Mark ChangeLog
[official-gcc.git] / libjava / boehm.cc
blobf9910faf8cd455d4ecfcaa8edbebaa45d9a89452
1 // boehm.cc - interface between libjava and Boehm GC.
3 /* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation
6 This file is part of libgcj.
8 This software is copyrighted work licensed under the terms of the
9 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
10 details. */
12 #include <config.h>
14 #include <stdio.h>
15 #include <limits.h>
17 #include <jvm.h>
18 #include <gcj/cni.h>
20 #include <java/lang/Class.h>
21 #include <java/lang/reflect/Modifier.h>
22 #include <java-interp.h>
24 // More nastiness: the GC wants to define TRUE and FALSE. We don't
25 // need the Java definitions (themselves a hack), so we undefine them.
26 #undef TRUE
27 #undef FALSE
29 extern "C"
31 #include <gc_config.h>
33 // Set GC_DEBUG before including gc.h!
34 #ifdef LIBGCJ_GC_DEBUG
35 # define GC_DEBUG
36 #endif
38 #include <gc_mark.h>
39 #include <gc_gcj.h>
40 #include <javaxfc.h> // GC_finalize_all declaration.
42 #ifdef THREAD_LOCAL_ALLOC
43 # define GC_REDIRECT_TO_LOCAL
44 # include <gc_local_alloc.h>
45 #endif
47 // From boehm's misc.c
48 void GC_enable();
49 void GC_disable();
52 #define MAYBE_MARK(Obj, Top, Limit, Source) \
53 Top=GC_MARK_AND_PUSH((GC_PTR) Obj, Top, Limit, (GC_PTR *) Source)
55 // `kind' index used when allocating Java arrays.
56 static int array_kind_x;
58 // Freelist used for Java arrays.
59 static void **array_free_list;
63 // This is called by the GC during the mark phase. It marks a Java
64 // object. We use `void *' arguments and return, and not what the
65 // Boehm GC wants, to avoid pollution in our headers.
66 void *
67 _Jv_MarkObj (void *addr, void *msp, void *msl, void *env)
69 struct GC_ms_entry *mark_stack_ptr = (struct GC_ms_entry *)msp;
70 struct GC_ms_entry *mark_stack_limit = (struct GC_ms_entry *)msl;
72 if (env == (void *)1) /* Object allocated with debug allocator. */
73 addr = (GC_PTR)GC_USR_PTR_FROM_BASE(addr);
74 jobject obj = (jobject) addr;
76 _Jv_VTable *dt = *(_Jv_VTable **) addr;
77 // The object might not yet have its vtable set, or it might
78 // really be an object on the freelist. In either case, the vtable slot
79 // will either be 0, or it will point to a cleared object.
80 // This assumes Java objects have size at least 3 words,
81 // including the header. But this should remain true, since this
82 // should only be used with debugging allocation or with large objects.
83 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
84 return mark_stack_ptr;
85 jclass klass = dt->clas;
86 GC_PTR p;
88 # ifndef JV_HASH_SYNCHRONIZATION
89 // Every object has a sync_info pointer.
90 p = (GC_PTR) obj->sync_info;
91 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj);
92 # endif
93 // Mark the object's class.
94 p = (GC_PTR) klass;
95 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj);
97 if (__builtin_expect (klass == &java::lang::Class::class$, false))
99 // Currently we allocate some of the memory referenced from class objects
100 // as pointerfree memory, and then mark it more intelligently here.
101 // We ensure that the ClassClass mark descriptor forces invocation of
102 // this procedure.
103 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
104 // collector, we need to make sure that the class object is written whenever
105 // any of the subobjects are altered and may need rescanning. This may be tricky
106 // during construction, and this may not be the right way to do this with
107 // incremental collection.
108 // If we overflow the mark stack, we will rescan the class object, so we should
109 // be OK. The same applies if we redo the mark phase because win32 unmapped part
110 // of our root set. - HB
111 jclass c = (jclass) addr;
113 p = (GC_PTR) c->name;
114 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
115 p = (GC_PTR) c->superclass;
116 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
117 for (int i = 0; i < c->constants.size; ++i)
119 /* FIXME: We could make this more precise by using the tags -KKT */
120 p = (GC_PTR) c->constants.data[i].p;
121 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
124 #ifdef INTERPRETER
125 if (_Jv_IsInterpretedClass (c))
127 p = (GC_PTR) c->constants.tags;
128 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
129 p = (GC_PTR) c->constants.data;
130 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
132 #endif
134 // The vtable might be allocated even for compiled code.
135 p = (GC_PTR) c->vtable;
136 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
138 // If the class is an array, then the methods field holds a
139 // pointer to the element class. If the class is primitive,
140 // then the methods field holds a pointer to the array class.
141 p = (GC_PTR) c->methods;
142 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
144 // The vtable might have been set, but the rest of the class
145 // could still be uninitialized. If this is the case, then
146 // c.isArray will SEGV. We check for this, and if it is the
147 // case we just return.
148 if (__builtin_expect (c->name == NULL, false))
149 return mark_stack_ptr;
151 if (! c->isArray() && ! c->isPrimitive())
153 // Scan each method in the cases where `methods' really
154 // points to a methods structure.
155 for (int i = 0; i < c->method_count; ++i)
157 p = (GC_PTR) c->methods[i].name;
158 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
159 p = (GC_PTR) c->methods[i].signature;
160 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
162 // Note that we don't have to mark each individual throw
163 // separately, as these are stored in the constant pool.
164 p = (GC_PTR) c->methods[i].throws;
165 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
169 // Mark all the fields.
170 p = (GC_PTR) c->fields;
171 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
172 for (int i = 0; i < c->field_count; ++i)
174 _Jv_Field* field = &c->fields[i];
176 p = (GC_PTR) field->name;
177 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
178 p = (GC_PTR) field->type;
179 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
181 // For the interpreter, we also need to mark the memory
182 // containing static members
183 if ((field->flags & java::lang::reflect::Modifier::STATIC))
185 p = (GC_PTR) field->u.addr;
186 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
188 // also, if the static member is a reference,
189 // mark also the value pointed to. We check for isResolved
190 // since marking can happen before memory is allocated for
191 // static members.
192 // Note that field->u.addr may be null if the class c is
193 // JV_STATE_LOADED but not JV_STATE_PREPARED (initialized).
194 if (JvFieldIsRef (field) && p && field->isResolved())
196 jobject val = *(jobject*) p;
197 p = (GC_PTR) val;
198 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
203 p = (GC_PTR) c->vtable;
204 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
205 p = (GC_PTR) c->interfaces;
206 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
207 for (int i = 0; i < c->interface_count; ++i)
209 p = (GC_PTR) c->interfaces[i];
210 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
212 p = (GC_PTR) c->loader;
213 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
215 // The dispatch tables can be allocated at runtime.
216 p = (GC_PTR) c->ancestors;
217 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
218 if (c->idt)
220 p = (GC_PTR) c->idt;
221 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
223 if (c->isInterface())
225 p = (GC_PTR) c->idt->iface.ioffsets;
226 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c->idt);
228 else if (! c->isPrimitive())
230 // This field is only valid for ordinary classes.
231 p = (GC_PTR) c->idt->cls.itable;
232 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c->idt);
236 p = (GC_PTR) c->arrayclass;
237 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
238 p = (GC_PTR) c->protectionDomain;
239 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
240 p = (GC_PTR) c->hack_signers;
241 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
242 p = (GC_PTR) c->aux_info;
243 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
245 #ifdef INTERPRETER
246 if (_Jv_IsInterpretedClass (c) && c->aux_info)
248 _Jv_InterpClass* ic = (_Jv_InterpClass*) c->aux_info;
250 p = (GC_PTR) ic->interpreted_methods;
251 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
253 for (int i = 0; i < c->method_count; i++)
255 // The interpreter installs a heap-allocated trampoline
256 // here, so we'll mark it.
257 p = (GC_PTR) c->methods[i].ncode;
258 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
260 using namespace java::lang::reflect;
262 // Mark the direct-threaded code. Note a subtlety here:
263 // when we add Miranda methods to a class, we don't
264 // resize its interpreted_methods array. If we try to
265 // reference one of these methods, we may crash.
266 // However, we know these are all abstract, and we know
267 // that abstract methods have nothing useful in this
268 // array. So, we skip all abstract methods to avoid the
269 // problem. FIXME: this is pretty obscure, it may be
270 // better to add a methods to the execution engine and
271 // resize the array.
272 if ((c->methods[i].accflags & Modifier::ABSTRACT) != 0)
273 continue;
275 p = (GC_PTR) ic->interpreted_methods[i];
276 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
278 if ((c->methods[i].accflags & Modifier::NATIVE) != 0)
280 _Jv_JNIMethod *jm
281 = (_Jv_JNIMethod *) ic->interpreted_methods[i];
282 if (jm)
284 p = (GC_PTR) jm->jni_arg_types;
285 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, p);
288 else
290 _Jv_InterpMethod *im
291 = (_Jv_InterpMethod *) ic->interpreted_methods[i];
292 if (im)
294 p = (GC_PTR) im->prepared;
295 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
300 p = (GC_PTR) ic->field_initializers;
301 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
304 #endif
307 else
309 // NOTE: each class only holds information about the class
310 // itself. So we must do the marking for the entire inheritance
311 // tree in order to mark all fields. FIXME: what about
312 // interfaces? We skip Object here, because Object only has a
313 // sync_info, and we handled that earlier.
314 // Note: occasionally `klass' can be null. For instance, this
315 // can happen if a GC occurs between the point where an object
316 // is allocated and where the vtbl slot is set.
317 while (klass && klass != &java::lang::Object::class$)
319 jfieldID field = JvGetFirstInstanceField (klass);
320 jint max = JvNumInstanceFields (klass);
322 for (int i = 0; i < max; ++i)
324 if (JvFieldIsRef (field))
326 jobject val = JvGetObjectField (obj, field);
327 p = (GC_PTR) val;
328 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj);
330 field = field->getNextField ();
332 klass = klass->getSuperclass();
336 return mark_stack_ptr;
339 // This is called by the GC during the mark phase. It marks a Java
340 // array (of objects). We use `void *' arguments and return, and not
341 // what the Boehm GC wants, to avoid pollution in our headers.
342 void *
343 _Jv_MarkArray (void *addr, void *msp, void *msl, void *env)
345 struct GC_ms_entry *mark_stack_ptr = (struct GC_ms_entry *)msp;
346 struct GC_ms_entry *mark_stack_limit = (struct GC_ms_entry *)msl;
348 if (env == (void *)1) /* Object allocated with debug allocator. */
349 addr = (void *)GC_USR_PTR_FROM_BASE(addr);
350 jobjectArray array = (jobjectArray) addr;
352 _Jv_VTable *dt = *(_Jv_VTable **) addr;
353 // Assumes size >= 3 words. That's currently true since arrays have
354 // a vtable, sync pointer, and size. If the sync pointer goes away,
355 // we may need to round up the size.
356 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
357 return mark_stack_ptr;
358 jclass klass = dt->clas;
359 GC_PTR p;
361 # ifndef JV_HASH_SYNCHRONIZATION
362 // Every object has a sync_info pointer.
363 p = (GC_PTR) array->sync_info;
364 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array);
365 # endif
366 // Mark the object's class.
367 p = (GC_PTR) klass;
368 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, &(dt -> clas));
370 for (int i = 0; i < JvGetArrayLength (array); ++i)
372 jobject obj = elements (array)[i];
373 p = (GC_PTR) obj;
374 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array);
377 return mark_stack_ptr;
380 // Generate a GC marking descriptor for a class.
382 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
383 // since another one could be registered first. But the compiler also
384 // knows this, so in that case everything else will break, too.
385 #define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
387 void *
388 _Jv_BuildGCDescr(jclass self)
390 jlong desc = 0;
391 jint bits_per_word = CHAR_BIT * sizeof (void *);
393 // Note: for now we only consider a bitmap mark descriptor. We
394 // could also handle the case where the first N fields of a type are
395 // references. However, this is not very likely to be used by many
396 // classes, and it is easier to compute things this way.
398 // The vtable pointer.
399 desc |= 1ULL << (bits_per_word - 1);
400 #ifndef JV_HASH_SYNCHRONIZATION
401 // The sync_info field.
402 desc |= 1ULL << (bits_per_word - 2);
403 #endif
405 for (jclass klass = self; klass != NULL; klass = klass->getSuperclass())
407 jfieldID field = JvGetFirstInstanceField(klass);
408 int count = JvNumInstanceFields(klass);
410 for (int i = 0; i < count; ++i)
412 if (field->isRef())
414 unsigned int off = field->getOffset();
415 // If we run into a weird situation, we bail.
416 if (off % sizeof (void *) != 0)
417 return (void *) (GCJ_DEFAULT_DESCR);
418 off /= sizeof (void *);
419 // If we find a field outside the range of our bitmap,
420 // fall back to procedure marker. The bottom 2 bits are
421 // reserved.
422 if (off >= (unsigned) bits_per_word - 2)
423 return (void *) (GCJ_DEFAULT_DESCR);
424 desc |= 1ULL << (bits_per_word - off - 1);
427 field = field->getNextField();
431 // For bitmap mark type, bottom bits are 01.
432 desc |= 1;
433 // Bogus warning avoidance (on many platforms).
434 return (void *) (unsigned long) desc;
437 // Allocate some space that is known to be pointer-free.
438 void *
439 _Jv_AllocBytes (jsize size)
441 void *r = GC_MALLOC_ATOMIC (size);
442 // We have to explicitly zero memory here, as the GC doesn't
443 // guarantee that PTRFREE allocations are zeroed. Note that we
444 // don't have to do this for other allocation types because we set
445 // the `ok_init' flag in the type descriptor.
446 memset (r, 0, size);
447 return r;
450 #ifdef LIBGCJ_GC_DEBUG
452 void *
453 _Jv_AllocObj (jsize size, jclass klass)
455 return GC_GCJ_MALLOC (size, klass->vtable);
458 void *
459 _Jv_AllocPtrFreeObj (jsize size, jclass klass)
461 #ifdef JV_HASH_SYNCHRONIZATION
462 void * obj = GC_MALLOC_ATOMIC(size);
463 *((_Jv_VTable **) obj) = klass->vtable;
464 #else
465 void * obj = GC_GCJ_MALLOC(size, klass->vtable);
466 #endif
467 return obj;
470 #endif /* LIBGCJ_GC_DEBUG */
471 // In the non-debug case, the above two functions are defined
472 // as inline functions in boehm-gc.h. In the debug case we
473 // really want to take advantage of the definitions in gc_gcj.h.
475 // Allocate space for a new Java array.
476 // Used only for arrays of objects.
477 void *
478 _Jv_AllocArray (jsize size, jclass klass)
480 void *obj;
482 #ifdef LIBGCJ_GC_DEBUG
483 // There isn't much to lose by scanning this conservatively.
484 // If we didn't, the mark proc would have to understand that
485 // it needed to skip the header.
486 obj = GC_MALLOC(size);
487 #else
488 const jsize min_heap_addr = 16*1024;
489 // A heuristic. If size is less than this value, the size
490 // stored in the array can't possibly be misinterpreted as
491 // a pointer. Thus we lose nothing by scanning the object
492 // completely conservatively, since no misidentification can
493 // take place.
495 if (size < min_heap_addr)
496 obj = GC_MALLOC(size);
497 else
498 obj = GC_generic_malloc (size, array_kind_x);
499 #endif
500 *((_Jv_VTable **) obj) = klass->vtable;
501 return obj;
504 /* Allocate space for a new non-Java object, which does not have the usual
505 Java object header but may contain pointers to other GC'ed objects. */
506 void *
507 _Jv_AllocRawObj (jsize size)
509 return (void *) GC_MALLOC (size);
512 static void
513 call_finalizer (GC_PTR obj, GC_PTR client_data)
515 _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
516 jobject jobj = (jobject) obj;
518 (*fn) (jobj);
521 void
522 _Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
524 GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
525 NULL, NULL);
528 void
529 _Jv_RunFinalizers (void)
531 GC_invoke_finalizers ();
534 void
535 _Jv_RunAllFinalizers (void)
537 GC_finalize_all ();
540 void
541 _Jv_RunGC (void)
543 GC_gcollect ();
546 long
547 _Jv_GCTotalMemory (void)
549 return GC_get_heap_size ();
552 long
553 _Jv_GCFreeMemory (void)
555 return GC_get_free_bytes ();
558 void
559 _Jv_GCSetInitialHeapSize (size_t size)
561 size_t current = GC_get_heap_size ();
562 if (size > current)
563 GC_expand_hp (size - current);
566 void
567 _Jv_GCSetMaximumHeapSize (size_t size)
569 GC_set_max_heap_size ((GC_word) size);
572 void
573 _Jv_DisableGC (void)
575 GC_disable();
578 void
579 _Jv_EnableGC (void)
581 GC_enable();
584 static void * handle_out_of_memory(size_t)
586 _Jv_ThrowNoMemory();
589 static void
590 gcj_describe_type_fn(void *obj, char *out_buf)
592 _Jv_VTable *dt = *(_Jv_VTable **) obj;
594 if (! dt /* Shouldn't happen */)
596 strcpy(out_buf, "GCJ (bad)");
597 return;
599 jclass klass = dt->clas;
600 if (!klass /* shouldn't happen */)
602 strcpy(out_buf, "GCJ (bad)");
603 return;
605 jstring name = klass -> getName();
606 size_t len = name -> length();
607 if (len >= GC_TYPE_DESCR_LEN) len = GC_TYPE_DESCR_LEN - 1;
608 JvGetStringUTFRegion (name, 0, len, out_buf);
609 out_buf[len] = '\0';
612 void
613 _Jv_InitGC (void)
615 int proc;
617 // Ignore pointers that do not point to the start of an object.
618 GC_all_interior_pointers = 0;
620 // Configure the collector to use the bitmap marking descriptors that we
621 // stash in the class vtable.
622 // We always use mark proc descriptor 0, since the compiler knows
623 // about it.
624 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
626 // Cause an out of memory error to be thrown from the allocators,
627 // instead of returning 0. This is cheaper than checking on allocation.
628 GC_oom_fn = handle_out_of_memory;
630 GC_java_finalization = 1;
632 // We use a different mark procedure for object arrays. This code
633 // configures a different object `kind' for object array allocation and
634 // marking.
635 array_free_list = GC_new_free_list();
636 proc = GC_new_proc((GC_mark_proc)_Jv_MarkArray);
637 array_kind_x = GC_new_kind(array_free_list, GC_MAKE_PROC (proc, 0), 0, 1);
639 // Arrange to have the GC print Java class names in backtraces, etc.
640 GC_register_describe_type_fn(GC_gcj_kind, gcj_describe_type_fn);
641 GC_register_describe_type_fn(GC_gcj_debug_kind, gcj_describe_type_fn);
644 #ifdef JV_HASH_SYNCHRONIZATION
645 // Allocate an object with a fake vtable pointer, which causes only
646 // the first field (beyond the fake vtable pointer) to be traced.
647 // Eventually this should probably be generalized.
649 static _Jv_VTable trace_one_vtable = {
650 0, // class pointer
651 (void *)(2 * sizeof(void *)),
652 // descriptor; scan 2 words incl. vtable ptr.
653 // Least significant bits must be zero to
654 // identify this as a length descriptor
655 {0} // First method
658 void *
659 _Jv_AllocTraceOne (jsize size /* includes vtable slot */)
661 return GC_GCJ_MALLOC (size, &trace_one_vtable);
664 // Ditto for two words.
665 // the first field (beyond the fake vtable pointer) to be traced.
666 // Eventually this should probably be generalized.
668 static _Jv_VTable trace_two_vtable =
670 0, // class pointer
671 (void *)(3 * sizeof(void *)),
672 // descriptor; scan 3 words incl. vtable ptr.
673 {0} // First method
676 void *
677 _Jv_AllocTraceTwo (jsize size /* includes vtable slot */)
679 return GC_GCJ_MALLOC (size, &trace_two_vtable);
682 #endif /* JV_HASH_SYNCHRONIZATION */
684 void
685 _Jv_GCInitializeFinalizers (void (*notifier) (void))
687 GC_finalize_on_demand = 1;
688 GC_finalizer_notifier = notifier;
691 void
692 _Jv_GCRegisterDisappearingLink (jobject *objp)
694 // This test helps to ensure that we meet a precondition of
695 // GC_general_register_disappearing_link, viz. "Obj must be a
696 // pointer to the first word of an object we allocated."
697 if (GC_base(*objp))
698 GC_general_register_disappearing_link ((GC_PTR *) objp, (GC_PTR) *objp);
701 jboolean
702 _Jv_GCCanReclaimSoftReference (jobject)
704 // For now, always reclaim soft references. FIXME.
705 return true;