Mark ChangeLog
[official-gcc.git] / gcc / combine.c
blobe087fe09c225bbf1f28ee0caf9253c62f5598d1c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
242 static struct reg_stat *reg_stat;
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
247 static int mem_last_set;
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
252 static int last_call_cuid;
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
260 static rtx subst_insn;
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
269 static int subst_low_cuid;
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
274 static HARD_REG_SET newpat_used_regs;
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
280 static rtx added_links_insn;
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
293 static int *uid_insn_cost;
295 /* Length of the currently allocated uid_insn_cost array. */
297 static int last_insn_cost;
299 /* Incremented for each label. */
301 static int label_tick;
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
306 static enum machine_mode nonzero_bits_mode;
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
314 static int nonzero_sign_valid;
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
321 struct undo
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
335 struct undobuf
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
342 static struct undobuf undobuf;
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
347 static int n_occurrences;
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx distribute_and_simplify_rtx (rtx, int);
390 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
391 unsigned HOST_WIDE_INT);
392 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
393 HOST_WIDE_INT, enum machine_mode, int *);
394 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
395 int);
396 static int recog_for_combine (rtx *, rtx, rtx *);
397 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
417 static enum rtx_code combine_reversed_comparison_code (rtx);
418 static int unmentioned_reg_p_1 (rtx *, void *);
419 static bool unmentioned_reg_p (rtx, rtx);
422 /* It is not safe to use ordinary gen_lowpart in combine.
423 See comments in gen_lowpart_for_combine. */
424 #undef RTL_HOOKS_GEN_LOWPART
425 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
427 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
428 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
430 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
431 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
433 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
436 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
437 insn. The substitution can be undone by undo_all. If INTO is already
438 set to NEWVAL, do not record this change. Because computing NEWVAL might
439 also call SUBST, we have to compute it before we put anything into
440 the undo table. */
442 static void
443 do_SUBST (rtx *into, rtx newval)
445 struct undo *buf;
446 rtx oldval = *into;
448 if (oldval == newval)
449 return;
451 /* We'd like to catch as many invalid transformations here as
452 possible. Unfortunately, there are way too many mode changes
453 that are perfectly valid, so we'd waste too much effort for
454 little gain doing the checks here. Focus on catching invalid
455 transformations involving integer constants. */
456 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
457 && GET_CODE (newval) == CONST_INT)
459 /* Sanity check that we're replacing oldval with a CONST_INT
460 that is a valid sign-extension for the original mode. */
461 gcc_assert (INTVAL (newval)
462 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
464 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
465 CONST_INT is not valid, because after the replacement, the
466 original mode would be gone. Unfortunately, we can't tell
467 when do_SUBST is called to replace the operand thereof, so we
468 perform this test on oldval instead, checking whether an
469 invalid replacement took place before we got here. */
470 gcc_assert (!(GET_CODE (oldval) == SUBREG
471 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
472 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
473 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
476 if (undobuf.frees)
477 buf = undobuf.frees, undobuf.frees = buf->next;
478 else
479 buf = xmalloc (sizeof (struct undo));
481 buf->is_int = 0;
482 buf->where.r = into;
483 buf->old_contents.r = oldval;
484 *into = newval;
486 buf->next = undobuf.undos, undobuf.undos = buf;
489 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
491 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
492 for the value of a HOST_WIDE_INT value (including CONST_INT) is
493 not safe. */
495 static void
496 do_SUBST_INT (int *into, int newval)
498 struct undo *buf;
499 int oldval = *into;
501 if (oldval == newval)
502 return;
504 if (undobuf.frees)
505 buf = undobuf.frees, undobuf.frees = buf->next;
506 else
507 buf = xmalloc (sizeof (struct undo));
509 buf->is_int = 1;
510 buf->where.i = into;
511 buf->old_contents.i = oldval;
512 *into = newval;
514 buf->next = undobuf.undos, undobuf.undos = buf;
517 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
519 /* Subroutine of try_combine. Determine whether the combine replacement
520 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
521 that the original instruction sequence I1, I2 and I3. Note that I1
522 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
523 costs of all instructions can be estimated, and the replacements are
524 more expensive than the original sequence. */
526 static bool
527 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
529 int i1_cost, i2_cost, i3_cost;
530 int new_i2_cost, new_i3_cost;
531 int old_cost, new_cost;
533 /* Lookup the original insn_rtx_costs. */
534 i2_cost = INSN_UID (i2) <= last_insn_cost
535 ? uid_insn_cost[INSN_UID (i2)] : 0;
536 i3_cost = INSN_UID (i3) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i3)] : 0;
539 if (i1)
541 i1_cost = INSN_UID (i1) <= last_insn_cost
542 ? uid_insn_cost[INSN_UID (i1)] : 0;
543 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
544 ? i1_cost + i2_cost + i3_cost : 0;
546 else
548 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
549 i1_cost = 0;
552 /* Calculate the replacement insn_rtx_costs. */
553 new_i3_cost = insn_rtx_cost (newpat);
554 if (newi2pat)
556 new_i2_cost = insn_rtx_cost (newi2pat);
557 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
558 ? new_i2_cost + new_i3_cost : 0;
560 else
562 new_cost = new_i3_cost;
563 new_i2_cost = 0;
566 if (undobuf.other_insn)
568 int old_other_cost, new_other_cost;
570 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
571 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
572 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
573 if (old_other_cost > 0 && new_other_cost > 0)
575 old_cost += old_other_cost;
576 new_cost += new_other_cost;
578 else
579 old_cost = 0;
582 /* Disallow this recombination if both new_cost and old_cost are
583 greater than zero, and new_cost is greater than old cost. */
584 if (old_cost > 0
585 && new_cost > old_cost)
587 if (dump_file)
589 if (i1)
591 fprintf (dump_file,
592 "rejecting combination of insns %d, %d and %d\n",
593 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
594 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
595 i1_cost, i2_cost, i3_cost, old_cost);
597 else
599 fprintf (dump_file,
600 "rejecting combination of insns %d and %d\n",
601 INSN_UID (i2), INSN_UID (i3));
602 fprintf (dump_file, "original costs %d + %d = %d\n",
603 i2_cost, i3_cost, old_cost);
606 if (newi2pat)
608 fprintf (dump_file, "replacement costs %d + %d = %d\n",
609 new_i2_cost, new_i3_cost, new_cost);
611 else
612 fprintf (dump_file, "replacement cost %d\n", new_cost);
615 return false;
618 /* Update the uid_insn_cost array with the replacement costs. */
619 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
620 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
621 if (i1)
622 uid_insn_cost[INSN_UID (i1)] = 0;
624 return true;
627 /* Main entry point for combiner. F is the first insn of the function.
628 NREGS is the first unused pseudo-reg number.
630 Return nonzero if the combiner has turned an indirect jump
631 instruction into a direct jump. */
633 combine_instructions (rtx f, unsigned int nregs)
635 rtx insn, next;
636 #ifdef HAVE_cc0
637 rtx prev;
638 #endif
639 int i;
640 rtx links, nextlinks;
642 int new_direct_jump_p = 0;
644 combine_attempts = 0;
645 combine_merges = 0;
646 combine_extras = 0;
647 combine_successes = 0;
649 combine_max_regno = nregs;
651 rtl_hooks = combine_rtl_hooks;
653 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
655 init_recog_no_volatile ();
657 /* Compute maximum uid value so uid_cuid can be allocated. */
659 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
660 if (INSN_UID (insn) > i)
661 i = INSN_UID (insn);
663 uid_cuid = xmalloc ((i + 1) * sizeof (int));
664 max_uid_cuid = i;
666 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
668 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
669 problems when, for example, we have j <<= 1 in a loop. */
671 nonzero_sign_valid = 0;
673 /* Compute the mapping from uids to cuids.
674 Cuids are numbers assigned to insns, like uids,
675 except that cuids increase monotonically through the code.
677 Scan all SETs and see if we can deduce anything about what
678 bits are known to be zero for some registers and how many copies
679 of the sign bit are known to exist for those registers.
681 Also set any known values so that we can use it while searching
682 for what bits are known to be set. */
684 label_tick = 1;
686 setup_incoming_promotions ();
688 refresh_blocks = sbitmap_alloc (last_basic_block);
689 sbitmap_zero (refresh_blocks);
691 /* Allocate array of current insn_rtx_costs. */
692 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
693 last_insn_cost = max_uid_cuid;
695 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
697 uid_cuid[INSN_UID (insn)] = ++i;
698 subst_low_cuid = i;
699 subst_insn = insn;
701 if (INSN_P (insn))
703 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
704 NULL);
705 record_dead_and_set_regs (insn);
707 #ifdef AUTO_INC_DEC
708 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
709 if (REG_NOTE_KIND (links) == REG_INC)
710 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
711 NULL);
712 #endif
714 /* Record the current insn_rtx_cost of this instruction. */
715 if (NONJUMP_INSN_P (insn))
716 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
717 if (dump_file)
718 fprintf(dump_file, "insn_cost %d: %d\n",
719 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
722 if (LABEL_P (insn))
723 label_tick++;
726 nonzero_sign_valid = 1;
728 /* Now scan all the insns in forward order. */
730 label_tick = 1;
731 last_call_cuid = 0;
732 mem_last_set = 0;
733 init_reg_last ();
734 setup_incoming_promotions ();
736 FOR_EACH_BB (this_basic_block)
738 for (insn = BB_HEAD (this_basic_block);
739 insn != NEXT_INSN (BB_END (this_basic_block));
740 insn = next ? next : NEXT_INSN (insn))
742 next = 0;
744 if (LABEL_P (insn))
745 label_tick++;
747 else if (INSN_P (insn))
749 /* See if we know about function return values before this
750 insn based upon SUBREG flags. */
751 check_promoted_subreg (insn, PATTERN (insn));
753 /* Try this insn with each insn it links back to. */
755 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
756 if ((next = try_combine (insn, XEXP (links, 0),
757 NULL_RTX, &new_direct_jump_p)) != 0)
758 goto retry;
760 /* Try each sequence of three linked insns ending with this one. */
762 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
764 rtx link = XEXP (links, 0);
766 /* If the linked insn has been replaced by a note, then there
767 is no point in pursuing this chain any further. */
768 if (NOTE_P (link))
769 continue;
771 for (nextlinks = LOG_LINKS (link);
772 nextlinks;
773 nextlinks = XEXP (nextlinks, 1))
774 if ((next = try_combine (insn, link,
775 XEXP (nextlinks, 0),
776 &new_direct_jump_p)) != 0)
777 goto retry;
780 #ifdef HAVE_cc0
781 /* Try to combine a jump insn that uses CC0
782 with a preceding insn that sets CC0, and maybe with its
783 logical predecessor as well.
784 This is how we make decrement-and-branch insns.
785 We need this special code because data flow connections
786 via CC0 do not get entered in LOG_LINKS. */
788 if (JUMP_P (insn)
789 && (prev = prev_nonnote_insn (insn)) != 0
790 && NONJUMP_INSN_P (prev)
791 && sets_cc0_p (PATTERN (prev)))
793 if ((next = try_combine (insn, prev,
794 NULL_RTX, &new_direct_jump_p)) != 0)
795 goto retry;
797 for (nextlinks = LOG_LINKS (prev); nextlinks;
798 nextlinks = XEXP (nextlinks, 1))
799 if ((next = try_combine (insn, prev,
800 XEXP (nextlinks, 0),
801 &new_direct_jump_p)) != 0)
802 goto retry;
805 /* Do the same for an insn that explicitly references CC0. */
806 if (NONJUMP_INSN_P (insn)
807 && (prev = prev_nonnote_insn (insn)) != 0
808 && NONJUMP_INSN_P (prev)
809 && sets_cc0_p (PATTERN (prev))
810 && GET_CODE (PATTERN (insn)) == SET
811 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
813 if ((next = try_combine (insn, prev,
814 NULL_RTX, &new_direct_jump_p)) != 0)
815 goto retry;
817 for (nextlinks = LOG_LINKS (prev); nextlinks;
818 nextlinks = XEXP (nextlinks, 1))
819 if ((next = try_combine (insn, prev,
820 XEXP (nextlinks, 0),
821 &new_direct_jump_p)) != 0)
822 goto retry;
825 /* Finally, see if any of the insns that this insn links to
826 explicitly references CC0. If so, try this insn, that insn,
827 and its predecessor if it sets CC0. */
828 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
829 if (NONJUMP_INSN_P (XEXP (links, 0))
830 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
831 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
832 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
833 && NONJUMP_INSN_P (prev)
834 && sets_cc0_p (PATTERN (prev))
835 && (next = try_combine (insn, XEXP (links, 0),
836 prev, &new_direct_jump_p)) != 0)
837 goto retry;
838 #endif
840 /* Try combining an insn with two different insns whose results it
841 uses. */
842 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
843 for (nextlinks = XEXP (links, 1); nextlinks;
844 nextlinks = XEXP (nextlinks, 1))
845 if ((next = try_combine (insn, XEXP (links, 0),
846 XEXP (nextlinks, 0),
847 &new_direct_jump_p)) != 0)
848 goto retry;
850 /* Try this insn with each REG_EQUAL note it links back to. */
851 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
853 rtx set, note;
854 rtx temp = XEXP (links, 0);
855 if ((set = single_set (temp)) != 0
856 && (note = find_reg_equal_equiv_note (temp)) != 0
857 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
858 /* Avoid using a register that may already been marked
859 dead by an earlier instruction. */
860 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
862 /* Temporarily replace the set's source with the
863 contents of the REG_EQUAL note. The insn will
864 be deleted or recognized by try_combine. */
865 rtx orig = SET_SRC (set);
866 SET_SRC (set) = XEXP (note, 0);
867 next = try_combine (insn, temp, NULL_RTX,
868 &new_direct_jump_p);
869 if (next)
870 goto retry;
871 SET_SRC (set) = orig;
875 if (!NOTE_P (insn))
876 record_dead_and_set_regs (insn);
878 retry:
883 clear_bb_flags ();
885 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
886 BASIC_BLOCK (i)->flags |= BB_DIRTY);
887 new_direct_jump_p |= purge_all_dead_edges (0);
888 delete_noop_moves ();
890 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
891 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
892 | PROP_KILL_DEAD_CODE);
894 /* Clean up. */
895 sbitmap_free (refresh_blocks);
896 free (uid_insn_cost);
897 free (reg_stat);
898 free (uid_cuid);
901 struct undo *undo, *next;
902 for (undo = undobuf.frees; undo; undo = next)
904 next = undo->next;
905 free (undo);
907 undobuf.frees = 0;
910 total_attempts += combine_attempts;
911 total_merges += combine_merges;
912 total_extras += combine_extras;
913 total_successes += combine_successes;
915 nonzero_sign_valid = 0;
916 rtl_hooks = general_rtl_hooks;
918 /* Make recognizer allow volatile MEMs again. */
919 init_recog ();
921 return new_direct_jump_p;
924 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
926 static void
927 init_reg_last (void)
929 unsigned int i;
930 for (i = 0; i < combine_max_regno; i++)
931 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
934 /* Set up any promoted values for incoming argument registers. */
936 static void
937 setup_incoming_promotions (void)
939 unsigned int regno;
940 rtx reg;
941 enum machine_mode mode;
942 int unsignedp;
943 rtx first = get_insns ();
945 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
947 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
948 /* Check whether this register can hold an incoming pointer
949 argument. FUNCTION_ARG_REGNO_P tests outgoing register
950 numbers, so translate if necessary due to register windows. */
951 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
952 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
954 record_value_for_reg
955 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
956 : SIGN_EXTEND),
957 GET_MODE (reg),
958 gen_rtx_CLOBBER (mode, const0_rtx)));
963 /* Called via note_stores. If X is a pseudo that is narrower than
964 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
966 If we are setting only a portion of X and we can't figure out what
967 portion, assume all bits will be used since we don't know what will
968 be happening.
970 Similarly, set how many bits of X are known to be copies of the sign bit
971 at all locations in the function. This is the smallest number implied
972 by any set of X. */
974 static void
975 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
976 void *data ATTRIBUTE_UNUSED)
978 unsigned int num;
980 if (REG_P (x)
981 && REGNO (x) >= FIRST_PSEUDO_REGISTER
982 /* If this register is undefined at the start of the file, we can't
983 say what its contents were. */
984 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
985 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
987 if (set == 0 || GET_CODE (set) == CLOBBER)
989 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
990 reg_stat[REGNO (x)].sign_bit_copies = 1;
991 return;
994 /* If this is a complex assignment, see if we can convert it into a
995 simple assignment. */
996 set = expand_field_assignment (set);
998 /* If this is a simple assignment, or we have a paradoxical SUBREG,
999 set what we know about X. */
1001 if (SET_DEST (set) == x
1002 || (GET_CODE (SET_DEST (set)) == SUBREG
1003 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1004 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1005 && SUBREG_REG (SET_DEST (set)) == x))
1007 rtx src = SET_SRC (set);
1009 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1010 /* If X is narrower than a word and SRC is a non-negative
1011 constant that would appear negative in the mode of X,
1012 sign-extend it for use in reg_stat[].nonzero_bits because some
1013 machines (maybe most) will actually do the sign-extension
1014 and this is the conservative approach.
1016 ??? For 2.5, try to tighten up the MD files in this regard
1017 instead of this kludge. */
1019 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1020 && GET_CODE (src) == CONST_INT
1021 && INTVAL (src) > 0
1022 && 0 != (INTVAL (src)
1023 & ((HOST_WIDE_INT) 1
1024 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1025 src = GEN_INT (INTVAL (src)
1026 | ((HOST_WIDE_INT) (-1)
1027 << GET_MODE_BITSIZE (GET_MODE (x))));
1028 #endif
1030 /* Don't call nonzero_bits if it cannot change anything. */
1031 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1032 reg_stat[REGNO (x)].nonzero_bits
1033 |= nonzero_bits (src, nonzero_bits_mode);
1034 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1035 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1036 || reg_stat[REGNO (x)].sign_bit_copies > num)
1037 reg_stat[REGNO (x)].sign_bit_copies = num;
1039 else
1041 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1042 reg_stat[REGNO (x)].sign_bit_copies = 1;
1047 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1048 insns that were previously combined into I3 or that will be combined
1049 into the merger of INSN and I3.
1051 Return 0 if the combination is not allowed for any reason.
1053 If the combination is allowed, *PDEST will be set to the single
1054 destination of INSN and *PSRC to the single source, and this function
1055 will return 1. */
1057 static int
1058 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1059 rtx *pdest, rtx *psrc)
1061 int i;
1062 rtx set = 0, src, dest;
1063 rtx p;
1064 #ifdef AUTO_INC_DEC
1065 rtx link;
1066 #endif
1067 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1068 && next_active_insn (succ) == i3)
1069 : next_active_insn (insn) == i3);
1071 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1072 or a PARALLEL consisting of such a SET and CLOBBERs.
1074 If INSN has CLOBBER parallel parts, ignore them for our processing.
1075 By definition, these happen during the execution of the insn. When it
1076 is merged with another insn, all bets are off. If they are, in fact,
1077 needed and aren't also supplied in I3, they may be added by
1078 recog_for_combine. Otherwise, it won't match.
1080 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1081 note.
1083 Get the source and destination of INSN. If more than one, can't
1084 combine. */
1086 if (GET_CODE (PATTERN (insn)) == SET)
1087 set = PATTERN (insn);
1088 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1089 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1091 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1093 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1094 rtx note;
1096 switch (GET_CODE (elt))
1098 /* This is important to combine floating point insns
1099 for the SH4 port. */
1100 case USE:
1101 /* Combining an isolated USE doesn't make sense.
1102 We depend here on combinable_i3pat to reject them. */
1103 /* The code below this loop only verifies that the inputs of
1104 the SET in INSN do not change. We call reg_set_between_p
1105 to verify that the REG in the USE does not change between
1106 I3 and INSN.
1107 If the USE in INSN was for a pseudo register, the matching
1108 insn pattern will likely match any register; combining this
1109 with any other USE would only be safe if we knew that the
1110 used registers have identical values, or if there was
1111 something to tell them apart, e.g. different modes. For
1112 now, we forgo such complicated tests and simply disallow
1113 combining of USES of pseudo registers with any other USE. */
1114 if (REG_P (XEXP (elt, 0))
1115 && GET_CODE (PATTERN (i3)) == PARALLEL)
1117 rtx i3pat = PATTERN (i3);
1118 int i = XVECLEN (i3pat, 0) - 1;
1119 unsigned int regno = REGNO (XEXP (elt, 0));
1123 rtx i3elt = XVECEXP (i3pat, 0, i);
1125 if (GET_CODE (i3elt) == USE
1126 && REG_P (XEXP (i3elt, 0))
1127 && (REGNO (XEXP (i3elt, 0)) == regno
1128 ? reg_set_between_p (XEXP (elt, 0),
1129 PREV_INSN (insn), i3)
1130 : regno >= FIRST_PSEUDO_REGISTER))
1131 return 0;
1133 while (--i >= 0);
1135 break;
1137 /* We can ignore CLOBBERs. */
1138 case CLOBBER:
1139 break;
1141 case SET:
1142 /* Ignore SETs whose result isn't used but not those that
1143 have side-effects. */
1144 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1145 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1146 || INTVAL (XEXP (note, 0)) <= 0)
1147 && ! side_effects_p (elt))
1148 break;
1150 /* If we have already found a SET, this is a second one and
1151 so we cannot combine with this insn. */
1152 if (set)
1153 return 0;
1155 set = elt;
1156 break;
1158 default:
1159 /* Anything else means we can't combine. */
1160 return 0;
1164 if (set == 0
1165 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1166 so don't do anything with it. */
1167 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1168 return 0;
1170 else
1171 return 0;
1173 if (set == 0)
1174 return 0;
1176 set = expand_field_assignment (set);
1177 src = SET_SRC (set), dest = SET_DEST (set);
1179 /* Don't eliminate a store in the stack pointer. */
1180 if (dest == stack_pointer_rtx
1181 /* Don't combine with an insn that sets a register to itself if it has
1182 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1183 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1184 /* Can't merge an ASM_OPERANDS. */
1185 || GET_CODE (src) == ASM_OPERANDS
1186 /* Can't merge a function call. */
1187 || GET_CODE (src) == CALL
1188 /* Don't eliminate a function call argument. */
1189 || (CALL_P (i3)
1190 && (find_reg_fusage (i3, USE, dest)
1191 || (REG_P (dest)
1192 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1193 && global_regs[REGNO (dest)])))
1194 /* Don't substitute into an incremented register. */
1195 || FIND_REG_INC_NOTE (i3, dest)
1196 || (succ && FIND_REG_INC_NOTE (succ, dest))
1197 /* Don't substitute into a non-local goto, this confuses CFG. */
1198 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1199 #if 0
1200 /* Don't combine the end of a libcall into anything. */
1201 /* ??? This gives worse code, and appears to be unnecessary, since no
1202 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1203 use REG_RETVAL notes for noconflict blocks, but other code here
1204 makes sure that those insns don't disappear. */
1205 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1206 #endif
1207 /* Make sure that DEST is not used after SUCC but before I3. */
1208 || (succ && ! all_adjacent
1209 && reg_used_between_p (dest, succ, i3))
1210 /* Make sure that the value that is to be substituted for the register
1211 does not use any registers whose values alter in between. However,
1212 If the insns are adjacent, a use can't cross a set even though we
1213 think it might (this can happen for a sequence of insns each setting
1214 the same destination; last_set of that register might point to
1215 a NOTE). If INSN has a REG_EQUIV note, the register is always
1216 equivalent to the memory so the substitution is valid even if there
1217 are intervening stores. Also, don't move a volatile asm or
1218 UNSPEC_VOLATILE across any other insns. */
1219 || (! all_adjacent
1220 && (((!MEM_P (src)
1221 || ! find_reg_note (insn, REG_EQUIV, src))
1222 && use_crosses_set_p (src, INSN_CUID (insn)))
1223 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1224 || GET_CODE (src) == UNSPEC_VOLATILE))
1225 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1226 better register allocation by not doing the combine. */
1227 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1228 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1229 /* Don't combine across a CALL_INSN, because that would possibly
1230 change whether the life span of some REGs crosses calls or not,
1231 and it is a pain to update that information.
1232 Exception: if source is a constant, moving it later can't hurt.
1233 Accept that special case, because it helps -fforce-addr a lot. */
1234 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1235 return 0;
1237 /* DEST must either be a REG or CC0. */
1238 if (REG_P (dest))
1240 /* If register alignment is being enforced for multi-word items in all
1241 cases except for parameters, it is possible to have a register copy
1242 insn referencing a hard register that is not allowed to contain the
1243 mode being copied and which would not be valid as an operand of most
1244 insns. Eliminate this problem by not combining with such an insn.
1246 Also, on some machines we don't want to extend the life of a hard
1247 register. */
1249 if (REG_P (src)
1250 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1251 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1252 /* Don't extend the life of a hard register unless it is
1253 user variable (if we have few registers) or it can't
1254 fit into the desired register (meaning something special
1255 is going on).
1256 Also avoid substituting a return register into I3, because
1257 reload can't handle a conflict with constraints of other
1258 inputs. */
1259 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1260 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1261 return 0;
1263 else if (GET_CODE (dest) != CC0)
1264 return 0;
1267 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1268 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1269 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1271 /* Don't substitute for a register intended as a clobberable
1272 operand. */
1273 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1274 if (rtx_equal_p (reg, dest))
1275 return 0;
1277 /* If the clobber represents an earlyclobber operand, we must not
1278 substitute an expression containing the clobbered register.
1279 As we do not analyze the constraint strings here, we have to
1280 make the conservative assumption. However, if the register is
1281 a fixed hard reg, the clobber cannot represent any operand;
1282 we leave it up to the machine description to either accept or
1283 reject use-and-clobber patterns. */
1284 if (!REG_P (reg)
1285 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1286 || !fixed_regs[REGNO (reg)])
1287 if (reg_overlap_mentioned_p (reg, src))
1288 return 0;
1291 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1292 or not), reject, unless nothing volatile comes between it and I3 */
1294 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1296 /* Make sure succ doesn't contain a volatile reference. */
1297 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1298 return 0;
1300 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1301 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1302 return 0;
1305 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1306 to be an explicit register variable, and was chosen for a reason. */
1308 if (GET_CODE (src) == ASM_OPERANDS
1309 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1310 return 0;
1312 /* If there are any volatile insns between INSN and I3, reject, because
1313 they might affect machine state. */
1315 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1316 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1317 return 0;
1319 /* If INSN contains an autoincrement or autodecrement, make sure that
1320 register is not used between there and I3, and not already used in
1321 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1322 Also insist that I3 not be a jump; if it were one
1323 and the incremented register were spilled, we would lose. */
1325 #ifdef AUTO_INC_DEC
1326 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1327 if (REG_NOTE_KIND (link) == REG_INC
1328 && (JUMP_P (i3)
1329 || reg_used_between_p (XEXP (link, 0), insn, i3)
1330 || (pred != NULL_RTX
1331 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1332 || (succ != NULL_RTX
1333 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1334 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1335 return 0;
1336 #endif
1338 #ifdef HAVE_cc0
1339 /* Don't combine an insn that follows a CC0-setting insn.
1340 An insn that uses CC0 must not be separated from the one that sets it.
1341 We do, however, allow I2 to follow a CC0-setting insn if that insn
1342 is passed as I1; in that case it will be deleted also.
1343 We also allow combining in this case if all the insns are adjacent
1344 because that would leave the two CC0 insns adjacent as well.
1345 It would be more logical to test whether CC0 occurs inside I1 or I2,
1346 but that would be much slower, and this ought to be equivalent. */
1348 p = prev_nonnote_insn (insn);
1349 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1350 && ! all_adjacent)
1351 return 0;
1352 #endif
1354 /* If we get here, we have passed all the tests and the combination is
1355 to be allowed. */
1357 *pdest = dest;
1358 *psrc = src;
1360 return 1;
1363 /* LOC is the location within I3 that contains its pattern or the component
1364 of a PARALLEL of the pattern. We validate that it is valid for combining.
1366 One problem is if I3 modifies its output, as opposed to replacing it
1367 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1368 so would produce an insn that is not equivalent to the original insns.
1370 Consider:
1372 (set (reg:DI 101) (reg:DI 100))
1373 (set (subreg:SI (reg:DI 101) 0) <foo>)
1375 This is NOT equivalent to:
1377 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1378 (set (reg:DI 101) (reg:DI 100))])
1380 Not only does this modify 100 (in which case it might still be valid
1381 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1383 We can also run into a problem if I2 sets a register that I1
1384 uses and I1 gets directly substituted into I3 (not via I2). In that
1385 case, we would be getting the wrong value of I2DEST into I3, so we
1386 must reject the combination. This case occurs when I2 and I1 both
1387 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1388 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1389 of a SET must prevent combination from occurring.
1391 Before doing the above check, we first try to expand a field assignment
1392 into a set of logical operations.
1394 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1395 we place a register that is both set and used within I3. If more than one
1396 such register is detected, we fail.
1398 Return 1 if the combination is valid, zero otherwise. */
1400 static int
1401 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1402 int i1_not_in_src, rtx *pi3dest_killed)
1404 rtx x = *loc;
1406 if (GET_CODE (x) == SET)
1408 rtx set = x ;
1409 rtx dest = SET_DEST (set);
1410 rtx src = SET_SRC (set);
1411 rtx inner_dest = dest;
1413 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1414 || GET_CODE (inner_dest) == SUBREG
1415 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1416 inner_dest = XEXP (inner_dest, 0);
1418 /* Check for the case where I3 modifies its output, as discussed
1419 above. We don't want to prevent pseudos from being combined
1420 into the address of a MEM, so only prevent the combination if
1421 i1 or i2 set the same MEM. */
1422 if ((inner_dest != dest &&
1423 (!MEM_P (inner_dest)
1424 || rtx_equal_p (i2dest, inner_dest)
1425 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1426 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1427 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1429 /* This is the same test done in can_combine_p except we can't test
1430 all_adjacent; we don't have to, since this instruction will stay
1431 in place, thus we are not considering increasing the lifetime of
1432 INNER_DEST.
1434 Also, if this insn sets a function argument, combining it with
1435 something that might need a spill could clobber a previous
1436 function argument; the all_adjacent test in can_combine_p also
1437 checks this; here, we do a more specific test for this case. */
1439 || (REG_P (inner_dest)
1440 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1441 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1442 GET_MODE (inner_dest))))
1443 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1444 return 0;
1446 /* If DEST is used in I3, it is being killed in this insn,
1447 so record that for later.
1448 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1449 STACK_POINTER_REGNUM, since these are always considered to be
1450 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1451 if (pi3dest_killed && REG_P (dest)
1452 && reg_referenced_p (dest, PATTERN (i3))
1453 && REGNO (dest) != FRAME_POINTER_REGNUM
1454 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1455 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1456 #endif
1457 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1458 && (REGNO (dest) != ARG_POINTER_REGNUM
1459 || ! fixed_regs [REGNO (dest)])
1460 #endif
1461 && REGNO (dest) != STACK_POINTER_REGNUM)
1463 if (*pi3dest_killed)
1464 return 0;
1466 *pi3dest_killed = dest;
1470 else if (GET_CODE (x) == PARALLEL)
1472 int i;
1474 for (i = 0; i < XVECLEN (x, 0); i++)
1475 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1476 i1_not_in_src, pi3dest_killed))
1477 return 0;
1480 return 1;
1483 /* Return 1 if X is an arithmetic expression that contains a multiplication
1484 and division. We don't count multiplications by powers of two here. */
1486 static int
1487 contains_muldiv (rtx x)
1489 switch (GET_CODE (x))
1491 case MOD: case DIV: case UMOD: case UDIV:
1492 return 1;
1494 case MULT:
1495 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1496 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1497 default:
1498 if (BINARY_P (x))
1499 return contains_muldiv (XEXP (x, 0))
1500 || contains_muldiv (XEXP (x, 1));
1502 if (UNARY_P (x))
1503 return contains_muldiv (XEXP (x, 0));
1505 return 0;
1509 /* Determine whether INSN can be used in a combination. Return nonzero if
1510 not. This is used in try_combine to detect early some cases where we
1511 can't perform combinations. */
1513 static int
1514 cant_combine_insn_p (rtx insn)
1516 rtx set;
1517 rtx src, dest;
1519 /* If this isn't really an insn, we can't do anything.
1520 This can occur when flow deletes an insn that it has merged into an
1521 auto-increment address. */
1522 if (! INSN_P (insn))
1523 return 1;
1525 /* Never combine loads and stores involving hard regs that are likely
1526 to be spilled. The register allocator can usually handle such
1527 reg-reg moves by tying. If we allow the combiner to make
1528 substitutions of likely-spilled regs, we may abort in reload.
1529 As an exception, we allow combinations involving fixed regs; these are
1530 not available to the register allocator so there's no risk involved. */
1532 set = single_set (insn);
1533 if (! set)
1534 return 0;
1535 src = SET_SRC (set);
1536 dest = SET_DEST (set);
1537 if (GET_CODE (src) == SUBREG)
1538 src = SUBREG_REG (src);
1539 if (GET_CODE (dest) == SUBREG)
1540 dest = SUBREG_REG (dest);
1541 if (REG_P (src) && REG_P (dest)
1542 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1543 && ! fixed_regs[REGNO (src)]
1544 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1545 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1546 && ! fixed_regs[REGNO (dest)]
1547 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1548 return 1;
1550 return 0;
1553 /* Adjust INSN after we made a change to its destination.
1555 Changing the destination can invalidate notes that say something about
1556 the results of the insn and a LOG_LINK pointing to the insn. */
1558 static void
1559 adjust_for_new_dest (rtx insn)
1561 rtx *loc;
1563 /* For notes, be conservative and simply remove them. */
1564 loc = &REG_NOTES (insn);
1565 while (*loc)
1567 enum reg_note kind = REG_NOTE_KIND (*loc);
1568 if (kind == REG_EQUAL || kind == REG_EQUIV)
1569 *loc = XEXP (*loc, 1);
1570 else
1571 loc = &XEXP (*loc, 1);
1574 /* The new insn will have a destination that was previously the destination
1575 of an insn just above it. Call distribute_links to make a LOG_LINK from
1576 the next use of that destination. */
1577 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1580 /* Try to combine the insns I1 and I2 into I3.
1581 Here I1 and I2 appear earlier than I3.
1582 I1 can be zero; then we combine just I2 into I3.
1584 If we are combining three insns and the resulting insn is not recognized,
1585 try splitting it into two insns. If that happens, I2 and I3 are retained
1586 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1587 are pseudo-deleted.
1589 Return 0 if the combination does not work. Then nothing is changed.
1590 If we did the combination, return the insn at which combine should
1591 resume scanning.
1593 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1594 new direct jump instruction. */
1596 static rtx
1597 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1599 /* New patterns for I3 and I2, respectively. */
1600 rtx newpat, newi2pat = 0;
1601 int substed_i2 = 0, substed_i1 = 0;
1602 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1603 int added_sets_1, added_sets_2;
1604 /* Total number of SETs to put into I3. */
1605 int total_sets;
1606 /* Nonzero if I2's body now appears in I3. */
1607 int i2_is_used;
1608 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1609 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1610 /* Contains I3 if the destination of I3 is used in its source, which means
1611 that the old life of I3 is being killed. If that usage is placed into
1612 I2 and not in I3, a REG_DEAD note must be made. */
1613 rtx i3dest_killed = 0;
1614 /* SET_DEST and SET_SRC of I2 and I1. */
1615 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1616 /* PATTERN (I2), or a copy of it in certain cases. */
1617 rtx i2pat;
1618 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1619 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1620 int i1_feeds_i3 = 0;
1621 /* Notes that must be added to REG_NOTES in I3 and I2. */
1622 rtx new_i3_notes, new_i2_notes;
1623 /* Notes that we substituted I3 into I2 instead of the normal case. */
1624 int i3_subst_into_i2 = 0;
1625 /* Notes that I1, I2 or I3 is a MULT operation. */
1626 int have_mult = 0;
1627 int swap_i2i3 = 0;
1629 int maxreg;
1630 rtx temp;
1631 rtx link;
1632 int i;
1634 /* Exit early if one of the insns involved can't be used for
1635 combinations. */
1636 if (cant_combine_insn_p (i3)
1637 || cant_combine_insn_p (i2)
1638 || (i1 && cant_combine_insn_p (i1))
1639 /* We also can't do anything if I3 has a
1640 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1641 libcall. */
1642 #if 0
1643 /* ??? This gives worse code, and appears to be unnecessary, since no
1644 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1645 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1646 #endif
1648 return 0;
1650 combine_attempts++;
1651 undobuf.other_insn = 0;
1653 /* Reset the hard register usage information. */
1654 CLEAR_HARD_REG_SET (newpat_used_regs);
1656 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1657 code below, set I1 to be the earlier of the two insns. */
1658 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1659 temp = i1, i1 = i2, i2 = temp;
1661 added_links_insn = 0;
1663 /* First check for one important special-case that the code below will
1664 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1665 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1666 we may be able to replace that destination with the destination of I3.
1667 This occurs in the common code where we compute both a quotient and
1668 remainder into a structure, in which case we want to do the computation
1669 directly into the structure to avoid register-register copies.
1671 Note that this case handles both multiple sets in I2 and also
1672 cases where I2 has a number of CLOBBER or PARALLELs.
1674 We make very conservative checks below and only try to handle the
1675 most common cases of this. For example, we only handle the case
1676 where I2 and I3 are adjacent to avoid making difficult register
1677 usage tests. */
1679 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1680 && REG_P (SET_SRC (PATTERN (i3)))
1681 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1682 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1683 && GET_CODE (PATTERN (i2)) == PARALLEL
1684 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1685 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1686 below would need to check what is inside (and reg_overlap_mentioned_p
1687 doesn't support those codes anyway). Don't allow those destinations;
1688 the resulting insn isn't likely to be recognized anyway. */
1689 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1690 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1691 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1692 SET_DEST (PATTERN (i3)))
1693 && next_real_insn (i2) == i3)
1695 rtx p2 = PATTERN (i2);
1697 /* Make sure that the destination of I3,
1698 which we are going to substitute into one output of I2,
1699 is not used within another output of I2. We must avoid making this:
1700 (parallel [(set (mem (reg 69)) ...)
1701 (set (reg 69) ...)])
1702 which is not well-defined as to order of actions.
1703 (Besides, reload can't handle output reloads for this.)
1705 The problem can also happen if the dest of I3 is a memory ref,
1706 if another dest in I2 is an indirect memory ref. */
1707 for (i = 0; i < XVECLEN (p2, 0); i++)
1708 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1709 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1710 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1711 SET_DEST (XVECEXP (p2, 0, i))))
1712 break;
1714 if (i == XVECLEN (p2, 0))
1715 for (i = 0; i < XVECLEN (p2, 0); i++)
1716 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1717 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1718 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1720 combine_merges++;
1722 subst_insn = i3;
1723 subst_low_cuid = INSN_CUID (i2);
1725 added_sets_2 = added_sets_1 = 0;
1726 i2dest = SET_SRC (PATTERN (i3));
1728 /* Replace the dest in I2 with our dest and make the resulting
1729 insn the new pattern for I3. Then skip to where we
1730 validate the pattern. Everything was set up above. */
1731 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1732 SET_DEST (PATTERN (i3)));
1734 newpat = p2;
1735 i3_subst_into_i2 = 1;
1736 goto validate_replacement;
1740 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1741 one of those words to another constant, merge them by making a new
1742 constant. */
1743 if (i1 == 0
1744 && (temp = single_set (i2)) != 0
1745 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1746 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1747 && REG_P (SET_DEST (temp))
1748 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1749 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1750 && GET_CODE (PATTERN (i3)) == SET
1751 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1752 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1753 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1754 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1755 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1757 HOST_WIDE_INT lo, hi;
1759 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1760 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1761 else
1763 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1764 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1767 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1769 /* We don't handle the case of the target word being wider
1770 than a host wide int. */
1771 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1773 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1774 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1775 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1777 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1778 hi = INTVAL (SET_SRC (PATTERN (i3)));
1779 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1781 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1782 >> (HOST_BITS_PER_WIDE_INT - 1));
1784 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1785 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1786 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1787 (INTVAL (SET_SRC (PATTERN (i3)))));
1788 if (hi == sign)
1789 hi = lo < 0 ? -1 : 0;
1791 else
1792 /* We don't handle the case of the higher word not fitting
1793 entirely in either hi or lo. */
1794 gcc_unreachable ();
1796 combine_merges++;
1797 subst_insn = i3;
1798 subst_low_cuid = INSN_CUID (i2);
1799 added_sets_2 = added_sets_1 = 0;
1800 i2dest = SET_DEST (temp);
1802 SUBST (SET_SRC (temp),
1803 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1805 newpat = PATTERN (i2);
1806 goto validate_replacement;
1809 #ifndef HAVE_cc0
1810 /* If we have no I1 and I2 looks like:
1811 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1812 (set Y OP)])
1813 make up a dummy I1 that is
1814 (set Y OP)
1815 and change I2 to be
1816 (set (reg:CC X) (compare:CC Y (const_int 0)))
1818 (We can ignore any trailing CLOBBERs.)
1820 This undoes a previous combination and allows us to match a branch-and-
1821 decrement insn. */
1823 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1824 && XVECLEN (PATTERN (i2), 0) >= 2
1825 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1826 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1827 == MODE_CC)
1828 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1829 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1830 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1831 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1832 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1833 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1835 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1836 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1837 break;
1839 if (i == 1)
1841 /* We make I1 with the same INSN_UID as I2. This gives it
1842 the same INSN_CUID for value tracking. Our fake I1 will
1843 never appear in the insn stream so giving it the same INSN_UID
1844 as I2 will not cause a problem. */
1846 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1847 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1848 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1849 NULL_RTX);
1851 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1852 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1853 SET_DEST (PATTERN (i1)));
1856 #endif
1858 /* Verify that I2 and I1 are valid for combining. */
1859 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1860 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1862 undo_all ();
1863 return 0;
1866 /* Record whether I2DEST is used in I2SRC and similarly for the other
1867 cases. Knowing this will help in register status updating below. */
1868 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1869 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1870 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1872 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1873 in I2SRC. */
1874 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1876 /* Ensure that I3's pattern can be the destination of combines. */
1877 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1878 i1 && i2dest_in_i1src && i1_feeds_i3,
1879 &i3dest_killed))
1881 undo_all ();
1882 return 0;
1885 /* See if any of the insns is a MULT operation. Unless one is, we will
1886 reject a combination that is, since it must be slower. Be conservative
1887 here. */
1888 if (GET_CODE (i2src) == MULT
1889 || (i1 != 0 && GET_CODE (i1src) == MULT)
1890 || (GET_CODE (PATTERN (i3)) == SET
1891 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1892 have_mult = 1;
1894 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1895 We used to do this EXCEPT in one case: I3 has a post-inc in an
1896 output operand. However, that exception can give rise to insns like
1897 mov r3,(r3)+
1898 which is a famous insn on the PDP-11 where the value of r3 used as the
1899 source was model-dependent. Avoid this sort of thing. */
1901 #if 0
1902 if (!(GET_CODE (PATTERN (i3)) == SET
1903 && REG_P (SET_SRC (PATTERN (i3)))
1904 && MEM_P (SET_DEST (PATTERN (i3)))
1905 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1906 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1907 /* It's not the exception. */
1908 #endif
1909 #ifdef AUTO_INC_DEC
1910 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1911 if (REG_NOTE_KIND (link) == REG_INC
1912 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1913 || (i1 != 0
1914 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1916 undo_all ();
1917 return 0;
1919 #endif
1921 /* See if the SETs in I1 or I2 need to be kept around in the merged
1922 instruction: whenever the value set there is still needed past I3.
1923 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1925 For the SET in I1, we have two cases: If I1 and I2 independently
1926 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1927 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1928 in I1 needs to be kept around unless I1DEST dies or is set in either
1929 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1930 I1DEST. If so, we know I1 feeds into I2. */
1932 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1934 added_sets_1
1935 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1936 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1938 /* If the set in I2 needs to be kept around, we must make a copy of
1939 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1940 PATTERN (I2), we are only substituting for the original I1DEST, not into
1941 an already-substituted copy. This also prevents making self-referential
1942 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1943 I2DEST. */
1945 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1946 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1947 : PATTERN (i2));
1949 if (added_sets_2)
1950 i2pat = copy_rtx (i2pat);
1952 combine_merges++;
1954 /* Substitute in the latest insn for the regs set by the earlier ones. */
1956 maxreg = max_reg_num ();
1958 subst_insn = i3;
1960 /* It is possible that the source of I2 or I1 may be performing an
1961 unneeded operation, such as a ZERO_EXTEND of something that is known
1962 to have the high part zero. Handle that case by letting subst look at
1963 the innermost one of them.
1965 Another way to do this would be to have a function that tries to
1966 simplify a single insn instead of merging two or more insns. We don't
1967 do this because of the potential of infinite loops and because
1968 of the potential extra memory required. However, doing it the way
1969 we are is a bit of a kludge and doesn't catch all cases.
1971 But only do this if -fexpensive-optimizations since it slows things down
1972 and doesn't usually win. */
1974 if (flag_expensive_optimizations)
1976 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1977 if (i1)
1979 subst_low_cuid = INSN_CUID (i1);
1980 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1982 else
1984 subst_low_cuid = INSN_CUID (i2);
1985 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1989 #ifndef HAVE_cc0
1990 /* Many machines that don't use CC0 have insns that can both perform an
1991 arithmetic operation and set the condition code. These operations will
1992 be represented as a PARALLEL with the first element of the vector
1993 being a COMPARE of an arithmetic operation with the constant zero.
1994 The second element of the vector will set some pseudo to the result
1995 of the same arithmetic operation. If we simplify the COMPARE, we won't
1996 match such a pattern and so will generate an extra insn. Here we test
1997 for this case, where both the comparison and the operation result are
1998 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1999 I2SRC. Later we will make the PARALLEL that contains I2. */
2001 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2002 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2003 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2004 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2006 #ifdef SELECT_CC_MODE
2007 rtx *cc_use;
2008 enum machine_mode compare_mode;
2009 #endif
2011 newpat = PATTERN (i3);
2012 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2014 i2_is_used = 1;
2016 #ifdef SELECT_CC_MODE
2017 /* See if a COMPARE with the operand we substituted in should be done
2018 with the mode that is currently being used. If not, do the same
2019 processing we do in `subst' for a SET; namely, if the destination
2020 is used only once, try to replace it with a register of the proper
2021 mode and also replace the COMPARE. */
2022 if (undobuf.other_insn == 0
2023 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2024 &undobuf.other_insn))
2025 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2026 i2src, const0_rtx))
2027 != GET_MODE (SET_DEST (newpat))))
2029 unsigned int regno = REGNO (SET_DEST (newpat));
2030 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2032 if (regno < FIRST_PSEUDO_REGISTER
2033 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2034 && ! REG_USERVAR_P (SET_DEST (newpat))))
2036 if (regno >= FIRST_PSEUDO_REGISTER)
2037 SUBST (regno_reg_rtx[regno], new_dest);
2039 SUBST (SET_DEST (newpat), new_dest);
2040 SUBST (XEXP (*cc_use, 0), new_dest);
2041 SUBST (SET_SRC (newpat),
2042 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2044 else
2045 undobuf.other_insn = 0;
2047 #endif
2049 else
2050 #endif
2052 n_occurrences = 0; /* `subst' counts here */
2054 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2055 need to make a unique copy of I2SRC each time we substitute it
2056 to avoid self-referential rtl. */
2058 subst_low_cuid = INSN_CUID (i2);
2059 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2060 ! i1_feeds_i3 && i1dest_in_i1src);
2061 substed_i2 = 1;
2063 /* Record whether i2's body now appears within i3's body. */
2064 i2_is_used = n_occurrences;
2067 /* If we already got a failure, don't try to do more. Otherwise,
2068 try to substitute in I1 if we have it. */
2070 if (i1 && GET_CODE (newpat) != CLOBBER)
2072 /* Before we can do this substitution, we must redo the test done
2073 above (see detailed comments there) that ensures that I1DEST
2074 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2076 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2077 0, (rtx*) 0))
2079 undo_all ();
2080 return 0;
2083 n_occurrences = 0;
2084 subst_low_cuid = INSN_CUID (i1);
2085 newpat = subst (newpat, i1dest, i1src, 0, 0);
2086 substed_i1 = 1;
2089 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2090 to count all the ways that I2SRC and I1SRC can be used. */
2091 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2092 && i2_is_used + added_sets_2 > 1)
2093 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2094 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2095 > 1))
2096 /* Fail if we tried to make a new register (we used to abort, but there's
2097 really no reason to). */
2098 || max_reg_num () != maxreg
2099 /* Fail if we couldn't do something and have a CLOBBER. */
2100 || GET_CODE (newpat) == CLOBBER
2101 /* Fail if this new pattern is a MULT and we didn't have one before
2102 at the outer level. */
2103 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2104 && ! have_mult))
2106 undo_all ();
2107 return 0;
2110 /* If the actions of the earlier insns must be kept
2111 in addition to substituting them into the latest one,
2112 we must make a new PARALLEL for the latest insn
2113 to hold additional the SETs. */
2115 if (added_sets_1 || added_sets_2)
2117 combine_extras++;
2119 if (GET_CODE (newpat) == PARALLEL)
2121 rtvec old = XVEC (newpat, 0);
2122 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2123 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2124 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2125 sizeof (old->elem[0]) * old->num_elem);
2127 else
2129 rtx old = newpat;
2130 total_sets = 1 + added_sets_1 + added_sets_2;
2131 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2132 XVECEXP (newpat, 0, 0) = old;
2135 if (added_sets_1)
2136 XVECEXP (newpat, 0, --total_sets)
2137 = (GET_CODE (PATTERN (i1)) == PARALLEL
2138 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2140 if (added_sets_2)
2142 /* If there is no I1, use I2's body as is. We used to also not do
2143 the subst call below if I2 was substituted into I3,
2144 but that could lose a simplification. */
2145 if (i1 == 0)
2146 XVECEXP (newpat, 0, --total_sets) = i2pat;
2147 else
2148 /* See comment where i2pat is assigned. */
2149 XVECEXP (newpat, 0, --total_sets)
2150 = subst (i2pat, i1dest, i1src, 0, 0);
2154 /* We come here when we are replacing a destination in I2 with the
2155 destination of I3. */
2156 validate_replacement:
2158 /* Note which hard regs this insn has as inputs. */
2159 mark_used_regs_combine (newpat);
2161 /* Is the result of combination a valid instruction? */
2162 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2164 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2165 the second SET's destination is a register that is unused and isn't
2166 marked as an instruction that might trap in an EH region. In that case,
2167 we just need the first SET. This can occur when simplifying a divmod
2168 insn. We *must* test for this case here because the code below that
2169 splits two independent SETs doesn't handle this case correctly when it
2170 updates the register status.
2172 It's pointless doing this if we originally had two sets, one from
2173 i3, and one from i2. Combining then splitting the parallel results
2174 in the original i2 again plus an invalid insn (which we delete).
2175 The net effect is only to move instructions around, which makes
2176 debug info less accurate.
2178 Also check the case where the first SET's destination is unused.
2179 That would not cause incorrect code, but does cause an unneeded
2180 insn to remain. */
2182 if (insn_code_number < 0
2183 && !(added_sets_2 && i1 == 0)
2184 && GET_CODE (newpat) == PARALLEL
2185 && XVECLEN (newpat, 0) == 2
2186 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2187 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2188 && asm_noperands (newpat) < 0)
2190 rtx set0 = XVECEXP (newpat, 0, 0);
2191 rtx set1 = XVECEXP (newpat, 0, 1);
2192 rtx note;
2194 if (((REG_P (SET_DEST (set1))
2195 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2196 || (GET_CODE (SET_DEST (set1)) == SUBREG
2197 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2198 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2199 || INTVAL (XEXP (note, 0)) <= 0)
2200 && ! side_effects_p (SET_SRC (set1)))
2202 newpat = set0;
2203 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2206 else if (((REG_P (SET_DEST (set0))
2207 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2208 || (GET_CODE (SET_DEST (set0)) == SUBREG
2209 && find_reg_note (i3, REG_UNUSED,
2210 SUBREG_REG (SET_DEST (set0)))))
2211 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2212 || INTVAL (XEXP (note, 0)) <= 0)
2213 && ! side_effects_p (SET_SRC (set0)))
2215 newpat = set1;
2216 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2218 if (insn_code_number >= 0)
2220 /* If we will be able to accept this, we have made a
2221 change to the destination of I3. This requires us to
2222 do a few adjustments. */
2224 PATTERN (i3) = newpat;
2225 adjust_for_new_dest (i3);
2230 /* If we were combining three insns and the result is a simple SET
2231 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2232 insns. There are two ways to do this. It can be split using a
2233 machine-specific method (like when you have an addition of a large
2234 constant) or by combine in the function find_split_point. */
2236 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2237 && asm_noperands (newpat) < 0)
2239 rtx m_split, *split;
2240 rtx ni2dest = i2dest;
2242 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2243 use I2DEST as a scratch register will help. In the latter case,
2244 convert I2DEST to the mode of the source of NEWPAT if we can. */
2246 m_split = split_insns (newpat, i3);
2248 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2249 inputs of NEWPAT. */
2251 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2252 possible to try that as a scratch reg. This would require adding
2253 more code to make it work though. */
2255 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2257 /* If I2DEST is a hard register or the only use of a pseudo,
2258 we can change its mode. */
2259 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2260 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2261 && REG_P (i2dest)
2262 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2263 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2264 && ! REG_USERVAR_P (i2dest))))
2265 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2266 REGNO (i2dest));
2268 m_split = split_insns (gen_rtx_PARALLEL
2269 (VOIDmode,
2270 gen_rtvec (2, newpat,
2271 gen_rtx_CLOBBER (VOIDmode,
2272 ni2dest))),
2273 i3);
2274 /* If the split with the mode-changed register didn't work, try
2275 the original register. */
2276 if (! m_split && ni2dest != i2dest)
2278 ni2dest = i2dest;
2279 m_split = split_insns (gen_rtx_PARALLEL
2280 (VOIDmode,
2281 gen_rtvec (2, newpat,
2282 gen_rtx_CLOBBER (VOIDmode,
2283 i2dest))),
2284 i3);
2288 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2290 m_split = PATTERN (m_split);
2291 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2292 if (insn_code_number >= 0)
2293 newpat = m_split;
2295 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2296 && (next_real_insn (i2) == i3
2297 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2299 rtx i2set, i3set;
2300 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2301 newi2pat = PATTERN (m_split);
2303 i3set = single_set (NEXT_INSN (m_split));
2304 i2set = single_set (m_split);
2306 /* In case we changed the mode of I2DEST, replace it in the
2307 pseudo-register table here. We can't do it above in case this
2308 code doesn't get executed and we do a split the other way. */
2310 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2311 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2313 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2315 /* If I2 or I3 has multiple SETs, we won't know how to track
2316 register status, so don't use these insns. If I2's destination
2317 is used between I2 and I3, we also can't use these insns. */
2319 if (i2_code_number >= 0 && i2set && i3set
2320 && (next_real_insn (i2) == i3
2321 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2322 insn_code_number = recog_for_combine (&newi3pat, i3,
2323 &new_i3_notes);
2324 if (insn_code_number >= 0)
2325 newpat = newi3pat;
2327 /* It is possible that both insns now set the destination of I3.
2328 If so, we must show an extra use of it. */
2330 if (insn_code_number >= 0)
2332 rtx new_i3_dest = SET_DEST (i3set);
2333 rtx new_i2_dest = SET_DEST (i2set);
2335 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2336 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2337 || GET_CODE (new_i3_dest) == SUBREG)
2338 new_i3_dest = XEXP (new_i3_dest, 0);
2340 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2341 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2342 || GET_CODE (new_i2_dest) == SUBREG)
2343 new_i2_dest = XEXP (new_i2_dest, 0);
2345 if (REG_P (new_i3_dest)
2346 && REG_P (new_i2_dest)
2347 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2348 REG_N_SETS (REGNO (new_i2_dest))++;
2352 /* If we can split it and use I2DEST, go ahead and see if that
2353 helps things be recognized. Verify that none of the registers
2354 are set between I2 and I3. */
2355 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2356 #ifdef HAVE_cc0
2357 && REG_P (i2dest)
2358 #endif
2359 /* We need I2DEST in the proper mode. If it is a hard register
2360 or the only use of a pseudo, we can change its mode. */
2361 && (GET_MODE (*split) == GET_MODE (i2dest)
2362 || GET_MODE (*split) == VOIDmode
2363 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2364 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2365 && ! REG_USERVAR_P (i2dest)))
2366 && (next_real_insn (i2) == i3
2367 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2368 /* We can't overwrite I2DEST if its value is still used by
2369 NEWPAT. */
2370 && ! reg_referenced_p (i2dest, newpat))
2372 rtx newdest = i2dest;
2373 enum rtx_code split_code = GET_CODE (*split);
2374 enum machine_mode split_mode = GET_MODE (*split);
2376 /* Get NEWDEST as a register in the proper mode. We have already
2377 validated that we can do this. */
2378 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2380 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2382 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2383 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2386 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2387 an ASHIFT. This can occur if it was inside a PLUS and hence
2388 appeared to be a memory address. This is a kludge. */
2389 if (split_code == MULT
2390 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2391 && INTVAL (XEXP (*split, 1)) > 0
2392 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2394 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2395 XEXP (*split, 0), GEN_INT (i)));
2396 /* Update split_code because we may not have a multiply
2397 anymore. */
2398 split_code = GET_CODE (*split);
2401 #ifdef INSN_SCHEDULING
2402 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2403 be written as a ZERO_EXTEND. */
2404 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2406 #ifdef LOAD_EXTEND_OP
2407 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2408 what it really is. */
2409 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2410 == SIGN_EXTEND)
2411 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2412 SUBREG_REG (*split)));
2413 else
2414 #endif
2415 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2416 SUBREG_REG (*split)));
2418 #endif
2420 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2421 SUBST (*split, newdest);
2422 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2424 /* recog_for_combine might have added CLOBBERs to newi2pat.
2425 Make sure NEWPAT does not depend on the clobbered regs. */
2426 if (GET_CODE (newi2pat) == PARALLEL)
2427 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2428 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2430 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2431 if (reg_overlap_mentioned_p (reg, newpat))
2433 undo_all ();
2434 return 0;
2438 /* If the split point was a MULT and we didn't have one before,
2439 don't use one now. */
2440 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2441 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2445 /* Check for a case where we loaded from memory in a narrow mode and
2446 then sign extended it, but we need both registers. In that case,
2447 we have a PARALLEL with both loads from the same memory location.
2448 We can split this into a load from memory followed by a register-register
2449 copy. This saves at least one insn, more if register allocation can
2450 eliminate the copy.
2452 We cannot do this if the destination of the first assignment is a
2453 condition code register or cc0. We eliminate this case by making sure
2454 the SET_DEST and SET_SRC have the same mode.
2456 We cannot do this if the destination of the second assignment is
2457 a register that we have already assumed is zero-extended. Similarly
2458 for a SUBREG of such a register. */
2460 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2461 && GET_CODE (newpat) == PARALLEL
2462 && XVECLEN (newpat, 0) == 2
2463 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2464 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2465 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2466 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2467 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2468 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2469 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2470 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2471 INSN_CUID (i2))
2472 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2473 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2474 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2475 (REG_P (temp)
2476 && reg_stat[REGNO (temp)].nonzero_bits != 0
2477 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2478 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2479 && (reg_stat[REGNO (temp)].nonzero_bits
2480 != GET_MODE_MASK (word_mode))))
2481 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2482 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2483 (REG_P (temp)
2484 && reg_stat[REGNO (temp)].nonzero_bits != 0
2485 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2486 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2487 && (reg_stat[REGNO (temp)].nonzero_bits
2488 != GET_MODE_MASK (word_mode)))))
2489 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2490 SET_SRC (XVECEXP (newpat, 0, 1)))
2491 && ! find_reg_note (i3, REG_UNUSED,
2492 SET_DEST (XVECEXP (newpat, 0, 0))))
2494 rtx ni2dest;
2496 newi2pat = XVECEXP (newpat, 0, 0);
2497 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2498 newpat = XVECEXP (newpat, 0, 1);
2499 SUBST (SET_SRC (newpat),
2500 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2501 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2503 if (i2_code_number >= 0)
2504 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2506 if (insn_code_number >= 0)
2507 swap_i2i3 = 1;
2510 /* Similarly, check for a case where we have a PARALLEL of two independent
2511 SETs but we started with three insns. In this case, we can do the sets
2512 as two separate insns. This case occurs when some SET allows two
2513 other insns to combine, but the destination of that SET is still live. */
2515 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2516 && GET_CODE (newpat) == PARALLEL
2517 && XVECLEN (newpat, 0) == 2
2518 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2519 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2520 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2521 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2522 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2523 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2524 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2525 INSN_CUID (i2))
2526 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2527 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2528 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2529 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2530 XVECEXP (newpat, 0, 0))
2531 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2532 XVECEXP (newpat, 0, 1))
2533 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2534 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2536 /* Normally, it doesn't matter which of the two is done first,
2537 but it does if one references cc0. In that case, it has to
2538 be first. */
2539 #ifdef HAVE_cc0
2540 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2542 newi2pat = XVECEXP (newpat, 0, 0);
2543 newpat = XVECEXP (newpat, 0, 1);
2545 else
2546 #endif
2548 newi2pat = XVECEXP (newpat, 0, 1);
2549 newpat = XVECEXP (newpat, 0, 0);
2552 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2554 if (i2_code_number >= 0)
2555 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2558 /* If it still isn't recognized, fail and change things back the way they
2559 were. */
2560 if ((insn_code_number < 0
2561 /* Is the result a reasonable ASM_OPERANDS? */
2562 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2564 undo_all ();
2565 return 0;
2568 /* If we had to change another insn, make sure it is valid also. */
2569 if (undobuf.other_insn)
2571 rtx other_pat = PATTERN (undobuf.other_insn);
2572 rtx new_other_notes;
2573 rtx note, next;
2575 CLEAR_HARD_REG_SET (newpat_used_regs);
2577 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2578 &new_other_notes);
2580 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2582 undo_all ();
2583 return 0;
2586 PATTERN (undobuf.other_insn) = other_pat;
2588 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2589 are still valid. Then add any non-duplicate notes added by
2590 recog_for_combine. */
2591 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2593 next = XEXP (note, 1);
2595 if (REG_NOTE_KIND (note) == REG_UNUSED
2596 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2598 if (REG_P (XEXP (note, 0)))
2599 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2601 remove_note (undobuf.other_insn, note);
2605 for (note = new_other_notes; note; note = XEXP (note, 1))
2606 if (REG_P (XEXP (note, 0)))
2607 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2609 distribute_notes (new_other_notes, undobuf.other_insn,
2610 undobuf.other_insn, NULL_RTX);
2612 #ifdef HAVE_cc0
2613 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2614 they are adjacent to each other or not. */
2616 rtx p = prev_nonnote_insn (i3);
2617 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2618 && sets_cc0_p (newi2pat))
2620 undo_all ();
2621 return 0;
2624 #endif
2626 /* Only allow this combination if insn_rtx_costs reports that the
2627 replacement instructions are cheaper than the originals. */
2628 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2630 undo_all ();
2631 return 0;
2634 /* We now know that we can do this combination. Merge the insns and
2635 update the status of registers and LOG_LINKS. */
2637 if (swap_i2i3)
2639 rtx insn;
2640 rtx link;
2641 rtx ni2dest;
2643 /* I3 now uses what used to be its destination and which is now
2644 I2's destination. This requires us to do a few adjustments. */
2645 PATTERN (i3) = newpat;
2646 adjust_for_new_dest (i3);
2648 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2649 so we still will.
2651 However, some later insn might be using I2's dest and have
2652 a LOG_LINK pointing at I3. We must remove this link.
2653 The simplest way to remove the link is to point it at I1,
2654 which we know will be a NOTE. */
2656 /* newi2pat is usually a SET here; however, recog_for_combine might
2657 have added some clobbers. */
2658 if (GET_CODE (newi2pat) == PARALLEL)
2659 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2660 else
2661 ni2dest = SET_DEST (newi2pat);
2663 for (insn = NEXT_INSN (i3);
2664 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2665 || insn != BB_HEAD (this_basic_block->next_bb));
2666 insn = NEXT_INSN (insn))
2668 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2670 for (link = LOG_LINKS (insn); link;
2671 link = XEXP (link, 1))
2672 if (XEXP (link, 0) == i3)
2673 XEXP (link, 0) = i1;
2675 break;
2681 rtx i3notes, i2notes, i1notes = 0;
2682 rtx i3links, i2links, i1links = 0;
2683 rtx midnotes = 0;
2684 unsigned int regno;
2686 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2687 clear them. */
2688 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2689 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2690 if (i1)
2691 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2693 /* Ensure that we do not have something that should not be shared but
2694 occurs multiple times in the new insns. Check this by first
2695 resetting all the `used' flags and then copying anything is shared. */
2697 reset_used_flags (i3notes);
2698 reset_used_flags (i2notes);
2699 reset_used_flags (i1notes);
2700 reset_used_flags (newpat);
2701 reset_used_flags (newi2pat);
2702 if (undobuf.other_insn)
2703 reset_used_flags (PATTERN (undobuf.other_insn));
2705 i3notes = copy_rtx_if_shared (i3notes);
2706 i2notes = copy_rtx_if_shared (i2notes);
2707 i1notes = copy_rtx_if_shared (i1notes);
2708 newpat = copy_rtx_if_shared (newpat);
2709 newi2pat = copy_rtx_if_shared (newi2pat);
2710 if (undobuf.other_insn)
2711 reset_used_flags (PATTERN (undobuf.other_insn));
2713 INSN_CODE (i3) = insn_code_number;
2714 PATTERN (i3) = newpat;
2716 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2718 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2720 reset_used_flags (call_usage);
2721 call_usage = copy_rtx (call_usage);
2723 if (substed_i2)
2724 replace_rtx (call_usage, i2dest, i2src);
2726 if (substed_i1)
2727 replace_rtx (call_usage, i1dest, i1src);
2729 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2732 if (undobuf.other_insn)
2733 INSN_CODE (undobuf.other_insn) = other_code_number;
2735 /* We had one special case above where I2 had more than one set and
2736 we replaced a destination of one of those sets with the destination
2737 of I3. In that case, we have to update LOG_LINKS of insns later
2738 in this basic block. Note that this (expensive) case is rare.
2740 Also, in this case, we must pretend that all REG_NOTEs for I2
2741 actually came from I3, so that REG_UNUSED notes from I2 will be
2742 properly handled. */
2744 if (i3_subst_into_i2)
2746 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2747 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2748 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2749 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2750 && ! find_reg_note (i2, REG_UNUSED,
2751 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2752 for (temp = NEXT_INSN (i2);
2753 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2754 || BB_HEAD (this_basic_block) != temp);
2755 temp = NEXT_INSN (temp))
2756 if (temp != i3 && INSN_P (temp))
2757 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2758 if (XEXP (link, 0) == i2)
2759 XEXP (link, 0) = i3;
2761 if (i3notes)
2763 rtx link = i3notes;
2764 while (XEXP (link, 1))
2765 link = XEXP (link, 1);
2766 XEXP (link, 1) = i2notes;
2768 else
2769 i3notes = i2notes;
2770 i2notes = 0;
2773 LOG_LINKS (i3) = 0;
2774 REG_NOTES (i3) = 0;
2775 LOG_LINKS (i2) = 0;
2776 REG_NOTES (i2) = 0;
2778 if (newi2pat)
2780 INSN_CODE (i2) = i2_code_number;
2781 PATTERN (i2) = newi2pat;
2783 else
2784 SET_INSN_DELETED (i2);
2786 if (i1)
2788 LOG_LINKS (i1) = 0;
2789 REG_NOTES (i1) = 0;
2790 SET_INSN_DELETED (i1);
2793 /* Get death notes for everything that is now used in either I3 or
2794 I2 and used to die in a previous insn. If we built two new
2795 patterns, move from I1 to I2 then I2 to I3 so that we get the
2796 proper movement on registers that I2 modifies. */
2798 if (newi2pat)
2800 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2801 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2803 else
2804 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2805 i3, &midnotes);
2807 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2808 if (i3notes)
2809 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2810 if (i2notes)
2811 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2812 if (i1notes)
2813 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2814 if (midnotes)
2815 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2817 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2818 know these are REG_UNUSED and want them to go to the desired insn,
2819 so we always pass it as i3. We have not counted the notes in
2820 reg_n_deaths yet, so we need to do so now. */
2822 if (newi2pat && new_i2_notes)
2824 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2825 if (REG_P (XEXP (temp, 0)))
2826 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2828 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2831 if (new_i3_notes)
2833 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2834 if (REG_P (XEXP (temp, 0)))
2835 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2837 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2840 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2841 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2842 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2843 in that case, it might delete I2. Similarly for I2 and I1.
2844 Show an additional death due to the REG_DEAD note we make here. If
2845 we discard it in distribute_notes, we will decrement it again. */
2847 if (i3dest_killed)
2849 if (REG_P (i3dest_killed))
2850 REG_N_DEATHS (REGNO (i3dest_killed))++;
2852 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2853 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2854 NULL_RTX),
2855 NULL_RTX, i2, NULL_RTX);
2856 else
2857 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2858 NULL_RTX),
2859 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2862 if (i2dest_in_i2src)
2864 if (REG_P (i2dest))
2865 REG_N_DEATHS (REGNO (i2dest))++;
2867 if (newi2pat && reg_set_p (i2dest, newi2pat))
2868 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2869 NULL_RTX, i2, NULL_RTX);
2870 else
2871 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2872 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2875 if (i1dest_in_i1src)
2877 if (REG_P (i1dest))
2878 REG_N_DEATHS (REGNO (i1dest))++;
2880 if (newi2pat && reg_set_p (i1dest, newi2pat))
2881 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2882 NULL_RTX, i2, NULL_RTX);
2883 else
2884 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2885 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2888 distribute_links (i3links);
2889 distribute_links (i2links);
2890 distribute_links (i1links);
2892 if (REG_P (i2dest))
2894 rtx link;
2895 rtx i2_insn = 0, i2_val = 0, set;
2897 /* The insn that used to set this register doesn't exist, and
2898 this life of the register may not exist either. See if one of
2899 I3's links points to an insn that sets I2DEST. If it does,
2900 that is now the last known value for I2DEST. If we don't update
2901 this and I2 set the register to a value that depended on its old
2902 contents, we will get confused. If this insn is used, thing
2903 will be set correctly in combine_instructions. */
2905 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2906 if ((set = single_set (XEXP (link, 0))) != 0
2907 && rtx_equal_p (i2dest, SET_DEST (set)))
2908 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2910 record_value_for_reg (i2dest, i2_insn, i2_val);
2912 /* If the reg formerly set in I2 died only once and that was in I3,
2913 zero its use count so it won't make `reload' do any work. */
2914 if (! added_sets_2
2915 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2916 && ! i2dest_in_i2src)
2918 regno = REGNO (i2dest);
2919 REG_N_SETS (regno)--;
2923 if (i1 && REG_P (i1dest))
2925 rtx link;
2926 rtx i1_insn = 0, i1_val = 0, set;
2928 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2929 if ((set = single_set (XEXP (link, 0))) != 0
2930 && rtx_equal_p (i1dest, SET_DEST (set)))
2931 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2933 record_value_for_reg (i1dest, i1_insn, i1_val);
2935 regno = REGNO (i1dest);
2936 if (! added_sets_1 && ! i1dest_in_i1src)
2937 REG_N_SETS (regno)--;
2940 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2941 been made to this insn. The order of
2942 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2943 can affect nonzero_bits of newpat */
2944 if (newi2pat)
2945 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2946 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2948 /* Set new_direct_jump_p if a new return or simple jump instruction
2949 has been created.
2951 If I3 is now an unconditional jump, ensure that it has a
2952 BARRIER following it since it may have initially been a
2953 conditional jump. It may also be the last nonnote insn. */
2955 if (returnjump_p (i3) || any_uncondjump_p (i3))
2957 *new_direct_jump_p = 1;
2958 mark_jump_label (PATTERN (i3), i3, 0);
2960 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2961 || !BARRIER_P (temp))
2962 emit_barrier_after (i3);
2965 if (undobuf.other_insn != NULL_RTX
2966 && (returnjump_p (undobuf.other_insn)
2967 || any_uncondjump_p (undobuf.other_insn)))
2969 *new_direct_jump_p = 1;
2971 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2972 || !BARRIER_P (temp))
2973 emit_barrier_after (undobuf.other_insn);
2976 /* An NOOP jump does not need barrier, but it does need cleaning up
2977 of CFG. */
2978 if (GET_CODE (newpat) == SET
2979 && SET_SRC (newpat) == pc_rtx
2980 && SET_DEST (newpat) == pc_rtx)
2981 *new_direct_jump_p = 1;
2984 combine_successes++;
2985 undo_commit ();
2987 if (added_links_insn
2988 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2989 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2990 return added_links_insn;
2991 else
2992 return newi2pat ? i2 : i3;
2995 /* Undo all the modifications recorded in undobuf. */
2997 static void
2998 undo_all (void)
3000 struct undo *undo, *next;
3002 for (undo = undobuf.undos; undo; undo = next)
3004 next = undo->next;
3005 if (undo->is_int)
3006 *undo->where.i = undo->old_contents.i;
3007 else
3008 *undo->where.r = undo->old_contents.r;
3010 undo->next = undobuf.frees;
3011 undobuf.frees = undo;
3014 undobuf.undos = 0;
3017 /* We've committed to accepting the changes we made. Move all
3018 of the undos to the free list. */
3020 static void
3021 undo_commit (void)
3023 struct undo *undo, *next;
3025 for (undo = undobuf.undos; undo; undo = next)
3027 next = undo->next;
3028 undo->next = undobuf.frees;
3029 undobuf.frees = undo;
3031 undobuf.undos = 0;
3035 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3036 where we have an arithmetic expression and return that point. LOC will
3037 be inside INSN.
3039 try_combine will call this function to see if an insn can be split into
3040 two insns. */
3042 static rtx *
3043 find_split_point (rtx *loc, rtx insn)
3045 rtx x = *loc;
3046 enum rtx_code code = GET_CODE (x);
3047 rtx *split;
3048 unsigned HOST_WIDE_INT len = 0;
3049 HOST_WIDE_INT pos = 0;
3050 int unsignedp = 0;
3051 rtx inner = NULL_RTX;
3053 /* First special-case some codes. */
3054 switch (code)
3056 case SUBREG:
3057 #ifdef INSN_SCHEDULING
3058 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3059 point. */
3060 if (MEM_P (SUBREG_REG (x)))
3061 return loc;
3062 #endif
3063 return find_split_point (&SUBREG_REG (x), insn);
3065 case MEM:
3066 #ifdef HAVE_lo_sum
3067 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3068 using LO_SUM and HIGH. */
3069 if (GET_CODE (XEXP (x, 0)) == CONST
3070 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3072 SUBST (XEXP (x, 0),
3073 gen_rtx_LO_SUM (Pmode,
3074 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3075 XEXP (x, 0)));
3076 return &XEXP (XEXP (x, 0), 0);
3078 #endif
3080 /* If we have a PLUS whose second operand is a constant and the
3081 address is not valid, perhaps will can split it up using
3082 the machine-specific way to split large constants. We use
3083 the first pseudo-reg (one of the virtual regs) as a placeholder;
3084 it will not remain in the result. */
3085 if (GET_CODE (XEXP (x, 0)) == PLUS
3086 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3087 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3089 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3090 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3091 subst_insn);
3093 /* This should have produced two insns, each of which sets our
3094 placeholder. If the source of the second is a valid address,
3095 we can make put both sources together and make a split point
3096 in the middle. */
3098 if (seq
3099 && NEXT_INSN (seq) != NULL_RTX
3100 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3101 && NONJUMP_INSN_P (seq)
3102 && GET_CODE (PATTERN (seq)) == SET
3103 && SET_DEST (PATTERN (seq)) == reg
3104 && ! reg_mentioned_p (reg,
3105 SET_SRC (PATTERN (seq)))
3106 && NONJUMP_INSN_P (NEXT_INSN (seq))
3107 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3108 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3109 && memory_address_p (GET_MODE (x),
3110 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3112 rtx src1 = SET_SRC (PATTERN (seq));
3113 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3115 /* Replace the placeholder in SRC2 with SRC1. If we can
3116 find where in SRC2 it was placed, that can become our
3117 split point and we can replace this address with SRC2.
3118 Just try two obvious places. */
3120 src2 = replace_rtx (src2, reg, src1);
3121 split = 0;
3122 if (XEXP (src2, 0) == src1)
3123 split = &XEXP (src2, 0);
3124 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3125 && XEXP (XEXP (src2, 0), 0) == src1)
3126 split = &XEXP (XEXP (src2, 0), 0);
3128 if (split)
3130 SUBST (XEXP (x, 0), src2);
3131 return split;
3135 /* If that didn't work, perhaps the first operand is complex and
3136 needs to be computed separately, so make a split point there.
3137 This will occur on machines that just support REG + CONST
3138 and have a constant moved through some previous computation. */
3140 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3141 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3142 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3143 return &XEXP (XEXP (x, 0), 0);
3145 break;
3147 case SET:
3148 #ifdef HAVE_cc0
3149 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3150 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3151 we need to put the operand into a register. So split at that
3152 point. */
3154 if (SET_DEST (x) == cc0_rtx
3155 && GET_CODE (SET_SRC (x)) != COMPARE
3156 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3157 && !OBJECT_P (SET_SRC (x))
3158 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3159 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3160 return &SET_SRC (x);
3161 #endif
3163 /* See if we can split SET_SRC as it stands. */
3164 split = find_split_point (&SET_SRC (x), insn);
3165 if (split && split != &SET_SRC (x))
3166 return split;
3168 /* See if we can split SET_DEST as it stands. */
3169 split = find_split_point (&SET_DEST (x), insn);
3170 if (split && split != &SET_DEST (x))
3171 return split;
3173 /* See if this is a bitfield assignment with everything constant. If
3174 so, this is an IOR of an AND, so split it into that. */
3175 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3176 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3177 <= HOST_BITS_PER_WIDE_INT)
3178 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3179 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3180 && GET_CODE (SET_SRC (x)) == CONST_INT
3181 && ((INTVAL (XEXP (SET_DEST (x), 1))
3182 + INTVAL (XEXP (SET_DEST (x), 2)))
3183 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3184 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3186 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3187 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3188 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3189 rtx dest = XEXP (SET_DEST (x), 0);
3190 enum machine_mode mode = GET_MODE (dest);
3191 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3192 rtx or_mask;
3194 if (BITS_BIG_ENDIAN)
3195 pos = GET_MODE_BITSIZE (mode) - len - pos;
3197 or_mask = gen_int_mode (src << pos, mode);
3198 if (src == mask)
3199 SUBST (SET_SRC (x),
3200 simplify_gen_binary (IOR, mode, dest, or_mask));
3201 else
3203 rtx negmask = gen_int_mode (~(mask << pos), mode);
3204 SUBST (SET_SRC (x),
3205 simplify_gen_binary (IOR, mode,
3206 simplify_gen_binary (AND, mode,
3207 dest, negmask),
3208 or_mask));
3211 SUBST (SET_DEST (x), dest);
3213 split = find_split_point (&SET_SRC (x), insn);
3214 if (split && split != &SET_SRC (x))
3215 return split;
3218 /* Otherwise, see if this is an operation that we can split into two.
3219 If so, try to split that. */
3220 code = GET_CODE (SET_SRC (x));
3222 switch (code)
3224 case AND:
3225 /* If we are AND'ing with a large constant that is only a single
3226 bit and the result is only being used in a context where we
3227 need to know if it is zero or nonzero, replace it with a bit
3228 extraction. This will avoid the large constant, which might
3229 have taken more than one insn to make. If the constant were
3230 not a valid argument to the AND but took only one insn to make,
3231 this is no worse, but if it took more than one insn, it will
3232 be better. */
3234 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3235 && REG_P (XEXP (SET_SRC (x), 0))
3236 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3237 && REG_P (SET_DEST (x))
3238 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3239 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3240 && XEXP (*split, 0) == SET_DEST (x)
3241 && XEXP (*split, 1) == const0_rtx)
3243 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3244 XEXP (SET_SRC (x), 0),
3245 pos, NULL_RTX, 1, 1, 0, 0);
3246 if (extraction != 0)
3248 SUBST (SET_SRC (x), extraction);
3249 return find_split_point (loc, insn);
3252 break;
3254 case NE:
3255 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3256 is known to be on, this can be converted into a NEG of a shift. */
3257 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3258 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3259 && 1 <= (pos = exact_log2
3260 (nonzero_bits (XEXP (SET_SRC (x), 0),
3261 GET_MODE (XEXP (SET_SRC (x), 0))))))
3263 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3265 SUBST (SET_SRC (x),
3266 gen_rtx_NEG (mode,
3267 gen_rtx_LSHIFTRT (mode,
3268 XEXP (SET_SRC (x), 0),
3269 GEN_INT (pos))));
3271 split = find_split_point (&SET_SRC (x), insn);
3272 if (split && split != &SET_SRC (x))
3273 return split;
3275 break;
3277 case SIGN_EXTEND:
3278 inner = XEXP (SET_SRC (x), 0);
3280 /* We can't optimize if either mode is a partial integer
3281 mode as we don't know how many bits are significant
3282 in those modes. */
3283 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3284 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3285 break;
3287 pos = 0;
3288 len = GET_MODE_BITSIZE (GET_MODE (inner));
3289 unsignedp = 0;
3290 break;
3292 case SIGN_EXTRACT:
3293 case ZERO_EXTRACT:
3294 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3295 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3297 inner = XEXP (SET_SRC (x), 0);
3298 len = INTVAL (XEXP (SET_SRC (x), 1));
3299 pos = INTVAL (XEXP (SET_SRC (x), 2));
3301 if (BITS_BIG_ENDIAN)
3302 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3303 unsignedp = (code == ZERO_EXTRACT);
3305 break;
3307 default:
3308 break;
3311 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3313 enum machine_mode mode = GET_MODE (SET_SRC (x));
3315 /* For unsigned, we have a choice of a shift followed by an
3316 AND or two shifts. Use two shifts for field sizes where the
3317 constant might be too large. We assume here that we can
3318 always at least get 8-bit constants in an AND insn, which is
3319 true for every current RISC. */
3321 if (unsignedp && len <= 8)
3323 SUBST (SET_SRC (x),
3324 gen_rtx_AND (mode,
3325 gen_rtx_LSHIFTRT
3326 (mode, gen_lowpart (mode, inner),
3327 GEN_INT (pos)),
3328 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3330 split = find_split_point (&SET_SRC (x), insn);
3331 if (split && split != &SET_SRC (x))
3332 return split;
3334 else
3336 SUBST (SET_SRC (x),
3337 gen_rtx_fmt_ee
3338 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3339 gen_rtx_ASHIFT (mode,
3340 gen_lowpart (mode, inner),
3341 GEN_INT (GET_MODE_BITSIZE (mode)
3342 - len - pos)),
3343 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3345 split = find_split_point (&SET_SRC (x), insn);
3346 if (split && split != &SET_SRC (x))
3347 return split;
3351 /* See if this is a simple operation with a constant as the second
3352 operand. It might be that this constant is out of range and hence
3353 could be used as a split point. */
3354 if (BINARY_P (SET_SRC (x))
3355 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3356 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3357 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3358 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3359 return &XEXP (SET_SRC (x), 1);
3361 /* Finally, see if this is a simple operation with its first operand
3362 not in a register. The operation might require this operand in a
3363 register, so return it as a split point. We can always do this
3364 because if the first operand were another operation, we would have
3365 already found it as a split point. */
3366 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3367 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3368 return &XEXP (SET_SRC (x), 0);
3370 return 0;
3372 case AND:
3373 case IOR:
3374 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3375 it is better to write this as (not (ior A B)) so we can split it.
3376 Similarly for IOR. */
3377 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3379 SUBST (*loc,
3380 gen_rtx_NOT (GET_MODE (x),
3381 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3382 GET_MODE (x),
3383 XEXP (XEXP (x, 0), 0),
3384 XEXP (XEXP (x, 1), 0))));
3385 return find_split_point (loc, insn);
3388 /* Many RISC machines have a large set of logical insns. If the
3389 second operand is a NOT, put it first so we will try to split the
3390 other operand first. */
3391 if (GET_CODE (XEXP (x, 1)) == NOT)
3393 rtx tem = XEXP (x, 0);
3394 SUBST (XEXP (x, 0), XEXP (x, 1));
3395 SUBST (XEXP (x, 1), tem);
3397 break;
3399 default:
3400 break;
3403 /* Otherwise, select our actions depending on our rtx class. */
3404 switch (GET_RTX_CLASS (code))
3406 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3407 case RTX_TERNARY:
3408 split = find_split_point (&XEXP (x, 2), insn);
3409 if (split)
3410 return split;
3411 /* ... fall through ... */
3412 case RTX_BIN_ARITH:
3413 case RTX_COMM_ARITH:
3414 case RTX_COMPARE:
3415 case RTX_COMM_COMPARE:
3416 split = find_split_point (&XEXP (x, 1), insn);
3417 if (split)
3418 return split;
3419 /* ... fall through ... */
3420 case RTX_UNARY:
3421 /* Some machines have (and (shift ...) ...) insns. If X is not
3422 an AND, but XEXP (X, 0) is, use it as our split point. */
3423 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3424 return &XEXP (x, 0);
3426 split = find_split_point (&XEXP (x, 0), insn);
3427 if (split)
3428 return split;
3429 return loc;
3431 default:
3432 /* Otherwise, we don't have a split point. */
3433 return 0;
3437 /* Throughout X, replace FROM with TO, and return the result.
3438 The result is TO if X is FROM;
3439 otherwise the result is X, but its contents may have been modified.
3440 If they were modified, a record was made in undobuf so that
3441 undo_all will (among other things) return X to its original state.
3443 If the number of changes necessary is too much to record to undo,
3444 the excess changes are not made, so the result is invalid.
3445 The changes already made can still be undone.
3446 undobuf.num_undo is incremented for such changes, so by testing that
3447 the caller can tell whether the result is valid.
3449 `n_occurrences' is incremented each time FROM is replaced.
3451 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3453 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3454 by copying if `n_occurrences' is nonzero. */
3456 static rtx
3457 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3459 enum rtx_code code = GET_CODE (x);
3460 enum machine_mode op0_mode = VOIDmode;
3461 const char *fmt;
3462 int len, i;
3463 rtx new;
3465 /* Two expressions are equal if they are identical copies of a shared
3466 RTX or if they are both registers with the same register number
3467 and mode. */
3469 #define COMBINE_RTX_EQUAL_P(X,Y) \
3470 ((X) == (Y) \
3471 || (REG_P (X) && REG_P (Y) \
3472 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3474 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3476 n_occurrences++;
3477 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3480 /* If X and FROM are the same register but different modes, they will
3481 not have been seen as equal above. However, flow.c will make a
3482 LOG_LINKS entry for that case. If we do nothing, we will try to
3483 rerecognize our original insn and, when it succeeds, we will
3484 delete the feeding insn, which is incorrect.
3486 So force this insn not to match in this (rare) case. */
3487 if (! in_dest && code == REG && REG_P (from)
3488 && REGNO (x) == REGNO (from))
3489 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3491 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3492 of which may contain things that can be combined. */
3493 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3494 return x;
3496 /* It is possible to have a subexpression appear twice in the insn.
3497 Suppose that FROM is a register that appears within TO.
3498 Then, after that subexpression has been scanned once by `subst',
3499 the second time it is scanned, TO may be found. If we were
3500 to scan TO here, we would find FROM within it and create a
3501 self-referent rtl structure which is completely wrong. */
3502 if (COMBINE_RTX_EQUAL_P (x, to))
3503 return to;
3505 /* Parallel asm_operands need special attention because all of the
3506 inputs are shared across the arms. Furthermore, unsharing the
3507 rtl results in recognition failures. Failure to handle this case
3508 specially can result in circular rtl.
3510 Solve this by doing a normal pass across the first entry of the
3511 parallel, and only processing the SET_DESTs of the subsequent
3512 entries. Ug. */
3514 if (code == PARALLEL
3515 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3516 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3518 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3520 /* If this substitution failed, this whole thing fails. */
3521 if (GET_CODE (new) == CLOBBER
3522 && XEXP (new, 0) == const0_rtx)
3523 return new;
3525 SUBST (XVECEXP (x, 0, 0), new);
3527 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3529 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3531 if (!REG_P (dest)
3532 && GET_CODE (dest) != CC0
3533 && GET_CODE (dest) != PC)
3535 new = subst (dest, from, to, 0, unique_copy);
3537 /* If this substitution failed, this whole thing fails. */
3538 if (GET_CODE (new) == CLOBBER
3539 && XEXP (new, 0) == const0_rtx)
3540 return new;
3542 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3546 else
3548 len = GET_RTX_LENGTH (code);
3549 fmt = GET_RTX_FORMAT (code);
3551 /* We don't need to process a SET_DEST that is a register, CC0,
3552 or PC, so set up to skip this common case. All other cases
3553 where we want to suppress replacing something inside a
3554 SET_SRC are handled via the IN_DEST operand. */
3555 if (code == SET
3556 && (REG_P (SET_DEST (x))
3557 || GET_CODE (SET_DEST (x)) == CC0
3558 || GET_CODE (SET_DEST (x)) == PC))
3559 fmt = "ie";
3561 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3562 constant. */
3563 if (fmt[0] == 'e')
3564 op0_mode = GET_MODE (XEXP (x, 0));
3566 for (i = 0; i < len; i++)
3568 if (fmt[i] == 'E')
3570 int j;
3571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3573 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3575 new = (unique_copy && n_occurrences
3576 ? copy_rtx (to) : to);
3577 n_occurrences++;
3579 else
3581 new = subst (XVECEXP (x, i, j), from, to, 0,
3582 unique_copy);
3584 /* If this substitution failed, this whole thing
3585 fails. */
3586 if (GET_CODE (new) == CLOBBER
3587 && XEXP (new, 0) == const0_rtx)
3588 return new;
3591 SUBST (XVECEXP (x, i, j), new);
3594 else if (fmt[i] == 'e')
3596 /* If this is a register being set, ignore it. */
3597 new = XEXP (x, i);
3598 if (in_dest
3599 && i == 0
3600 && (((code == SUBREG || code == ZERO_EXTRACT)
3601 && REG_P (new))
3602 || code == STRICT_LOW_PART))
3605 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3607 /* In general, don't install a subreg involving two
3608 modes not tieable. It can worsen register
3609 allocation, and can even make invalid reload
3610 insns, since the reg inside may need to be copied
3611 from in the outside mode, and that may be invalid
3612 if it is an fp reg copied in integer mode.
3614 We allow two exceptions to this: It is valid if
3615 it is inside another SUBREG and the mode of that
3616 SUBREG and the mode of the inside of TO is
3617 tieable and it is valid if X is a SET that copies
3618 FROM to CC0. */
3620 if (GET_CODE (to) == SUBREG
3621 && ! MODES_TIEABLE_P (GET_MODE (to),
3622 GET_MODE (SUBREG_REG (to)))
3623 && ! (code == SUBREG
3624 && MODES_TIEABLE_P (GET_MODE (x),
3625 GET_MODE (SUBREG_REG (to))))
3626 #ifdef HAVE_cc0
3627 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3628 #endif
3630 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3632 #ifdef CANNOT_CHANGE_MODE_CLASS
3633 if (code == SUBREG
3634 && REG_P (to)
3635 && REGNO (to) < FIRST_PSEUDO_REGISTER
3636 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3637 GET_MODE (to),
3638 GET_MODE (x)))
3639 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3640 #endif
3642 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3643 n_occurrences++;
3645 else
3646 /* If we are in a SET_DEST, suppress most cases unless we
3647 have gone inside a MEM, in which case we want to
3648 simplify the address. We assume here that things that
3649 are actually part of the destination have their inner
3650 parts in the first expression. This is true for SUBREG,
3651 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3652 things aside from REG and MEM that should appear in a
3653 SET_DEST. */
3654 new = subst (XEXP (x, i), from, to,
3655 (((in_dest
3656 && (code == SUBREG || code == STRICT_LOW_PART
3657 || code == ZERO_EXTRACT))
3658 || code == SET)
3659 && i == 0), unique_copy);
3661 /* If we found that we will have to reject this combination,
3662 indicate that by returning the CLOBBER ourselves, rather than
3663 an expression containing it. This will speed things up as
3664 well as prevent accidents where two CLOBBERs are considered
3665 to be equal, thus producing an incorrect simplification. */
3667 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3668 return new;
3670 if (GET_CODE (x) == SUBREG
3671 && (GET_CODE (new) == CONST_INT
3672 || GET_CODE (new) == CONST_DOUBLE))
3674 enum machine_mode mode = GET_MODE (x);
3676 x = simplify_subreg (GET_MODE (x), new,
3677 GET_MODE (SUBREG_REG (x)),
3678 SUBREG_BYTE (x));
3679 if (! x)
3680 x = gen_rtx_CLOBBER (mode, const0_rtx);
3682 else if (GET_CODE (new) == CONST_INT
3683 && GET_CODE (x) == ZERO_EXTEND)
3685 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3686 new, GET_MODE (XEXP (x, 0)));
3687 gcc_assert (x);
3689 else
3690 SUBST (XEXP (x, i), new);
3695 /* Try to simplify X. If the simplification changed the code, it is likely
3696 that further simplification will help, so loop, but limit the number
3697 of repetitions that will be performed. */
3699 for (i = 0; i < 4; i++)
3701 /* If X is sufficiently simple, don't bother trying to do anything
3702 with it. */
3703 if (code != CONST_INT && code != REG && code != CLOBBER)
3704 x = combine_simplify_rtx (x, op0_mode, in_dest);
3706 if (GET_CODE (x) == code)
3707 break;
3709 code = GET_CODE (x);
3711 /* We no longer know the original mode of operand 0 since we
3712 have changed the form of X) */
3713 op0_mode = VOIDmode;
3716 return x;
3719 /* Simplify X, a piece of RTL. We just operate on the expression at the
3720 outer level; call `subst' to simplify recursively. Return the new
3721 expression.
3723 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3724 if we are inside a SET_DEST. */
3726 static rtx
3727 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3729 enum rtx_code code = GET_CODE (x);
3730 enum machine_mode mode = GET_MODE (x);
3731 rtx temp;
3732 rtx reversed;
3733 int i;
3735 /* If this is a commutative operation, put a constant last and a complex
3736 expression first. We don't need to do this for comparisons here. */
3737 if (COMMUTATIVE_ARITH_P (x)
3738 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3740 temp = XEXP (x, 0);
3741 SUBST (XEXP (x, 0), XEXP (x, 1));
3742 SUBST (XEXP (x, 1), temp);
3745 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3746 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3747 things. Check for cases where both arms are testing the same
3748 condition.
3750 Don't do anything if all operands are very simple. */
3752 if ((BINARY_P (x)
3753 && ((!OBJECT_P (XEXP (x, 0))
3754 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3755 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3756 || (!OBJECT_P (XEXP (x, 1))
3757 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3758 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3759 || (UNARY_P (x)
3760 && (!OBJECT_P (XEXP (x, 0))
3761 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3762 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3764 rtx cond, true_rtx, false_rtx;
3766 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3767 if (cond != 0
3768 /* If everything is a comparison, what we have is highly unlikely
3769 to be simpler, so don't use it. */
3770 && ! (COMPARISON_P (x)
3771 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3773 rtx cop1 = const0_rtx;
3774 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3776 if (cond_code == NE && COMPARISON_P (cond))
3777 return x;
3779 /* Simplify the alternative arms; this may collapse the true and
3780 false arms to store-flag values. Be careful to use copy_rtx
3781 here since true_rtx or false_rtx might share RTL with x as a
3782 result of the if_then_else_cond call above. */
3783 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3784 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3786 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3787 is unlikely to be simpler. */
3788 if (general_operand (true_rtx, VOIDmode)
3789 && general_operand (false_rtx, VOIDmode))
3791 enum rtx_code reversed;
3793 /* Restarting if we generate a store-flag expression will cause
3794 us to loop. Just drop through in this case. */
3796 /* If the result values are STORE_FLAG_VALUE and zero, we can
3797 just make the comparison operation. */
3798 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3799 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3800 cond, cop1);
3801 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3802 && ((reversed = reversed_comparison_code_parts
3803 (cond_code, cond, cop1, NULL))
3804 != UNKNOWN))
3805 x = simplify_gen_relational (reversed, mode, VOIDmode,
3806 cond, cop1);
3808 /* Likewise, we can make the negate of a comparison operation
3809 if the result values are - STORE_FLAG_VALUE and zero. */
3810 else if (GET_CODE (true_rtx) == CONST_INT
3811 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3812 && false_rtx == const0_rtx)
3813 x = simplify_gen_unary (NEG, mode,
3814 simplify_gen_relational (cond_code,
3815 mode, VOIDmode,
3816 cond, cop1),
3817 mode);
3818 else if (GET_CODE (false_rtx) == CONST_INT
3819 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3820 && true_rtx == const0_rtx
3821 && ((reversed = reversed_comparison_code_parts
3822 (cond_code, cond, cop1, NULL))
3823 != UNKNOWN))
3824 x = simplify_gen_unary (NEG, mode,
3825 simplify_gen_relational (reversed,
3826 mode, VOIDmode,
3827 cond, cop1),
3828 mode);
3829 else
3830 return gen_rtx_IF_THEN_ELSE (mode,
3831 simplify_gen_relational (cond_code,
3832 mode,
3833 VOIDmode,
3834 cond,
3835 cop1),
3836 true_rtx, false_rtx);
3838 code = GET_CODE (x);
3839 op0_mode = VOIDmode;
3844 /* Try to fold this expression in case we have constants that weren't
3845 present before. */
3846 temp = 0;
3847 switch (GET_RTX_CLASS (code))
3849 case RTX_UNARY:
3850 if (op0_mode == VOIDmode)
3851 op0_mode = GET_MODE (XEXP (x, 0));
3852 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3853 break;
3854 case RTX_COMPARE:
3855 case RTX_COMM_COMPARE:
3857 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3858 if (cmp_mode == VOIDmode)
3860 cmp_mode = GET_MODE (XEXP (x, 1));
3861 if (cmp_mode == VOIDmode)
3862 cmp_mode = op0_mode;
3864 temp = simplify_relational_operation (code, mode, cmp_mode,
3865 XEXP (x, 0), XEXP (x, 1));
3867 break;
3868 case RTX_COMM_ARITH:
3869 case RTX_BIN_ARITH:
3870 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3871 break;
3872 case RTX_BITFIELD_OPS:
3873 case RTX_TERNARY:
3874 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3875 XEXP (x, 1), XEXP (x, 2));
3876 break;
3877 default:
3878 break;
3881 if (temp)
3883 x = temp;
3884 code = GET_CODE (temp);
3885 op0_mode = VOIDmode;
3886 mode = GET_MODE (temp);
3889 /* First see if we can apply the inverse distributive law. */
3890 if (code == PLUS || code == MINUS
3891 || code == AND || code == IOR || code == XOR)
3893 x = apply_distributive_law (x);
3894 code = GET_CODE (x);
3895 op0_mode = VOIDmode;
3898 /* If CODE is an associative operation not otherwise handled, see if we
3899 can associate some operands. This can win if they are constants or
3900 if they are logically related (i.e. (a & b) & a). */
3901 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3902 || code == AND || code == IOR || code == XOR
3903 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3904 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3905 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3907 if (GET_CODE (XEXP (x, 0)) == code)
3909 rtx other = XEXP (XEXP (x, 0), 0);
3910 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3911 rtx inner_op1 = XEXP (x, 1);
3912 rtx inner;
3914 /* Make sure we pass the constant operand if any as the second
3915 one if this is a commutative operation. */
3916 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3918 rtx tem = inner_op0;
3919 inner_op0 = inner_op1;
3920 inner_op1 = tem;
3922 inner = simplify_binary_operation (code == MINUS ? PLUS
3923 : code == DIV ? MULT
3924 : code,
3925 mode, inner_op0, inner_op1);
3927 /* For commutative operations, try the other pair if that one
3928 didn't simplify. */
3929 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3931 other = XEXP (XEXP (x, 0), 1);
3932 inner = simplify_binary_operation (code, mode,
3933 XEXP (XEXP (x, 0), 0),
3934 XEXP (x, 1));
3937 if (inner)
3938 return simplify_gen_binary (code, mode, other, inner);
3942 /* A little bit of algebraic simplification here. */
3943 switch (code)
3945 case MEM:
3946 /* Ensure that our address has any ASHIFTs converted to MULT in case
3947 address-recognizing predicates are called later. */
3948 temp = make_compound_operation (XEXP (x, 0), MEM);
3949 SUBST (XEXP (x, 0), temp);
3950 break;
3952 case SUBREG:
3953 if (op0_mode == VOIDmode)
3954 op0_mode = GET_MODE (SUBREG_REG (x));
3956 /* See if this can be moved to simplify_subreg. */
3957 if (CONSTANT_P (SUBREG_REG (x))
3958 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3959 /* Don't call gen_lowpart if the inner mode
3960 is VOIDmode and we cannot simplify it, as SUBREG without
3961 inner mode is invalid. */
3962 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3963 || gen_lowpart_common (mode, SUBREG_REG (x))))
3964 return gen_lowpart (mode, SUBREG_REG (x));
3966 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3967 break;
3969 rtx temp;
3970 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3971 SUBREG_BYTE (x));
3972 if (temp)
3973 return temp;
3976 /* Don't change the mode of the MEM if that would change the meaning
3977 of the address. */
3978 if (MEM_P (SUBREG_REG (x))
3979 && (MEM_VOLATILE_P (SUBREG_REG (x))
3980 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3981 return gen_rtx_CLOBBER (mode, const0_rtx);
3983 /* Note that we cannot do any narrowing for non-constants since
3984 we might have been counting on using the fact that some bits were
3985 zero. We now do this in the SET. */
3987 break;
3989 case NOT:
3990 if (GET_CODE (XEXP (x, 0)) == SUBREG
3991 && subreg_lowpart_p (XEXP (x, 0))
3992 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3993 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3994 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3995 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3997 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3999 x = gen_rtx_ROTATE (inner_mode,
4000 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4001 inner_mode),
4002 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4003 return gen_lowpart (mode, x);
4006 /* Apply De Morgan's laws to reduce number of patterns for machines
4007 with negating logical insns (and-not, nand, etc.). If result has
4008 only one NOT, put it first, since that is how the patterns are
4009 coded. */
4011 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4013 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4014 enum machine_mode op_mode;
4016 op_mode = GET_MODE (in1);
4017 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4019 op_mode = GET_MODE (in2);
4020 if (op_mode == VOIDmode)
4021 op_mode = mode;
4022 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4024 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4026 rtx tem = in2;
4027 in2 = in1; in1 = tem;
4030 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4031 mode, in1, in2);
4033 break;
4035 case NEG:
4036 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4037 if (GET_CODE (XEXP (x, 0)) == XOR
4038 && XEXP (XEXP (x, 0), 1) == const1_rtx
4039 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4040 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4041 constm1_rtx);
4043 temp = expand_compound_operation (XEXP (x, 0));
4045 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4046 replaced by (lshiftrt X C). This will convert
4047 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4049 if (GET_CODE (temp) == ASHIFTRT
4050 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4051 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4052 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4053 INTVAL (XEXP (temp, 1)));
4055 /* If X has only a single bit that might be nonzero, say, bit I, convert
4056 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4057 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4058 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4059 or a SUBREG of one since we'd be making the expression more
4060 complex if it was just a register. */
4062 if (!REG_P (temp)
4063 && ! (GET_CODE (temp) == SUBREG
4064 && REG_P (SUBREG_REG (temp)))
4065 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4067 rtx temp1 = simplify_shift_const
4068 (NULL_RTX, ASHIFTRT, mode,
4069 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4070 GET_MODE_BITSIZE (mode) - 1 - i),
4071 GET_MODE_BITSIZE (mode) - 1 - i);
4073 /* If all we did was surround TEMP with the two shifts, we
4074 haven't improved anything, so don't use it. Otherwise,
4075 we are better off with TEMP1. */
4076 if (GET_CODE (temp1) != ASHIFTRT
4077 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4078 || XEXP (XEXP (temp1, 0), 0) != temp)
4079 return temp1;
4081 break;
4083 case TRUNCATE:
4084 /* We can't handle truncation to a partial integer mode here
4085 because we don't know the real bitsize of the partial
4086 integer mode. */
4087 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4088 break;
4090 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4091 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4092 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4093 SUBST (XEXP (x, 0),
4094 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4095 GET_MODE_MASK (mode), NULL_RTX, 0));
4097 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4098 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4099 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4100 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4101 return XEXP (XEXP (x, 0), 0);
4103 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4104 (OP:SI foo:SI) if OP is NEG or ABS. */
4105 if ((GET_CODE (XEXP (x, 0)) == ABS
4106 || GET_CODE (XEXP (x, 0)) == NEG)
4107 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4108 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4109 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4110 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4111 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4113 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4114 (truncate:SI x). */
4115 if (GET_CODE (XEXP (x, 0)) == SUBREG
4116 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4117 && subreg_lowpart_p (XEXP (x, 0)))
4118 return SUBREG_REG (XEXP (x, 0));
4120 /* If we know that the value is already truncated, we can
4121 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4122 is nonzero for the corresponding modes. But don't do this
4123 for an (LSHIFTRT (MULT ...)) since this will cause problems
4124 with the umulXi3_highpart patterns. */
4125 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4126 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4127 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4128 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4129 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4130 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4131 return gen_lowpart (mode, XEXP (x, 0));
4133 /* A truncate of a comparison can be replaced with a subreg if
4134 STORE_FLAG_VALUE permits. This is like the previous test,
4135 but it works even if the comparison is done in a mode larger
4136 than HOST_BITS_PER_WIDE_INT. */
4137 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4138 && COMPARISON_P (XEXP (x, 0))
4139 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4140 return gen_lowpart (mode, XEXP (x, 0));
4142 /* Similarly, a truncate of a register whose value is a
4143 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4144 permits. */
4145 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4146 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4147 && (temp = get_last_value (XEXP (x, 0)))
4148 && COMPARISON_P (temp))
4149 return gen_lowpart (mode, XEXP (x, 0));
4151 break;
4153 case FLOAT_TRUNCATE:
4154 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4155 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4156 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4157 return XEXP (XEXP (x, 0), 0);
4159 /* (float_truncate:SF (float_truncate:DF foo:XF))
4160 = (float_truncate:SF foo:XF).
4161 This may eliminate double rounding, so it is unsafe.
4163 (float_truncate:SF (float_extend:XF foo:DF))
4164 = (float_truncate:SF foo:DF).
4166 (float_truncate:DF (float_extend:XF foo:SF))
4167 = (float_extend:SF foo:DF). */
4168 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4169 && flag_unsafe_math_optimizations)
4170 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4171 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4172 0)))
4173 > GET_MODE_SIZE (mode)
4174 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4175 mode,
4176 XEXP (XEXP (x, 0), 0), mode);
4178 /* (float_truncate (float x)) is (float x) */
4179 if (GET_CODE (XEXP (x, 0)) == FLOAT
4180 && (flag_unsafe_math_optimizations
4181 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4182 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4183 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4184 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4185 return simplify_gen_unary (FLOAT, mode,
4186 XEXP (XEXP (x, 0), 0),
4187 GET_MODE (XEXP (XEXP (x, 0), 0)));
4189 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4190 (OP:SF foo:SF) if OP is NEG or ABS. */
4191 if ((GET_CODE (XEXP (x, 0)) == ABS
4192 || GET_CODE (XEXP (x, 0)) == NEG)
4193 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4194 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4195 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4196 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4198 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4199 is (float_truncate:SF x). */
4200 if (GET_CODE (XEXP (x, 0)) == SUBREG
4201 && subreg_lowpart_p (XEXP (x, 0))
4202 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4203 return SUBREG_REG (XEXP (x, 0));
4204 break;
4205 case FLOAT_EXTEND:
4206 /* (float_extend (float_extend x)) is (float_extend x)
4208 (float_extend (float x)) is (float x) assuming that double
4209 rounding can't happen.
4211 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4212 || (GET_CODE (XEXP (x, 0)) == FLOAT
4213 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4214 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4215 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4216 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4217 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4218 XEXP (XEXP (x, 0), 0),
4219 GET_MODE (XEXP (XEXP (x, 0), 0)));
4221 break;
4222 #ifdef HAVE_cc0
4223 case COMPARE:
4224 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4225 using cc0, in which case we want to leave it as a COMPARE
4226 so we can distinguish it from a register-register-copy. */
4227 if (XEXP (x, 1) == const0_rtx)
4228 return XEXP (x, 0);
4230 /* x - 0 is the same as x unless x's mode has signed zeros and
4231 allows rounding towards -infinity. Under those conditions,
4232 0 - 0 is -0. */
4233 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4234 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4235 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4236 return XEXP (x, 0);
4237 break;
4238 #endif
4240 case CONST:
4241 /* (const (const X)) can become (const X). Do it this way rather than
4242 returning the inner CONST since CONST can be shared with a
4243 REG_EQUAL note. */
4244 if (GET_CODE (XEXP (x, 0)) == CONST)
4245 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4246 break;
4248 #ifdef HAVE_lo_sum
4249 case LO_SUM:
4250 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4251 can add in an offset. find_split_point will split this address up
4252 again if it doesn't match. */
4253 if (GET_CODE (XEXP (x, 0)) == HIGH
4254 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4255 return XEXP (x, 1);
4256 break;
4257 #endif
4259 case PLUS:
4260 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4262 if (GET_CODE (XEXP (x, 0)) == MULT
4263 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4265 rtx in1, in2;
4267 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4268 in2 = XEXP (XEXP (x, 0), 1);
4269 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4270 simplify_gen_binary (MULT, mode,
4271 in1, in2));
4274 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4275 outermost. That's because that's the way indexed addresses are
4276 supposed to appear. This code used to check many more cases, but
4277 they are now checked elsewhere. */
4278 if (GET_CODE (XEXP (x, 0)) == PLUS
4279 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4280 return simplify_gen_binary (PLUS, mode,
4281 simplify_gen_binary (PLUS, mode,
4282 XEXP (XEXP (x, 0), 0),
4283 XEXP (x, 1)),
4284 XEXP (XEXP (x, 0), 1));
4286 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4287 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4288 bit-field and can be replaced by either a sign_extend or a
4289 sign_extract. The `and' may be a zero_extend and the two
4290 <c>, -<c> constants may be reversed. */
4291 if (GET_CODE (XEXP (x, 0)) == XOR
4292 && GET_CODE (XEXP (x, 1)) == CONST_INT
4293 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4294 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4295 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4296 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4297 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4298 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4299 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4300 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4301 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4302 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4303 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4304 == (unsigned int) i + 1))))
4305 return simplify_shift_const
4306 (NULL_RTX, ASHIFTRT, mode,
4307 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4308 XEXP (XEXP (XEXP (x, 0), 0), 0),
4309 GET_MODE_BITSIZE (mode) - (i + 1)),
4310 GET_MODE_BITSIZE (mode) - (i + 1));
4312 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4313 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4314 is 1. This produces better code than the alternative immediately
4315 below. */
4316 if (COMPARISON_P (XEXP (x, 0))
4317 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4318 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4319 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4320 XEXP (XEXP (x, 0), 0),
4321 XEXP (XEXP (x, 0), 1))))
4322 return
4323 simplify_gen_unary (NEG, mode, reversed, mode);
4325 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4326 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4327 the bitsize of the mode - 1. This allows simplification of
4328 "a = (b & 8) == 0;" */
4329 if (XEXP (x, 1) == constm1_rtx
4330 && !REG_P (XEXP (x, 0))
4331 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4332 && REG_P (SUBREG_REG (XEXP (x, 0))))
4333 && nonzero_bits (XEXP (x, 0), mode) == 1)
4334 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4335 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4336 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4337 GET_MODE_BITSIZE (mode) - 1),
4338 GET_MODE_BITSIZE (mode) - 1);
4340 /* If we are adding two things that have no bits in common, convert
4341 the addition into an IOR. This will often be further simplified,
4342 for example in cases like ((a & 1) + (a & 2)), which can
4343 become a & 3. */
4345 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4346 && (nonzero_bits (XEXP (x, 0), mode)
4347 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4349 /* Try to simplify the expression further. */
4350 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4351 temp = combine_simplify_rtx (tor, mode, in_dest);
4353 /* If we could, great. If not, do not go ahead with the IOR
4354 replacement, since PLUS appears in many special purpose
4355 address arithmetic instructions. */
4356 if (GET_CODE (temp) != CLOBBER && temp != tor)
4357 return temp;
4359 break;
4361 case MINUS:
4362 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4363 by reversing the comparison code if valid. */
4364 if (STORE_FLAG_VALUE == 1
4365 && XEXP (x, 0) == const1_rtx
4366 && COMPARISON_P (XEXP (x, 1))
4367 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4368 XEXP (XEXP (x, 1), 0),
4369 XEXP (XEXP (x, 1), 1))))
4370 return reversed;
4372 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4373 (and <foo> (const_int pow2-1)) */
4374 if (GET_CODE (XEXP (x, 1)) == AND
4375 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4376 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4377 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4378 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4379 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4381 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4383 if (GET_CODE (XEXP (x, 1)) == MULT
4384 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4386 rtx in1, in2;
4388 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4389 in2 = XEXP (XEXP (x, 1), 1);
4390 return simplify_gen_binary (PLUS, mode,
4391 simplify_gen_binary (MULT, mode,
4392 in1, in2),
4393 XEXP (x, 0));
4396 /* Canonicalize (minus (neg A) (mult B C)) to
4397 (minus (mult (neg B) C) A). */
4398 if (GET_CODE (XEXP (x, 1)) == MULT
4399 && GET_CODE (XEXP (x, 0)) == NEG)
4401 rtx in1, in2;
4403 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4404 in2 = XEXP (XEXP (x, 1), 1);
4405 return simplify_gen_binary (MINUS, mode,
4406 simplify_gen_binary (MULT, mode,
4407 in1, in2),
4408 XEXP (XEXP (x, 0), 0));
4411 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4412 integers. */
4413 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4414 return simplify_gen_binary (MINUS, mode,
4415 simplify_gen_binary (MINUS, mode,
4416 XEXP (x, 0),
4417 XEXP (XEXP (x, 1), 0)),
4418 XEXP (XEXP (x, 1), 1));
4419 break;
4421 case MULT:
4422 /* If we have (mult (plus A B) C), apply the distributive law and then
4423 the inverse distributive law to see if things simplify. This
4424 occurs mostly in addresses, often when unrolling loops. */
4426 if (GET_CODE (XEXP (x, 0)) == PLUS)
4428 rtx result = distribute_and_simplify_rtx (x, 0);
4429 if (result)
4430 return result;
4433 /* Try simplify a*(b/c) as (a*b)/c. */
4434 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4435 && GET_CODE (XEXP (x, 0)) == DIV)
4437 rtx tem = simplify_binary_operation (MULT, mode,
4438 XEXP (XEXP (x, 0), 0),
4439 XEXP (x, 1));
4440 if (tem)
4441 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4443 break;
4445 case UDIV:
4446 /* If this is a divide by a power of two, treat it as a shift if
4447 its first operand is a shift. */
4448 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4449 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4450 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4451 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4452 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4453 || GET_CODE (XEXP (x, 0)) == ROTATE
4454 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4455 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4456 break;
4458 case EQ: case NE:
4459 case GT: case GTU: case GE: case GEU:
4460 case LT: case LTU: case LE: case LEU:
4461 case UNEQ: case LTGT:
4462 case UNGT: case UNGE:
4463 case UNLT: case UNLE:
4464 case UNORDERED: case ORDERED:
4465 /* If the first operand is a condition code, we can't do anything
4466 with it. */
4467 if (GET_CODE (XEXP (x, 0)) == COMPARE
4468 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4469 && ! CC0_P (XEXP (x, 0))))
4471 rtx op0 = XEXP (x, 0);
4472 rtx op1 = XEXP (x, 1);
4473 enum rtx_code new_code;
4475 if (GET_CODE (op0) == COMPARE)
4476 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4478 /* Simplify our comparison, if possible. */
4479 new_code = simplify_comparison (code, &op0, &op1);
4481 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4482 if only the low-order bit is possibly nonzero in X (such as when
4483 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4484 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4485 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4486 (plus X 1).
4488 Remove any ZERO_EXTRACT we made when thinking this was a
4489 comparison. It may now be simpler to use, e.g., an AND. If a
4490 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4491 the call to make_compound_operation in the SET case. */
4493 if (STORE_FLAG_VALUE == 1
4494 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4495 && op1 == const0_rtx
4496 && mode == GET_MODE (op0)
4497 && nonzero_bits (op0, mode) == 1)
4498 return gen_lowpart (mode,
4499 expand_compound_operation (op0));
4501 else if (STORE_FLAG_VALUE == 1
4502 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4503 && op1 == const0_rtx
4504 && mode == GET_MODE (op0)
4505 && (num_sign_bit_copies (op0, mode)
4506 == GET_MODE_BITSIZE (mode)))
4508 op0 = expand_compound_operation (op0);
4509 return simplify_gen_unary (NEG, mode,
4510 gen_lowpart (mode, op0),
4511 mode);
4514 else if (STORE_FLAG_VALUE == 1
4515 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4516 && op1 == const0_rtx
4517 && mode == GET_MODE (op0)
4518 && nonzero_bits (op0, mode) == 1)
4520 op0 = expand_compound_operation (op0);
4521 return simplify_gen_binary (XOR, mode,
4522 gen_lowpart (mode, op0),
4523 const1_rtx);
4526 else if (STORE_FLAG_VALUE == 1
4527 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4528 && op1 == const0_rtx
4529 && mode == GET_MODE (op0)
4530 && (num_sign_bit_copies (op0, mode)
4531 == GET_MODE_BITSIZE (mode)))
4533 op0 = expand_compound_operation (op0);
4534 return plus_constant (gen_lowpart (mode, op0), 1);
4537 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4538 those above. */
4539 if (STORE_FLAG_VALUE == -1
4540 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4541 && op1 == const0_rtx
4542 && (num_sign_bit_copies (op0, mode)
4543 == GET_MODE_BITSIZE (mode)))
4544 return gen_lowpart (mode,
4545 expand_compound_operation (op0));
4547 else if (STORE_FLAG_VALUE == -1
4548 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4549 && op1 == const0_rtx
4550 && mode == GET_MODE (op0)
4551 && nonzero_bits (op0, mode) == 1)
4553 op0 = expand_compound_operation (op0);
4554 return simplify_gen_unary (NEG, mode,
4555 gen_lowpart (mode, op0),
4556 mode);
4559 else if (STORE_FLAG_VALUE == -1
4560 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4561 && op1 == const0_rtx
4562 && mode == GET_MODE (op0)
4563 && (num_sign_bit_copies (op0, mode)
4564 == GET_MODE_BITSIZE (mode)))
4566 op0 = expand_compound_operation (op0);
4567 return simplify_gen_unary (NOT, mode,
4568 gen_lowpart (mode, op0),
4569 mode);
4572 /* If X is 0/1, (eq X 0) is X-1. */
4573 else if (STORE_FLAG_VALUE == -1
4574 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4575 && op1 == const0_rtx
4576 && mode == GET_MODE (op0)
4577 && nonzero_bits (op0, mode) == 1)
4579 op0 = expand_compound_operation (op0);
4580 return plus_constant (gen_lowpart (mode, op0), -1);
4583 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4584 one bit that might be nonzero, we can convert (ne x 0) to
4585 (ashift x c) where C puts the bit in the sign bit. Remove any
4586 AND with STORE_FLAG_VALUE when we are done, since we are only
4587 going to test the sign bit. */
4588 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4589 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4590 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4591 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4592 && op1 == const0_rtx
4593 && mode == GET_MODE (op0)
4594 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4596 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4597 expand_compound_operation (op0),
4598 GET_MODE_BITSIZE (mode) - 1 - i);
4599 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4600 return XEXP (x, 0);
4601 else
4602 return x;
4605 /* If the code changed, return a whole new comparison. */
4606 if (new_code != code)
4607 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4609 /* Otherwise, keep this operation, but maybe change its operands.
4610 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4611 SUBST (XEXP (x, 0), op0);
4612 SUBST (XEXP (x, 1), op1);
4614 break;
4616 case IF_THEN_ELSE:
4617 return simplify_if_then_else (x);
4619 case ZERO_EXTRACT:
4620 case SIGN_EXTRACT:
4621 case ZERO_EXTEND:
4622 case SIGN_EXTEND:
4623 /* If we are processing SET_DEST, we are done. */
4624 if (in_dest)
4625 return x;
4627 return expand_compound_operation (x);
4629 case SET:
4630 return simplify_set (x);
4632 case AND:
4633 case IOR:
4634 case XOR:
4635 return simplify_logical (x);
4637 case ABS:
4638 /* (abs (neg <foo>)) -> (abs <foo>) */
4639 if (GET_CODE (XEXP (x, 0)) == NEG)
4640 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4642 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4643 do nothing. */
4644 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4645 break;
4647 /* If operand is something known to be positive, ignore the ABS. */
4648 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4649 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4650 <= HOST_BITS_PER_WIDE_INT)
4651 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4652 & ((HOST_WIDE_INT) 1
4653 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4654 == 0)))
4655 return XEXP (x, 0);
4657 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4658 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4659 return gen_rtx_NEG (mode, XEXP (x, 0));
4661 break;
4663 case FFS:
4664 /* (ffs (*_extend <X>)) = (ffs <X>) */
4665 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4666 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4667 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4668 break;
4670 case POPCOUNT:
4671 case PARITY:
4672 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4673 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4674 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4675 break;
4677 case FLOAT:
4678 /* (float (sign_extend <X>)) = (float <X>). */
4679 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4680 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4681 break;
4683 case ASHIFT:
4684 case LSHIFTRT:
4685 case ASHIFTRT:
4686 case ROTATE:
4687 case ROTATERT:
4688 /* If this is a shift by a constant amount, simplify it. */
4689 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4690 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4691 INTVAL (XEXP (x, 1)));
4693 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4694 SUBST (XEXP (x, 1),
4695 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4696 ((HOST_WIDE_INT) 1
4697 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4698 - 1,
4699 NULL_RTX, 0));
4700 break;
4702 case VEC_SELECT:
4704 rtx op0 = XEXP (x, 0);
4705 rtx op1 = XEXP (x, 1);
4706 int len;
4708 gcc_assert (GET_CODE (op1) == PARALLEL);
4709 len = XVECLEN (op1, 0);
4710 if (len == 1
4711 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4712 && GET_CODE (op0) == VEC_CONCAT)
4714 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4716 /* Try to find the element in the VEC_CONCAT. */
4717 for (;;)
4719 if (GET_MODE (op0) == GET_MODE (x))
4720 return op0;
4721 if (GET_CODE (op0) == VEC_CONCAT)
4723 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4724 if (offset < op0_size)
4725 op0 = XEXP (op0, 0);
4726 else
4728 offset -= op0_size;
4729 op0 = XEXP (op0, 1);
4732 else
4733 break;
4738 break;
4740 default:
4741 break;
4744 return x;
4747 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4749 static rtx
4750 simplify_if_then_else (rtx x)
4752 enum machine_mode mode = GET_MODE (x);
4753 rtx cond = XEXP (x, 0);
4754 rtx true_rtx = XEXP (x, 1);
4755 rtx false_rtx = XEXP (x, 2);
4756 enum rtx_code true_code = GET_CODE (cond);
4757 int comparison_p = COMPARISON_P (cond);
4758 rtx temp;
4759 int i;
4760 enum rtx_code false_code;
4761 rtx reversed;
4763 /* Simplify storing of the truth value. */
4764 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4765 return simplify_gen_relational (true_code, mode, VOIDmode,
4766 XEXP (cond, 0), XEXP (cond, 1));
4768 /* Also when the truth value has to be reversed. */
4769 if (comparison_p
4770 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4771 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4772 XEXP (cond, 1))))
4773 return reversed;
4775 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4776 in it is being compared against certain values. Get the true and false
4777 comparisons and see if that says anything about the value of each arm. */
4779 if (comparison_p
4780 && ((false_code = combine_reversed_comparison_code (cond))
4781 != UNKNOWN)
4782 && REG_P (XEXP (cond, 0)))
4784 HOST_WIDE_INT nzb;
4785 rtx from = XEXP (cond, 0);
4786 rtx true_val = XEXP (cond, 1);
4787 rtx false_val = true_val;
4788 int swapped = 0;
4790 /* If FALSE_CODE is EQ, swap the codes and arms. */
4792 if (false_code == EQ)
4794 swapped = 1, true_code = EQ, false_code = NE;
4795 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4798 /* If we are comparing against zero and the expression being tested has
4799 only a single bit that might be nonzero, that is its value when it is
4800 not equal to zero. Similarly if it is known to be -1 or 0. */
4802 if (true_code == EQ && true_val == const0_rtx
4803 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4804 false_code = EQ, false_val = GEN_INT (nzb);
4805 else if (true_code == EQ && true_val == const0_rtx
4806 && (num_sign_bit_copies (from, GET_MODE (from))
4807 == GET_MODE_BITSIZE (GET_MODE (from))))
4808 false_code = EQ, false_val = constm1_rtx;
4810 /* Now simplify an arm if we know the value of the register in the
4811 branch and it is used in the arm. Be careful due to the potential
4812 of locally-shared RTL. */
4814 if (reg_mentioned_p (from, true_rtx))
4815 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4816 from, true_val),
4817 pc_rtx, pc_rtx, 0, 0);
4818 if (reg_mentioned_p (from, false_rtx))
4819 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4820 from, false_val),
4821 pc_rtx, pc_rtx, 0, 0);
4823 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4824 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4826 true_rtx = XEXP (x, 1);
4827 false_rtx = XEXP (x, 2);
4828 true_code = GET_CODE (cond);
4831 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4832 reversed, do so to avoid needing two sets of patterns for
4833 subtract-and-branch insns. Similarly if we have a constant in the true
4834 arm, the false arm is the same as the first operand of the comparison, or
4835 the false arm is more complicated than the true arm. */
4837 if (comparison_p
4838 && combine_reversed_comparison_code (cond) != UNKNOWN
4839 && (true_rtx == pc_rtx
4840 || (CONSTANT_P (true_rtx)
4841 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4842 || true_rtx == const0_rtx
4843 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4844 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4845 && !OBJECT_P (false_rtx))
4846 || reg_mentioned_p (true_rtx, false_rtx)
4847 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4849 true_code = reversed_comparison_code (cond, NULL);
4850 SUBST (XEXP (x, 0),
4851 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4852 XEXP (cond, 1)));
4854 SUBST (XEXP (x, 1), false_rtx);
4855 SUBST (XEXP (x, 2), true_rtx);
4857 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4858 cond = XEXP (x, 0);
4860 /* It is possible that the conditional has been simplified out. */
4861 true_code = GET_CODE (cond);
4862 comparison_p = COMPARISON_P (cond);
4865 /* If the two arms are identical, we don't need the comparison. */
4867 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4868 return true_rtx;
4870 /* Convert a == b ? b : a to "a". */
4871 if (true_code == EQ && ! side_effects_p (cond)
4872 && !HONOR_NANS (mode)
4873 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4874 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4875 return false_rtx;
4876 else if (true_code == NE && ! side_effects_p (cond)
4877 && !HONOR_NANS (mode)
4878 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4879 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4880 return true_rtx;
4882 /* Look for cases where we have (abs x) or (neg (abs X)). */
4884 if (GET_MODE_CLASS (mode) == MODE_INT
4885 && GET_CODE (false_rtx) == NEG
4886 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4887 && comparison_p
4888 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4889 && ! side_effects_p (true_rtx))
4890 switch (true_code)
4892 case GT:
4893 case GE:
4894 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4895 case LT:
4896 case LE:
4897 return
4898 simplify_gen_unary (NEG, mode,
4899 simplify_gen_unary (ABS, mode, true_rtx, mode),
4900 mode);
4901 default:
4902 break;
4905 /* Look for MIN or MAX. */
4907 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4908 && comparison_p
4909 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4910 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4911 && ! side_effects_p (cond))
4912 switch (true_code)
4914 case GE:
4915 case GT:
4916 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4917 case LE:
4918 case LT:
4919 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4920 case GEU:
4921 case GTU:
4922 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4923 case LEU:
4924 case LTU:
4925 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4926 default:
4927 break;
4930 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4931 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4932 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4933 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4934 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4935 neither 1 or -1, but it isn't worth checking for. */
4937 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4938 && comparison_p
4939 && GET_MODE_CLASS (mode) == MODE_INT
4940 && ! side_effects_p (x))
4942 rtx t = make_compound_operation (true_rtx, SET);
4943 rtx f = make_compound_operation (false_rtx, SET);
4944 rtx cond_op0 = XEXP (cond, 0);
4945 rtx cond_op1 = XEXP (cond, 1);
4946 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4947 enum machine_mode m = mode;
4948 rtx z = 0, c1 = NULL_RTX;
4950 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4951 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4952 || GET_CODE (t) == ASHIFT
4953 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4954 && rtx_equal_p (XEXP (t, 0), f))
4955 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4957 /* If an identity-zero op is commutative, check whether there
4958 would be a match if we swapped the operands. */
4959 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4960 || GET_CODE (t) == XOR)
4961 && rtx_equal_p (XEXP (t, 1), f))
4962 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4963 else if (GET_CODE (t) == SIGN_EXTEND
4964 && (GET_CODE (XEXP (t, 0)) == PLUS
4965 || GET_CODE (XEXP (t, 0)) == MINUS
4966 || GET_CODE (XEXP (t, 0)) == IOR
4967 || GET_CODE (XEXP (t, 0)) == XOR
4968 || GET_CODE (XEXP (t, 0)) == ASHIFT
4969 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4970 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4971 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4972 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4973 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4974 && (num_sign_bit_copies (f, GET_MODE (f))
4975 > (unsigned int)
4976 (GET_MODE_BITSIZE (mode)
4977 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4979 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4980 extend_op = SIGN_EXTEND;
4981 m = GET_MODE (XEXP (t, 0));
4983 else if (GET_CODE (t) == SIGN_EXTEND
4984 && (GET_CODE (XEXP (t, 0)) == PLUS
4985 || GET_CODE (XEXP (t, 0)) == IOR
4986 || GET_CODE (XEXP (t, 0)) == XOR)
4987 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4988 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4989 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4990 && (num_sign_bit_copies (f, GET_MODE (f))
4991 > (unsigned int)
4992 (GET_MODE_BITSIZE (mode)
4993 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4995 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4996 extend_op = SIGN_EXTEND;
4997 m = GET_MODE (XEXP (t, 0));
4999 else if (GET_CODE (t) == ZERO_EXTEND
5000 && (GET_CODE (XEXP (t, 0)) == PLUS
5001 || GET_CODE (XEXP (t, 0)) == MINUS
5002 || GET_CODE (XEXP (t, 0)) == IOR
5003 || GET_CODE (XEXP (t, 0)) == XOR
5004 || GET_CODE (XEXP (t, 0)) == ASHIFT
5005 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5006 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5007 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5008 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5009 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5010 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5011 && ((nonzero_bits (f, GET_MODE (f))
5012 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5013 == 0))
5015 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5016 extend_op = ZERO_EXTEND;
5017 m = GET_MODE (XEXP (t, 0));
5019 else if (GET_CODE (t) == ZERO_EXTEND
5020 && (GET_CODE (XEXP (t, 0)) == PLUS
5021 || GET_CODE (XEXP (t, 0)) == IOR
5022 || GET_CODE (XEXP (t, 0)) == XOR)
5023 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5024 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5025 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5026 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5027 && ((nonzero_bits (f, GET_MODE (f))
5028 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5029 == 0))
5031 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5032 extend_op = ZERO_EXTEND;
5033 m = GET_MODE (XEXP (t, 0));
5036 if (z)
5038 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5039 cond_op0, cond_op1),
5040 pc_rtx, pc_rtx, 0, 0);
5041 temp = simplify_gen_binary (MULT, m, temp,
5042 simplify_gen_binary (MULT, m, c1,
5043 const_true_rtx));
5044 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5045 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5047 if (extend_op != UNKNOWN)
5048 temp = simplify_gen_unary (extend_op, mode, temp, m);
5050 return temp;
5054 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5055 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5056 negation of a single bit, we can convert this operation to a shift. We
5057 can actually do this more generally, but it doesn't seem worth it. */
5059 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5060 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5061 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5062 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5063 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5064 == GET_MODE_BITSIZE (mode))
5065 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5066 return
5067 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5068 gen_lowpart (mode, XEXP (cond, 0)), i);
5070 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5071 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5072 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5073 && GET_MODE (XEXP (cond, 0)) == mode
5074 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5075 == nonzero_bits (XEXP (cond, 0), mode)
5076 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5077 return XEXP (cond, 0);
5079 return x;
5082 /* Simplify X, a SET expression. Return the new expression. */
5084 static rtx
5085 simplify_set (rtx x)
5087 rtx src = SET_SRC (x);
5088 rtx dest = SET_DEST (x);
5089 enum machine_mode mode
5090 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5091 rtx other_insn;
5092 rtx *cc_use;
5094 /* (set (pc) (return)) gets written as (return). */
5095 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5096 return src;
5098 /* Now that we know for sure which bits of SRC we are using, see if we can
5099 simplify the expression for the object knowing that we only need the
5100 low-order bits. */
5102 if (GET_MODE_CLASS (mode) == MODE_INT
5103 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5105 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5106 SUBST (SET_SRC (x), src);
5109 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5110 the comparison result and try to simplify it unless we already have used
5111 undobuf.other_insn. */
5112 if ((GET_MODE_CLASS (mode) == MODE_CC
5113 || GET_CODE (src) == COMPARE
5114 || CC0_P (dest))
5115 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5116 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5117 && COMPARISON_P (*cc_use)
5118 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5120 enum rtx_code old_code = GET_CODE (*cc_use);
5121 enum rtx_code new_code;
5122 rtx op0, op1, tmp;
5123 int other_changed = 0;
5124 enum machine_mode compare_mode = GET_MODE (dest);
5126 if (GET_CODE (src) == COMPARE)
5127 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5128 else
5129 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5131 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5132 op0, op1);
5133 if (!tmp)
5134 new_code = old_code;
5135 else if (!CONSTANT_P (tmp))
5137 new_code = GET_CODE (tmp);
5138 op0 = XEXP (tmp, 0);
5139 op1 = XEXP (tmp, 1);
5141 else
5143 rtx pat = PATTERN (other_insn);
5144 undobuf.other_insn = other_insn;
5145 SUBST (*cc_use, tmp);
5147 /* Attempt to simplify CC user. */
5148 if (GET_CODE (pat) == SET)
5150 rtx new = simplify_rtx (SET_SRC (pat));
5151 if (new != NULL_RTX)
5152 SUBST (SET_SRC (pat), new);
5155 /* Convert X into a no-op move. */
5156 SUBST (SET_DEST (x), pc_rtx);
5157 SUBST (SET_SRC (x), pc_rtx);
5158 return x;
5161 /* Simplify our comparison, if possible. */
5162 new_code = simplify_comparison (new_code, &op0, &op1);
5164 #ifdef SELECT_CC_MODE
5165 /* If this machine has CC modes other than CCmode, check to see if we
5166 need to use a different CC mode here. */
5167 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5168 compare_mode = GET_MODE (op0);
5169 else
5170 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5172 #ifndef HAVE_cc0
5173 /* If the mode changed, we have to change SET_DEST, the mode in the
5174 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5175 a hard register, just build new versions with the proper mode. If it
5176 is a pseudo, we lose unless it is only time we set the pseudo, in
5177 which case we can safely change its mode. */
5178 if (compare_mode != GET_MODE (dest))
5180 unsigned int regno = REGNO (dest);
5181 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5183 if (regno < FIRST_PSEUDO_REGISTER
5184 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5186 if (regno >= FIRST_PSEUDO_REGISTER)
5187 SUBST (regno_reg_rtx[regno], new_dest);
5189 SUBST (SET_DEST (x), new_dest);
5190 SUBST (XEXP (*cc_use, 0), new_dest);
5191 other_changed = 1;
5193 dest = new_dest;
5196 #endif /* cc0 */
5197 #endif /* SELECT_CC_MODE */
5199 /* If the code changed, we have to build a new comparison in
5200 undobuf.other_insn. */
5201 if (new_code != old_code)
5203 int other_changed_previously = other_changed;
5204 unsigned HOST_WIDE_INT mask;
5206 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5207 dest, const0_rtx));
5208 other_changed = 1;
5210 /* If the only change we made was to change an EQ into an NE or
5211 vice versa, OP0 has only one bit that might be nonzero, and OP1
5212 is zero, check if changing the user of the condition code will
5213 produce a valid insn. If it won't, we can keep the original code
5214 in that insn by surrounding our operation with an XOR. */
5216 if (((old_code == NE && new_code == EQ)
5217 || (old_code == EQ && new_code == NE))
5218 && ! other_changed_previously && op1 == const0_rtx
5219 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5220 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5222 rtx pat = PATTERN (other_insn), note = 0;
5224 if ((recog_for_combine (&pat, other_insn, &note) < 0
5225 && ! check_asm_operands (pat)))
5227 PUT_CODE (*cc_use, old_code);
5228 other_changed = 0;
5230 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5231 op0, GEN_INT (mask));
5236 if (other_changed)
5237 undobuf.other_insn = other_insn;
5239 #ifdef HAVE_cc0
5240 /* If we are now comparing against zero, change our source if
5241 needed. If we do not use cc0, we always have a COMPARE. */
5242 if (op1 == const0_rtx && dest == cc0_rtx)
5244 SUBST (SET_SRC (x), op0);
5245 src = op0;
5247 else
5248 #endif
5250 /* Otherwise, if we didn't previously have a COMPARE in the
5251 correct mode, we need one. */
5252 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5254 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5255 src = SET_SRC (x);
5257 else
5259 /* Otherwise, update the COMPARE if needed. */
5260 SUBST (XEXP (src, 0), op0);
5261 SUBST (XEXP (src, 1), op1);
5264 else
5266 /* Get SET_SRC in a form where we have placed back any
5267 compound expressions. Then do the checks below. */
5268 src = make_compound_operation (src, SET);
5269 SUBST (SET_SRC (x), src);
5272 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5273 and X being a REG or (subreg (reg)), we may be able to convert this to
5274 (set (subreg:m2 x) (op)).
5276 We can always do this if M1 is narrower than M2 because that means that
5277 we only care about the low bits of the result.
5279 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5280 perform a narrower operation than requested since the high-order bits will
5281 be undefined. On machine where it is defined, this transformation is safe
5282 as long as M1 and M2 have the same number of words. */
5284 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5285 && !OBJECT_P (SUBREG_REG (src))
5286 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5287 / UNITS_PER_WORD)
5288 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5289 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5290 #ifndef WORD_REGISTER_OPERATIONS
5291 && (GET_MODE_SIZE (GET_MODE (src))
5292 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5293 #endif
5294 #ifdef CANNOT_CHANGE_MODE_CLASS
5295 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5296 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5297 GET_MODE (SUBREG_REG (src)),
5298 GET_MODE (src)))
5299 #endif
5300 && (REG_P (dest)
5301 || (GET_CODE (dest) == SUBREG
5302 && REG_P (SUBREG_REG (dest)))))
5304 SUBST (SET_DEST (x),
5305 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5306 dest));
5307 SUBST (SET_SRC (x), SUBREG_REG (src));
5309 src = SET_SRC (x), dest = SET_DEST (x);
5312 #ifdef HAVE_cc0
5313 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5314 in SRC. */
5315 if (dest == cc0_rtx
5316 && GET_CODE (src) == SUBREG
5317 && subreg_lowpart_p (src)
5318 && (GET_MODE_BITSIZE (GET_MODE (src))
5319 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5321 rtx inner = SUBREG_REG (src);
5322 enum machine_mode inner_mode = GET_MODE (inner);
5324 /* Here we make sure that we don't have a sign bit on. */
5325 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5326 && (nonzero_bits (inner, inner_mode)
5327 < ((unsigned HOST_WIDE_INT) 1
5328 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5330 SUBST (SET_SRC (x), inner);
5331 src = SET_SRC (x);
5334 #endif
5336 #ifdef LOAD_EXTEND_OP
5337 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5338 would require a paradoxical subreg. Replace the subreg with a
5339 zero_extend to avoid the reload that would otherwise be required. */
5341 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5342 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5343 && SUBREG_BYTE (src) == 0
5344 && (GET_MODE_SIZE (GET_MODE (src))
5345 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5346 && MEM_P (SUBREG_REG (src)))
5348 SUBST (SET_SRC (x),
5349 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5350 GET_MODE (src), SUBREG_REG (src)));
5352 src = SET_SRC (x);
5354 #endif
5356 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5357 are comparing an item known to be 0 or -1 against 0, use a logical
5358 operation instead. Check for one of the arms being an IOR of the other
5359 arm with some value. We compute three terms to be IOR'ed together. In
5360 practice, at most two will be nonzero. Then we do the IOR's. */
5362 if (GET_CODE (dest) != PC
5363 && GET_CODE (src) == IF_THEN_ELSE
5364 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5365 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5366 && XEXP (XEXP (src, 0), 1) == const0_rtx
5367 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5368 #ifdef HAVE_conditional_move
5369 && ! can_conditionally_move_p (GET_MODE (src))
5370 #endif
5371 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5372 GET_MODE (XEXP (XEXP (src, 0), 0)))
5373 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5374 && ! side_effects_p (src))
5376 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5377 ? XEXP (src, 1) : XEXP (src, 2));
5378 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5379 ? XEXP (src, 2) : XEXP (src, 1));
5380 rtx term1 = const0_rtx, term2, term3;
5382 if (GET_CODE (true_rtx) == IOR
5383 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5384 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5385 else if (GET_CODE (true_rtx) == IOR
5386 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5387 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5388 else if (GET_CODE (false_rtx) == IOR
5389 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5390 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5391 else if (GET_CODE (false_rtx) == IOR
5392 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5393 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5395 term2 = simplify_gen_binary (AND, GET_MODE (src),
5396 XEXP (XEXP (src, 0), 0), true_rtx);
5397 term3 = simplify_gen_binary (AND, GET_MODE (src),
5398 simplify_gen_unary (NOT, GET_MODE (src),
5399 XEXP (XEXP (src, 0), 0),
5400 GET_MODE (src)),
5401 false_rtx);
5403 SUBST (SET_SRC (x),
5404 simplify_gen_binary (IOR, GET_MODE (src),
5405 simplify_gen_binary (IOR, GET_MODE (src),
5406 term1, term2),
5407 term3));
5409 src = SET_SRC (x);
5412 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5413 whole thing fail. */
5414 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5415 return src;
5416 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5417 return dest;
5418 else
5419 /* Convert this into a field assignment operation, if possible. */
5420 return make_field_assignment (x);
5423 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5424 result. */
5426 static rtx
5427 simplify_logical (rtx x)
5429 enum machine_mode mode = GET_MODE (x);
5430 rtx op0 = XEXP (x, 0);
5431 rtx op1 = XEXP (x, 1);
5432 rtx reversed;
5434 switch (GET_CODE (x))
5436 case AND:
5437 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5438 insn (and may simplify more). */
5439 if (GET_CODE (op0) == XOR
5440 && rtx_equal_p (XEXP (op0, 0), op1)
5441 && ! side_effects_p (op1))
5442 x = simplify_gen_binary (AND, mode,
5443 simplify_gen_unary (NOT, mode,
5444 XEXP (op0, 1), mode),
5445 op1);
5447 if (GET_CODE (op0) == XOR
5448 && rtx_equal_p (XEXP (op0, 1), op1)
5449 && ! side_effects_p (op1))
5450 x = simplify_gen_binary (AND, mode,
5451 simplify_gen_unary (NOT, mode,
5452 XEXP (op0, 0), mode),
5453 op1);
5455 /* Similarly for (~(A ^ B)) & A. */
5456 if (GET_CODE (op0) == NOT
5457 && GET_CODE (XEXP (op0, 0)) == XOR
5458 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5459 && ! side_effects_p (op1))
5460 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5462 if (GET_CODE (op0) == NOT
5463 && GET_CODE (XEXP (op0, 0)) == XOR
5464 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5465 && ! side_effects_p (op1))
5466 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5468 /* We can call simplify_and_const_int only if we don't lose
5469 any (sign) bits when converting INTVAL (op1) to
5470 "unsigned HOST_WIDE_INT". */
5471 if (GET_CODE (op1) == CONST_INT
5472 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5473 || INTVAL (op1) > 0))
5475 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5477 /* If we have (ior (and (X C1) C2)) and the next restart would be
5478 the last, simplify this by making C1 as small as possible
5479 and then exit. Only do this if C1 actually changes: for now
5480 this only saves memory but, should this transformation be
5481 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5482 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5483 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5484 && GET_CODE (op1) == CONST_INT
5485 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5486 return simplify_gen_binary (IOR, mode,
5487 simplify_gen_binary
5488 (AND, mode, XEXP (op0, 0),
5489 GEN_INT (INTVAL (XEXP (op0, 1))
5490 & ~INTVAL (op1))), op1);
5492 if (GET_CODE (x) != AND)
5493 return x;
5495 op0 = XEXP (x, 0);
5496 op1 = XEXP (x, 1);
5499 /* Convert (A | B) & A to A. */
5500 if (GET_CODE (op0) == IOR
5501 && (rtx_equal_p (XEXP (op0, 0), op1)
5502 || rtx_equal_p (XEXP (op0, 1), op1))
5503 && ! side_effects_p (XEXP (op0, 0))
5504 && ! side_effects_p (XEXP (op0, 1)))
5505 return op1;
5507 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5508 apply the distributive law and then the inverse distributive
5509 law to see if things simplify. */
5510 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5512 rtx result = distribute_and_simplify_rtx (x, 0);
5513 if (result)
5514 return result;
5516 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5518 rtx result = distribute_and_simplify_rtx (x, 1);
5519 if (result)
5520 return result;
5522 break;
5524 case IOR:
5525 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5526 if (GET_CODE (op1) == CONST_INT
5527 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5528 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5529 return op1;
5531 /* Convert (A & B) | A to A. */
5532 if (GET_CODE (op0) == AND
5533 && (rtx_equal_p (XEXP (op0, 0), op1)
5534 || rtx_equal_p (XEXP (op0, 1), op1))
5535 && ! side_effects_p (XEXP (op0, 0))
5536 && ! side_effects_p (XEXP (op0, 1)))
5537 return op1;
5539 /* If we have (ior (and A B) C), apply the distributive law and then
5540 the inverse distributive law to see if things simplify. */
5542 if (GET_CODE (op0) == AND)
5544 rtx result = distribute_and_simplify_rtx (x, 0);
5545 if (result)
5546 return result;
5549 if (GET_CODE (op1) == AND)
5551 rtx result = distribute_and_simplify_rtx (x, 1);
5552 if (result)
5553 return result;
5556 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5557 mode size to (rotate A CX). */
5559 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5560 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5561 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5562 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5563 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5564 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5565 == GET_MODE_BITSIZE (mode)))
5566 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5567 (GET_CODE (op0) == ASHIFT
5568 ? XEXP (op0, 1) : XEXP (op1, 1)));
5570 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5571 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5572 does not affect any of the bits in OP1, it can really be done
5573 as a PLUS and we can associate. We do this by seeing if OP1
5574 can be safely shifted left C bits. */
5575 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5576 && GET_CODE (XEXP (op0, 0)) == PLUS
5577 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5578 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5579 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5581 int count = INTVAL (XEXP (op0, 1));
5582 HOST_WIDE_INT mask = INTVAL (op1) << count;
5584 if (mask >> count == INTVAL (op1)
5585 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5587 SUBST (XEXP (XEXP (op0, 0), 1),
5588 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5589 return op0;
5592 break;
5594 case XOR:
5595 /* If we are XORing two things that have no bits in common,
5596 convert them into an IOR. This helps to detect rotation encoded
5597 using those methods and possibly other simplifications. */
5599 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5600 && (nonzero_bits (op0, mode)
5601 & nonzero_bits (op1, mode)) == 0)
5602 return (simplify_gen_binary (IOR, mode, op0, op1));
5604 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5605 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5606 (NOT y). */
5608 int num_negated = 0;
5610 if (GET_CODE (op0) == NOT)
5611 num_negated++, op0 = XEXP (op0, 0);
5612 if (GET_CODE (op1) == NOT)
5613 num_negated++, op1 = XEXP (op1, 0);
5615 if (num_negated == 2)
5617 SUBST (XEXP (x, 0), op0);
5618 SUBST (XEXP (x, 1), op1);
5620 else if (num_negated == 1)
5621 return
5622 simplify_gen_unary (NOT, mode,
5623 simplify_gen_binary (XOR, mode, op0, op1),
5624 mode);
5627 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5628 correspond to a machine insn or result in further simplifications
5629 if B is a constant. */
5631 if (GET_CODE (op0) == AND
5632 && rtx_equal_p (XEXP (op0, 1), op1)
5633 && ! side_effects_p (op1))
5634 return simplify_gen_binary (AND, mode,
5635 simplify_gen_unary (NOT, mode,
5636 XEXP (op0, 0), mode),
5637 op1);
5639 else if (GET_CODE (op0) == AND
5640 && rtx_equal_p (XEXP (op0, 0), op1)
5641 && ! side_effects_p (op1))
5642 return simplify_gen_binary (AND, mode,
5643 simplify_gen_unary (NOT, mode,
5644 XEXP (op0, 1), mode),
5645 op1);
5647 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5648 comparison if STORE_FLAG_VALUE is 1. */
5649 if (STORE_FLAG_VALUE == 1
5650 && op1 == const1_rtx
5651 && COMPARISON_P (op0)
5652 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5653 XEXP (op0, 1))))
5654 return reversed;
5656 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5657 is (lt foo (const_int 0)), so we can perform the above
5658 simplification if STORE_FLAG_VALUE is 1. */
5660 if (STORE_FLAG_VALUE == 1
5661 && op1 == const1_rtx
5662 && GET_CODE (op0) == LSHIFTRT
5663 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5664 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5665 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5667 /* (xor (comparison foo bar) (const_int sign-bit))
5668 when STORE_FLAG_VALUE is the sign bit. */
5669 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5670 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5671 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5672 && op1 == const_true_rtx
5673 && COMPARISON_P (op0)
5674 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5675 XEXP (op0, 1))))
5676 return reversed;
5678 break;
5680 default:
5681 gcc_unreachable ();
5684 return x;
5687 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5688 operations" because they can be replaced with two more basic operations.
5689 ZERO_EXTEND is also considered "compound" because it can be replaced with
5690 an AND operation, which is simpler, though only one operation.
5692 The function expand_compound_operation is called with an rtx expression
5693 and will convert it to the appropriate shifts and AND operations,
5694 simplifying at each stage.
5696 The function make_compound_operation is called to convert an expression
5697 consisting of shifts and ANDs into the equivalent compound expression.
5698 It is the inverse of this function, loosely speaking. */
5700 static rtx
5701 expand_compound_operation (rtx x)
5703 unsigned HOST_WIDE_INT pos = 0, len;
5704 int unsignedp = 0;
5705 unsigned int modewidth;
5706 rtx tem;
5708 switch (GET_CODE (x))
5710 case ZERO_EXTEND:
5711 unsignedp = 1;
5712 case SIGN_EXTEND:
5713 /* We can't necessarily use a const_int for a multiword mode;
5714 it depends on implicitly extending the value.
5715 Since we don't know the right way to extend it,
5716 we can't tell whether the implicit way is right.
5718 Even for a mode that is no wider than a const_int,
5719 we can't win, because we need to sign extend one of its bits through
5720 the rest of it, and we don't know which bit. */
5721 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5722 return x;
5724 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5725 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5726 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5727 reloaded. If not for that, MEM's would very rarely be safe.
5729 Reject MODEs bigger than a word, because we might not be able
5730 to reference a two-register group starting with an arbitrary register
5731 (and currently gen_lowpart might crash for a SUBREG). */
5733 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5734 return x;
5736 /* Reject MODEs that aren't scalar integers because turning vector
5737 or complex modes into shifts causes problems. */
5739 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5740 return x;
5742 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5743 /* If the inner object has VOIDmode (the only way this can happen
5744 is if it is an ASM_OPERANDS), we can't do anything since we don't
5745 know how much masking to do. */
5746 if (len == 0)
5747 return x;
5749 break;
5751 case ZERO_EXTRACT:
5752 unsignedp = 1;
5754 /* ... fall through ... */
5756 case SIGN_EXTRACT:
5757 /* If the operand is a CLOBBER, just return it. */
5758 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5759 return XEXP (x, 0);
5761 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5762 || GET_CODE (XEXP (x, 2)) != CONST_INT
5763 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5764 return x;
5766 /* Reject MODEs that aren't scalar integers because turning vector
5767 or complex modes into shifts causes problems. */
5769 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5770 return x;
5772 len = INTVAL (XEXP (x, 1));
5773 pos = INTVAL (XEXP (x, 2));
5775 /* If this goes outside the object being extracted, replace the object
5776 with a (use (mem ...)) construct that only combine understands
5777 and is used only for this purpose. */
5778 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5779 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5781 if (BITS_BIG_ENDIAN)
5782 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5784 break;
5786 default:
5787 return x;
5789 /* Convert sign extension to zero extension, if we know that the high
5790 bit is not set, as this is easier to optimize. It will be converted
5791 back to cheaper alternative in make_extraction. */
5792 if (GET_CODE (x) == SIGN_EXTEND
5793 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5794 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5795 & ~(((unsigned HOST_WIDE_INT)
5796 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5797 >> 1))
5798 == 0)))
5800 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5801 rtx temp2 = expand_compound_operation (temp);
5803 /* Make sure this is a profitable operation. */
5804 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5805 return temp2;
5806 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5807 return temp;
5808 else
5809 return x;
5812 /* We can optimize some special cases of ZERO_EXTEND. */
5813 if (GET_CODE (x) == ZERO_EXTEND)
5815 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5816 know that the last value didn't have any inappropriate bits
5817 set. */
5818 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5819 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5820 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5821 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5822 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5823 return XEXP (XEXP (x, 0), 0);
5825 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5826 if (GET_CODE (XEXP (x, 0)) == SUBREG
5827 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5828 && subreg_lowpart_p (XEXP (x, 0))
5829 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5831 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5832 return SUBREG_REG (XEXP (x, 0));
5834 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5835 is a comparison and STORE_FLAG_VALUE permits. This is like
5836 the first case, but it works even when GET_MODE (x) is larger
5837 than HOST_WIDE_INT. */
5838 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5839 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5840 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5841 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5842 <= HOST_BITS_PER_WIDE_INT)
5843 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5844 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5845 return XEXP (XEXP (x, 0), 0);
5847 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5848 if (GET_CODE (XEXP (x, 0)) == SUBREG
5849 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5850 && subreg_lowpart_p (XEXP (x, 0))
5851 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5852 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5853 <= HOST_BITS_PER_WIDE_INT)
5854 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5855 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5856 return SUBREG_REG (XEXP (x, 0));
5860 /* If we reach here, we want to return a pair of shifts. The inner
5861 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5862 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5863 logical depending on the value of UNSIGNEDP.
5865 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5866 converted into an AND of a shift.
5868 We must check for the case where the left shift would have a negative
5869 count. This can happen in a case like (x >> 31) & 255 on machines
5870 that can't shift by a constant. On those machines, we would first
5871 combine the shift with the AND to produce a variable-position
5872 extraction. Then the constant of 31 would be substituted in to produce
5873 a such a position. */
5875 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5876 if (modewidth + len >= pos)
5877 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5878 GET_MODE (x),
5879 simplify_shift_const (NULL_RTX, ASHIFT,
5880 GET_MODE (x),
5881 XEXP (x, 0),
5882 modewidth - pos - len),
5883 modewidth - len);
5885 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5886 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5887 simplify_shift_const (NULL_RTX, LSHIFTRT,
5888 GET_MODE (x),
5889 XEXP (x, 0), pos),
5890 ((HOST_WIDE_INT) 1 << len) - 1);
5891 else
5892 /* Any other cases we can't handle. */
5893 return x;
5895 /* If we couldn't do this for some reason, return the original
5896 expression. */
5897 if (GET_CODE (tem) == CLOBBER)
5898 return x;
5900 return tem;
5903 /* X is a SET which contains an assignment of one object into
5904 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5905 or certain SUBREGS). If possible, convert it into a series of
5906 logical operations.
5908 We half-heartedly support variable positions, but do not at all
5909 support variable lengths. */
5911 static rtx
5912 expand_field_assignment (rtx x)
5914 rtx inner;
5915 rtx pos; /* Always counts from low bit. */
5916 int len;
5917 rtx mask, cleared, masked;
5918 enum machine_mode compute_mode;
5920 /* Loop until we find something we can't simplify. */
5921 while (1)
5923 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5924 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5926 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5927 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5928 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5930 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5931 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5933 inner = XEXP (SET_DEST (x), 0);
5934 len = INTVAL (XEXP (SET_DEST (x), 1));
5935 pos = XEXP (SET_DEST (x), 2);
5937 /* If the position is constant and spans the width of INNER,
5938 surround INNER with a USE to indicate this. */
5939 if (GET_CODE (pos) == CONST_INT
5940 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5941 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5943 if (BITS_BIG_ENDIAN)
5945 if (GET_CODE (pos) == CONST_INT)
5946 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5947 - INTVAL (pos));
5948 else if (GET_CODE (pos) == MINUS
5949 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5950 && (INTVAL (XEXP (pos, 1))
5951 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5952 /* If position is ADJUST - X, new position is X. */
5953 pos = XEXP (pos, 0);
5954 else
5955 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5956 GEN_INT (GET_MODE_BITSIZE (
5957 GET_MODE (inner))
5958 - len),
5959 pos);
5963 /* A SUBREG between two modes that occupy the same numbers of words
5964 can be done by moving the SUBREG to the source. */
5965 else if (GET_CODE (SET_DEST (x)) == SUBREG
5966 /* We need SUBREGs to compute nonzero_bits properly. */
5967 && nonzero_sign_valid
5968 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5969 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5970 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5971 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5973 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5974 gen_lowpart
5975 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5976 SET_SRC (x)));
5977 continue;
5979 else
5980 break;
5982 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5983 inner = SUBREG_REG (inner);
5985 compute_mode = GET_MODE (inner);
5987 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5988 if (! SCALAR_INT_MODE_P (compute_mode))
5990 enum machine_mode imode;
5992 /* Don't do anything for vector or complex integral types. */
5993 if (! FLOAT_MODE_P (compute_mode))
5994 break;
5996 /* Try to find an integral mode to pun with. */
5997 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5998 if (imode == BLKmode)
5999 break;
6001 compute_mode = imode;
6002 inner = gen_lowpart (imode, inner);
6005 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6006 if (len >= HOST_BITS_PER_WIDE_INT)
6007 break;
6009 /* Now compute the equivalent expression. Make a copy of INNER
6010 for the SET_DEST in case it is a MEM into which we will substitute;
6011 we don't want shared RTL in that case. */
6012 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6013 cleared = simplify_gen_binary (AND, compute_mode,
6014 simplify_gen_unary (NOT, compute_mode,
6015 simplify_gen_binary (ASHIFT,
6016 compute_mode,
6017 mask, pos),
6018 compute_mode),
6019 inner);
6020 masked = simplify_gen_binary (ASHIFT, compute_mode,
6021 simplify_gen_binary (
6022 AND, compute_mode,
6023 gen_lowpart (compute_mode, SET_SRC (x)),
6024 mask),
6025 pos);
6027 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6028 simplify_gen_binary (IOR, compute_mode,
6029 cleared, masked));
6032 return x;
6035 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6036 it is an RTX that represents a variable starting position; otherwise,
6037 POS is the (constant) starting bit position (counted from the LSB).
6039 INNER may be a USE. This will occur when we started with a bitfield
6040 that went outside the boundary of the object in memory, which is
6041 allowed on most machines. To isolate this case, we produce a USE
6042 whose mode is wide enough and surround the MEM with it. The only
6043 code that understands the USE is this routine. If it is not removed,
6044 it will cause the resulting insn not to match.
6046 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6047 signed reference.
6049 IN_DEST is nonzero if this is a reference in the destination of a
6050 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6051 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6052 be used.
6054 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6055 ZERO_EXTRACT should be built even for bits starting at bit 0.
6057 MODE is the desired mode of the result (if IN_DEST == 0).
6059 The result is an RTX for the extraction or NULL_RTX if the target
6060 can't handle it. */
6062 static rtx
6063 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6064 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6065 int in_dest, int in_compare)
6067 /* This mode describes the size of the storage area
6068 to fetch the overall value from. Within that, we
6069 ignore the POS lowest bits, etc. */
6070 enum machine_mode is_mode = GET_MODE (inner);
6071 enum machine_mode inner_mode;
6072 enum machine_mode wanted_inner_mode = byte_mode;
6073 enum machine_mode wanted_inner_reg_mode = word_mode;
6074 enum machine_mode pos_mode = word_mode;
6075 enum machine_mode extraction_mode = word_mode;
6076 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6077 int spans_byte = 0;
6078 rtx new = 0;
6079 rtx orig_pos_rtx = pos_rtx;
6080 HOST_WIDE_INT orig_pos;
6082 /* Get some information about INNER and get the innermost object. */
6083 if (GET_CODE (inner) == USE)
6084 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6085 /* We don't need to adjust the position because we set up the USE
6086 to pretend that it was a full-word object. */
6087 spans_byte = 1, inner = XEXP (inner, 0);
6088 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6090 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6091 consider just the QI as the memory to extract from.
6092 The subreg adds or removes high bits; its mode is
6093 irrelevant to the meaning of this extraction,
6094 since POS and LEN count from the lsb. */
6095 if (MEM_P (SUBREG_REG (inner)))
6096 is_mode = GET_MODE (SUBREG_REG (inner));
6097 inner = SUBREG_REG (inner);
6099 else if (GET_CODE (inner) == ASHIFT
6100 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6101 && pos_rtx == 0 && pos == 0
6102 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6104 /* We're extracting the least significant bits of an rtx
6105 (ashift X (const_int C)), where LEN > C. Extract the
6106 least significant (LEN - C) bits of X, giving an rtx
6107 whose mode is MODE, then shift it left C times. */
6108 new = make_extraction (mode, XEXP (inner, 0),
6109 0, 0, len - INTVAL (XEXP (inner, 1)),
6110 unsignedp, in_dest, in_compare);
6111 if (new != 0)
6112 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6115 inner_mode = GET_MODE (inner);
6117 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6118 pos = INTVAL (pos_rtx), pos_rtx = 0;
6120 /* See if this can be done without an extraction. We never can if the
6121 width of the field is not the same as that of some integer mode. For
6122 registers, we can only avoid the extraction if the position is at the
6123 low-order bit and this is either not in the destination or we have the
6124 appropriate STRICT_LOW_PART operation available.
6126 For MEM, we can avoid an extract if the field starts on an appropriate
6127 boundary and we can change the mode of the memory reference. However,
6128 we cannot directly access the MEM if we have a USE and the underlying
6129 MEM is not TMODE. This combination means that MEM was being used in a
6130 context where bits outside its mode were being referenced; that is only
6131 valid in bit-field insns. */
6133 if (tmode != BLKmode
6134 && ! (spans_byte && inner_mode != tmode)
6135 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6136 && !MEM_P (inner)
6137 && (! in_dest
6138 || (REG_P (inner)
6139 && have_insn_for (STRICT_LOW_PART, tmode))))
6140 || (MEM_P (inner) && pos_rtx == 0
6141 && (pos
6142 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6143 : BITS_PER_UNIT)) == 0
6144 /* We can't do this if we are widening INNER_MODE (it
6145 may not be aligned, for one thing). */
6146 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6147 && (inner_mode == tmode
6148 || (! mode_dependent_address_p (XEXP (inner, 0))
6149 && ! MEM_VOLATILE_P (inner))))))
6151 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6152 field. If the original and current mode are the same, we need not
6153 adjust the offset. Otherwise, we do if bytes big endian.
6155 If INNER is not a MEM, get a piece consisting of just the field
6156 of interest (in this case POS % BITS_PER_WORD must be 0). */
6158 if (MEM_P (inner))
6160 HOST_WIDE_INT offset;
6162 /* POS counts from lsb, but make OFFSET count in memory order. */
6163 if (BYTES_BIG_ENDIAN)
6164 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6165 else
6166 offset = pos / BITS_PER_UNIT;
6168 new = adjust_address_nv (inner, tmode, offset);
6170 else if (REG_P (inner))
6172 if (tmode != inner_mode)
6174 /* We can't call gen_lowpart in a DEST since we
6175 always want a SUBREG (see below) and it would sometimes
6176 return a new hard register. */
6177 if (pos || in_dest)
6179 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6181 if (WORDS_BIG_ENDIAN
6182 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6183 final_word = ((GET_MODE_SIZE (inner_mode)
6184 - GET_MODE_SIZE (tmode))
6185 / UNITS_PER_WORD) - final_word;
6187 final_word *= UNITS_PER_WORD;
6188 if (BYTES_BIG_ENDIAN &&
6189 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6190 final_word += (GET_MODE_SIZE (inner_mode)
6191 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6193 /* Avoid creating invalid subregs, for example when
6194 simplifying (x>>32)&255. */
6195 if (final_word >= GET_MODE_SIZE (inner_mode))
6196 return NULL_RTX;
6198 new = gen_rtx_SUBREG (tmode, inner, final_word);
6200 else
6201 new = gen_lowpart (tmode, inner);
6203 else
6204 new = inner;
6206 else
6207 new = force_to_mode (inner, tmode,
6208 len >= HOST_BITS_PER_WIDE_INT
6209 ? ~(unsigned HOST_WIDE_INT) 0
6210 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6211 NULL_RTX, 0);
6213 /* If this extraction is going into the destination of a SET,
6214 make a STRICT_LOW_PART unless we made a MEM. */
6216 if (in_dest)
6217 return (MEM_P (new) ? new
6218 : (GET_CODE (new) != SUBREG
6219 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6220 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6222 if (mode == tmode)
6223 return new;
6225 if (GET_CODE (new) == CONST_INT)
6226 return gen_int_mode (INTVAL (new), mode);
6228 /* If we know that no extraneous bits are set, and that the high
6229 bit is not set, convert the extraction to the cheaper of
6230 sign and zero extension, that are equivalent in these cases. */
6231 if (flag_expensive_optimizations
6232 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6233 && ((nonzero_bits (new, tmode)
6234 & ~(((unsigned HOST_WIDE_INT)
6235 GET_MODE_MASK (tmode))
6236 >> 1))
6237 == 0)))
6239 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6240 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6242 /* Prefer ZERO_EXTENSION, since it gives more information to
6243 backends. */
6244 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6245 return temp;
6246 return temp1;
6249 /* Otherwise, sign- or zero-extend unless we already are in the
6250 proper mode. */
6252 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6253 mode, new));
6256 /* Unless this is a COMPARE or we have a funny memory reference,
6257 don't do anything with zero-extending field extracts starting at
6258 the low-order bit since they are simple AND operations. */
6259 if (pos_rtx == 0 && pos == 0 && ! in_dest
6260 && ! in_compare && ! spans_byte && unsignedp)
6261 return 0;
6263 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6264 we would be spanning bytes or if the position is not a constant and the
6265 length is not 1. In all other cases, we would only be going outside
6266 our object in cases when an original shift would have been
6267 undefined. */
6268 if (! spans_byte && MEM_P (inner)
6269 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6270 || (pos_rtx != 0 && len != 1)))
6271 return 0;
6273 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6274 and the mode for the result. */
6275 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6277 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6278 pos_mode = mode_for_extraction (EP_insv, 2);
6279 extraction_mode = mode_for_extraction (EP_insv, 3);
6282 if (! in_dest && unsignedp
6283 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6285 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6286 pos_mode = mode_for_extraction (EP_extzv, 3);
6287 extraction_mode = mode_for_extraction (EP_extzv, 0);
6290 if (! in_dest && ! unsignedp
6291 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6293 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6294 pos_mode = mode_for_extraction (EP_extv, 3);
6295 extraction_mode = mode_for_extraction (EP_extv, 0);
6298 /* Never narrow an object, since that might not be safe. */
6300 if (mode != VOIDmode
6301 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6302 extraction_mode = mode;
6304 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6305 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6306 pos_mode = GET_MODE (pos_rtx);
6308 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6309 if we have to change the mode of memory and cannot, the desired mode is
6310 EXTRACTION_MODE. */
6311 if (!MEM_P (inner))
6312 wanted_inner_mode = wanted_inner_reg_mode;
6313 else if (inner_mode != wanted_inner_mode
6314 && (mode_dependent_address_p (XEXP (inner, 0))
6315 || MEM_VOLATILE_P (inner)))
6316 wanted_inner_mode = extraction_mode;
6318 orig_pos = pos;
6320 if (BITS_BIG_ENDIAN)
6322 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6323 BITS_BIG_ENDIAN style. If position is constant, compute new
6324 position. Otherwise, build subtraction.
6325 Note that POS is relative to the mode of the original argument.
6326 If it's a MEM we need to recompute POS relative to that.
6327 However, if we're extracting from (or inserting into) a register,
6328 we want to recompute POS relative to wanted_inner_mode. */
6329 int width = (MEM_P (inner)
6330 ? GET_MODE_BITSIZE (is_mode)
6331 : GET_MODE_BITSIZE (wanted_inner_mode));
6333 if (pos_rtx == 0)
6334 pos = width - len - pos;
6335 else
6336 pos_rtx
6337 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6338 /* POS may be less than 0 now, but we check for that below.
6339 Note that it can only be less than 0 if !MEM_P (inner). */
6342 /* If INNER has a wider mode, make it smaller. If this is a constant
6343 extract, try to adjust the byte to point to the byte containing
6344 the value. */
6345 if (wanted_inner_mode != VOIDmode
6346 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6347 && ((MEM_P (inner)
6348 && (inner_mode == wanted_inner_mode
6349 || (! mode_dependent_address_p (XEXP (inner, 0))
6350 && ! MEM_VOLATILE_P (inner))))))
6352 int offset = 0;
6354 /* The computations below will be correct if the machine is big
6355 endian in both bits and bytes or little endian in bits and bytes.
6356 If it is mixed, we must adjust. */
6358 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6359 adjust OFFSET to compensate. */
6360 if (BYTES_BIG_ENDIAN
6361 && ! spans_byte
6362 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6363 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6365 /* If this is a constant position, we can move to the desired byte.
6366 Be careful not to go beyond the original object. */
6367 if (pos_rtx == 0)
6369 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6370 offset += pos / GET_MODE_BITSIZE (bfmode);
6371 pos %= GET_MODE_BITSIZE (bfmode);
6374 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6375 && ! spans_byte
6376 && is_mode != wanted_inner_mode)
6377 offset = (GET_MODE_SIZE (is_mode)
6378 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6380 if (offset != 0 || inner_mode != wanted_inner_mode)
6381 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6384 /* If INNER is not memory, we can always get it into the proper mode. If we
6385 are changing its mode, POS must be a constant and smaller than the size
6386 of the new mode. */
6387 else if (!MEM_P (inner))
6389 if (GET_MODE (inner) != wanted_inner_mode
6390 && (pos_rtx != 0
6391 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6392 return 0;
6394 inner = force_to_mode (inner, wanted_inner_mode,
6395 pos_rtx
6396 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6397 ? ~(unsigned HOST_WIDE_INT) 0
6398 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6399 << orig_pos),
6400 NULL_RTX, 0);
6403 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6404 have to zero extend. Otherwise, we can just use a SUBREG. */
6405 if (pos_rtx != 0
6406 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6408 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6410 /* If we know that no extraneous bits are set, and that the high
6411 bit is not set, convert extraction to cheaper one - either
6412 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6413 cases. */
6414 if (flag_expensive_optimizations
6415 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6416 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6417 & ~(((unsigned HOST_WIDE_INT)
6418 GET_MODE_MASK (GET_MODE (pos_rtx)))
6419 >> 1))
6420 == 0)))
6422 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6424 /* Prefer ZERO_EXTENSION, since it gives more information to
6425 backends. */
6426 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6427 temp = temp1;
6429 pos_rtx = temp;
6431 else if (pos_rtx != 0
6432 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6433 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6435 /* Make POS_RTX unless we already have it and it is correct. If we don't
6436 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6437 be a CONST_INT. */
6438 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6439 pos_rtx = orig_pos_rtx;
6441 else if (pos_rtx == 0)
6442 pos_rtx = GEN_INT (pos);
6444 /* Make the required operation. See if we can use existing rtx. */
6445 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6446 extraction_mode, inner, GEN_INT (len), pos_rtx);
6447 if (! in_dest)
6448 new = gen_lowpart (mode, new);
6450 return new;
6453 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6454 with any other operations in X. Return X without that shift if so. */
6456 static rtx
6457 extract_left_shift (rtx x, int count)
6459 enum rtx_code code = GET_CODE (x);
6460 enum machine_mode mode = GET_MODE (x);
6461 rtx tem;
6463 switch (code)
6465 case ASHIFT:
6466 /* This is the shift itself. If it is wide enough, we will return
6467 either the value being shifted if the shift count is equal to
6468 COUNT or a shift for the difference. */
6469 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6470 && INTVAL (XEXP (x, 1)) >= count)
6471 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6472 INTVAL (XEXP (x, 1)) - count);
6473 break;
6475 case NEG: case NOT:
6476 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6477 return simplify_gen_unary (code, mode, tem, mode);
6479 break;
6481 case PLUS: case IOR: case XOR: case AND:
6482 /* If we can safely shift this constant and we find the inner shift,
6483 make a new operation. */
6484 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6485 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6486 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6487 return simplify_gen_binary (code, mode, tem,
6488 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6490 break;
6492 default:
6493 break;
6496 return 0;
6499 /* Look at the expression rooted at X. Look for expressions
6500 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6501 Form these expressions.
6503 Return the new rtx, usually just X.
6505 Also, for machines like the VAX that don't have logical shift insns,
6506 try to convert logical to arithmetic shift operations in cases where
6507 they are equivalent. This undoes the canonicalizations to logical
6508 shifts done elsewhere.
6510 We try, as much as possible, to re-use rtl expressions to save memory.
6512 IN_CODE says what kind of expression we are processing. Normally, it is
6513 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6514 being kludges), it is MEM. When processing the arguments of a comparison
6515 or a COMPARE against zero, it is COMPARE. */
6517 static rtx
6518 make_compound_operation (rtx x, enum rtx_code in_code)
6520 enum rtx_code code = GET_CODE (x);
6521 enum machine_mode mode = GET_MODE (x);
6522 int mode_width = GET_MODE_BITSIZE (mode);
6523 rtx rhs, lhs;
6524 enum rtx_code next_code;
6525 int i;
6526 rtx new = 0;
6527 rtx tem;
6528 const char *fmt;
6530 /* Select the code to be used in recursive calls. Once we are inside an
6531 address, we stay there. If we have a comparison, set to COMPARE,
6532 but once inside, go back to our default of SET. */
6534 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6535 : ((code == COMPARE || COMPARISON_P (x))
6536 && XEXP (x, 1) == const0_rtx) ? COMPARE
6537 : in_code == COMPARE ? SET : in_code);
6539 /* Process depending on the code of this operation. If NEW is set
6540 nonzero, it will be returned. */
6542 switch (code)
6544 case ASHIFT:
6545 /* Convert shifts by constants into multiplications if inside
6546 an address. */
6547 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6548 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6549 && INTVAL (XEXP (x, 1)) >= 0)
6551 new = make_compound_operation (XEXP (x, 0), next_code);
6552 new = gen_rtx_MULT (mode, new,
6553 GEN_INT ((HOST_WIDE_INT) 1
6554 << INTVAL (XEXP (x, 1))));
6556 break;
6558 case AND:
6559 /* If the second operand is not a constant, we can't do anything
6560 with it. */
6561 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6562 break;
6564 /* If the constant is a power of two minus one and the first operand
6565 is a logical right shift, make an extraction. */
6566 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6567 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6569 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6570 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6571 0, in_code == COMPARE);
6574 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6575 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6576 && subreg_lowpart_p (XEXP (x, 0))
6577 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6578 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6580 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6581 next_code);
6582 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6583 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6584 0, in_code == COMPARE);
6586 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6587 else if ((GET_CODE (XEXP (x, 0)) == XOR
6588 || GET_CODE (XEXP (x, 0)) == IOR)
6589 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6590 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6591 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6593 /* Apply the distributive law, and then try to make extractions. */
6594 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6595 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6596 XEXP (x, 1)),
6597 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6598 XEXP (x, 1)));
6599 new = make_compound_operation (new, in_code);
6602 /* If we are have (and (rotate X C) M) and C is larger than the number
6603 of bits in M, this is an extraction. */
6605 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6606 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6608 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6610 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6611 new = make_extraction (mode, new,
6612 (GET_MODE_BITSIZE (mode)
6613 - INTVAL (XEXP (XEXP (x, 0), 1))),
6614 NULL_RTX, i, 1, 0, in_code == COMPARE);
6617 /* On machines without logical shifts, if the operand of the AND is
6618 a logical shift and our mask turns off all the propagated sign
6619 bits, we can replace the logical shift with an arithmetic shift. */
6620 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6621 && !have_insn_for (LSHIFTRT, mode)
6622 && have_insn_for (ASHIFTRT, mode)
6623 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6624 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6625 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6626 && mode_width <= HOST_BITS_PER_WIDE_INT)
6628 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6630 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6631 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6632 SUBST (XEXP (x, 0),
6633 gen_rtx_ASHIFTRT (mode,
6634 make_compound_operation
6635 (XEXP (XEXP (x, 0), 0), next_code),
6636 XEXP (XEXP (x, 0), 1)));
6639 /* If the constant is one less than a power of two, this might be
6640 representable by an extraction even if no shift is present.
6641 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6642 we are in a COMPARE. */
6643 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6644 new = make_extraction (mode,
6645 make_compound_operation (XEXP (x, 0),
6646 next_code),
6647 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6649 /* If we are in a comparison and this is an AND with a power of two,
6650 convert this into the appropriate bit extract. */
6651 else if (in_code == COMPARE
6652 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6653 new = make_extraction (mode,
6654 make_compound_operation (XEXP (x, 0),
6655 next_code),
6656 i, NULL_RTX, 1, 1, 0, 1);
6658 break;
6660 case LSHIFTRT:
6661 /* If the sign bit is known to be zero, replace this with an
6662 arithmetic shift. */
6663 if (have_insn_for (ASHIFTRT, mode)
6664 && ! have_insn_for (LSHIFTRT, mode)
6665 && mode_width <= HOST_BITS_PER_WIDE_INT
6666 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6668 new = gen_rtx_ASHIFTRT (mode,
6669 make_compound_operation (XEXP (x, 0),
6670 next_code),
6671 XEXP (x, 1));
6672 break;
6675 /* ... fall through ... */
6677 case ASHIFTRT:
6678 lhs = XEXP (x, 0);
6679 rhs = XEXP (x, 1);
6681 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6682 this is a SIGN_EXTRACT. */
6683 if (GET_CODE (rhs) == CONST_INT
6684 && GET_CODE (lhs) == ASHIFT
6685 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6686 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6688 new = make_compound_operation (XEXP (lhs, 0), next_code);
6689 new = make_extraction (mode, new,
6690 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6691 NULL_RTX, mode_width - INTVAL (rhs),
6692 code == LSHIFTRT, 0, in_code == COMPARE);
6693 break;
6696 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6697 If so, try to merge the shifts into a SIGN_EXTEND. We could
6698 also do this for some cases of SIGN_EXTRACT, but it doesn't
6699 seem worth the effort; the case checked for occurs on Alpha. */
6701 if (!OBJECT_P (lhs)
6702 && ! (GET_CODE (lhs) == SUBREG
6703 && (OBJECT_P (SUBREG_REG (lhs))))
6704 && GET_CODE (rhs) == CONST_INT
6705 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6706 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6707 new = make_extraction (mode, make_compound_operation (new, next_code),
6708 0, NULL_RTX, mode_width - INTVAL (rhs),
6709 code == LSHIFTRT, 0, in_code == COMPARE);
6711 break;
6713 case SUBREG:
6714 /* Call ourselves recursively on the inner expression. If we are
6715 narrowing the object and it has a different RTL code from
6716 what it originally did, do this SUBREG as a force_to_mode. */
6718 tem = make_compound_operation (SUBREG_REG (x), in_code);
6719 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6720 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6721 && subreg_lowpart_p (x))
6723 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6724 NULL_RTX, 0);
6726 /* If we have something other than a SUBREG, we might have
6727 done an expansion, so rerun ourselves. */
6728 if (GET_CODE (newer) != SUBREG)
6729 newer = make_compound_operation (newer, in_code);
6731 return newer;
6734 /* If this is a paradoxical subreg, and the new code is a sign or
6735 zero extension, omit the subreg and widen the extension. If it
6736 is a regular subreg, we can still get rid of the subreg by not
6737 widening so much, or in fact removing the extension entirely. */
6738 if ((GET_CODE (tem) == SIGN_EXTEND
6739 || GET_CODE (tem) == ZERO_EXTEND)
6740 && subreg_lowpart_p (x))
6742 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6743 || (GET_MODE_SIZE (mode) >
6744 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6746 if (! SCALAR_INT_MODE_P (mode))
6747 break;
6748 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6750 else
6751 tem = gen_lowpart (mode, XEXP (tem, 0));
6752 return tem;
6754 break;
6756 default:
6757 break;
6760 if (new)
6762 x = gen_lowpart (mode, new);
6763 code = GET_CODE (x);
6766 /* Now recursively process each operand of this operation. */
6767 fmt = GET_RTX_FORMAT (code);
6768 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6769 if (fmt[i] == 'e')
6771 new = make_compound_operation (XEXP (x, i), next_code);
6772 SUBST (XEXP (x, i), new);
6775 return x;
6778 /* Given M see if it is a value that would select a field of bits
6779 within an item, but not the entire word. Return -1 if not.
6780 Otherwise, return the starting position of the field, where 0 is the
6781 low-order bit.
6783 *PLEN is set to the length of the field. */
6785 static int
6786 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6788 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6789 int pos = exact_log2 (m & -m);
6790 int len = 0;
6792 if (pos >= 0)
6793 /* Now shift off the low-order zero bits and see if we have a
6794 power of two minus 1. */
6795 len = exact_log2 ((m >> pos) + 1);
6797 if (len <= 0)
6798 pos = -1;
6800 *plen = len;
6801 return pos;
6804 /* See if X can be simplified knowing that we will only refer to it in
6805 MODE and will only refer to those bits that are nonzero in MASK.
6806 If other bits are being computed or if masking operations are done
6807 that select a superset of the bits in MASK, they can sometimes be
6808 ignored.
6810 Return a possibly simplified expression, but always convert X to
6811 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6813 Also, if REG is nonzero and X is a register equal in value to REG,
6814 replace X with REG.
6816 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6817 are all off in X. This is used when X will be complemented, by either
6818 NOT, NEG, or XOR. */
6820 static rtx
6821 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6822 rtx reg, int just_select)
6824 enum rtx_code code = GET_CODE (x);
6825 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6826 enum machine_mode op_mode;
6827 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6828 rtx op0, op1, temp;
6830 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6831 code below will do the wrong thing since the mode of such an
6832 expression is VOIDmode.
6834 Also do nothing if X is a CLOBBER; this can happen if X was
6835 the return value from a call to gen_lowpart. */
6836 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6837 return x;
6839 /* We want to perform the operation is its present mode unless we know
6840 that the operation is valid in MODE, in which case we do the operation
6841 in MODE. */
6842 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6843 && have_insn_for (code, mode))
6844 ? mode : GET_MODE (x));
6846 /* It is not valid to do a right-shift in a narrower mode
6847 than the one it came in with. */
6848 if ((code == LSHIFTRT || code == ASHIFTRT)
6849 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6850 op_mode = GET_MODE (x);
6852 /* Truncate MASK to fit OP_MODE. */
6853 if (op_mode)
6854 mask &= GET_MODE_MASK (op_mode);
6856 /* When we have an arithmetic operation, or a shift whose count we
6857 do not know, we need to assume that all bits up to the highest-order
6858 bit in MASK will be needed. This is how we form such a mask. */
6859 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6860 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6861 else
6862 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6863 - 1);
6865 /* Determine what bits of X are guaranteed to be (non)zero. */
6866 nonzero = nonzero_bits (x, mode);
6868 /* If none of the bits in X are needed, return a zero. */
6869 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
6870 x = const0_rtx;
6872 /* If X is a CONST_INT, return a new one. Do this here since the
6873 test below will fail. */
6874 if (GET_CODE (x) == CONST_INT)
6876 if (SCALAR_INT_MODE_P (mode))
6877 return gen_int_mode (INTVAL (x) & mask, mode);
6878 else
6880 x = GEN_INT (INTVAL (x) & mask);
6881 return gen_lowpart_common (mode, x);
6885 /* If X is narrower than MODE and we want all the bits in X's mode, just
6886 get X in the proper mode. */
6887 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6888 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6889 return gen_lowpart (mode, x);
6891 switch (code)
6893 case CLOBBER:
6894 /* If X is a (clobber (const_int)), return it since we know we are
6895 generating something that won't match. */
6896 return x;
6898 case USE:
6899 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6900 spanned the boundary of the MEM. If we are now masking so it is
6901 within that boundary, we don't need the USE any more. */
6902 if (! BITS_BIG_ENDIAN
6903 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6904 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6905 break;
6907 case SIGN_EXTEND:
6908 case ZERO_EXTEND:
6909 case ZERO_EXTRACT:
6910 case SIGN_EXTRACT:
6911 x = expand_compound_operation (x);
6912 if (GET_CODE (x) != code)
6913 return force_to_mode (x, mode, mask, reg, next_select);
6914 break;
6916 case REG:
6917 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6918 || rtx_equal_p (reg, get_last_value (x))))
6919 x = reg;
6920 break;
6922 case SUBREG:
6923 if (subreg_lowpart_p (x)
6924 /* We can ignore the effect of this SUBREG if it narrows the mode or
6925 if the constant masks to zero all the bits the mode doesn't
6926 have. */
6927 && ((GET_MODE_SIZE (GET_MODE (x))
6928 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6929 || (0 == (mask
6930 & GET_MODE_MASK (GET_MODE (x))
6931 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6932 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6933 break;
6935 case AND:
6936 /* If this is an AND with a constant, convert it into an AND
6937 whose constant is the AND of that constant with MASK. If it
6938 remains an AND of MASK, delete it since it is redundant. */
6940 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6942 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6943 mask & INTVAL (XEXP (x, 1)));
6945 /* If X is still an AND, see if it is an AND with a mask that
6946 is just some low-order bits. If so, and it is MASK, we don't
6947 need it. */
6949 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6950 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6951 == mask))
6952 x = XEXP (x, 0);
6954 /* If it remains an AND, try making another AND with the bits
6955 in the mode mask that aren't in MASK turned on. If the
6956 constant in the AND is wide enough, this might make a
6957 cheaper constant. */
6959 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6960 && GET_MODE_MASK (GET_MODE (x)) != mask
6961 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6963 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6964 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6965 int width = GET_MODE_BITSIZE (GET_MODE (x));
6966 rtx y;
6968 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6969 number, sign extend it. */
6970 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6971 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6972 cval |= (HOST_WIDE_INT) -1 << width;
6974 y = simplify_gen_binary (AND, GET_MODE (x),
6975 XEXP (x, 0), GEN_INT (cval));
6976 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6977 x = y;
6980 break;
6983 goto binop;
6985 case PLUS:
6986 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6987 low-order bits (as in an alignment operation) and FOO is already
6988 aligned to that boundary, mask C1 to that boundary as well.
6989 This may eliminate that PLUS and, later, the AND. */
6992 unsigned int width = GET_MODE_BITSIZE (mode);
6993 unsigned HOST_WIDE_INT smask = mask;
6995 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6996 number, sign extend it. */
6998 if (width < HOST_BITS_PER_WIDE_INT
6999 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7000 smask |= (HOST_WIDE_INT) -1 << width;
7002 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7003 && exact_log2 (- smask) >= 0
7004 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7005 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7006 return force_to_mode (plus_constant (XEXP (x, 0),
7007 (INTVAL (XEXP (x, 1)) & smask)),
7008 mode, smask, reg, next_select);
7011 /* ... fall through ... */
7013 case MULT:
7014 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7015 most significant bit in MASK since carries from those bits will
7016 affect the bits we are interested in. */
7017 mask = fuller_mask;
7018 goto binop;
7020 case MINUS:
7021 /* If X is (minus C Y) where C's least set bit is larger than any bit
7022 in the mask, then we may replace with (neg Y). */
7023 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7024 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7025 & -INTVAL (XEXP (x, 0))))
7026 > mask))
7028 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7029 GET_MODE (x));
7030 return force_to_mode (x, mode, mask, reg, next_select);
7033 /* Similarly, if C contains every bit in the fuller_mask, then we may
7034 replace with (not Y). */
7035 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7036 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7037 == INTVAL (XEXP (x, 0))))
7039 x = simplify_gen_unary (NOT, GET_MODE (x),
7040 XEXP (x, 1), GET_MODE (x));
7041 return force_to_mode (x, mode, mask, reg, next_select);
7044 mask = fuller_mask;
7045 goto binop;
7047 case IOR:
7048 case XOR:
7049 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7050 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7051 operation which may be a bitfield extraction. Ensure that the
7052 constant we form is not wider than the mode of X. */
7054 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7055 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7056 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7057 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7058 && GET_CODE (XEXP (x, 1)) == CONST_INT
7059 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7060 + floor_log2 (INTVAL (XEXP (x, 1))))
7061 < GET_MODE_BITSIZE (GET_MODE (x)))
7062 && (INTVAL (XEXP (x, 1))
7063 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7065 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7066 << INTVAL (XEXP (XEXP (x, 0), 1)));
7067 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7068 XEXP (XEXP (x, 0), 0), temp);
7069 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7070 XEXP (XEXP (x, 0), 1));
7071 return force_to_mode (x, mode, mask, reg, next_select);
7074 binop:
7075 /* For most binary operations, just propagate into the operation and
7076 change the mode if we have an operation of that mode. */
7078 op0 = gen_lowpart (op_mode,
7079 force_to_mode (XEXP (x, 0), mode, mask,
7080 reg, next_select));
7081 op1 = gen_lowpart (op_mode,
7082 force_to_mode (XEXP (x, 1), mode, mask,
7083 reg, next_select));
7085 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7086 x = simplify_gen_binary (code, op_mode, op0, op1);
7087 break;
7089 case ASHIFT:
7090 /* For left shifts, do the same, but just for the first operand.
7091 However, we cannot do anything with shifts where we cannot
7092 guarantee that the counts are smaller than the size of the mode
7093 because such a count will have a different meaning in a
7094 wider mode. */
7096 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7097 && INTVAL (XEXP (x, 1)) >= 0
7098 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7099 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7100 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7101 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7102 break;
7104 /* If the shift count is a constant and we can do arithmetic in
7105 the mode of the shift, refine which bits we need. Otherwise, use the
7106 conservative form of the mask. */
7107 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7108 && INTVAL (XEXP (x, 1)) >= 0
7109 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7110 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7111 mask >>= INTVAL (XEXP (x, 1));
7112 else
7113 mask = fuller_mask;
7115 op0 = gen_lowpart (op_mode,
7116 force_to_mode (XEXP (x, 0), op_mode,
7117 mask, reg, next_select));
7119 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7120 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7121 break;
7123 case LSHIFTRT:
7124 /* Here we can only do something if the shift count is a constant,
7125 this shift constant is valid for the host, and we can do arithmetic
7126 in OP_MODE. */
7128 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7129 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7130 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7132 rtx inner = XEXP (x, 0);
7133 unsigned HOST_WIDE_INT inner_mask;
7135 /* Select the mask of the bits we need for the shift operand. */
7136 inner_mask = mask << INTVAL (XEXP (x, 1));
7138 /* We can only change the mode of the shift if we can do arithmetic
7139 in the mode of the shift and INNER_MASK is no wider than the
7140 width of X's mode. */
7141 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7142 op_mode = GET_MODE (x);
7144 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7146 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7147 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7150 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7151 shift and AND produces only copies of the sign bit (C2 is one less
7152 than a power of two), we can do this with just a shift. */
7154 if (GET_CODE (x) == LSHIFTRT
7155 && GET_CODE (XEXP (x, 1)) == CONST_INT
7156 /* The shift puts one of the sign bit copies in the least significant
7157 bit. */
7158 && ((INTVAL (XEXP (x, 1))
7159 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7160 >= GET_MODE_BITSIZE (GET_MODE (x)))
7161 && exact_log2 (mask + 1) >= 0
7162 /* Number of bits left after the shift must be more than the mask
7163 needs. */
7164 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7165 <= GET_MODE_BITSIZE (GET_MODE (x)))
7166 /* Must be more sign bit copies than the mask needs. */
7167 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7168 >= exact_log2 (mask + 1)))
7169 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7170 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7171 - exact_log2 (mask + 1)));
7173 goto shiftrt;
7175 case ASHIFTRT:
7176 /* If we are just looking for the sign bit, we don't need this shift at
7177 all, even if it has a variable count. */
7178 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7179 && (mask == ((unsigned HOST_WIDE_INT) 1
7180 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7181 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7183 /* If this is a shift by a constant, get a mask that contains those bits
7184 that are not copies of the sign bit. We then have two cases: If
7185 MASK only includes those bits, this can be a logical shift, which may
7186 allow simplifications. If MASK is a single-bit field not within
7187 those bits, we are requesting a copy of the sign bit and hence can
7188 shift the sign bit to the appropriate location. */
7190 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7191 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7193 int i = -1;
7195 /* If the considered data is wider than HOST_WIDE_INT, we can't
7196 represent a mask for all its bits in a single scalar.
7197 But we only care about the lower bits, so calculate these. */
7199 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7201 nonzero = ~(HOST_WIDE_INT) 0;
7203 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7204 is the number of bits a full-width mask would have set.
7205 We need only shift if these are fewer than nonzero can
7206 hold. If not, we must keep all bits set in nonzero. */
7208 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7209 < HOST_BITS_PER_WIDE_INT)
7210 nonzero >>= INTVAL (XEXP (x, 1))
7211 + HOST_BITS_PER_WIDE_INT
7212 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7214 else
7216 nonzero = GET_MODE_MASK (GET_MODE (x));
7217 nonzero >>= INTVAL (XEXP (x, 1));
7220 if ((mask & ~nonzero) == 0
7221 || (i = exact_log2 (mask)) >= 0)
7223 x = simplify_shift_const
7224 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7225 i < 0 ? INTVAL (XEXP (x, 1))
7226 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7228 if (GET_CODE (x) != ASHIFTRT)
7229 return force_to_mode (x, mode, mask, reg, next_select);
7233 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7234 even if the shift count isn't a constant. */
7235 if (mask == 1)
7236 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7237 XEXP (x, 0), XEXP (x, 1));
7239 shiftrt:
7241 /* If this is a zero- or sign-extension operation that just affects bits
7242 we don't care about, remove it. Be sure the call above returned
7243 something that is still a shift. */
7245 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7246 && GET_CODE (XEXP (x, 1)) == CONST_INT
7247 && INTVAL (XEXP (x, 1)) >= 0
7248 && (INTVAL (XEXP (x, 1))
7249 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7250 && GET_CODE (XEXP (x, 0)) == ASHIFT
7251 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7252 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7253 reg, next_select);
7255 break;
7257 case ROTATE:
7258 case ROTATERT:
7259 /* If the shift count is constant and we can do computations
7260 in the mode of X, compute where the bits we care about are.
7261 Otherwise, we can't do anything. Don't change the mode of
7262 the shift or propagate MODE into the shift, though. */
7263 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7264 && INTVAL (XEXP (x, 1)) >= 0)
7266 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7267 GET_MODE (x), GEN_INT (mask),
7268 XEXP (x, 1));
7269 if (temp && GET_CODE (temp) == CONST_INT)
7270 SUBST (XEXP (x, 0),
7271 force_to_mode (XEXP (x, 0), GET_MODE (x),
7272 INTVAL (temp), reg, next_select));
7274 break;
7276 case NEG:
7277 /* If we just want the low-order bit, the NEG isn't needed since it
7278 won't change the low-order bit. */
7279 if (mask == 1)
7280 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7282 /* We need any bits less significant than the most significant bit in
7283 MASK since carries from those bits will affect the bits we are
7284 interested in. */
7285 mask = fuller_mask;
7286 goto unop;
7288 case NOT:
7289 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7290 same as the XOR case above. Ensure that the constant we form is not
7291 wider than the mode of X. */
7293 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7294 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7295 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7296 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7297 < GET_MODE_BITSIZE (GET_MODE (x)))
7298 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7300 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7301 GET_MODE (x));
7302 temp = simplify_gen_binary (XOR, GET_MODE (x),
7303 XEXP (XEXP (x, 0), 0), temp);
7304 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7305 temp, XEXP (XEXP (x, 0), 1));
7307 return force_to_mode (x, mode, mask, reg, next_select);
7310 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7311 use the full mask inside the NOT. */
7312 mask = fuller_mask;
7314 unop:
7315 op0 = gen_lowpart (op_mode,
7316 force_to_mode (XEXP (x, 0), mode, mask,
7317 reg, next_select));
7318 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7319 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7320 break;
7322 case NE:
7323 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7324 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7325 which is equal to STORE_FLAG_VALUE. */
7326 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7327 && GET_MODE (XEXP (x, 0)) == mode
7328 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7329 && (nonzero_bits (XEXP (x, 0), mode)
7330 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7331 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7333 break;
7335 case IF_THEN_ELSE:
7336 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7337 written in a narrower mode. We play it safe and do not do so. */
7339 SUBST (XEXP (x, 1),
7340 gen_lowpart (GET_MODE (x),
7341 force_to_mode (XEXP (x, 1), mode,
7342 mask, reg, next_select)));
7343 SUBST (XEXP (x, 2),
7344 gen_lowpart (GET_MODE (x),
7345 force_to_mode (XEXP (x, 2), mode,
7346 mask, reg, next_select)));
7347 break;
7349 default:
7350 break;
7353 /* Ensure we return a value of the proper mode. */
7354 return gen_lowpart (mode, x);
7357 /* Return nonzero if X is an expression that has one of two values depending on
7358 whether some other value is zero or nonzero. In that case, we return the
7359 value that is being tested, *PTRUE is set to the value if the rtx being
7360 returned has a nonzero value, and *PFALSE is set to the other alternative.
7362 If we return zero, we set *PTRUE and *PFALSE to X. */
7364 static rtx
7365 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7367 enum machine_mode mode = GET_MODE (x);
7368 enum rtx_code code = GET_CODE (x);
7369 rtx cond0, cond1, true0, true1, false0, false1;
7370 unsigned HOST_WIDE_INT nz;
7372 /* If we are comparing a value against zero, we are done. */
7373 if ((code == NE || code == EQ)
7374 && XEXP (x, 1) == const0_rtx)
7376 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7377 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7378 return XEXP (x, 0);
7381 /* If this is a unary operation whose operand has one of two values, apply
7382 our opcode to compute those values. */
7383 else if (UNARY_P (x)
7384 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7386 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7387 *pfalse = simplify_gen_unary (code, mode, false0,
7388 GET_MODE (XEXP (x, 0)));
7389 return cond0;
7392 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7393 make can't possibly match and would suppress other optimizations. */
7394 else if (code == COMPARE)
7397 /* If this is a binary operation, see if either side has only one of two
7398 values. If either one does or if both do and they are conditional on
7399 the same value, compute the new true and false values. */
7400 else if (BINARY_P (x))
7402 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7403 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7405 if ((cond0 != 0 || cond1 != 0)
7406 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7408 /* If if_then_else_cond returned zero, then true/false are the
7409 same rtl. We must copy one of them to prevent invalid rtl
7410 sharing. */
7411 if (cond0 == 0)
7412 true0 = copy_rtx (true0);
7413 else if (cond1 == 0)
7414 true1 = copy_rtx (true1);
7416 if (COMPARISON_P (x))
7418 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7419 true0, true1);
7420 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7421 false0, false1);
7423 else
7425 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7426 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7429 return cond0 ? cond0 : cond1;
7432 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7433 operands is zero when the other is nonzero, and vice-versa,
7434 and STORE_FLAG_VALUE is 1 or -1. */
7436 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7437 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7438 || code == UMAX)
7439 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7441 rtx op0 = XEXP (XEXP (x, 0), 1);
7442 rtx op1 = XEXP (XEXP (x, 1), 1);
7444 cond0 = XEXP (XEXP (x, 0), 0);
7445 cond1 = XEXP (XEXP (x, 1), 0);
7447 if (COMPARISON_P (cond0)
7448 && COMPARISON_P (cond1)
7449 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7450 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7451 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7452 || ((swap_condition (GET_CODE (cond0))
7453 == combine_reversed_comparison_code (cond1))
7454 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7455 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7456 && ! side_effects_p (x))
7458 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7459 *pfalse = simplify_gen_binary (MULT, mode,
7460 (code == MINUS
7461 ? simplify_gen_unary (NEG, mode,
7462 op1, mode)
7463 : op1),
7464 const_true_rtx);
7465 return cond0;
7469 /* Similarly for MULT, AND and UMIN, except that for these the result
7470 is always zero. */
7471 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7472 && (code == MULT || code == AND || code == UMIN)
7473 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7475 cond0 = XEXP (XEXP (x, 0), 0);
7476 cond1 = XEXP (XEXP (x, 1), 0);
7478 if (COMPARISON_P (cond0)
7479 && COMPARISON_P (cond1)
7480 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7481 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7482 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7483 || ((swap_condition (GET_CODE (cond0))
7484 == combine_reversed_comparison_code (cond1))
7485 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7486 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7487 && ! side_effects_p (x))
7489 *ptrue = *pfalse = const0_rtx;
7490 return cond0;
7495 else if (code == IF_THEN_ELSE)
7497 /* If we have IF_THEN_ELSE already, extract the condition and
7498 canonicalize it if it is NE or EQ. */
7499 cond0 = XEXP (x, 0);
7500 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7501 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7502 return XEXP (cond0, 0);
7503 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7505 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7506 return XEXP (cond0, 0);
7508 else
7509 return cond0;
7512 /* If X is a SUBREG, we can narrow both the true and false values
7513 if the inner expression, if there is a condition. */
7514 else if (code == SUBREG
7515 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7516 &true0, &false0)))
7518 true0 = simplify_gen_subreg (mode, true0,
7519 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7520 false0 = simplify_gen_subreg (mode, false0,
7521 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7522 if (true0 && false0)
7524 *ptrue = true0;
7525 *pfalse = false0;
7526 return cond0;
7530 /* If X is a constant, this isn't special and will cause confusions
7531 if we treat it as such. Likewise if it is equivalent to a constant. */
7532 else if (CONSTANT_P (x)
7533 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7536 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7537 will be least confusing to the rest of the compiler. */
7538 else if (mode == BImode)
7540 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7541 return x;
7544 /* If X is known to be either 0 or -1, those are the true and
7545 false values when testing X. */
7546 else if (x == constm1_rtx || x == const0_rtx
7547 || (mode != VOIDmode
7548 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7550 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7551 return x;
7554 /* Likewise for 0 or a single bit. */
7555 else if (SCALAR_INT_MODE_P (mode)
7556 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7557 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7559 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7560 return x;
7563 /* Otherwise fail; show no condition with true and false values the same. */
7564 *ptrue = *pfalse = x;
7565 return 0;
7568 /* Return the value of expression X given the fact that condition COND
7569 is known to be true when applied to REG as its first operand and VAL
7570 as its second. X is known to not be shared and so can be modified in
7571 place.
7573 We only handle the simplest cases, and specifically those cases that
7574 arise with IF_THEN_ELSE expressions. */
7576 static rtx
7577 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7579 enum rtx_code code = GET_CODE (x);
7580 rtx temp;
7581 const char *fmt;
7582 int i, j;
7584 if (side_effects_p (x))
7585 return x;
7587 /* If either operand of the condition is a floating point value,
7588 then we have to avoid collapsing an EQ comparison. */
7589 if (cond == EQ
7590 && rtx_equal_p (x, reg)
7591 && ! FLOAT_MODE_P (GET_MODE (x))
7592 && ! FLOAT_MODE_P (GET_MODE (val)))
7593 return val;
7595 if (cond == UNEQ && rtx_equal_p (x, reg))
7596 return val;
7598 /* If X is (abs REG) and we know something about REG's relationship
7599 with zero, we may be able to simplify this. */
7601 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7602 switch (cond)
7604 case GE: case GT: case EQ:
7605 return XEXP (x, 0);
7606 case LT: case LE:
7607 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7608 XEXP (x, 0),
7609 GET_MODE (XEXP (x, 0)));
7610 default:
7611 break;
7614 /* The only other cases we handle are MIN, MAX, and comparisons if the
7615 operands are the same as REG and VAL. */
7617 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7619 if (rtx_equal_p (XEXP (x, 0), val))
7620 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7622 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7624 if (COMPARISON_P (x))
7626 if (comparison_dominates_p (cond, code))
7627 return const_true_rtx;
7629 code = combine_reversed_comparison_code (x);
7630 if (code != UNKNOWN
7631 && comparison_dominates_p (cond, code))
7632 return const0_rtx;
7633 else
7634 return x;
7636 else if (code == SMAX || code == SMIN
7637 || code == UMIN || code == UMAX)
7639 int unsignedp = (code == UMIN || code == UMAX);
7641 /* Do not reverse the condition when it is NE or EQ.
7642 This is because we cannot conclude anything about
7643 the value of 'SMAX (x, y)' when x is not equal to y,
7644 but we can when x equals y. */
7645 if ((code == SMAX || code == UMAX)
7646 && ! (cond == EQ || cond == NE))
7647 cond = reverse_condition (cond);
7649 switch (cond)
7651 case GE: case GT:
7652 return unsignedp ? x : XEXP (x, 1);
7653 case LE: case LT:
7654 return unsignedp ? x : XEXP (x, 0);
7655 case GEU: case GTU:
7656 return unsignedp ? XEXP (x, 1) : x;
7657 case LEU: case LTU:
7658 return unsignedp ? XEXP (x, 0) : x;
7659 default:
7660 break;
7665 else if (code == SUBREG)
7667 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7668 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7670 if (SUBREG_REG (x) != r)
7672 /* We must simplify subreg here, before we lose track of the
7673 original inner_mode. */
7674 new = simplify_subreg (GET_MODE (x), r,
7675 inner_mode, SUBREG_BYTE (x));
7676 if (new)
7677 return new;
7678 else
7679 SUBST (SUBREG_REG (x), r);
7682 return x;
7684 /* We don't have to handle SIGN_EXTEND here, because even in the
7685 case of replacing something with a modeless CONST_INT, a
7686 CONST_INT is already (supposed to be) a valid sign extension for
7687 its narrower mode, which implies it's already properly
7688 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7689 story is different. */
7690 else if (code == ZERO_EXTEND)
7692 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7693 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7695 if (XEXP (x, 0) != r)
7697 /* We must simplify the zero_extend here, before we lose
7698 track of the original inner_mode. */
7699 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7700 r, inner_mode);
7701 if (new)
7702 return new;
7703 else
7704 SUBST (XEXP (x, 0), r);
7707 return x;
7710 fmt = GET_RTX_FORMAT (code);
7711 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7713 if (fmt[i] == 'e')
7714 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7715 else if (fmt[i] == 'E')
7716 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7717 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7718 cond, reg, val));
7721 return x;
7724 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7725 assignment as a field assignment. */
7727 static int
7728 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7730 if (x == y || rtx_equal_p (x, y))
7731 return 1;
7733 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7734 return 0;
7736 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7737 Note that all SUBREGs of MEM are paradoxical; otherwise they
7738 would have been rewritten. */
7739 if (MEM_P (x) && GET_CODE (y) == SUBREG
7740 && MEM_P (SUBREG_REG (y))
7741 && rtx_equal_p (SUBREG_REG (y),
7742 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7743 return 1;
7745 if (MEM_P (y) && GET_CODE (x) == SUBREG
7746 && MEM_P (SUBREG_REG (x))
7747 && rtx_equal_p (SUBREG_REG (x),
7748 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7749 return 1;
7751 /* We used to see if get_last_value of X and Y were the same but that's
7752 not correct. In one direction, we'll cause the assignment to have
7753 the wrong destination and in the case, we'll import a register into this
7754 insn that might have already have been dead. So fail if none of the
7755 above cases are true. */
7756 return 0;
7759 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7760 Return that assignment if so.
7762 We only handle the most common cases. */
7764 static rtx
7765 make_field_assignment (rtx x)
7767 rtx dest = SET_DEST (x);
7768 rtx src = SET_SRC (x);
7769 rtx assign;
7770 rtx rhs, lhs;
7771 HOST_WIDE_INT c1;
7772 HOST_WIDE_INT pos;
7773 unsigned HOST_WIDE_INT len;
7774 rtx other;
7775 enum machine_mode mode;
7777 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7778 a clear of a one-bit field. We will have changed it to
7779 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7780 for a SUBREG. */
7782 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7783 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7784 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7785 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7787 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7788 1, 1, 1, 0);
7789 if (assign != 0)
7790 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7791 return x;
7794 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7795 && subreg_lowpart_p (XEXP (src, 0))
7796 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7797 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7798 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7799 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7800 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7801 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7803 assign = make_extraction (VOIDmode, dest, 0,
7804 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7805 1, 1, 1, 0);
7806 if (assign != 0)
7807 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7808 return x;
7811 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7812 one-bit field. */
7813 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7814 && XEXP (XEXP (src, 0), 0) == const1_rtx
7815 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7817 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7818 1, 1, 1, 0);
7819 if (assign != 0)
7820 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7821 return x;
7824 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7825 SRC is an AND with all bits of that field set, then we can discard
7826 the AND. */
7827 if (GET_CODE (dest) == ZERO_EXTRACT
7828 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7829 && GET_CODE (src) == AND
7830 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7832 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7833 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7834 unsigned HOST_WIDE_INT ze_mask;
7836 if (width >= HOST_BITS_PER_WIDE_INT)
7837 ze_mask = -1;
7838 else
7839 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7841 /* Complete overlap. We can remove the source AND. */
7842 if ((and_mask & ze_mask) == ze_mask)
7843 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7845 /* Partial overlap. We can reduce the source AND. */
7846 if ((and_mask & ze_mask) != and_mask)
7848 mode = GET_MODE (src);
7849 src = gen_rtx_AND (mode, XEXP (src, 0),
7850 gen_int_mode (and_mask & ze_mask, mode));
7851 return gen_rtx_SET (VOIDmode, dest, src);
7855 /* The other case we handle is assignments into a constant-position
7856 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7857 a mask that has all one bits except for a group of zero bits and
7858 OTHER is known to have zeros where C1 has ones, this is such an
7859 assignment. Compute the position and length from C1. Shift OTHER
7860 to the appropriate position, force it to the required mode, and
7861 make the extraction. Check for the AND in both operands. */
7863 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7864 return x;
7866 rhs = expand_compound_operation (XEXP (src, 0));
7867 lhs = expand_compound_operation (XEXP (src, 1));
7869 if (GET_CODE (rhs) == AND
7870 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7871 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7872 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7873 else if (GET_CODE (lhs) == AND
7874 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7875 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7876 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7877 else
7878 return x;
7880 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7881 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7882 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7883 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7884 return x;
7886 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7887 if (assign == 0)
7888 return x;
7890 /* The mode to use for the source is the mode of the assignment, or of
7891 what is inside a possible STRICT_LOW_PART. */
7892 mode = (GET_CODE (assign) == STRICT_LOW_PART
7893 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7895 /* Shift OTHER right POS places and make it the source, restricting it
7896 to the proper length and mode. */
7898 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7899 GET_MODE (src), other, pos),
7900 mode,
7901 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7902 ? ~(unsigned HOST_WIDE_INT) 0
7903 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7904 dest, 0);
7906 /* If SRC is masked by an AND that does not make a difference in
7907 the value being stored, strip it. */
7908 if (GET_CODE (assign) == ZERO_EXTRACT
7909 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7910 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7911 && GET_CODE (src) == AND
7912 && GET_CODE (XEXP (src, 1)) == CONST_INT
7913 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7914 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7915 src = XEXP (src, 0);
7917 return gen_rtx_SET (VOIDmode, assign, src);
7920 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7921 if so. */
7923 static rtx
7924 apply_distributive_law (rtx x)
7926 enum rtx_code code = GET_CODE (x);
7927 enum rtx_code inner_code;
7928 rtx lhs, rhs, other;
7929 rtx tem;
7931 /* Distributivity is not true for floating point as it can change the
7932 value. So we don't do it unless -funsafe-math-optimizations. */
7933 if (FLOAT_MODE_P (GET_MODE (x))
7934 && ! flag_unsafe_math_optimizations)
7935 return x;
7937 /* The outer operation can only be one of the following: */
7938 if (code != IOR && code != AND && code != XOR
7939 && code != PLUS && code != MINUS)
7940 return x;
7942 lhs = XEXP (x, 0);
7943 rhs = XEXP (x, 1);
7945 /* If either operand is a primitive we can't do anything, so get out
7946 fast. */
7947 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7948 return x;
7950 lhs = expand_compound_operation (lhs);
7951 rhs = expand_compound_operation (rhs);
7952 inner_code = GET_CODE (lhs);
7953 if (inner_code != GET_CODE (rhs))
7954 return x;
7956 /* See if the inner and outer operations distribute. */
7957 switch (inner_code)
7959 case LSHIFTRT:
7960 case ASHIFTRT:
7961 case AND:
7962 case IOR:
7963 /* These all distribute except over PLUS. */
7964 if (code == PLUS || code == MINUS)
7965 return x;
7966 break;
7968 case MULT:
7969 if (code != PLUS && code != MINUS)
7970 return x;
7971 break;
7973 case ASHIFT:
7974 /* This is also a multiply, so it distributes over everything. */
7975 break;
7977 case SUBREG:
7978 /* Non-paradoxical SUBREGs distributes over all operations,
7979 provided the inner modes and byte offsets are the same, this
7980 is an extraction of a low-order part, we don't convert an fp
7981 operation to int or vice versa, this is not a vector mode,
7982 and we would not be converting a single-word operation into a
7983 multi-word operation. The latter test is not required, but
7984 it prevents generating unneeded multi-word operations. Some
7985 of the previous tests are redundant given the latter test,
7986 but are retained because they are required for correctness.
7988 We produce the result slightly differently in this case. */
7990 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7991 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7992 || ! subreg_lowpart_p (lhs)
7993 || (GET_MODE_CLASS (GET_MODE (lhs))
7994 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7995 || (GET_MODE_SIZE (GET_MODE (lhs))
7996 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7997 || VECTOR_MODE_P (GET_MODE (lhs))
7998 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7999 return x;
8001 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8002 SUBREG_REG (lhs), SUBREG_REG (rhs));
8003 return gen_lowpart (GET_MODE (x), tem);
8005 default:
8006 return x;
8009 /* Set LHS and RHS to the inner operands (A and B in the example
8010 above) and set OTHER to the common operand (C in the example).
8011 There is only one way to do this unless the inner operation is
8012 commutative. */
8013 if (COMMUTATIVE_ARITH_P (lhs)
8014 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8015 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8016 else if (COMMUTATIVE_ARITH_P (lhs)
8017 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8018 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8019 else if (COMMUTATIVE_ARITH_P (lhs)
8020 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8021 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8022 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8023 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8024 else
8025 return x;
8027 /* Form the new inner operation, seeing if it simplifies first. */
8028 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8030 /* There is one exception to the general way of distributing:
8031 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8032 if (code == XOR && inner_code == IOR)
8034 inner_code = AND;
8035 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8038 /* We may be able to continuing distributing the result, so call
8039 ourselves recursively on the inner operation before forming the
8040 outer operation, which we return. */
8041 return simplify_gen_binary (inner_code, GET_MODE (x),
8042 apply_distributive_law (tem), other);
8045 /* See if X is of the form (* (+ A B) C), and if so convert to
8046 (+ (* A C) (* B C)) and try to simplify.
8048 Most of the time, this results in no change. However, if some of
8049 the operands are the same or inverses of each other, simplifications
8050 will result.
8052 For example, (and (ior A B) (not B)) can occur as the result of
8053 expanding a bit field assignment. When we apply the distributive
8054 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8055 which then simplifies to (and (A (not B))).
8057 Note that no checks happen on the validity of applying the inverse
8058 distributive law. This is pointless since we can do it in the
8059 few places where this routine is called.
8061 N is the index of the term that is decomposed (the arithmetic operation,
8062 i.e. (+ A B) in the first example above). !N is the index of the term that
8063 is distributed, i.e. of C in the first example above. */
8064 static rtx
8065 distribute_and_simplify_rtx (rtx x, int n)
8067 enum machine_mode mode;
8068 enum rtx_code outer_code, inner_code;
8069 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8071 decomposed = XEXP (x, n);
8072 if (!ARITHMETIC_P (decomposed))
8073 return NULL_RTX;
8075 mode = GET_MODE (x);
8076 outer_code = GET_CODE (x);
8077 distributed = XEXP (x, !n);
8079 inner_code = GET_CODE (decomposed);
8080 inner_op0 = XEXP (decomposed, 0);
8081 inner_op1 = XEXP (decomposed, 1);
8083 /* Special case (and (xor B C) (not A)), which is equivalent to
8084 (xor (ior A B) (ior A C)) */
8085 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8087 distributed = XEXP (distributed, 0);
8088 outer_code = IOR;
8091 if (n == 0)
8093 /* Distribute the second term. */
8094 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8095 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8097 else
8099 /* Distribute the first term. */
8100 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8101 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8104 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8105 new_op0, new_op1));
8106 if (GET_CODE (tmp) != outer_code
8107 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8108 return tmp;
8110 return NULL_RTX;
8113 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8114 in MODE.
8116 Return an equivalent form, if different from X. Otherwise, return X. If
8117 X is zero, we are to always construct the equivalent form. */
8119 static rtx
8120 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8121 unsigned HOST_WIDE_INT constop)
8123 unsigned HOST_WIDE_INT nonzero;
8124 int i;
8126 /* Simplify VAROP knowing that we will be only looking at some of the
8127 bits in it.
8129 Note by passing in CONSTOP, we guarantee that the bits not set in
8130 CONSTOP are not significant and will never be examined. We must
8131 ensure that is the case by explicitly masking out those bits
8132 before returning. */
8133 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8135 /* If VAROP is a CLOBBER, we will fail so return it. */
8136 if (GET_CODE (varop) == CLOBBER)
8137 return varop;
8139 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8140 to VAROP and return the new constant. */
8141 if (GET_CODE (varop) == CONST_INT)
8142 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8144 /* See what bits may be nonzero in VAROP. Unlike the general case of
8145 a call to nonzero_bits, here we don't care about bits outside
8146 MODE. */
8148 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8150 /* Turn off all bits in the constant that are known to already be zero.
8151 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8152 which is tested below. */
8154 constop &= nonzero;
8156 /* If we don't have any bits left, return zero. */
8157 if (constop == 0)
8158 return const0_rtx;
8160 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8161 a power of two, we can replace this with an ASHIFT. */
8162 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8163 && (i = exact_log2 (constop)) >= 0)
8164 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8166 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8167 or XOR, then try to apply the distributive law. This may eliminate
8168 operations if either branch can be simplified because of the AND.
8169 It may also make some cases more complex, but those cases probably
8170 won't match a pattern either with or without this. */
8172 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8173 return
8174 gen_lowpart
8175 (mode,
8176 apply_distributive_law
8177 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8178 simplify_and_const_int (NULL_RTX,
8179 GET_MODE (varop),
8180 XEXP (varop, 0),
8181 constop),
8182 simplify_and_const_int (NULL_RTX,
8183 GET_MODE (varop),
8184 XEXP (varop, 1),
8185 constop))));
8187 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8188 the AND and see if one of the operands simplifies to zero. If so, we
8189 may eliminate it. */
8191 if (GET_CODE (varop) == PLUS
8192 && exact_log2 (constop + 1) >= 0)
8194 rtx o0, o1;
8196 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8197 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8198 if (o0 == const0_rtx)
8199 return o1;
8200 if (o1 == const0_rtx)
8201 return o0;
8204 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8205 if we already had one (just check for the simplest cases). */
8206 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8207 && GET_MODE (XEXP (x, 0)) == mode
8208 && SUBREG_REG (XEXP (x, 0)) == varop)
8209 varop = XEXP (x, 0);
8210 else
8211 varop = gen_lowpart (mode, varop);
8213 /* If we can't make the SUBREG, try to return what we were given. */
8214 if (GET_CODE (varop) == CLOBBER)
8215 return x ? x : varop;
8217 /* If we are only masking insignificant bits, return VAROP. */
8218 if (constop == nonzero)
8219 x = varop;
8220 else
8222 /* Otherwise, return an AND. */
8223 constop = trunc_int_for_mode (constop, mode);
8224 /* See how much, if any, of X we can use. */
8225 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8226 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8228 else
8230 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8231 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8232 SUBST (XEXP (x, 1), GEN_INT (constop));
8234 SUBST (XEXP (x, 0), varop);
8238 return x;
8241 /* Given a REG, X, compute which bits in X can be nonzero.
8242 We don't care about bits outside of those defined in MODE.
8244 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8245 a shift, AND, or zero_extract, we can do better. */
8247 static rtx
8248 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8249 rtx known_x ATTRIBUTE_UNUSED,
8250 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8251 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8252 unsigned HOST_WIDE_INT *nonzero)
8254 rtx tem;
8256 /* If X is a register whose nonzero bits value is current, use it.
8257 Otherwise, if X is a register whose value we can find, use that
8258 value. Otherwise, use the previously-computed global nonzero bits
8259 for this register. */
8261 if (reg_stat[REGNO (x)].last_set_value != 0
8262 && (reg_stat[REGNO (x)].last_set_mode == mode
8263 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8264 && GET_MODE_CLASS (mode) == MODE_INT))
8265 && (reg_stat[REGNO (x)].last_set_label == label_tick
8266 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8267 && REG_N_SETS (REGNO (x)) == 1
8268 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8269 REGNO (x))))
8270 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8272 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8273 return NULL;
8276 tem = get_last_value (x);
8278 if (tem)
8280 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8281 /* If X is narrower than MODE and TEM is a non-negative
8282 constant that would appear negative in the mode of X,
8283 sign-extend it for use in reg_nonzero_bits because some
8284 machines (maybe most) will actually do the sign-extension
8285 and this is the conservative approach.
8287 ??? For 2.5, try to tighten up the MD files in this regard
8288 instead of this kludge. */
8290 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8291 && GET_CODE (tem) == CONST_INT
8292 && INTVAL (tem) > 0
8293 && 0 != (INTVAL (tem)
8294 & ((HOST_WIDE_INT) 1
8295 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8296 tem = GEN_INT (INTVAL (tem)
8297 | ((HOST_WIDE_INT) (-1)
8298 << GET_MODE_BITSIZE (GET_MODE (x))));
8299 #endif
8300 return tem;
8302 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8304 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8306 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8307 /* We don't know anything about the upper bits. */
8308 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8309 *nonzero &= mask;
8312 return NULL;
8315 /* Return the number of bits at the high-order end of X that are known to
8316 be equal to the sign bit. X will be used in mode MODE; if MODE is
8317 VOIDmode, X will be used in its own mode. The returned value will always
8318 be between 1 and the number of bits in MODE. */
8320 static rtx
8321 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8322 rtx known_x ATTRIBUTE_UNUSED,
8323 enum machine_mode known_mode
8324 ATTRIBUTE_UNUSED,
8325 unsigned int known_ret ATTRIBUTE_UNUSED,
8326 unsigned int *result)
8328 rtx tem;
8330 if (reg_stat[REGNO (x)].last_set_value != 0
8331 && reg_stat[REGNO (x)].last_set_mode == mode
8332 && (reg_stat[REGNO (x)].last_set_label == label_tick
8333 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8334 && REG_N_SETS (REGNO (x)) == 1
8335 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8336 REGNO (x))))
8337 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8339 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8340 return NULL;
8343 tem = get_last_value (x);
8344 if (tem != 0)
8345 return tem;
8347 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8348 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8349 *result = reg_stat[REGNO (x)].sign_bit_copies;
8351 return NULL;
8354 /* Return the number of "extended" bits there are in X, when interpreted
8355 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8356 unsigned quantities, this is the number of high-order zero bits.
8357 For signed quantities, this is the number of copies of the sign bit
8358 minus 1. In both case, this function returns the number of "spare"
8359 bits. For example, if two quantities for which this function returns
8360 at least 1 are added, the addition is known not to overflow.
8362 This function will always return 0 unless called during combine, which
8363 implies that it must be called from a define_split. */
8365 unsigned int
8366 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8368 if (nonzero_sign_valid == 0)
8369 return 0;
8371 return (unsignedp
8372 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8373 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8374 - floor_log2 (nonzero_bits (x, mode)))
8375 : 0)
8376 : num_sign_bit_copies (x, mode) - 1);
8379 /* This function is called from `simplify_shift_const' to merge two
8380 outer operations. Specifically, we have already found that we need
8381 to perform operation *POP0 with constant *PCONST0 at the outermost
8382 position. We would now like to also perform OP1 with constant CONST1
8383 (with *POP0 being done last).
8385 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8386 the resulting operation. *PCOMP_P is set to 1 if we would need to
8387 complement the innermost operand, otherwise it is unchanged.
8389 MODE is the mode in which the operation will be done. No bits outside
8390 the width of this mode matter. It is assumed that the width of this mode
8391 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8393 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8394 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8395 result is simply *PCONST0.
8397 If the resulting operation cannot be expressed as one operation, we
8398 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8400 static int
8401 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8403 enum rtx_code op0 = *pop0;
8404 HOST_WIDE_INT const0 = *pconst0;
8406 const0 &= GET_MODE_MASK (mode);
8407 const1 &= GET_MODE_MASK (mode);
8409 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8410 if (op0 == AND)
8411 const1 &= const0;
8413 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8414 if OP0 is SET. */
8416 if (op1 == UNKNOWN || op0 == SET)
8417 return 1;
8419 else if (op0 == UNKNOWN)
8420 op0 = op1, const0 = const1;
8422 else if (op0 == op1)
8424 switch (op0)
8426 case AND:
8427 const0 &= const1;
8428 break;
8429 case IOR:
8430 const0 |= const1;
8431 break;
8432 case XOR:
8433 const0 ^= const1;
8434 break;
8435 case PLUS:
8436 const0 += const1;
8437 break;
8438 case NEG:
8439 op0 = UNKNOWN;
8440 break;
8441 default:
8442 break;
8446 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8447 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8448 return 0;
8450 /* If the two constants aren't the same, we can't do anything. The
8451 remaining six cases can all be done. */
8452 else if (const0 != const1)
8453 return 0;
8455 else
8456 switch (op0)
8458 case IOR:
8459 if (op1 == AND)
8460 /* (a & b) | b == b */
8461 op0 = SET;
8462 else /* op1 == XOR */
8463 /* (a ^ b) | b == a | b */
8465 break;
8467 case XOR:
8468 if (op1 == AND)
8469 /* (a & b) ^ b == (~a) & b */
8470 op0 = AND, *pcomp_p = 1;
8471 else /* op1 == IOR */
8472 /* (a | b) ^ b == a & ~b */
8473 op0 = AND, const0 = ~const0;
8474 break;
8476 case AND:
8477 if (op1 == IOR)
8478 /* (a | b) & b == b */
8479 op0 = SET;
8480 else /* op1 == XOR */
8481 /* (a ^ b) & b) == (~a) & b */
8482 *pcomp_p = 1;
8483 break;
8484 default:
8485 break;
8488 /* Check for NO-OP cases. */
8489 const0 &= GET_MODE_MASK (mode);
8490 if (const0 == 0
8491 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8492 op0 = UNKNOWN;
8493 else if (const0 == 0 && op0 == AND)
8494 op0 = SET;
8495 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8496 && op0 == AND)
8497 op0 = UNKNOWN;
8499 /* ??? Slightly redundant with the above mask, but not entirely.
8500 Moving this above means we'd have to sign-extend the mode mask
8501 for the final test. */
8502 const0 = trunc_int_for_mode (const0, mode);
8504 *pop0 = op0;
8505 *pconst0 = const0;
8507 return 1;
8510 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8511 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8512 that we started with.
8514 The shift is normally computed in the widest mode we find in VAROP, as
8515 long as it isn't a different number of words than RESULT_MODE. Exceptions
8516 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8518 static rtx
8519 simplify_shift_const (rtx x, enum rtx_code code,
8520 enum machine_mode result_mode, rtx varop,
8521 int orig_count)
8523 enum rtx_code orig_code = code;
8524 unsigned int count;
8525 int signed_count;
8526 enum machine_mode mode = result_mode;
8527 enum machine_mode shift_mode, tmode;
8528 unsigned int mode_words
8529 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8530 /* We form (outer_op (code varop count) (outer_const)). */
8531 enum rtx_code outer_op = UNKNOWN;
8532 HOST_WIDE_INT outer_const = 0;
8533 rtx const_rtx;
8534 int complement_p = 0;
8535 rtx new;
8537 /* Make sure and truncate the "natural" shift on the way in. We don't
8538 want to do this inside the loop as it makes it more difficult to
8539 combine shifts. */
8540 if (SHIFT_COUNT_TRUNCATED)
8541 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8543 /* If we were given an invalid count, don't do anything except exactly
8544 what was requested. */
8546 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8548 if (x)
8549 return x;
8551 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8554 count = orig_count;
8556 /* Unless one of the branches of the `if' in this loop does a `continue',
8557 we will `break' the loop after the `if'. */
8559 while (count != 0)
8561 /* If we have an operand of (clobber (const_int 0)), just return that
8562 value. */
8563 if (GET_CODE (varop) == CLOBBER)
8564 return varop;
8566 /* If we discovered we had to complement VAROP, leave. Making a NOT
8567 here would cause an infinite loop. */
8568 if (complement_p)
8569 break;
8571 /* Convert ROTATERT to ROTATE. */
8572 if (code == ROTATERT)
8574 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8575 code = ROTATE;
8576 if (VECTOR_MODE_P (result_mode))
8577 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8578 else
8579 count = bitsize - count;
8582 /* We need to determine what mode we will do the shift in. If the
8583 shift is a right shift or a ROTATE, we must always do it in the mode
8584 it was originally done in. Otherwise, we can do it in MODE, the
8585 widest mode encountered. */
8586 shift_mode
8587 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8588 ? result_mode : mode);
8590 /* Handle cases where the count is greater than the size of the mode
8591 minus 1. For ASHIFT, use the size minus one as the count (this can
8592 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8593 take the count modulo the size. For other shifts, the result is
8594 zero.
8596 Since these shifts are being produced by the compiler by combining
8597 multiple operations, each of which are defined, we know what the
8598 result is supposed to be. */
8600 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8602 if (code == ASHIFTRT)
8603 count = GET_MODE_BITSIZE (shift_mode) - 1;
8604 else if (code == ROTATE || code == ROTATERT)
8605 count %= GET_MODE_BITSIZE (shift_mode);
8606 else
8608 /* We can't simply return zero because there may be an
8609 outer op. */
8610 varop = const0_rtx;
8611 count = 0;
8612 break;
8616 /* An arithmetic right shift of a quantity known to be -1 or 0
8617 is a no-op. */
8618 if (code == ASHIFTRT
8619 && (num_sign_bit_copies (varop, shift_mode)
8620 == GET_MODE_BITSIZE (shift_mode)))
8622 count = 0;
8623 break;
8626 /* If we are doing an arithmetic right shift and discarding all but
8627 the sign bit copies, this is equivalent to doing a shift by the
8628 bitsize minus one. Convert it into that shift because it will often
8629 allow other simplifications. */
8631 if (code == ASHIFTRT
8632 && (count + num_sign_bit_copies (varop, shift_mode)
8633 >= GET_MODE_BITSIZE (shift_mode)))
8634 count = GET_MODE_BITSIZE (shift_mode) - 1;
8636 /* We simplify the tests below and elsewhere by converting
8637 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8638 `make_compound_operation' will convert it to an ASHIFTRT for
8639 those machines (such as VAX) that don't have an LSHIFTRT. */
8640 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8641 && code == ASHIFTRT
8642 && ((nonzero_bits (varop, shift_mode)
8643 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8644 == 0))
8645 code = LSHIFTRT;
8647 if (((code == LSHIFTRT
8648 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8649 && !(nonzero_bits (varop, shift_mode) >> count))
8650 || (code == ASHIFT
8651 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8652 && !((nonzero_bits (varop, shift_mode) << count)
8653 & GET_MODE_MASK (shift_mode))))
8654 && !side_effects_p (varop))
8655 varop = const0_rtx;
8657 switch (GET_CODE (varop))
8659 case SIGN_EXTEND:
8660 case ZERO_EXTEND:
8661 case SIGN_EXTRACT:
8662 case ZERO_EXTRACT:
8663 new = expand_compound_operation (varop);
8664 if (new != varop)
8666 varop = new;
8667 continue;
8669 break;
8671 case MEM:
8672 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8673 minus the width of a smaller mode, we can do this with a
8674 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8675 if ((code == ASHIFTRT || code == LSHIFTRT)
8676 && ! mode_dependent_address_p (XEXP (varop, 0))
8677 && ! MEM_VOLATILE_P (varop)
8678 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8679 MODE_INT, 1)) != BLKmode)
8681 new = adjust_address_nv (varop, tmode,
8682 BYTES_BIG_ENDIAN ? 0
8683 : count / BITS_PER_UNIT);
8685 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8686 : ZERO_EXTEND, mode, new);
8687 count = 0;
8688 continue;
8690 break;
8692 case USE:
8693 /* Similar to the case above, except that we can only do this if
8694 the resulting mode is the same as that of the underlying
8695 MEM and adjust the address depending on the *bits* endianness
8696 because of the way that bit-field extract insns are defined. */
8697 if ((code == ASHIFTRT || code == LSHIFTRT)
8698 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8699 MODE_INT, 1)) != BLKmode
8700 && tmode == GET_MODE (XEXP (varop, 0)))
8702 if (BITS_BIG_ENDIAN)
8703 new = XEXP (varop, 0);
8704 else
8706 new = copy_rtx (XEXP (varop, 0));
8707 SUBST (XEXP (new, 0),
8708 plus_constant (XEXP (new, 0),
8709 count / BITS_PER_UNIT));
8712 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8713 : ZERO_EXTEND, mode, new);
8714 count = 0;
8715 continue;
8717 break;
8719 case SUBREG:
8720 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8721 the same number of words as what we've seen so far. Then store
8722 the widest mode in MODE. */
8723 if (subreg_lowpart_p (varop)
8724 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8725 > GET_MODE_SIZE (GET_MODE (varop)))
8726 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8727 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8728 == mode_words)
8730 varop = SUBREG_REG (varop);
8731 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8732 mode = GET_MODE (varop);
8733 continue;
8735 break;
8737 case MULT:
8738 /* Some machines use MULT instead of ASHIFT because MULT
8739 is cheaper. But it is still better on those machines to
8740 merge two shifts into one. */
8741 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8742 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8744 varop
8745 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8746 XEXP (varop, 0),
8747 GEN_INT (exact_log2 (
8748 INTVAL (XEXP (varop, 1)))));
8749 continue;
8751 break;
8753 case UDIV:
8754 /* Similar, for when divides are cheaper. */
8755 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8756 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8758 varop
8759 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8760 XEXP (varop, 0),
8761 GEN_INT (exact_log2 (
8762 INTVAL (XEXP (varop, 1)))));
8763 continue;
8765 break;
8767 case ASHIFTRT:
8768 /* If we are extracting just the sign bit of an arithmetic
8769 right shift, that shift is not needed. However, the sign
8770 bit of a wider mode may be different from what would be
8771 interpreted as the sign bit in a narrower mode, so, if
8772 the result is narrower, don't discard the shift. */
8773 if (code == LSHIFTRT
8774 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8775 && (GET_MODE_BITSIZE (result_mode)
8776 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8778 varop = XEXP (varop, 0);
8779 continue;
8782 /* ... fall through ... */
8784 case LSHIFTRT:
8785 case ASHIFT:
8786 case ROTATE:
8787 /* Here we have two nested shifts. The result is usually the
8788 AND of a new shift with a mask. We compute the result below. */
8789 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8790 && INTVAL (XEXP (varop, 1)) >= 0
8791 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8792 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8793 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8794 && !VECTOR_MODE_P (result_mode))
8796 enum rtx_code first_code = GET_CODE (varop);
8797 unsigned int first_count = INTVAL (XEXP (varop, 1));
8798 unsigned HOST_WIDE_INT mask;
8799 rtx mask_rtx;
8801 /* We have one common special case. We can't do any merging if
8802 the inner code is an ASHIFTRT of a smaller mode. However, if
8803 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8804 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8805 we can convert it to
8806 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8807 This simplifies certain SIGN_EXTEND operations. */
8808 if (code == ASHIFT && first_code == ASHIFTRT
8809 && count == (unsigned int)
8810 (GET_MODE_BITSIZE (result_mode)
8811 - GET_MODE_BITSIZE (GET_MODE (varop))))
8813 /* C3 has the low-order C1 bits zero. */
8815 mask = (GET_MODE_MASK (mode)
8816 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8818 varop = simplify_and_const_int (NULL_RTX, result_mode,
8819 XEXP (varop, 0), mask);
8820 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8821 varop, count);
8822 count = first_count;
8823 code = ASHIFTRT;
8824 continue;
8827 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8828 than C1 high-order bits equal to the sign bit, we can convert
8829 this to either an ASHIFT or an ASHIFTRT depending on the
8830 two counts.
8832 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8834 if (code == ASHIFTRT && first_code == ASHIFT
8835 && GET_MODE (varop) == shift_mode
8836 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8837 > first_count))
8839 varop = XEXP (varop, 0);
8841 signed_count = count - first_count;
8842 if (signed_count < 0)
8843 count = -signed_count, code = ASHIFT;
8844 else
8845 count = signed_count;
8847 continue;
8850 /* There are some cases we can't do. If CODE is ASHIFTRT,
8851 we can only do this if FIRST_CODE is also ASHIFTRT.
8853 We can't do the case when CODE is ROTATE and FIRST_CODE is
8854 ASHIFTRT.
8856 If the mode of this shift is not the mode of the outer shift,
8857 we can't do this if either shift is a right shift or ROTATE.
8859 Finally, we can't do any of these if the mode is too wide
8860 unless the codes are the same.
8862 Handle the case where the shift codes are the same
8863 first. */
8865 if (code == first_code)
8867 if (GET_MODE (varop) != result_mode
8868 && (code == ASHIFTRT || code == LSHIFTRT
8869 || code == ROTATE))
8870 break;
8872 count += first_count;
8873 varop = XEXP (varop, 0);
8874 continue;
8877 if (code == ASHIFTRT
8878 || (code == ROTATE && first_code == ASHIFTRT)
8879 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8880 || (GET_MODE (varop) != result_mode
8881 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8882 || first_code == ROTATE
8883 || code == ROTATE)))
8884 break;
8886 /* To compute the mask to apply after the shift, shift the
8887 nonzero bits of the inner shift the same way the
8888 outer shift will. */
8890 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8892 mask_rtx
8893 = simplify_binary_operation (code, result_mode, mask_rtx,
8894 GEN_INT (count));
8896 /* Give up if we can't compute an outer operation to use. */
8897 if (mask_rtx == 0
8898 || GET_CODE (mask_rtx) != CONST_INT
8899 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8900 INTVAL (mask_rtx),
8901 result_mode, &complement_p))
8902 break;
8904 /* If the shifts are in the same direction, we add the
8905 counts. Otherwise, we subtract them. */
8906 signed_count = count;
8907 if ((code == ASHIFTRT || code == LSHIFTRT)
8908 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8909 signed_count += first_count;
8910 else
8911 signed_count -= first_count;
8913 /* If COUNT is positive, the new shift is usually CODE,
8914 except for the two exceptions below, in which case it is
8915 FIRST_CODE. If the count is negative, FIRST_CODE should
8916 always be used */
8917 if (signed_count > 0
8918 && ((first_code == ROTATE && code == ASHIFT)
8919 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8920 code = first_code, count = signed_count;
8921 else if (signed_count < 0)
8922 code = first_code, count = -signed_count;
8923 else
8924 count = signed_count;
8926 varop = XEXP (varop, 0);
8927 continue;
8930 /* If we have (A << B << C) for any shift, we can convert this to
8931 (A << C << B). This wins if A is a constant. Only try this if
8932 B is not a constant. */
8934 else if (GET_CODE (varop) == code
8935 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8936 && 0 != (new
8937 = simplify_binary_operation (code, mode,
8938 XEXP (varop, 0),
8939 GEN_INT (count))))
8941 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8942 count = 0;
8943 continue;
8945 break;
8947 case NOT:
8948 /* Make this fit the case below. */
8949 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8950 GEN_INT (GET_MODE_MASK (mode)));
8951 continue;
8953 case IOR:
8954 case AND:
8955 case XOR:
8956 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8957 with C the size of VAROP - 1 and the shift is logical if
8958 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8959 we have an (le X 0) operation. If we have an arithmetic shift
8960 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8961 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8963 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8964 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8965 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8966 && (code == LSHIFTRT || code == ASHIFTRT)
8967 && count == (unsigned int)
8968 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8969 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8971 count = 0;
8972 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8973 const0_rtx);
8975 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8976 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8978 continue;
8981 /* If we have (shift (logical)), move the logical to the outside
8982 to allow it to possibly combine with another logical and the
8983 shift to combine with another shift. This also canonicalizes to
8984 what a ZERO_EXTRACT looks like. Also, some machines have
8985 (and (shift)) insns. */
8987 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8988 /* We can't do this if we have (ashiftrt (xor)) and the
8989 constant has its sign bit set in shift_mode. */
8990 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8991 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8992 shift_mode))
8993 && (new = simplify_binary_operation (code, result_mode,
8994 XEXP (varop, 1),
8995 GEN_INT (count))) != 0
8996 && GET_CODE (new) == CONST_INT
8997 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8998 INTVAL (new), result_mode, &complement_p))
9000 varop = XEXP (varop, 0);
9001 continue;
9004 /* If we can't do that, try to simplify the shift in each arm of the
9005 logical expression, make a new logical expression, and apply
9006 the inverse distributive law. This also can't be done
9007 for some (ashiftrt (xor)). */
9008 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9009 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9010 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9011 shift_mode)))
9013 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9014 XEXP (varop, 0), count);
9015 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9016 XEXP (varop, 1), count);
9018 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9019 lhs, rhs);
9020 varop = apply_distributive_law (varop);
9022 count = 0;
9023 continue;
9025 break;
9027 case EQ:
9028 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9029 says that the sign bit can be tested, FOO has mode MODE, C is
9030 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9031 that may be nonzero. */
9032 if (code == LSHIFTRT
9033 && XEXP (varop, 1) == const0_rtx
9034 && GET_MODE (XEXP (varop, 0)) == result_mode
9035 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9036 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9037 && ((STORE_FLAG_VALUE
9038 & ((HOST_WIDE_INT) 1
9039 < (GET_MODE_BITSIZE (result_mode) - 1))))
9040 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9041 && merge_outer_ops (&outer_op, &outer_const, XOR,
9042 (HOST_WIDE_INT) 1, result_mode,
9043 &complement_p))
9045 varop = XEXP (varop, 0);
9046 count = 0;
9047 continue;
9049 break;
9051 case NEG:
9052 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9053 than the number of bits in the mode is equivalent to A. */
9054 if (code == LSHIFTRT
9055 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9056 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9058 varop = XEXP (varop, 0);
9059 count = 0;
9060 continue;
9063 /* NEG commutes with ASHIFT since it is multiplication. Move the
9064 NEG outside to allow shifts to combine. */
9065 if (code == ASHIFT
9066 && merge_outer_ops (&outer_op, &outer_const, NEG,
9067 (HOST_WIDE_INT) 0, result_mode,
9068 &complement_p))
9070 varop = XEXP (varop, 0);
9071 continue;
9073 break;
9075 case PLUS:
9076 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9077 is one less than the number of bits in the mode is
9078 equivalent to (xor A 1). */
9079 if (code == LSHIFTRT
9080 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9081 && XEXP (varop, 1) == constm1_rtx
9082 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9083 && merge_outer_ops (&outer_op, &outer_const, XOR,
9084 (HOST_WIDE_INT) 1, result_mode,
9085 &complement_p))
9087 count = 0;
9088 varop = XEXP (varop, 0);
9089 continue;
9092 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9093 that might be nonzero in BAR are those being shifted out and those
9094 bits are known zero in FOO, we can replace the PLUS with FOO.
9095 Similarly in the other operand order. This code occurs when
9096 we are computing the size of a variable-size array. */
9098 if ((code == ASHIFTRT || code == LSHIFTRT)
9099 && count < HOST_BITS_PER_WIDE_INT
9100 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9101 && (nonzero_bits (XEXP (varop, 1), result_mode)
9102 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9104 varop = XEXP (varop, 0);
9105 continue;
9107 else if ((code == ASHIFTRT || code == LSHIFTRT)
9108 && count < HOST_BITS_PER_WIDE_INT
9109 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9110 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9111 >> count)
9112 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9113 & nonzero_bits (XEXP (varop, 1),
9114 result_mode)))
9116 varop = XEXP (varop, 1);
9117 continue;
9120 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9121 if (code == ASHIFT
9122 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9123 && (new = simplify_binary_operation (ASHIFT, result_mode,
9124 XEXP (varop, 1),
9125 GEN_INT (count))) != 0
9126 && GET_CODE (new) == CONST_INT
9127 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9128 INTVAL (new), result_mode, &complement_p))
9130 varop = XEXP (varop, 0);
9131 continue;
9134 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9135 signbit', and attempt to change the PLUS to an XOR and move it to
9136 the outer operation as is done above in the AND/IOR/XOR case
9137 leg for shift(logical). See details in logical handling above
9138 for reasoning in doing so. */
9139 if (code == LSHIFTRT
9140 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9141 && mode_signbit_p (result_mode, XEXP (varop, 1))
9142 && (new = simplify_binary_operation (code, result_mode,
9143 XEXP (varop, 1),
9144 GEN_INT (count))) != 0
9145 && GET_CODE (new) == CONST_INT
9146 && merge_outer_ops (&outer_op, &outer_const, XOR,
9147 INTVAL (new), result_mode, &complement_p))
9149 varop = XEXP (varop, 0);
9150 continue;
9153 break;
9155 case MINUS:
9156 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9157 with C the size of VAROP - 1 and the shift is logical if
9158 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9159 we have a (gt X 0) operation. If the shift is arithmetic with
9160 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9161 we have a (neg (gt X 0)) operation. */
9163 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9164 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9165 && count == (unsigned int)
9166 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9167 && (code == LSHIFTRT || code == ASHIFTRT)
9168 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9169 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9170 == count
9171 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9173 count = 0;
9174 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9175 const0_rtx);
9177 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9178 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9180 continue;
9182 break;
9184 case TRUNCATE:
9185 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9186 if the truncate does not affect the value. */
9187 if (code == LSHIFTRT
9188 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9189 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9190 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9191 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9192 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9194 rtx varop_inner = XEXP (varop, 0);
9196 varop_inner
9197 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9198 XEXP (varop_inner, 0),
9199 GEN_INT
9200 (count + INTVAL (XEXP (varop_inner, 1))));
9201 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9202 count = 0;
9203 continue;
9205 break;
9207 default:
9208 break;
9211 break;
9214 /* We need to determine what mode to do the shift in. If the shift is
9215 a right shift or ROTATE, we must always do it in the mode it was
9216 originally done in. Otherwise, we can do it in MODE, the widest mode
9217 encountered. The code we care about is that of the shift that will
9218 actually be done, not the shift that was originally requested. */
9219 shift_mode
9220 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9221 ? result_mode : mode);
9223 /* We have now finished analyzing the shift. The result should be
9224 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9225 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9226 to the result of the shift. OUTER_CONST is the relevant constant,
9227 but we must turn off all bits turned off in the shift.
9229 If we were passed a value for X, see if we can use any pieces of
9230 it. If not, make new rtx. */
9232 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9233 && GET_CODE (XEXP (x, 1)) == CONST_INT
9234 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9235 const_rtx = XEXP (x, 1);
9236 else
9237 const_rtx = GEN_INT (count);
9239 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9240 && GET_MODE (XEXP (x, 0)) == shift_mode
9241 && SUBREG_REG (XEXP (x, 0)) == varop)
9242 varop = XEXP (x, 0);
9243 else if (GET_MODE (varop) != shift_mode)
9244 varop = gen_lowpart (shift_mode, varop);
9246 /* If we can't make the SUBREG, try to return what we were given. */
9247 if (GET_CODE (varop) == CLOBBER)
9248 return x ? x : varop;
9250 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9251 if (new != 0)
9252 x = new;
9253 else
9254 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9256 /* If we have an outer operation and we just made a shift, it is
9257 possible that we could have simplified the shift were it not
9258 for the outer operation. So try to do the simplification
9259 recursively. */
9261 if (outer_op != UNKNOWN && GET_CODE (x) == code
9262 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9263 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9264 INTVAL (XEXP (x, 1)));
9266 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9267 turn off all the bits that the shift would have turned off. */
9268 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9269 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9270 GET_MODE_MASK (result_mode) >> orig_count);
9272 /* Do the remainder of the processing in RESULT_MODE. */
9273 x = gen_lowpart (result_mode, x);
9275 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9276 operation. */
9277 if (complement_p)
9278 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9280 if (outer_op != UNKNOWN)
9282 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9283 outer_const = trunc_int_for_mode (outer_const, result_mode);
9285 if (outer_op == AND)
9286 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9287 else if (outer_op == SET)
9289 /* This means that we have determined that the result is
9290 equivalent to a constant. This should be rare. */
9291 if (!side_effects_p (x))
9292 x = GEN_INT (outer_const);
9294 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9295 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9296 else
9297 x = simplify_gen_binary (outer_op, result_mode, x,
9298 GEN_INT (outer_const));
9301 return x;
9304 /* Like recog, but we receive the address of a pointer to a new pattern.
9305 We try to match the rtx that the pointer points to.
9306 If that fails, we may try to modify or replace the pattern,
9307 storing the replacement into the same pointer object.
9309 Modifications include deletion or addition of CLOBBERs.
9311 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9312 the CLOBBERs are placed.
9314 The value is the final insn code from the pattern ultimately matched,
9315 or -1. */
9317 static int
9318 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9320 rtx pat = *pnewpat;
9321 int insn_code_number;
9322 int num_clobbers_to_add = 0;
9323 int i;
9324 rtx notes = 0;
9325 rtx old_notes, old_pat;
9327 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9328 we use to indicate that something didn't match. If we find such a
9329 thing, force rejection. */
9330 if (GET_CODE (pat) == PARALLEL)
9331 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9332 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9333 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9334 return -1;
9336 old_pat = PATTERN (insn);
9337 old_notes = REG_NOTES (insn);
9338 PATTERN (insn) = pat;
9339 REG_NOTES (insn) = 0;
9341 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9343 /* If it isn't, there is the possibility that we previously had an insn
9344 that clobbered some register as a side effect, but the combined
9345 insn doesn't need to do that. So try once more without the clobbers
9346 unless this represents an ASM insn. */
9348 if (insn_code_number < 0 && ! check_asm_operands (pat)
9349 && GET_CODE (pat) == PARALLEL)
9351 int pos;
9353 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9354 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9356 if (i != pos)
9357 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9358 pos++;
9361 SUBST_INT (XVECLEN (pat, 0), pos);
9363 if (pos == 1)
9364 pat = XVECEXP (pat, 0, 0);
9366 PATTERN (insn) = pat;
9367 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9369 PATTERN (insn) = old_pat;
9370 REG_NOTES (insn) = old_notes;
9372 /* Recognize all noop sets, these will be killed by followup pass. */
9373 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9374 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9376 /* If we had any clobbers to add, make a new pattern than contains
9377 them. Then check to make sure that all of them are dead. */
9378 if (num_clobbers_to_add)
9380 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9381 rtvec_alloc (GET_CODE (pat) == PARALLEL
9382 ? (XVECLEN (pat, 0)
9383 + num_clobbers_to_add)
9384 : num_clobbers_to_add + 1));
9386 if (GET_CODE (pat) == PARALLEL)
9387 for (i = 0; i < XVECLEN (pat, 0); i++)
9388 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9389 else
9390 XVECEXP (newpat, 0, 0) = pat;
9392 add_clobbers (newpat, insn_code_number);
9394 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9395 i < XVECLEN (newpat, 0); i++)
9397 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9398 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9399 return -1;
9400 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9401 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9403 pat = newpat;
9406 *pnewpat = pat;
9407 *pnotes = notes;
9409 return insn_code_number;
9412 /* Like gen_lowpart_general but for use by combine. In combine it
9413 is not possible to create any new pseudoregs. However, it is
9414 safe to create invalid memory addresses, because combine will
9415 try to recognize them and all they will do is make the combine
9416 attempt fail.
9418 If for some reason this cannot do its job, an rtx
9419 (clobber (const_int 0)) is returned.
9420 An insn containing that will not be recognized. */
9422 static rtx
9423 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9425 enum machine_mode imode = GET_MODE (x);
9426 unsigned int osize = GET_MODE_SIZE (omode);
9427 unsigned int isize = GET_MODE_SIZE (imode);
9428 rtx result;
9430 if (omode == imode)
9431 return x;
9433 /* Return identity if this is a CONST or symbolic reference. */
9434 if (omode == Pmode
9435 && (GET_CODE (x) == CONST
9436 || GET_CODE (x) == SYMBOL_REF
9437 || GET_CODE (x) == LABEL_REF))
9438 return x;
9440 /* We can only support MODE being wider than a word if X is a
9441 constant integer or has a mode the same size. */
9442 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9443 && ! ((imode == VOIDmode
9444 && (GET_CODE (x) == CONST_INT
9445 || GET_CODE (x) == CONST_DOUBLE))
9446 || isize == osize))
9447 goto fail;
9449 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9450 won't know what to do. So we will strip off the SUBREG here and
9451 process normally. */
9452 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9454 x = SUBREG_REG (x);
9456 /* For use in case we fall down into the address adjustments
9457 further below, we need to adjust the known mode and size of
9458 x; imode and isize, since we just adjusted x. */
9459 imode = GET_MODE (x);
9461 if (imode == omode)
9462 return x;
9464 isize = GET_MODE_SIZE (imode);
9467 result = gen_lowpart_common (omode, x);
9469 #ifdef CANNOT_CHANGE_MODE_CLASS
9470 if (result != 0 && GET_CODE (result) == SUBREG)
9471 record_subregs_of_mode (result);
9472 #endif
9474 if (result)
9475 return result;
9477 if (MEM_P (x))
9479 int offset = 0;
9481 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9482 address. */
9483 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9484 goto fail;
9486 /* If we want to refer to something bigger than the original memref,
9487 generate a paradoxical subreg instead. That will force a reload
9488 of the original memref X. */
9489 if (isize < osize)
9490 return gen_rtx_SUBREG (omode, x, 0);
9492 if (WORDS_BIG_ENDIAN)
9493 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9495 /* Adjust the address so that the address-after-the-data is unchanged. */
9496 if (BYTES_BIG_ENDIAN)
9497 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9499 return adjust_address_nv (x, omode, offset);
9502 /* If X is a comparison operator, rewrite it in a new mode. This
9503 probably won't match, but may allow further simplifications. */
9504 else if (COMPARISON_P (x))
9505 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9507 /* If we couldn't simplify X any other way, just enclose it in a
9508 SUBREG. Normally, this SUBREG won't match, but some patterns may
9509 include an explicit SUBREG or we may simplify it further in combine. */
9510 else
9512 int offset = 0;
9513 rtx res;
9515 offset = subreg_lowpart_offset (omode, imode);
9516 if (imode == VOIDmode)
9518 imode = int_mode_for_mode (omode);
9519 x = gen_lowpart_common (imode, x);
9520 if (x == NULL)
9521 goto fail;
9523 res = simplify_gen_subreg (omode, x, imode, offset);
9524 if (res)
9525 return res;
9528 fail:
9529 return gen_rtx_CLOBBER (imode, const0_rtx);
9532 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9533 comparison code that will be tested.
9535 The result is a possibly different comparison code to use. *POP0 and
9536 *POP1 may be updated.
9538 It is possible that we might detect that a comparison is either always
9539 true or always false. However, we do not perform general constant
9540 folding in combine, so this knowledge isn't useful. Such tautologies
9541 should have been detected earlier. Hence we ignore all such cases. */
9543 static enum rtx_code
9544 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9546 rtx op0 = *pop0;
9547 rtx op1 = *pop1;
9548 rtx tem, tem1;
9549 int i;
9550 enum machine_mode mode, tmode;
9552 /* Try a few ways of applying the same transformation to both operands. */
9553 while (1)
9555 #ifndef WORD_REGISTER_OPERATIONS
9556 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9557 so check specially. */
9558 if (code != GTU && code != GEU && code != LTU && code != LEU
9559 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9560 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9561 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9562 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9563 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9564 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9565 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9566 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9567 && XEXP (op0, 1) == XEXP (op1, 1)
9568 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9569 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9570 && (INTVAL (XEXP (op0, 1))
9571 == (GET_MODE_BITSIZE (GET_MODE (op0))
9572 - (GET_MODE_BITSIZE
9573 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9575 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9576 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9578 #endif
9580 /* If both operands are the same constant shift, see if we can ignore the
9581 shift. We can if the shift is a rotate or if the bits shifted out of
9582 this shift are known to be zero for both inputs and if the type of
9583 comparison is compatible with the shift. */
9584 if (GET_CODE (op0) == GET_CODE (op1)
9585 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9586 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9587 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9588 && (code != GT && code != LT && code != GE && code != LE))
9589 || (GET_CODE (op0) == ASHIFTRT
9590 && (code != GTU && code != LTU
9591 && code != GEU && code != LEU)))
9592 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9593 && INTVAL (XEXP (op0, 1)) >= 0
9594 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9595 && XEXP (op0, 1) == XEXP (op1, 1))
9597 enum machine_mode mode = GET_MODE (op0);
9598 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9599 int shift_count = INTVAL (XEXP (op0, 1));
9601 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9602 mask &= (mask >> shift_count) << shift_count;
9603 else if (GET_CODE (op0) == ASHIFT)
9604 mask = (mask & (mask << shift_count)) >> shift_count;
9606 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9607 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9608 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9609 else
9610 break;
9613 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9614 SUBREGs are of the same mode, and, in both cases, the AND would
9615 be redundant if the comparison was done in the narrower mode,
9616 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9617 and the operand's possibly nonzero bits are 0xffffff01; in that case
9618 if we only care about QImode, we don't need the AND). This case
9619 occurs if the output mode of an scc insn is not SImode and
9620 STORE_FLAG_VALUE == 1 (e.g., the 386).
9622 Similarly, check for a case where the AND's are ZERO_EXTEND
9623 operations from some narrower mode even though a SUBREG is not
9624 present. */
9626 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9627 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9628 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9630 rtx inner_op0 = XEXP (op0, 0);
9631 rtx inner_op1 = XEXP (op1, 0);
9632 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9633 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9634 int changed = 0;
9636 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9637 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9638 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9639 && (GET_MODE (SUBREG_REG (inner_op0))
9640 == GET_MODE (SUBREG_REG (inner_op1)))
9641 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9642 <= HOST_BITS_PER_WIDE_INT)
9643 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9644 GET_MODE (SUBREG_REG (inner_op0)))))
9645 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9646 GET_MODE (SUBREG_REG (inner_op1))))))
9648 op0 = SUBREG_REG (inner_op0);
9649 op1 = SUBREG_REG (inner_op1);
9651 /* The resulting comparison is always unsigned since we masked
9652 off the original sign bit. */
9653 code = unsigned_condition (code);
9655 changed = 1;
9658 else if (c0 == c1)
9659 for (tmode = GET_CLASS_NARROWEST_MODE
9660 (GET_MODE_CLASS (GET_MODE (op0)));
9661 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9662 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9664 op0 = gen_lowpart (tmode, inner_op0);
9665 op1 = gen_lowpart (tmode, inner_op1);
9666 code = unsigned_condition (code);
9667 changed = 1;
9668 break;
9671 if (! changed)
9672 break;
9675 /* If both operands are NOT, we can strip off the outer operation
9676 and adjust the comparison code for swapped operands; similarly for
9677 NEG, except that this must be an equality comparison. */
9678 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9679 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9680 && (code == EQ || code == NE)))
9681 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9683 else
9684 break;
9687 /* If the first operand is a constant, swap the operands and adjust the
9688 comparison code appropriately, but don't do this if the second operand
9689 is already a constant integer. */
9690 if (swap_commutative_operands_p (op0, op1))
9692 tem = op0, op0 = op1, op1 = tem;
9693 code = swap_condition (code);
9696 /* We now enter a loop during which we will try to simplify the comparison.
9697 For the most part, we only are concerned with comparisons with zero,
9698 but some things may really be comparisons with zero but not start
9699 out looking that way. */
9701 while (GET_CODE (op1) == CONST_INT)
9703 enum machine_mode mode = GET_MODE (op0);
9704 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9705 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9706 int equality_comparison_p;
9707 int sign_bit_comparison_p;
9708 int unsigned_comparison_p;
9709 HOST_WIDE_INT const_op;
9711 /* We only want to handle integral modes. This catches VOIDmode,
9712 CCmode, and the floating-point modes. An exception is that we
9713 can handle VOIDmode if OP0 is a COMPARE or a comparison
9714 operation. */
9716 if (GET_MODE_CLASS (mode) != MODE_INT
9717 && ! (mode == VOIDmode
9718 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9719 break;
9721 /* Get the constant we are comparing against and turn off all bits
9722 not on in our mode. */
9723 const_op = INTVAL (op1);
9724 if (mode != VOIDmode)
9725 const_op = trunc_int_for_mode (const_op, mode);
9726 op1 = GEN_INT (const_op);
9728 /* If we are comparing against a constant power of two and the value
9729 being compared can only have that single bit nonzero (e.g., it was
9730 `and'ed with that bit), we can replace this with a comparison
9731 with zero. */
9732 if (const_op
9733 && (code == EQ || code == NE || code == GE || code == GEU
9734 || code == LT || code == LTU)
9735 && mode_width <= HOST_BITS_PER_WIDE_INT
9736 && exact_log2 (const_op) >= 0
9737 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9739 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9740 op1 = const0_rtx, const_op = 0;
9743 /* Similarly, if we are comparing a value known to be either -1 or
9744 0 with -1, change it to the opposite comparison against zero. */
9746 if (const_op == -1
9747 && (code == EQ || code == NE || code == GT || code == LE
9748 || code == GEU || code == LTU)
9749 && num_sign_bit_copies (op0, mode) == mode_width)
9751 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9752 op1 = const0_rtx, const_op = 0;
9755 /* Do some canonicalizations based on the comparison code. We prefer
9756 comparisons against zero and then prefer equality comparisons.
9757 If we can reduce the size of a constant, we will do that too. */
9759 switch (code)
9761 case LT:
9762 /* < C is equivalent to <= (C - 1) */
9763 if (const_op > 0)
9765 const_op -= 1;
9766 op1 = GEN_INT (const_op);
9767 code = LE;
9768 /* ... fall through to LE case below. */
9770 else
9771 break;
9773 case LE:
9774 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9775 if (const_op < 0)
9777 const_op += 1;
9778 op1 = GEN_INT (const_op);
9779 code = LT;
9782 /* If we are doing a <= 0 comparison on a value known to have
9783 a zero sign bit, we can replace this with == 0. */
9784 else if (const_op == 0
9785 && mode_width <= HOST_BITS_PER_WIDE_INT
9786 && (nonzero_bits (op0, mode)
9787 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9788 code = EQ;
9789 break;
9791 case GE:
9792 /* >= C is equivalent to > (C - 1). */
9793 if (const_op > 0)
9795 const_op -= 1;
9796 op1 = GEN_INT (const_op);
9797 code = GT;
9798 /* ... fall through to GT below. */
9800 else
9801 break;
9803 case GT:
9804 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9805 if (const_op < 0)
9807 const_op += 1;
9808 op1 = GEN_INT (const_op);
9809 code = GE;
9812 /* If we are doing a > 0 comparison on a value known to have
9813 a zero sign bit, we can replace this with != 0. */
9814 else if (const_op == 0
9815 && mode_width <= HOST_BITS_PER_WIDE_INT
9816 && (nonzero_bits (op0, mode)
9817 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9818 code = NE;
9819 break;
9821 case LTU:
9822 /* < C is equivalent to <= (C - 1). */
9823 if (const_op > 0)
9825 const_op -= 1;
9826 op1 = GEN_INT (const_op);
9827 code = LEU;
9828 /* ... fall through ... */
9831 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9832 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9833 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9835 const_op = 0, op1 = const0_rtx;
9836 code = GE;
9837 break;
9839 else
9840 break;
9842 case LEU:
9843 /* unsigned <= 0 is equivalent to == 0 */
9844 if (const_op == 0)
9845 code = EQ;
9847 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9848 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9849 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9851 const_op = 0, op1 = const0_rtx;
9852 code = GE;
9854 break;
9856 case GEU:
9857 /* >= C is equivalent to > (C - 1). */
9858 if (const_op > 1)
9860 const_op -= 1;
9861 op1 = GEN_INT (const_op);
9862 code = GTU;
9863 /* ... fall through ... */
9866 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9867 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9868 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9870 const_op = 0, op1 = const0_rtx;
9871 code = LT;
9872 break;
9874 else
9875 break;
9877 case GTU:
9878 /* unsigned > 0 is equivalent to != 0 */
9879 if (const_op == 0)
9880 code = NE;
9882 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9883 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9884 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9886 const_op = 0, op1 = const0_rtx;
9887 code = LT;
9889 break;
9891 default:
9892 break;
9895 /* Compute some predicates to simplify code below. */
9897 equality_comparison_p = (code == EQ || code == NE);
9898 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9899 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9900 || code == GEU);
9902 /* If this is a sign bit comparison and we can do arithmetic in
9903 MODE, say that we will only be needing the sign bit of OP0. */
9904 if (sign_bit_comparison_p
9905 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9906 op0 = force_to_mode (op0, mode,
9907 ((HOST_WIDE_INT) 1
9908 << (GET_MODE_BITSIZE (mode) - 1)),
9909 NULL_RTX, 0);
9911 /* Now try cases based on the opcode of OP0. If none of the cases
9912 does a "continue", we exit this loop immediately after the
9913 switch. */
9915 switch (GET_CODE (op0))
9917 case ZERO_EXTRACT:
9918 /* If we are extracting a single bit from a variable position in
9919 a constant that has only a single bit set and are comparing it
9920 with zero, we can convert this into an equality comparison
9921 between the position and the location of the single bit. */
9922 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9923 have already reduced the shift count modulo the word size. */
9924 if (!SHIFT_COUNT_TRUNCATED
9925 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9926 && XEXP (op0, 1) == const1_rtx
9927 && equality_comparison_p && const_op == 0
9928 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9930 if (BITS_BIG_ENDIAN)
9932 enum machine_mode new_mode
9933 = mode_for_extraction (EP_extzv, 1);
9934 if (new_mode == MAX_MACHINE_MODE)
9935 i = BITS_PER_WORD - 1 - i;
9936 else
9938 mode = new_mode;
9939 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9943 op0 = XEXP (op0, 2);
9944 op1 = GEN_INT (i);
9945 const_op = i;
9947 /* Result is nonzero iff shift count is equal to I. */
9948 code = reverse_condition (code);
9949 continue;
9952 /* ... fall through ... */
9954 case SIGN_EXTRACT:
9955 tem = expand_compound_operation (op0);
9956 if (tem != op0)
9958 op0 = tem;
9959 continue;
9961 break;
9963 case NOT:
9964 /* If testing for equality, we can take the NOT of the constant. */
9965 if (equality_comparison_p
9966 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9968 op0 = XEXP (op0, 0);
9969 op1 = tem;
9970 continue;
9973 /* If just looking at the sign bit, reverse the sense of the
9974 comparison. */
9975 if (sign_bit_comparison_p)
9977 op0 = XEXP (op0, 0);
9978 code = (code == GE ? LT : GE);
9979 continue;
9981 break;
9983 case NEG:
9984 /* If testing for equality, we can take the NEG of the constant. */
9985 if (equality_comparison_p
9986 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9988 op0 = XEXP (op0, 0);
9989 op1 = tem;
9990 continue;
9993 /* The remaining cases only apply to comparisons with zero. */
9994 if (const_op != 0)
9995 break;
9997 /* When X is ABS or is known positive,
9998 (neg X) is < 0 if and only if X != 0. */
10000 if (sign_bit_comparison_p
10001 && (GET_CODE (XEXP (op0, 0)) == ABS
10002 || (mode_width <= HOST_BITS_PER_WIDE_INT
10003 && (nonzero_bits (XEXP (op0, 0), mode)
10004 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10006 op0 = XEXP (op0, 0);
10007 code = (code == LT ? NE : EQ);
10008 continue;
10011 /* If we have NEG of something whose two high-order bits are the
10012 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10013 if (num_sign_bit_copies (op0, mode) >= 2)
10015 op0 = XEXP (op0, 0);
10016 code = swap_condition (code);
10017 continue;
10019 break;
10021 case ROTATE:
10022 /* If we are testing equality and our count is a constant, we
10023 can perform the inverse operation on our RHS. */
10024 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10025 && (tem = simplify_binary_operation (ROTATERT, mode,
10026 op1, XEXP (op0, 1))) != 0)
10028 op0 = XEXP (op0, 0);
10029 op1 = tem;
10030 continue;
10033 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10034 a particular bit. Convert it to an AND of a constant of that
10035 bit. This will be converted into a ZERO_EXTRACT. */
10036 if (const_op == 0 && sign_bit_comparison_p
10037 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10038 && mode_width <= HOST_BITS_PER_WIDE_INT)
10040 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10041 ((HOST_WIDE_INT) 1
10042 << (mode_width - 1
10043 - INTVAL (XEXP (op0, 1)))));
10044 code = (code == LT ? NE : EQ);
10045 continue;
10048 /* Fall through. */
10050 case ABS:
10051 /* ABS is ignorable inside an equality comparison with zero. */
10052 if (const_op == 0 && equality_comparison_p)
10054 op0 = XEXP (op0, 0);
10055 continue;
10057 break;
10059 case SIGN_EXTEND:
10060 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10061 (compare FOO CONST) if CONST fits in FOO's mode and we
10062 are either testing inequality or have an unsigned
10063 comparison with ZERO_EXTEND or a signed comparison with
10064 SIGN_EXTEND. But don't do it if we don't have a compare
10065 insn of the given mode, since we'd have to revert it
10066 later on, and then we wouldn't know whether to sign- or
10067 zero-extend. */
10068 mode = GET_MODE (XEXP (op0, 0));
10069 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10070 && ! unsigned_comparison_p
10071 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10072 && ((unsigned HOST_WIDE_INT) const_op
10073 < (((unsigned HOST_WIDE_INT) 1
10074 << (GET_MODE_BITSIZE (mode) - 1))))
10075 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10077 op0 = XEXP (op0, 0);
10078 continue;
10080 break;
10082 case SUBREG:
10083 /* Check for the case where we are comparing A - C1 with C2, that is
10085 (subreg:MODE (plus (A) (-C1))) op (C2)
10087 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10088 comparison in the wider mode. One of the following two conditions
10089 must be true in order for this to be valid:
10091 1. The mode extension results in the same bit pattern being added
10092 on both sides and the comparison is equality or unsigned. As
10093 C2 has been truncated to fit in MODE, the pattern can only be
10094 all 0s or all 1s.
10096 2. The mode extension results in the sign bit being copied on
10097 each side.
10099 The difficulty here is that we have predicates for A but not for
10100 (A - C1) so we need to check that C1 is within proper bounds so
10101 as to perturbate A as little as possible. */
10103 if (mode_width <= HOST_BITS_PER_WIDE_INT
10104 && subreg_lowpart_p (op0)
10105 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10106 && GET_CODE (SUBREG_REG (op0)) == PLUS
10107 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10109 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10110 rtx a = XEXP (SUBREG_REG (op0), 0);
10111 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10113 if ((c1 > 0
10114 && (unsigned HOST_WIDE_INT) c1
10115 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10116 && (equality_comparison_p || unsigned_comparison_p)
10117 /* (A - C1) zero-extends if it is positive and sign-extends
10118 if it is negative, C2 both zero- and sign-extends. */
10119 && ((0 == (nonzero_bits (a, inner_mode)
10120 & ~GET_MODE_MASK (mode))
10121 && const_op >= 0)
10122 /* (A - C1) sign-extends if it is positive and 1-extends
10123 if it is negative, C2 both sign- and 1-extends. */
10124 || (num_sign_bit_copies (a, inner_mode)
10125 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10126 - mode_width)
10127 && const_op < 0)))
10128 || ((unsigned HOST_WIDE_INT) c1
10129 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10130 /* (A - C1) always sign-extends, like C2. */
10131 && num_sign_bit_copies (a, inner_mode)
10132 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10133 - (mode_width - 1))))
10135 op0 = SUBREG_REG (op0);
10136 continue;
10140 /* If the inner mode is narrower and we are extracting the low part,
10141 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10142 if (subreg_lowpart_p (op0)
10143 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10144 /* Fall through */ ;
10145 else
10146 break;
10148 /* ... fall through ... */
10150 case ZERO_EXTEND:
10151 mode = GET_MODE (XEXP (op0, 0));
10152 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10153 && (unsigned_comparison_p || equality_comparison_p)
10154 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10155 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10156 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10158 op0 = XEXP (op0, 0);
10159 continue;
10161 break;
10163 case PLUS:
10164 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10165 this for equality comparisons due to pathological cases involving
10166 overflows. */
10167 if (equality_comparison_p
10168 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10169 op1, XEXP (op0, 1))))
10171 op0 = XEXP (op0, 0);
10172 op1 = tem;
10173 continue;
10176 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10177 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10178 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10180 op0 = XEXP (XEXP (op0, 0), 0);
10181 code = (code == LT ? EQ : NE);
10182 continue;
10184 break;
10186 case MINUS:
10187 /* We used to optimize signed comparisons against zero, but that
10188 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10189 arrive here as equality comparisons, or (GEU, LTU) are
10190 optimized away. No need to special-case them. */
10192 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10193 (eq B (minus A C)), whichever simplifies. We can only do
10194 this for equality comparisons due to pathological cases involving
10195 overflows. */
10196 if (equality_comparison_p
10197 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10198 XEXP (op0, 1), op1)))
10200 op0 = XEXP (op0, 0);
10201 op1 = tem;
10202 continue;
10205 if (equality_comparison_p
10206 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10207 XEXP (op0, 0), op1)))
10209 op0 = XEXP (op0, 1);
10210 op1 = tem;
10211 continue;
10214 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10215 of bits in X minus 1, is one iff X > 0. */
10216 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10217 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10218 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10219 == mode_width - 1
10220 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10222 op0 = XEXP (op0, 1);
10223 code = (code == GE ? LE : GT);
10224 continue;
10226 break;
10228 case XOR:
10229 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10230 if C is zero or B is a constant. */
10231 if (equality_comparison_p
10232 && 0 != (tem = simplify_binary_operation (XOR, mode,
10233 XEXP (op0, 1), op1)))
10235 op0 = XEXP (op0, 0);
10236 op1 = tem;
10237 continue;
10239 break;
10241 case EQ: case NE:
10242 case UNEQ: case LTGT:
10243 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10244 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10245 case UNORDERED: case ORDERED:
10246 /* We can't do anything if OP0 is a condition code value, rather
10247 than an actual data value. */
10248 if (const_op != 0
10249 || CC0_P (XEXP (op0, 0))
10250 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10251 break;
10253 /* Get the two operands being compared. */
10254 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10255 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10256 else
10257 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10259 /* Check for the cases where we simply want the result of the
10260 earlier test or the opposite of that result. */
10261 if (code == NE || code == EQ
10262 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10263 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10264 && (STORE_FLAG_VALUE
10265 & (((HOST_WIDE_INT) 1
10266 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10267 && (code == LT || code == GE)))
10269 enum rtx_code new_code;
10270 if (code == LT || code == NE)
10271 new_code = GET_CODE (op0);
10272 else
10273 new_code = combine_reversed_comparison_code (op0);
10275 if (new_code != UNKNOWN)
10277 code = new_code;
10278 op0 = tem;
10279 op1 = tem1;
10280 continue;
10283 break;
10285 case IOR:
10286 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10287 iff X <= 0. */
10288 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10289 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10290 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10292 op0 = XEXP (op0, 1);
10293 code = (code == GE ? GT : LE);
10294 continue;
10296 break;
10298 case AND:
10299 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10300 will be converted to a ZERO_EXTRACT later. */
10301 if (const_op == 0 && equality_comparison_p
10302 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10303 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10305 op0 = simplify_and_const_int
10306 (op0, mode, gen_rtx_LSHIFTRT (mode,
10307 XEXP (op0, 1),
10308 XEXP (XEXP (op0, 0), 1)),
10309 (HOST_WIDE_INT) 1);
10310 continue;
10313 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10314 zero and X is a comparison and C1 and C2 describe only bits set
10315 in STORE_FLAG_VALUE, we can compare with X. */
10316 if (const_op == 0 && equality_comparison_p
10317 && mode_width <= HOST_BITS_PER_WIDE_INT
10318 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10319 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10320 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10321 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10322 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10324 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10325 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10326 if ((~STORE_FLAG_VALUE & mask) == 0
10327 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10328 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10329 && COMPARISON_P (tem))))
10331 op0 = XEXP (XEXP (op0, 0), 0);
10332 continue;
10336 /* If we are doing an equality comparison of an AND of a bit equal
10337 to the sign bit, replace this with a LT or GE comparison of
10338 the underlying value. */
10339 if (equality_comparison_p
10340 && const_op == 0
10341 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10342 && mode_width <= HOST_BITS_PER_WIDE_INT
10343 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10344 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10346 op0 = XEXP (op0, 0);
10347 code = (code == EQ ? GE : LT);
10348 continue;
10351 /* If this AND operation is really a ZERO_EXTEND from a narrower
10352 mode, the constant fits within that mode, and this is either an
10353 equality or unsigned comparison, try to do this comparison in
10354 the narrower mode. */
10355 if ((equality_comparison_p || unsigned_comparison_p)
10356 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10357 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10358 & GET_MODE_MASK (mode))
10359 + 1)) >= 0
10360 && const_op >> i == 0
10361 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10363 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10364 continue;
10367 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10368 fits in both M1 and M2 and the SUBREG is either paradoxical
10369 or represents the low part, permute the SUBREG and the AND
10370 and try again. */
10371 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10373 unsigned HOST_WIDE_INT c1;
10374 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10375 /* Require an integral mode, to avoid creating something like
10376 (AND:SF ...). */
10377 if (SCALAR_INT_MODE_P (tmode)
10378 /* It is unsafe to commute the AND into the SUBREG if the
10379 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10380 not defined. As originally written the upper bits
10381 have a defined value due to the AND operation.
10382 However, if we commute the AND inside the SUBREG then
10383 they no longer have defined values and the meaning of
10384 the code has been changed. */
10385 && (0
10386 #ifdef WORD_REGISTER_OPERATIONS
10387 || (mode_width > GET_MODE_BITSIZE (tmode)
10388 && mode_width <= BITS_PER_WORD)
10389 #endif
10390 || (mode_width <= GET_MODE_BITSIZE (tmode)
10391 && subreg_lowpart_p (XEXP (op0, 0))))
10392 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10393 && mode_width <= HOST_BITS_PER_WIDE_INT
10394 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10395 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10396 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10397 && c1 != mask
10398 && c1 != GET_MODE_MASK (tmode))
10400 op0 = simplify_gen_binary (AND, tmode,
10401 SUBREG_REG (XEXP (op0, 0)),
10402 gen_int_mode (c1, tmode));
10403 op0 = gen_lowpart (mode, op0);
10404 continue;
10408 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10409 if (const_op == 0 && equality_comparison_p
10410 && XEXP (op0, 1) == const1_rtx
10411 && GET_CODE (XEXP (op0, 0)) == NOT)
10413 op0 = simplify_and_const_int
10414 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10415 code = (code == NE ? EQ : NE);
10416 continue;
10419 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10420 (eq (and (lshiftrt X) 1) 0).
10421 Also handle the case where (not X) is expressed using xor. */
10422 if (const_op == 0 && equality_comparison_p
10423 && XEXP (op0, 1) == const1_rtx
10424 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10426 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10427 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10429 if (GET_CODE (shift_op) == NOT
10430 || (GET_CODE (shift_op) == XOR
10431 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10432 && GET_CODE (shift_count) == CONST_INT
10433 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10434 && (INTVAL (XEXP (shift_op, 1))
10435 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10437 op0 = simplify_and_const_int
10438 (NULL_RTX, mode,
10439 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10440 (HOST_WIDE_INT) 1);
10441 code = (code == NE ? EQ : NE);
10442 continue;
10445 break;
10447 case ASHIFT:
10448 /* If we have (compare (ashift FOO N) (const_int C)) and
10449 the high order N bits of FOO (N+1 if an inequality comparison)
10450 are known to be zero, we can do this by comparing FOO with C
10451 shifted right N bits so long as the low-order N bits of C are
10452 zero. */
10453 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10454 && INTVAL (XEXP (op0, 1)) >= 0
10455 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10456 < HOST_BITS_PER_WIDE_INT)
10457 && ((const_op
10458 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10459 && mode_width <= HOST_BITS_PER_WIDE_INT
10460 && (nonzero_bits (XEXP (op0, 0), mode)
10461 & ~(mask >> (INTVAL (XEXP (op0, 1))
10462 + ! equality_comparison_p))) == 0)
10464 /* We must perform a logical shift, not an arithmetic one,
10465 as we want the top N bits of C to be zero. */
10466 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10468 temp >>= INTVAL (XEXP (op0, 1));
10469 op1 = gen_int_mode (temp, mode);
10470 op0 = XEXP (op0, 0);
10471 continue;
10474 /* If we are doing a sign bit comparison, it means we are testing
10475 a particular bit. Convert it to the appropriate AND. */
10476 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10477 && mode_width <= HOST_BITS_PER_WIDE_INT)
10479 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10480 ((HOST_WIDE_INT) 1
10481 << (mode_width - 1
10482 - INTVAL (XEXP (op0, 1)))));
10483 code = (code == LT ? NE : EQ);
10484 continue;
10487 /* If this an equality comparison with zero and we are shifting
10488 the low bit to the sign bit, we can convert this to an AND of the
10489 low-order bit. */
10490 if (const_op == 0 && equality_comparison_p
10491 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10492 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10493 == mode_width - 1)
10495 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10496 (HOST_WIDE_INT) 1);
10497 continue;
10499 break;
10501 case ASHIFTRT:
10502 /* If this is an equality comparison with zero, we can do this
10503 as a logical shift, which might be much simpler. */
10504 if (equality_comparison_p && const_op == 0
10505 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10507 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10508 XEXP (op0, 0),
10509 INTVAL (XEXP (op0, 1)));
10510 continue;
10513 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10514 do the comparison in a narrower mode. */
10515 if (! unsigned_comparison_p
10516 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10517 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10518 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10519 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10520 MODE_INT, 1)) != BLKmode
10521 && (((unsigned HOST_WIDE_INT) const_op
10522 + (GET_MODE_MASK (tmode) >> 1) + 1)
10523 <= GET_MODE_MASK (tmode)))
10525 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10526 continue;
10529 /* Likewise if OP0 is a PLUS of a sign extension with a
10530 constant, which is usually represented with the PLUS
10531 between the shifts. */
10532 if (! unsigned_comparison_p
10533 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10534 && GET_CODE (XEXP (op0, 0)) == PLUS
10535 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10536 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10537 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10538 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10539 MODE_INT, 1)) != BLKmode
10540 && (((unsigned HOST_WIDE_INT) const_op
10541 + (GET_MODE_MASK (tmode) >> 1) + 1)
10542 <= GET_MODE_MASK (tmode)))
10544 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10545 rtx add_const = XEXP (XEXP (op0, 0), 1);
10546 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10547 add_const, XEXP (op0, 1));
10549 op0 = simplify_gen_binary (PLUS, tmode,
10550 gen_lowpart (tmode, inner),
10551 new_const);
10552 continue;
10555 /* ... fall through ... */
10556 case LSHIFTRT:
10557 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10558 the low order N bits of FOO are known to be zero, we can do this
10559 by comparing FOO with C shifted left N bits so long as no
10560 overflow occurs. */
10561 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10562 && INTVAL (XEXP (op0, 1)) >= 0
10563 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10564 && mode_width <= HOST_BITS_PER_WIDE_INT
10565 && (nonzero_bits (XEXP (op0, 0), mode)
10566 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10567 && (((unsigned HOST_WIDE_INT) const_op
10568 + (GET_CODE (op0) != LSHIFTRT
10569 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10570 + 1)
10571 : 0))
10572 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10574 /* If the shift was logical, then we must make the condition
10575 unsigned. */
10576 if (GET_CODE (op0) == LSHIFTRT)
10577 code = unsigned_condition (code);
10579 const_op <<= INTVAL (XEXP (op0, 1));
10580 op1 = GEN_INT (const_op);
10581 op0 = XEXP (op0, 0);
10582 continue;
10585 /* If we are using this shift to extract just the sign bit, we
10586 can replace this with an LT or GE comparison. */
10587 if (const_op == 0
10588 && (equality_comparison_p || sign_bit_comparison_p)
10589 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10590 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10591 == mode_width - 1)
10593 op0 = XEXP (op0, 0);
10594 code = (code == NE || code == GT ? LT : GE);
10595 continue;
10597 break;
10599 default:
10600 break;
10603 break;
10606 /* Now make any compound operations involved in this comparison. Then,
10607 check for an outmost SUBREG on OP0 that is not doing anything or is
10608 paradoxical. The latter transformation must only be performed when
10609 it is known that the "extra" bits will be the same in op0 and op1 or
10610 that they don't matter. There are three cases to consider:
10612 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10613 care bits and we can assume they have any convenient value. So
10614 making the transformation is safe.
10616 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10617 In this case the upper bits of op0 are undefined. We should not make
10618 the simplification in that case as we do not know the contents of
10619 those bits.
10621 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10622 UNKNOWN. In that case we know those bits are zeros or ones. We must
10623 also be sure that they are the same as the upper bits of op1.
10625 We can never remove a SUBREG for a non-equality comparison because
10626 the sign bit is in a different place in the underlying object. */
10628 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10629 op1 = make_compound_operation (op1, SET);
10631 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10632 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10633 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10634 && (code == NE || code == EQ))
10636 if (GET_MODE_SIZE (GET_MODE (op0))
10637 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10639 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10640 implemented. */
10641 if (REG_P (SUBREG_REG (op0)))
10643 op0 = SUBREG_REG (op0);
10644 op1 = gen_lowpart (GET_MODE (op0), op1);
10647 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10648 <= HOST_BITS_PER_WIDE_INT)
10649 && (nonzero_bits (SUBREG_REG (op0),
10650 GET_MODE (SUBREG_REG (op0)))
10651 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10653 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10655 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10656 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10657 op0 = SUBREG_REG (op0), op1 = tem;
10661 /* We now do the opposite procedure: Some machines don't have compare
10662 insns in all modes. If OP0's mode is an integer mode smaller than a
10663 word and we can't do a compare in that mode, see if there is a larger
10664 mode for which we can do the compare. There are a number of cases in
10665 which we can use the wider mode. */
10667 mode = GET_MODE (op0);
10668 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10669 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10670 && ! have_insn_for (COMPARE, mode))
10671 for (tmode = GET_MODE_WIDER_MODE (mode);
10672 (tmode != VOIDmode
10673 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10674 tmode = GET_MODE_WIDER_MODE (tmode))
10675 if (have_insn_for (COMPARE, tmode))
10677 int zero_extended;
10679 /* If the only nonzero bits in OP0 and OP1 are those in the
10680 narrower mode and this is an equality or unsigned comparison,
10681 we can use the wider mode. Similarly for sign-extended
10682 values, in which case it is true for all comparisons. */
10683 zero_extended = ((code == EQ || code == NE
10684 || code == GEU || code == GTU
10685 || code == LEU || code == LTU)
10686 && (nonzero_bits (op0, tmode)
10687 & ~GET_MODE_MASK (mode)) == 0
10688 && ((GET_CODE (op1) == CONST_INT
10689 || (nonzero_bits (op1, tmode)
10690 & ~GET_MODE_MASK (mode)) == 0)));
10692 if (zero_extended
10693 || ((num_sign_bit_copies (op0, tmode)
10694 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10695 - GET_MODE_BITSIZE (mode)))
10696 && (num_sign_bit_copies (op1, tmode)
10697 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10698 - GET_MODE_BITSIZE (mode)))))
10700 /* If OP0 is an AND and we don't have an AND in MODE either,
10701 make a new AND in the proper mode. */
10702 if (GET_CODE (op0) == AND
10703 && !have_insn_for (AND, mode))
10704 op0 = simplify_gen_binary (AND, tmode,
10705 gen_lowpart (tmode,
10706 XEXP (op0, 0)),
10707 gen_lowpart (tmode,
10708 XEXP (op0, 1)));
10710 op0 = gen_lowpart (tmode, op0);
10711 if (zero_extended && GET_CODE (op1) == CONST_INT)
10712 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10713 op1 = gen_lowpart (tmode, op1);
10714 break;
10717 /* If this is a test for negative, we can make an explicit
10718 test of the sign bit. */
10720 if (op1 == const0_rtx && (code == LT || code == GE)
10721 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10723 op0 = simplify_gen_binary (AND, tmode,
10724 gen_lowpart (tmode, op0),
10725 GEN_INT ((HOST_WIDE_INT) 1
10726 << (GET_MODE_BITSIZE (mode)
10727 - 1)));
10728 code = (code == LT) ? NE : EQ;
10729 break;
10733 #ifdef CANONICALIZE_COMPARISON
10734 /* If this machine only supports a subset of valid comparisons, see if we
10735 can convert an unsupported one into a supported one. */
10736 CANONICALIZE_COMPARISON (code, op0, op1);
10737 #endif
10739 *pop0 = op0;
10740 *pop1 = op1;
10742 return code;
10745 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10746 searching backward. */
10747 static enum rtx_code
10748 combine_reversed_comparison_code (rtx exp)
10750 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10751 rtx x;
10753 if (code1 != UNKNOWN
10754 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10755 return code1;
10756 /* Otherwise try and find where the condition codes were last set and
10757 use that. */
10758 x = get_last_value (XEXP (exp, 0));
10759 if (!x || GET_CODE (x) != COMPARE)
10760 return UNKNOWN;
10761 return reversed_comparison_code_parts (GET_CODE (exp),
10762 XEXP (x, 0), XEXP (x, 1), NULL);
10765 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10766 Return NULL_RTX in case we fail to do the reversal. */
10767 static rtx
10768 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10770 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10771 if (reversed_code == UNKNOWN)
10772 return NULL_RTX;
10773 else
10774 return simplify_gen_relational (reversed_code, mode, VOIDmode, op0, op1);
10777 /* Utility function for record_value_for_reg. Count number of
10778 rtxs in X. */
10779 static int
10780 count_rtxs (rtx x)
10782 enum rtx_code code = GET_CODE (x);
10783 const char *fmt;
10784 int i, ret = 1;
10786 if (GET_RTX_CLASS (code) == '2'
10787 || GET_RTX_CLASS (code) == 'c')
10789 rtx x0 = XEXP (x, 0);
10790 rtx x1 = XEXP (x, 1);
10792 if (x0 == x1)
10793 return 1 + 2 * count_rtxs (x0);
10795 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10796 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10797 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10798 return 2 + 2 * count_rtxs (x0)
10799 + count_rtxs (x == XEXP (x1, 0)
10800 ? XEXP (x1, 1) : XEXP (x1, 0));
10802 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10803 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10804 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10805 return 2 + 2 * count_rtxs (x1)
10806 + count_rtxs (x == XEXP (x0, 0)
10807 ? XEXP (x0, 1) : XEXP (x0, 0));
10810 fmt = GET_RTX_FORMAT (code);
10811 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10812 if (fmt[i] == 'e')
10813 ret += count_rtxs (XEXP (x, i));
10815 return ret;
10818 /* Utility function for following routine. Called when X is part of a value
10819 being stored into last_set_value. Sets last_set_table_tick
10820 for each register mentioned. Similar to mention_regs in cse.c */
10822 static void
10823 update_table_tick (rtx x)
10825 enum rtx_code code = GET_CODE (x);
10826 const char *fmt = GET_RTX_FORMAT (code);
10827 int i;
10829 if (code == REG)
10831 unsigned int regno = REGNO (x);
10832 unsigned int endregno
10833 = regno + (regno < FIRST_PSEUDO_REGISTER
10834 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10835 unsigned int r;
10837 for (r = regno; r < endregno; r++)
10838 reg_stat[r].last_set_table_tick = label_tick;
10840 return;
10843 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10844 /* Note that we can't have an "E" in values stored; see
10845 get_last_value_validate. */
10846 if (fmt[i] == 'e')
10848 /* Check for identical subexpressions. If x contains
10849 identical subexpression we only have to traverse one of
10850 them. */
10851 if (i == 0 && ARITHMETIC_P (x))
10853 /* Note that at this point x1 has already been
10854 processed. */
10855 rtx x0 = XEXP (x, 0);
10856 rtx x1 = XEXP (x, 1);
10858 /* If x0 and x1 are identical then there is no need to
10859 process x0. */
10860 if (x0 == x1)
10861 break;
10863 /* If x0 is identical to a subexpression of x1 then while
10864 processing x1, x0 has already been processed. Thus we
10865 are done with x. */
10866 if (ARITHMETIC_P (x1)
10867 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10868 break;
10870 /* If x1 is identical to a subexpression of x0 then we
10871 still have to process the rest of x0. */
10872 if (ARITHMETIC_P (x0)
10873 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10875 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10876 break;
10880 update_table_tick (XEXP (x, i));
10884 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10885 are saying that the register is clobbered and we no longer know its
10886 value. If INSN is zero, don't update reg_stat[].last_set; this is
10887 only permitted with VALUE also zero and is used to invalidate the
10888 register. */
10890 static void
10891 record_value_for_reg (rtx reg, rtx insn, rtx value)
10893 unsigned int regno = REGNO (reg);
10894 unsigned int endregno
10895 = regno + (regno < FIRST_PSEUDO_REGISTER
10896 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10897 unsigned int i;
10899 /* If VALUE contains REG and we have a previous value for REG, substitute
10900 the previous value. */
10901 if (value && insn && reg_overlap_mentioned_p (reg, value))
10903 rtx tem;
10905 /* Set things up so get_last_value is allowed to see anything set up to
10906 our insn. */
10907 subst_low_cuid = INSN_CUID (insn);
10908 tem = get_last_value (reg);
10910 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10911 it isn't going to be useful and will take a lot of time to process,
10912 so just use the CLOBBER. */
10914 if (tem)
10916 if (ARITHMETIC_P (tem)
10917 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10918 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10919 tem = XEXP (tem, 0);
10920 else if (count_occurrences (value, reg, 1) >= 2)
10922 /* If there are two or more occurrences of REG in VALUE,
10923 prevent the value from growing too much. */
10924 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10925 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10928 value = replace_rtx (copy_rtx (value), reg, tem);
10932 /* For each register modified, show we don't know its value, that
10933 we don't know about its bitwise content, that its value has been
10934 updated, and that we don't know the location of the death of the
10935 register. */
10936 for (i = regno; i < endregno; i++)
10938 if (insn)
10939 reg_stat[i].last_set = insn;
10941 reg_stat[i].last_set_value = 0;
10942 reg_stat[i].last_set_mode = 0;
10943 reg_stat[i].last_set_nonzero_bits = 0;
10944 reg_stat[i].last_set_sign_bit_copies = 0;
10945 reg_stat[i].last_death = 0;
10948 /* Mark registers that are being referenced in this value. */
10949 if (value)
10950 update_table_tick (value);
10952 /* Now update the status of each register being set.
10953 If someone is using this register in this block, set this register
10954 to invalid since we will get confused between the two lives in this
10955 basic block. This makes using this register always invalid. In cse, we
10956 scan the table to invalidate all entries using this register, but this
10957 is too much work for us. */
10959 for (i = regno; i < endregno; i++)
10961 reg_stat[i].last_set_label = label_tick;
10962 if (value && reg_stat[i].last_set_table_tick == label_tick)
10963 reg_stat[i].last_set_invalid = 1;
10964 else
10965 reg_stat[i].last_set_invalid = 0;
10968 /* The value being assigned might refer to X (like in "x++;"). In that
10969 case, we must replace it with (clobber (const_int 0)) to prevent
10970 infinite loops. */
10971 if (value && ! get_last_value_validate (&value, insn,
10972 reg_stat[regno].last_set_label, 0))
10974 value = copy_rtx (value);
10975 if (! get_last_value_validate (&value, insn,
10976 reg_stat[regno].last_set_label, 1))
10977 value = 0;
10980 /* For the main register being modified, update the value, the mode, the
10981 nonzero bits, and the number of sign bit copies. */
10983 reg_stat[regno].last_set_value = value;
10985 if (value)
10987 enum machine_mode mode = GET_MODE (reg);
10988 subst_low_cuid = INSN_CUID (insn);
10989 reg_stat[regno].last_set_mode = mode;
10990 if (GET_MODE_CLASS (mode) == MODE_INT
10991 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10992 mode = nonzero_bits_mode;
10993 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10994 reg_stat[regno].last_set_sign_bit_copies
10995 = num_sign_bit_copies (value, GET_MODE (reg));
10999 /* Called via note_stores from record_dead_and_set_regs to handle one
11000 SET or CLOBBER in an insn. DATA is the instruction in which the
11001 set is occurring. */
11003 static void
11004 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11006 rtx record_dead_insn = (rtx) data;
11008 if (GET_CODE (dest) == SUBREG)
11009 dest = SUBREG_REG (dest);
11011 if (REG_P (dest))
11013 /* If we are setting the whole register, we know its value. Otherwise
11014 show that we don't know the value. We can handle SUBREG in
11015 some cases. */
11016 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11017 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11018 else if (GET_CODE (setter) == SET
11019 && GET_CODE (SET_DEST (setter)) == SUBREG
11020 && SUBREG_REG (SET_DEST (setter)) == dest
11021 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11022 && subreg_lowpart_p (SET_DEST (setter)))
11023 record_value_for_reg (dest, record_dead_insn,
11024 gen_lowpart (GET_MODE (dest),
11025 SET_SRC (setter)));
11026 else
11027 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11029 else if (MEM_P (dest)
11030 /* Ignore pushes, they clobber nothing. */
11031 && ! push_operand (dest, GET_MODE (dest)))
11032 mem_last_set = INSN_CUID (record_dead_insn);
11035 /* Update the records of when each REG was most recently set or killed
11036 for the things done by INSN. This is the last thing done in processing
11037 INSN in the combiner loop.
11039 We update reg_stat[], in particular fields last_set, last_set_value,
11040 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11041 last_death, and also the similar information mem_last_set (which insn
11042 most recently modified memory) and last_call_cuid (which insn was the
11043 most recent subroutine call). */
11045 static void
11046 record_dead_and_set_regs (rtx insn)
11048 rtx link;
11049 unsigned int i;
11051 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11053 if (REG_NOTE_KIND (link) == REG_DEAD
11054 && REG_P (XEXP (link, 0)))
11056 unsigned int regno = REGNO (XEXP (link, 0));
11057 unsigned int endregno
11058 = regno + (regno < FIRST_PSEUDO_REGISTER
11059 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11060 : 1);
11062 for (i = regno; i < endregno; i++)
11063 reg_stat[i].last_death = insn;
11065 else if (REG_NOTE_KIND (link) == REG_INC)
11066 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11069 if (CALL_P (insn))
11071 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11072 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11074 reg_stat[i].last_set_value = 0;
11075 reg_stat[i].last_set_mode = 0;
11076 reg_stat[i].last_set_nonzero_bits = 0;
11077 reg_stat[i].last_set_sign_bit_copies = 0;
11078 reg_stat[i].last_death = 0;
11081 last_call_cuid = mem_last_set = INSN_CUID (insn);
11083 /* Don't bother recording what this insn does. It might set the
11084 return value register, but we can't combine into a call
11085 pattern anyway, so there's no point trying (and it may cause
11086 a crash, if e.g. we wind up asking for last_set_value of a
11087 SUBREG of the return value register). */
11088 return;
11091 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11094 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11095 register present in the SUBREG, so for each such SUBREG go back and
11096 adjust nonzero and sign bit information of the registers that are
11097 known to have some zero/sign bits set.
11099 This is needed because when combine blows the SUBREGs away, the
11100 information on zero/sign bits is lost and further combines can be
11101 missed because of that. */
11103 static void
11104 record_promoted_value (rtx insn, rtx subreg)
11106 rtx links, set;
11107 unsigned int regno = REGNO (SUBREG_REG (subreg));
11108 enum machine_mode mode = GET_MODE (subreg);
11110 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11111 return;
11113 for (links = LOG_LINKS (insn); links;)
11115 insn = XEXP (links, 0);
11116 set = single_set (insn);
11118 if (! set || !REG_P (SET_DEST (set))
11119 || REGNO (SET_DEST (set)) != regno
11120 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11122 links = XEXP (links, 1);
11123 continue;
11126 if (reg_stat[regno].last_set == insn)
11128 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11129 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11132 if (REG_P (SET_SRC (set)))
11134 regno = REGNO (SET_SRC (set));
11135 links = LOG_LINKS (insn);
11137 else
11138 break;
11142 /* Scan X for promoted SUBREGs. For each one found,
11143 note what it implies to the registers used in it. */
11145 static void
11146 check_promoted_subreg (rtx insn, rtx x)
11148 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11149 && REG_P (SUBREG_REG (x)))
11150 record_promoted_value (insn, x);
11151 else
11153 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11154 int i, j;
11156 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11157 switch (format[i])
11159 case 'e':
11160 check_promoted_subreg (insn, XEXP (x, i));
11161 break;
11162 case 'V':
11163 case 'E':
11164 if (XVEC (x, i) != 0)
11165 for (j = 0; j < XVECLEN (x, i); j++)
11166 check_promoted_subreg (insn, XVECEXP (x, i, j));
11167 break;
11172 /* Utility routine for the following function. Verify that all the registers
11173 mentioned in *LOC are valid when *LOC was part of a value set when
11174 label_tick == TICK. Return 0 if some are not.
11176 If REPLACE is nonzero, replace the invalid reference with
11177 (clobber (const_int 0)) and return 1. This replacement is useful because
11178 we often can get useful information about the form of a value (e.g., if
11179 it was produced by a shift that always produces -1 or 0) even though
11180 we don't know exactly what registers it was produced from. */
11182 static int
11183 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11185 rtx x = *loc;
11186 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11187 int len = GET_RTX_LENGTH (GET_CODE (x));
11188 int i;
11190 if (REG_P (x))
11192 unsigned int regno = REGNO (x);
11193 unsigned int endregno
11194 = regno + (regno < FIRST_PSEUDO_REGISTER
11195 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11196 unsigned int j;
11198 for (j = regno; j < endregno; j++)
11199 if (reg_stat[j].last_set_invalid
11200 /* If this is a pseudo-register that was only set once and not
11201 live at the beginning of the function, it is always valid. */
11202 || (! (regno >= FIRST_PSEUDO_REGISTER
11203 && REG_N_SETS (regno) == 1
11204 && (! REGNO_REG_SET_P
11205 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11206 && reg_stat[j].last_set_label > tick))
11208 if (replace)
11209 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11210 return replace;
11213 return 1;
11215 /* If this is a memory reference, make sure that there were
11216 no stores after it that might have clobbered the value. We don't
11217 have alias info, so we assume any store invalidates it. */
11218 else if (MEM_P (x) && !MEM_READONLY_P (x)
11219 && INSN_CUID (insn) <= mem_last_set)
11221 if (replace)
11222 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11223 return replace;
11226 for (i = 0; i < len; i++)
11228 if (fmt[i] == 'e')
11230 /* Check for identical subexpressions. If x contains
11231 identical subexpression we only have to traverse one of
11232 them. */
11233 if (i == 1 && ARITHMETIC_P (x))
11235 /* Note that at this point x0 has already been checked
11236 and found valid. */
11237 rtx x0 = XEXP (x, 0);
11238 rtx x1 = XEXP (x, 1);
11240 /* If x0 and x1 are identical then x is also valid. */
11241 if (x0 == x1)
11242 return 1;
11244 /* If x1 is identical to a subexpression of x0 then
11245 while checking x0, x1 has already been checked. Thus
11246 it is valid and so as x. */
11247 if (ARITHMETIC_P (x0)
11248 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11249 return 1;
11251 /* If x0 is identical to a subexpression of x1 then x is
11252 valid iff the rest of x1 is valid. */
11253 if (ARITHMETIC_P (x1)
11254 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11255 return
11256 get_last_value_validate (&XEXP (x1,
11257 x0 == XEXP (x1, 0) ? 1 : 0),
11258 insn, tick, replace);
11261 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11262 replace) == 0)
11263 return 0;
11265 /* Don't bother with these. They shouldn't occur anyway. */
11266 else if (fmt[i] == 'E')
11267 return 0;
11270 /* If we haven't found a reason for it to be invalid, it is valid. */
11271 return 1;
11274 /* Get the last value assigned to X, if known. Some registers
11275 in the value may be replaced with (clobber (const_int 0)) if their value
11276 is known longer known reliably. */
11278 static rtx
11279 get_last_value (rtx x)
11281 unsigned int regno;
11282 rtx value;
11284 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11285 then convert it to the desired mode. If this is a paradoxical SUBREG,
11286 we cannot predict what values the "extra" bits might have. */
11287 if (GET_CODE (x) == SUBREG
11288 && subreg_lowpart_p (x)
11289 && (GET_MODE_SIZE (GET_MODE (x))
11290 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11291 && (value = get_last_value (SUBREG_REG (x))) != 0)
11292 return gen_lowpart (GET_MODE (x), value);
11294 if (!REG_P (x))
11295 return 0;
11297 regno = REGNO (x);
11298 value = reg_stat[regno].last_set_value;
11300 /* If we don't have a value, or if it isn't for this basic block and
11301 it's either a hard register, set more than once, or it's a live
11302 at the beginning of the function, return 0.
11304 Because if it's not live at the beginning of the function then the reg
11305 is always set before being used (is never used without being set).
11306 And, if it's set only once, and it's always set before use, then all
11307 uses must have the same last value, even if it's not from this basic
11308 block. */
11310 if (value == 0
11311 || (reg_stat[regno].last_set_label != label_tick
11312 && (regno < FIRST_PSEUDO_REGISTER
11313 || REG_N_SETS (regno) != 1
11314 || (REGNO_REG_SET_P
11315 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11316 return 0;
11318 /* If the value was set in a later insn than the ones we are processing,
11319 we can't use it even if the register was only set once. */
11320 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11321 return 0;
11323 /* If the value has all its registers valid, return it. */
11324 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11325 reg_stat[regno].last_set_label, 0))
11326 return value;
11328 /* Otherwise, make a copy and replace any invalid register with
11329 (clobber (const_int 0)). If that fails for some reason, return 0. */
11331 value = copy_rtx (value);
11332 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11333 reg_stat[regno].last_set_label, 1))
11334 return value;
11336 return 0;
11339 /* Return nonzero if expression X refers to a REG or to memory
11340 that is set in an instruction more recent than FROM_CUID. */
11342 static int
11343 use_crosses_set_p (rtx x, int from_cuid)
11345 const char *fmt;
11346 int i;
11347 enum rtx_code code = GET_CODE (x);
11349 if (code == REG)
11351 unsigned int regno = REGNO (x);
11352 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11353 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11355 #ifdef PUSH_ROUNDING
11356 /* Don't allow uses of the stack pointer to be moved,
11357 because we don't know whether the move crosses a push insn. */
11358 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11359 return 1;
11360 #endif
11361 for (; regno < endreg; regno++)
11362 if (reg_stat[regno].last_set
11363 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11364 return 1;
11365 return 0;
11368 if (code == MEM && mem_last_set > from_cuid)
11369 return 1;
11371 fmt = GET_RTX_FORMAT (code);
11373 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11375 if (fmt[i] == 'E')
11377 int j;
11378 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11379 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11380 return 1;
11382 else if (fmt[i] == 'e'
11383 && use_crosses_set_p (XEXP (x, i), from_cuid))
11384 return 1;
11386 return 0;
11389 /* Define three variables used for communication between the following
11390 routines. */
11392 static unsigned int reg_dead_regno, reg_dead_endregno;
11393 static int reg_dead_flag;
11395 /* Function called via note_stores from reg_dead_at_p.
11397 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11398 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11400 static void
11401 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11403 unsigned int regno, endregno;
11405 if (!REG_P (dest))
11406 return;
11408 regno = REGNO (dest);
11409 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11410 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11412 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11413 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11416 /* Return nonzero if REG is known to be dead at INSN.
11418 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11419 referencing REG, it is dead. If we hit a SET referencing REG, it is
11420 live. Otherwise, see if it is live or dead at the start of the basic
11421 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11422 must be assumed to be always live. */
11424 static int
11425 reg_dead_at_p (rtx reg, rtx insn)
11427 basic_block block;
11428 unsigned int i;
11430 /* Set variables for reg_dead_at_p_1. */
11431 reg_dead_regno = REGNO (reg);
11432 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11433 ? hard_regno_nregs[reg_dead_regno]
11434 [GET_MODE (reg)]
11435 : 1);
11437 reg_dead_flag = 0;
11439 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11440 we allow the machine description to decide whether use-and-clobber
11441 patterns are OK. */
11442 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11444 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11445 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11446 return 0;
11449 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11450 beginning of function. */
11451 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11452 insn = prev_nonnote_insn (insn))
11454 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11455 if (reg_dead_flag)
11456 return reg_dead_flag == 1 ? 1 : 0;
11458 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11459 return 1;
11462 /* Get the basic block that we were in. */
11463 if (insn == 0)
11464 block = ENTRY_BLOCK_PTR->next_bb;
11465 else
11467 FOR_EACH_BB (block)
11468 if (insn == BB_HEAD (block))
11469 break;
11471 if (block == EXIT_BLOCK_PTR)
11472 return 0;
11475 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11476 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11477 return 0;
11479 return 1;
11482 /* Note hard registers in X that are used. This code is similar to
11483 that in flow.c, but much simpler since we don't care about pseudos. */
11485 static void
11486 mark_used_regs_combine (rtx x)
11488 RTX_CODE code = GET_CODE (x);
11489 unsigned int regno;
11490 int i;
11492 switch (code)
11494 case LABEL_REF:
11495 case SYMBOL_REF:
11496 case CONST_INT:
11497 case CONST:
11498 case CONST_DOUBLE:
11499 case CONST_VECTOR:
11500 case PC:
11501 case ADDR_VEC:
11502 case ADDR_DIFF_VEC:
11503 case ASM_INPUT:
11504 #ifdef HAVE_cc0
11505 /* CC0 must die in the insn after it is set, so we don't need to take
11506 special note of it here. */
11507 case CC0:
11508 #endif
11509 return;
11511 case CLOBBER:
11512 /* If we are clobbering a MEM, mark any hard registers inside the
11513 address as used. */
11514 if (MEM_P (XEXP (x, 0)))
11515 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11516 return;
11518 case REG:
11519 regno = REGNO (x);
11520 /* A hard reg in a wide mode may really be multiple registers.
11521 If so, mark all of them just like the first. */
11522 if (regno < FIRST_PSEUDO_REGISTER)
11524 unsigned int endregno, r;
11526 /* None of this applies to the stack, frame or arg pointers. */
11527 if (regno == STACK_POINTER_REGNUM
11528 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11529 || regno == HARD_FRAME_POINTER_REGNUM
11530 #endif
11531 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11532 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11533 #endif
11534 || regno == FRAME_POINTER_REGNUM)
11535 return;
11537 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11538 for (r = regno; r < endregno; r++)
11539 SET_HARD_REG_BIT (newpat_used_regs, r);
11541 return;
11543 case SET:
11545 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11546 the address. */
11547 rtx testreg = SET_DEST (x);
11549 while (GET_CODE (testreg) == SUBREG
11550 || GET_CODE (testreg) == ZERO_EXTRACT
11551 || GET_CODE (testreg) == STRICT_LOW_PART)
11552 testreg = XEXP (testreg, 0);
11554 if (MEM_P (testreg))
11555 mark_used_regs_combine (XEXP (testreg, 0));
11557 mark_used_regs_combine (SET_SRC (x));
11559 return;
11561 default:
11562 break;
11565 /* Recursively scan the operands of this expression. */
11568 const char *fmt = GET_RTX_FORMAT (code);
11570 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11572 if (fmt[i] == 'e')
11573 mark_used_regs_combine (XEXP (x, i));
11574 else if (fmt[i] == 'E')
11576 int j;
11578 for (j = 0; j < XVECLEN (x, i); j++)
11579 mark_used_regs_combine (XVECEXP (x, i, j));
11585 /* Remove register number REGNO from the dead registers list of INSN.
11587 Return the note used to record the death, if there was one. */
11590 remove_death (unsigned int regno, rtx insn)
11592 rtx note = find_regno_note (insn, REG_DEAD, regno);
11594 if (note)
11596 REG_N_DEATHS (regno)--;
11597 remove_note (insn, note);
11600 return note;
11603 /* For each register (hardware or pseudo) used within expression X, if its
11604 death is in an instruction with cuid between FROM_CUID (inclusive) and
11605 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11606 list headed by PNOTES.
11608 That said, don't move registers killed by maybe_kill_insn.
11610 This is done when X is being merged by combination into TO_INSN. These
11611 notes will then be distributed as needed. */
11613 static void
11614 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11615 rtx *pnotes)
11617 const char *fmt;
11618 int len, i;
11619 enum rtx_code code = GET_CODE (x);
11621 if (code == REG)
11623 unsigned int regno = REGNO (x);
11624 rtx where_dead = reg_stat[regno].last_death;
11625 rtx before_dead, after_dead;
11627 /* Don't move the register if it gets killed in between from and to. */
11628 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11629 && ! reg_referenced_p (x, maybe_kill_insn))
11630 return;
11632 /* WHERE_DEAD could be a USE insn made by combine, so first we
11633 make sure that we have insns with valid INSN_CUID values. */
11634 before_dead = where_dead;
11635 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11636 before_dead = PREV_INSN (before_dead);
11638 after_dead = where_dead;
11639 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11640 after_dead = NEXT_INSN (after_dead);
11642 if (before_dead && after_dead
11643 && INSN_CUID (before_dead) >= from_cuid
11644 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11645 || (where_dead != after_dead
11646 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11648 rtx note = remove_death (regno, where_dead);
11650 /* It is possible for the call above to return 0. This can occur
11651 when last_death points to I2 or I1 that we combined with.
11652 In that case make a new note.
11654 We must also check for the case where X is a hard register
11655 and NOTE is a death note for a range of hard registers
11656 including X. In that case, we must put REG_DEAD notes for
11657 the remaining registers in place of NOTE. */
11659 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11660 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11661 > GET_MODE_SIZE (GET_MODE (x))))
11663 unsigned int deadregno = REGNO (XEXP (note, 0));
11664 unsigned int deadend
11665 = (deadregno + hard_regno_nregs[deadregno]
11666 [GET_MODE (XEXP (note, 0))]);
11667 unsigned int ourend
11668 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11669 unsigned int i;
11671 for (i = deadregno; i < deadend; i++)
11672 if (i < regno || i >= ourend)
11673 REG_NOTES (where_dead)
11674 = gen_rtx_EXPR_LIST (REG_DEAD,
11675 regno_reg_rtx[i],
11676 REG_NOTES (where_dead));
11679 /* If we didn't find any note, or if we found a REG_DEAD note that
11680 covers only part of the given reg, and we have a multi-reg hard
11681 register, then to be safe we must check for REG_DEAD notes
11682 for each register other than the first. They could have
11683 their own REG_DEAD notes lying around. */
11684 else if ((note == 0
11685 || (note != 0
11686 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11687 < GET_MODE_SIZE (GET_MODE (x)))))
11688 && regno < FIRST_PSEUDO_REGISTER
11689 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11691 unsigned int ourend
11692 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11693 unsigned int i, offset;
11694 rtx oldnotes = 0;
11696 if (note)
11697 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11698 else
11699 offset = 1;
11701 for (i = regno + offset; i < ourend; i++)
11702 move_deaths (regno_reg_rtx[i],
11703 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11706 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11708 XEXP (note, 1) = *pnotes;
11709 *pnotes = note;
11711 else
11712 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11714 REG_N_DEATHS (regno)++;
11717 return;
11720 else if (GET_CODE (x) == SET)
11722 rtx dest = SET_DEST (x);
11724 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11726 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11727 that accesses one word of a multi-word item, some
11728 piece of everything register in the expression is used by
11729 this insn, so remove any old death. */
11730 /* ??? So why do we test for equality of the sizes? */
11732 if (GET_CODE (dest) == ZERO_EXTRACT
11733 || GET_CODE (dest) == STRICT_LOW_PART
11734 || (GET_CODE (dest) == SUBREG
11735 && (((GET_MODE_SIZE (GET_MODE (dest))
11736 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11737 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11738 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11740 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11741 return;
11744 /* If this is some other SUBREG, we know it replaces the entire
11745 value, so use that as the destination. */
11746 if (GET_CODE (dest) == SUBREG)
11747 dest = SUBREG_REG (dest);
11749 /* If this is a MEM, adjust deaths of anything used in the address.
11750 For a REG (the only other possibility), the entire value is
11751 being replaced so the old value is not used in this insn. */
11753 if (MEM_P (dest))
11754 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11755 to_insn, pnotes);
11756 return;
11759 else if (GET_CODE (x) == CLOBBER)
11760 return;
11762 len = GET_RTX_LENGTH (code);
11763 fmt = GET_RTX_FORMAT (code);
11765 for (i = 0; i < len; i++)
11767 if (fmt[i] == 'E')
11769 int j;
11770 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11771 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11772 to_insn, pnotes);
11774 else if (fmt[i] == 'e')
11775 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11779 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11780 pattern of an insn. X must be a REG. */
11782 static int
11783 reg_bitfield_target_p (rtx x, rtx body)
11785 int i;
11787 if (GET_CODE (body) == SET)
11789 rtx dest = SET_DEST (body);
11790 rtx target;
11791 unsigned int regno, tregno, endregno, endtregno;
11793 if (GET_CODE (dest) == ZERO_EXTRACT)
11794 target = XEXP (dest, 0);
11795 else if (GET_CODE (dest) == STRICT_LOW_PART)
11796 target = SUBREG_REG (XEXP (dest, 0));
11797 else
11798 return 0;
11800 if (GET_CODE (target) == SUBREG)
11801 target = SUBREG_REG (target);
11803 if (!REG_P (target))
11804 return 0;
11806 tregno = REGNO (target), regno = REGNO (x);
11807 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11808 return target == x;
11810 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11811 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11813 return endregno > tregno && regno < endtregno;
11816 else if (GET_CODE (body) == PARALLEL)
11817 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11818 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11819 return 1;
11821 return 0;
11824 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11825 as appropriate. I3 and I2 are the insns resulting from the combination
11826 insns including FROM (I2 may be zero).
11828 Each note in the list is either ignored or placed on some insns, depending
11829 on the type of note. */
11831 static void
11832 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11834 rtx note, next_note;
11835 rtx tem;
11837 for (note = notes; note; note = next_note)
11839 rtx place = 0, place2 = 0;
11841 /* If this NOTE references a pseudo register, ensure it references
11842 the latest copy of that register. */
11843 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11844 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11845 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11847 next_note = XEXP (note, 1);
11848 switch (REG_NOTE_KIND (note))
11850 case REG_BR_PROB:
11851 case REG_BR_PRED:
11852 /* Doesn't matter much where we put this, as long as it's somewhere.
11853 It is preferable to keep these notes on branches, which is most
11854 likely to be i3. */
11855 place = i3;
11856 break;
11858 case REG_VALUE_PROFILE:
11859 /* Just get rid of this note, as it is unused later anyway. */
11860 break;
11862 case REG_NON_LOCAL_GOTO:
11863 if (JUMP_P (i3))
11864 place = i3;
11865 else
11867 gcc_assert (i2 && JUMP_P (i2));
11868 place = i2;
11870 break;
11872 case REG_EH_REGION:
11873 /* These notes must remain with the call or trapping instruction. */
11874 if (CALL_P (i3))
11875 place = i3;
11876 else if (i2 && CALL_P (i2))
11877 place = i2;
11878 else
11880 gcc_assert (flag_non_call_exceptions);
11881 if (may_trap_p (i3))
11882 place = i3;
11883 else if (i2 && may_trap_p (i2))
11884 place = i2;
11885 /* ??? Otherwise assume we've combined things such that we
11886 can now prove that the instructions can't trap. Drop the
11887 note in this case. */
11889 break;
11891 case REG_ALWAYS_RETURN:
11892 case REG_NORETURN:
11893 case REG_SETJMP:
11894 /* These notes must remain with the call. It should not be
11895 possible for both I2 and I3 to be a call. */
11896 if (CALL_P (i3))
11897 place = i3;
11898 else
11900 gcc_assert (i2 && CALL_P (i2));
11901 place = i2;
11903 break;
11905 case REG_UNUSED:
11906 /* Any clobbers for i3 may still exist, and so we must process
11907 REG_UNUSED notes from that insn.
11909 Any clobbers from i2 or i1 can only exist if they were added by
11910 recog_for_combine. In that case, recog_for_combine created the
11911 necessary REG_UNUSED notes. Trying to keep any original
11912 REG_UNUSED notes from these insns can cause incorrect output
11913 if it is for the same register as the original i3 dest.
11914 In that case, we will notice that the register is set in i3,
11915 and then add a REG_UNUSED note for the destination of i3, which
11916 is wrong. However, it is possible to have REG_UNUSED notes from
11917 i2 or i1 for register which were both used and clobbered, so
11918 we keep notes from i2 or i1 if they will turn into REG_DEAD
11919 notes. */
11921 /* If this register is set or clobbered in I3, put the note there
11922 unless there is one already. */
11923 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11925 if (from_insn != i3)
11926 break;
11928 if (! (REG_P (XEXP (note, 0))
11929 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11930 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11931 place = i3;
11933 /* Otherwise, if this register is used by I3, then this register
11934 now dies here, so we must put a REG_DEAD note here unless there
11935 is one already. */
11936 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11937 && ! (REG_P (XEXP (note, 0))
11938 ? find_regno_note (i3, REG_DEAD,
11939 REGNO (XEXP (note, 0)))
11940 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11942 PUT_REG_NOTE_KIND (note, REG_DEAD);
11943 place = i3;
11945 break;
11947 case REG_EQUAL:
11948 case REG_EQUIV:
11949 case REG_NOALIAS:
11950 /* These notes say something about results of an insn. We can
11951 only support them if they used to be on I3 in which case they
11952 remain on I3. Otherwise they are ignored.
11954 If the note refers to an expression that is not a constant, we
11955 must also ignore the note since we cannot tell whether the
11956 equivalence is still true. It might be possible to do
11957 slightly better than this (we only have a problem if I2DEST
11958 or I1DEST is present in the expression), but it doesn't
11959 seem worth the trouble. */
11961 if (from_insn == i3
11962 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11963 place = i3;
11964 break;
11966 case REG_INC:
11967 case REG_NO_CONFLICT:
11968 /* These notes say something about how a register is used. They must
11969 be present on any use of the register in I2 or I3. */
11970 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11971 place = i3;
11973 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11975 if (place)
11976 place2 = i2;
11977 else
11978 place = i2;
11980 break;
11982 case REG_LABEL:
11983 /* This can show up in several ways -- either directly in the
11984 pattern, or hidden off in the constant pool with (or without?)
11985 a REG_EQUAL note. */
11986 /* ??? Ignore the without-reg_equal-note problem for now. */
11987 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11988 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11989 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11990 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11991 place = i3;
11993 if (i2
11994 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11995 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11996 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11997 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11999 if (place)
12000 place2 = i2;
12001 else
12002 place = i2;
12005 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12006 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12007 if (place && JUMP_P (place))
12009 rtx label = JUMP_LABEL (place);
12011 if (!label)
12012 JUMP_LABEL (place) = XEXP (note, 0);
12013 else
12015 gcc_assert (label == XEXP (note, 0));
12016 if (LABEL_P (label))
12017 LABEL_NUSES (label)--;
12019 place = 0;
12021 if (place2 && JUMP_P (place2))
12023 rtx label = JUMP_LABEL (place2);
12025 if (!label)
12026 JUMP_LABEL (place2) = XEXP (note, 0);
12027 else
12029 gcc_assert (label == XEXP (note, 0));
12030 if (LABEL_P (label))
12031 LABEL_NUSES (label)--;
12033 place2 = 0;
12035 break;
12037 case REG_NONNEG:
12038 /* This note says something about the value of a register prior
12039 to the execution of an insn. It is too much trouble to see
12040 if the note is still correct in all situations. It is better
12041 to simply delete it. */
12042 break;
12044 case REG_RETVAL:
12045 /* If the insn previously containing this note still exists,
12046 put it back where it was. Otherwise move it to the previous
12047 insn. Adjust the corresponding REG_LIBCALL note. */
12048 if (!NOTE_P (from_insn))
12049 place = from_insn;
12050 else
12052 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12053 place = prev_real_insn (from_insn);
12054 if (tem && place)
12055 XEXP (tem, 0) = place;
12056 /* If we're deleting the last remaining instruction of a
12057 libcall sequence, don't add the notes. */
12058 else if (XEXP (note, 0) == from_insn)
12059 tem = place = 0;
12060 /* Don't add the dangling REG_RETVAL note. */
12061 else if (! tem)
12062 place = 0;
12064 break;
12066 case REG_LIBCALL:
12067 /* This is handled similarly to REG_RETVAL. */
12068 if (!NOTE_P (from_insn))
12069 place = from_insn;
12070 else
12072 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12073 place = next_real_insn (from_insn);
12074 if (tem && place)
12075 XEXP (tem, 0) = place;
12076 /* If we're deleting the last remaining instruction of a
12077 libcall sequence, don't add the notes. */
12078 else if (XEXP (note, 0) == from_insn)
12079 tem = place = 0;
12080 /* Don't add the dangling REG_LIBCALL note. */
12081 else if (! tem)
12082 place = 0;
12084 break;
12086 case REG_DEAD:
12087 /* If the register is used as an input in I3, it dies there.
12088 Similarly for I2, if it is nonzero and adjacent to I3.
12090 If the register is not used as an input in either I3 or I2
12091 and it is not one of the registers we were supposed to eliminate,
12092 there are two possibilities. We might have a non-adjacent I2
12093 or we might have somehow eliminated an additional register
12094 from a computation. For example, we might have had A & B where
12095 we discover that B will always be zero. In this case we will
12096 eliminate the reference to A.
12098 In both cases, we must search to see if we can find a previous
12099 use of A and put the death note there. */
12101 if (from_insn
12102 && CALL_P (from_insn)
12103 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12104 place = from_insn;
12105 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12106 place = i3;
12107 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12108 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12109 place = i2;
12111 if (place == 0)
12113 basic_block bb = this_basic_block;
12115 /* You might think you could search back from FROM_INSN
12116 rather than from I3, but combine tries to split invalid
12117 combined instructions. This can result in the old I2
12118 or I1 moving later in the insn sequence. */
12119 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12121 if (! INSN_P (tem))
12123 if (tem == BB_HEAD (bb))
12124 break;
12125 continue;
12128 /* If the register is being set at TEM, see if that is all
12129 TEM is doing. If so, delete TEM. Otherwise, make this
12130 into a REG_UNUSED note instead. Don't delete sets to
12131 global register vars. */
12132 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12133 || !global_regs[REGNO (XEXP (note, 0))])
12134 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12136 rtx set = single_set (tem);
12137 rtx inner_dest = 0;
12138 #ifdef HAVE_cc0
12139 rtx cc0_setter = NULL_RTX;
12140 #endif
12142 if (set != 0)
12143 for (inner_dest = SET_DEST (set);
12144 (GET_CODE (inner_dest) == STRICT_LOW_PART
12145 || GET_CODE (inner_dest) == SUBREG
12146 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12147 inner_dest = XEXP (inner_dest, 0))
12150 /* Verify that it was the set, and not a clobber that
12151 modified the register.
12153 CC0 targets must be careful to maintain setter/user
12154 pairs. If we cannot delete the setter due to side
12155 effects, mark the user with an UNUSED note instead
12156 of deleting it. */
12158 if (set != 0 && ! side_effects_p (SET_SRC (set))
12159 && rtx_equal_p (XEXP (note, 0), inner_dest)
12160 #ifdef HAVE_cc0
12161 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12162 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12163 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12164 #endif
12167 /* Move the notes and links of TEM elsewhere.
12168 This might delete other dead insns recursively.
12169 First set the pattern to something that won't use
12170 any register. */
12171 rtx old_notes = REG_NOTES (tem);
12173 PATTERN (tem) = pc_rtx;
12174 REG_NOTES (tem) = NULL;
12176 distribute_notes (old_notes, tem, tem, NULL_RTX);
12177 distribute_links (LOG_LINKS (tem));
12179 SET_INSN_DELETED (tem);
12181 #ifdef HAVE_cc0
12182 /* Delete the setter too. */
12183 if (cc0_setter)
12185 PATTERN (cc0_setter) = pc_rtx;
12186 old_notes = REG_NOTES (cc0_setter);
12187 REG_NOTES (cc0_setter) = NULL;
12189 distribute_notes (old_notes, cc0_setter,
12190 cc0_setter, NULL_RTX);
12191 distribute_links (LOG_LINKS (cc0_setter));
12193 SET_INSN_DELETED (cc0_setter);
12195 #endif
12197 else
12199 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12201 /* If there isn't already a REG_UNUSED note, put one
12202 here. Do not place a REG_DEAD note, even if
12203 the register is also used here; that would not
12204 match the algorithm used in lifetime analysis
12205 and can cause the consistency check in the
12206 scheduler to fail. */
12207 if (! find_regno_note (tem, REG_UNUSED,
12208 REGNO (XEXP (note, 0))))
12209 place = tem;
12210 break;
12213 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12214 || (CALL_P (tem)
12215 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12217 /* This may not be the correct place for the death
12218 note if FROM_INSN is before TEM, and the reg is
12219 set between FROM_INSN and TEM. The reg might
12220 die two or more times. An existing death note
12221 means we are looking at the wrong live range. */
12222 if (from_insn
12223 && INSN_CUID (from_insn) < INSN_CUID (tem)
12224 && find_regno_note (tem, REG_DEAD,
12225 REGNO (XEXP (note, 0))))
12227 tem = from_insn;
12228 if (tem == BB_HEAD (bb))
12229 break;
12230 continue;
12233 place = tem;
12235 /* If we are doing a 3->2 combination, and we have a
12236 register which formerly died in i3 and was not used
12237 by i2, which now no longer dies in i3 and is used in
12238 i2 but does not die in i2, and place is between i2
12239 and i3, then we may need to move a link from place to
12240 i2. */
12241 if (i2 && INSN_UID (place) <= max_uid_cuid
12242 && INSN_CUID (place) > INSN_CUID (i2)
12243 && from_insn
12244 && INSN_CUID (from_insn) > INSN_CUID (i2)
12245 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12247 rtx links = LOG_LINKS (place);
12248 LOG_LINKS (place) = 0;
12249 distribute_links (links);
12251 break;
12254 if (tem == BB_HEAD (bb))
12255 break;
12258 /* We haven't found an insn for the death note and it
12259 is still a REG_DEAD note, but we have hit the beginning
12260 of the block. If the existing life info says the reg
12261 was dead, there's nothing left to do. Otherwise, we'll
12262 need to do a global life update after combine. */
12263 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12264 && REGNO_REG_SET_P (bb->global_live_at_start,
12265 REGNO (XEXP (note, 0))))
12266 SET_BIT (refresh_blocks, this_basic_block->index);
12269 /* If the register is set or already dead at PLACE, we needn't do
12270 anything with this note if it is still a REG_DEAD note.
12271 We check here if it is set at all, not if is it totally replaced,
12272 which is what `dead_or_set_p' checks, so also check for it being
12273 set partially. */
12275 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12277 unsigned int regno = REGNO (XEXP (note, 0));
12279 /* Similarly, if the instruction on which we want to place
12280 the note is a noop, we'll need do a global live update
12281 after we remove them in delete_noop_moves. */
12282 if (noop_move_p (place))
12283 SET_BIT (refresh_blocks, this_basic_block->index);
12285 if (dead_or_set_p (place, XEXP (note, 0))
12286 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12288 /* Unless the register previously died in PLACE, clear
12289 last_death. [I no longer understand why this is
12290 being done.] */
12291 if (reg_stat[regno].last_death != place)
12292 reg_stat[regno].last_death = 0;
12293 place = 0;
12295 else
12296 reg_stat[regno].last_death = place;
12298 /* If this is a death note for a hard reg that is occupying
12299 multiple registers, ensure that we are still using all
12300 parts of the object. If we find a piece of the object
12301 that is unused, we must arrange for an appropriate REG_DEAD
12302 note to be added for it. However, we can't just emit a USE
12303 and tag the note to it, since the register might actually
12304 be dead; so we recourse, and the recursive call then finds
12305 the previous insn that used this register. */
12307 if (place && regno < FIRST_PSEUDO_REGISTER
12308 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12310 unsigned int endregno
12311 = regno + hard_regno_nregs[regno]
12312 [GET_MODE (XEXP (note, 0))];
12313 int all_used = 1;
12314 unsigned int i;
12316 for (i = regno; i < endregno; i++)
12317 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12318 && ! find_regno_fusage (place, USE, i))
12319 || dead_or_set_regno_p (place, i))
12320 all_used = 0;
12322 if (! all_used)
12324 /* Put only REG_DEAD notes for pieces that are
12325 not already dead or set. */
12327 for (i = regno; i < endregno;
12328 i += hard_regno_nregs[i][reg_raw_mode[i]])
12330 rtx piece = regno_reg_rtx[i];
12331 basic_block bb = this_basic_block;
12333 if (! dead_or_set_p (place, piece)
12334 && ! reg_bitfield_target_p (piece,
12335 PATTERN (place)))
12337 rtx new_note
12338 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12340 distribute_notes (new_note, place, place,
12341 NULL_RTX);
12343 else if (! refers_to_regno_p (i, i + 1,
12344 PATTERN (place), 0)
12345 && ! find_regno_fusage (place, USE, i))
12346 for (tem = PREV_INSN (place); ;
12347 tem = PREV_INSN (tem))
12349 if (! INSN_P (tem))
12351 if (tem == BB_HEAD (bb))
12353 SET_BIT (refresh_blocks,
12354 this_basic_block->index);
12355 break;
12357 continue;
12359 if (dead_or_set_p (tem, piece)
12360 || reg_bitfield_target_p (piece,
12361 PATTERN (tem)))
12363 REG_NOTES (tem)
12364 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12365 REG_NOTES (tem));
12366 break;
12372 place = 0;
12376 break;
12378 default:
12379 /* Any other notes should not be present at this point in the
12380 compilation. */
12381 gcc_unreachable ();
12384 if (place)
12386 XEXP (note, 1) = REG_NOTES (place);
12387 REG_NOTES (place) = note;
12389 else if ((REG_NOTE_KIND (note) == REG_DEAD
12390 || REG_NOTE_KIND (note) == REG_UNUSED)
12391 && REG_P (XEXP (note, 0)))
12392 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12394 if (place2)
12396 if ((REG_NOTE_KIND (note) == REG_DEAD
12397 || REG_NOTE_KIND (note) == REG_UNUSED)
12398 && REG_P (XEXP (note, 0)))
12399 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12401 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12402 REG_NOTE_KIND (note),
12403 XEXP (note, 0),
12404 REG_NOTES (place2));
12409 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12410 I3, I2, and I1 to new locations. This is also called to add a link
12411 pointing at I3 when I3's destination is changed. */
12413 static void
12414 distribute_links (rtx links)
12416 rtx link, next_link;
12418 for (link = links; link; link = next_link)
12420 rtx place = 0;
12421 rtx insn;
12422 rtx set, reg;
12424 next_link = XEXP (link, 1);
12426 /* If the insn that this link points to is a NOTE or isn't a single
12427 set, ignore it. In the latter case, it isn't clear what we
12428 can do other than ignore the link, since we can't tell which
12429 register it was for. Such links wouldn't be used by combine
12430 anyway.
12432 It is not possible for the destination of the target of the link to
12433 have been changed by combine. The only potential of this is if we
12434 replace I3, I2, and I1 by I3 and I2. But in that case the
12435 destination of I2 also remains unchanged. */
12437 if (NOTE_P (XEXP (link, 0))
12438 || (set = single_set (XEXP (link, 0))) == 0)
12439 continue;
12441 reg = SET_DEST (set);
12442 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12443 || GET_CODE (reg) == STRICT_LOW_PART)
12444 reg = XEXP (reg, 0);
12446 /* A LOG_LINK is defined as being placed on the first insn that uses
12447 a register and points to the insn that sets the register. Start
12448 searching at the next insn after the target of the link and stop
12449 when we reach a set of the register or the end of the basic block.
12451 Note that this correctly handles the link that used to point from
12452 I3 to I2. Also note that not much searching is typically done here
12453 since most links don't point very far away. */
12455 for (insn = NEXT_INSN (XEXP (link, 0));
12456 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12457 || BB_HEAD (this_basic_block->next_bb) != insn));
12458 insn = NEXT_INSN (insn))
12459 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12461 if (reg_referenced_p (reg, PATTERN (insn)))
12462 place = insn;
12463 break;
12465 else if (CALL_P (insn)
12466 && find_reg_fusage (insn, USE, reg))
12468 place = insn;
12469 break;
12471 else if (INSN_P (insn) && reg_set_p (reg, insn))
12472 break;
12474 /* If we found a place to put the link, place it there unless there
12475 is already a link to the same insn as LINK at that point. */
12477 if (place)
12479 rtx link2;
12481 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12482 if (XEXP (link2, 0) == XEXP (link, 0))
12483 break;
12485 if (link2 == 0)
12487 XEXP (link, 1) = LOG_LINKS (place);
12488 LOG_LINKS (place) = link;
12490 /* Set added_links_insn to the earliest insn we added a
12491 link to. */
12492 if (added_links_insn == 0
12493 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12494 added_links_insn = place;
12500 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12501 Check whether the expression pointer to by LOC is a register or
12502 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12503 Otherwise return zero. */
12505 static int
12506 unmentioned_reg_p_1 (rtx *loc, void *expr)
12508 rtx x = *loc;
12510 if (x != NULL_RTX
12511 && (REG_P (x) || MEM_P (x))
12512 && ! reg_mentioned_p (x, (rtx) expr))
12513 return 1;
12514 return 0;
12517 /* Check for any register or memory mentioned in EQUIV that is not
12518 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12519 of EXPR where some registers may have been replaced by constants. */
12521 static bool
12522 unmentioned_reg_p (rtx equiv, rtx expr)
12524 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12527 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12529 static int
12530 insn_cuid (rtx insn)
12532 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12533 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12534 insn = NEXT_INSN (insn);
12536 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12538 return INSN_CUID (insn);
12541 void
12542 dump_combine_stats (FILE *file)
12544 fnotice
12545 (file,
12546 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12547 combine_attempts, combine_merges, combine_extras, combine_successes);
12550 void
12551 dump_combine_total_stats (FILE *file)
12553 fnotice
12554 (file,
12555 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12556 total_attempts, total_merges, total_extras, total_successes);