2014-06-28 Andrew Sutton <andrew.n.sutton@gmail.com>
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blob65dfdec55b9542995e2da0af197f084201bdeb40
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
110 #include "expr.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
115 #include "target.h"
116 #include "gimple-pretty-print.h"
117 #include "builtins.h"
119 /* FIXME: RTL headers have to be included here for optabs. */
120 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
121 #include "expr.h" /* Because optabs.h wants sepops. */
122 #include "optabs.h"
124 /* This structure represents one basic block that either computes a
125 division, or is a common dominator for basic block that compute a
126 division. */
127 struct occurrence {
128 /* The basic block represented by this structure. */
129 basic_block bb;
131 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
132 inserted in BB. */
133 tree recip_def;
135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136 was inserted in BB. */
137 gimple recip_def_stmt;
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 by BB. */
141 struct occurrence *children;
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence *next;
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
149 compute_merit. */
150 int num_divisions;
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division;
158 static struct
160 /* Number of 1.0/X ops inserted. */
161 int rdivs_inserted;
163 /* Number of 1.0/FUNC ops inserted. */
164 int rfuncs_inserted;
165 } reciprocal_stats;
167 static struct
169 /* Number of cexpi calls inserted. */
170 int inserted;
171 } sincos_stats;
173 static struct
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183 } nop_stats, bswap_stats;
185 static struct
187 /* Number of widening multiplication ops inserted. */
188 int widen_mults_inserted;
190 /* Number of integer multiply-and-accumulate ops inserted. */
191 int maccs_inserted;
193 /* Number of fp fused multiply-add ops inserted. */
194 int fmas_inserted;
195 } widen_mul_stats;
197 /* The instance of "struct occurrence" representing the highest
198 interesting block in the dominator tree. */
199 static struct occurrence *occ_head;
201 /* Allocation pool for getting instances of "struct occurrence". */
202 static alloc_pool occ_pool;
206 /* Allocate and return a new struct occurrence for basic block BB, and
207 whose children list is headed by CHILDREN. */
208 static struct occurrence *
209 occ_new (basic_block bb, struct occurrence *children)
211 struct occurrence *occ;
213 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
214 memset (occ, 0, sizeof (struct occurrence));
216 occ->bb = bb;
217 occ->children = children;
218 return occ;
222 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
223 list of "struct occurrence"s, one per basic block, having IDOM as
224 their common dominator.
226 We try to insert NEW_OCC as deep as possible in the tree, and we also
227 insert any other block that is a common dominator for BB and one
228 block already in the tree. */
230 static void
231 insert_bb (struct occurrence *new_occ, basic_block idom,
232 struct occurrence **p_head)
234 struct occurrence *occ, **p_occ;
236 for (p_occ = p_head; (occ = *p_occ) != NULL; )
238 basic_block bb = new_occ->bb, occ_bb = occ->bb;
239 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
240 if (dom == bb)
242 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
243 from its list. */
244 *p_occ = occ->next;
245 occ->next = new_occ->children;
246 new_occ->children = occ;
248 /* Try the next block (it may as well be dominated by BB). */
251 else if (dom == occ_bb)
253 /* OCC_BB dominates BB. Tail recurse to look deeper. */
254 insert_bb (new_occ, dom, &occ->children);
255 return;
258 else if (dom != idom)
260 gcc_assert (!dom->aux);
262 /* There is a dominator between IDOM and BB, add it and make
263 two children out of NEW_OCC and OCC. First, remove OCC from
264 its list. */
265 *p_occ = occ->next;
266 new_occ->next = occ;
267 occ->next = NULL;
269 /* None of the previous blocks has DOM as a dominator: if we tail
270 recursed, we would reexamine them uselessly. Just switch BB with
271 DOM, and go on looking for blocks dominated by DOM. */
272 new_occ = occ_new (dom, new_occ);
275 else
277 /* Nothing special, go on with the next element. */
278 p_occ = &occ->next;
282 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
283 new_occ->next = *p_head;
284 *p_head = new_occ;
287 /* Register that we found a division in BB. */
289 static inline void
290 register_division_in (basic_block bb)
292 struct occurrence *occ;
294 occ = (struct occurrence *) bb->aux;
295 if (!occ)
297 occ = occ_new (bb, NULL);
298 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
301 occ->bb_has_division = true;
302 occ->num_divisions++;
306 /* Compute the number of divisions that postdominate each block in OCC and
307 its children. */
309 static void
310 compute_merit (struct occurrence *occ)
312 struct occurrence *occ_child;
313 basic_block dom = occ->bb;
315 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
317 basic_block bb;
318 if (occ_child->children)
319 compute_merit (occ_child);
321 if (flag_exceptions)
322 bb = single_noncomplex_succ (dom);
323 else
324 bb = dom;
326 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
327 occ->num_divisions += occ_child->num_divisions;
332 /* Return whether USE_STMT is a floating-point division by DEF. */
333 static inline bool
334 is_division_by (gimple use_stmt, tree def)
336 return is_gimple_assign (use_stmt)
337 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
338 && gimple_assign_rhs2 (use_stmt) == def
339 /* Do not recognize x / x as valid division, as we are getting
340 confused later by replacing all immediate uses x in such
341 a stmt. */
342 && gimple_assign_rhs1 (use_stmt) != def;
345 /* Walk the subset of the dominator tree rooted at OCC, setting the
346 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
347 the given basic block. The field may be left NULL, of course,
348 if it is not possible or profitable to do the optimization.
350 DEF_BSI is an iterator pointing at the statement defining DEF.
351 If RECIP_DEF is set, a dominator already has a computation that can
352 be used. */
354 static void
355 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
356 tree def, tree recip_def, int threshold)
358 tree type;
359 gimple new_stmt;
360 gimple_stmt_iterator gsi;
361 struct occurrence *occ_child;
363 if (!recip_def
364 && (occ->bb_has_division || !flag_trapping_math)
365 && occ->num_divisions >= threshold)
367 /* Make a variable with the replacement and substitute it. */
368 type = TREE_TYPE (def);
369 recip_def = create_tmp_reg (type, "reciptmp");
370 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
371 build_one_cst (type), def);
373 if (occ->bb_has_division)
375 /* Case 1: insert before an existing division. */
376 gsi = gsi_after_labels (occ->bb);
377 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
378 gsi_next (&gsi);
380 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
382 else if (def_gsi && occ->bb == def_gsi->bb)
384 /* Case 2: insert right after the definition. Note that this will
385 never happen if the definition statement can throw, because in
386 that case the sole successor of the statement's basic block will
387 dominate all the uses as well. */
388 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
390 else
392 /* Case 3: insert in a basic block not containing defs/uses. */
393 gsi = gsi_after_labels (occ->bb);
394 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
397 reciprocal_stats.rdivs_inserted++;
399 occ->recip_def_stmt = new_stmt;
402 occ->recip_def = recip_def;
403 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
404 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
408 /* Replace the division at USE_P with a multiplication by the reciprocal, if
409 possible. */
411 static inline void
412 replace_reciprocal (use_operand_p use_p)
414 gimple use_stmt = USE_STMT (use_p);
415 basic_block bb = gimple_bb (use_stmt);
416 struct occurrence *occ = (struct occurrence *) bb->aux;
418 if (optimize_bb_for_speed_p (bb)
419 && occ->recip_def && use_stmt != occ->recip_def_stmt)
421 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
422 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
423 SET_USE (use_p, occ->recip_def);
424 fold_stmt_inplace (&gsi);
425 update_stmt (use_stmt);
430 /* Free OCC and return one more "struct occurrence" to be freed. */
432 static struct occurrence *
433 free_bb (struct occurrence *occ)
435 struct occurrence *child, *next;
437 /* First get the two pointers hanging off OCC. */
438 next = occ->next;
439 child = occ->children;
440 occ->bb->aux = NULL;
441 pool_free (occ_pool, occ);
443 /* Now ensure that we don't recurse unless it is necessary. */
444 if (!child)
445 return next;
446 else
448 while (next)
449 next = free_bb (next);
451 return child;
456 /* Look for floating-point divisions among DEF's uses, and try to
457 replace them by multiplications with the reciprocal. Add
458 as many statements computing the reciprocal as needed.
460 DEF must be a GIMPLE register of a floating-point type. */
462 static void
463 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
465 use_operand_p use_p;
466 imm_use_iterator use_iter;
467 struct occurrence *occ;
468 int count = 0, threshold;
470 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
472 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
474 gimple use_stmt = USE_STMT (use_p);
475 if (is_division_by (use_stmt, def))
477 register_division_in (gimple_bb (use_stmt));
478 count++;
482 /* Do the expensive part only if we can hope to optimize something. */
483 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
484 if (count >= threshold)
486 gimple use_stmt;
487 for (occ = occ_head; occ; occ = occ->next)
489 compute_merit (occ);
490 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
493 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
495 if (is_division_by (use_stmt, def))
497 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
498 replace_reciprocal (use_p);
503 for (occ = occ_head; occ; )
504 occ = free_bb (occ);
506 occ_head = NULL;
509 /* Go through all the floating-point SSA_NAMEs, and call
510 execute_cse_reciprocals_1 on each of them. */
511 namespace {
513 const pass_data pass_data_cse_reciprocals =
515 GIMPLE_PASS, /* type */
516 "recip", /* name */
517 OPTGROUP_NONE, /* optinfo_flags */
518 true, /* has_execute */
519 TV_NONE, /* tv_id */
520 PROP_ssa, /* properties_required */
521 0, /* properties_provided */
522 0, /* properties_destroyed */
523 0, /* todo_flags_start */
524 TODO_update_ssa, /* todo_flags_finish */
527 class pass_cse_reciprocals : public gimple_opt_pass
529 public:
530 pass_cse_reciprocals (gcc::context *ctxt)
531 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
534 /* opt_pass methods: */
535 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
536 virtual unsigned int execute (function *);
538 }; // class pass_cse_reciprocals
540 unsigned int
541 pass_cse_reciprocals::execute (function *fun)
543 basic_block bb;
544 tree arg;
546 occ_pool = create_alloc_pool ("dominators for recip",
547 sizeof (struct occurrence),
548 n_basic_blocks_for_fn (fun) / 3 + 1);
550 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
551 calculate_dominance_info (CDI_DOMINATORS);
552 calculate_dominance_info (CDI_POST_DOMINATORS);
554 #ifdef ENABLE_CHECKING
555 FOR_EACH_BB_FN (bb, fun)
556 gcc_assert (!bb->aux);
557 #endif
559 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
560 if (FLOAT_TYPE_P (TREE_TYPE (arg))
561 && is_gimple_reg (arg))
563 tree name = ssa_default_def (fun, arg);
564 if (name)
565 execute_cse_reciprocals_1 (NULL, name);
568 FOR_EACH_BB_FN (bb, fun)
570 gimple_stmt_iterator gsi;
571 gimple phi;
572 tree def;
574 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
576 phi = gsi_stmt (gsi);
577 def = PHI_RESULT (phi);
578 if (! virtual_operand_p (def)
579 && FLOAT_TYPE_P (TREE_TYPE (def)))
580 execute_cse_reciprocals_1 (NULL, def);
583 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
585 gimple stmt = gsi_stmt (gsi);
587 if (gimple_has_lhs (stmt)
588 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
589 && FLOAT_TYPE_P (TREE_TYPE (def))
590 && TREE_CODE (def) == SSA_NAME)
591 execute_cse_reciprocals_1 (&gsi, def);
594 if (optimize_bb_for_size_p (bb))
595 continue;
597 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
598 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
600 gimple stmt = gsi_stmt (gsi);
601 tree fndecl;
603 if (is_gimple_assign (stmt)
604 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
606 tree arg1 = gimple_assign_rhs2 (stmt);
607 gimple stmt1;
609 if (TREE_CODE (arg1) != SSA_NAME)
610 continue;
612 stmt1 = SSA_NAME_DEF_STMT (arg1);
614 if (is_gimple_call (stmt1)
615 && gimple_call_lhs (stmt1)
616 && (fndecl = gimple_call_fndecl (stmt1))
617 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
618 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
620 enum built_in_function code;
621 bool md_code, fail;
622 imm_use_iterator ui;
623 use_operand_p use_p;
625 code = DECL_FUNCTION_CODE (fndecl);
626 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
628 fndecl = targetm.builtin_reciprocal (code, md_code, false);
629 if (!fndecl)
630 continue;
632 /* Check that all uses of the SSA name are divisions,
633 otherwise replacing the defining statement will do
634 the wrong thing. */
635 fail = false;
636 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
638 gimple stmt2 = USE_STMT (use_p);
639 if (is_gimple_debug (stmt2))
640 continue;
641 if (!is_gimple_assign (stmt2)
642 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
643 || gimple_assign_rhs1 (stmt2) == arg1
644 || gimple_assign_rhs2 (stmt2) != arg1)
646 fail = true;
647 break;
650 if (fail)
651 continue;
653 gimple_replace_ssa_lhs (stmt1, arg1);
654 gimple_call_set_fndecl (stmt1, fndecl);
655 update_stmt (stmt1);
656 reciprocal_stats.rfuncs_inserted++;
658 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
660 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
661 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
662 fold_stmt_inplace (&gsi);
663 update_stmt (stmt);
670 statistics_counter_event (fun, "reciprocal divs inserted",
671 reciprocal_stats.rdivs_inserted);
672 statistics_counter_event (fun, "reciprocal functions inserted",
673 reciprocal_stats.rfuncs_inserted);
675 free_dominance_info (CDI_DOMINATORS);
676 free_dominance_info (CDI_POST_DOMINATORS);
677 free_alloc_pool (occ_pool);
678 return 0;
681 } // anon namespace
683 gimple_opt_pass *
684 make_pass_cse_reciprocals (gcc::context *ctxt)
686 return new pass_cse_reciprocals (ctxt);
689 /* Records an occurrence at statement USE_STMT in the vector of trees
690 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
691 is not yet initialized. Returns true if the occurrence was pushed on
692 the vector. Adjusts *TOP_BB to be the basic block dominating all
693 statements in the vector. */
695 static bool
696 maybe_record_sincos (vec<gimple> *stmts,
697 basic_block *top_bb, gimple use_stmt)
699 basic_block use_bb = gimple_bb (use_stmt);
700 if (*top_bb
701 && (*top_bb == use_bb
702 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
703 stmts->safe_push (use_stmt);
704 else if (!*top_bb
705 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
707 stmts->safe_push (use_stmt);
708 *top_bb = use_bb;
710 else
711 return false;
713 return true;
716 /* Look for sin, cos and cexpi calls with the same argument NAME and
717 create a single call to cexpi CSEing the result in this case.
718 We first walk over all immediate uses of the argument collecting
719 statements that we can CSE in a vector and in a second pass replace
720 the statement rhs with a REALPART or IMAGPART expression on the
721 result of the cexpi call we insert before the use statement that
722 dominates all other candidates. */
724 static bool
725 execute_cse_sincos_1 (tree name)
727 gimple_stmt_iterator gsi;
728 imm_use_iterator use_iter;
729 tree fndecl, res, type;
730 gimple def_stmt, use_stmt, stmt;
731 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
732 vec<gimple> stmts = vNULL;
733 basic_block top_bb = NULL;
734 int i;
735 bool cfg_changed = false;
737 type = TREE_TYPE (name);
738 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
740 if (gimple_code (use_stmt) != GIMPLE_CALL
741 || !gimple_call_lhs (use_stmt)
742 || !(fndecl = gimple_call_fndecl (use_stmt))
743 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
744 continue;
746 switch (DECL_FUNCTION_CODE (fndecl))
748 CASE_FLT_FN (BUILT_IN_COS):
749 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
750 break;
752 CASE_FLT_FN (BUILT_IN_SIN):
753 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
754 break;
756 CASE_FLT_FN (BUILT_IN_CEXPI):
757 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
758 break;
760 default:;
764 if (seen_cos + seen_sin + seen_cexpi <= 1)
766 stmts.release ();
767 return false;
770 /* Simply insert cexpi at the beginning of top_bb but not earlier than
771 the name def statement. */
772 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
773 if (!fndecl)
774 return false;
775 stmt = gimple_build_call (fndecl, 1, name);
776 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
777 gimple_call_set_lhs (stmt, res);
779 def_stmt = SSA_NAME_DEF_STMT (name);
780 if (!SSA_NAME_IS_DEFAULT_DEF (name)
781 && gimple_code (def_stmt) != GIMPLE_PHI
782 && gimple_bb (def_stmt) == top_bb)
784 gsi = gsi_for_stmt (def_stmt);
785 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
787 else
789 gsi = gsi_after_labels (top_bb);
790 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
792 sincos_stats.inserted++;
794 /* And adjust the recorded old call sites. */
795 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
797 tree rhs = NULL;
798 fndecl = gimple_call_fndecl (use_stmt);
800 switch (DECL_FUNCTION_CODE (fndecl))
802 CASE_FLT_FN (BUILT_IN_COS):
803 rhs = fold_build1 (REALPART_EXPR, type, res);
804 break;
806 CASE_FLT_FN (BUILT_IN_SIN):
807 rhs = fold_build1 (IMAGPART_EXPR, type, res);
808 break;
810 CASE_FLT_FN (BUILT_IN_CEXPI):
811 rhs = res;
812 break;
814 default:;
815 gcc_unreachable ();
818 /* Replace call with a copy. */
819 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
821 gsi = gsi_for_stmt (use_stmt);
822 gsi_replace (&gsi, stmt, true);
823 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
824 cfg_changed = true;
827 stmts.release ();
829 return cfg_changed;
832 /* To evaluate powi(x,n), the floating point value x raised to the
833 constant integer exponent n, we use a hybrid algorithm that
834 combines the "window method" with look-up tables. For an
835 introduction to exponentiation algorithms and "addition chains",
836 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
837 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
838 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
839 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
841 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
842 multiplications to inline before calling the system library's pow
843 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
844 so this default never requires calling pow, powf or powl. */
846 #ifndef POWI_MAX_MULTS
847 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
848 #endif
850 /* The size of the "optimal power tree" lookup table. All
851 exponents less than this value are simply looked up in the
852 powi_table below. This threshold is also used to size the
853 cache of pseudo registers that hold intermediate results. */
854 #define POWI_TABLE_SIZE 256
856 /* The size, in bits of the window, used in the "window method"
857 exponentiation algorithm. This is equivalent to a radix of
858 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
859 #define POWI_WINDOW_SIZE 3
861 /* The following table is an efficient representation of an
862 "optimal power tree". For each value, i, the corresponding
863 value, j, in the table states than an optimal evaluation
864 sequence for calculating pow(x,i) can be found by evaluating
865 pow(x,j)*pow(x,i-j). An optimal power tree for the first
866 100 integers is given in Knuth's "Seminumerical algorithms". */
868 static const unsigned char powi_table[POWI_TABLE_SIZE] =
870 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
871 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
872 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
873 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
874 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
875 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
876 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
877 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
878 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
879 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
880 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
881 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
882 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
883 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
884 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
885 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
886 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
887 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
888 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
889 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
890 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
891 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
892 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
893 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
894 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
895 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
896 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
897 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
898 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
899 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
900 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
901 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
905 /* Return the number of multiplications required to calculate
906 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
907 subroutine of powi_cost. CACHE is an array indicating
908 which exponents have already been calculated. */
910 static int
911 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
913 /* If we've already calculated this exponent, then this evaluation
914 doesn't require any additional multiplications. */
915 if (cache[n])
916 return 0;
918 cache[n] = true;
919 return powi_lookup_cost (n - powi_table[n], cache)
920 + powi_lookup_cost (powi_table[n], cache) + 1;
923 /* Return the number of multiplications required to calculate
924 powi(x,n) for an arbitrary x, given the exponent N. This
925 function needs to be kept in sync with powi_as_mults below. */
927 static int
928 powi_cost (HOST_WIDE_INT n)
930 bool cache[POWI_TABLE_SIZE];
931 unsigned HOST_WIDE_INT digit;
932 unsigned HOST_WIDE_INT val;
933 int result;
935 if (n == 0)
936 return 0;
938 /* Ignore the reciprocal when calculating the cost. */
939 val = (n < 0) ? -n : n;
941 /* Initialize the exponent cache. */
942 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
943 cache[1] = true;
945 result = 0;
947 while (val >= POWI_TABLE_SIZE)
949 if (val & 1)
951 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
952 result += powi_lookup_cost (digit, cache)
953 + POWI_WINDOW_SIZE + 1;
954 val >>= POWI_WINDOW_SIZE;
956 else
958 val >>= 1;
959 result++;
963 return result + powi_lookup_cost (val, cache);
966 /* Recursive subroutine of powi_as_mults. This function takes the
967 array, CACHE, of already calculated exponents and an exponent N and
968 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
970 static tree
971 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
972 HOST_WIDE_INT n, tree *cache)
974 tree op0, op1, ssa_target;
975 unsigned HOST_WIDE_INT digit;
976 gimple mult_stmt;
978 if (n < POWI_TABLE_SIZE && cache[n])
979 return cache[n];
981 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
983 if (n < POWI_TABLE_SIZE)
985 cache[n] = ssa_target;
986 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
987 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
989 else if (n & 1)
991 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
992 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
995 else
997 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
998 op1 = op0;
1001 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1002 gimple_set_location (mult_stmt, loc);
1003 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1005 return ssa_target;
1008 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1009 This function needs to be kept in sync with powi_cost above. */
1011 static tree
1012 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1013 tree arg0, HOST_WIDE_INT n)
1015 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1016 gimple div_stmt;
1017 tree target;
1019 if (n == 0)
1020 return build_real (type, dconst1);
1022 memset (cache, 0, sizeof (cache));
1023 cache[1] = arg0;
1025 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1026 if (n >= 0)
1027 return result;
1029 /* If the original exponent was negative, reciprocate the result. */
1030 target = make_temp_ssa_name (type, NULL, "powmult");
1031 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1032 build_real (type, dconst1),
1033 result);
1034 gimple_set_location (div_stmt, loc);
1035 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1037 return target;
1040 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1041 location info LOC. If the arguments are appropriate, create an
1042 equivalent sequence of statements prior to GSI using an optimal
1043 number of multiplications, and return an expession holding the
1044 result. */
1046 static tree
1047 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1048 tree arg0, HOST_WIDE_INT n)
1050 /* Avoid largest negative number. */
1051 if (n != -n
1052 && ((n >= -1 && n <= 2)
1053 || (optimize_function_for_speed_p (cfun)
1054 && powi_cost (n) <= POWI_MAX_MULTS)))
1055 return powi_as_mults (gsi, loc, arg0, n);
1057 return NULL_TREE;
1060 /* Build a gimple call statement that calls FN with argument ARG.
1061 Set the lhs of the call statement to a fresh SSA name. Insert the
1062 statement prior to GSI's current position, and return the fresh
1063 SSA name. */
1065 static tree
1066 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1067 tree fn, tree arg)
1069 gimple call_stmt;
1070 tree ssa_target;
1072 call_stmt = gimple_build_call (fn, 1, arg);
1073 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1074 gimple_set_lhs (call_stmt, ssa_target);
1075 gimple_set_location (call_stmt, loc);
1076 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1078 return ssa_target;
1081 /* Build a gimple binary operation with the given CODE and arguments
1082 ARG0, ARG1, assigning the result to a new SSA name for variable
1083 TARGET. Insert the statement prior to GSI's current position, and
1084 return the fresh SSA name.*/
1086 static tree
1087 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1088 const char *name, enum tree_code code,
1089 tree arg0, tree arg1)
1091 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1092 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1093 gimple_set_location (stmt, loc);
1094 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1095 return result;
1098 /* Build a gimple reference operation with the given CODE and argument
1099 ARG, assigning the result to a new SSA name of TYPE with NAME.
1100 Insert the statement prior to GSI's current position, and return
1101 the fresh SSA name. */
1103 static inline tree
1104 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1105 const char *name, enum tree_code code, tree arg0)
1107 tree result = make_temp_ssa_name (type, NULL, name);
1108 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1109 gimple_set_location (stmt, loc);
1110 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1111 return result;
1114 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1115 prior to GSI's current position, and return the fresh SSA name. */
1117 static tree
1118 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1119 tree type, tree val)
1121 tree result = make_ssa_name (type, NULL);
1122 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1123 gimple_set_location (stmt, loc);
1124 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1125 return result;
1128 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1129 with location info LOC. If possible, create an equivalent and
1130 less expensive sequence of statements prior to GSI, and return an
1131 expession holding the result. */
1133 static tree
1134 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1135 tree arg0, tree arg1)
1137 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1138 REAL_VALUE_TYPE c2, dconst3;
1139 HOST_WIDE_INT n;
1140 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1141 enum machine_mode mode;
1142 bool hw_sqrt_exists, c_is_int, c2_is_int;
1144 /* If the exponent isn't a constant, there's nothing of interest
1145 to be done. */
1146 if (TREE_CODE (arg1) != REAL_CST)
1147 return NULL_TREE;
1149 /* If the exponent is equivalent to an integer, expand to an optimal
1150 multiplication sequence when profitable. */
1151 c = TREE_REAL_CST (arg1);
1152 n = real_to_integer (&c);
1153 real_from_integer (&cint, VOIDmode, n, SIGNED);
1154 c_is_int = real_identical (&c, &cint);
1156 if (c_is_int
1157 && ((n >= -1 && n <= 2)
1158 || (flag_unsafe_math_optimizations
1159 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1160 && powi_cost (n) <= POWI_MAX_MULTS)))
1161 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1163 /* Attempt various optimizations using sqrt and cbrt. */
1164 type = TREE_TYPE (arg0);
1165 mode = TYPE_MODE (type);
1166 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1168 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1169 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1170 sqrt(-0) = -0. */
1171 if (sqrtfn
1172 && REAL_VALUES_EQUAL (c, dconsthalf)
1173 && !HONOR_SIGNED_ZEROS (mode))
1174 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1176 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1177 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1178 so do this optimization even if -Os. Don't do this optimization
1179 if we don't have a hardware sqrt insn. */
1180 dconst1_4 = dconst1;
1181 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1182 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1184 if (flag_unsafe_math_optimizations
1185 && sqrtfn
1186 && REAL_VALUES_EQUAL (c, dconst1_4)
1187 && hw_sqrt_exists)
1189 /* sqrt(x) */
1190 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1192 /* sqrt(sqrt(x)) */
1193 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1196 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1197 optimizing for space. Don't do this optimization if we don't have
1198 a hardware sqrt insn. */
1199 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1200 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1202 if (flag_unsafe_math_optimizations
1203 && sqrtfn
1204 && optimize_function_for_speed_p (cfun)
1205 && REAL_VALUES_EQUAL (c, dconst3_4)
1206 && hw_sqrt_exists)
1208 /* sqrt(x) */
1209 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1211 /* sqrt(sqrt(x)) */
1212 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1214 /* sqrt(x) * sqrt(sqrt(x)) */
1215 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1216 sqrt_arg0, sqrt_sqrt);
1219 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1220 optimizations since 1./3. is not exactly representable. If x
1221 is negative and finite, the correct value of pow(x,1./3.) is
1222 a NaN with the "invalid" exception raised, because the value
1223 of 1./3. actually has an even denominator. The correct value
1224 of cbrt(x) is a negative real value. */
1225 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1226 dconst1_3 = real_value_truncate (mode, dconst_third ());
1228 if (flag_unsafe_math_optimizations
1229 && cbrtfn
1230 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1231 && REAL_VALUES_EQUAL (c, dconst1_3))
1232 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1234 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1235 if we don't have a hardware sqrt insn. */
1236 dconst1_6 = dconst1_3;
1237 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1239 if (flag_unsafe_math_optimizations
1240 && sqrtfn
1241 && cbrtfn
1242 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1243 && optimize_function_for_speed_p (cfun)
1244 && hw_sqrt_exists
1245 && REAL_VALUES_EQUAL (c, dconst1_6))
1247 /* sqrt(x) */
1248 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1250 /* cbrt(sqrt(x)) */
1251 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1254 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1255 and c not an integer, into
1257 sqrt(x) * powi(x, n/2), n > 0;
1258 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1260 Do not calculate the powi factor when n/2 = 0. */
1261 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1262 n = real_to_integer (&c2);
1263 real_from_integer (&cint, VOIDmode, n, SIGNED);
1264 c2_is_int = real_identical (&c2, &cint);
1266 if (flag_unsafe_math_optimizations
1267 && sqrtfn
1268 && c2_is_int
1269 && !c_is_int
1270 && optimize_function_for_speed_p (cfun))
1272 tree powi_x_ndiv2 = NULL_TREE;
1274 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1275 possible or profitable, give up. Skip the degenerate case when
1276 n is 1 or -1, where the result is always 1. */
1277 if (absu_hwi (n) != 1)
1279 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1280 abs_hwi (n / 2));
1281 if (!powi_x_ndiv2)
1282 return NULL_TREE;
1285 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1286 result of the optimal multiply sequence just calculated. */
1287 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1289 if (absu_hwi (n) == 1)
1290 result = sqrt_arg0;
1291 else
1292 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1293 sqrt_arg0, powi_x_ndiv2);
1295 /* If n is negative, reciprocate the result. */
1296 if (n < 0)
1297 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1298 build_real (type, dconst1), result);
1299 return result;
1302 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1304 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1305 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1307 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1308 different from pow(x, 1./3.) due to rounding and behavior with
1309 negative x, we need to constrain this transformation to unsafe
1310 math and positive x or finite math. */
1311 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1312 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1313 real_round (&c2, mode, &c2);
1314 n = real_to_integer (&c2);
1315 real_from_integer (&cint, VOIDmode, n, SIGNED);
1316 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1317 real_convert (&c2, mode, &c2);
1319 if (flag_unsafe_math_optimizations
1320 && cbrtfn
1321 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1322 && real_identical (&c2, &c)
1323 && !c2_is_int
1324 && optimize_function_for_speed_p (cfun)
1325 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1327 tree powi_x_ndiv3 = NULL_TREE;
1329 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1330 possible or profitable, give up. Skip the degenerate case when
1331 abs(n) < 3, where the result is always 1. */
1332 if (absu_hwi (n) >= 3)
1334 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1335 abs_hwi (n / 3));
1336 if (!powi_x_ndiv3)
1337 return NULL_TREE;
1340 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1341 as that creates an unnecessary variable. Instead, just produce
1342 either cbrt(x) or cbrt(x) * cbrt(x). */
1343 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1345 if (absu_hwi (n) % 3 == 1)
1346 powi_cbrt_x = cbrt_x;
1347 else
1348 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1349 cbrt_x, cbrt_x);
1351 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1352 if (absu_hwi (n) < 3)
1353 result = powi_cbrt_x;
1354 else
1355 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1356 powi_x_ndiv3, powi_cbrt_x);
1358 /* If n is negative, reciprocate the result. */
1359 if (n < 0)
1360 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1361 build_real (type, dconst1), result);
1363 return result;
1366 /* No optimizations succeeded. */
1367 return NULL_TREE;
1370 /* ARG is the argument to a cabs builtin call in GSI with location info
1371 LOC. Create a sequence of statements prior to GSI that calculates
1372 sqrt(R*R + I*I), where R and I are the real and imaginary components
1373 of ARG, respectively. Return an expression holding the result. */
1375 static tree
1376 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1378 tree real_part, imag_part, addend1, addend2, sum, result;
1379 tree type = TREE_TYPE (TREE_TYPE (arg));
1380 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1381 enum machine_mode mode = TYPE_MODE (type);
1383 if (!flag_unsafe_math_optimizations
1384 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1385 || !sqrtfn
1386 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1387 return NULL_TREE;
1389 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1390 REALPART_EXPR, arg);
1391 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1392 real_part, real_part);
1393 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1394 IMAGPART_EXPR, arg);
1395 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1396 imag_part, imag_part);
1397 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1398 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1400 return result;
1403 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1404 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1405 an optimal number of multiplies, when n is a constant. */
1407 namespace {
1409 const pass_data pass_data_cse_sincos =
1411 GIMPLE_PASS, /* type */
1412 "sincos", /* name */
1413 OPTGROUP_NONE, /* optinfo_flags */
1414 true, /* has_execute */
1415 TV_NONE, /* tv_id */
1416 PROP_ssa, /* properties_required */
1417 0, /* properties_provided */
1418 0, /* properties_destroyed */
1419 0, /* todo_flags_start */
1420 TODO_update_ssa, /* todo_flags_finish */
1423 class pass_cse_sincos : public gimple_opt_pass
1425 public:
1426 pass_cse_sincos (gcc::context *ctxt)
1427 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1430 /* opt_pass methods: */
1431 virtual bool gate (function *)
1433 /* We no longer require either sincos or cexp, since powi expansion
1434 piggybacks on this pass. */
1435 return optimize;
1438 virtual unsigned int execute (function *);
1440 }; // class pass_cse_sincos
1442 unsigned int
1443 pass_cse_sincos::execute (function *fun)
1445 basic_block bb;
1446 bool cfg_changed = false;
1448 calculate_dominance_info (CDI_DOMINATORS);
1449 memset (&sincos_stats, 0, sizeof (sincos_stats));
1451 FOR_EACH_BB_FN (bb, fun)
1453 gimple_stmt_iterator gsi;
1454 bool cleanup_eh = false;
1456 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1458 gimple stmt = gsi_stmt (gsi);
1459 tree fndecl;
1461 /* Only the last stmt in a bb could throw, no need to call
1462 gimple_purge_dead_eh_edges if we change something in the middle
1463 of a basic block. */
1464 cleanup_eh = false;
1466 if (is_gimple_call (stmt)
1467 && gimple_call_lhs (stmt)
1468 && (fndecl = gimple_call_fndecl (stmt))
1469 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1471 tree arg, arg0, arg1, result;
1472 HOST_WIDE_INT n;
1473 location_t loc;
1475 switch (DECL_FUNCTION_CODE (fndecl))
1477 CASE_FLT_FN (BUILT_IN_COS):
1478 CASE_FLT_FN (BUILT_IN_SIN):
1479 CASE_FLT_FN (BUILT_IN_CEXPI):
1480 /* Make sure we have either sincos or cexp. */
1481 if (!targetm.libc_has_function (function_c99_math_complex)
1482 && !targetm.libc_has_function (function_sincos))
1483 break;
1485 arg = gimple_call_arg (stmt, 0);
1486 if (TREE_CODE (arg) == SSA_NAME)
1487 cfg_changed |= execute_cse_sincos_1 (arg);
1488 break;
1490 CASE_FLT_FN (BUILT_IN_POW):
1491 arg0 = gimple_call_arg (stmt, 0);
1492 arg1 = gimple_call_arg (stmt, 1);
1494 loc = gimple_location (stmt);
1495 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1497 if (result)
1499 tree lhs = gimple_get_lhs (stmt);
1500 gimple new_stmt = gimple_build_assign (lhs, result);
1501 gimple_set_location (new_stmt, loc);
1502 unlink_stmt_vdef (stmt);
1503 gsi_replace (&gsi, new_stmt, true);
1504 cleanup_eh = true;
1505 if (gimple_vdef (stmt))
1506 release_ssa_name (gimple_vdef (stmt));
1508 break;
1510 CASE_FLT_FN (BUILT_IN_POWI):
1511 arg0 = gimple_call_arg (stmt, 0);
1512 arg1 = gimple_call_arg (stmt, 1);
1513 loc = gimple_location (stmt);
1515 if (real_minus_onep (arg0))
1517 tree t0, t1, cond, one, minus_one;
1518 gimple stmt;
1520 t0 = TREE_TYPE (arg0);
1521 t1 = TREE_TYPE (arg1);
1522 one = build_real (t0, dconst1);
1523 minus_one = build_real (t0, dconstm1);
1525 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1526 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1527 arg1,
1528 build_int_cst (t1,
1529 1));
1530 gimple_set_location (stmt, loc);
1531 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1533 result = make_temp_ssa_name (t0, NULL, "powi");
1534 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1535 cond,
1536 minus_one, one);
1537 gimple_set_location (stmt, loc);
1538 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540 else
1542 if (!tree_fits_shwi_p (arg1))
1543 break;
1545 n = tree_to_shwi (arg1);
1546 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1549 if (result)
1551 tree lhs = gimple_get_lhs (stmt);
1552 gimple new_stmt = gimple_build_assign (lhs, result);
1553 gimple_set_location (new_stmt, loc);
1554 unlink_stmt_vdef (stmt);
1555 gsi_replace (&gsi, new_stmt, true);
1556 cleanup_eh = true;
1557 if (gimple_vdef (stmt))
1558 release_ssa_name (gimple_vdef (stmt));
1560 break;
1562 CASE_FLT_FN (BUILT_IN_CABS):
1563 arg0 = gimple_call_arg (stmt, 0);
1564 loc = gimple_location (stmt);
1565 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1567 if (result)
1569 tree lhs = gimple_get_lhs (stmt);
1570 gimple new_stmt = gimple_build_assign (lhs, result);
1571 gimple_set_location (new_stmt, loc);
1572 unlink_stmt_vdef (stmt);
1573 gsi_replace (&gsi, new_stmt, true);
1574 cleanup_eh = true;
1575 if (gimple_vdef (stmt))
1576 release_ssa_name (gimple_vdef (stmt));
1578 break;
1580 default:;
1584 if (cleanup_eh)
1585 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1588 statistics_counter_event (fun, "sincos statements inserted",
1589 sincos_stats.inserted);
1591 free_dominance_info (CDI_DOMINATORS);
1592 return cfg_changed ? TODO_cleanup_cfg : 0;
1595 } // anon namespace
1597 gimple_opt_pass *
1598 make_pass_cse_sincos (gcc::context *ctxt)
1600 return new pass_cse_sincos (ctxt);
1603 /* A symbolic number is used to detect byte permutation and selection
1604 patterns. Therefore the field N contains an artificial number
1605 consisting of byte size markers:
1607 0 - byte has the value 0
1608 1..size - byte contains the content of the byte
1609 number indexed with that value minus one.
1611 To detect permutations on memory sources (arrays and structures), a symbolic
1612 number is also associated a base address (the array or structure the load is
1613 made from), an offset from the base address and a range which gives the
1614 difference between the highest and lowest accessed memory location to make
1615 such a symbolic number. The range is thus different from size which reflects
1616 the size of the type of current expression. Note that for non memory source,
1617 range holds the same value as size.
1619 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1620 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1621 still have a size of 2 but this time a range of 1. */
1623 struct symbolic_number {
1624 uint64_t n;
1625 tree type;
1626 tree base_addr;
1627 tree offset;
1628 HOST_WIDE_INT bytepos;
1629 tree alias_set;
1630 tree vuse;
1631 unsigned HOST_WIDE_INT range;
1634 /* The number which the find_bswap_or_nop_1 result should match in
1635 order to have a nop. The number is masked according to the size of
1636 the symbolic number before using it. */
1637 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1638 (uint64_t)0x08070605 << 32 | 0x04030201)
1640 /* The number which the find_bswap_or_nop_1 result should match in
1641 order to have a byte swap. The number is masked according to the
1642 size of the symbolic number before using it. */
1643 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1644 (uint64_t)0x01020304 << 32 | 0x05060708)
1646 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1647 number N. Return false if the requested operation is not permitted
1648 on a symbolic number. */
1650 static inline bool
1651 do_shift_rotate (enum tree_code code,
1652 struct symbolic_number *n,
1653 int count)
1655 int bitsize = TYPE_PRECISION (n->type);
1657 if (count % 8 != 0)
1658 return false;
1660 /* Zero out the extra bits of N in order to avoid them being shifted
1661 into the significant bits. */
1662 if (bitsize < 8 * (int)sizeof (int64_t))
1663 n->n &= ((uint64_t)1 << bitsize) - 1;
1665 switch (code)
1667 case LSHIFT_EXPR:
1668 n->n <<= count;
1669 break;
1670 case RSHIFT_EXPR:
1671 /* Arithmetic shift of signed type: result is dependent on the value. */
1672 if (!TYPE_UNSIGNED (n->type)
1673 && (n->n & ((uint64_t) 0xff << (bitsize - 8))))
1674 return false;
1675 n->n >>= count;
1676 break;
1677 case LROTATE_EXPR:
1678 n->n = (n->n << count) | (n->n >> (bitsize - count));
1679 break;
1680 case RROTATE_EXPR:
1681 n->n = (n->n >> count) | (n->n << (bitsize - count));
1682 break;
1683 default:
1684 return false;
1686 /* Zero unused bits for size. */
1687 if (bitsize < 8 * (int)sizeof (int64_t))
1688 n->n &= ((uint64_t)1 << bitsize) - 1;
1689 return true;
1692 /* Perform sanity checking for the symbolic number N and the gimple
1693 statement STMT. */
1695 static inline bool
1696 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1698 tree lhs_type;
1700 lhs_type = gimple_expr_type (stmt);
1702 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1703 return false;
1705 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1706 return false;
1708 return true;
1711 /* Initialize the symbolic number N for the bswap pass from the base element
1712 SRC manipulated by the bitwise OR expression. */
1714 static bool
1715 init_symbolic_number (struct symbolic_number *n, tree src)
1717 int size;
1719 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1721 /* Set up the symbolic number N by setting each byte to a value between 1 and
1722 the byte size of rhs1. The highest order byte is set to n->size and the
1723 lowest order byte to 1. */
1724 n->type = TREE_TYPE (src);
1725 size = TYPE_PRECISION (n->type);
1726 if (size % BITS_PER_UNIT != 0)
1727 return false;
1728 size /= BITS_PER_UNIT;
1729 if (size > (int)sizeof (uint64_t))
1730 return false;
1731 n->range = size;
1732 n->n = CMPNOP;
1734 if (size < (int)sizeof (int64_t))
1735 n->n &= ((uint64_t)1 << (size * BITS_PER_UNIT)) - 1;
1737 return true;
1740 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1741 the answer. If so, REF is that memory source and the base of the memory area
1742 accessed and the offset of the access from that base are recorded in N. */
1744 bool
1745 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1747 /* Leaf node is an array or component ref. Memorize its base and
1748 offset from base to compare to other such leaf node. */
1749 HOST_WIDE_INT bitsize, bitpos;
1750 enum machine_mode mode;
1751 int unsignedp, volatilep;
1752 tree offset, base_addr;
1754 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1755 return false;
1757 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1758 &unsignedp, &volatilep, false);
1760 if (TREE_CODE (base_addr) == MEM_REF)
1762 offset_int bit_offset = 0;
1763 tree off = TREE_OPERAND (base_addr, 1);
1765 if (!integer_zerop (off))
1767 offset_int boff, coff = mem_ref_offset (base_addr);
1768 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1769 bit_offset += boff;
1772 base_addr = TREE_OPERAND (base_addr, 0);
1774 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1775 if (wi::neg_p (bit_offset))
1777 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1778 offset_int tem = bit_offset.and_not (mask);
1779 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1780 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1781 bit_offset -= tem;
1782 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1783 if (offset)
1784 offset = size_binop (PLUS_EXPR, offset,
1785 wide_int_to_tree (sizetype, tem));
1786 else
1787 offset = wide_int_to_tree (sizetype, tem);
1790 bitpos += bit_offset.to_shwi ();
1793 if (bitpos % BITS_PER_UNIT)
1794 return false;
1795 if (bitsize % BITS_PER_UNIT)
1796 return false;
1798 if (!init_symbolic_number (n, ref))
1799 return false;
1800 n->base_addr = base_addr;
1801 n->offset = offset;
1802 n->bytepos = bitpos / BITS_PER_UNIT;
1803 n->alias_set = reference_alias_ptr_type (ref);
1804 n->vuse = gimple_vuse (stmt);
1805 return true;
1808 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1809 the operation given by the rhs of STMT on the result. If the operation
1810 could successfully be executed the function returns a gimple stmt whose
1811 rhs's first tree is the expression of the source operand and NULL
1812 otherwise. */
1814 static gimple
1815 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1817 enum tree_code code;
1818 tree rhs1, rhs2 = NULL;
1819 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1820 enum gimple_rhs_class rhs_class;
1822 if (!limit || !is_gimple_assign (stmt))
1823 return NULL;
1825 rhs1 = gimple_assign_rhs1 (stmt);
1827 if (find_bswap_or_nop_load (stmt, rhs1, n))
1828 return stmt;
1830 if (TREE_CODE (rhs1) != SSA_NAME)
1831 return NULL;
1833 code = gimple_assign_rhs_code (stmt);
1834 rhs_class = gimple_assign_rhs_class (stmt);
1835 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1837 if (rhs_class == GIMPLE_BINARY_RHS)
1838 rhs2 = gimple_assign_rhs2 (stmt);
1840 /* Handle unary rhs and binary rhs with integer constants as second
1841 operand. */
1843 if (rhs_class == GIMPLE_UNARY_RHS
1844 || (rhs_class == GIMPLE_BINARY_RHS
1845 && TREE_CODE (rhs2) == INTEGER_CST))
1847 if (code != BIT_AND_EXPR
1848 && code != LSHIFT_EXPR
1849 && code != RSHIFT_EXPR
1850 && code != LROTATE_EXPR
1851 && code != RROTATE_EXPR
1852 && code != NOP_EXPR
1853 && code != CONVERT_EXPR)
1854 return NULL;
1856 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1858 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1859 we have to initialize the symbolic number. */
1860 if (!source_stmt1)
1862 if (gimple_assign_load_p (stmt)
1863 || !init_symbolic_number (n, rhs1))
1864 return NULL;
1865 source_stmt1 = stmt;
1868 switch (code)
1870 case BIT_AND_EXPR:
1872 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1873 uint64_t val = int_cst_value (rhs2);
1874 uint64_t tmp = val;
1876 /* Only constants masking full bytes are allowed. */
1877 for (i = 0; i < size; i++, tmp >>= BITS_PER_UNIT)
1878 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1879 return NULL;
1881 n->n &= val;
1883 break;
1884 case LSHIFT_EXPR:
1885 case RSHIFT_EXPR:
1886 case LROTATE_EXPR:
1887 case RROTATE_EXPR:
1888 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1889 return NULL;
1890 break;
1891 CASE_CONVERT:
1893 int type_size, old_type_size;
1894 tree type;
1896 type = gimple_expr_type (stmt);
1897 type_size = TYPE_PRECISION (type);
1898 if (type_size % BITS_PER_UNIT != 0)
1899 return NULL;
1900 if (type_size > (int)sizeof (uint64_t) * 8)
1901 return NULL;
1903 /* Sign extension: result is dependent on the value. */
1904 old_type_size = TYPE_PRECISION (n->type);
1905 if (!TYPE_UNSIGNED (n->type)
1906 && type_size > old_type_size
1907 && n->n & ((uint64_t) 0xff << (old_type_size - 8)))
1908 return NULL;
1910 if (type_size / BITS_PER_UNIT < (int)(sizeof (int64_t)))
1912 /* If STMT casts to a smaller type mask out the bits not
1913 belonging to the target type. */
1914 n->n &= ((uint64_t)1 << type_size) - 1;
1916 n->type = type;
1917 if (!n->base_addr)
1918 n->range = type_size / BITS_PER_UNIT;
1920 break;
1921 default:
1922 return NULL;
1924 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1927 /* Handle binary rhs. */
1929 if (rhs_class == GIMPLE_BINARY_RHS)
1931 int i, size;
1932 struct symbolic_number n1, n2;
1933 uint64_t mask;
1934 gimple source_stmt2;
1936 if (code != BIT_IOR_EXPR)
1937 return NULL;
1939 if (TREE_CODE (rhs2) != SSA_NAME)
1940 return NULL;
1942 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1944 switch (code)
1946 case BIT_IOR_EXPR:
1947 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1949 if (!source_stmt1)
1950 return NULL;
1952 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1954 if (!source_stmt2)
1955 return NULL;
1957 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1958 return NULL;
1960 if (!n1.vuse != !n2.vuse ||
1961 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1962 return NULL;
1964 if (gimple_assign_rhs1 (source_stmt1)
1965 != gimple_assign_rhs1 (source_stmt2))
1967 int64_t inc, mask;
1968 unsigned i;
1969 HOST_WIDE_INT off_sub;
1970 struct symbolic_number *n_ptr;
1972 if (!n1.base_addr || !n2.base_addr
1973 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1974 return NULL;
1975 if (!n1.offset != !n2.offset ||
1976 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1977 return NULL;
1979 /* We swap n1 with n2 to have n1 < n2. */
1980 if (n2.bytepos < n1.bytepos)
1982 struct symbolic_number tmpn;
1984 tmpn = n2;
1985 n2 = n1;
1986 n1 = tmpn;
1987 source_stmt1 = source_stmt2;
1990 off_sub = n2.bytepos - n1.bytepos;
1992 /* Check that the range of memory covered < biggest int size. */
1993 if (off_sub + n2.range > (int) sizeof (int64_t))
1994 return NULL;
1995 n->range = n2.range + off_sub;
1997 /* Reinterpret byte marks in symbolic number holding the value of
1998 bigger weight according to target endianness. */
1999 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2000 mask = 0xFF;
2001 if (BYTES_BIG_ENDIAN)
2002 n_ptr = &n1;
2003 else
2004 n_ptr = &n2;
2005 for (i = 0; i < sizeof (int64_t); i++, inc <<= 8,
2006 mask <<= 8)
2008 if (n_ptr->n & mask)
2009 n_ptr->n += inc;
2012 else
2013 n->range = n1.range;
2015 if (!n1.alias_set
2016 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2017 n->alias_set = n1.alias_set;
2018 else
2019 n->alias_set = ptr_type_node;
2020 n->vuse = n1.vuse;
2021 n->base_addr = n1.base_addr;
2022 n->offset = n1.offset;
2023 n->bytepos = n1.bytepos;
2024 n->type = n1.type;
2025 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2026 for (i = 0, mask = 0xff; i < size; i++, mask <<= BITS_PER_UNIT)
2028 uint64_t masked1, masked2;
2030 masked1 = n1.n & mask;
2031 masked2 = n2.n & mask;
2032 if (masked1 && masked2 && masked1 != masked2)
2033 return NULL;
2035 n->n = n1.n | n2.n;
2037 if (!verify_symbolic_number_p (n, stmt))
2038 return NULL;
2040 break;
2041 default:
2042 return NULL;
2044 return source_stmt1;
2046 return NULL;
2049 /* Check if STMT completes a bswap implementation or a read in a given
2050 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2051 accordingly. It also sets N to represent the kind of operations
2052 performed: size of the resulting expression and whether it works on
2053 a memory source, and if so alias-set and vuse. At last, the
2054 function returns a stmt whose rhs's first tree is the source
2055 expression. */
2057 static gimple
2058 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2060 /* The number which the find_bswap_or_nop_1 result should match in order
2061 to have a full byte swap. The number is shifted to the right
2062 according to the size of the symbolic number before using it. */
2063 uint64_t cmpxchg = CMPXCHG;
2064 uint64_t cmpnop = CMPNOP;
2066 gimple source_stmt;
2067 int limit;
2069 /* The last parameter determines the depth search limit. It usually
2070 correlates directly to the number n of bytes to be touched. We
2071 increase that number by log2(n) + 1 here in order to also
2072 cover signed -> unsigned conversions of the src operand as can be seen
2073 in libgcc, and for initial shift/and operation of the src operand. */
2074 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2075 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2076 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2078 if (!source_stmt)
2079 return NULL;
2081 /* Find real size of result (highest non zero byte). */
2082 if (n->base_addr)
2084 int rsize;
2085 uint64_t tmpn;
2087 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_UNIT, rsize++);
2088 n->range = rsize;
2091 /* Zero out the extra bits of N and CMP*. */
2092 if (n->range < (int)sizeof (int64_t))
2094 uint64_t mask;
2096 mask = ((uint64_t)1 << (n->range * BITS_PER_UNIT)) - 1;
2097 cmpxchg >>= (sizeof (int64_t) - n->range) * BITS_PER_UNIT;
2098 cmpnop &= mask;
2101 /* A complete byte swap should make the symbolic number to start with
2102 the largest digit in the highest order byte. Unchanged symbolic
2103 number indicates a read with same endianness as target architecture. */
2104 if (n->n == cmpnop)
2105 *bswap = false;
2106 else if (n->n == cmpxchg)
2107 *bswap = true;
2108 else
2109 return NULL;
2111 /* Useless bit manipulation performed by code. */
2112 if (!n->base_addr && n->n == cmpnop)
2113 return NULL;
2115 n->range *= BITS_PER_UNIT;
2116 return source_stmt;
2119 namespace {
2121 const pass_data pass_data_optimize_bswap =
2123 GIMPLE_PASS, /* type */
2124 "bswap", /* name */
2125 OPTGROUP_NONE, /* optinfo_flags */
2126 true, /* has_execute */
2127 TV_NONE, /* tv_id */
2128 PROP_ssa, /* properties_required */
2129 0, /* properties_provided */
2130 0, /* properties_destroyed */
2131 0, /* todo_flags_start */
2132 0, /* todo_flags_finish */
2135 class pass_optimize_bswap : public gimple_opt_pass
2137 public:
2138 pass_optimize_bswap (gcc::context *ctxt)
2139 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2142 /* opt_pass methods: */
2143 virtual bool gate (function *)
2145 return flag_expensive_optimizations && optimize;
2148 virtual unsigned int execute (function *);
2150 }; // class pass_optimize_bswap
2152 /* Perform the bswap optimization: replace the statement CUR_STMT at
2153 GSI with a load of type, VUSE and set-alias as described by N if a
2154 memory source is involved (N->base_addr is non null), followed by
2155 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2156 gives where should the replacement be made. It also gives the
2157 source on which CUR_STMT is operating via its rhs's first tree nad
2158 N->range gives the size of the expression involved for maintaining
2159 some statistics. */
2161 static bool
2162 bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2163 tree fndecl, tree bswap_type, tree load_type,
2164 struct symbolic_number *n, bool bswap)
2166 tree src, tmp, tgt;
2167 gimple call;
2169 src = gimple_assign_rhs1 (src_stmt);
2170 tgt = gimple_assign_lhs (cur_stmt);
2172 /* Need to load the value from memory first. */
2173 if (n->base_addr)
2175 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2176 tree addr_expr, addr_tmp, val_expr, val_tmp;
2177 tree load_offset_ptr, aligned_load_type;
2178 gimple addr_stmt, load_stmt;
2179 unsigned align;
2181 align = get_object_alignment (src);
2182 if (bswap
2183 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2184 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2185 return false;
2187 gsi_move_before (&gsi, &gsi_ins);
2188 gsi = gsi_for_stmt (cur_stmt);
2190 /* Compute address to load from and cast according to the size
2191 of the load. */
2192 addr_expr = build_fold_addr_expr (unshare_expr (src));
2193 if (is_gimple_min_invariant (addr_expr))
2194 addr_tmp = addr_expr;
2195 else
2197 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2198 "load_src");
2199 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2200 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2203 /* Perform the load. */
2204 aligned_load_type = load_type;
2205 if (align < TYPE_ALIGN (load_type))
2206 aligned_load_type = build_aligned_type (load_type, align);
2207 load_offset_ptr = build_int_cst (n->alias_set, 0);
2208 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2209 load_offset_ptr);
2211 if (!bswap)
2213 if (n->range == 16)
2214 nop_stats.found_16bit++;
2215 else if (n->range == 32)
2216 nop_stats.found_32bit++;
2217 else
2219 gcc_assert (n->range == 64);
2220 nop_stats.found_64bit++;
2223 /* Convert the result of load if necessary. */
2224 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2226 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2227 "load_dst");
2228 load_stmt = gimple_build_assign (val_tmp, val_expr);
2229 gimple_set_vuse (load_stmt, n->vuse);
2230 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2231 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
2232 NULL_TREE, NULL_TREE);
2234 else
2236 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2237 NULL_TREE, NULL_TREE);
2238 gimple_set_vuse (cur_stmt, n->vuse);
2240 update_stmt (cur_stmt);
2242 if (dump_file)
2244 fprintf (dump_file,
2245 "%d bit load in target endianness found at: ",
2246 (int)n->range);
2247 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2249 return true;
2251 else
2253 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2254 load_stmt = gimple_build_assign (val_tmp, val_expr);
2255 gimple_set_vuse (load_stmt, n->vuse);
2256 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2258 src = val_tmp;
2261 if (n->range == 16)
2262 bswap_stats.found_16bit++;
2263 else if (n->range == 32)
2264 bswap_stats.found_32bit++;
2265 else
2267 gcc_assert (n->range == 64);
2268 bswap_stats.found_64bit++;
2271 tmp = src;
2273 /* Convert the src expression if necessary. */
2274 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2276 gimple convert_stmt;
2277 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2278 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
2279 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2282 call = gimple_build_call (fndecl, 1, tmp);
2284 tmp = tgt;
2286 /* Convert the result if necessary. */
2287 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2289 gimple convert_stmt;
2290 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2291 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2292 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2295 gimple_call_set_lhs (call, tmp);
2297 if (dump_file)
2299 fprintf (dump_file, "%d bit bswap implementation found at: ",
2300 (int)n->range);
2301 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2304 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2305 gsi_remove (&gsi, true);
2306 return true;
2309 /* Find manual byte swap implementations as well as load in a given
2310 endianness. Byte swaps are turned into a bswap builtin invokation
2311 while endian loads are converted to bswap builtin invokation or
2312 simple load according to the target endianness. */
2314 unsigned int
2315 pass_optimize_bswap::execute (function *fun)
2317 basic_block bb;
2318 bool bswap16_p, bswap32_p, bswap64_p;
2319 bool changed = false;
2320 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2322 if (BITS_PER_UNIT != 8)
2323 return 0;
2325 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2326 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2327 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2328 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2329 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2330 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2331 || (bswap32_p && word_mode == SImode)));
2333 /* Determine the argument type of the builtins. The code later on
2334 assumes that the return and argument type are the same. */
2335 if (bswap16_p)
2337 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2338 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2341 if (bswap32_p)
2343 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2344 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2347 if (bswap64_p)
2349 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2350 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2353 memset (&nop_stats, 0, sizeof (nop_stats));
2354 memset (&bswap_stats, 0, sizeof (bswap_stats));
2356 FOR_EACH_BB_FN (bb, fun)
2358 gimple_stmt_iterator gsi;
2360 /* We do a reverse scan for bswap patterns to make sure we get the
2361 widest match. As bswap pattern matching doesn't handle
2362 previously inserted smaller bswap replacements as sub-
2363 patterns, the wider variant wouldn't be detected. */
2364 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2366 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2367 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2368 struct symbolic_number n;
2369 bool bswap;
2371 if (!is_gimple_assign (cur_stmt)
2372 || gimple_assign_rhs_code (cur_stmt) != BIT_IOR_EXPR)
2373 continue;
2375 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2377 if (!src_stmt)
2378 continue;
2380 switch (n.range)
2382 case 16:
2383 load_type = uint16_type_node;
2384 if (bswap16_p)
2386 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2387 bswap_type = bswap16_type;
2389 break;
2390 case 32:
2391 load_type = uint32_type_node;
2392 if (bswap32_p)
2394 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2395 bswap_type = bswap32_type;
2397 break;
2398 case 64:
2399 load_type = uint64_type_node;
2400 if (bswap64_p)
2402 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2403 bswap_type = bswap64_type;
2405 break;
2406 default:
2407 continue;
2410 if (bswap && !fndecl)
2411 continue;
2413 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2414 load_type, &n, bswap))
2415 changed = true;
2419 statistics_counter_event (fun, "16-bit nop implementations found",
2420 nop_stats.found_16bit);
2421 statistics_counter_event (fun, "32-bit nop implementations found",
2422 nop_stats.found_32bit);
2423 statistics_counter_event (fun, "64-bit nop implementations found",
2424 nop_stats.found_64bit);
2425 statistics_counter_event (fun, "16-bit bswap implementations found",
2426 bswap_stats.found_16bit);
2427 statistics_counter_event (fun, "32-bit bswap implementations found",
2428 bswap_stats.found_32bit);
2429 statistics_counter_event (fun, "64-bit bswap implementations found",
2430 bswap_stats.found_64bit);
2432 return (changed ? TODO_update_ssa : 0);
2435 } // anon namespace
2437 gimple_opt_pass *
2438 make_pass_optimize_bswap (gcc::context *ctxt)
2440 return new pass_optimize_bswap (ctxt);
2443 /* Return true if stmt is a type conversion operation that can be stripped
2444 when used in a widening multiply operation. */
2445 static bool
2446 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2448 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2450 if (TREE_CODE (result_type) == INTEGER_TYPE)
2452 tree op_type;
2453 tree inner_op_type;
2455 if (!CONVERT_EXPR_CODE_P (rhs_code))
2456 return false;
2458 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2460 /* If the type of OP has the same precision as the result, then
2461 we can strip this conversion. The multiply operation will be
2462 selected to create the correct extension as a by-product. */
2463 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2464 return true;
2466 /* We can also strip a conversion if it preserves the signed-ness of
2467 the operation and doesn't narrow the range. */
2468 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2470 /* If the inner-most type is unsigned, then we can strip any
2471 intermediate widening operation. If it's signed, then the
2472 intermediate widening operation must also be signed. */
2473 if ((TYPE_UNSIGNED (inner_op_type)
2474 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2475 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2476 return true;
2478 return false;
2481 return rhs_code == FIXED_CONVERT_EXPR;
2484 /* Return true if RHS is a suitable operand for a widening multiplication,
2485 assuming a target type of TYPE.
2486 There are two cases:
2488 - RHS makes some value at least twice as wide. Store that value
2489 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2491 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2492 but leave *TYPE_OUT untouched. */
2494 static bool
2495 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2496 tree *new_rhs_out)
2498 gimple stmt;
2499 tree type1, rhs1;
2501 if (TREE_CODE (rhs) == SSA_NAME)
2503 stmt = SSA_NAME_DEF_STMT (rhs);
2504 if (is_gimple_assign (stmt))
2506 if (! widening_mult_conversion_strippable_p (type, stmt))
2507 rhs1 = rhs;
2508 else
2510 rhs1 = gimple_assign_rhs1 (stmt);
2512 if (TREE_CODE (rhs1) == INTEGER_CST)
2514 *new_rhs_out = rhs1;
2515 *type_out = NULL;
2516 return true;
2520 else
2521 rhs1 = rhs;
2523 type1 = TREE_TYPE (rhs1);
2525 if (TREE_CODE (type1) != TREE_CODE (type)
2526 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2527 return false;
2529 *new_rhs_out = rhs1;
2530 *type_out = type1;
2531 return true;
2534 if (TREE_CODE (rhs) == INTEGER_CST)
2536 *new_rhs_out = rhs;
2537 *type_out = NULL;
2538 return true;
2541 return false;
2544 /* Return true if STMT performs a widening multiplication, assuming the
2545 output type is TYPE. If so, store the unwidened types of the operands
2546 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2547 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2548 and *TYPE2_OUT would give the operands of the multiplication. */
2550 static bool
2551 is_widening_mult_p (gimple stmt,
2552 tree *type1_out, tree *rhs1_out,
2553 tree *type2_out, tree *rhs2_out)
2555 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2557 if (TREE_CODE (type) != INTEGER_TYPE
2558 && TREE_CODE (type) != FIXED_POINT_TYPE)
2559 return false;
2561 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2562 rhs1_out))
2563 return false;
2565 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2566 rhs2_out))
2567 return false;
2569 if (*type1_out == NULL)
2571 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2572 return false;
2573 *type1_out = *type2_out;
2576 if (*type2_out == NULL)
2578 if (!int_fits_type_p (*rhs2_out, *type1_out))
2579 return false;
2580 *type2_out = *type1_out;
2583 /* Ensure that the larger of the two operands comes first. */
2584 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2586 tree tmp;
2587 tmp = *type1_out;
2588 *type1_out = *type2_out;
2589 *type2_out = tmp;
2590 tmp = *rhs1_out;
2591 *rhs1_out = *rhs2_out;
2592 *rhs2_out = tmp;
2595 return true;
2598 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2599 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2600 value is true iff we converted the statement. */
2602 static bool
2603 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2605 tree lhs, rhs1, rhs2, type, type1, type2;
2606 enum insn_code handler;
2607 enum machine_mode to_mode, from_mode, actual_mode;
2608 optab op;
2609 int actual_precision;
2610 location_t loc = gimple_location (stmt);
2611 bool from_unsigned1, from_unsigned2;
2613 lhs = gimple_assign_lhs (stmt);
2614 type = TREE_TYPE (lhs);
2615 if (TREE_CODE (type) != INTEGER_TYPE)
2616 return false;
2618 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2619 return false;
2621 to_mode = TYPE_MODE (type);
2622 from_mode = TYPE_MODE (type1);
2623 from_unsigned1 = TYPE_UNSIGNED (type1);
2624 from_unsigned2 = TYPE_UNSIGNED (type2);
2626 if (from_unsigned1 && from_unsigned2)
2627 op = umul_widen_optab;
2628 else if (!from_unsigned1 && !from_unsigned2)
2629 op = smul_widen_optab;
2630 else
2631 op = usmul_widen_optab;
2633 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2634 0, &actual_mode);
2636 if (handler == CODE_FOR_nothing)
2638 if (op != smul_widen_optab)
2640 /* We can use a signed multiply with unsigned types as long as
2641 there is a wider mode to use, or it is the smaller of the two
2642 types that is unsigned. Note that type1 >= type2, always. */
2643 if ((TYPE_UNSIGNED (type1)
2644 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2645 || (TYPE_UNSIGNED (type2)
2646 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2648 from_mode = GET_MODE_WIDER_MODE (from_mode);
2649 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2650 return false;
2653 op = smul_widen_optab;
2654 handler = find_widening_optab_handler_and_mode (op, to_mode,
2655 from_mode, 0,
2656 &actual_mode);
2658 if (handler == CODE_FOR_nothing)
2659 return false;
2661 from_unsigned1 = from_unsigned2 = false;
2663 else
2664 return false;
2667 /* Ensure that the inputs to the handler are in the correct precison
2668 for the opcode. This will be the full mode size. */
2669 actual_precision = GET_MODE_PRECISION (actual_mode);
2670 if (2 * actual_precision > TYPE_PRECISION (type))
2671 return false;
2672 if (actual_precision != TYPE_PRECISION (type1)
2673 || from_unsigned1 != TYPE_UNSIGNED (type1))
2674 rhs1 = build_and_insert_cast (gsi, loc,
2675 build_nonstandard_integer_type
2676 (actual_precision, from_unsigned1), rhs1);
2677 if (actual_precision != TYPE_PRECISION (type2)
2678 || from_unsigned2 != TYPE_UNSIGNED (type2))
2679 rhs2 = build_and_insert_cast (gsi, loc,
2680 build_nonstandard_integer_type
2681 (actual_precision, from_unsigned2), rhs2);
2683 /* Handle constants. */
2684 if (TREE_CODE (rhs1) == INTEGER_CST)
2685 rhs1 = fold_convert (type1, rhs1);
2686 if (TREE_CODE (rhs2) == INTEGER_CST)
2687 rhs2 = fold_convert (type2, rhs2);
2689 gimple_assign_set_rhs1 (stmt, rhs1);
2690 gimple_assign_set_rhs2 (stmt, rhs2);
2691 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2692 update_stmt (stmt);
2693 widen_mul_stats.widen_mults_inserted++;
2694 return true;
2697 /* Process a single gimple statement STMT, which is found at the
2698 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2699 rhs (given by CODE), and try to convert it into a
2700 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2701 is true iff we converted the statement. */
2703 static bool
2704 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2705 enum tree_code code)
2707 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2708 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2709 tree type, type1, type2, optype;
2710 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2711 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2712 optab this_optab;
2713 enum tree_code wmult_code;
2714 enum insn_code handler;
2715 enum machine_mode to_mode, from_mode, actual_mode;
2716 location_t loc = gimple_location (stmt);
2717 int actual_precision;
2718 bool from_unsigned1, from_unsigned2;
2720 lhs = gimple_assign_lhs (stmt);
2721 type = TREE_TYPE (lhs);
2722 if (TREE_CODE (type) != INTEGER_TYPE
2723 && TREE_CODE (type) != FIXED_POINT_TYPE)
2724 return false;
2726 if (code == MINUS_EXPR)
2727 wmult_code = WIDEN_MULT_MINUS_EXPR;
2728 else
2729 wmult_code = WIDEN_MULT_PLUS_EXPR;
2731 rhs1 = gimple_assign_rhs1 (stmt);
2732 rhs2 = gimple_assign_rhs2 (stmt);
2734 if (TREE_CODE (rhs1) == SSA_NAME)
2736 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2737 if (is_gimple_assign (rhs1_stmt))
2738 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2741 if (TREE_CODE (rhs2) == SSA_NAME)
2743 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2744 if (is_gimple_assign (rhs2_stmt))
2745 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2748 /* Allow for one conversion statement between the multiply
2749 and addition/subtraction statement. If there are more than
2750 one conversions then we assume they would invalidate this
2751 transformation. If that's not the case then they should have
2752 been folded before now. */
2753 if (CONVERT_EXPR_CODE_P (rhs1_code))
2755 conv1_stmt = rhs1_stmt;
2756 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2757 if (TREE_CODE (rhs1) == SSA_NAME)
2759 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2760 if (is_gimple_assign (rhs1_stmt))
2761 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2763 else
2764 return false;
2766 if (CONVERT_EXPR_CODE_P (rhs2_code))
2768 conv2_stmt = rhs2_stmt;
2769 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2770 if (TREE_CODE (rhs2) == SSA_NAME)
2772 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2773 if (is_gimple_assign (rhs2_stmt))
2774 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2776 else
2777 return false;
2780 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2781 is_widening_mult_p, but we still need the rhs returns.
2783 It might also appear that it would be sufficient to use the existing
2784 operands of the widening multiply, but that would limit the choice of
2785 multiply-and-accumulate instructions.
2787 If the widened-multiplication result has more than one uses, it is
2788 probably wiser not to do the conversion. */
2789 if (code == PLUS_EXPR
2790 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2792 if (!has_single_use (rhs1)
2793 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2794 &type2, &mult_rhs2))
2795 return false;
2796 add_rhs = rhs2;
2797 conv_stmt = conv1_stmt;
2799 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2801 if (!has_single_use (rhs2)
2802 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2803 &type2, &mult_rhs2))
2804 return false;
2805 add_rhs = rhs1;
2806 conv_stmt = conv2_stmt;
2808 else
2809 return false;
2811 to_mode = TYPE_MODE (type);
2812 from_mode = TYPE_MODE (type1);
2813 from_unsigned1 = TYPE_UNSIGNED (type1);
2814 from_unsigned2 = TYPE_UNSIGNED (type2);
2815 optype = type1;
2817 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2818 if (from_unsigned1 != from_unsigned2)
2820 if (!INTEGRAL_TYPE_P (type))
2821 return false;
2822 /* We can use a signed multiply with unsigned types as long as
2823 there is a wider mode to use, or it is the smaller of the two
2824 types that is unsigned. Note that type1 >= type2, always. */
2825 if ((from_unsigned1
2826 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2827 || (from_unsigned2
2828 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2830 from_mode = GET_MODE_WIDER_MODE (from_mode);
2831 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2832 return false;
2835 from_unsigned1 = from_unsigned2 = false;
2836 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2837 false);
2840 /* If there was a conversion between the multiply and addition
2841 then we need to make sure it fits a multiply-and-accumulate.
2842 The should be a single mode change which does not change the
2843 value. */
2844 if (conv_stmt)
2846 /* We use the original, unmodified data types for this. */
2847 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2848 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2849 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2850 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2852 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2854 /* Conversion is a truncate. */
2855 if (TYPE_PRECISION (to_type) < data_size)
2856 return false;
2858 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2860 /* Conversion is an extend. Check it's the right sort. */
2861 if (TYPE_UNSIGNED (from_type) != is_unsigned
2862 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2863 return false;
2865 /* else convert is a no-op for our purposes. */
2868 /* Verify that the machine can perform a widening multiply
2869 accumulate in this mode/signedness combination, otherwise
2870 this transformation is likely to pessimize code. */
2871 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2872 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2873 from_mode, 0, &actual_mode);
2875 if (handler == CODE_FOR_nothing)
2876 return false;
2878 /* Ensure that the inputs to the handler are in the correct precison
2879 for the opcode. This will be the full mode size. */
2880 actual_precision = GET_MODE_PRECISION (actual_mode);
2881 if (actual_precision != TYPE_PRECISION (type1)
2882 || from_unsigned1 != TYPE_UNSIGNED (type1))
2883 mult_rhs1 = build_and_insert_cast (gsi, loc,
2884 build_nonstandard_integer_type
2885 (actual_precision, from_unsigned1),
2886 mult_rhs1);
2887 if (actual_precision != TYPE_PRECISION (type2)
2888 || from_unsigned2 != TYPE_UNSIGNED (type2))
2889 mult_rhs2 = build_and_insert_cast (gsi, loc,
2890 build_nonstandard_integer_type
2891 (actual_precision, from_unsigned2),
2892 mult_rhs2);
2894 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2895 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2897 /* Handle constants. */
2898 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2899 mult_rhs1 = fold_convert (type1, mult_rhs1);
2900 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2901 mult_rhs2 = fold_convert (type2, mult_rhs2);
2903 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2904 add_rhs);
2905 update_stmt (gsi_stmt (*gsi));
2906 widen_mul_stats.maccs_inserted++;
2907 return true;
2910 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2911 with uses in additions and subtractions to form fused multiply-add
2912 operations. Returns true if successful and MUL_STMT should be removed. */
2914 static bool
2915 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2917 tree mul_result = gimple_get_lhs (mul_stmt);
2918 tree type = TREE_TYPE (mul_result);
2919 gimple use_stmt, neguse_stmt, fma_stmt;
2920 use_operand_p use_p;
2921 imm_use_iterator imm_iter;
2923 if (FLOAT_TYPE_P (type)
2924 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2925 return false;
2927 /* We don't want to do bitfield reduction ops. */
2928 if (INTEGRAL_TYPE_P (type)
2929 && (TYPE_PRECISION (type)
2930 != GET_MODE_PRECISION (TYPE_MODE (type))))
2931 return false;
2933 /* If the target doesn't support it, don't generate it. We assume that
2934 if fma isn't available then fms, fnma or fnms are not either. */
2935 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2936 return false;
2938 /* If the multiplication has zero uses, it is kept around probably because
2939 of -fnon-call-exceptions. Don't optimize it away in that case,
2940 it is DCE job. */
2941 if (has_zero_uses (mul_result))
2942 return false;
2944 /* Make sure that the multiplication statement becomes dead after
2945 the transformation, thus that all uses are transformed to FMAs.
2946 This means we assume that an FMA operation has the same cost
2947 as an addition. */
2948 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2950 enum tree_code use_code;
2951 tree result = mul_result;
2952 bool negate_p = false;
2954 use_stmt = USE_STMT (use_p);
2956 if (is_gimple_debug (use_stmt))
2957 continue;
2959 /* For now restrict this operations to single basic blocks. In theory
2960 we would want to support sinking the multiplication in
2961 m = a*b;
2962 if ()
2963 ma = m + c;
2964 else
2965 d = m;
2966 to form a fma in the then block and sink the multiplication to the
2967 else block. */
2968 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2969 return false;
2971 if (!is_gimple_assign (use_stmt))
2972 return false;
2974 use_code = gimple_assign_rhs_code (use_stmt);
2976 /* A negate on the multiplication leads to FNMA. */
2977 if (use_code == NEGATE_EXPR)
2979 ssa_op_iter iter;
2980 use_operand_p usep;
2982 result = gimple_assign_lhs (use_stmt);
2984 /* Make sure the negate statement becomes dead with this
2985 single transformation. */
2986 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2987 &use_p, &neguse_stmt))
2988 return false;
2990 /* Make sure the multiplication isn't also used on that stmt. */
2991 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2992 if (USE_FROM_PTR (usep) == mul_result)
2993 return false;
2995 /* Re-validate. */
2996 use_stmt = neguse_stmt;
2997 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2998 return false;
2999 if (!is_gimple_assign (use_stmt))
3000 return false;
3002 use_code = gimple_assign_rhs_code (use_stmt);
3003 negate_p = true;
3006 switch (use_code)
3008 case MINUS_EXPR:
3009 if (gimple_assign_rhs2 (use_stmt) == result)
3010 negate_p = !negate_p;
3011 break;
3012 case PLUS_EXPR:
3013 break;
3014 default:
3015 /* FMA can only be formed from PLUS and MINUS. */
3016 return false;
3019 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3020 by a MULT_EXPR that we'll visit later, we might be able to
3021 get a more profitable match with fnma.
3022 OTOH, if we don't, a negate / fma pair has likely lower latency
3023 that a mult / subtract pair. */
3024 if (use_code == MINUS_EXPR && !negate_p
3025 && gimple_assign_rhs1 (use_stmt) == result
3026 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3027 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3029 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3031 if (TREE_CODE (rhs2) == SSA_NAME)
3033 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3034 if (has_single_use (rhs2)
3035 && is_gimple_assign (stmt2)
3036 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3037 return false;
3041 /* We can't handle a * b + a * b. */
3042 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3043 return false;
3045 /* While it is possible to validate whether or not the exact form
3046 that we've recognized is available in the backend, the assumption
3047 is that the transformation is never a loss. For instance, suppose
3048 the target only has the plain FMA pattern available. Consider
3049 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3050 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3051 still have 3 operations, but in the FMA form the two NEGs are
3052 independent and could be run in parallel. */
3055 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3057 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3058 enum tree_code use_code;
3059 tree addop, mulop1 = op1, result = mul_result;
3060 bool negate_p = false;
3062 if (is_gimple_debug (use_stmt))
3063 continue;
3065 use_code = gimple_assign_rhs_code (use_stmt);
3066 if (use_code == NEGATE_EXPR)
3068 result = gimple_assign_lhs (use_stmt);
3069 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3070 gsi_remove (&gsi, true);
3071 release_defs (use_stmt);
3073 use_stmt = neguse_stmt;
3074 gsi = gsi_for_stmt (use_stmt);
3075 use_code = gimple_assign_rhs_code (use_stmt);
3076 negate_p = true;
3079 if (gimple_assign_rhs1 (use_stmt) == result)
3081 addop = gimple_assign_rhs2 (use_stmt);
3082 /* a * b - c -> a * b + (-c) */
3083 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3084 addop = force_gimple_operand_gsi (&gsi,
3085 build1 (NEGATE_EXPR,
3086 type, addop),
3087 true, NULL_TREE, true,
3088 GSI_SAME_STMT);
3090 else
3092 addop = gimple_assign_rhs1 (use_stmt);
3093 /* a - b * c -> (-b) * c + a */
3094 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3095 negate_p = !negate_p;
3098 if (negate_p)
3099 mulop1 = force_gimple_operand_gsi (&gsi,
3100 build1 (NEGATE_EXPR,
3101 type, mulop1),
3102 true, NULL_TREE, true,
3103 GSI_SAME_STMT);
3105 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3106 gimple_assign_lhs (use_stmt),
3107 mulop1, op2,
3108 addop);
3109 gsi_replace (&gsi, fma_stmt, true);
3110 widen_mul_stats.fmas_inserted++;
3113 return true;
3116 /* Find integer multiplications where the operands are extended from
3117 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3118 where appropriate. */
3120 namespace {
3122 const pass_data pass_data_optimize_widening_mul =
3124 GIMPLE_PASS, /* type */
3125 "widening_mul", /* name */
3126 OPTGROUP_NONE, /* optinfo_flags */
3127 true, /* has_execute */
3128 TV_NONE, /* tv_id */
3129 PROP_ssa, /* properties_required */
3130 0, /* properties_provided */
3131 0, /* properties_destroyed */
3132 0, /* todo_flags_start */
3133 TODO_update_ssa, /* todo_flags_finish */
3136 class pass_optimize_widening_mul : public gimple_opt_pass
3138 public:
3139 pass_optimize_widening_mul (gcc::context *ctxt)
3140 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3143 /* opt_pass methods: */
3144 virtual bool gate (function *)
3146 return flag_expensive_optimizations && optimize;
3149 virtual unsigned int execute (function *);
3151 }; // class pass_optimize_widening_mul
3153 unsigned int
3154 pass_optimize_widening_mul::execute (function *fun)
3156 basic_block bb;
3157 bool cfg_changed = false;
3159 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3161 FOR_EACH_BB_FN (bb, fun)
3163 gimple_stmt_iterator gsi;
3165 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3167 gimple stmt = gsi_stmt (gsi);
3168 enum tree_code code;
3170 if (is_gimple_assign (stmt))
3172 code = gimple_assign_rhs_code (stmt);
3173 switch (code)
3175 case MULT_EXPR:
3176 if (!convert_mult_to_widen (stmt, &gsi)
3177 && convert_mult_to_fma (stmt,
3178 gimple_assign_rhs1 (stmt),
3179 gimple_assign_rhs2 (stmt)))
3181 gsi_remove (&gsi, true);
3182 release_defs (stmt);
3183 continue;
3185 break;
3187 case PLUS_EXPR:
3188 case MINUS_EXPR:
3189 convert_plusminus_to_widen (&gsi, stmt, code);
3190 break;
3192 default:;
3195 else if (is_gimple_call (stmt)
3196 && gimple_call_lhs (stmt))
3198 tree fndecl = gimple_call_fndecl (stmt);
3199 if (fndecl
3200 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3202 switch (DECL_FUNCTION_CODE (fndecl))
3204 case BUILT_IN_POWF:
3205 case BUILT_IN_POW:
3206 case BUILT_IN_POWL:
3207 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3208 && REAL_VALUES_EQUAL
3209 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3210 dconst2)
3211 && convert_mult_to_fma (stmt,
3212 gimple_call_arg (stmt, 0),
3213 gimple_call_arg (stmt, 0)))
3215 unlink_stmt_vdef (stmt);
3216 if (gsi_remove (&gsi, true)
3217 && gimple_purge_dead_eh_edges (bb))
3218 cfg_changed = true;
3219 release_defs (stmt);
3220 continue;
3222 break;
3224 default:;
3228 gsi_next (&gsi);
3232 statistics_counter_event (fun, "widening multiplications inserted",
3233 widen_mul_stats.widen_mults_inserted);
3234 statistics_counter_event (fun, "widening maccs inserted",
3235 widen_mul_stats.maccs_inserted);
3236 statistics_counter_event (fun, "fused multiply-adds inserted",
3237 widen_mul_stats.fmas_inserted);
3239 return cfg_changed ? TODO_cleanup_cfg : 0;
3242 } // anon namespace
3244 gimple_opt_pass *
3245 make_pass_optimize_widening_mul (gcc::context *ctxt)
3247 return new pass_optimize_widening_mul (ctxt);