_Id
);
5278 Par_Id
:= Etype
(B_Id
);
5280 -- The parent type is private then we need to inherit any TSS operations
5281 -- from the full view.
5283 if Ekind
(Par_Id
) in Private_Kind
5284 and then Present
(Full_View
(Par_Id
))
5286 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
5289 if Nkind
(Type_Definition
(Original_Node
(N
))) =
5290 N_Derived_Type_Definition
5291 and then not Is_Tagged_Type
(Def_Id
)
5292 and then Present
(Freeze_Node
(Par_Id
))
5293 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
5295 Ensure_Freeze_Node
(B_Id
);
5296 FN
:= Freeze_Node
(B_Id
);
5298 if No
(TSS_Elist
(FN
)) then
5299 Set_TSS_Elist
(FN
, New_Elmt_List
);
5303 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
5307 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
5308 while Present
(Elmt
) loop
5309 if Chars
(Node
(Elmt
)) /= Name_uInit
then
5310 Append_Elmt
(Node
(Elmt
), T_E
);
5316 -- If the derived type itself is private with a full view, then
5317 -- associate the full view with the inherited TSS_Elist as well.
5319 if Ekind
(B_Id
) in Private_Kind
5320 and then Present
(Full_View
(B_Id
))
5322 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
5324 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
5328 end Expand_N_Full_Type_Declaration
;
5330 ---------------------------------
5331 -- Expand_N_Object_Declaration --
5332 ---------------------------------
5334 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
5335 Loc
: constant Source_Ptr
:= Sloc
(N
);
5336 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5337 Expr
: constant Node_Id
:= Expression
(N
);
5338 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
5339 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
5340 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5343 function Build_Equivalent_Aggregate
return Boolean;
5344 -- If the object has a constrained discriminated type and no initial
5345 -- value, it may be possible to build an equivalent aggregate instead,
5346 -- and prevent an actual call to the initialization procedure.
5348 procedure Default_Initialize_Object
(After
: Node_Id
);
5349 -- Generate all default initialization actions for object Def_Id. Any
5350 -- new code is inserted after node After.
5352 function Rewrite_As_Renaming
return Boolean;
5353 -- Indicate whether to rewrite a declaration with initialization into an
5354 -- object renaming declaration (see below).
5356 --------------------------------
5357 -- Build_Equivalent_Aggregate --
5358 --------------------------------
5360 function Build_Equivalent_Aggregate
return Boolean is
5364 Full_Type
: Entity_Id
;
5369 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
5370 Full_Type
:= Full_View
(Typ
);
5373 -- Only perform this transformation if Elaboration_Code is forbidden
5374 -- or undesirable, and if this is a global entity of a constrained
5377 -- If Initialize_Scalars might be active this transformation cannot
5378 -- be performed either, because it will lead to different semantics
5379 -- or because elaboration code will in fact be created.
5381 if Ekind
(Full_Type
) /= E_Record_Subtype
5382 or else not Has_Discriminants
(Full_Type
)
5383 or else not Is_Constrained
(Full_Type
)
5384 or else Is_Controlled
(Full_Type
)
5385 or else Is_Limited_Type
(Full_Type
)
5386 or else not Restriction_Active
(No_Initialize_Scalars
)
5391 if Ekind
(Current_Scope
) = E_Package
5393 (Restriction_Active
(No_Elaboration_Code
)
5394 or else Is_Preelaborated
(Current_Scope
))
5396 -- Building a static aggregate is possible if the discriminants
5397 -- have static values and the other components have static
5398 -- defaults or none.
5400 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
5401 while Present
(Discr
) loop
5402 if not Is_OK_Static_Expression
(Node
(Discr
)) then
5409 -- Check that initialized components are OK, and that non-
5410 -- initialized components do not require a call to their own
5411 -- initialization procedure.
5413 Comp
:= First_Component
(Full_Type
);
5414 while Present
(Comp
) loop
5415 if Ekind
(Comp
) = E_Component
5416 and then Present
(Expression
(Parent
(Comp
)))
5418 not Is_OK_Static_Expression
(Expression
(Parent
(Comp
)))
5422 elsif Has_Non_Null_Base_Init_Proc
(Etype
(Comp
)) then
5427 Next_Component
(Comp
);
5430 -- Everything is static, assemble the aggregate, discriminant
5434 Make_Aggregate
(Loc
,
5435 Expressions
=> New_List
,
5436 Component_Associations
=> New_List
);
5438 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
5439 while Present
(Discr
) loop
5440 Append_To
(Expressions
(Aggr
), New_Copy
(Node
(Discr
)));
5444 -- Now collect values of initialized components
5446 Comp
:= First_Component
(Full_Type
);
5447 while Present
(Comp
) loop
5448 if Ekind
(Comp
) = E_Component
5449 and then Present
(Expression
(Parent
(Comp
)))
5451 Append_To
(Component_Associations
(Aggr
),
5452 Make_Component_Association
(Loc
,
5453 Choices
=> New_List
(New_Occurrence_Of
(Comp
, Loc
)),
5454 Expression
=> New_Copy_Tree
5455 (Expression
(Parent
(Comp
)))));
5458 Next_Component
(Comp
);
5461 -- Finally, box-initialize remaining components
5463 Append_To
(Component_Associations
(Aggr
),
5464 Make_Component_Association
(Loc
,
5465 Choices
=> New_List
(Make_Others_Choice
(Loc
)),
5466 Expression
=> Empty
));
5467 Set_Box_Present
(Last
(Component_Associations
(Aggr
)));
5468 Set_Expression
(N
, Aggr
);
5470 if Typ
/= Full_Type
then
5471 Analyze_And_Resolve
(Aggr
, Full_View
(Base_Type
(Full_Type
)));
5472 Rewrite
(Aggr
, Unchecked_Convert_To
(Typ
, Aggr
));
5473 Analyze_And_Resolve
(Aggr
, Typ
);
5475 Analyze_And_Resolve
(Aggr
, Full_Type
);
5483 end Build_Equivalent_Aggregate
;
5485 -------------------------------
5486 -- Default_Initialize_Object --
5487 -------------------------------
5489 procedure Default_Initialize_Object
(After
: Node_Id
) is
5490 function New_Object_Reference
return Node_Id
;
5491 -- Return a new reference to Def_Id with attributes Assignment_OK and
5492 -- Must_Not_Freeze already set.
5494 --------------------------
5495 -- New_Object_Reference --
5496 --------------------------
5498 function New_Object_Reference
return Node_Id
is
5499 Obj_Ref
: constant Node_Id
:= New_Occurrence_Of
(Def_Id
, Loc
);
5502 -- The call to the type init proc or [Deep_]Finalize must not
5503 -- freeze the related object as the call is internally generated.
5504 -- This way legal rep clauses that apply to the object will not be
5505 -- flagged. Note that the initialization call may be removed if
5506 -- pragma Import is encountered or moved to the freeze actions of
5507 -- the object because of an address clause.
5509 Set_Assignment_OK
(Obj_Ref
);
5510 Set_Must_Not_Freeze
(Obj_Ref
);
5513 end New_Object_Reference
;
5517 Exceptions_OK
: constant Boolean :=
5518 not Restriction_Active
(No_Exception_Propagation
);
5520 Aggr_Init
: Node_Id
;
5521 Comp_Init
: List_Id
:= No_List
;
5523 Init_Stmts
: List_Id
:= No_List
;
5524 Obj_Init
: Node_Id
:= Empty
;
5527 -- Start of processing for Default_Initialize_Object
5530 -- Default initialization is suppressed for objects that are already
5531 -- known to be imported (i.e. whose declaration specifies the Import
5532 -- aspect). Note that for objects with a pragma Import, we generate
5533 -- initialization here, and then remove it downstream when processing
5534 -- the pragma. It is also suppressed for variables for which a pragma
5535 -- Suppress_Initialization has been explicitly given
5537 if Is_Imported
(Def_Id
) or else Suppress_Initialization
(Def_Id
) then
5541 -- The expansion performed by this routine is as follows:
5545 -- Type_Init_Proc (Obj);
5548 -- [Deep_]Initialize (Obj);
5552 -- [Deep_]Finalize (Obj, Self => False);
5556 -- Abort_Undefer_Direct;
5559 -- Initialize the components of the object
5561 if Has_Non_Null_Base_Init_Proc
(Typ
)
5562 and then not No_Initialization
(N
)
5563 and then not Initialization_Suppressed
(Typ
)
5565 -- Do not initialize the components if No_Default_Initialization
5566 -- applies as the actual restriction check will occur later
5567 -- when the object is frozen as it is not known yet whether the
5568 -- object is imported or not.
5570 if not Restriction_Active
(No_Default_Initialization
) then
5572 -- If the values of the components are compile-time known, use
5573 -- their prebuilt aggregate form directly.
5575 Aggr_Init
:= Static_Initialization
(Base_Init_Proc
(Typ
));
5577 if Present
(Aggr_Init
) then
5579 (N
, New_Copy_Tree
(Aggr_Init
, New_Scope
=> Current_Scope
));
5581 -- If type has discriminants, try to build an equivalent
5582 -- aggregate using discriminant values from the declaration.
5583 -- This is a useful optimization, in particular if restriction
5584 -- No_Elaboration_Code is active.
5586 elsif Build_Equivalent_Aggregate
then
5589 -- Otherwise invoke the type init proc, generate:
5590 -- Type_Init_Proc (Obj);
5593 Obj_Ref
:= New_Object_Reference
;
5595 if Comes_From_Source
(Def_Id
) then
5596 Initialization_Warning
(Obj_Ref
);
5599 Comp_Init
:= Build_Initialization_Call
(Loc
, Obj_Ref
, Typ
);
5603 -- Provide a default value if the object needs simple initialization
5604 -- and does not already have an initial value. A generated temporary
5605 -- does not require initialization because it will be assigned later.
5607 elsif Needs_Simple_Initialization
5608 (Typ
, Initialize_Scalars
5609 and then No
(Following_Address_Clause
(N
)))
5610 and then not Is_Internal
(Def_Id
)
5611 and then not Has_Init_Expression
(N
)
5613 Set_No_Initialization
(N
, False);
5614 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Def_Id
)));
5615 Analyze_And_Resolve
(Expression
(N
), Typ
);
5618 -- Initialize the object, generate:
5619 -- [Deep_]Initialize (Obj);
5621 if Needs_Finalization
(Typ
) and then not No_Initialization
(N
) then
5624 (Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
5628 -- Build a special finalization block when both the object and its
5629 -- controlled components are to be initialized. The block finalizes
5630 -- the components if the object initialization fails. Generate:
5641 if Has_Controlled_Component
(Typ
)
5642 and then Present
(Comp_Init
)
5643 and then Present
(Obj_Init
)
5644 and then Exceptions_OK
5646 Init_Stmts
:= Comp_Init
;
5650 (Obj_Ref
=> New_Object_Reference
,
5654 if Present
(Fin_Call
) then
5656 -- Do not emit warnings related to the elaboration order when a
5657 -- controlled object is declared before the body of Finalize is
5660 Set_No_Elaboration_Check
(Fin_Call
);
5662 Append_To
(Init_Stmts
,
5663 Make_Block_Statement
(Loc
,
5664 Declarations
=> No_List
,
5666 Handled_Statement_Sequence
=>
5667 Make_Handled_Sequence_Of_Statements
(Loc
,
5668 Statements
=> New_List
(Obj_Init
),
5670 Exception_Handlers
=> New_List
(
5671 Make_Exception_Handler
(Loc
,
5672 Exception_Choices
=> New_List
(
5673 Make_Others_Choice
(Loc
)),
5675 Statements
=> New_List
(
5677 Make_Raise_Statement
(Loc
)))))));
5680 -- Otherwise finalization is not required, the initialization calls
5681 -- are passed to the abort block building circuitry, generate:
5683 -- Type_Init_Proc (Obj);
5684 -- [Deep_]Initialize (Obj);
5687 if Present
(Comp_Init
) then
5688 Init_Stmts
:= Comp_Init
;
5691 if Present
(Obj_Init
) then
5692 if No
(Init_Stmts
) then
5693 Init_Stmts
:= New_List
;
5696 Append_To
(Init_Stmts
, Obj_Init
);
5700 -- Build an abort block to protect the initialization calls
5703 and then Present
(Comp_Init
)
5704 and then Present
(Obj_Init
)
5709 Prepend_To
(Init_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
5711 -- When exceptions are propagated, abort deferral must take place
5712 -- in the presence of initialization or finalization exceptions.
5719 -- Abort_Undefer_Direct;
5722 if Exceptions_OK
then
5723 Init_Stmts
:= New_List
(
5724 Build_Abort_Undefer_Block
(Loc
,
5725 Stmts
=> Init_Stmts
,
5728 -- Otherwise exceptions are not propagated. Generate:
5735 Append_To
(Init_Stmts
,
5736 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
5740 -- Insert the whole initialization sequence into the tree. If the
5741 -- object has a delayed freeze, as will be the case when it has
5742 -- aspect specifications, the initialization sequence is part of
5743 -- the freeze actions.
5745 if Present
(Init_Stmts
) then
5746 if Has_Delayed_Freeze
(Def_Id
) then
5747 Append_Freeze_Actions
(Def_Id
, Init_Stmts
);
5749 Insert_Actions_After
(After
, Init_Stmts
);
5752 end Default_Initialize_Object
;
5754 -------------------------
5755 -- Rewrite_As_Renaming --
5756 -------------------------
5758 function Rewrite_As_Renaming
return Boolean is
5760 -- If the object declaration appears in the form
5762 -- Obj : Ctrl_Typ := Func (...);
5764 -- where Ctrl_Typ is controlled but not immutably limited type, then
5765 -- the expansion of the function call should use a dereference of the
5766 -- result to reference the value on the secondary stack.
5768 -- Obj : Ctrl_Typ renames Func (...).all;
5770 -- As a result, the call avoids an extra copy. This an optimization,
5771 -- but it is required for passing ACATS tests in some cases where it
5772 -- would otherwise make two copies. The RM allows removing redunant
5773 -- Adjust/Finalize calls, but does not allow insertion of extra ones.
5775 -- This part is disabled for now, because it breaks GPS builds
5777 return (False -- ???
5778 and then Nkind
(Expr_Q
) = N_Explicit_Dereference
5779 and then not Comes_From_Source
(Expr_Q
)
5780 and then Nkind
(Original_Node
(Expr_Q
)) = N_Function_Call
5781 and then Nkind
(Object_Definition
(N
)) in N_Has_Entity
5782 and then (Needs_Finalization
(Entity
(Object_Definition
(N
)))))
5784 -- If the initializing expression is for a variable with attribute
5785 -- OK_To_Rename set, then transform:
5787 -- Obj : Typ := Expr;
5791 -- Obj : Typ renames Expr;
5793 -- provided that Obj is not aliased. The aliased case has to be
5794 -- excluded in general because Expr will not be aliased in
5798 (not Aliased_Present
(N
)
5799 and then Is_Entity_Name
(Expr_Q
)
5800 and then Ekind
(Entity
(Expr_Q
)) = E_Variable
5801 and then OK_To_Rename
(Entity
(Expr_Q
))
5802 and then Is_Entity_Name
(Obj_Def
));
5803 end Rewrite_As_Renaming
;
5807 Next_N
: constant Node_Id
:= Next
(N
);
5809 Tag_Assign
: Node_Id
;
5811 Init_After
: Node_Id
:= N
;
5812 -- Node after which the initialization actions are to be inserted. This
5813 -- is normally N, except for the case of a shared passive variable, in
5814 -- which case the init proc call must be inserted only after the bodies
5815 -- of the shared variable procedures have been seen.
5817 -- Start of processing for Expand_N_Object_Declaration
5820 -- Don't do anything for deferred constants. All proper actions will be
5821 -- expanded during the full declaration.
5823 if No
(Expr
) and Constant_Present
(N
) then
5827 -- The type of the object cannot be abstract. This is diagnosed at the
5828 -- point the object is frozen, which happens after the declaration is
5829 -- fully expanded, so simply return now.
5831 if Is_Abstract_Type
(Typ
) then
5835 -- First we do special processing for objects of a tagged type where
5836 -- this is the point at which the type is frozen. The creation of the
5837 -- dispatch table and the initialization procedure have to be deferred
5838 -- to this point, since we reference previously declared primitive
5841 -- Force construction of dispatch tables of library level tagged types
5843 if Tagged_Type_Expansion
5844 and then Static_Dispatch_Tables
5845 and then Is_Library_Level_Entity
(Def_Id
)
5846 and then Is_Library_Level_Tagged_Type
(Base_Typ
)
5847 and then Ekind_In
(Base_Typ
, E_Record_Type
,
5850 and then not Has_Dispatch_Table
(Base_Typ
)
5853 New_Nodes
: List_Id
:= No_List
;
5856 if Is_Concurrent_Type
(Base_Typ
) then
5857 New_Nodes
:= Make_DT
(Corresponding_Record_Type
(Base_Typ
), N
);
5859 New_Nodes
:= Make_DT
(Base_Typ
, N
);
5862 if not Is_Empty_List
(New_Nodes
) then
5863 Insert_List_Before
(N
, New_Nodes
);
5868 -- Make shared memory routines for shared passive variable
5870 if Is_Shared_Passive
(Def_Id
) then
5871 Init_After
:= Make_Shared_Var_Procs
(N
);
5874 -- If tasks being declared, make sure we have an activation chain
5875 -- defined for the tasks (has no effect if we already have one), and
5876 -- also that a Master variable is established and that the appropriate
5877 -- enclosing construct is established as a task master.
5879 if Has_Task
(Typ
) then
5880 Build_Activation_Chain_Entity
(N
);
5881 Build_Master_Entity
(Def_Id
);
5884 -- Default initialization required, and no expression present
5888 -- If we have a type with a variant part, the initialization proc
5889 -- will contain implicit tests of the discriminant values, which
5890 -- counts as a violation of the restriction No_Implicit_Conditionals.
5892 if Has_Variant_Part
(Typ
) then
5897 Check_Restriction
(Msg
, No_Implicit_Conditionals
, Obj_Def
);
5901 ("\initialization of variant record tests discriminants",
5908 -- For the default initialization case, if we have a private type
5909 -- with invariants, and invariant checks are enabled, then insert an
5910 -- invariant check after the object declaration. Note that it is OK
5911 -- to clobber the object with an invalid value since if the exception
5912 -- is raised, then the object will go out of scope. In the case where
5913 -- an array object is initialized with an aggregate, the expression
5914 -- is removed. Check flag Has_Init_Expression to avoid generating a
5915 -- junk invariant check and flag No_Initialization to avoid checking
5916 -- an uninitialized object such as a compiler temporary used for an
5919 if Has_Invariants
(Base_Typ
)
5920 and then Present
(Invariant_Procedure
(Base_Typ
))
5921 and then not Has_Init_Expression
(N
)
5922 and then not No_Initialization
(N
)
5924 -- If entity has an address clause or aspect, make invariant
5925 -- call into a freeze action for the explicit freeze node for
5926 -- object. Otherwise insert invariant check after declaration.
5928 if Present
(Following_Address_Clause
(N
))
5929 or else Has_Aspect
(Def_Id
, Aspect_Address
)
5931 Ensure_Freeze_Node
(Def_Id
);
5932 Set_Has_Delayed_Freeze
(Def_Id
);
5933 Set_Is_Frozen
(Def_Id
, False);
5935 if not Partial_View_Has_Unknown_Discr
(Typ
) then
5936 Append_Freeze_Action
(Def_Id
,
5937 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
5940 elsif not Partial_View_Has_Unknown_Discr
(Typ
) then
5942 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
5946 Default_Initialize_Object
(Init_After
);
5948 -- Generate attribute for Persistent_BSS if needed
5950 if Persistent_BSS_Mode
5951 and then Comes_From_Source
(N
)
5952 and then Is_Potentially_Persistent_Type
(Typ
)
5953 and then not Has_Init_Expression
(N
)
5954 and then Is_Library_Level_Entity
(Def_Id
)
5960 Make_Linker_Section_Pragma
5961 (Def_Id
, Sloc
(N
), ".persistent.bss");
5962 Insert_After
(N
, Prag
);
5967 -- If access type, then we know it is null if not initialized
5969 if Is_Access_Type
(Typ
) then
5970 Set_Is_Known_Null
(Def_Id
);
5973 -- Explicit initialization present
5976 -- Obtain actual expression from qualified expression
5978 if Nkind
(Expr
) = N_Qualified_Expression
then
5979 Expr_Q
:= Expression
(Expr
);
5984 -- When we have the appropriate type of aggregate in the expression
5985 -- (it has been determined during analysis of the aggregate by
5986 -- setting the delay flag), let's perform in place assignment and
5987 -- thus avoid creating a temporary.
5989 if Is_Delayed_Aggregate
(Expr_Q
) then
5990 Convert_Aggr_In_Object_Decl
(N
);
5992 -- Ada 2005 (AI-318-02): If the initialization expression is a call
5993 -- to a build-in-place function, then access to the declared object
5994 -- must be passed to the function. Currently we limit such functions
5995 -- to those with constrained limited result subtypes, but eventually
5996 -- plan to expand the allowed forms of functions that are treated as
5999 elsif Ada_Version
>= Ada_2005
6000 and then Is_Build_In_Place_Function_Call
(Expr_Q
)
6002 Make_Build_In_Place_Call_In_Object_Declaration
(N
, Expr_Q
);
6004 -- The previous call expands the expression initializing the
6005 -- built-in-place object into further code that will be analyzed
6006 -- later. No further expansion needed here.
6010 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
6011 -- class-wide interface object to ensure that we copy the full
6012 -- object, unless we are targetting a VM where interfaces are handled
6013 -- by VM itself. Note that if the root type of Typ is an ancestor of
6014 -- Expr's type, both types share the same dispatch table and there is
6015 -- no need to displace the pointer.
6017 elsif Is_Interface
(Typ
)
6019 -- Avoid never-ending recursion because if Equivalent_Type is set
6020 -- then we've done it already and must not do it again.
6023 (Nkind
(Obj_Def
) = N_Identifier
6024 and then Present
(Equivalent_Type
(Entity
(Obj_Def
))))
6026 pragma Assert
(Is_Class_Wide_Type
(Typ
));
6028 -- If the object is a return object of an inherently limited type,
6029 -- which implies build-in-place treatment, bypass the special
6030 -- treatment of class-wide interface initialization below. In this
6031 -- case, the expansion of the return statement will take care of
6032 -- creating the object (via allocator) and initializing it.
6034 if Is_Return_Object
(Def_Id
) and then Is_Limited_View
(Typ
) then
6037 elsif Tagged_Type_Expansion
then
6039 Iface
: constant Entity_Id
:= Root_Type
(Typ
);
6040 Expr_N
: Node_Id
:= Expr
;
6041 Expr_Typ
: Entity_Id
;
6047 -- If the original node of the expression was a conversion
6048 -- to this specific class-wide interface type then restore
6049 -- the original node because we must copy the object before
6050 -- displacing the pointer to reference the secondary tag
6051 -- component. This code must be kept synchronized with the
6052 -- expansion done by routine Expand_Interface_Conversion
6054 if not Comes_From_Source
(Expr_N
)
6055 and then Nkind
(Expr_N
) = N_Explicit_Dereference
6056 and then Nkind
(Original_Node
(Expr_N
)) = N_Type_Conversion
6057 and then Etype
(Original_Node
(Expr_N
)) = Typ
6059 Rewrite
(Expr_N
, Original_Node
(Expression
(N
)));
6062 -- Avoid expansion of redundant interface conversion
6064 if Is_Interface
(Etype
(Expr_N
))
6065 and then Nkind
(Expr_N
) = N_Type_Conversion
6066 and then Etype
(Expr_N
) = Typ
6068 Expr_N
:= Expression
(Expr_N
);
6069 Set_Expression
(N
, Expr_N
);
6072 Obj_Id
:= Make_Temporary
(Loc
, 'D', Expr_N
);
6073 Expr_Typ
:= Base_Type
(Etype
(Expr_N
));
6075 if Is_Class_Wide_Type
(Expr_Typ
) then
6076 Expr_Typ
:= Root_Type
(Expr_Typ
);
6080 -- CW : I'Class := Obj;
6083 -- type Ityp is not null access I'Class;
6084 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
6086 if Comes_From_Source
(Expr_N
)
6087 and then Nkind
(Expr_N
) = N_Identifier
6088 and then not Is_Interface
(Expr_Typ
)
6089 and then Interface_Present_In_Ancestor
(Expr_Typ
, Typ
)
6090 and then (Expr_Typ
= Etype
(Expr_Typ
)
6092 Is_Variable_Size_Record
(Etype
(Expr_Typ
)))
6097 Make_Object_Declaration
(Loc
,
6098 Defining_Identifier
=> Obj_Id
,
6099 Object_Definition
=>
6100 New_Occurrence_Of
(Expr_Typ
, Loc
),
6101 Expression
=> Relocate_Node
(Expr_N
)));
6103 -- Statically reference the tag associated with the
6107 Make_Selected_Component
(Loc
,
6108 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
6111 (Find_Interface_Tag
(Expr_Typ
, Iface
), Loc
));
6114 -- IW : I'Class := Obj;
6116 -- type Equiv_Record is record ... end record;
6117 -- implicit subtype CW is <Class_Wide_Subtype>;
6118 -- Tmp : CW := CW!(Obj);
6119 -- type Ityp is not null access I'Class;
6120 -- IW : I'Class renames
6121 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
6124 -- Generate the equivalent record type and update the
6125 -- subtype indication to reference it.
6127 Expand_Subtype_From_Expr
6130 Subtype_Indic
=> Obj_Def
,
6133 if not Is_Interface
(Etype
(Expr_N
)) then
6134 New_Expr
:= Relocate_Node
(Expr_N
);
6136 -- For interface types we use 'Address which displaces
6137 -- the pointer to the base of the object (if required)
6141 Unchecked_Convert_To
(Etype
(Obj_Def
),
6142 Make_Explicit_Dereference
(Loc
,
6143 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6144 Make_Attribute_Reference
(Loc
,
6145 Prefix
=> Relocate_Node
(Expr_N
),
6146 Attribute_Name
=> Name_Address
))));
6151 if not Is_Limited_Record
(Expr_Typ
) then
6153 Make_Object_Declaration
(Loc
,
6154 Defining_Identifier
=> Obj_Id
,
6155 Object_Definition
=>
6156 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
6157 Expression
=> New_Expr
));
6159 -- Rename limited type object since they cannot be copied
6160 -- This case occurs when the initialization expression
6161 -- has been previously expanded into a temporary object.
6163 else pragma Assert
(not Comes_From_Source
(Expr_Q
));
6165 Make_Object_Renaming_Declaration
(Loc
,
6166 Defining_Identifier
=> Obj_Id
,
6168 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
6170 Unchecked_Convert_To
6171 (Etype
(Obj_Def
), New_Expr
)));
6174 -- Dynamically reference the tag associated with the
6178 Make_Function_Call
(Loc
,
6179 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
6180 Parameter_Associations
=> New_List
(
6181 Make_Attribute_Reference
(Loc
,
6182 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
6183 Attribute_Name
=> Name_Address
),
6185 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
6190 Make_Object_Renaming_Declaration
(Loc
,
6191 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
6192 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
6194 Convert_Tag_To_Interface
(Typ
, Tag_Comp
)));
6196 -- If the original entity comes from source, then mark the
6197 -- new entity as needing debug information, even though it's
6198 -- defined by a generated renaming that does not come from
6199 -- source, so that Materialize_Entity will be set on the
6200 -- entity when Debug_Renaming_Declaration is called during
6203 if Comes_From_Source
(Def_Id
) then
6204 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
6207 Analyze
(N
, Suppress
=> All_Checks
);
6209 -- Replace internal identifier of rewritten node by the
6210 -- identifier found in the sources. We also have to exchange
6211 -- entities containing their defining identifiers to ensure
6212 -- the correct replacement of the object declaration by this
6213 -- object renaming declaration because these identifiers
6214 -- were previously added by Enter_Name to the current scope.
6215 -- We must preserve the homonym chain of the source entity
6216 -- as well. We must also preserve the kind of the entity,
6217 -- which may be a constant. Preserve entity chain because
6218 -- itypes may have been generated already, and the full
6219 -- chain must be preserved for final freezing. Finally,
6220 -- preserve Comes_From_Source setting, so that debugging
6221 -- and cross-referencing information is properly kept, and
6222 -- preserve source location, to prevent spurious errors when
6223 -- entities are declared (they must have their own Sloc).
6226 New_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
6227 Next_Temp
: constant Entity_Id
:= Next_Entity
(New_Id
);
6228 S_Flag
: constant Boolean :=
6229 Comes_From_Source
(Def_Id
);
6232 Set_Next_Entity
(New_Id
, Next_Entity
(Def_Id
));
6233 Set_Next_Entity
(Def_Id
, Next_Temp
);
6235 Set_Chars
(Defining_Identifier
(N
), Chars
(Def_Id
));
6236 Set_Homonym
(Defining_Identifier
(N
), Homonym
(Def_Id
));
6237 Set_Ekind
(Defining_Identifier
(N
), Ekind
(Def_Id
));
6238 Set_Sloc
(Defining_Identifier
(N
), Sloc
(Def_Id
));
6240 Set_Comes_From_Source
(Def_Id
, False);
6241 Exchange_Entities
(Defining_Identifier
(N
), Def_Id
);
6242 Set_Comes_From_Source
(Def_Id
, S_Flag
);
6249 -- Common case of explicit object initialization
6252 -- In most cases, we must check that the initial value meets any
6253 -- constraint imposed by the declared type. However, there is one
6254 -- very important exception to this rule. If the entity has an
6255 -- unconstrained nominal subtype, then it acquired its constraints
6256 -- from the expression in the first place, and not only does this
6257 -- mean that the constraint check is not needed, but an attempt to
6258 -- perform the constraint check can cause order of elaboration
6261 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
6263 -- If this is an allocator for an aggregate that has been
6264 -- allocated in place, delay checks until assignments are
6265 -- made, because the discriminants are not initialized.
6267 if Nkind
(Expr
) = N_Allocator
and then No_Initialization
(Expr
)
6271 -- Otherwise apply a constraint check now if no prev error
6273 elsif Nkind
(Expr
) /= N_Error
then
6274 Apply_Constraint_Check
(Expr
, Typ
);
6276 -- Deal with possible range check
6278 if Do_Range_Check
(Expr
) then
6280 -- If assignment checks are suppressed, turn off flag
6282 if Suppress_Assignment_Checks
(N
) then
6283 Set_Do_Range_Check
(Expr
, False);
6285 -- Otherwise generate the range check
6288 Generate_Range_Check
6289 (Expr
, Typ
, CE_Range_Check_Failed
);
6295 -- If the type is controlled and not inherently limited, then
6296 -- the target is adjusted after the copy and attached to the
6297 -- finalization list. However, no adjustment is done in the case
6298 -- where the object was initialized by a call to a function whose
6299 -- result is built in place, since no copy occurred. (Eventually
6300 -- we plan to support in-place function results for some cases
6301 -- of nonlimited types. ???) Similarly, no adjustment is required
6302 -- if we are going to rewrite the object declaration into a
6303 -- renaming declaration.
6305 if Needs_Finalization
(Typ
)
6306 and then not Is_Limited_View
(Typ
)
6307 and then not Rewrite_As_Renaming
6309 Insert_Action_After
(Init_After
,
6311 Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
6315 -- For tagged types, when an init value is given, the tag has to
6316 -- be re-initialized separately in order to avoid the propagation
6317 -- of a wrong tag coming from a view conversion unless the type
6318 -- is class wide (in this case the tag comes from the init value).
6319 -- Suppress the tag assignment when not Tagged_Type_Expansion
6320 -- because tags are represented implicitly in objects. Ditto for
6321 -- types that are CPP_CLASS, and for initializations that are
6322 -- aggregates, because they have to have the right tag.
6324 -- The re-assignment of the tag has to be done even if the object
6325 -- is a constant. The assignment must be analyzed after the
6326 -- declaration. If an address clause follows, this is handled as
6327 -- part of the freeze actions for the object, otherwise insert
6328 -- tag assignment here.
6330 Tag_Assign
:= Make_Tag_Assignment
(N
);
6332 if Present
(Tag_Assign
) then
6333 if Present
(Following_Address_Clause
(N
)) then
6334 Ensure_Freeze_Node
(Def_Id
);
6337 Insert_Action_After
(Init_After
, Tag_Assign
);
6340 -- Handle C++ constructor calls. Note that we do not check that
6341 -- Typ is a tagged type since the equivalent Ada type of a C++
6342 -- class that has no virtual methods is an untagged limited
6345 elsif Is_CPP_Constructor_Call
(Expr
) then
6347 -- The call to the initialization procedure does NOT freeze the
6348 -- object being initialized.
6350 Id_Ref
:= New_Occurrence_Of
(Def_Id
, Loc
);
6351 Set_Must_Not_Freeze
(Id_Ref
);
6352 Set_Assignment_OK
(Id_Ref
);
6354 Insert_Actions_After
(Init_After
,
6355 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
,
6356 Constructor_Ref
=> Expr
));
6358 -- We remove here the original call to the constructor
6359 -- to avoid its management in the backend
6361 Set_Expression
(N
, Empty
);
6364 -- Handle initialization of limited tagged types
6366 elsif Is_Tagged_Type
(Typ
)
6367 and then Is_Class_Wide_Type
(Typ
)
6368 and then Is_Limited_Record
(Typ
)
6369 and then not Is_Limited_Interface
(Typ
)
6371 -- Given that the type is limited we cannot perform a copy. If
6372 -- Expr_Q is the reference to a variable we mark the variable
6373 -- as OK_To_Rename to expand this declaration into a renaming
6374 -- declaration (see bellow).
6376 if Is_Entity_Name
(Expr_Q
) then
6377 Set_OK_To_Rename
(Entity
(Expr_Q
));
6379 -- If we cannot convert the expression into a renaming we must
6380 -- consider it an internal error because the backend does not
6381 -- have support to handle it.
6384 pragma Assert
(False);
6385 raise Program_Error
;
6388 -- For discrete types, set the Is_Known_Valid flag if the
6389 -- initializing value is known to be valid. Only do this for
6390 -- source assignments, since otherwise we can end up turning
6391 -- on the known valid flag prematurely from inserted code.
6393 elsif Comes_From_Source
(N
)
6394 and then Is_Discrete_Type
(Typ
)
6395 and then Expr_Known_Valid
(Expr
)
6397 Set_Is_Known_Valid
(Def_Id
);
6399 elsif Is_Access_Type
(Typ
) then
6401 -- For access types set the Is_Known_Non_Null flag if the
6402 -- initializing value is known to be non-null. We can also set
6403 -- Can_Never_Be_Null if this is a constant.
6405 if Known_Non_Null
(Expr
) then
6406 Set_Is_Known_Non_Null
(Def_Id
, True);
6408 if Constant_Present
(N
) then
6409 Set_Can_Never_Be_Null
(Def_Id
);
6414 -- If validity checking on copies, validate initial expression.
6415 -- But skip this if declaration is for a generic type, since it
6416 -- makes no sense to validate generic types. Not clear if this
6417 -- can happen for legal programs, but it definitely can arise
6418 -- from previous instantiation errors.
6420 if Validity_Checks_On
6421 and then Comes_From_Source
(N
)
6422 and then Validity_Check_Copies
6423 and then not Is_Generic_Type
(Etype
(Def_Id
))
6425 Ensure_Valid
(Expr
);
6426 Set_Is_Known_Valid
(Def_Id
);
6430 -- Cases where the back end cannot handle the initialization directly
6431 -- In such cases, we expand an assignment that will be appropriately
6432 -- handled by Expand_N_Assignment_Statement.
6434 -- The exclusion of the unconstrained case is wrong, but for now it
6435 -- is too much trouble ???
6437 if (Is_Possibly_Unaligned_Slice
(Expr
)
6438 or else (Is_Possibly_Unaligned_Object
(Expr
)
6439 and then not Represented_As_Scalar
(Etype
(Expr
))))
6440 and then not (Is_Array_Type
(Etype
(Expr
))
6441 and then not Is_Constrained
(Etype
(Expr
)))
6444 Stat
: constant Node_Id
:=
6445 Make_Assignment_Statement
(Loc
,
6446 Name
=> New_Occurrence_Of
(Def_Id
, Loc
),
6447 Expression
=> Relocate_Node
(Expr
));
6449 Set_Expression
(N
, Empty
);
6450 Set_No_Initialization
(N
);
6451 Set_Assignment_OK
(Name
(Stat
));
6452 Set_No_Ctrl_Actions
(Stat
);
6453 Insert_After_And_Analyze
(Init_After
, Stat
);
6458 if Nkind
(Obj_Def
) = N_Access_Definition
6459 and then not Is_Local_Anonymous_Access
(Etype
(Def_Id
))
6461 -- An Ada 2012 stand-alone object of an anonymous access type
6464 Loc
: constant Source_Ptr
:= Sloc
(N
);
6466 Level
: constant Entity_Id
:=
6467 Make_Defining_Identifier
(Sloc
(N
),
6469 New_External_Name
(Chars
(Def_Id
), Suffix
=> "L"));
6471 Level_Expr
: Node_Id
;
6472 Level_Decl
: Node_Id
;
6475 Set_Ekind
(Level
, Ekind
(Def_Id
));
6476 Set_Etype
(Level
, Standard_Natural
);
6477 Set_Scope
(Level
, Scope
(Def_Id
));
6481 -- Set accessibility level of null
6484 Make_Integer_Literal
(Loc
, Scope_Depth
(Standard_Standard
));
6487 Level_Expr
:= Dynamic_Accessibility_Level
(Expr
);
6491 Make_Object_Declaration
(Loc
,
6492 Defining_Identifier
=> Level
,
6493 Object_Definition
=>
6494 New_Occurrence_Of
(Standard_Natural
, Loc
),
6495 Expression
=> Level_Expr
,
6496 Constant_Present
=> Constant_Present
(N
),
6497 Has_Init_Expression
=> True);
6499 Insert_Action_After
(Init_After
, Level_Decl
);
6501 Set_Extra_Accessibility
(Def_Id
, Level
);
6505 -- If the object is default initialized and its type is subject to
6506 -- pragma Default_Initial_Condition, add a runtime check to verify
6507 -- the assumption of the pragma (SPARK RM 7.3.3). Generate:
6509 -- <Base_Typ>Default_Init_Cond (<Base_Typ> (Def_Id));
6511 -- Note that the check is generated for source objects only
6513 if Comes_From_Source
(Def_Id
)
6514 and then (Has_Default_Init_Cond
(Typ
)
6515 or else Has_Inherited_Default_Init_Cond
(Typ
))
6516 and then not Has_Init_Expression
(N
)
6517 and then Present
(Default_Init_Cond_Procedure
(Typ
))
6520 DIC_Call
: constant Node_Id
:=
6521 Build_Default_Init_Cond_Call
(Loc
, Def_Id
, Typ
);
6523 if Present
(Next_N
) then
6524 Insert_Before_And_Analyze
(Next_N
, DIC_Call
);
6526 -- The object declaration is the last node in a declarative or a
6530 Append_To
(List_Containing
(N
), DIC_Call
);
6536 -- Final transformation - turn the object declaration into a renaming
6537 -- if appropriate. If this is the completion of a deferred constant
6538 -- declaration, then this transformation generates what would be
6539 -- illegal code if written by hand, but that's OK.
6541 if Present
(Expr
) then
6542 if Rewrite_As_Renaming
then
6544 Make_Object_Renaming_Declaration
(Loc
,
6545 Defining_Identifier
=> Defining_Identifier
(N
),
6546 Subtype_Mark
=> Obj_Def
,
6549 -- We do not analyze this renaming declaration, because all its
6550 -- components have already been analyzed, and if we were to go
6551 -- ahead and analyze it, we would in effect be trying to generate
6552 -- another declaration of X, which won't do.
6554 Set_Renamed_Object
(Defining_Identifier
(N
), Expr_Q
);
6557 -- We do need to deal with debug issues for this renaming
6559 -- First, if entity comes from source, then mark it as needing
6560 -- debug information, even though it is defined by a generated
6561 -- renaming that does not come from source.
6563 if Comes_From_Source
(Defining_Identifier
(N
)) then
6564 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
6567 -- Now call the routine to generate debug info for the renaming
6570 Decl
: constant Node_Id
:= Debug_Renaming_Declaration
(N
);
6572 if Present
(Decl
) then
6573 Insert_Action
(N
, Decl
);
6579 -- Exception on library entity not available
6582 when RE_Not_Available
=>
6584 end Expand_N_Object_Declaration
;
6586 ---------------------------------
6587 -- Expand_N_Subtype_Indication --
6588 ---------------------------------
6590 -- Add a check on the range of the subtype. The static case is partially
6591 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
6592 -- to check here for the static case in order to avoid generating
6593 -- extraneous expanded code. Also deal with validity checking.
6595 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
6596 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
6597 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
6600 if Nkind
(Constraint
(N
)) = N_Range_Constraint
then
6601 Validity_Check_Range
(Range_Expression
(Constraint
(N
)));
6604 if Nkind_In
(Parent
(N
), N_Constrained_Array_Definition
, N_Slice
) then
6605 Apply_Range_Check
(Ran
, Typ
);
6607 end Expand_N_Subtype_Indication
;
6609 ---------------------------
6610 -- Expand_N_Variant_Part --
6611 ---------------------------
6613 -- Note: this procedure no longer has any effect. It used to be that we
6614 -- would replace the choices in the last variant by a when others, and
6615 -- also expanded static predicates in variant choices here, but both of
6616 -- those activities were being done too early, since we can't check the
6617 -- choices until the statically predicated subtypes are frozen, which can
6618 -- happen as late as the free point of the record, and we can't change the
6619 -- last choice to an others before checking the choices, which is now done
6620 -- at the freeze point of the record.
6622 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
6625 end Expand_N_Variant_Part
;
6627 ---------------------------------
6628 -- Expand_Previous_Access_Type --
6629 ---------------------------------
6631 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
6632 Ptr_Typ
: Entity_Id
;
6635 -- Find all access types in the current scope whose designated type is
6636 -- Def_Id and build master renamings for them.
6638 Ptr_Typ
:= First_Entity
(Current_Scope
);
6639 while Present
(Ptr_Typ
) loop
6640 if Is_Access_Type
(Ptr_Typ
)
6641 and then Designated_Type
(Ptr_Typ
) = Def_Id
6642 and then No
(Master_Id
(Ptr_Typ
))
6644 -- Ensure that the designated type has a master
6646 Build_Master_Entity
(Def_Id
);
6648 -- Private and incomplete types complicate the insertion of master
6649 -- renamings because the access type may precede the full view of
6650 -- the designated type. For this reason, the master renamings are
6651 -- inserted relative to the designated type.
6653 Build_Master_Renaming
(Ptr_Typ
, Ins_Nod
=> Parent
(Def_Id
));
6656 Next_Entity
(Ptr_Typ
);
6658 end Expand_Previous_Access_Type
;
6660 -----------------------------
6661 -- Expand_Record_Extension --
6662 -----------------------------
6664 -- Add a field _parent at the beginning of the record extension. This is
6665 -- used to implement inheritance. Here are some examples of expansion:
6667 -- 1. no discriminants
6668 -- type T2 is new T1 with null record;
6670 -- type T2 is new T1 with record
6674 -- 2. renamed discriminants
6675 -- type T2 (B, C : Int) is new T1 (A => B) with record
6676 -- _Parent : T1 (A => B);
6680 -- 3. inherited discriminants
6681 -- type T2 is new T1 with record -- discriminant A inherited
6682 -- _Parent : T1 (A);
6686 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
6687 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6688 Loc
: constant Source_Ptr
:= Sloc
(Def
);
6689 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
6690 Par_Subtype
: Entity_Id
;
6691 Comp_List
: Node_Id
;
6692 Comp_Decl
: Node_Id
;
6695 List_Constr
: constant List_Id
:= New_List
;
6698 -- Expand_Record_Extension is called directly from the semantics, so
6699 -- we must check to see whether expansion is active before proceeding,
6700 -- because this affects the visibility of selected components in bodies
6703 if not Expander_Active
then
6707 -- This may be a derivation of an untagged private type whose full
6708 -- view is tagged, in which case the Derived_Type_Definition has no
6709 -- extension part. Build an empty one now.
6711 if No
(Rec_Ext_Part
) then
6713 Make_Record_Definition
(Loc
,
6715 Component_List
=> Empty
,
6716 Null_Present
=> True);
6718 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
6719 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
6722 Comp_List
:= Component_List
(Rec_Ext_Part
);
6724 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
6726 -- If the derived type inherits its discriminants the type of the
6727 -- _parent field must be constrained by the inherited discriminants
6729 if Has_Discriminants
(T
)
6730 and then Nkind
(Indic
) /= N_Subtype_Indication
6731 and then not Is_Constrained
(Entity
(Indic
))
6733 D
:= First_Discriminant
(T
);
6734 while Present
(D
) loop
6735 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
6736 Next_Discriminant
(D
);
6741 Make_Subtype_Indication
(Loc
,
6742 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Indic
), Loc
),
6744 Make_Index_Or_Discriminant_Constraint
(Loc
,
6745 Constraints
=> List_Constr
)),
6748 -- Otherwise the original subtype_indication is just what is needed
6751 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
6754 Set_Parent_Subtype
(T
, Par_Subtype
);
6757 Make_Component_Declaration
(Loc
,
6758 Defining_Identifier
=> Parent_N
,
6759 Component_Definition
=>
6760 Make_Component_Definition
(Loc
,
6761 Aliased_Present
=> False,
6762 Subtype_Indication
=> New_Occurrence_Of
(Par_Subtype
, Loc
)));
6764 if Null_Present
(Rec_Ext_Part
) then
6765 Set_Component_List
(Rec_Ext_Part
,
6766 Make_Component_List
(Loc
,
6767 Component_Items
=> New_List
(Comp_Decl
),
6768 Variant_Part
=> Empty
,
6769 Null_Present
=> False));
6770 Set_Null_Present
(Rec_Ext_Part
, False);
6772 elsif Null_Present
(Comp_List
)
6773 or else Is_Empty_List
(Component_Items
(Comp_List
))
6775 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
6776 Set_Null_Present
(Comp_List
, False);
6779 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
6782 Analyze
(Comp_Decl
);
6783 end Expand_Record_Extension
;
6785 ------------------------
6786 -- Expand_Tagged_Root --
6787 ------------------------
6789 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
6790 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
6791 Comp_List
: Node_Id
;
6792 Comp_Decl
: Node_Id
;
6793 Sloc_N
: Source_Ptr
;
6796 if Null_Present
(Def
) then
6797 Set_Component_List
(Def
,
6798 Make_Component_List
(Sloc
(Def
),
6799 Component_Items
=> Empty_List
,
6800 Variant_Part
=> Empty
,
6801 Null_Present
=> True));
6804 Comp_List
:= Component_List
(Def
);
6806 if Null_Present
(Comp_List
)
6807 or else Is_Empty_List
(Component_Items
(Comp_List
))
6809 Sloc_N
:= Sloc
(Comp_List
);
6811 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
6815 Make_Component_Declaration
(Sloc_N
,
6816 Defining_Identifier
=> First_Tag_Component
(T
),
6817 Component_Definition
=>
6818 Make_Component_Definition
(Sloc_N
,
6819 Aliased_Present
=> False,
6820 Subtype_Indication
=> New_Occurrence_Of
(RTE
(RE_Tag
), Sloc_N
)));
6822 if Null_Present
(Comp_List
)
6823 or else Is_Empty_List
(Component_Items
(Comp_List
))
6825 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
6826 Set_Null_Present
(Comp_List
, False);
6829 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
6832 -- We don't Analyze the whole expansion because the tag component has
6833 -- already been analyzed previously. Here we just insure that the tree
6834 -- is coherent with the semantic decoration
6836 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
6839 when RE_Not_Available
=>
6841 end Expand_Tagged_Root
;
6843 ------------------------------
6844 -- Freeze_Stream_Operations --
6845 ------------------------------
6847 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
6848 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
6853 Stream_Op
: Entity_Id
;
6856 -- Primitive operations of tagged types are frozen when the dispatch
6857 -- table is constructed.
6859 if not Comes_From_Source
(Typ
) or else Is_Tagged_Type
(Typ
) then
6863 for J
in Names
'Range loop
6864 Stream_Op
:= TSS
(Typ
, Names
(J
));
6866 if Present
(Stream_Op
)
6867 and then Is_Subprogram
(Stream_Op
)
6868 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
6869 N_Subprogram_Declaration
6870 and then not Is_Frozen
(Stream_Op
)
6872 Append_Freeze_Actions
(Typ
, Freeze_Entity
(Stream_Op
, N
));
6875 end Freeze_Stream_Operations
;
6881 -- Full type declarations are expanded at the point at which the type is
6882 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
6883 -- declarations generated by the freezing (e.g. the procedure generated
6884 -- for initialization) are chained in the Actions field list of the freeze
6885 -- node using Append_Freeze_Actions.
6887 function Freeze_Type
(N
: Node_Id
) return Boolean is
6888 procedure Process_RACW_Types
(Typ
: Entity_Id
);
6889 -- Validate and generate stubs for all RACW types associated with type
6892 procedure Process_Pending_Access_Types
(Typ
: Entity_Id
);
6893 -- Associate type Typ's Finalize_Address primitive with the finalization
6894 -- masters of pending access-to-Typ types.
6896 ------------------------
6897 -- Process_RACW_Types --
6898 ------------------------
6900 procedure Process_RACW_Types
(Typ
: Entity_Id
) is
6901 List
: constant Elist_Id
:= Access_Types_To_Process
(N
);
6903 Seen
: Boolean := False;
6906 if Present
(List
) then
6907 E
:= First_Elmt
(List
);
6908 while Present
(E
) loop
6909 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
6910 Validate_RACW_Primitives
(Node
(E
));
6918 -- If there are RACWs designating this type, make stubs now
6921 Remote_Types_Tagged_Full_View_Encountered
(Typ
);
6923 end Process_RACW_Types
;
6925 ----------------------------------
6926 -- Process_Pending_Access_Types --
6927 ----------------------------------
6929 procedure Process_Pending_Access_Types
(Typ
: Entity_Id
) is
6933 -- Finalize_Address is not generated in CodePeer mode because the
6934 -- body contains address arithmetic. This processing is disabled.
6936 if CodePeer_Mode
then
6939 -- Certain itypes are generated for contexts that cannot allocate
6940 -- objects and should not set primitive Finalize_Address.
6942 elsif Is_Itype
(Typ
)
6943 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
6944 N_Explicit_Dereference
6948 -- When an access type is declared after the incomplete view of a
6949 -- Taft-amendment type, the access type is considered pending in
6950 -- case the full view of the Taft-amendment type is controlled. If
6951 -- this is indeed the case, associate the Finalize_Address routine
6952 -- of the full view with the finalization masters of all pending
6953 -- access types. This scenario applies to anonymous access types as
6956 elsif Needs_Finalization
(Typ
)
6957 and then Present
(Pending_Access_Types
(Typ
))
6959 E
:= First_Elmt
(Pending_Access_Types
(Typ
));
6960 while Present
(E
) loop
6963 -- Set_Finalize_Address
6964 -- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
6966 Append_Freeze_Action
(Typ
,
6967 Make_Set_Finalize_Address_Call
6969 Ptr_Typ
=> Node
(E
)));
6974 end Process_Pending_Access_Types
;
6978 Def_Id
: constant Entity_Id
:= Entity
(N
);
6979 Result
: Boolean := False;
6981 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
6983 -- Start of processing for Freeze_Type
6986 -- The type being frozen may be subject to pragma Ghost. Set the mode
6987 -- now to ensure that any nodes generated during freezing are properly
6990 Set_Ghost_Mode
(N
, Def_Id
);
6992 -- Process any remote access-to-class-wide types designating the type
6995 Process_RACW_Types
(Def_Id
);
6997 -- Freeze processing for record types
6999 if Is_Record_Type
(Def_Id
) then
7000 if Ekind
(Def_Id
) = E_Record_Type
then
7001 Expand_Freeze_Record_Type
(N
);
7002 elsif Is_Class_Wide_Type
(Def_Id
) then
7003 Expand_Freeze_Class_Wide_Type
(N
);
7006 -- Freeze processing for array types
7008 elsif Is_Array_Type
(Def_Id
) then
7009 Expand_Freeze_Array_Type
(N
);
7011 -- Freeze processing for access types
7013 -- For pool-specific access types, find out the pool object used for
7014 -- this type, needs actual expansion of it in some cases. Here are the
7015 -- different cases :
7017 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7018 -- ---> don't use any storage pool
7020 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7022 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7024 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7025 -- ---> Storage Pool is the specified one
7027 -- See GNAT Pool packages in the Run-Time for more details
7029 elsif Ekind_In
(Def_Id
, E_Access_Type
, E_General_Access_Type
) then
7031 Loc
: constant Source_Ptr
:= Sloc
(N
);
7032 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
7034 Freeze_Action_Typ
: Entity_Id
;
7035 Pool_Object
: Entity_Id
;
7040 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7041 -- ---> don't use any storage pool
7043 if No_Pool_Assigned
(Def_Id
) then
7048 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7050 -- Def_Id__Pool : Stack_Bounded_Pool
7051 -- (Expr, DT'Size, DT'Alignment);
7053 elsif Has_Storage_Size_Clause
(Def_Id
) then
7059 -- For unconstrained composite types we give a size of zero
7060 -- so that the pool knows that it needs a special algorithm
7061 -- for variable size object allocation.
7063 if Is_Composite_Type
(Desig_Type
)
7064 and then not Is_Constrained
(Desig_Type
)
7066 DT_Size
:= Make_Integer_Literal
(Loc
, 0);
7067 DT_Align
:= Make_Integer_Literal
(Loc
, Maximum_Alignment
);
7071 Make_Attribute_Reference
(Loc
,
7072 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
7073 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
7076 Make_Attribute_Reference
(Loc
,
7077 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
7078 Attribute_Name
=> Name_Alignment
);
7082 Make_Defining_Identifier
(Loc
,
7083 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
7085 -- We put the code associated with the pools in the entity
7086 -- that has the later freeze node, usually the access type
7087 -- but it can also be the designated_type; because the pool
7088 -- code requires both those types to be frozen
7090 if Is_Frozen
(Desig_Type
)
7091 and then (No
(Freeze_Node
(Desig_Type
))
7092 or else Analyzed
(Freeze_Node
(Desig_Type
)))
7094 Freeze_Action_Typ
:= Def_Id
;
7096 -- A Taft amendment type cannot get the freeze actions
7097 -- since the full view is not there.
7099 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
7100 and then No
(Full_View
(Desig_Type
))
7102 Freeze_Action_Typ
:= Def_Id
;
7105 Freeze_Action_Typ
:= Desig_Type
;
7108 Append_Freeze_Action
(Freeze_Action_Typ
,
7109 Make_Object_Declaration
(Loc
,
7110 Defining_Identifier
=> Pool_Object
,
7111 Object_Definition
=>
7112 Make_Subtype_Indication
(Loc
,
7115 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
7118 Make_Index_Or_Discriminant_Constraint
(Loc
,
7119 Constraints
=> New_List
(
7121 -- First discriminant is the Pool Size
7124 Storage_Size_Variable
(Def_Id
), Loc
),
7126 -- Second discriminant is the element size
7130 -- Third discriminant is the alignment
7135 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
7139 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7140 -- ---> Storage Pool is the specified one
7142 -- When compiling in Ada 2012 mode, ensure that the accessibility
7143 -- level of the subpool access type is not deeper than that of the
7144 -- pool_with_subpools.
7146 elsif Ada_Version
>= Ada_2012
7147 and then Present
(Associated_Storage_Pool
(Def_Id
))
7149 -- Omit this check for the case of a configurable run-time that
7150 -- does not provide package System.Storage_Pools.Subpools.
7152 and then RTE_Available
(RE_Root_Storage_Pool_With_Subpools
)
7155 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
7156 Pool
: constant Entity_Id
:=
7157 Associated_Storage_Pool
(Def_Id
);
7158 RSPWS
: constant Entity_Id
:=
7159 RTE
(RE_Root_Storage_Pool_With_Subpools
);
7162 -- It is known that the accessibility level of the access
7163 -- type is deeper than that of the pool.
7165 if Type_Access_Level
(Def_Id
) > Object_Access_Level
(Pool
)
7166 and then not Accessibility_Checks_Suppressed
(Def_Id
)
7167 and then not Accessibility_Checks_Suppressed
(Pool
)
7169 -- Static case: the pool is known to be a descendant of
7170 -- Root_Storage_Pool_With_Subpools.
7172 if Is_Ancestor
(RSPWS
, Etype
(Pool
)) then
7174 ("??subpool access type has deeper accessibility "
7175 & "level than pool", Def_Id
);
7177 Append_Freeze_Action
(Def_Id
,
7178 Make_Raise_Program_Error
(Loc
,
7179 Reason
=> PE_Accessibility_Check_Failed
));
7181 -- Dynamic case: when the pool is of a class-wide type,
7182 -- it may or may not support subpools depending on the
7183 -- path of derivation. Generate:
7185 -- if Def_Id in RSPWS'Class then
7186 -- raise Program_Error;
7189 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
7190 Append_Freeze_Action
(Def_Id
,
7191 Make_If_Statement
(Loc
,
7194 Left_Opnd
=> New_Occurrence_Of
(Pool
, Loc
),
7197 (Class_Wide_Type
(RSPWS
), Loc
)),
7199 Then_Statements
=> New_List
(
7200 Make_Raise_Program_Error
(Loc
,
7201 Reason
=> PE_Accessibility_Check_Failed
))));
7207 -- For access-to-controlled types (including class-wide types and
7208 -- Taft-amendment types, which potentially have controlled
7209 -- components), expand the list controller object that will store
7210 -- the dynamically allocated objects. Don't do this transformation
7211 -- for expander-generated access types, but do it for types that
7212 -- are the full view of types derived from other private types.
7213 -- Also suppress the list controller in the case of a designated
7214 -- type with convention Java, since this is used when binding to
7215 -- Java API specs, where there's no equivalent of a finalization
7216 -- list and we don't want to pull in the finalization support if
7219 if not Comes_From_Source
(Def_Id
)
7220 and then not Has_Private_Declaration
(Def_Id
)
7224 -- An exception is made for types defined in the run-time because
7225 -- Ada.Tags.Tag itself is such a type and cannot afford this
7226 -- unnecessary overhead that would generates a loop in the
7227 -- expansion scheme. Another exception is if Restrictions
7228 -- (No_Finalization) is active, since then we know nothing is
7231 elsif Restriction_Active
(No_Finalization
)
7232 or else In_Runtime
(Def_Id
)
7236 -- Create a finalization master for an access-to-controlled type
7237 -- or an access-to-incomplete type. It is assumed that the full
7238 -- view will be controlled.
7240 elsif Needs_Finalization
(Desig_Type
)
7241 or else (Is_Incomplete_Type
(Desig_Type
)
7242 and then No
(Full_View
(Desig_Type
)))
7244 Build_Finalization_Master
(Def_Id
);
7246 -- Create a finalization master when the designated type contains
7247 -- a private component. It is assumed that the full view will be
7250 elsif Has_Private_Component
(Desig_Type
) then
7251 Build_Finalization_Master
7253 For_Private
=> True,
7254 Context_Scope
=> Scope
(Def_Id
),
7255 Insertion_Node
=> Declaration_Node
(Desig_Type
));
7259 -- Freeze processing for enumeration types
7261 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
7263 -- We only have something to do if we have a non-standard
7264 -- representation (i.e. at least one literal whose pos value
7265 -- is not the same as its representation)
7267 if Has_Non_Standard_Rep
(Def_Id
) then
7268 Expand_Freeze_Enumeration_Type
(N
);
7271 -- Private types that are completed by a derivation from a private
7272 -- type have an internally generated full view, that needs to be
7273 -- frozen. This must be done explicitly because the two views share
7274 -- the freeze node, and the underlying full view is not visible when
7275 -- the freeze node is analyzed.
7277 elsif Is_Private_Type
(Def_Id
)
7278 and then Is_Derived_Type
(Def_Id
)
7279 and then Present
(Full_View
(Def_Id
))
7280 and then Is_Itype
(Full_View
(Def_Id
))
7281 and then Has_Private_Declaration
(Full_View
(Def_Id
))
7282 and then Freeze_Node
(Full_View
(Def_Id
)) = N
7284 Set_Entity
(N
, Full_View
(Def_Id
));
7285 Result
:= Freeze_Type
(N
);
7286 Set_Entity
(N
, Def_Id
);
7288 -- All other types require no expander action. There are such cases
7289 -- (e.g. task types and protected types). In such cases, the freeze
7290 -- nodes are there for use by Gigi.
7294 -- Complete the initialization of all pending access types' finalization
7295 -- masters now that the designated type has been is frozen and primitive
7296 -- Finalize_Address generated.
7298 Process_Pending_Access_Types
(Def_Id
);
7299 Freeze_Stream_Operations
(N
, Def_Id
);
7301 -- Generate the [spec and] body of the invariant procedure tasked with
7302 -- the runtime verification of all invariants that pertain to the type.
7303 -- This includes invariants on the partial and full view, inherited
7304 -- class-wide invariants from parent types or interfaces, and invariants
7305 -- on array elements or record components.
7307 if Has_Invariants
(Def_Id
) then
7308 Build_Invariant_Procedure_Body
(Def_Id
);
7311 Ghost_Mode
:= Save_Ghost_Mode
;
7315 when RE_Not_Available
=>
7316 Ghost_Mode
:= Save_Ghost_Mode
;
7320 -------------------------
7321 -- Get_Simple_Init_Val --
7322 -------------------------
7324 function Get_Simple_Init_Val
7327 Size
: Uint
:= No_Uint
) return Node_Id
7329 Loc
: constant Source_Ptr
:= Sloc
(N
);
7335 -- This is the size to be used for computation of the appropriate
7336 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7338 IV_Attribute
: constant Boolean :=
7339 Nkind
(N
) = N_Attribute_Reference
7340 and then Attribute_Name
(N
) = Name_Invalid_Value
;
7344 -- These are the values computed by the procedure Check_Subtype_Bounds
7346 procedure Check_Subtype_Bounds
;
7347 -- This procedure examines the subtype T, and its ancestor subtypes and
7348 -- derived types to determine the best known information about the
7349 -- bounds of the subtype. After the call Lo_Bound is set either to
7350 -- No_Uint if no information can be determined, or to a value which
7351 -- represents a known low bound, i.e. a valid value of the subtype can
7352 -- not be less than this value. Hi_Bound is similarly set to a known
7353 -- high bound (valid value cannot be greater than this).
7355 --------------------------
7356 -- Check_Subtype_Bounds --
7357 --------------------------
7359 procedure Check_Subtype_Bounds
is
7368 Lo_Bound
:= No_Uint
;
7369 Hi_Bound
:= No_Uint
;
7371 -- Loop to climb ancestor subtypes and derived types
7375 if not Is_Discrete_Type
(ST1
) then
7379 Lo
:= Type_Low_Bound
(ST1
);
7380 Hi
:= Type_High_Bound
(ST1
);
7382 if Compile_Time_Known_Value
(Lo
) then
7383 Loval
:= Expr_Value
(Lo
);
7385 if Lo_Bound
= No_Uint
or else Lo_Bound
< Loval
then
7390 if Compile_Time_Known_Value
(Hi
) then
7391 Hival
:= Expr_Value
(Hi
);
7393 if Hi_Bound
= No_Uint
or else Hi_Bound
> Hival
then
7398 ST2
:= Ancestor_Subtype
(ST1
);
7404 exit when ST1
= ST2
;
7407 end Check_Subtype_Bounds
;
7409 -- Start of processing for Get_Simple_Init_Val
7412 -- For a private type, we should always have an underlying type (because
7413 -- this was already checked in Needs_Simple_Initialization). What we do
7414 -- is to get the value for the underlying type and then do an unchecked
7415 -- conversion to the private type.
7417 if Is_Private_Type
(T
) then
7418 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), N
, Size
);
7420 -- A special case, if the underlying value is null, then qualify it
7421 -- with the underlying type, so that the null is properly typed.
7422 -- Similarly, if it is an aggregate it must be qualified, because an
7423 -- unchecked conversion does not provide a context for it.
7425 if Nkind_In
(Val
, N_Null
, N_Aggregate
) then
7427 Make_Qualified_Expression
(Loc
,
7429 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
7433 Result
:= Unchecked_Convert_To
(T
, Val
);
7435 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7437 if Nkind
(Result
) = N_Unchecked_Type_Conversion
7438 and then Is_Scalar_Type
(Underlying_Type
(T
))
7440 Set_No_Truncation
(Result
);
7445 -- Scalars with Default_Value aspect. The first subtype may now be
7446 -- private, so retrieve value from underlying type.
7448 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
7449 if Is_Private_Type
(First_Subtype
(T
)) then
7450 return Unchecked_Convert_To
(T
,
7451 Default_Aspect_Value
(Full_View
(First_Subtype
(T
))));
7454 Convert_To
(T
, Default_Aspect_Value
(First_Subtype
(T
)));
7457 -- Otherwise, for scalars, we must have normalize/initialize scalars
7458 -- case, or if the node N is an 'Invalid_Value attribute node.
7460 elsif Is_Scalar_Type
(T
) then
7461 pragma Assert
(Init_Or_Norm_Scalars
or IV_Attribute
);
7463 -- Compute size of object. If it is given by the caller, we can use
7464 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7465 -- we know this covers all cases correctly.
7467 if Size
= No_Uint
or else Size
<= Uint_0
then
7468 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(T
));
7470 Size_To_Use
:= Size
;
7473 -- Maximum size to use is 64 bits, since we will create values of
7474 -- type Unsigned_64 and the range must fit this type.
7476 if Size_To_Use
/= No_Uint
and then Size_To_Use
> Uint_64
then
7477 Size_To_Use
:= Uint_64
;
7480 -- Check known bounds of subtype
7482 Check_Subtype_Bounds
;
7484 -- Processing for Normalize_Scalars case
7486 if Normalize_Scalars
and then not IV_Attribute
then
7488 -- If zero is invalid, it is a convenient value to use that is
7489 -- for sure an appropriate invalid value in all situations.
7491 if Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7492 Val
:= Make_Integer_Literal
(Loc
, 0);
7494 -- Cases where all one bits is the appropriate invalid value
7496 -- For modular types, all 1 bits is either invalid or valid. If
7497 -- it is valid, then there is nothing that can be done since there
7498 -- are no invalid values (we ruled out zero already).
7500 -- For signed integer types that have no negative values, either
7501 -- there is room for negative values, or there is not. If there
7502 -- is, then all 1-bits may be interpreted as minus one, which is
7503 -- certainly invalid. Alternatively it is treated as the largest
7504 -- positive value, in which case the observation for modular types
7507 -- For float types, all 1-bits is a NaN (not a number), which is
7508 -- certainly an appropriately invalid value.
7510 elsif Is_Unsigned_Type
(T
)
7511 or else Is_Floating_Point_Type
(T
)
7512 or else Is_Enumeration_Type
(T
)
7514 Val
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
7516 -- Resolve as Unsigned_64, because the largest number we can
7517 -- generate is out of range of universal integer.
7519 Analyze_And_Resolve
(Val
, RTE
(RE_Unsigned_64
));
7521 -- Case of signed types
7525 Signed_Size
: constant Uint
:=
7526 UI_Min
(Uint_63
, Size_To_Use
- 1);
7529 -- Normally we like to use the most negative number. The one
7530 -- exception is when this number is in the known subtype
7531 -- range and the largest positive number is not in the known
7534 -- For this exceptional case, use largest positive value
7536 if Lo_Bound
/= No_Uint
and then Hi_Bound
/= No_Uint
7537 and then Lo_Bound
<= (-(2 ** Signed_Size
))
7538 and then Hi_Bound
< 2 ** Signed_Size
7540 Val
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
7542 -- Normal case of largest negative value
7545 Val
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
7550 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7553 -- For float types, use float values from System.Scalar_Values
7555 if Is_Floating_Point_Type
(T
) then
7556 if Root_Type
(T
) = Standard_Short_Float
then
7557 Val_RE
:= RE_IS_Isf
;
7558 elsif Root_Type
(T
) = Standard_Float
then
7559 Val_RE
:= RE_IS_Ifl
;
7560 elsif Root_Type
(T
) = Standard_Long_Float
then
7561 Val_RE
:= RE_IS_Ilf
;
7562 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
7563 Val_RE
:= RE_IS_Ill
;
7566 -- If zero is invalid, use zero values from System.Scalar_Values
7568 elsif Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7569 if Size_To_Use
<= 8 then
7570 Val_RE
:= RE_IS_Iz1
;
7571 elsif Size_To_Use
<= 16 then
7572 Val_RE
:= RE_IS_Iz2
;
7573 elsif Size_To_Use
<= 32 then
7574 Val_RE
:= RE_IS_Iz4
;
7576 Val_RE
:= RE_IS_Iz8
;
7579 -- For unsigned, use unsigned values from System.Scalar_Values
7581 elsif Is_Unsigned_Type
(T
) then
7582 if Size_To_Use
<= 8 then
7583 Val_RE
:= RE_IS_Iu1
;
7584 elsif Size_To_Use
<= 16 then
7585 Val_RE
:= RE_IS_Iu2
;
7586 elsif Size_To_Use
<= 32 then
7587 Val_RE
:= RE_IS_Iu4
;
7589 Val_RE
:= RE_IS_Iu8
;
7592 -- For signed, use signed values from System.Scalar_Values
7595 if Size_To_Use
<= 8 then
7596 Val_RE
:= RE_IS_Is1
;
7597 elsif Size_To_Use
<= 16 then
7598 Val_RE
:= RE_IS_Is2
;
7599 elsif Size_To_Use
<= 32 then
7600 Val_RE
:= RE_IS_Is4
;
7602 Val_RE
:= RE_IS_Is8
;
7606 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
7609 -- The final expression is obtained by doing an unchecked conversion
7610 -- of this result to the base type of the required subtype. Use the
7611 -- base type to prevent the unchecked conversion from chopping bits,
7612 -- and then we set Kill_Range_Check to preserve the "bad" value.
7614 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
7616 -- Ensure result is not truncated, since we want the "bad" bits, and
7617 -- also kill range check on result.
7619 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
7620 Set_No_Truncation
(Result
);
7621 Set_Kill_Range_Check
(Result
, True);
7626 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
7628 elsif Is_Standard_String_Type
(T
) then
7629 pragma Assert
(Init_Or_Norm_Scalars
);
7632 Make_Aggregate
(Loc
,
7633 Component_Associations
=> New_List
(
7634 Make_Component_Association
(Loc
,
7635 Choices
=> New_List
(
7636 Make_Others_Choice
(Loc
)),
7639 (Component_Type
(T
), N
, Esize
(Root_Type
(T
))))));
7641 -- Access type is initialized to null
7643 elsif Is_Access_Type
(T
) then
7644 return Make_Null
(Loc
);
7646 -- No other possibilities should arise, since we should only be calling
7647 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
7648 -- indicating one of the above cases held.
7651 raise Program_Error
;
7655 when RE_Not_Available
=>
7657 end Get_Simple_Init_Val
;
7659 ------------------------------
7660 -- Has_New_Non_Standard_Rep --
7661 ------------------------------
7663 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
7665 if not Is_Derived_Type
(T
) then
7666 return Has_Non_Standard_Rep
(T
)
7667 or else Has_Non_Standard_Rep
(Root_Type
(T
));
7669 -- If Has_Non_Standard_Rep is not set on the derived type, the
7670 -- representation is fully inherited.
7672 elsif not Has_Non_Standard_Rep
(T
) then
7676 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
7678 -- May need a more precise check here: the First_Rep_Item may be a
7679 -- stream attribute, which does not affect the representation of the
7683 end Has_New_Non_Standard_Rep
;
7685 ----------------------
7686 -- Inline_Init_Proc --
7687 ----------------------
7689 function Inline_Init_Proc
(Typ
: Entity_Id
) return Boolean is
7691 -- The initialization proc of protected records is not worth inlining.
7692 -- In addition, when compiled for another unit for inlining purposes,
7693 -- it may make reference to entities that have not been elaborated yet.
7694 -- The initialization proc of records that need finalization contains
7695 -- a nested clean-up procedure that makes it impractical to inline as
7696 -- well, except for simple controlled types themselves. And similar
7697 -- considerations apply to task types.
7699 if Is_Concurrent_Type
(Typ
) then
7702 elsif Needs_Finalization
(Typ
) and then not Is_Controlled
(Typ
) then
7705 elsif Has_Task
(Typ
) then
7711 end Inline_Init_Proc
;
7717 function In_Runtime
(E
: Entity_Id
) return Boolean is
7722 while Scope
(S1
) /= Standard_Standard
loop
7726 return Is_RTU
(S1
, System
) or else Is_RTU
(S1
, Ada
);
7729 ----------------------------
7730 -- Initialization_Warning --
7731 ----------------------------
7733 procedure Initialization_Warning
(E
: Entity_Id
) is
7734 Warning_Needed
: Boolean;
7737 Warning_Needed
:= False;
7739 if Ekind
(Current_Scope
) = E_Package
7740 and then Static_Elaboration_Desired
(Current_Scope
)
7743 if Is_Record_Type
(E
) then
7744 if Has_Discriminants
(E
)
7745 or else Is_Limited_Type
(E
)
7746 or else Has_Non_Standard_Rep
(E
)
7748 Warning_Needed
:= True;
7751 -- Verify that at least one component has an initialization
7752 -- expression. No need for a warning on a type if all its
7753 -- components have no initialization.
7759 Comp
:= First_Component
(E
);
7760 while Present
(Comp
) loop
7761 if Ekind
(Comp
) = E_Discriminant
7763 (Nkind
(Parent
(Comp
)) = N_Component_Declaration
7764 and then Present
(Expression
(Parent
(Comp
))))
7766 Warning_Needed
:= True;
7770 Next_Component
(Comp
);
7775 if Warning_Needed
then
7777 ("Objects of the type cannot be initialized statically "
7778 & "by default??", Parent
(E
));
7783 Error_Msg_N
("Object cannot be initialized statically??", E
);
7786 end Initialization_Warning
;
7792 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
7793 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7797 -- First parameter is always _Init : in out typ. Note that we need this
7798 -- to be in/out because in the case of the task record value, there
7799 -- are default record fields (_Priority, _Size, -Task_Info) that may
7800 -- be referenced in the generated initialization routine.
7802 Formals
:= New_List
(
7803 Make_Parameter_Specification
(Loc
,
7804 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_uInit
),
7806 Out_Present
=> True,
7807 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
7809 -- For task record value, or type that contains tasks, add two more
7810 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
7811 -- We also add these parameters for the task record type case.
7814 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
7817 Make_Parameter_Specification
(Loc
,
7818 Defining_Identifier
=>
7819 Make_Defining_Identifier
(Loc
, Name_uMaster
),
7821 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
)));
7823 -- Add _Chain (not done for sequential elaboration policy, see
7824 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
7826 if Partition_Elaboration_Policy
/= 'S' then
7828 Make_Parameter_Specification
(Loc
,
7829 Defining_Identifier
=>
7830 Make_Defining_Identifier
(Loc
, Name_uChain
),
7832 Out_Present
=> True,
7834 New_Occurrence_Of
(RTE
(RE_Activation_Chain
), Loc
)));
7838 Make_Parameter_Specification
(Loc
,
7839 Defining_Identifier
=>
7840 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
7842 Parameter_Type
=> New_Occurrence_Of
(Standard_String
, Loc
)));
7848 when RE_Not_Available
=>
7852 -------------------------
7853 -- Init_Secondary_Tags --
7854 -------------------------
7856 procedure Init_Secondary_Tags
7859 Stmts_List
: List_Id
;
7860 Fixed_Comps
: Boolean := True;
7861 Variable_Comps
: Boolean := True)
7863 Loc
: constant Source_Ptr
:= Sloc
(Target
);
7865 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
7866 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
7868 procedure Initialize_Tag
7871 Tag_Comp
: Entity_Id
;
7872 Iface_Tag
: Node_Id
);
7873 -- Initialize the tag of the secondary dispatch table of Typ associated
7874 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
7875 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
7876 -- of Typ CPP tagged type we generate code to inherit the contents of
7877 -- the dispatch table directly from the ancestor.
7879 --------------------
7880 -- Initialize_Tag --
7881 --------------------
7883 procedure Initialize_Tag
7886 Tag_Comp
: Entity_Id
;
7887 Iface_Tag
: Node_Id
)
7889 Comp_Typ
: Entity_Id
;
7890 Offset_To_Top_Comp
: Entity_Id
:= Empty
;
7893 -- Initialize pointer to secondary DT associated with the interface
7895 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
7896 Append_To
(Stmts_List
,
7897 Make_Assignment_Statement
(Loc
,
7899 Make_Selected_Component
(Loc
,
7900 Prefix
=> New_Copy_Tree
(Target
),
7901 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
7903 New_Occurrence_Of
(Iface_Tag
, Loc
)));
7906 Comp_Typ
:= Scope
(Tag_Comp
);
7908 -- Initialize the entries of the table of interfaces. We generate a
7909 -- different call when the parent of the type has variable size
7912 if Comp_Typ
/= Etype
(Comp_Typ
)
7913 and then Is_Variable_Size_Record
(Etype
(Comp_Typ
))
7914 and then Chars
(Tag_Comp
) /= Name_uTag
7916 pragma Assert
(Present
(DT_Offset_To_Top_Func
(Tag_Comp
)));
7918 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
7919 -- configurable run-time environment.
7921 if not RTE_Available
(RE_Set_Dynamic_Offset_To_Top
) then
7923 ("variable size record with interface types", Typ
);
7928 -- Set_Dynamic_Offset_To_Top
7930 -- Interface_T => Iface'Tag,
7931 -- Offset_Value => n,
7932 -- Offset_Func => Fn'Address)
7934 Append_To
(Stmts_List
,
7935 Make_Procedure_Call_Statement
(Loc
,
7937 New_Occurrence_Of
(RTE
(RE_Set_Dynamic_Offset_To_Top
), Loc
),
7938 Parameter_Associations
=> New_List
(
7939 Make_Attribute_Reference
(Loc
,
7940 Prefix
=> New_Copy_Tree
(Target
),
7941 Attribute_Name
=> Name_Address
),
7943 Unchecked_Convert_To
(RTE
(RE_Tag
),
7945 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
7948 Unchecked_Convert_To
7949 (RTE
(RE_Storage_Offset
),
7950 Make_Attribute_Reference
(Loc
,
7952 Make_Selected_Component
(Loc
,
7953 Prefix
=> New_Copy_Tree
(Target
),
7955 New_Occurrence_Of
(Tag_Comp
, Loc
)),
7956 Attribute_Name
=> Name_Position
)),
7958 Unchecked_Convert_To
(RTE
(RE_Offset_To_Top_Function_Ptr
),
7959 Make_Attribute_Reference
(Loc
,
7960 Prefix
=> New_Occurrence_Of
7961 (DT_Offset_To_Top_Func
(Tag_Comp
), Loc
),
7962 Attribute_Name
=> Name_Address
)))));
7964 -- In this case the next component stores the value of the offset
7967 Offset_To_Top_Comp
:= Next_Entity
(Tag_Comp
);
7968 pragma Assert
(Present
(Offset_To_Top_Comp
));
7970 Append_To
(Stmts_List
,
7971 Make_Assignment_Statement
(Loc
,
7973 Make_Selected_Component
(Loc
,
7974 Prefix
=> New_Copy_Tree
(Target
),
7976 New_Occurrence_Of
(Offset_To_Top_Comp
, Loc
)),
7979 Make_Attribute_Reference
(Loc
,
7981 Make_Selected_Component
(Loc
,
7982 Prefix
=> New_Copy_Tree
(Target
),
7983 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
7984 Attribute_Name
=> Name_Position
)));
7986 -- Normal case: No discriminants in the parent type
7989 -- Don't need to set any value if this interface shares the
7990 -- primary dispatch table.
7992 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
7993 Append_To
(Stmts_List
,
7994 Build_Set_Static_Offset_To_Top
(Loc
,
7995 Iface_Tag
=> New_Occurrence_Of
(Iface_Tag
, Loc
),
7997 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
7998 Make_Attribute_Reference
(Loc
,
8000 Make_Selected_Component
(Loc
,
8001 Prefix
=> New_Copy_Tree
(Target
),
8003 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8004 Attribute_Name
=> Name_Position
))));
8008 -- Register_Interface_Offset
8010 -- Interface_T => Iface'Tag,
8011 -- Is_Constant => True,
8012 -- Offset_Value => n,
8013 -- Offset_Func => null);
8015 if RTE_Available
(RE_Register_Interface_Offset
) then
8016 Append_To
(Stmts_List
,
8017 Make_Procedure_Call_Statement
(Loc
,
8020 (RTE
(RE_Register_Interface_Offset
), Loc
),
8021 Parameter_Associations
=> New_List
(
8022 Make_Attribute_Reference
(Loc
,
8023 Prefix
=> New_Copy_Tree
(Target
),
8024 Attribute_Name
=> Name_Address
),
8026 Unchecked_Convert_To
(RTE
(RE_Tag
),
8028 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))), Loc
)),
8030 New_Occurrence_Of
(Standard_True
, Loc
),
8032 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
8033 Make_Attribute_Reference
(Loc
,
8035 Make_Selected_Component
(Loc
,
8036 Prefix
=> New_Copy_Tree
(Target
),
8038 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8039 Attribute_Name
=> Name_Position
)),
8048 Full_Typ
: Entity_Id
;
8049 Ifaces_List
: Elist_Id
;
8050 Ifaces_Comp_List
: Elist_Id
;
8051 Ifaces_Tag_List
: Elist_Id
;
8052 Iface_Elmt
: Elmt_Id
;
8053 Iface_Comp_Elmt
: Elmt_Id
;
8054 Iface_Tag_Elmt
: Elmt_Id
;
8056 In_Variable_Pos
: Boolean;
8058 -- Start of processing for Init_Secondary_Tags
8061 -- Handle private types
8063 if Present
(Full_View
(Typ
)) then
8064 Full_Typ
:= Full_View
(Typ
);
8069 Collect_Interfaces_Info
8070 (Full_Typ
, Ifaces_List
, Ifaces_Comp_List
, Ifaces_Tag_List
);
8072 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
8073 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
8074 Iface_Tag_Elmt
:= First_Elmt
(Ifaces_Tag_List
);
8075 while Present
(Iface_Elmt
) loop
8076 Tag_Comp
:= Node
(Iface_Comp_Elmt
);
8078 -- Check if parent of record type has variable size components
8080 In_Variable_Pos
:= Scope
(Tag_Comp
) /= Etype
(Scope
(Tag_Comp
))
8081 and then Is_Variable_Size_Record
(Etype
(Scope
(Tag_Comp
)));
8083 -- If we are compiling under the CPP full ABI compatibility mode and
8084 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8085 -- initialize the secondary tag components from tags that reference
8086 -- secondary tables filled with copy of parent slots.
8088 if Is_CPP_Class
(Root_Type
(Full_Typ
)) then
8090 -- Reject interface components located at variable offset in
8091 -- C++ derivations. This is currently unsupported.
8093 if not Fixed_Comps
and then In_Variable_Pos
then
8095 -- Locate the first dynamic component of the record. Done to
8096 -- improve the text of the warning.
8100 Comp_Typ
: Entity_Id
;
8103 Comp
:= First_Entity
(Typ
);
8104 while Present
(Comp
) loop
8105 Comp_Typ
:= Etype
(Comp
);
8107 if Ekind
(Comp
) /= E_Discriminant
8108 and then not Is_Tag
(Comp
)
8111 (Is_Record_Type
(Comp_Typ
)
8113 Is_Variable_Size_Record
(Base_Type
(Comp_Typ
)))
8115 (Is_Array_Type
(Comp_Typ
)
8116 and then Is_Variable_Size_Array
(Comp_Typ
));
8122 pragma Assert
(Present
(Comp
));
8123 Error_Msg_Node_2
:= Comp
;
8125 ("parent type & with dynamic component & cannot be parent"
8126 & " of 'C'P'P derivation if new interfaces are present",
8127 Typ
, Scope
(Original_Record_Component
(Comp
)));
8130 Sloc
(Scope
(Original_Record_Component
(Comp
)));
8132 ("type derived from 'C'P'P type & defined #",
8133 Typ
, Scope
(Original_Record_Component
(Comp
)));
8135 -- Avoid duplicated warnings
8140 -- Initialize secondary tags
8143 Append_To
(Stmts_List
,
8144 Make_Assignment_Statement
(Loc
,
8146 Make_Selected_Component
(Loc
,
8147 Prefix
=> New_Copy_Tree
(Target
),
8149 New_Occurrence_Of
(Node
(Iface_Comp_Elmt
), Loc
)),
8151 New_Occurrence_Of
(Node
(Iface_Tag_Elmt
), Loc
)));
8154 -- Otherwise generate code to initialize the tag
8157 if (In_Variable_Pos
and then Variable_Comps
)
8158 or else (not In_Variable_Pos
and then Fixed_Comps
)
8160 Initialize_Tag
(Full_Typ
,
8161 Iface
=> Node
(Iface_Elmt
),
8162 Tag_Comp
=> Tag_Comp
,
8163 Iface_Tag
=> Node
(Iface_Tag_Elmt
));
8167 Next_Elmt
(Iface_Elmt
);
8168 Next_Elmt
(Iface_Comp_Elmt
);
8169 Next_Elmt
(Iface_Tag_Elmt
);
8171 end Init_Secondary_Tags
;
8173 ------------------------
8174 -- Is_User_Defined_Eq --
8175 ------------------------
8177 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean is
8179 return Chars
(Prim
) = Name_Op_Eq
8180 and then Etype
(First_Formal
(Prim
)) =
8181 Etype
(Next_Formal
(First_Formal
(Prim
)))
8182 and then Base_Type
(Etype
(Prim
)) = Standard_Boolean
;
8183 end Is_User_Defined_Equality
;
8185 ----------------------------------------
8186 -- Make_Controlling_Function_Wrappers --
8187 ----------------------------------------
8189 procedure Make_Controlling_Function_Wrappers
8190 (Tag_Typ
: Entity_Id
;
8191 Decl_List
: out List_Id
;
8192 Body_List
: out List_Id
)
8194 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8195 Prim_Elmt
: Elmt_Id
;
8197 Actual_List
: List_Id
;
8198 Formal_List
: List_Id
;
8200 Par_Formal
: Entity_Id
;
8201 Formal_Node
: Node_Id
;
8202 Func_Body
: Node_Id
;
8203 Func_Decl
: Node_Id
;
8204 Func_Spec
: Node_Id
;
8205 Return_Stmt
: Node_Id
;
8208 Decl_List
:= New_List
;
8209 Body_List
:= New_List
;
8211 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8212 while Present
(Prim_Elmt
) loop
8213 Subp
:= Node
(Prim_Elmt
);
8215 -- If a primitive function with a controlling result of the type has
8216 -- not been overridden by the user, then we must create a wrapper
8217 -- function here that effectively overrides it and invokes the
8218 -- (non-abstract) parent function. This can only occur for a null
8219 -- extension. Note that functions with anonymous controlling access
8220 -- results don't qualify and must be overridden. We also exclude
8221 -- Input attributes, since each type will have its own version of
8222 -- Input constructed by the expander. The test for Comes_From_Source
8223 -- is needed to distinguish inherited operations from renamings
8224 -- (which also have Alias set). We exclude internal entities with
8225 -- Interface_Alias to avoid generating duplicated wrappers since
8226 -- the primitive which covers the interface is also available in
8227 -- the list of primitive operations.
8229 -- The function may be abstract, or require_Overriding may be set
8230 -- for it, because tests for null extensions may already have reset
8231 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8232 -- set, functions that need wrappers are recognized by having an
8233 -- alias that returns the parent type.
8235 if Comes_From_Source
(Subp
)
8236 or else No
(Alias
(Subp
))
8237 or else Present
(Interface_Alias
(Subp
))
8238 or else Ekind
(Subp
) /= E_Function
8239 or else not Has_Controlling_Result
(Subp
)
8240 or else Is_Access_Type
(Etype
(Subp
))
8241 or else Is_Abstract_Subprogram
(Alias
(Subp
))
8242 or else Is_TSS
(Subp
, TSS_Stream_Input
)
8246 elsif Is_Abstract_Subprogram
(Subp
)
8247 or else Requires_Overriding
(Subp
)
8249 (Is_Null_Extension
(Etype
(Subp
))
8250 and then Etype
(Alias
(Subp
)) /= Etype
(Subp
))
8252 Formal_List
:= No_List
;
8253 Formal
:= First_Formal
(Subp
);
8255 if Present
(Formal
) then
8256 Formal_List
:= New_List
;
8258 while Present
(Formal
) loop
8260 (Make_Parameter_Specification
8262 Defining_Identifier
=>
8263 Make_Defining_Identifier
(Sloc
(Formal
),
8264 Chars
=> Chars
(Formal
)),
8265 In_Present
=> In_Present
(Parent
(Formal
)),
8266 Out_Present
=> Out_Present
(Parent
(Formal
)),
8267 Null_Exclusion_Present
=>
8268 Null_Exclusion_Present
(Parent
(Formal
)),
8270 New_Occurrence_Of
(Etype
(Formal
), Loc
),
8272 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
8275 Next_Formal
(Formal
);
8280 Make_Function_Specification
(Loc
,
8281 Defining_Unit_Name
=>
8282 Make_Defining_Identifier
(Loc
,
8283 Chars
=> Chars
(Subp
)),
8284 Parameter_Specifications
=> Formal_List
,
8285 Result_Definition
=>
8286 New_Occurrence_Of
(Etype
(Subp
), Loc
));
8288 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Func_Spec
);
8289 Append_To
(Decl_List
, Func_Decl
);
8291 -- Build a wrapper body that calls the parent function. The body
8292 -- contains a single return statement that returns an extension
8293 -- aggregate whose ancestor part is a call to the parent function,
8294 -- passing the formals as actuals (with any controlling arguments
8295 -- converted to the types of the corresponding formals of the
8296 -- parent function, which might be anonymous access types), and
8297 -- having a null extension.
8299 Formal
:= First_Formal
(Subp
);
8300 Par_Formal
:= First_Formal
(Alias
(Subp
));
8301 Formal_Node
:= First
(Formal_List
);
8303 if Present
(Formal
) then
8304 Actual_List
:= New_List
;
8306 Actual_List
:= No_List
;
8309 while Present
(Formal
) loop
8310 if Is_Controlling_Formal
(Formal
) then
8311 Append_To
(Actual_List
,
8312 Make_Type_Conversion
(Loc
,
8314 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
8317 (Defining_Identifier
(Formal_Node
), Loc
)));
8322 (Defining_Identifier
(Formal_Node
), Loc
));
8325 Next_Formal
(Formal
);
8326 Next_Formal
(Par_Formal
);
8331 Make_Simple_Return_Statement
(Loc
,
8333 Make_Extension_Aggregate
(Loc
,
8335 Make_Function_Call
(Loc
,
8337 New_Occurrence_Of
(Alias
(Subp
), Loc
),
8338 Parameter_Associations
=> Actual_List
),
8339 Null_Record_Present
=> True));
8342 Make_Subprogram_Body
(Loc
,
8343 Specification
=> New_Copy_Tree
(Func_Spec
),
8344 Declarations
=> Empty_List
,
8345 Handled_Statement_Sequence
=>
8346 Make_Handled_Sequence_Of_Statements
(Loc
,
8347 Statements
=> New_List
(Return_Stmt
)));
8349 Set_Defining_Unit_Name
8350 (Specification
(Func_Body
),
8351 Make_Defining_Identifier
(Loc
, Chars
(Subp
)));
8353 Append_To
(Body_List
, Func_Body
);
8355 -- Replace the inherited function with the wrapper function in the
8356 -- primitive operations list. We add the minimum decoration needed
8357 -- to override interface primitives.
8359 Set_Ekind
(Defining_Unit_Name
(Func_Spec
), E_Function
);
8361 Override_Dispatching_Operation
8362 (Tag_Typ
, Subp
, New_Op
=> Defining_Unit_Name
(Func_Spec
),
8363 Is_Wrapper
=> True);
8367 Next_Elmt
(Prim_Elmt
);
8369 end Make_Controlling_Function_Wrappers
;
8375 function Make_Eq_Body
8377 Eq_Name
: Name_Id
) return Node_Id
8379 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Typ
));
8381 Def
: constant Node_Id
:= Parent
(Typ
);
8382 Stmts
: constant List_Id
:= New_List
;
8383 Variant_Case
: Boolean := Has_Discriminants
(Typ
);
8384 Comps
: Node_Id
:= Empty
;
8385 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
8389 Predef_Spec_Or_Body
(Loc
,
8392 Profile
=> New_List
(
8393 Make_Parameter_Specification
(Loc
,
8394 Defining_Identifier
=>
8395 Make_Defining_Identifier
(Loc
, Name_X
),
8396 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
8398 Make_Parameter_Specification
(Loc
,
8399 Defining_Identifier
=>
8400 Make_Defining_Identifier
(Loc
, Name_Y
),
8401 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8403 Ret_Type
=> Standard_Boolean
,
8406 if Variant_Case
then
8407 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
8408 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
8411 if Present
(Typ_Def
) then
8412 Comps
:= Component_List
(Typ_Def
);
8416 Present
(Comps
) and then Present
(Variant_Part
(Comps
));
8419 if Variant_Case
then
8421 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
8422 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
8424 Make_Simple_Return_Statement
(Loc
,
8425 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
8429 Make_Simple_Return_Statement
(Loc
,
8431 Expand_Record_Equality
8434 Lhs
=> Make_Identifier
(Loc
, Name_X
),
8435 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
8436 Bodies
=> Declarations
(Decl
))));
8439 Set_Handled_Statement_Sequence
8440 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
8448 -- <Make_Eq_If shared components>
8451 -- when V1 => <Make_Eq_Case> on subcomponents
8453 -- when Vn => <Make_Eq_Case> on subcomponents
8456 function Make_Eq_Case
8459 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
8461 Loc
: constant Source_Ptr
:= Sloc
(E
);
8462 Result
: constant List_Id
:= New_List
;
8466 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
;
8467 -- Given the discriminant that controls a given variant of an unchecked
8468 -- union, find the formal of the equality function that carries the
8469 -- inferred value of the discriminant.
8471 function External_Name
(E
: Entity_Id
) return Name_Id
;
8472 -- The value of a given discriminant is conveyed in the corresponding
8473 -- formal parameter of the equality routine. The name of this formal
8474 -- parameter carries a one-character suffix which is removed here.
8476 --------------------------
8477 -- Corresponding_Formal --
8478 --------------------------
8480 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
is
8481 Discr
: constant Entity_Id
:= Entity
(Name
(Variant_Part
(C
)));
8485 Elm
:= First_Elmt
(Discrs
);
8486 while Present
(Elm
) loop
8487 if Chars
(Discr
) = External_Name
(Node
(Elm
)) then
8494 -- A formal of the proper name must be found
8496 raise Program_Error
;
8497 end Corresponding_Formal
;
8503 function External_Name
(E
: Entity_Id
) return Name_Id
is
8505 Get_Name_String
(Chars
(E
));
8506 Name_Len
:= Name_Len
- 1;
8510 -- Start of processing for Make_Eq_Case
8513 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
8515 if No
(Variant_Part
(CL
)) then
8519 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
8521 if No
(Variant
) then
8525 Alt_List
:= New_List
;
8526 while Present
(Variant
) loop
8527 Append_To
(Alt_List
,
8528 Make_Case_Statement_Alternative
(Loc
,
8529 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
8531 Make_Eq_Case
(E
, Component_List
(Variant
), Discrs
)));
8532 Next_Non_Pragma
(Variant
);
8535 -- If we have an Unchecked_Union, use one of the parameters of the
8536 -- enclosing equality routine that captures the discriminant, to use
8537 -- as the expression in the generated case statement.
8539 if Is_Unchecked_Union
(E
) then
8541 Make_Case_Statement
(Loc
,
8543 New_Occurrence_Of
(Corresponding_Formal
(CL
), Loc
),
8544 Alternatives
=> Alt_List
));
8548 Make_Case_Statement
(Loc
,
8550 Make_Selected_Component
(Loc
,
8551 Prefix
=> Make_Identifier
(Loc
, Name_X
),
8552 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
8553 Alternatives
=> Alt_List
));
8574 -- or a null statement if the list L is empty
8578 L
: List_Id
) return Node_Id
8580 Loc
: constant Source_Ptr
:= Sloc
(E
);
8582 Field_Name
: Name_Id
;
8587 return Make_Null_Statement
(Loc
);
8592 C
:= First_Non_Pragma
(L
);
8593 while Present
(C
) loop
8594 Field_Name
:= Chars
(Defining_Identifier
(C
));
8596 -- The tags must not be compared: they are not part of the value.
8597 -- Ditto for parent interfaces because their equality operator is
8600 -- Note also that in the following, we use Make_Identifier for
8601 -- the component names. Use of New_Occurrence_Of to identify the
8602 -- components would be incorrect because the wrong entities for
8603 -- discriminants could be picked up in the private type case.
8605 if Field_Name
= Name_uParent
8606 and then Is_Interface
(Etype
(Defining_Identifier
(C
)))
8610 elsif Field_Name
/= Name_uTag
then
8611 Evolve_Or_Else
(Cond
,
8614 Make_Selected_Component
(Loc
,
8615 Prefix
=> Make_Identifier
(Loc
, Name_X
),
8616 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
)),
8619 Make_Selected_Component
(Loc
,
8620 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
8621 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
))));
8624 Next_Non_Pragma
(C
);
8628 return Make_Null_Statement
(Loc
);
8632 Make_Implicit_If_Statement
(E
,
8634 Then_Statements
=> New_List
(
8635 Make_Simple_Return_Statement
(Loc
,
8636 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
8645 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
is
8647 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean;
8648 -- Returns true if Prim is a renaming of an unresolved predefined
8649 -- inequality operation.
8651 --------------------------------
8652 -- Is_Predefined_Neq_Renaming --
8653 --------------------------------
8655 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean is
8657 return Chars
(Prim
) /= Name_Op_Ne
8658 and then Present
(Alias
(Prim
))
8659 and then Comes_From_Source
(Prim
)
8660 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
8661 and then Chars
(Alias
(Prim
)) = Name_Op_Ne
;
8662 end Is_Predefined_Neq_Renaming
;
8666 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Tag_Typ
));
8667 Stmts
: constant List_Id
:= New_List
;
8669 Eq_Prim
: Entity_Id
;
8670 Left_Op
: Entity_Id
;
8671 Renaming_Prim
: Entity_Id
;
8672 Right_Op
: Entity_Id
;
8675 -- Start of processing for Make_Neq_Body
8678 -- For a call on a renaming of a dispatching subprogram that is
8679 -- overridden, if the overriding occurred before the renaming, then
8680 -- the body executed is that of the overriding declaration, even if the
8681 -- overriding declaration is not visible at the place of the renaming;
8682 -- otherwise, the inherited or predefined subprogram is called, see
8685 -- Stage 1: Search for a renaming of the inequality primitive and also
8686 -- search for an overriding of the equality primitive located before the
8687 -- renaming declaration.
8695 Renaming_Prim
:= Empty
;
8697 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8698 while Present
(Elmt
) loop
8699 Prim
:= Node
(Elmt
);
8701 if Is_User_Defined_Equality
(Prim
) and then No
(Alias
(Prim
)) then
8702 if No
(Renaming_Prim
) then
8703 pragma Assert
(No
(Eq_Prim
));
8707 elsif Is_Predefined_Neq_Renaming
(Prim
) then
8708 Renaming_Prim
:= Prim
;
8715 -- No further action needed if no renaming was found
8717 if No
(Renaming_Prim
) then
8721 -- Stage 2: Replace the renaming declaration by a subprogram declaration
8722 -- (required to add its body)
8724 Decl
:= Parent
(Parent
(Renaming_Prim
));
8726 Make_Subprogram_Declaration
(Loc
,
8727 Specification
=> Specification
(Decl
)));
8728 Set_Analyzed
(Decl
);
8730 -- Remove the decoration of intrinsic renaming subprogram
8732 Set_Is_Intrinsic_Subprogram
(Renaming_Prim
, False);
8733 Set_Convention
(Renaming_Prim
, Convention_Ada
);
8734 Set_Alias
(Renaming_Prim
, Empty
);
8735 Set_Has_Completion
(Renaming_Prim
, False);
8737 -- Stage 3: Build the corresponding body
8739 Left_Op
:= First_Formal
(Renaming_Prim
);
8740 Right_Op
:= Next_Formal
(Left_Op
);
8743 Predef_Spec_Or_Body
(Loc
,
8745 Name
=> Chars
(Renaming_Prim
),
8746 Profile
=> New_List
(
8747 Make_Parameter_Specification
(Loc
,
8748 Defining_Identifier
=>
8749 Make_Defining_Identifier
(Loc
, Chars
(Left_Op
)),
8750 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
8752 Make_Parameter_Specification
(Loc
,
8753 Defining_Identifier
=>
8754 Make_Defining_Identifier
(Loc
, Chars
(Right_Op
)),
8755 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
8757 Ret_Type
=> Standard_Boolean
,
8760 -- If the overriding of the equality primitive occurred before the
8761 -- renaming, then generate:
8763 -- function <Neq_Name> (X : Y : Typ) return Boolean is
8765 -- return not Oeq (X, Y);
8768 if Present
(Eq_Prim
) then
8771 -- Otherwise build a nested subprogram which performs the predefined
8772 -- evaluation of the equality operator. That is, generate:
8774 -- function <Neq_Name> (X : Y : Typ) return Boolean is
8775 -- function Oeq (X : Y) return Boolean is
8777 -- <<body of default implementation>>
8780 -- return not Oeq (X, Y);
8785 Local_Subp
: Node_Id
;
8787 Local_Subp
:= Make_Eq_Body
(Tag_Typ
, Name_Op_Eq
);
8788 Set_Declarations
(Decl
, New_List
(Local_Subp
));
8789 Target
:= Defining_Entity
(Local_Subp
);
8794 Make_Simple_Return_Statement
(Loc
,
8797 Make_Function_Call
(Loc
,
8798 Name
=> New_Occurrence_Of
(Target
, Loc
),
8799 Parameter_Associations
=> New_List
(
8800 Make_Identifier
(Loc
, Chars
(Left_Op
)),
8801 Make_Identifier
(Loc
, Chars
(Right_Op
)))))));
8803 Set_Handled_Statement_Sequence
8804 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
8808 -------------------------------
8809 -- Make_Null_Procedure_Specs --
8810 -------------------------------
8812 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
is
8813 Decl_List
: constant List_Id
:= New_List
;
8814 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8816 Formal_List
: List_Id
;
8817 New_Param_Spec
: Node_Id
;
8818 Parent_Subp
: Entity_Id
;
8819 Prim_Elmt
: Elmt_Id
;
8823 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8824 while Present
(Prim_Elmt
) loop
8825 Subp
:= Node
(Prim_Elmt
);
8827 -- If a null procedure inherited from an interface has not been
8828 -- overridden, then we build a null procedure declaration to
8829 -- override the inherited procedure.
8831 Parent_Subp
:= Alias
(Subp
);
8833 if Present
(Parent_Subp
)
8834 and then Is_Null_Interface_Primitive
(Parent_Subp
)
8836 Formal_List
:= No_List
;
8837 Formal
:= First_Formal
(Subp
);
8839 if Present
(Formal
) then
8840 Formal_List
:= New_List
;
8842 while Present
(Formal
) loop
8844 -- Copy the parameter spec including default expressions
8847 New_Copy_Tree
(Parent
(Formal
), New_Sloc
=> Loc
);
8849 -- Generate a new defining identifier for the new formal.
8850 -- required because New_Copy_Tree does not duplicate
8851 -- semantic fields (except itypes).
8853 Set_Defining_Identifier
(New_Param_Spec
,
8854 Make_Defining_Identifier
(Sloc
(Formal
),
8855 Chars
=> Chars
(Formal
)));
8857 -- For controlling arguments we must change their
8858 -- parameter type to reference the tagged type (instead
8859 -- of the interface type)
8861 if Is_Controlling_Formal
(Formal
) then
8862 if Nkind
(Parameter_Type
(Parent
(Formal
))) = N_Identifier
8864 Set_Parameter_Type
(New_Param_Spec
,
8865 New_Occurrence_Of
(Tag_Typ
, Loc
));
8868 (Nkind
(Parameter_Type
(Parent
(Formal
))) =
8869 N_Access_Definition
);
8870 Set_Subtype_Mark
(Parameter_Type
(New_Param_Spec
),
8871 New_Occurrence_Of
(Tag_Typ
, Loc
));
8875 Append
(New_Param_Spec
, Formal_List
);
8877 Next_Formal
(Formal
);
8881 Append_To
(Decl_List
,
8882 Make_Subprogram_Declaration
(Loc
,
8883 Make_Procedure_Specification
(Loc
,
8884 Defining_Unit_Name
=>
8885 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
8886 Parameter_Specifications
=> Formal_List
,
8887 Null_Present
=> True)));
8890 Next_Elmt
(Prim_Elmt
);
8894 end Make_Null_Procedure_Specs
;
8896 -------------------------------------
8897 -- Make_Predefined_Primitive_Specs --
8898 -------------------------------------
8900 procedure Make_Predefined_Primitive_Specs
8901 (Tag_Typ
: Entity_Id
;
8902 Predef_List
: out List_Id
;
8903 Renamed_Eq
: out Entity_Id
)
8905 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
8906 -- Returns true if Prim is a renaming of an unresolved predefined
8907 -- equality operation.
8909 -------------------------------
8910 -- Is_Predefined_Eq_Renaming --
8911 -------------------------------
8913 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
8915 return Chars
(Prim
) /= Name_Op_Eq
8916 and then Present
(Alias
(Prim
))
8917 and then Comes_From_Source
(Prim
)
8918 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
8919 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
8920 end Is_Predefined_Eq_Renaming
;
8924 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8925 Res
: constant List_Id
:= New_List
;
8926 Eq_Name
: Name_Id
:= Name_Op_Eq
;
8927 Eq_Needed
: Boolean;
8931 Has_Predef_Eq_Renaming
: Boolean := False;
8932 -- Set to True if Tag_Typ has a primitive that renames the predefined
8933 -- equality operator. Used to implement (RM 8-5-4(8)).
8935 -- Start of processing for Make_Predefined_Primitive_Specs
8938 Renamed_Eq
:= Empty
;
8942 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
8945 Profile
=> New_List
(
8946 Make_Parameter_Specification
(Loc
,
8947 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
8948 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
8950 Ret_Type
=> Standard_Long_Long_Integer
));
8952 -- Specs for dispatching stream attributes
8955 Stream_Op_TSS_Names
:
8956 constant array (Integer range <>) of TSS_Name_Type
:=
8963 for Op
in Stream_Op_TSS_Names
'Range loop
8964 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
8966 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
8967 Stream_Op_TSS_Names
(Op
)));
8972 -- Spec of "=" is expanded if the type is not limited and if a user
8973 -- defined "=" was not already declared for the non-full view of a
8974 -- private extension
8976 if not Is_Limited_Type
(Tag_Typ
) then
8978 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8979 while Present
(Prim
) loop
8981 -- If a primitive is encountered that renames the predefined
8982 -- equality operator before reaching any explicit equality
8983 -- primitive, then we still need to create a predefined equality
8984 -- function, because calls to it can occur via the renaming. A
8985 -- new name is created for the equality to avoid conflicting with
8986 -- any user-defined equality. (Note that this doesn't account for
8987 -- renamings of equality nested within subpackages???)
8989 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
8990 Has_Predef_Eq_Renaming
:= True;
8991 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
8993 -- User-defined equality
8995 elsif Is_User_Defined_Equality
(Node
(Prim
)) then
8996 if No
(Alias
(Node
(Prim
)))
8997 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
8998 N_Subprogram_Renaming_Declaration
9003 -- If the parent is not an interface type and has an abstract
9004 -- equality function explicitly defined in the sources, then
9005 -- the inherited equality is abstract as well, and no body can
9006 -- be created for it.
9008 elsif not Is_Interface
(Etype
(Tag_Typ
))
9009 and then Present
(Alias
(Node
(Prim
)))
9010 and then Comes_From_Source
(Alias
(Node
(Prim
)))
9011 and then Is_Abstract_Subprogram
(Alias
(Node
(Prim
)))
9016 -- If the type has an equality function corresponding with
9017 -- a primitive defined in an interface type, the inherited
9018 -- equality is abstract as well, and no body can be created
9021 elsif Present
(Alias
(Node
(Prim
)))
9022 and then Comes_From_Source
(Ultimate_Alias
(Node
(Prim
)))
9025 (Find_Dispatching_Type
(Ultimate_Alias
(Node
(Prim
))))
9035 -- If a renaming of predefined equality was found but there was no
9036 -- user-defined equality (so Eq_Needed is still true), then set the
9037 -- name back to Name_Op_Eq. But in the case where a user-defined
9038 -- equality was located after such a renaming, then the predefined
9039 -- equality function is still needed, so Eq_Needed must be set back
9042 if Eq_Name
/= Name_Op_Eq
then
9044 Eq_Name
:= Name_Op_Eq
;
9051 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
9054 Profile
=> New_List
(
9055 Make_Parameter_Specification
(Loc
,
9056 Defining_Identifier
=>
9057 Make_Defining_Identifier
(Loc
, Name_X
),
9058 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9060 Make_Parameter_Specification
(Loc
,
9061 Defining_Identifier
=>
9062 Make_Defining_Identifier
(Loc
, Name_Y
),
9063 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9064 Ret_Type
=> Standard_Boolean
);
9065 Append_To
(Res
, Eq_Spec
);
9067 if Has_Predef_Eq_Renaming
then
9068 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
9070 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9071 while Present
(Prim
) loop
9073 -- Any renamings of equality that appeared before an
9074 -- overriding equality must be updated to refer to the
9075 -- entity for the predefined equality, otherwise calls via
9076 -- the renaming would get incorrectly resolved to call the
9077 -- user-defined equality function.
9079 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
9080 Set_Alias
(Node
(Prim
), Renamed_Eq
);
9082 -- Exit upon encountering a user-defined equality
9084 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
9085 and then No
(Alias
(Node
(Prim
)))
9095 -- Spec for dispatching assignment
9097 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
9099 Name
=> Name_uAssign
,
9100 Profile
=> New_List
(
9101 Make_Parameter_Specification
(Loc
,
9102 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9103 Out_Present
=> True,
9104 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9106 Make_Parameter_Specification
(Loc
,
9107 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
9108 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)))));
9111 -- Ada 2005: Generate declarations for the following primitive
9112 -- operations for limited interfaces and synchronized types that
9113 -- implement a limited interface.
9115 -- Disp_Asynchronous_Select
9116 -- Disp_Conditional_Select
9117 -- Disp_Get_Prim_Op_Kind
9120 -- Disp_Timed_Select
9122 -- Disable the generation of these bodies if No_Dispatching_Calls,
9123 -- Ravenscar or ZFP is active.
9125 if Ada_Version
>= Ada_2005
9126 and then not Restriction_Active
(No_Dispatching_Calls
)
9127 and then not Restriction_Active
(No_Select_Statements
)
9128 and then RTE_Available
(RE_Select_Specific_Data
)
9130 -- These primitives are defined abstract in interface types
9132 if Is_Interface
(Tag_Typ
)
9133 and then Is_Limited_Record
(Tag_Typ
)
9136 Make_Abstract_Subprogram_Declaration
(Loc
,
9138 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
9141 Make_Abstract_Subprogram_Declaration
(Loc
,
9143 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
9146 Make_Abstract_Subprogram_Declaration
(Loc
,
9148 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
9151 Make_Abstract_Subprogram_Declaration
(Loc
,
9153 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
9156 Make_Abstract_Subprogram_Declaration
(Loc
,
9158 Make_Disp_Requeue_Spec
(Tag_Typ
)));
9161 Make_Abstract_Subprogram_Declaration
(Loc
,
9163 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
9165 -- If ancestor is an interface type, declare non-abstract primitives
9166 -- to override the abstract primitives of the interface type.
9168 -- In VM targets we define these primitives in all root tagged types
9169 -- that are not interface types. Done because in VM targets we don't
9170 -- have secondary dispatch tables and any derivation of Tag_Typ may
9171 -- cover limited interfaces (which always have these primitives since
9172 -- they may be ancestors of synchronized interface types).
9174 elsif (not Is_Interface
(Tag_Typ
)
9175 and then Is_Interface
(Etype
(Tag_Typ
))
9176 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
9178 (Is_Concurrent_Record_Type
(Tag_Typ
)
9179 and then Has_Interfaces
(Tag_Typ
))
9181 (not Tagged_Type_Expansion
9182 and then not Is_Interface
(Tag_Typ
)
9183 and then Tag_Typ
= Root_Type
(Tag_Typ
))
9186 Make_Subprogram_Declaration
(Loc
,
9188 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
9191 Make_Subprogram_Declaration
(Loc
,
9193 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
9196 Make_Subprogram_Declaration
(Loc
,
9198 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
9201 Make_Subprogram_Declaration
(Loc
,
9203 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
9206 Make_Subprogram_Declaration
(Loc
,
9208 Make_Disp_Requeue_Spec
(Tag_Typ
)));
9211 Make_Subprogram_Declaration
(Loc
,
9213 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
9217 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9218 -- regardless of whether they are controlled or may contain controlled
9221 -- Do not generate the routines if finalization is disabled
9223 if Restriction_Active
(No_Finalization
) then
9227 if not Is_Limited_Type
(Tag_Typ
) then
9228 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
9231 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
9235 end Make_Predefined_Primitive_Specs
;
9237 -------------------------
9238 -- Make_Tag_Assignment --
9239 -------------------------
9241 function Make_Tag_Assignment
(N
: Node_Id
) return Node_Id
is
9242 Loc
: constant Source_Ptr
:= Sloc
(N
);
9243 Def_If
: constant Entity_Id
:= Defining_Identifier
(N
);
9244 Expr
: constant Node_Id
:= Expression
(N
);
9245 Typ
: constant Entity_Id
:= Etype
(Def_If
);
9246 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Typ
);
9250 -- This expansion activity is called during analysis, but cannot
9251 -- be applied in ASIS mode when other expansion is disabled.
9253 if Is_Tagged_Type
(Typ
)
9254 and then not Is_Class_Wide_Type
(Typ
)
9255 and then not Is_CPP_Class
(Typ
)
9256 and then Tagged_Type_Expansion
9257 and then Nkind
(Expr
) /= N_Aggregate
9258 and then not ASIS_Mode
9259 and then (Nkind
(Expr
) /= N_Qualified_Expression
9260 or else Nkind
(Expression
(Expr
)) /= N_Aggregate
)
9263 Make_Selected_Component
(Loc
,
9264 Prefix
=> New_Occurrence_Of
(Def_If
, Loc
),
9266 New_Occurrence_Of
(First_Tag_Component
(Full_Typ
), Loc
));
9267 Set_Assignment_OK
(New_Ref
);
9270 Make_Assignment_Statement
(Loc
,
9273 Unchecked_Convert_To
(RTE
(RE_Tag
),
9274 New_Occurrence_Of
(Node
9275 (First_Elmt
(Access_Disp_Table
(Full_Typ
))), Loc
)));
9279 end Make_Tag_Assignment
;
9281 ---------------------------------
9282 -- Needs_Simple_Initialization --
9283 ---------------------------------
9285 function Needs_Simple_Initialization
9287 Consider_IS
: Boolean := True) return Boolean
9289 Consider_IS_NS
: constant Boolean :=
9290 Normalize_Scalars
or (Initialize_Scalars
and Consider_IS
);
9293 -- Never need initialization if it is suppressed
9295 if Initialization_Suppressed
(T
) then
9299 -- Check for private type, in which case test applies to the underlying
9300 -- type of the private type.
9302 if Is_Private_Type
(T
) then
9304 RT
: constant Entity_Id
:= Underlying_Type
(T
);
9306 if Present
(RT
) then
9307 return Needs_Simple_Initialization
(RT
);
9313 -- Scalar type with Default_Value aspect requires initialization
9315 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
9318 -- Cases needing simple initialization are access types, and, if pragma
9319 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9322 elsif Is_Access_Type
(T
)
9323 or else (Consider_IS_NS
and then (Is_Scalar_Type
(T
)))
9327 -- If Initialize/Normalize_Scalars is in effect, string objects also
9328 -- need initialization, unless they are created in the course of
9329 -- expanding an aggregate (since in the latter case they will be
9330 -- filled with appropriate initializing values before they are used).
9332 elsif Consider_IS_NS
9333 and then Is_Standard_String_Type
(T
)
9336 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
9343 end Needs_Simple_Initialization
;
9345 ----------------------
9346 -- Predef_Deep_Spec --
9347 ----------------------
9349 function Predef_Deep_Spec
9351 Tag_Typ
: Entity_Id
;
9352 Name
: TSS_Name_Type
;
9353 For_Body
: Boolean := False) return Node_Id
9358 -- V : in out Tag_Typ
9360 Formals
:= New_List
(
9361 Make_Parameter_Specification
(Loc
,
9362 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
9364 Out_Present
=> True,
9365 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)));
9367 -- F : Boolean := True
9369 if Name
= TSS_Deep_Adjust
9370 or else Name
= TSS_Deep_Finalize
9373 Make_Parameter_Specification
(Loc
,
9374 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_F
),
9375 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
9376 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
9380 Predef_Spec_Or_Body
(Loc
,
9381 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9384 For_Body
=> For_Body
);
9387 when RE_Not_Available
=>
9389 end Predef_Deep_Spec
;
9391 -------------------------
9392 -- Predef_Spec_Or_Body --
9393 -------------------------
9395 function Predef_Spec_Or_Body
9397 Tag_Typ
: Entity_Id
;
9400 Ret_Type
: Entity_Id
:= Empty
;
9401 For_Body
: Boolean := False) return Node_Id
9403 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
9407 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
9409 -- The internal flag is set to mark these declarations because they have
9410 -- specific properties. First, they are primitives even if they are not
9411 -- defined in the type scope (the freezing point is not necessarily in
9412 -- the same scope). Second, the predefined equality can be overridden by
9413 -- a user-defined equality, no body will be generated in this case.
9415 Set_Is_Internal
(Id
);
9417 if not Debug_Generated_Code
then
9418 Set_Debug_Info_Off
(Id
);
9421 if No
(Ret_Type
) then
9423 Make_Procedure_Specification
(Loc
,
9424 Defining_Unit_Name
=> Id
,
9425 Parameter_Specifications
=> Profile
);
9428 Make_Function_Specification
(Loc
,
9429 Defining_Unit_Name
=> Id
,
9430 Parameter_Specifications
=> Profile
,
9431 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
9434 if Is_Interface
(Tag_Typ
) then
9435 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9437 -- If body case, return empty subprogram body. Note that this is ill-
9438 -- formed, because there is not even a null statement, and certainly not
9439 -- a return in the function case. The caller is expected to do surgery
9440 -- on the body to add the appropriate stuff.
9443 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
9445 -- For the case of an Input attribute predefined for an abstract type,
9446 -- generate an abstract specification. This will never be called, but we
9447 -- need the slot allocated in the dispatching table so that attributes
9448 -- typ'Class'Input and typ'Class'Output will work properly.
9450 elsif Is_TSS
(Name
, TSS_Stream_Input
)
9451 and then Is_Abstract_Type
(Tag_Typ
)
9453 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9455 -- Normal spec case, where we return a subprogram declaration
9458 return Make_Subprogram_Declaration
(Loc
, Spec
);
9460 end Predef_Spec_Or_Body
;
9462 -----------------------------
9463 -- Predef_Stream_Attr_Spec --
9464 -----------------------------
9466 function Predef_Stream_Attr_Spec
9468 Tag_Typ
: Entity_Id
;
9469 Name
: TSS_Name_Type
;
9470 For_Body
: Boolean := False) return Node_Id
9472 Ret_Type
: Entity_Id
;
9475 if Name
= TSS_Stream_Input
then
9476 Ret_Type
:= Tag_Typ
;
9484 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9486 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
9487 Ret_Type
=> Ret_Type
,
9488 For_Body
=> For_Body
);
9489 end Predef_Stream_Attr_Spec
;
9491 ---------------------------------
9492 -- Predefined_Primitive_Bodies --
9493 ---------------------------------
9495 function Predefined_Primitive_Bodies
9496 (Tag_Typ
: Entity_Id
;
9497 Renamed_Eq
: Entity_Id
) return List_Id
9499 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9500 Res
: constant List_Id
:= New_List
;
9503 Eq_Needed
: Boolean;
9507 pragma Warnings
(Off
, Ent
);
9510 pragma Assert
(not Is_Interface
(Tag_Typ
));
9512 -- See if we have a predefined "=" operator
9514 if Present
(Renamed_Eq
) then
9516 Eq_Name
:= Chars
(Renamed_Eq
);
9518 -- If the parent is an interface type then it has defined all the
9519 -- predefined primitives abstract and we need to check if the type
9520 -- has some user defined "=" function which matches the profile of
9521 -- the Ada predefined equality operator to avoid generating it.
9523 elsif Is_Interface
(Etype
(Tag_Typ
)) then
9525 Eq_Name
:= Name_Op_Eq
;
9527 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9528 while Present
(Prim
) loop
9529 if Chars
(Node
(Prim
)) = Name_Op_Eq
9530 and then not Is_Internal
(Node
(Prim
))
9531 and then Present
(First_Entity
(Node
(Prim
)))
9533 -- The predefined equality primitive must have exactly two
9534 -- formals whose type is this tagged type
9536 and then Present
(Last_Entity
(Node
(Prim
)))
9537 and then Next_Entity
(First_Entity
(Node
(Prim
)))
9538 = Last_Entity
(Node
(Prim
))
9539 and then Etype
(First_Entity
(Node
(Prim
))) = Tag_Typ
9540 and then Etype
(Last_Entity
(Node
(Prim
))) = Tag_Typ
9554 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9555 while Present
(Prim
) loop
9556 if Chars
(Node
(Prim
)) = Name_Op_Eq
9557 and then Is_Internal
(Node
(Prim
))
9560 Eq_Name
:= Name_Op_Eq
;
9570 Decl
:= Predef_Spec_Or_Body
(Loc
,
9573 Profile
=> New_List
(
9574 Make_Parameter_Specification
(Loc
,
9575 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9576 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9578 Ret_Type
=> Standard_Long_Long_Integer
,
9581 Set_Handled_Statement_Sequence
(Decl
,
9582 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
9583 Make_Simple_Return_Statement
(Loc
,
9585 Make_Attribute_Reference
(Loc
,
9586 Prefix
=> Make_Identifier
(Loc
, Name_X
),
9587 Attribute_Name
=> Name_Size
)))));
9589 Append_To
(Res
, Decl
);
9591 -- Bodies for Dispatching stream IO routines. We need these only for
9592 -- non-limited types (in the limited case there is no dispatching).
9593 -- We also skip them if dispatching or finalization are not available
9594 -- or if stream operations are prohibited by restriction No_Streams or
9595 -- from use of pragma/aspect No_Tagged_Streams.
9597 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
9598 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
9600 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9601 Append_To
(Res
, Decl
);
9604 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
9605 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
9607 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9608 Append_To
(Res
, Decl
);
9611 -- Skip body of _Input for the abstract case, since the corresponding
9612 -- spec is abstract (see Predef_Spec_Or_Body).
9614 if not Is_Abstract_Type
(Tag_Typ
)
9615 and then Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
9616 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
9618 Build_Record_Or_Elementary_Input_Function
9619 (Loc
, Tag_Typ
, Decl
, Ent
);
9620 Append_To
(Res
, Decl
);
9623 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
9624 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
9626 Build_Record_Or_Elementary_Output_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9627 Append_To
(Res
, Decl
);
9630 -- Ada 2005: Generate bodies for the following primitive operations for
9631 -- limited interfaces and synchronized types that implement a limited
9634 -- disp_asynchronous_select
9635 -- disp_conditional_select
9636 -- disp_get_prim_op_kind
9638 -- disp_timed_select
9640 -- The interface versions will have null bodies
9642 -- Disable the generation of these bodies if No_Dispatching_Calls,
9643 -- Ravenscar or ZFP is active.
9645 -- In VM targets we define these primitives in all root tagged types
9646 -- that are not interface types. Done because in VM targets we don't
9647 -- have secondary dispatch tables and any derivation of Tag_Typ may
9648 -- cover limited interfaces (which always have these primitives since
9649 -- they may be ancestors of synchronized interface types).
9651 if Ada_Version
>= Ada_2005
9652 and then not Is_Interface
(Tag_Typ
)
9654 ((Is_Interface
(Etype
(Tag_Typ
))
9655 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
9657 (Is_Concurrent_Record_Type
(Tag_Typ
)
9658 and then Has_Interfaces
(Tag_Typ
))
9660 (not Tagged_Type_Expansion
9661 and then Tag_Typ
= Root_Type
(Tag_Typ
)))
9662 and then not Restriction_Active
(No_Dispatching_Calls
)
9663 and then not Restriction_Active
(No_Select_Statements
)
9664 and then RTE_Available
(RE_Select_Specific_Data
)
9666 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
9667 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
9668 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
9669 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
9670 Append_To
(Res
, Make_Disp_Requeue_Body
(Tag_Typ
));
9671 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
9674 if not Is_Limited_Type
(Tag_Typ
) and then not Is_Interface
(Tag_Typ
) then
9676 -- Body for equality
9679 Decl
:= Make_Eq_Body
(Tag_Typ
, Eq_Name
);
9680 Append_To
(Res
, Decl
);
9683 -- Body for inequality (if required)
9685 Decl
:= Make_Neq_Body
(Tag_Typ
);
9687 if Present
(Decl
) then
9688 Append_To
(Res
, Decl
);
9691 -- Body for dispatching assignment
9694 Predef_Spec_Or_Body
(Loc
,
9696 Name
=> Name_uAssign
,
9697 Profile
=> New_List
(
9698 Make_Parameter_Specification
(Loc
,
9699 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9700 Out_Present
=> True,
9701 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9703 Make_Parameter_Specification
(Loc
,
9704 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
9705 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9708 Set_Handled_Statement_Sequence
(Decl
,
9709 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
9710 Make_Assignment_Statement
(Loc
,
9711 Name
=> Make_Identifier
(Loc
, Name_X
),
9712 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
9714 Append_To
(Res
, Decl
);
9717 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
9718 -- tagged types which do not contain controlled components.
9720 -- Do not generate the routines if finalization is disabled
9722 if Restriction_Active
(No_Finalization
) then
9725 elsif not Has_Controlled_Component
(Tag_Typ
) then
9726 if not Is_Limited_Type
(Tag_Typ
) then
9727 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
9729 if Is_Controlled
(Tag_Typ
) then
9730 Set_Handled_Statement_Sequence
(Decl
,
9731 Make_Handled_Sequence_Of_Statements
(Loc
,
9732 Statements
=> New_List
(
9734 Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
9738 Set_Handled_Statement_Sequence
(Decl
,
9739 Make_Handled_Sequence_Of_Statements
(Loc
,
9740 Statements
=> New_List
(
9741 Make_Null_Statement
(Loc
))));
9744 Append_To
(Res
, Decl
);
9747 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
9749 if Is_Controlled
(Tag_Typ
) then
9750 Set_Handled_Statement_Sequence
(Decl
,
9751 Make_Handled_Sequence_Of_Statements
(Loc
,
9752 Statements
=> New_List
(
9754 (Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
9758 Set_Handled_Statement_Sequence
(Decl
,
9759 Make_Handled_Sequence_Of_Statements
(Loc
,
9760 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
9763 Append_To
(Res
, Decl
);
9767 end Predefined_Primitive_Bodies
;
9769 ---------------------------------
9770 -- Predefined_Primitive_Freeze --
9771 ---------------------------------
9773 function Predefined_Primitive_Freeze
9774 (Tag_Typ
: Entity_Id
) return List_Id
9776 Res
: constant List_Id
:= New_List
;
9781 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9782 while Present
(Prim
) loop
9783 if Is_Predefined_Dispatching_Operation
(Node
(Prim
)) then
9784 Frnodes
:= Freeze_Entity
(Node
(Prim
), Tag_Typ
);
9786 if Present
(Frnodes
) then
9787 Append_List_To
(Res
, Frnodes
);
9795 end Predefined_Primitive_Freeze
;
9797 -------------------------
9798 -- Stream_Operation_OK --
9799 -------------------------
9801 function Stream_Operation_OK
9803 Operation
: TSS_Name_Type
) return Boolean
9805 Has_Predefined_Or_Specified_Stream_Attribute
: Boolean := False;
9808 -- Special case of a limited type extension: a default implementation
9809 -- of the stream attributes Read or Write exists if that attribute
9810 -- has been specified or is available for an ancestor type; a default
9811 -- implementation of the attribute Output (resp. Input) exists if the
9812 -- attribute has been specified or Write (resp. Read) is available for
9813 -- an ancestor type. The last condition only applies under Ada 2005.
9815 if Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
9816 if Operation
= TSS_Stream_Read
then
9817 Has_Predefined_Or_Specified_Stream_Attribute
:=
9818 Has_Specified_Stream_Read
(Typ
);
9820 elsif Operation
= TSS_Stream_Write
then
9821 Has_Predefined_Or_Specified_Stream_Attribute
:=
9822 Has_Specified_Stream_Write
(Typ
);
9824 elsif Operation
= TSS_Stream_Input
then
9825 Has_Predefined_Or_Specified_Stream_Attribute
:=
9826 Has_Specified_Stream_Input
(Typ
)
9828 (Ada_Version
>= Ada_2005
9829 and then Stream_Operation_OK
(Typ
, TSS_Stream_Read
));
9831 elsif Operation
= TSS_Stream_Output
then
9832 Has_Predefined_Or_Specified_Stream_Attribute
:=
9833 Has_Specified_Stream_Output
(Typ
)
9835 (Ada_Version
>= Ada_2005
9836 and then Stream_Operation_OK
(Typ
, TSS_Stream_Write
));
9839 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
9841 if not Has_Predefined_Or_Specified_Stream_Attribute
9842 and then Is_Derived_Type
(Typ
)
9843 and then (Operation
= TSS_Stream_Read
9844 or else Operation
= TSS_Stream_Write
)
9846 Has_Predefined_Or_Specified_Stream_Attribute
:=
9848 (Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
9852 -- If the type is not limited, or else is limited but the attribute is
9853 -- explicitly specified or is predefined for the type, then return True,
9854 -- unless other conditions prevail, such as restrictions prohibiting
9855 -- streams or dispatching operations. We also return True for limited
9856 -- interfaces, because they may be extended by nonlimited types and
9857 -- permit inheritance in this case (addresses cases where an abstract
9858 -- extension doesn't get 'Input declared, as per comments below, but
9859 -- 'Class'Input must still be allowed). Note that attempts to apply
9860 -- stream attributes to a limited interface or its class-wide type
9861 -- (or limited extensions thereof) will still get properly rejected
9862 -- by Check_Stream_Attribute.
9864 -- We exclude the Input operation from being a predefined subprogram in
9865 -- the case where the associated type is an abstract extension, because
9866 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
9867 -- we don't want an abstract version created because types derived from
9868 -- the abstract type may not even have Input available (for example if
9869 -- derived from a private view of the abstract type that doesn't have
9870 -- a visible Input).
9872 -- Do not generate stream routines for type Finalization_Master because
9873 -- a master may never appear in types and therefore cannot be read or
9877 (not Is_Limited_Type
(Typ
)
9878 or else Is_Interface
(Typ
)
9879 or else Has_Predefined_Or_Specified_Stream_Attribute
)
9881 (Operation
/= TSS_Stream_Input
9882 or else not Is_Abstract_Type
(Typ
)
9883 or else not Is_Derived_Type
(Typ
))
9884 and then not Has_Unknown_Discriminants
(Typ
)
9888 (Is_Task_Interface
(Typ
)
9889 or else Is_Protected_Interface
(Typ
)
9890 or else Is_Synchronized_Interface
(Typ
)))
9891 and then not Restriction_Active
(No_Streams
)
9892 and then not Restriction_Active
(No_Dispatch
)
9893 and then No
(No_Tagged_Streams_Pragma
(Typ
))
9894 and then not No_Run_Time_Mode
9895 and then RTE_Available
(RE_Tag
)
9896 and then No
(Type_Without_Stream_Operation
(Typ
))
9897 and then RTE_Available
(RE_Root_Stream_Type
)
9898 and then not Is_RTE
(Typ
, RE_Finalization_Master
);
9899 end Stream_Operation_OK
;