Mark ChangeLog
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobd99a59d03069fa8d42c330111703852ee4d3d36d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Case; use Sem_Case;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Smem; use Sem_Smem;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uintp; use Uintp;
71 with Urealp; use Urealp;
73 package body Sem_Ch3 is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Build_Derived_Type
80 (N : Node_Id;
81 Parent_Type : Entity_Id;
82 Derived_Type : Entity_Id;
83 Is_Completion : Boolean;
84 Derive_Subps : Boolean := True);
85 -- Create and decorate a Derived_Type given the Parent_Type entity.
86 -- N is the N_Full_Type_Declaration node containing the derived type
87 -- definition. Parent_Type is the entity for the parent type in the derived
88 -- type definition and Derived_Type the actual derived type. Is_Completion
89 -- must be set to False if Derived_Type is the N_Defining_Identifier node
90 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
91 -- the completion of a private type declaration. If Is_Completion is
92 -- set to True, N is the completion of a private type declaration and
93 -- Derived_Type is different from the defining identifier inside N (i.e.
94 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
95 -- the parent subprograms should be derived. The only case where this
96 -- parameter is False is when Build_Derived_Type is recursively called to
97 -- process an implicit derived full type for a type derived from a private
98 -- type (in that case the subprograms must only be derived for the private
99 -- view of the type).
100 -- ??? These flags need a bit of re-examination and re-documentation:
101 -- ??? are they both necessary (both seem related to the recursion)?
103 procedure Build_Derived_Access_Type
104 (N : Node_Id;
105 Parent_Type : Entity_Id;
106 Derived_Type : Entity_Id);
107 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
108 -- create an implicit base if the parent type is constrained or if the
109 -- subtype indication has a constraint.
111 procedure Build_Derived_Array_Type
112 (N : Node_Id;
113 Parent_Type : Entity_Id;
114 Derived_Type : Entity_Id);
115 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
116 -- create an implicit base if the parent type is constrained or if the
117 -- subtype indication has a constraint.
119 procedure Build_Derived_Concurrent_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
124 -- tected type, inherit entries and protected subprograms, check legality
125 -- of discriminant constraints if any.
127 procedure Build_Derived_Enumeration_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
132 -- type, we must create a new list of literals. Types derived from
133 -- Character and Wide_Character are special-cased.
135 procedure Build_Derived_Numeric_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
140 -- an anonymous base type, and propagate constraint to subtype if needed.
142 procedure Build_Derived_Private_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id;
146 Is_Completion : Boolean;
147 Derive_Subps : Boolean := True);
148 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
149 -- because the parent may or may not have a completion, and the derivation
150 -- may itself be a completion.
152 procedure Build_Derived_Record_Type
153 (N : Node_Id;
154 Parent_Type : Entity_Id;
155 Derived_Type : Entity_Id;
156 Derive_Subps : Boolean := True);
157 -- Subsidiary procedure to Build_Derived_Type and
158 -- Analyze_Private_Extension_Declaration used for tagged and untagged
159 -- record types. All parameters are as in Build_Derived_Type except that
160 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
161 -- N_Private_Extension_Declaration node. See the definition of this routine
162 -- for much more info. Derive_Subps indicates whether subprograms should
163 -- be derived from the parent type. The only case where Derive_Subps is
164 -- False is for an implicit derived full type for a type derived from a
165 -- private type (see Build_Derived_Type).
167 function Inherit_Components
168 (N : Node_Id;
169 Parent_Base : Entity_Id;
170 Derived_Base : Entity_Id;
171 Is_Tagged : Boolean;
172 Inherit_Discr : Boolean;
173 Discs : Elist_Id) return Elist_Id;
174 -- Called from Build_Derived_Record_Type to inherit the components of
175 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
176 -- For more information on derived types and component inheritance please
177 -- consult the comment above the body of Build_Derived_Record_Type.
179 -- N is the original derived type declaration.
181 -- Is_Tagged is set if we are dealing with tagged types.
183 -- If Inherit_Discr is set, Derived_Base inherits its discriminants
184 -- from Parent_Base, otherwise no discriminants are inherited.
186 -- Discs gives the list of constraints that apply to Parent_Base in the
187 -- derived type declaration. If Discs is set to No_Elist, then we have
188 -- the following situation:
190 -- type Parent (D1..Dn : ..) is [tagged] record ...;
191 -- type Derived is new Parent [with ...];
193 -- which gets treated as
195 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
197 -- For untagged types the returned value is an association list. The list
198 -- starts from the association (Parent_Base => Derived_Base), and then it
199 -- contains a sequence of the associations of the form
201 -- (Old_Component => New_Component),
203 -- where Old_Component is the Entity_Id of a component in Parent_Base
204 -- and New_Component is the Entity_Id of the corresponding component
205 -- in Derived_Base. For untagged records, this association list is
206 -- needed when copying the record declaration for the derived base.
207 -- In the tagged case the value returned is irrelevant.
209 procedure Build_Discriminal (Discrim : Entity_Id);
210 -- Create the discriminal corresponding to discriminant Discrim, that is
211 -- the parameter corresponding to Discrim to be used in initialization
212 -- procedures for the type where Discrim is a discriminant. Discriminals
213 -- are not used during semantic analysis, and are not fully defined
214 -- entities until expansion. Thus they are not given a scope until
215 -- initialization procedures are built.
217 function Build_Discriminant_Constraints
218 (T : Entity_Id;
219 Def : Node_Id;
220 Derived_Def : Boolean := False) return Elist_Id;
221 -- Validate discriminant constraints, and return the list of the
222 -- constraints in order of discriminant declarations. T is the
223 -- discriminated unconstrained type. Def is the N_Subtype_Indication
224 -- node where the discriminants constraints for T are specified.
225 -- Derived_Def is True if we are building the discriminant constraints
226 -- in a derived type definition of the form "type D (...) is new T (xxx)".
227 -- In this case T is the parent type and Def is the constraint "(xxx)" on
228 -- T and this routine sets the Corresponding_Discriminant field of the
229 -- discriminants in the derived type D to point to the corresponding
230 -- discriminants in the parent type T.
232 procedure Build_Discriminated_Subtype
233 (T : Entity_Id;
234 Def_Id : Entity_Id;
235 Elist : Elist_Id;
236 Related_Nod : Node_Id;
237 For_Access : Boolean := False);
238 -- Subsidiary procedure to Constrain_Discriminated_Type and to
239 -- Process_Incomplete_Dependents. Given
241 -- T (a possibly discriminated base type)
242 -- Def_Id (a very partially built subtype for T),
244 -- the call completes Def_Id to be the appropriate E_*_Subtype.
246 -- The Elist is the list of discriminant constraints if any (it is set to
247 -- No_Elist if T is not a discriminated type, and to an empty list if
248 -- T has discriminants but there are no discriminant constraints). The
249 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
250 -- The For_Access says whether or not this subtype is really constraining
251 -- an access type. That is its sole purpose is the designated type of an
252 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
253 -- is built to avoid freezing T when the access subtype is frozen.
255 function Build_Scalar_Bound
256 (Bound : Node_Id;
257 Par_T : Entity_Id;
258 Der_T : Entity_Id) return Node_Id;
259 -- The bounds of a derived scalar type are conversions of the bounds of
260 -- the parent type. Optimize the representation if the bounds are literals.
261 -- Needs a more complete spec--what are the parameters exactly, and what
262 -- exactly is the returned value, and how is Bound affected???
264 procedure Build_Underlying_Full_View
265 (N : Node_Id;
266 Typ : Entity_Id;
267 Par : Entity_Id);
268 -- If the completion of a private type is itself derived from a private
269 -- type, or if the full view of a private subtype is itself private, the
270 -- back-end has no way to compute the actual size of this type. We build
271 -- an internal subtype declaration of the proper parent type to convey
272 -- this information. This extra mechanism is needed because a full
273 -- view cannot itself have a full view (it would get clobbered during
274 -- view exchanges).
276 procedure Check_Access_Discriminant_Requires_Limited
277 (D : Node_Id;
278 Loc : Node_Id);
279 -- Check the restriction that the type to which an access discriminant
280 -- belongs must be a concurrent type or a descendant of a type with
281 -- the reserved word 'limited' in its declaration.
283 procedure Check_Delta_Expression (E : Node_Id);
284 -- Check that the expression represented by E is suitable for use
285 -- as a delta expression, i.e. it is of real type and is static.
287 procedure Check_Digits_Expression (E : Node_Id);
288 -- Check that the expression represented by E is suitable for use as
289 -- a digits expression, i.e. it is of integer type, positive and static.
291 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
292 -- Validate the initialization of an object declaration. T is the
293 -- required type, and Exp is the initialization expression.
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If T is the full declaration of an incomplete or private type, check
300 -- the conformance of the discriminants, otherwise process them. Prev
301 -- is the entity of the partial declaration, if any.
303 procedure Check_Real_Bound (Bound : Node_Id);
304 -- Check given bound for being of real type and static. If not, post an
305 -- appropriate message, and rewrite the bound with the real literal zero.
307 procedure Constant_Redeclaration
308 (Id : Entity_Id;
309 N : Node_Id;
310 T : out Entity_Id);
311 -- Various checks on legality of full declaration of deferred constant.
312 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
313 -- node. The caller has not yet set any attributes of this entity.
315 procedure Convert_Scalar_Bounds
316 (N : Node_Id;
317 Parent_Type : Entity_Id;
318 Derived_Type : Entity_Id;
319 Loc : Source_Ptr);
320 -- For derived scalar types, convert the bounds in the type definition
321 -- to the derived type, and complete their analysis. Given a constraint
322 -- of the form:
323 -- .. new T range Lo .. Hi;
324 -- Lo and Hi are analyzed and resolved with T'Base, the parent_type.
325 -- The bounds of the derived type (the anonymous base) are copies of
326 -- Lo and Hi. Finally, the bounds of the derived subtype are conversions
327 -- of those bounds to the derived_type, so that their typing is
328 -- consistent.
330 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
331 -- Copies attributes from array base type T2 to array base type T1.
332 -- Copies only attributes that apply to base types, but not subtypes.
334 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
335 -- Copies attributes from array subtype T2 to array subtype T1. Copies
336 -- attributes that apply to both subtypes and base types.
338 procedure Create_Constrained_Components
339 (Subt : Entity_Id;
340 Decl_Node : Node_Id;
341 Typ : Entity_Id;
342 Constraints : Elist_Id);
343 -- Build the list of entities for a constrained discriminated record
344 -- subtype. If a component depends on a discriminant, replace its subtype
345 -- using the discriminant values in the discriminant constraint.
346 -- Subt is the defining identifier for the subtype whose list of
347 -- constrained entities we will create. Decl_Node is the type declaration
348 -- node where we will attach all the itypes created. Typ is the base
349 -- discriminated type for the subtype Subt. Constraints is the list of
350 -- discriminant constraints for Typ.
352 function Constrain_Component_Type
353 (Compon_Type : Entity_Id;
354 Constrained_Typ : Entity_Id;
355 Related_Node : Node_Id;
356 Typ : Entity_Id;
357 Constraints : Elist_Id) return Entity_Id;
358 -- Given a discriminated base type Typ, a list of discriminant constraint
359 -- Constraints for Typ and the type of a component of Typ, Compon_Type,
360 -- create and return the type corresponding to Compon_type where all
361 -- discriminant references are replaced with the corresponding
362 -- constraint. If no discriminant references occur in Compon_Typ then
363 -- return it as is. Constrained_Typ is the final constrained subtype to
364 -- which the constrained Compon_Type belongs. Related_Node is the node
365 -- where we will attach all the itypes created.
367 procedure Constrain_Access
368 (Def_Id : in out Entity_Id;
369 S : Node_Id;
370 Related_Nod : Node_Id);
371 -- Apply a list of constraints to an access type. If Def_Id is empty,
372 -- it is an anonymous type created for a subtype indication. In that
373 -- case it is created in the procedure and attached to Related_Nod.
375 procedure Constrain_Array
376 (Def_Id : in out Entity_Id;
377 SI : Node_Id;
378 Related_Nod : Node_Id;
379 Related_Id : Entity_Id;
380 Suffix : Character);
381 -- Apply a list of index constraints to an unconstrained array type. The
382 -- first parameter is the entity for the resulting subtype. A value of
383 -- Empty for Def_Id indicates that an implicit type must be created, but
384 -- creation is delayed (and must be done by this procedure) because other
385 -- subsidiary implicit types must be created first (which is why Def_Id
386 -- is an in/out parameter). The second parameter is a subtype indication
387 -- node for the constrained array to be created (e.g. something of the
388 -- form string (1 .. 10)). Related_Nod gives the place where this type
389 -- has to be inserted in the tree. The Related_Id and Suffix parameters
390 -- are used to build the associated Implicit type name.
392 procedure Constrain_Concurrent
393 (Def_Id : in out Entity_Id;
394 SI : Node_Id;
395 Related_Nod : Node_Id;
396 Related_Id : Entity_Id;
397 Suffix : Character);
398 -- Apply list of discriminant constraints to an unconstrained concurrent
399 -- type.
401 -- SI is the N_Subtype_Indication node containing the constraint and
402 -- the unconstrained type to constrain.
404 -- Def_Id is the entity for the resulting constrained subtype. A value
405 -- of Empty for Def_Id indicates that an implicit type must be created,
406 -- but creation is delayed (and must be done by this procedure) because
407 -- other subsidiary implicit types must be created first (which is why
408 -- Def_Id is an in/out parameter).
410 -- Related_Nod gives the place where this type has to be inserted
411 -- in the tree
413 -- The last two arguments are used to create its external name if needed.
415 function Constrain_Corresponding_Record
416 (Prot_Subt : Entity_Id;
417 Corr_Rec : Entity_Id;
418 Related_Nod : Node_Id;
419 Related_Id : Entity_Id) return Entity_Id;
420 -- When constraining a protected type or task type with discriminants,
421 -- constrain the corresponding record with the same discriminant values.
423 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
424 -- Constrain a decimal fixed point type with a digits constraint and/or a
425 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
427 procedure Constrain_Discriminated_Type
428 (Def_Id : Entity_Id;
429 S : Node_Id;
430 Related_Nod : Node_Id;
431 For_Access : Boolean := False);
432 -- Process discriminant constraints of composite type. Verify that values
433 -- have been provided for all discriminants, that the original type is
434 -- unconstrained, and that the types of the supplied expressions match
435 -- the discriminant types. The first three parameters are like in routine
436 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
437 -- of For_Access.
439 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
440 -- Constrain an enumeration type with a range constraint. This is
441 -- identical to Constrain_Integer, but for the Ekind of the
442 -- resulting subtype.
444 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
445 -- Constrain a floating point type with either a digits constraint
446 -- and/or a range constraint, building a E_Floating_Point_Subtype.
448 procedure Constrain_Index
449 (Index : Node_Id;
450 S : Node_Id;
451 Related_Nod : Node_Id;
452 Related_Id : Entity_Id;
453 Suffix : Character;
454 Suffix_Index : Nat);
455 -- Process an index constraint in a constrained array declaration. The
456 -- constraint can be a subtype name, or a range with or without an
457 -- explicit subtype mark. The index is the corresponding index of the
458 -- unconstrained array. The Related_Id and Suffix parameters are used to
459 -- build the associated Implicit type name.
461 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
462 -- Build subtype of a signed or modular integer type
464 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
465 -- Constrain an ordinary fixed point type with a range constraint, and
466 -- build an E_Ordinary_Fixed_Point_Subtype entity.
468 procedure Copy_And_Swap (Priv, Full : Entity_Id);
469 -- Copy the Priv entity into the entity of its full declaration
470 -- then swap the two entities in such a manner that the former private
471 -- type is now seen as a full type.
473 procedure Decimal_Fixed_Point_Type_Declaration
474 (T : Entity_Id;
475 Def : Node_Id);
476 -- Create a new decimal fixed point type, and apply the constraint to
477 -- obtain a subtype of this new type.
479 procedure Complete_Private_Subtype
480 (Priv : Entity_Id;
481 Full : Entity_Id;
482 Full_Base : Entity_Id;
483 Related_Nod : Node_Id);
484 -- Complete the implicit full view of a private subtype by setting
485 -- the appropriate semantic fields. If the full view of the parent is
486 -- a record type, build constrained components of subtype.
488 procedure Derived_Standard_Character
489 (N : Node_Id;
490 Parent_Type : Entity_Id;
491 Derived_Type : Entity_Id);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
496 (T : Entity_Id;
497 N : Node_Id;
498 Is_Completion : Boolean);
499 -- Process a derived type declaration. This routine will invoke
500 -- Build_Derived_Type to process the actual derived type definition.
501 -- Parameters N and Is_Completion have the same meaning as in
502 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
503 -- defined in the N_Full_Type_Declaration node N, that is T is the
504 -- derived type.
506 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
507 -- Given a subtype indication S (which is really an N_Subtype_Indication
508 -- node or a plain N_Identifier), find the type of the subtype mark.
510 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
511 -- Insert each literal in symbol table, as an overloadable identifier
512 -- Each enumeration type is mapped into a sequence of integers, and
513 -- each literal is defined as a constant with integer value. If any
514 -- of the literals are character literals, the type is a character
515 -- type, which means that strings are legal aggregates for arrays of
516 -- components of the type.
518 function Expand_To_Stored_Constraint
519 (Typ : Entity_Id;
520 Constraint : Elist_Id) return Elist_Id;
521 -- Given a Constraint (ie a list of expressions) on the discriminants of
522 -- Typ, expand it into a constraint on the stored discriminants and
523 -- return the new list of expressions constraining the stored
524 -- discriminants.
526 function Find_Type_Of_Object
527 (Obj_Def : Node_Id;
528 Related_Nod : Node_Id) return Entity_Id;
529 -- Get type entity for object referenced by Obj_Def, attaching the
530 -- implicit types generated to Related_Nod
532 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
533 -- Create a new float, and apply the constraint to obtain subtype of it
535 function Has_Range_Constraint (N : Node_Id) return Boolean;
536 -- Given an N_Subtype_Indication node N, return True if a range constraint
537 -- is present, either directly, or as part of a digits or delta constraint.
538 -- In addition, a digits constraint in the decimal case returns True, since
539 -- it establishes a default range if no explicit range is present.
541 function Is_Valid_Constraint_Kind
542 (T_Kind : Type_Kind;
543 Constraint_Kind : Node_Kind) return Boolean;
544 -- Returns True if it is legal to apply the given kind of constraint
545 -- to the given kind of type (index constraint to an array type,
546 -- for example).
548 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
549 -- Create new modular type. Verify that modulus is in bounds and is
550 -- a power of two (implementation restriction).
552 procedure New_Concatenation_Op (Typ : Entity_Id);
553 -- Create an abbreviated declaration for an operator in order to
554 -- materialize concatenation on array types.
556 procedure Ordinary_Fixed_Point_Type_Declaration
557 (T : Entity_Id;
558 Def : Node_Id);
559 -- Create a new ordinary fixed point type, and apply the constraint
560 -- to obtain subtype of it.
562 procedure Prepare_Private_Subtype_Completion
563 (Id : Entity_Id;
564 Related_Nod : Node_Id);
565 -- Id is a subtype of some private type. Creates the full declaration
566 -- associated with Id whenever possible, i.e. when the full declaration
567 -- of the base type is already known. Records each subtype into
568 -- Private_Dependents of the base type.
570 procedure Process_Incomplete_Dependents
571 (N : Node_Id;
572 Full_T : Entity_Id;
573 Inc_T : Entity_Id);
574 -- Process all entities that depend on an incomplete type. There include
575 -- subtypes, subprogram types that mention the incomplete type in their
576 -- profiles, and subprogram with access parameters that designate the
577 -- incomplete type.
579 -- Inc_T is the defining identifier of an incomplete type declaration, its
580 -- Ekind is E_Incomplete_Type.
582 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
584 -- Full_T is N's defining identifier.
586 -- Subtypes of incomplete types with discriminants are completed when the
587 -- parent type is. This is simpler than private subtypes, because they can
588 -- only appear in the same scope, and there is no need to exchange views.
589 -- Similarly, access_to_subprogram types may have a parameter or a return
590 -- type that is an incomplete type, and that must be replaced with the
591 -- full type.
593 -- If the full type is tagged, subprogram with access parameters that
594 -- designated the incomplete may be primitive operations of the full type,
595 -- and have to be processed accordingly.
597 procedure Process_Real_Range_Specification (Def : Node_Id);
598 -- Given the type definition for a real type, this procedure processes
599 -- and checks the real range specification of this type definition if
600 -- one is present. If errors are found, error messages are posted, and
601 -- the Real_Range_Specification of Def is reset to Empty.
603 procedure Record_Type_Declaration
604 (T : Entity_Id;
605 N : Node_Id;
606 Prev : Entity_Id);
607 -- Process a record type declaration (for both untagged and tagged
608 -- records). Parameters T and N are exactly like in procedure
609 -- Derived_Type_Declaration, except that no flag Is_Completion is
610 -- needed for this routine. If this is the completion of an incomplete
611 -- type declaration, Prev is the entity of the incomplete declaration,
612 -- used for cross-referencing. Otherwise Prev = T.
614 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
615 -- This routine is used to process the actual record type definition
616 -- (both for untagged and tagged records). Def is a record type
617 -- definition node. This procedure analyzes the components in this
618 -- record type definition. Prev_T is the entity for the enclosing record
619 -- type. It is provided so that its Has_Task flag can be set if any of
620 -- the component have Has_Task set. If the declaration is the completion
621 -- of an incomplete type declaration, Prev_T is the original incomplete
622 -- type, whose full view is the record type.
624 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
625 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
626 -- build a copy of the declaration tree of the parent, and we create
627 -- independently the list of components for the derived type. Semantic
628 -- information uses the component entities, but record representation
629 -- clauses are validated on the declaration tree. This procedure replaces
630 -- discriminants and components in the declaration with those that have
631 -- been created by Inherit_Components.
633 procedure Set_Fixed_Range
634 (E : Entity_Id;
635 Loc : Source_Ptr;
636 Lo : Ureal;
637 Hi : Ureal);
638 -- Build a range node with the given bounds and set it as the Scalar_Range
639 -- of the given fixed-point type entity. Loc is the source location used
640 -- for the constructed range. See body for further details.
642 procedure Set_Scalar_Range_For_Subtype
643 (Def_Id : Entity_Id;
644 R : Node_Id;
645 Subt : Entity_Id);
646 -- This routine is used to set the scalar range field for a subtype
647 -- given Def_Id, the entity for the subtype, and R, the range expression
648 -- for the scalar range. Subt provides the parent subtype to be used
649 -- to analyze, resolve, and check the given range.
651 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
652 -- Create a new signed integer entity, and apply the constraint to obtain
653 -- the required first named subtype of this type.
655 procedure Set_Stored_Constraint_From_Discriminant_Constraint
656 (E : Entity_Id);
657 -- E is some record type. This routine computes E's Stored_Constraint
658 -- from its Discriminant_Constraint.
660 -----------------------
661 -- Access_Definition --
662 -----------------------
664 function Access_Definition
665 (Related_Nod : Node_Id;
666 N : Node_Id) return Entity_Id
668 Anon_Type : constant Entity_Id :=
669 Create_Itype (E_Anonymous_Access_Type, Related_Nod,
670 Scope_Id => Scope (Current_Scope));
671 Desig_Type : Entity_Id;
673 begin
674 if Is_Entry (Current_Scope)
675 and then Is_Task_Type (Etype (Scope (Current_Scope)))
676 then
677 Error_Msg_N ("task entries cannot have access parameters", N);
678 end if;
680 -- Ada 2005 (AI-254): In case of anonymous access to subprograms
681 -- call the corresponding semantic routine
683 if Present (Access_To_Subprogram_Definition (N)) then
684 Access_Subprogram_Declaration
685 (T_Name => Anon_Type,
686 T_Def => Access_To_Subprogram_Definition (N));
688 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
689 Set_Ekind
690 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
691 else
692 Set_Ekind
693 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
694 end if;
696 return Anon_Type;
697 end if;
699 Find_Type (Subtype_Mark (N));
700 Desig_Type := Entity (Subtype_Mark (N));
702 Set_Directly_Designated_Type
703 (Anon_Type, Desig_Type);
704 Set_Etype (Anon_Type, Anon_Type);
705 Init_Size_Align (Anon_Type);
706 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
708 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
709 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify
710 -- if the null value is allowed. In Ada 95 the null value is never
711 -- allowed.
713 if Ada_Version >= Ada_05 then
714 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
715 else
716 Set_Can_Never_Be_Null (Anon_Type, True);
717 end if;
719 -- The anonymous access type is as public as the discriminated type or
720 -- subprogram that defines it. It is imported (for back-end purposes)
721 -- if the designated type is.
723 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
725 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
726 -- designated type comes from the limited view (for back-end purposes).
728 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
730 -- Ada 2005 (AI-231): Propagate the access-constant attribute
732 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
734 -- The context is either a subprogram declaration or an access
735 -- discriminant, in a private or a full type declaration. In the case
736 -- of a subprogram, If the designated type is incomplete, the operation
737 -- will be a primitive operation of the full type, to be updated
738 -- subsequently. If the type is imported through a limited with clause,
739 -- it is not a primitive operation of the type (which is declared
740 -- elsewhere in some other scope).
742 if Ekind (Desig_Type) = E_Incomplete_Type
743 and then not From_With_Type (Desig_Type)
744 and then Is_Overloadable (Current_Scope)
745 then
746 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
747 Set_Has_Delayed_Freeze (Current_Scope);
748 end if;
750 return Anon_Type;
751 end Access_Definition;
753 -----------------------------------
754 -- Access_Subprogram_Declaration --
755 -----------------------------------
757 procedure Access_Subprogram_Declaration
758 (T_Name : Entity_Id;
759 T_Def : Node_Id)
761 Formals : constant List_Id := Parameter_Specifications (T_Def);
762 Formal : Entity_Id;
764 Desig_Type : constant Entity_Id :=
765 Create_Itype (E_Subprogram_Type, Parent (T_Def));
767 begin
768 if Nkind (T_Def) = N_Access_Function_Definition then
769 Analyze (Subtype_Mark (T_Def));
770 Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
772 if not (Is_Type (Etype (Desig_Type))) then
773 Error_Msg_N
774 ("expect type in function specification", Subtype_Mark (T_Def));
775 end if;
777 else
778 Set_Etype (Desig_Type, Standard_Void_Type);
779 end if;
781 if Present (Formals) then
782 New_Scope (Desig_Type);
783 Process_Formals (Formals, Parent (T_Def));
785 -- A bit of a kludge here, End_Scope requires that the parent
786 -- pointer be set to something reasonable, but Itypes don't have
787 -- parent pointers. So we set it and then unset it ??? If and when
788 -- Itypes have proper parent pointers to their declarations, this
789 -- kludge can be removed.
791 Set_Parent (Desig_Type, T_Name);
792 End_Scope;
793 Set_Parent (Desig_Type, Empty);
794 end if;
796 -- The return type and/or any parameter type may be incomplete. Mark
797 -- the subprogram_type as depending on the incomplete type, so that
798 -- it can be updated when the full type declaration is seen.
800 if Present (Formals) then
801 Formal := First_Formal (Desig_Type);
803 while Present (Formal) loop
804 if Ekind (Formal) /= E_In_Parameter
805 and then Nkind (T_Def) = N_Access_Function_Definition
806 then
807 Error_Msg_N ("functions can only have IN parameters", Formal);
808 end if;
810 if Ekind (Etype (Formal)) = E_Incomplete_Type then
811 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
812 Set_Has_Delayed_Freeze (Desig_Type);
813 end if;
815 Next_Formal (Formal);
816 end loop;
817 end if;
819 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
820 and then not Has_Delayed_Freeze (Desig_Type)
821 then
822 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
823 Set_Has_Delayed_Freeze (Desig_Type);
824 end if;
826 Check_Delayed_Subprogram (Desig_Type);
828 if Protected_Present (T_Def) then
829 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
830 Set_Convention (Desig_Type, Convention_Protected);
831 else
832 Set_Ekind (T_Name, E_Access_Subprogram_Type);
833 end if;
835 Set_Etype (T_Name, T_Name);
836 Init_Size_Align (T_Name);
837 Set_Directly_Designated_Type (T_Name, Desig_Type);
839 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
841 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
843 Check_Restriction (No_Access_Subprograms, T_Def);
844 end Access_Subprogram_Declaration;
846 ----------------------------
847 -- Access_Type_Declaration --
848 ----------------------------
850 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
851 S : constant Node_Id := Subtype_Indication (Def);
852 P : constant Node_Id := Parent (Def);
854 Desig : Entity_Id;
855 -- Designated type
857 begin
858 -- Check for permissible use of incomplete type
860 if Nkind (S) /= N_Subtype_Indication then
861 Analyze (S);
863 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
864 Set_Directly_Designated_Type (T, Entity (S));
865 else
866 Set_Directly_Designated_Type (T,
867 Process_Subtype (S, P, T, 'P'));
868 end if;
870 else
871 Set_Directly_Designated_Type (T,
872 Process_Subtype (S, P, T, 'P'));
873 end if;
875 if All_Present (Def) or Constant_Present (Def) then
876 Set_Ekind (T, E_General_Access_Type);
877 else
878 Set_Ekind (T, E_Access_Type);
879 end if;
881 if Base_Type (Designated_Type (T)) = T then
882 Error_Msg_N ("access type cannot designate itself", S);
883 end if;
885 Set_Etype (T, T);
887 -- If the type has appeared already in a with_type clause, it is
888 -- frozen and the pointer size is already set. Else, initialize.
890 if not From_With_Type (T) then
891 Init_Size_Align (T);
892 end if;
894 Set_Is_Access_Constant (T, Constant_Present (Def));
896 Desig := Designated_Type (T);
898 -- If designated type is an imported tagged type, indicate that the
899 -- access type is also imported, and therefore restricted in its use.
900 -- The access type may already be imported, so keep setting otherwise.
902 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
903 -- is available, use it as the designated type of the access type, so
904 -- that the back-end gets a usable entity.
906 declare
907 N_Desig : Entity_Id;
909 begin
910 if From_With_Type (Desig) then
911 Set_From_With_Type (T);
913 if Ekind (Desig) = E_Incomplete_Type then
914 N_Desig := Non_Limited_View (Desig);
916 else pragma Assert (Ekind (Desig) = E_Class_Wide_Type);
917 if From_With_Type (Etype (Desig)) then
918 N_Desig := Non_Limited_View (Etype (Desig));
919 else
920 N_Desig := Etype (Desig);
921 end if;
922 end if;
924 pragma Assert (Present (N_Desig));
925 Set_Directly_Designated_Type (T, N_Desig);
926 end if;
927 end;
929 -- Note that Has_Task is always false, since the access type itself
930 -- is not a task type. See Einfo for more description on this point.
931 -- Exactly the same consideration applies to Has_Controlled_Component.
933 Set_Has_Task (T, False);
934 Set_Has_Controlled_Component (T, False);
936 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
937 -- attributes
939 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
940 Set_Is_Access_Constant (T, Constant_Present (Def));
941 end Access_Type_Declaration;
943 -----------------------------------
944 -- Analyze_Component_Declaration --
945 -----------------------------------
947 procedure Analyze_Component_Declaration (N : Node_Id) is
948 Id : constant Entity_Id := Defining_Identifier (N);
949 T : Entity_Id;
950 P : Entity_Id;
952 function Contains_POC (Constr : Node_Id) return Boolean;
953 -- Determines whether a constraint uses the discriminant of a record
954 -- type thus becoming a per-object constraint (POC).
956 ------------------
957 -- Contains_POC --
958 ------------------
960 function Contains_POC (Constr : Node_Id) return Boolean is
961 begin
962 case Nkind (Constr) is
963 when N_Attribute_Reference =>
964 return Attribute_Name (Constr) = Name_Access
966 Prefix (Constr) = Scope (Entity (Prefix (Constr)));
968 when N_Discriminant_Association =>
969 return Denotes_Discriminant (Expression (Constr));
971 when N_Identifier =>
972 return Denotes_Discriminant (Constr);
974 when N_Index_Or_Discriminant_Constraint =>
975 declare
976 IDC : Node_Id := First (Constraints (Constr));
978 begin
979 while Present (IDC) loop
981 -- One per-object constraint is sufficent
983 if Contains_POC (IDC) then
984 return True;
985 end if;
987 Next (IDC);
988 end loop;
990 return False;
991 end;
993 when N_Range =>
994 return Denotes_Discriminant (Low_Bound (Constr))
995 or else
996 Denotes_Discriminant (High_Bound (Constr));
998 when N_Range_Constraint =>
999 return Denotes_Discriminant (Range_Expression (Constr));
1001 when others =>
1002 return False;
1004 end case;
1005 end Contains_POC;
1007 -- Start of processing for Analyze_Component_Declaration
1009 begin
1010 Generate_Definition (Id);
1011 Enter_Name (Id);
1013 if Present (Subtype_Indication (Component_Definition (N))) then
1014 T := Find_Type_Of_Object
1015 (Subtype_Indication (Component_Definition (N)), N);
1017 -- Ada 2005 (AI-230): Access Definition case
1019 else
1020 pragma Assert (Present
1021 (Access_Definition (Component_Definition (N))));
1023 T := Access_Definition
1024 (Related_Nod => N,
1025 N => Access_Definition (Component_Definition (N)));
1027 -- Ada 2005 (AI-230): In case of components that are anonymous
1028 -- access types the level of accessibility depends on the enclosing
1029 -- type declaration
1031 Set_Scope (T, Current_Scope); -- Ada 2005 (AI-230)
1033 -- Ada 2005 (AI-254)
1035 if Present (Access_To_Subprogram_Definition
1036 (Access_Definition (Component_Definition (N))))
1037 and then Protected_Present (Access_To_Subprogram_Definition
1038 (Access_Definition
1039 (Component_Definition (N))))
1040 then
1041 T := Replace_Anonymous_Access_To_Protected_Subprogram (N, T);
1042 end if;
1043 end if;
1045 -- If the subtype is a constrained subtype of the enclosing record,
1046 -- (which must have a partial view) the back-end does not handle
1047 -- properly the recursion. Rewrite the component declaration with
1048 -- an explicit subtype indication, which is acceptable to Gigi. We
1049 -- can copy the tree directly because side effects have already been
1050 -- removed from discriminant constraints.
1052 if Ekind (T) = E_Access_Subtype
1053 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1054 and then Comes_From_Source (T)
1055 and then Nkind (Parent (T)) = N_Subtype_Declaration
1056 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1057 then
1058 Rewrite
1059 (Subtype_Indication (Component_Definition (N)),
1060 New_Copy_Tree (Subtype_Indication (Parent (T))));
1061 T := Find_Type_Of_Object
1062 (Subtype_Indication (Component_Definition (N)), N);
1063 end if;
1065 -- If the component declaration includes a default expression, then we
1066 -- check that the component is not of a limited type (RM 3.7(5)),
1067 -- and do the special preanalysis of the expression (see section on
1068 -- "Handling of Default and Per-Object Expressions" in the spec of
1069 -- package Sem).
1071 if Present (Expression (N)) then
1072 Analyze_Per_Use_Expression (Expression (N), T);
1073 Check_Initialization (T, Expression (N));
1074 end if;
1076 -- The parent type may be a private view with unknown discriminants,
1077 -- and thus unconstrained. Regular components must be constrained.
1079 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1080 if Is_Class_Wide_Type (T) then
1081 Error_Msg_N
1082 ("class-wide subtype with unknown discriminants" &
1083 " in component declaration",
1084 Subtype_Indication (Component_Definition (N)));
1085 else
1086 Error_Msg_N
1087 ("unconstrained subtype in component declaration",
1088 Subtype_Indication (Component_Definition (N)));
1089 end if;
1091 -- Components cannot be abstract, except for the special case of
1092 -- the _Parent field (case of extending an abstract tagged type)
1094 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
1095 Error_Msg_N ("type of a component cannot be abstract", N);
1096 end if;
1098 Set_Etype (Id, T);
1099 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1101 -- The component declaration may have a per-object constraint, set
1102 -- the appropriate flag in the defining identifier of the subtype.
1104 if Present (Subtype_Indication (Component_Definition (N))) then
1105 declare
1106 Sindic : constant Node_Id :=
1107 Subtype_Indication (Component_Definition (N));
1109 begin
1110 if Nkind (Sindic) = N_Subtype_Indication
1111 and then Present (Constraint (Sindic))
1112 and then Contains_POC (Constraint (Sindic))
1113 then
1114 Set_Has_Per_Object_Constraint (Id);
1115 end if;
1116 end;
1117 end if;
1119 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1120 -- out some static checks.
1122 if Ada_Version >= Ada_05
1123 and then (Null_Exclusion_Present (Component_Definition (N))
1124 or else Can_Never_Be_Null (T))
1125 then
1126 Set_Can_Never_Be_Null (Id);
1127 Null_Exclusion_Static_Checks (N);
1128 end if;
1130 -- If this component is private (or depends on a private type),
1131 -- flag the record type to indicate that some operations are not
1132 -- available.
1134 P := Private_Component (T);
1136 if Present (P) then
1137 -- Check for circular definitions
1139 if P = Any_Type then
1140 Set_Etype (Id, Any_Type);
1142 -- There is a gap in the visibility of operations only if the
1143 -- component type is not defined in the scope of the record type.
1145 elsif Scope (P) = Scope (Current_Scope) then
1146 null;
1148 elsif Is_Limited_Type (P) then
1149 Set_Is_Limited_Composite (Current_Scope);
1151 else
1152 Set_Is_Private_Composite (Current_Scope);
1153 end if;
1154 end if;
1156 if P /= Any_Type
1157 and then Is_Limited_Type (T)
1158 and then Chars (Id) /= Name_uParent
1159 and then Is_Tagged_Type (Current_Scope)
1160 then
1161 if Is_Derived_Type (Current_Scope)
1162 and then not Is_Limited_Record (Root_Type (Current_Scope))
1163 then
1164 Error_Msg_N
1165 ("extension of nonlimited type cannot have limited components",
1167 Explain_Limited_Type (T, N);
1168 Set_Etype (Id, Any_Type);
1169 Set_Is_Limited_Composite (Current_Scope, False);
1171 elsif not Is_Derived_Type (Current_Scope)
1172 and then not Is_Limited_Record (Current_Scope)
1173 then
1174 Error_Msg_N
1175 ("nonlimited tagged type cannot have limited components", N);
1176 Explain_Limited_Type (T, N);
1177 Set_Etype (Id, Any_Type);
1178 Set_Is_Limited_Composite (Current_Scope, False);
1179 end if;
1180 end if;
1182 Set_Original_Record_Component (Id, Id);
1183 end Analyze_Component_Declaration;
1185 --------------------------
1186 -- Analyze_Declarations --
1187 --------------------------
1189 procedure Analyze_Declarations (L : List_Id) is
1190 D : Node_Id;
1191 Next_Node : Node_Id;
1192 Freeze_From : Entity_Id := Empty;
1194 procedure Adjust_D;
1195 -- Adjust D not to include implicit label declarations, since these
1196 -- have strange Sloc values that result in elaboration check problems.
1197 -- (They have the sloc of the label as found in the source, and that
1198 -- is ahead of the current declarative part).
1200 --------------
1201 -- Adjust_D --
1202 --------------
1204 procedure Adjust_D is
1205 begin
1206 while Present (Prev (D))
1207 and then Nkind (D) = N_Implicit_Label_Declaration
1208 loop
1209 Prev (D);
1210 end loop;
1211 end Adjust_D;
1213 -- Start of processing for Analyze_Declarations
1215 begin
1216 D := First (L);
1217 while Present (D) loop
1219 -- Complete analysis of declaration
1221 Analyze (D);
1222 Next_Node := Next (D);
1224 if No (Freeze_From) then
1225 Freeze_From := First_Entity (Current_Scope);
1226 end if;
1228 -- At the end of a declarative part, freeze remaining entities
1229 -- declared in it. The end of the visible declarations of package
1230 -- specification is not the end of a declarative part if private
1231 -- declarations are present. The end of a package declaration is a
1232 -- freezing point only if it a library package. A task definition or
1233 -- protected type definition is not a freeze point either. Finally,
1234 -- we do not freeze entities in generic scopes, because there is no
1235 -- code generated for them and freeze nodes will be generated for
1236 -- the instance.
1238 -- The end of a package instantiation is not a freeze point, but
1239 -- for now we make it one, because the generic body is inserted
1240 -- (currently) immediately after. Generic instantiations will not
1241 -- be a freeze point once delayed freezing of bodies is implemented.
1242 -- (This is needed in any case for early instantiations ???).
1244 if No (Next_Node) then
1245 if Nkind (Parent (L)) = N_Component_List
1246 or else Nkind (Parent (L)) = N_Task_Definition
1247 or else Nkind (Parent (L)) = N_Protected_Definition
1248 then
1249 null;
1251 elsif Nkind (Parent (L)) /= N_Package_Specification then
1252 if Nkind (Parent (L)) = N_Package_Body then
1253 Freeze_From := First_Entity (Current_Scope);
1254 end if;
1256 Adjust_D;
1257 Freeze_All (Freeze_From, D);
1258 Freeze_From := Last_Entity (Current_Scope);
1260 elsif Scope (Current_Scope) /= Standard_Standard
1261 and then not Is_Child_Unit (Current_Scope)
1262 and then No (Generic_Parent (Parent (L)))
1263 then
1264 null;
1266 elsif L /= Visible_Declarations (Parent (L))
1267 or else No (Private_Declarations (Parent (L)))
1268 or else Is_Empty_List (Private_Declarations (Parent (L)))
1269 then
1270 Adjust_D;
1271 Freeze_All (Freeze_From, D);
1272 Freeze_From := Last_Entity (Current_Scope);
1273 end if;
1275 -- If next node is a body then freeze all types before the body.
1276 -- An exception occurs for expander generated bodies, which can
1277 -- be recognized by their already being analyzed. The expander
1278 -- ensures that all types needed by these bodies have been frozen
1279 -- but it is not necessary to freeze all types (and would be wrong
1280 -- since it would not correspond to an RM defined freeze point).
1282 elsif not Analyzed (Next_Node)
1283 and then (Nkind (Next_Node) = N_Subprogram_Body
1284 or else Nkind (Next_Node) = N_Entry_Body
1285 or else Nkind (Next_Node) = N_Package_Body
1286 or else Nkind (Next_Node) = N_Protected_Body
1287 or else Nkind (Next_Node) = N_Task_Body
1288 or else Nkind (Next_Node) in N_Body_Stub)
1289 then
1290 Adjust_D;
1291 Freeze_All (Freeze_From, D);
1292 Freeze_From := Last_Entity (Current_Scope);
1293 end if;
1295 D := Next_Node;
1296 end loop;
1297 end Analyze_Declarations;
1299 ----------------------------------
1300 -- Analyze_Incomplete_Type_Decl --
1301 ----------------------------------
1303 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1304 F : constant Boolean := Is_Pure (Current_Scope);
1305 T : Entity_Id;
1307 begin
1308 Generate_Definition (Defining_Identifier (N));
1310 -- Process an incomplete declaration. The identifier must not have been
1311 -- declared already in the scope. However, an incomplete declaration may
1312 -- appear in the private part of a package, for a private type that has
1313 -- already been declared.
1315 -- In this case, the discriminants (if any) must match
1317 T := Find_Type_Name (N);
1319 Set_Ekind (T, E_Incomplete_Type);
1320 Init_Size_Align (T);
1321 Set_Is_First_Subtype (T, True);
1322 Set_Etype (T, T);
1323 New_Scope (T);
1325 Set_Stored_Constraint (T, No_Elist);
1327 if Present (Discriminant_Specifications (N)) then
1328 Process_Discriminants (N);
1329 end if;
1331 End_Scope;
1333 -- If the type has discriminants, non-trivial subtypes may be be
1334 -- declared before the full view of the type. The full views of those
1335 -- subtypes will be built after the full view of the type.
1337 Set_Private_Dependents (T, New_Elmt_List);
1338 Set_Is_Pure (T, F);
1339 end Analyze_Incomplete_Type_Decl;
1341 -----------------------------
1342 -- Analyze_Itype_Reference --
1343 -----------------------------
1345 -- Nothing to do. This node is placed in the tree only for the benefit
1346 -- of Gigi processing, and has no effect on the semantic processing.
1348 procedure Analyze_Itype_Reference (N : Node_Id) is
1349 begin
1350 pragma Assert (Is_Itype (Itype (N)));
1351 null;
1352 end Analyze_Itype_Reference;
1354 --------------------------------
1355 -- Analyze_Number_Declaration --
1356 --------------------------------
1358 procedure Analyze_Number_Declaration (N : Node_Id) is
1359 Id : constant Entity_Id := Defining_Identifier (N);
1360 E : constant Node_Id := Expression (N);
1361 T : Entity_Id;
1362 Index : Interp_Index;
1363 It : Interp;
1365 begin
1366 Generate_Definition (Id);
1367 Enter_Name (Id);
1369 -- This is an optimization of a common case of an integer literal
1371 if Nkind (E) = N_Integer_Literal then
1372 Set_Is_Static_Expression (E, True);
1373 Set_Etype (E, Universal_Integer);
1375 Set_Etype (Id, Universal_Integer);
1376 Set_Ekind (Id, E_Named_Integer);
1377 Set_Is_Frozen (Id, True);
1378 return;
1379 end if;
1381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1383 -- Process expression, replacing error by integer zero, to avoid
1384 -- cascaded errors or aborts further along in the processing
1386 -- Replace Error by integer zero, which seems least likely to
1387 -- cause cascaded errors.
1389 if E = Error then
1390 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1391 Set_Error_Posted (E);
1392 end if;
1394 Analyze (E);
1396 -- Verify that the expression is static and numeric. If
1397 -- the expression is overloaded, we apply the preference
1398 -- rule that favors root numeric types.
1400 if not Is_Overloaded (E) then
1401 T := Etype (E);
1403 else
1404 T := Any_Type;
1405 Get_First_Interp (E, Index, It);
1407 while Present (It.Typ) loop
1408 if (Is_Integer_Type (It.Typ)
1409 or else Is_Real_Type (It.Typ))
1410 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1411 then
1412 if T = Any_Type then
1413 T := It.Typ;
1415 elsif It.Typ = Universal_Real
1416 or else It.Typ = Universal_Integer
1417 then
1418 -- Choose universal interpretation over any other
1420 T := It.Typ;
1421 exit;
1422 end if;
1423 end if;
1425 Get_Next_Interp (Index, It);
1426 end loop;
1427 end if;
1429 if Is_Integer_Type (T) then
1430 Resolve (E, T);
1431 Set_Etype (Id, Universal_Integer);
1432 Set_Ekind (Id, E_Named_Integer);
1434 elsif Is_Real_Type (T) then
1436 -- Because the real value is converted to universal_real, this
1437 -- is a legal context for a universal fixed expression.
1439 if T = Universal_Fixed then
1440 declare
1441 Loc : constant Source_Ptr := Sloc (N);
1442 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1443 Subtype_Mark =>
1444 New_Occurrence_Of (Universal_Real, Loc),
1445 Expression => Relocate_Node (E));
1447 begin
1448 Rewrite (E, Conv);
1449 Analyze (E);
1450 end;
1452 elsif T = Any_Fixed then
1453 Error_Msg_N ("illegal context for mixed mode operation", E);
1455 -- Expression is of the form : universal_fixed * integer.
1456 -- Try to resolve as universal_real.
1458 T := Universal_Real;
1459 Set_Etype (E, T);
1460 end if;
1462 Resolve (E, T);
1463 Set_Etype (Id, Universal_Real);
1464 Set_Ekind (Id, E_Named_Real);
1466 else
1467 Wrong_Type (E, Any_Numeric);
1468 Resolve (E, T);
1470 Set_Etype (Id, T);
1471 Set_Ekind (Id, E_Constant);
1472 Set_Never_Set_In_Source (Id, True);
1473 Set_Is_True_Constant (Id, True);
1474 return;
1475 end if;
1477 if Nkind (E) = N_Integer_Literal
1478 or else Nkind (E) = N_Real_Literal
1479 then
1480 Set_Etype (E, Etype (Id));
1481 end if;
1483 if not Is_OK_Static_Expression (E) then
1484 Flag_Non_Static_Expr
1485 ("non-static expression used in number declaration!", E);
1486 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1487 Set_Etype (E, Any_Type);
1488 end if;
1489 end Analyze_Number_Declaration;
1491 --------------------------------
1492 -- Analyze_Object_Declaration --
1493 --------------------------------
1495 procedure Analyze_Object_Declaration (N : Node_Id) is
1496 Loc : constant Source_Ptr := Sloc (N);
1497 Id : constant Entity_Id := Defining_Identifier (N);
1498 T : Entity_Id;
1499 Act_T : Entity_Id;
1501 E : Node_Id := Expression (N);
1502 -- E is set to Expression (N) throughout this routine. When
1503 -- Expression (N) is modified, E is changed accordingly.
1505 Prev_Entity : Entity_Id := Empty;
1507 function Build_Default_Subtype return Entity_Id;
1508 -- If the object is limited or aliased, and if the type is unconstrained
1509 -- and there is no expression, the discriminants cannot be modified and
1510 -- the subtype of the object is constrained by the defaults, so it is
1511 -- worthile building the corresponding subtype.
1513 function Count_Tasks (T : Entity_Id) return Uint;
1514 -- This function is called when a library level object of type is
1515 -- declared. It's function is to count the static number of tasks
1516 -- declared within the type (it is only called if Has_Tasks is set for
1517 -- T). As a side effect, if an array of tasks with non-static bounds or
1518 -- a variant record type is encountered, Check_Restrictions is called
1519 -- indicating the count is unknown.
1521 ---------------------------
1522 -- Build_Default_Subtype --
1523 ---------------------------
1525 function Build_Default_Subtype return Entity_Id is
1526 Constraints : constant List_Id := New_List;
1527 Act : Entity_Id;
1528 Decl : Node_Id;
1529 Disc : Entity_Id;
1531 begin
1532 Disc := First_Discriminant (T);
1534 if No (Discriminant_Default_Value (Disc)) then
1535 return T; -- previous error.
1536 end if;
1538 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1539 while Present (Disc) loop
1540 Append (
1541 New_Copy_Tree (
1542 Discriminant_Default_Value (Disc)), Constraints);
1543 Next_Discriminant (Disc);
1544 end loop;
1546 Decl :=
1547 Make_Subtype_Declaration (Loc,
1548 Defining_Identifier => Act,
1549 Subtype_Indication =>
1550 Make_Subtype_Indication (Loc,
1551 Subtype_Mark => New_Occurrence_Of (T, Loc),
1552 Constraint =>
1553 Make_Index_Or_Discriminant_Constraint
1554 (Loc, Constraints)));
1556 Insert_Before (N, Decl);
1557 Analyze (Decl);
1558 return Act;
1559 end Build_Default_Subtype;
1561 -----------------
1562 -- Count_Tasks --
1563 -----------------
1565 function Count_Tasks (T : Entity_Id) return Uint is
1566 C : Entity_Id;
1567 X : Node_Id;
1568 V : Uint;
1570 begin
1571 if Is_Task_Type (T) then
1572 return Uint_1;
1574 elsif Is_Record_Type (T) then
1575 if Has_Discriminants (T) then
1576 Check_Restriction (Max_Tasks, N);
1577 return Uint_0;
1579 else
1580 V := Uint_0;
1581 C := First_Component (T);
1582 while Present (C) loop
1583 V := V + Count_Tasks (Etype (C));
1584 Next_Component (C);
1585 end loop;
1587 return V;
1588 end if;
1590 elsif Is_Array_Type (T) then
1591 X := First_Index (T);
1592 V := Count_Tasks (Component_Type (T));
1593 while Present (X) loop
1594 C := Etype (X);
1596 if not Is_Static_Subtype (C) then
1597 Check_Restriction (Max_Tasks, N);
1598 return Uint_0;
1599 else
1600 V := V * (UI_Max (Uint_0,
1601 Expr_Value (Type_High_Bound (C)) -
1602 Expr_Value (Type_Low_Bound (C)) + Uint_1));
1603 end if;
1605 Next_Index (X);
1606 end loop;
1608 return V;
1610 else
1611 return Uint_0;
1612 end if;
1613 end Count_Tasks;
1615 -- Start of processing for Analyze_Object_Declaration
1617 begin
1618 -- There are three kinds of implicit types generated by an
1619 -- object declaration:
1621 -- 1. Those for generated by the original Object Definition
1623 -- 2. Those generated by the Expression
1625 -- 3. Those used to constrained the Object Definition with the
1626 -- expression constraints when it is unconstrained
1628 -- They must be generated in this order to avoid order of elaboration
1629 -- issues. Thus the first step (after entering the name) is to analyze
1630 -- the object definition.
1632 if Constant_Present (N) then
1633 Prev_Entity := Current_Entity_In_Scope (Id);
1635 -- If homograph is an implicit subprogram, it is overridden by the
1636 -- current declaration.
1638 if Present (Prev_Entity)
1639 and then Is_Overloadable (Prev_Entity)
1640 and then Is_Inherited_Operation (Prev_Entity)
1641 then
1642 Prev_Entity := Empty;
1643 end if;
1644 end if;
1646 if Present (Prev_Entity) then
1647 Constant_Redeclaration (Id, N, T);
1649 Generate_Reference (Prev_Entity, Id, 'c');
1650 Set_Completion_Referenced (Id);
1652 if Error_Posted (N) then
1654 -- Type mismatch or illegal redeclaration, Do not analyze
1655 -- expression to avoid cascaded errors.
1657 T := Find_Type_Of_Object (Object_Definition (N), N);
1658 Set_Etype (Id, T);
1659 Set_Ekind (Id, E_Variable);
1660 return;
1661 end if;
1663 -- In the normal case, enter identifier at the start to catch
1664 -- premature usage in the initialization expression.
1666 else
1667 Generate_Definition (Id);
1668 Enter_Name (Id);
1670 T := Find_Type_Of_Object (Object_Definition (N), N);
1672 if Error_Posted (Id) then
1673 Set_Etype (Id, T);
1674 Set_Ekind (Id, E_Variable);
1675 return;
1676 end if;
1677 end if;
1679 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1680 -- out some static checks
1682 if Ada_Version >= Ada_05
1683 and then (Null_Exclusion_Present (N)
1684 or else Can_Never_Be_Null (T))
1685 then
1686 Set_Can_Never_Be_Null (Id);
1687 Null_Exclusion_Static_Checks (N);
1688 end if;
1690 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1692 -- If deferred constant, make sure context is appropriate. We detect
1693 -- a deferred constant as a constant declaration with no expression.
1694 -- A deferred constant can appear in a package body if its completion
1695 -- is by means of an interface pragma.
1697 if Constant_Present (N)
1698 and then No (E)
1699 then
1700 if not Is_Package (Current_Scope) then
1701 Error_Msg_N
1702 ("invalid context for deferred constant declaration ('R'M 7.4)",
1704 Error_Msg_N
1705 ("\declaration requires an initialization expression",
1707 Set_Constant_Present (N, False);
1709 -- In Ada 83, deferred constant must be of private type
1711 elsif not Is_Private_Type (T) then
1712 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1713 Error_Msg_N
1714 ("(Ada 83) deferred constant must be private type", N);
1715 end if;
1716 end if;
1718 -- If not a deferred constant, then object declaration freezes its type
1720 else
1721 Check_Fully_Declared (T, N);
1722 Freeze_Before (N, T);
1723 end if;
1725 -- If the object was created by a constrained array definition, then
1726 -- set the link in both the anonymous base type and anonymous subtype
1727 -- that are built to represent the array type to point to the object.
1729 if Nkind (Object_Definition (Declaration_Node (Id))) =
1730 N_Constrained_Array_Definition
1731 then
1732 Set_Related_Array_Object (T, Id);
1733 Set_Related_Array_Object (Base_Type (T), Id);
1734 end if;
1736 -- Special checks for protected objects not at library level
1738 if Is_Protected_Type (T)
1739 and then not Is_Library_Level_Entity (Id)
1740 then
1741 Check_Restriction (No_Local_Protected_Objects, Id);
1743 -- Protected objects with interrupt handlers must be at library level
1745 if Has_Interrupt_Handler (T) then
1746 Error_Msg_N
1747 ("interrupt object can only be declared at library level", Id);
1748 end if;
1749 end if;
1751 -- The actual subtype of the object is the nominal subtype, unless
1752 -- the nominal one is unconstrained and obtained from the expression.
1754 Act_T := T;
1756 -- Process initialization expression if present and not in error
1758 if Present (E) and then E /= Error then
1759 Analyze (E);
1761 -- In case of errors detected in the analysis of the expression,
1762 -- decorate it with the expected type to avoid cascade errors
1764 if not Present (Etype (E)) then
1765 Set_Etype (E, T);
1766 end if;
1768 -- If an initialization expression is present, then we set the
1769 -- Is_True_Constant flag. It will be reset if this is a variable
1770 -- and it is indeed modified.
1772 Set_Is_True_Constant (Id, True);
1774 -- If we are analyzing a constant declaration, set its completion
1775 -- flag after analyzing the expression.
1777 if Constant_Present (N) then
1778 Set_Has_Completion (Id);
1779 end if;
1781 if not Assignment_OK (N) then
1782 Check_Initialization (T, E);
1783 end if;
1785 Set_Etype (Id, T); -- may be overridden later on
1786 Resolve (E, T);
1787 Check_Unset_Reference (E);
1789 if Compile_Time_Known_Value (E) then
1790 Set_Current_Value (Id, E);
1791 end if;
1793 -- Check incorrect use of dynamically tagged expressions. Note
1794 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1795 -- fact important to avoid spurious errors due to expanded code
1796 -- for dispatching functions over an anonymous access type
1798 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
1799 and then Is_Tagged_Type (T)
1800 and then not Is_Class_Wide_Type (T)
1801 then
1802 Error_Msg_N ("dynamically tagged expression not allowed!", E);
1803 end if;
1805 Apply_Scalar_Range_Check (E, T);
1806 Apply_Static_Length_Check (E, T);
1807 end if;
1809 -- If the No_Streams restriction is set, check that the type of the
1810 -- object is not, and does not contain, any subtype derived from
1811 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
1812 -- Has_Stream just for efficiency reasons. There is no point in
1813 -- spending time on a Has_Stream check if the restriction is not set.
1815 if Restrictions.Set (No_Streams) then
1816 if Has_Stream (T) then
1817 Check_Restriction (No_Streams, N);
1818 end if;
1819 end if;
1821 -- Abstract type is never permitted for a variable or constant.
1822 -- Note: we inhibit this check for objects that do not come from
1823 -- source because there is at least one case (the expansion of
1824 -- x'class'input where x is abstract) where we legitimately
1825 -- generate an abstract object.
1827 if Is_Abstract (T) and then Comes_From_Source (N) then
1828 Error_Msg_N ("type of object cannot be abstract",
1829 Object_Definition (N));
1831 if Is_CPP_Class (T) then
1832 Error_Msg_NE ("\} may need a cpp_constructor",
1833 Object_Definition (N), T);
1834 end if;
1836 -- Case of unconstrained type
1838 elsif Is_Indefinite_Subtype (T) then
1840 -- Nothing to do in deferred constant case
1842 if Constant_Present (N) and then No (E) then
1843 null;
1845 -- Case of no initialization present
1847 elsif No (E) then
1848 if No_Initialization (N) then
1849 null;
1851 elsif Is_Class_Wide_Type (T) then
1852 Error_Msg_N
1853 ("initialization required in class-wide declaration ", N);
1855 else
1856 Error_Msg_N
1857 ("unconstrained subtype not allowed (need initialization)",
1858 Object_Definition (N));
1859 end if;
1861 -- Case of initialization present but in error. Set initial
1862 -- expression as absent (but do not make above complaints)
1864 elsif E = Error then
1865 Set_Expression (N, Empty);
1866 E := Empty;
1868 -- Case of initialization present
1870 else
1871 -- Not allowed in Ada 83
1873 if not Constant_Present (N) then
1874 if Ada_Version = Ada_83
1875 and then Comes_From_Source (Object_Definition (N))
1876 then
1877 Error_Msg_N
1878 ("(Ada 83) unconstrained variable not allowed",
1879 Object_Definition (N));
1880 end if;
1881 end if;
1883 -- Now we constrain the variable from the initializing expression
1885 -- If the expression is an aggregate, it has been expanded into
1886 -- individual assignments. Retrieve the actual type from the
1887 -- expanded construct.
1889 if Is_Array_Type (T)
1890 and then No_Initialization (N)
1891 and then Nkind (Original_Node (E)) = N_Aggregate
1892 then
1893 Act_T := Etype (E);
1895 else
1896 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
1897 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
1898 end if;
1900 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
1902 if Aliased_Present (N) then
1903 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1904 end if;
1906 Freeze_Before (N, Act_T);
1907 Freeze_Before (N, T);
1908 end if;
1910 elsif Is_Array_Type (T)
1911 and then No_Initialization (N)
1912 and then Nkind (Original_Node (E)) = N_Aggregate
1913 then
1914 if not Is_Entity_Name (Object_Definition (N)) then
1915 Act_T := Etype (E);
1916 Check_Compile_Time_Size (Act_T);
1918 if Aliased_Present (N) then
1919 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1920 end if;
1921 end if;
1923 -- When the given object definition and the aggregate are specified
1924 -- independently, and their lengths might differ do a length check.
1925 -- This cannot happen if the aggregate is of the form (others =>...)
1927 if not Is_Constrained (T) then
1928 null;
1930 elsif Nkind (E) = N_Raise_Constraint_Error then
1932 -- Aggregate is statically illegal. Place back in declaration
1934 Set_Expression (N, E);
1935 Set_No_Initialization (N, False);
1937 elsif T = Etype (E) then
1938 null;
1940 elsif Nkind (E) = N_Aggregate
1941 and then Present (Component_Associations (E))
1942 and then Present (Choices (First (Component_Associations (E))))
1943 and then Nkind (First
1944 (Choices (First (Component_Associations (E))))) = N_Others_Choice
1945 then
1946 null;
1948 else
1949 Apply_Length_Check (E, T);
1950 end if;
1952 elsif (Is_Limited_Record (T)
1953 or else Is_Concurrent_Type (T))
1954 and then not Is_Constrained (T)
1955 and then Has_Discriminants (T)
1956 then
1957 Act_T := Build_Default_Subtype;
1958 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
1960 elsif not Is_Constrained (T)
1961 and then Has_Discriminants (T)
1962 and then Constant_Present (N)
1963 and then Nkind (E) = N_Function_Call
1964 then
1965 -- The back-end has problems with constants of a discriminated type
1966 -- with defaults, if the initial value is a function call. We
1967 -- generate an intermediate temporary for the result of the call.
1968 -- It is unclear why this should make it acceptable to gcc. ???
1970 Remove_Side_Effects (E);
1971 end if;
1973 if T = Standard_Wide_Character or else T = Standard_Wide_Wide_Character
1974 or else Root_Type (T) = Standard_Wide_String
1975 or else Root_Type (T) = Standard_Wide_Wide_String
1976 then
1977 Check_Restriction (No_Wide_Characters, Object_Definition (N));
1978 end if;
1980 -- Now establish the proper kind and type of the object
1982 if Constant_Present (N) then
1983 Set_Ekind (Id, E_Constant);
1984 Set_Never_Set_In_Source (Id, True);
1985 Set_Is_True_Constant (Id, True);
1987 else
1988 Set_Ekind (Id, E_Variable);
1990 -- A variable is set as shared passive if it appears in a shared
1991 -- passive package, and is at the outer level. This is not done
1992 -- for entities generated during expansion, because those are
1993 -- always manipulated locally.
1995 if Is_Shared_Passive (Current_Scope)
1996 and then Is_Library_Level_Entity (Id)
1997 and then Comes_From_Source (Id)
1998 then
1999 Set_Is_Shared_Passive (Id);
2000 Check_Shared_Var (Id, T, N);
2001 end if;
2003 -- Case of no initializing expression present. If the type is not
2004 -- fully initialized, then we set Never_Set_In_Source, since this
2005 -- is a case of a potentially uninitialized object. Note that we
2006 -- do not consider access variables to be fully initialized for
2007 -- this purpose, since it still seems dubious if someone declares
2009 -- Note that we only do this for source declarations. If the object
2010 -- is declared by a generated declaration, we assume that it is not
2011 -- appropriate to generate warnings in that case.
2013 if No (E) then
2014 if (Is_Access_Type (T)
2015 or else not Is_Fully_Initialized_Type (T))
2016 and then Comes_From_Source (N)
2017 then
2018 Set_Never_Set_In_Source (Id);
2019 end if;
2020 end if;
2021 end if;
2023 Init_Alignment (Id);
2024 Init_Esize (Id);
2026 if Aliased_Present (N) then
2027 Set_Is_Aliased (Id);
2029 if No (E)
2030 and then Is_Record_Type (T)
2031 and then not Is_Constrained (T)
2032 and then Has_Discriminants (T)
2033 then
2034 Set_Actual_Subtype (Id, Build_Default_Subtype);
2035 end if;
2036 end if;
2038 Set_Etype (Id, Act_T);
2040 if Has_Controlled_Component (Etype (Id))
2041 or else Is_Controlled (Etype (Id))
2042 then
2043 if not Is_Library_Level_Entity (Id) then
2044 Check_Restriction (No_Nested_Finalization, N);
2045 else
2046 Validate_Controlled_Object (Id);
2047 end if;
2049 -- Generate a warning when an initialization causes an obvious
2050 -- ABE violation. If the init expression is a simple aggregate
2051 -- there shouldn't be any initialize/adjust call generated. This
2052 -- will be true as soon as aggregates are built in place when
2053 -- possible. ??? at the moment we do not generate warnings for
2054 -- temporaries created for those aggregates although a
2055 -- Program_Error might be generated if compiled with -gnato
2057 if Is_Controlled (Etype (Id))
2058 and then Comes_From_Source (Id)
2059 then
2060 declare
2061 BT : constant Entity_Id := Base_Type (Etype (Id));
2063 Implicit_Call : Entity_Id;
2064 pragma Warnings (Off, Implicit_Call);
2065 -- What is this about, it is never referenced ???
2067 function Is_Aggr (N : Node_Id) return Boolean;
2068 -- Check that N is an aggregate
2070 -------------
2071 -- Is_Aggr --
2072 -------------
2074 function Is_Aggr (N : Node_Id) return Boolean is
2075 begin
2076 case Nkind (Original_Node (N)) is
2077 when N_Aggregate | N_Extension_Aggregate =>
2078 return True;
2080 when N_Qualified_Expression |
2081 N_Type_Conversion |
2082 N_Unchecked_Type_Conversion =>
2083 return Is_Aggr (Expression (Original_Node (N)));
2085 when others =>
2086 return False;
2087 end case;
2088 end Is_Aggr;
2090 begin
2091 -- If no underlying type, we already are in an error situation
2092 -- don't try to add a warning since we do not have access
2093 -- prim-op list.
2095 if No (Underlying_Type (BT)) then
2096 Implicit_Call := Empty;
2098 -- A generic type does not have usable primitive operators.
2099 -- Initialization calls are built for instances.
2101 elsif Is_Generic_Type (BT) then
2102 Implicit_Call := Empty;
2104 -- if the init expression is not an aggregate, an adjust
2105 -- call will be generated
2107 elsif Present (E) and then not Is_Aggr (E) then
2108 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
2110 -- if no init expression and we are not in the deferred
2111 -- constant case, an Initialize call will be generated
2113 elsif No (E) and then not Constant_Present (N) then
2114 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
2116 else
2117 Implicit_Call := Empty;
2118 end if;
2119 end;
2120 end if;
2121 end if;
2123 if Has_Task (Etype (Id)) then
2124 Check_Restriction (No_Tasking, N);
2126 if Is_Library_Level_Entity (Id) then
2127 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
2128 else
2129 Check_Restriction (Max_Tasks, N);
2130 Check_Restriction (No_Task_Hierarchy, N);
2131 Check_Potentially_Blocking_Operation (N);
2132 end if;
2134 -- A rather specialized test. If we see two tasks being declared
2135 -- of the same type in the same object declaration, and the task
2136 -- has an entry with an address clause, we know that program error
2137 -- will be raised at run-time since we can't have two tasks with
2138 -- entries at the same address.
2140 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
2141 declare
2142 E : Entity_Id;
2144 begin
2145 E := First_Entity (Etype (Id));
2146 while Present (E) loop
2147 if Ekind (E) = E_Entry
2148 and then Present (Get_Attribute_Definition_Clause
2149 (E, Attribute_Address))
2150 then
2151 Error_Msg_N
2152 ("?more than one task with same entry address", N);
2153 Error_Msg_N
2154 ("\?Program_Error will be raised at run time", N);
2155 Insert_Action (N,
2156 Make_Raise_Program_Error (Loc,
2157 Reason => PE_Duplicated_Entry_Address));
2158 exit;
2159 end if;
2161 Next_Entity (E);
2162 end loop;
2163 end;
2164 end if;
2165 end if;
2167 -- Some simple constant-propagation: if the expression is a constant
2168 -- string initialized with a literal, share the literal. This avoids
2169 -- a run-time copy.
2171 if Present (E)
2172 and then Is_Entity_Name (E)
2173 and then Ekind (Entity (E)) = E_Constant
2174 and then Base_Type (Etype (E)) = Standard_String
2175 then
2176 declare
2177 Val : constant Node_Id := Constant_Value (Entity (E));
2178 begin
2179 if Present (Val)
2180 and then Nkind (Val) = N_String_Literal
2181 then
2182 Rewrite (E, New_Copy (Val));
2183 end if;
2184 end;
2185 end if;
2187 -- Another optimization: if the nominal subtype is unconstrained and
2188 -- the expression is a function call that returns an unconstrained
2189 -- type, rewrite the declaration as a renaming of the result of the
2190 -- call. The exceptions below are cases where the copy is expected,
2191 -- either by the back end (Aliased case) or by the semantics, as for
2192 -- initializing controlled types or copying tags for classwide types.
2194 if Present (E)
2195 and then Nkind (E) = N_Explicit_Dereference
2196 and then Nkind (Original_Node (E)) = N_Function_Call
2197 and then not Is_Library_Level_Entity (Id)
2198 and then not Is_Constrained (T)
2199 and then not Is_Aliased (Id)
2200 and then not Is_Class_Wide_Type (T)
2201 and then not Is_Controlled (T)
2202 and then not Has_Controlled_Component (Base_Type (T))
2203 and then Expander_Active
2204 then
2205 Rewrite (N,
2206 Make_Object_Renaming_Declaration (Loc,
2207 Defining_Identifier => Id,
2208 Access_Definition => Empty,
2209 Subtype_Mark => New_Occurrence_Of
2210 (Base_Type (Etype (Id)), Loc),
2211 Name => E));
2213 Set_Renamed_Object (Id, E);
2215 -- Force generation of debugging information for the constant
2216 -- and for the renamed function call.
2218 Set_Needs_Debug_Info (Id);
2219 Set_Needs_Debug_Info (Entity (Prefix (E)));
2220 end if;
2222 if Present (Prev_Entity)
2223 and then Is_Frozen (Prev_Entity)
2224 and then not Error_Posted (Id)
2225 then
2226 Error_Msg_N ("full constant declaration appears too late", N);
2227 end if;
2229 Check_Eliminated (Id);
2230 end Analyze_Object_Declaration;
2232 ---------------------------
2233 -- Analyze_Others_Choice --
2234 ---------------------------
2236 -- Nothing to do for the others choice node itself, the semantic analysis
2237 -- of the others choice will occur as part of the processing of the parent
2239 procedure Analyze_Others_Choice (N : Node_Id) is
2240 pragma Warnings (Off, N);
2241 begin
2242 null;
2243 end Analyze_Others_Choice;
2245 --------------------------------
2246 -- Analyze_Per_Use_Expression --
2247 --------------------------------
2249 procedure Analyze_Per_Use_Expression (N : Node_Id; T : Entity_Id) is
2250 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
2251 begin
2252 In_Default_Expression := True;
2253 Pre_Analyze_And_Resolve (N, T);
2254 In_Default_Expression := Save_In_Default_Expression;
2255 end Analyze_Per_Use_Expression;
2257 -------------------------------------------
2258 -- Analyze_Private_Extension_Declaration --
2259 -------------------------------------------
2261 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
2262 T : constant Entity_Id := Defining_Identifier (N);
2263 Indic : constant Node_Id := Subtype_Indication (N);
2264 Parent_Type : Entity_Id;
2265 Parent_Base : Entity_Id;
2267 begin
2268 Generate_Definition (T);
2269 Enter_Name (T);
2271 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
2272 Parent_Base := Base_Type (Parent_Type);
2274 if Parent_Type = Any_Type
2275 or else Etype (Parent_Type) = Any_Type
2276 then
2277 Set_Ekind (T, Ekind (Parent_Type));
2278 Set_Etype (T, Any_Type);
2279 return;
2281 elsif not Is_Tagged_Type (Parent_Type) then
2282 Error_Msg_N
2283 ("parent of type extension must be a tagged type ", Indic);
2284 return;
2286 elsif Ekind (Parent_Type) = E_Void
2287 or else Ekind (Parent_Type) = E_Incomplete_Type
2288 then
2289 Error_Msg_N ("premature derivation of incomplete type", Indic);
2290 return;
2291 end if;
2293 -- Perhaps the parent type should be changed to the class-wide type's
2294 -- specific type in this case to prevent cascading errors ???
2296 if Is_Class_Wide_Type (Parent_Type) then
2297 Error_Msg_N
2298 ("parent of type extension must not be a class-wide type", Indic);
2299 return;
2300 end if;
2302 if (not Is_Package (Current_Scope)
2303 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
2304 or else In_Private_Part (Current_Scope)
2306 then
2307 Error_Msg_N ("invalid context for private extension", N);
2308 end if;
2310 -- Set common attributes
2312 Set_Is_Pure (T, Is_Pure (Current_Scope));
2313 Set_Scope (T, Current_Scope);
2314 Set_Ekind (T, E_Record_Type_With_Private);
2315 Init_Size_Align (T);
2317 Set_Etype (T, Parent_Base);
2318 Set_Has_Task (T, Has_Task (Parent_Base));
2320 Set_Convention (T, Convention (Parent_Type));
2321 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
2322 Set_Is_First_Subtype (T);
2323 Make_Class_Wide_Type (T);
2325 if Unknown_Discriminants_Present (N) then
2326 Set_Discriminant_Constraint (T, No_Elist);
2327 end if;
2329 Build_Derived_Record_Type (N, Parent_Type, T);
2330 end Analyze_Private_Extension_Declaration;
2332 ---------------------------------
2333 -- Analyze_Subtype_Declaration --
2334 ---------------------------------
2336 procedure Analyze_Subtype_Declaration (N : Node_Id) is
2337 Id : constant Entity_Id := Defining_Identifier (N);
2338 T : Entity_Id;
2339 R_Checks : Check_Result;
2341 begin
2342 Generate_Definition (Id);
2343 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2344 Init_Size_Align (Id);
2346 -- The following guard condition on Enter_Name is to handle cases
2347 -- where the defining identifier has already been entered into the
2348 -- scope but the declaration as a whole needs to be analyzed.
2350 -- This case in particular happens for derived enumeration types. The
2351 -- derived enumeration type is processed as an inserted enumeration
2352 -- type declaration followed by a rewritten subtype declaration. The
2353 -- defining identifier, however, is entered into the name scope very
2354 -- early in the processing of the original type declaration and
2355 -- therefore needs to be avoided here, when the created subtype
2356 -- declaration is analyzed. (See Build_Derived_Types)
2358 -- This also happens when the full view of a private type is derived
2359 -- type with constraints. In this case the entity has been introduced
2360 -- in the private declaration.
2362 if Present (Etype (Id))
2363 and then (Is_Private_Type (Etype (Id))
2364 or else Is_Task_Type (Etype (Id))
2365 or else Is_Rewrite_Substitution (N))
2366 then
2367 null;
2369 else
2370 Enter_Name (Id);
2371 end if;
2373 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2375 -- Inherit common attributes
2377 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2378 Set_Is_Volatile (Id, Is_Volatile (T));
2379 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
2380 Set_Is_Atomic (Id, Is_Atomic (T));
2382 -- In the case where there is no constraint given in the subtype
2383 -- indication, Process_Subtype just returns the Subtype_Mark,
2384 -- so its semantic attributes must be established here.
2386 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2387 Set_Etype (Id, Base_Type (T));
2389 case Ekind (T) is
2390 when Array_Kind =>
2391 Set_Ekind (Id, E_Array_Subtype);
2392 Copy_Array_Subtype_Attributes (Id, T);
2394 when Decimal_Fixed_Point_Kind =>
2395 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2396 Set_Digits_Value (Id, Digits_Value (T));
2397 Set_Delta_Value (Id, Delta_Value (T));
2398 Set_Scale_Value (Id, Scale_Value (T));
2399 Set_Small_Value (Id, Small_Value (T));
2400 Set_Scalar_Range (Id, Scalar_Range (T));
2401 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2402 Set_Is_Constrained (Id, Is_Constrained (T));
2403 Set_RM_Size (Id, RM_Size (T));
2405 when Enumeration_Kind =>
2406 Set_Ekind (Id, E_Enumeration_Subtype);
2407 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2408 Set_Scalar_Range (Id, Scalar_Range (T));
2409 Set_Is_Character_Type (Id, Is_Character_Type (T));
2410 Set_Is_Constrained (Id, Is_Constrained (T));
2411 Set_RM_Size (Id, RM_Size (T));
2413 when Ordinary_Fixed_Point_Kind =>
2414 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2415 Set_Scalar_Range (Id, Scalar_Range (T));
2416 Set_Small_Value (Id, Small_Value (T));
2417 Set_Delta_Value (Id, Delta_Value (T));
2418 Set_Is_Constrained (Id, Is_Constrained (T));
2419 Set_RM_Size (Id, RM_Size (T));
2421 when Float_Kind =>
2422 Set_Ekind (Id, E_Floating_Point_Subtype);
2423 Set_Scalar_Range (Id, Scalar_Range (T));
2424 Set_Digits_Value (Id, Digits_Value (T));
2425 Set_Is_Constrained (Id, Is_Constrained (T));
2427 when Signed_Integer_Kind =>
2428 Set_Ekind (Id, E_Signed_Integer_Subtype);
2429 Set_Scalar_Range (Id, Scalar_Range (T));
2430 Set_Is_Constrained (Id, Is_Constrained (T));
2431 Set_RM_Size (Id, RM_Size (T));
2433 when Modular_Integer_Kind =>
2434 Set_Ekind (Id, E_Modular_Integer_Subtype);
2435 Set_Scalar_Range (Id, Scalar_Range (T));
2436 Set_Is_Constrained (Id, Is_Constrained (T));
2437 Set_RM_Size (Id, RM_Size (T));
2439 when Class_Wide_Kind =>
2440 Set_Ekind (Id, E_Class_Wide_Subtype);
2441 Set_First_Entity (Id, First_Entity (T));
2442 Set_Last_Entity (Id, Last_Entity (T));
2443 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2444 Set_Cloned_Subtype (Id, T);
2445 Set_Is_Tagged_Type (Id, True);
2446 Set_Has_Unknown_Discriminants
2447 (Id, True);
2449 if Ekind (T) = E_Class_Wide_Subtype then
2450 Set_Equivalent_Type (Id, Equivalent_Type (T));
2451 end if;
2453 when E_Record_Type | E_Record_Subtype =>
2454 Set_Ekind (Id, E_Record_Subtype);
2456 if Ekind (T) = E_Record_Subtype
2457 and then Present (Cloned_Subtype (T))
2458 then
2459 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2460 else
2461 Set_Cloned_Subtype (Id, T);
2462 end if;
2464 Set_First_Entity (Id, First_Entity (T));
2465 Set_Last_Entity (Id, Last_Entity (T));
2466 Set_Has_Discriminants (Id, Has_Discriminants (T));
2467 Set_Is_Constrained (Id, Is_Constrained (T));
2468 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2469 Set_Has_Unknown_Discriminants
2470 (Id, Has_Unknown_Discriminants (T));
2472 if Has_Discriminants (T) then
2473 Set_Discriminant_Constraint
2474 (Id, Discriminant_Constraint (T));
2475 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2477 elsif Has_Unknown_Discriminants (Id) then
2478 Set_Discriminant_Constraint (Id, No_Elist);
2479 end if;
2481 if Is_Tagged_Type (T) then
2482 Set_Is_Tagged_Type (Id);
2483 Set_Is_Abstract (Id, Is_Abstract (T));
2484 Set_Primitive_Operations
2485 (Id, Primitive_Operations (T));
2486 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2487 end if;
2489 when Private_Kind =>
2490 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2491 Set_Has_Discriminants (Id, Has_Discriminants (T));
2492 Set_Is_Constrained (Id, Is_Constrained (T));
2493 Set_First_Entity (Id, First_Entity (T));
2494 Set_Last_Entity (Id, Last_Entity (T));
2495 Set_Private_Dependents (Id, New_Elmt_List);
2496 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2497 Set_Has_Unknown_Discriminants
2498 (Id, Has_Unknown_Discriminants (T));
2500 if Is_Tagged_Type (T) then
2501 Set_Is_Tagged_Type (Id);
2502 Set_Is_Abstract (Id, Is_Abstract (T));
2503 Set_Primitive_Operations
2504 (Id, Primitive_Operations (T));
2505 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2506 end if;
2508 -- In general the attributes of the subtype of a private
2509 -- type are the attributes of the partial view of parent.
2510 -- However, the full view may be a discriminated type,
2511 -- and the subtype must share the discriminant constraint
2512 -- to generate correct calls to initialization procedures.
2514 if Has_Discriminants (T) then
2515 Set_Discriminant_Constraint
2516 (Id, Discriminant_Constraint (T));
2517 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2519 elsif Present (Full_View (T))
2520 and then Has_Discriminants (Full_View (T))
2521 then
2522 Set_Discriminant_Constraint
2523 (Id, Discriminant_Constraint (Full_View (T)));
2524 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2526 -- This would seem semantically correct, but apparently
2527 -- confuses the back-end (4412-009). To be explained ???
2529 -- Set_Has_Discriminants (Id);
2530 end if;
2532 Prepare_Private_Subtype_Completion (Id, N);
2534 when Access_Kind =>
2535 Set_Ekind (Id, E_Access_Subtype);
2536 Set_Is_Constrained (Id, Is_Constrained (T));
2537 Set_Is_Access_Constant
2538 (Id, Is_Access_Constant (T));
2539 Set_Directly_Designated_Type
2540 (Id, Designated_Type (T));
2542 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
2543 -- and carry out some static checks
2545 if Null_Exclusion_Present (N)
2546 or else Can_Never_Be_Null (T)
2547 then
2548 Set_Can_Never_Be_Null (Id);
2550 if Null_Exclusion_Present (N)
2551 and then Can_Never_Be_Null (T)
2552 then
2553 Error_Msg_N
2554 ("(Ada 2005) null exclusion not allowed if parent "
2555 & "is already non-null", Subtype_Indication (N));
2556 end if;
2557 end if;
2559 -- A Pure library_item must not contain the declaration of a
2560 -- named access type, except within a subprogram, generic
2561 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2563 if Comes_From_Source (Id)
2564 and then In_Pure_Unit
2565 and then not In_Subprogram_Task_Protected_Unit
2566 then
2567 Error_Msg_N
2568 ("named access types not allowed in pure unit", N);
2569 end if;
2571 when Concurrent_Kind =>
2572 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2573 Set_Corresponding_Record_Type (Id,
2574 Corresponding_Record_Type (T));
2575 Set_First_Entity (Id, First_Entity (T));
2576 Set_First_Private_Entity (Id, First_Private_Entity (T));
2577 Set_Has_Discriminants (Id, Has_Discriminants (T));
2578 Set_Is_Constrained (Id, Is_Constrained (T));
2579 Set_Last_Entity (Id, Last_Entity (T));
2581 if Has_Discriminants (T) then
2582 Set_Discriminant_Constraint (Id,
2583 Discriminant_Constraint (T));
2584 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2585 end if;
2587 -- If the subtype name denotes an incomplete type
2588 -- an error was already reported by Process_Subtype.
2590 when E_Incomplete_Type =>
2591 Set_Etype (Id, Any_Type);
2593 when others =>
2594 raise Program_Error;
2595 end case;
2596 end if;
2598 if Etype (Id) = Any_Type then
2599 return;
2600 end if;
2602 -- Some common processing on all types
2604 Set_Size_Info (Id, T);
2605 Set_First_Rep_Item (Id, First_Rep_Item (T));
2607 T := Etype (Id);
2609 Set_Is_Immediately_Visible (Id, True);
2610 Set_Depends_On_Private (Id, Has_Private_Component (T));
2612 if Present (Generic_Parent_Type (N))
2613 and then
2614 (Nkind
2615 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
2616 or else Nkind
2617 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
2618 /= N_Formal_Private_Type_Definition)
2619 then
2620 if Is_Tagged_Type (Id) then
2621 if Is_Class_Wide_Type (Id) then
2622 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
2623 else
2624 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
2625 end if;
2627 elsif Scope (Etype (Id)) /= Standard_Standard then
2628 Derive_Subprograms (Generic_Parent_Type (N), Id);
2629 end if;
2630 end if;
2632 if Is_Private_Type (T)
2633 and then Present (Full_View (T))
2634 then
2635 Conditional_Delay (Id, Full_View (T));
2637 -- The subtypes of components or subcomponents of protected types
2638 -- do not need freeze nodes, which would otherwise appear in the
2639 -- wrong scope (before the freeze node for the protected type). The
2640 -- proper subtypes are those of the subcomponents of the corresponding
2641 -- record.
2643 elsif Ekind (Scope (Id)) /= E_Protected_Type
2644 and then Present (Scope (Scope (Id))) -- error defense!
2645 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
2646 then
2647 Conditional_Delay (Id, T);
2648 end if;
2650 -- Check that constraint_error is raised for a scalar subtype
2651 -- indication when the lower or upper bound of a non-null range
2652 -- lies outside the range of the type mark.
2654 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
2655 if Is_Scalar_Type (Etype (Id))
2656 and then Scalar_Range (Id) /=
2657 Scalar_Range (Etype (Subtype_Mark
2658 (Subtype_Indication (N))))
2659 then
2660 Apply_Range_Check
2661 (Scalar_Range (Id),
2662 Etype (Subtype_Mark (Subtype_Indication (N))));
2664 elsif Is_Array_Type (Etype (Id))
2665 and then Present (First_Index (Id))
2666 then
2667 -- This really should be a subprogram that finds the indications
2668 -- to check???
2670 if ((Nkind (First_Index (Id)) = N_Identifier
2671 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
2672 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
2673 and then
2674 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
2675 then
2676 declare
2677 Target_Typ : constant Entity_Id :=
2678 Etype
2679 (First_Index (Etype
2680 (Subtype_Mark (Subtype_Indication (N)))));
2681 begin
2682 R_Checks :=
2683 Range_Check
2684 (Scalar_Range (Etype (First_Index (Id))),
2685 Target_Typ,
2686 Etype (First_Index (Id)),
2687 Defining_Identifier (N));
2689 Insert_Range_Checks
2690 (R_Checks,
2692 Target_Typ,
2693 Sloc (Defining_Identifier (N)));
2694 end;
2695 end if;
2696 end if;
2697 end if;
2699 Check_Eliminated (Id);
2700 end Analyze_Subtype_Declaration;
2702 --------------------------------
2703 -- Analyze_Subtype_Indication --
2704 --------------------------------
2706 procedure Analyze_Subtype_Indication (N : Node_Id) is
2707 T : constant Entity_Id := Subtype_Mark (N);
2708 R : constant Node_Id := Range_Expression (Constraint (N));
2710 begin
2711 Analyze (T);
2713 if R /= Error then
2714 Analyze (R);
2715 Set_Etype (N, Etype (R));
2716 else
2717 Set_Error_Posted (R);
2718 Set_Error_Posted (T);
2719 end if;
2720 end Analyze_Subtype_Indication;
2722 ------------------------------
2723 -- Analyze_Type_Declaration --
2724 ------------------------------
2726 procedure Analyze_Type_Declaration (N : Node_Id) is
2727 Def : constant Node_Id := Type_Definition (N);
2728 Def_Id : constant Entity_Id := Defining_Identifier (N);
2729 T : Entity_Id;
2730 Prev : Entity_Id;
2732 Is_Remote : constant Boolean :=
2733 (Is_Remote_Types (Current_Scope)
2734 or else Is_Remote_Call_Interface (Current_Scope))
2735 and then not (In_Private_Part (Current_Scope)
2736 or else
2737 In_Package_Body (Current_Scope));
2739 begin
2740 Prev := Find_Type_Name (N);
2742 -- The full view, if present, now points to the current type
2744 -- Ada 2005 (AI-50217): If the type was previously decorated when
2745 -- imported through a LIMITED WITH clause, it appears as incomplete
2746 -- but has no full view.
2748 if Ekind (Prev) = E_Incomplete_Type
2749 and then Present (Full_View (Prev))
2750 then
2751 T := Full_View (Prev);
2752 else
2753 T := Prev;
2754 end if;
2756 Set_Is_Pure (T, Is_Pure (Current_Scope));
2758 -- We set the flag Is_First_Subtype here. It is needed to set the
2759 -- corresponding flag for the Implicit class-wide-type created
2760 -- during tagged types processing.
2762 Set_Is_First_Subtype (T, True);
2764 -- Only composite types other than array types are allowed to have
2765 -- discriminants.
2767 case Nkind (Def) is
2769 -- For derived types, the rule will be checked once we've figured
2770 -- out the parent type.
2772 when N_Derived_Type_Definition =>
2773 null;
2775 -- For record types, discriminants are allowed
2777 when N_Record_Definition =>
2778 null;
2780 when others =>
2781 if Present (Discriminant_Specifications (N)) then
2782 Error_Msg_N
2783 ("elementary or array type cannot have discriminants",
2784 Defining_Identifier
2785 (First (Discriminant_Specifications (N))));
2786 end if;
2787 end case;
2789 -- Elaborate the type definition according to kind, and generate
2790 -- subsidiary (implicit) subtypes where needed. We skip this if
2791 -- it was already done (this happens during the reanalysis that
2792 -- follows a call to the high level optimizer).
2794 if not Analyzed (T) then
2795 Set_Analyzed (T);
2797 case Nkind (Def) is
2799 when N_Access_To_Subprogram_Definition =>
2800 Access_Subprogram_Declaration (T, Def);
2802 -- If this is a remote access to subprogram, we must create
2803 -- the equivalent fat pointer type, and related subprograms.
2805 if Is_Remote then
2806 Process_Remote_AST_Declaration (N);
2807 end if;
2809 -- Validate categorization rule against access type declaration
2810 -- usually a violation in Pure unit, Shared_Passive unit.
2812 Validate_Access_Type_Declaration (T, N);
2814 when N_Access_To_Object_Definition =>
2815 Access_Type_Declaration (T, Def);
2817 -- Validate categorization rule against access type declaration
2818 -- usually a violation in Pure unit, Shared_Passive unit.
2820 Validate_Access_Type_Declaration (T, N);
2822 -- If we are in a Remote_Call_Interface package and define
2823 -- a RACW, Read and Write attribute must be added.
2825 if Is_Remote
2826 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2827 then
2828 Add_RACW_Features (Def_Id);
2829 end if;
2831 -- Set no strict aliasing flag if config pragma seen
2833 if Opt.No_Strict_Aliasing then
2834 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2835 end if;
2837 when N_Array_Type_Definition =>
2838 Array_Type_Declaration (T, Def);
2840 when N_Derived_Type_Definition =>
2841 Derived_Type_Declaration (T, N, T /= Def_Id);
2843 when N_Enumeration_Type_Definition =>
2844 Enumeration_Type_Declaration (T, Def);
2846 when N_Floating_Point_Definition =>
2847 Floating_Point_Type_Declaration (T, Def);
2849 when N_Decimal_Fixed_Point_Definition =>
2850 Decimal_Fixed_Point_Type_Declaration (T, Def);
2852 when N_Ordinary_Fixed_Point_Definition =>
2853 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2855 when N_Signed_Integer_Type_Definition =>
2856 Signed_Integer_Type_Declaration (T, Def);
2858 when N_Modular_Type_Definition =>
2859 Modular_Type_Declaration (T, Def);
2861 when N_Record_Definition =>
2862 Record_Type_Declaration (T, N, Prev);
2864 when others =>
2865 raise Program_Error;
2867 end case;
2868 end if;
2870 if Etype (T) = Any_Type then
2871 return;
2872 end if;
2874 -- Some common processing for all types
2876 Set_Depends_On_Private (T, Has_Private_Component (T));
2878 -- Both the declared entity, and its anonymous base type if one
2879 -- was created, need freeze nodes allocated.
2881 declare
2882 B : constant Entity_Id := Base_Type (T);
2884 begin
2885 -- In the case where the base type is different from the first
2886 -- subtype, we pre-allocate a freeze node, and set the proper link
2887 -- to the first subtype. Freeze_Entity will use this preallocated
2888 -- freeze node when it freezes the entity.
2890 if B /= T then
2891 Ensure_Freeze_Node (B);
2892 Set_First_Subtype_Link (Freeze_Node (B), T);
2893 end if;
2895 if not From_With_Type (T) then
2896 Set_Has_Delayed_Freeze (T);
2897 end if;
2898 end;
2900 -- Case of T is the full declaration of some private type which has
2901 -- been swapped in Defining_Identifier (N).
2903 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2904 Process_Full_View (N, T, Def_Id);
2906 -- Record the reference. The form of this is a little strange,
2907 -- since the full declaration has been swapped in. So the first
2908 -- parameter here represents the entity to which a reference is
2909 -- made which is the "real" entity, i.e. the one swapped in,
2910 -- and the second parameter provides the reference location.
2912 Generate_Reference (T, T, 'c');
2913 Set_Completion_Referenced (Def_Id);
2915 -- For completion of incomplete type, process incomplete dependents
2916 -- and always mark the full type as referenced (it is the incomplete
2917 -- type that we get for any real reference).
2919 elsif Ekind (Prev) = E_Incomplete_Type then
2920 Process_Incomplete_Dependents (N, T, Prev);
2921 Generate_Reference (Prev, Def_Id, 'c');
2922 Set_Completion_Referenced (Def_Id);
2924 -- If not private type or incomplete type completion, this is a real
2925 -- definition of a new entity, so record it.
2927 else
2928 Generate_Definition (Def_Id);
2929 end if;
2931 Check_Eliminated (Def_Id);
2932 end Analyze_Type_Declaration;
2934 --------------------------
2935 -- Analyze_Variant_Part --
2936 --------------------------
2938 procedure Analyze_Variant_Part (N : Node_Id) is
2940 procedure Non_Static_Choice_Error (Choice : Node_Id);
2941 -- Error routine invoked by the generic instantiation below when
2942 -- the variant part has a non static choice.
2944 procedure Process_Declarations (Variant : Node_Id);
2945 -- Analyzes all the declarations associated with a Variant.
2946 -- Needed by the generic instantiation below.
2948 package Variant_Choices_Processing is new
2949 Generic_Choices_Processing
2950 (Get_Alternatives => Variants,
2951 Get_Choices => Discrete_Choices,
2952 Process_Empty_Choice => No_OP,
2953 Process_Non_Static_Choice => Non_Static_Choice_Error,
2954 Process_Associated_Node => Process_Declarations);
2955 use Variant_Choices_Processing;
2956 -- Instantiation of the generic choice processing package
2958 -----------------------------
2959 -- Non_Static_Choice_Error --
2960 -----------------------------
2962 procedure Non_Static_Choice_Error (Choice : Node_Id) is
2963 begin
2964 Flag_Non_Static_Expr
2965 ("choice given in variant part is not static!", Choice);
2966 end Non_Static_Choice_Error;
2968 --------------------------
2969 -- Process_Declarations --
2970 --------------------------
2972 procedure Process_Declarations (Variant : Node_Id) is
2973 begin
2974 if not Null_Present (Component_List (Variant)) then
2975 Analyze_Declarations (Component_Items (Component_List (Variant)));
2977 if Present (Variant_Part (Component_List (Variant))) then
2978 Analyze (Variant_Part (Component_List (Variant)));
2979 end if;
2980 end if;
2981 end Process_Declarations;
2983 -- Variables local to Analyze_Case_Statement
2985 Discr_Name : Node_Id;
2986 Discr_Type : Entity_Id;
2988 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
2989 Last_Choice : Nat;
2990 Dont_Care : Boolean;
2991 Others_Present : Boolean := False;
2993 -- Start of processing for Analyze_Variant_Part
2995 begin
2996 Discr_Name := Name (N);
2997 Analyze (Discr_Name);
2999 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
3000 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
3001 end if;
3003 Discr_Type := Etype (Entity (Discr_Name));
3005 if not Is_Discrete_Type (Discr_Type) then
3006 Error_Msg_N
3007 ("discriminant in a variant part must be of a discrete type",
3008 Name (N));
3009 return;
3010 end if;
3012 -- Call the instantiated Analyze_Choices which does the rest of the work
3014 Analyze_Choices
3015 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
3016 end Analyze_Variant_Part;
3018 ----------------------------
3019 -- Array_Type_Declaration --
3020 ----------------------------
3022 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
3023 Component_Def : constant Node_Id := Component_Definition (Def);
3024 Element_Type : Entity_Id;
3025 Implicit_Base : Entity_Id;
3026 Index : Node_Id;
3027 Related_Id : Entity_Id := Empty;
3028 Nb_Index : Nat;
3029 P : constant Node_Id := Parent (Def);
3030 Priv : Entity_Id;
3032 begin
3033 if Nkind (Def) = N_Constrained_Array_Definition then
3034 Index := First (Discrete_Subtype_Definitions (Def));
3035 else
3036 Index := First (Subtype_Marks (Def));
3037 end if;
3039 -- Find proper names for the implicit types which may be public.
3040 -- in case of anonymous arrays we use the name of the first object
3041 -- of that type as prefix.
3043 if No (T) then
3044 Related_Id := Defining_Identifier (P);
3045 else
3046 Related_Id := T;
3047 end if;
3049 Nb_Index := 1;
3050 while Present (Index) loop
3051 Analyze (Index);
3052 Make_Index (Index, P, Related_Id, Nb_Index);
3053 Next_Index (Index);
3054 Nb_Index := Nb_Index + 1;
3055 end loop;
3057 if Present (Subtype_Indication (Component_Def)) then
3058 Element_Type := Process_Subtype (Subtype_Indication (Component_Def),
3059 P, Related_Id, 'C');
3061 -- Ada 2005 (AI-230): Access Definition case
3063 else pragma Assert (Present (Access_Definition (Component_Def)));
3064 Element_Type := Access_Definition
3065 (Related_Nod => Related_Id,
3066 N => Access_Definition (Component_Def));
3068 -- Ada 2005 (AI-230): In case of components that are anonymous
3069 -- access types the level of accessibility depends on the enclosing
3070 -- type declaration
3072 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
3074 -- Ada 2005 (AI-254)
3076 declare
3077 CD : constant Node_Id :=
3078 Access_To_Subprogram_Definition
3079 (Access_Definition (Component_Def));
3080 begin
3081 if Present (CD) and then Protected_Present (CD) then
3082 Element_Type :=
3083 Replace_Anonymous_Access_To_Protected_Subprogram
3084 (Def, Element_Type);
3085 end if;
3086 end;
3087 end if;
3089 -- Constrained array case
3091 if No (T) then
3092 T := Create_Itype (E_Void, P, Related_Id, 'T');
3093 end if;
3095 if Nkind (Def) = N_Constrained_Array_Definition then
3097 -- Establish Implicit_Base as unconstrained base type
3099 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
3101 Init_Size_Align (Implicit_Base);
3102 Set_Etype (Implicit_Base, Implicit_Base);
3103 Set_Scope (Implicit_Base, Current_Scope);
3104 Set_Has_Delayed_Freeze (Implicit_Base);
3106 -- The constrained array type is a subtype of the unconstrained one
3108 Set_Ekind (T, E_Array_Subtype);
3109 Init_Size_Align (T);
3110 Set_Etype (T, Implicit_Base);
3111 Set_Scope (T, Current_Scope);
3112 Set_Is_Constrained (T, True);
3113 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
3114 Set_Has_Delayed_Freeze (T);
3116 -- Complete setup of implicit base type
3118 Set_First_Index (Implicit_Base, First_Index (T));
3119 Set_Component_Type (Implicit_Base, Element_Type);
3120 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
3121 Set_Component_Size (Implicit_Base, Uint_0);
3122 Set_Has_Controlled_Component
3123 (Implicit_Base, Has_Controlled_Component
3124 (Element_Type)
3125 or else
3126 Is_Controlled (Element_Type));
3127 Set_Finalize_Storage_Only
3128 (Implicit_Base, Finalize_Storage_Only
3129 (Element_Type));
3131 -- Unconstrained array case
3133 else
3134 Set_Ekind (T, E_Array_Type);
3135 Init_Size_Align (T);
3136 Set_Etype (T, T);
3137 Set_Scope (T, Current_Scope);
3138 Set_Component_Size (T, Uint_0);
3139 Set_Is_Constrained (T, False);
3140 Set_First_Index (T, First (Subtype_Marks (Def)));
3141 Set_Has_Delayed_Freeze (T, True);
3142 Set_Has_Task (T, Has_Task (Element_Type));
3143 Set_Has_Controlled_Component (T, Has_Controlled_Component
3144 (Element_Type)
3145 or else
3146 Is_Controlled (Element_Type));
3147 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
3148 (Element_Type));
3149 end if;
3151 Set_Component_Type (Base_Type (T), Element_Type);
3153 if Aliased_Present (Component_Definition (Def)) then
3154 Set_Has_Aliased_Components (Etype (T));
3155 end if;
3157 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
3158 -- array to ensure that objects of this type are initialized.
3160 if Ada_Version >= Ada_05
3161 and then (Null_Exclusion_Present (Component_Definition (Def))
3162 or else Can_Never_Be_Null (Element_Type))
3163 then
3164 Set_Can_Never_Be_Null (T);
3166 if Null_Exclusion_Present (Component_Definition (Def))
3167 and then Can_Never_Be_Null (Element_Type)
3168 then
3169 Error_Msg_N
3170 ("(Ada 2005) already a null-excluding type",
3171 Subtype_Indication (Component_Definition (Def)));
3172 end if;
3173 end if;
3175 Priv := Private_Component (Element_Type);
3177 if Present (Priv) then
3179 -- Check for circular definitions
3181 if Priv = Any_Type then
3182 Set_Component_Type (Etype (T), Any_Type);
3184 -- There is a gap in the visibility of operations on the composite
3185 -- type only if the component type is defined in a different scope.
3187 elsif Scope (Priv) = Current_Scope then
3188 null;
3190 elsif Is_Limited_Type (Priv) then
3191 Set_Is_Limited_Composite (Etype (T));
3192 Set_Is_Limited_Composite (T);
3193 else
3194 Set_Is_Private_Composite (Etype (T));
3195 Set_Is_Private_Composite (T);
3196 end if;
3197 end if;
3199 -- Create a concatenation operator for the new type. Internal
3200 -- array types created for packed entities do not need such, they
3201 -- are compatible with the user-defined type.
3203 if Number_Dimensions (T) = 1
3204 and then not Is_Packed_Array_Type (T)
3205 then
3206 New_Concatenation_Op (T);
3207 end if;
3209 -- In the case of an unconstrained array the parser has already
3210 -- verified that all the indices are unconstrained but we still
3211 -- need to make sure that the element type is constrained.
3213 if Is_Indefinite_Subtype (Element_Type) then
3214 Error_Msg_N
3215 ("unconstrained element type in array declaration",
3216 Subtype_Indication (Component_Def));
3218 elsif Is_Abstract (Element_Type) then
3219 Error_Msg_N
3220 ("The type of a component cannot be abstract",
3221 Subtype_Indication (Component_Def));
3222 end if;
3224 end Array_Type_Declaration;
3226 ------------------------------------------------------
3227 -- Replace_Anonymous_Access_To_Protected_Subprogram --
3228 ------------------------------------------------------
3230 function Replace_Anonymous_Access_To_Protected_Subprogram
3231 (N : Node_Id;
3232 Prev_E : Entity_Id) return Entity_Id
3234 Loc : constant Source_Ptr := Sloc (N);
3236 Curr_Scope : constant Scope_Stack_Entry :=
3237 Scope_Stack.Table (Scope_Stack.Last);
3239 Anon : constant Entity_Id :=
3240 Make_Defining_Identifier (Loc,
3241 Chars => New_Internal_Name ('S'));
3243 Acc : Node_Id;
3244 Comp : Node_Id;
3245 Decl : Node_Id;
3246 P : Node_Id := Parent (N);
3248 begin
3249 Set_Is_Internal (Anon);
3251 case Nkind (N) is
3252 when N_Component_Declaration |
3253 N_Unconstrained_Array_Definition |
3254 N_Constrained_Array_Definition =>
3255 Comp := Component_Definition (N);
3256 Acc := Access_Definition (Component_Definition (N));
3258 when N_Discriminant_Specification =>
3259 Comp := Discriminant_Type (N);
3260 Acc := Discriminant_Type (N);
3262 when N_Parameter_Specification =>
3263 Comp := Parameter_Type (N);
3264 Acc := Parameter_Type (N);
3266 when others =>
3267 raise Program_Error;
3268 end case;
3270 Decl := Make_Full_Type_Declaration (Loc,
3271 Defining_Identifier => Anon,
3272 Type_Definition =>
3273 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
3275 Mark_Rewrite_Insertion (Decl);
3277 -- Insert the new declaration in the nearest enclosing scope
3279 while Present (P) and then not Has_Declarations (P) loop
3280 P := Parent (P);
3281 end loop;
3283 pragma Assert (Present (P));
3285 if Nkind (P) = N_Package_Specification then
3286 Prepend (Decl, Visible_Declarations (P));
3287 else
3288 Prepend (Decl, Declarations (P));
3289 end if;
3291 -- Replace the anonymous type with an occurrence of the new declaration.
3292 -- In all cases the rewriten node does not have the null-exclusion
3293 -- attribute because (if present) it was already inherited by the
3294 -- anonymous entity (Anon). Thus, in case of components we do not
3295 -- inherit this attribute.
3297 if Nkind (N) = N_Parameter_Specification then
3298 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
3299 Set_Etype (Defining_Identifier (N), Anon);
3300 Set_Null_Exclusion_Present (N, False);
3301 else
3302 Rewrite (Comp,
3303 Make_Component_Definition (Loc,
3304 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
3305 end if;
3307 Mark_Rewrite_Insertion (Comp);
3309 -- Temporarily remove the current scope from the stack to add the new
3310 -- declarations to the enclosing scope
3312 Scope_Stack.Decrement_Last;
3313 Analyze (Decl);
3314 Scope_Stack.Append (Curr_Scope);
3316 Set_Original_Access_Type (Anon, Prev_E);
3317 return Anon;
3318 end Replace_Anonymous_Access_To_Protected_Subprogram;
3320 -------------------------------
3321 -- Build_Derived_Access_Type --
3322 -------------------------------
3324 procedure Build_Derived_Access_Type
3325 (N : Node_Id;
3326 Parent_Type : Entity_Id;
3327 Derived_Type : Entity_Id)
3329 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
3331 Desig_Type : Entity_Id;
3332 Discr : Entity_Id;
3333 Discr_Con_Elist : Elist_Id;
3334 Discr_Con_El : Elmt_Id;
3335 Subt : Entity_Id;
3337 begin
3338 -- Set the designated type so it is available in case this is
3339 -- an access to a self-referential type, e.g. a standard list
3340 -- type with a next pointer. Will be reset after subtype is built.
3342 Set_Directly_Designated_Type
3343 (Derived_Type, Designated_Type (Parent_Type));
3345 Subt := Process_Subtype (S, N);
3347 if Nkind (S) /= N_Subtype_Indication
3348 and then Subt /= Base_Type (Subt)
3349 then
3350 Set_Ekind (Derived_Type, E_Access_Subtype);
3351 end if;
3353 if Ekind (Derived_Type) = E_Access_Subtype then
3354 declare
3355 Pbase : constant Entity_Id := Base_Type (Parent_Type);
3356 Ibase : constant Entity_Id :=
3357 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
3358 Svg_Chars : constant Name_Id := Chars (Ibase);
3359 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
3361 begin
3362 Copy_Node (Pbase, Ibase);
3364 Set_Chars (Ibase, Svg_Chars);
3365 Set_Next_Entity (Ibase, Svg_Next_E);
3366 Set_Sloc (Ibase, Sloc (Derived_Type));
3367 Set_Scope (Ibase, Scope (Derived_Type));
3368 Set_Freeze_Node (Ibase, Empty);
3369 Set_Is_Frozen (Ibase, False);
3370 Set_Comes_From_Source (Ibase, False);
3371 Set_Is_First_Subtype (Ibase, False);
3373 Set_Etype (Ibase, Pbase);
3374 Set_Etype (Derived_Type, Ibase);
3375 end;
3376 end if;
3378 Set_Directly_Designated_Type
3379 (Derived_Type, Designated_Type (Subt));
3381 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
3382 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
3383 Set_Size_Info (Derived_Type, Parent_Type);
3384 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
3385 Set_Depends_On_Private (Derived_Type,
3386 Has_Private_Component (Derived_Type));
3387 Conditional_Delay (Derived_Type, Subt);
3389 -- Ada 2005 (AI-231). Set the null-exclusion attribute
3391 if Null_Exclusion_Present (Type_Definition (N))
3392 or else Can_Never_Be_Null (Parent_Type)
3393 then
3394 Set_Can_Never_Be_Null (Derived_Type);
3395 end if;
3397 -- Note: we do not copy the Storage_Size_Variable, since
3398 -- we always go to the root type for this information.
3400 -- Apply range checks to discriminants for derived record case
3401 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
3403 Desig_Type := Designated_Type (Derived_Type);
3404 if Is_Composite_Type (Desig_Type)
3405 and then (not Is_Array_Type (Desig_Type))
3406 and then Has_Discriminants (Desig_Type)
3407 and then Base_Type (Desig_Type) /= Desig_Type
3408 then
3409 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
3410 Discr_Con_El := First_Elmt (Discr_Con_Elist);
3412 Discr := First_Discriminant (Base_Type (Desig_Type));
3413 while Present (Discr_Con_El) loop
3414 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
3415 Next_Elmt (Discr_Con_El);
3416 Next_Discriminant (Discr);
3417 end loop;
3418 end if;
3419 end Build_Derived_Access_Type;
3421 ------------------------------
3422 -- Build_Derived_Array_Type --
3423 ------------------------------
3425 procedure Build_Derived_Array_Type
3426 (N : Node_Id;
3427 Parent_Type : Entity_Id;
3428 Derived_Type : Entity_Id)
3430 Loc : constant Source_Ptr := Sloc (N);
3431 Tdef : constant Node_Id := Type_Definition (N);
3432 Indic : constant Node_Id := Subtype_Indication (Tdef);
3433 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3434 Implicit_Base : Entity_Id;
3435 New_Indic : Node_Id;
3437 procedure Make_Implicit_Base;
3438 -- If the parent subtype is constrained, the derived type is a
3439 -- subtype of an implicit base type derived from the parent base.
3441 ------------------------
3442 -- Make_Implicit_Base --
3443 ------------------------
3445 procedure Make_Implicit_Base is
3446 begin
3447 Implicit_Base :=
3448 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3450 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3451 Set_Etype (Implicit_Base, Parent_Base);
3453 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
3454 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
3456 Set_Has_Delayed_Freeze (Implicit_Base, True);
3457 end Make_Implicit_Base;
3459 -- Start of processing for Build_Derived_Array_Type
3461 begin
3462 if not Is_Constrained (Parent_Type) then
3463 if Nkind (Indic) /= N_Subtype_Indication then
3464 Set_Ekind (Derived_Type, E_Array_Type);
3466 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3467 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
3469 Set_Has_Delayed_Freeze (Derived_Type, True);
3471 else
3472 Make_Implicit_Base;
3473 Set_Etype (Derived_Type, Implicit_Base);
3475 New_Indic :=
3476 Make_Subtype_Declaration (Loc,
3477 Defining_Identifier => Derived_Type,
3478 Subtype_Indication =>
3479 Make_Subtype_Indication (Loc,
3480 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
3481 Constraint => Constraint (Indic)));
3483 Rewrite (N, New_Indic);
3484 Analyze (N);
3485 end if;
3487 else
3488 if Nkind (Indic) /= N_Subtype_Indication then
3489 Make_Implicit_Base;
3491 Set_Ekind (Derived_Type, Ekind (Parent_Type));
3492 Set_Etype (Derived_Type, Implicit_Base);
3493 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3495 else
3496 Error_Msg_N ("illegal constraint on constrained type", Indic);
3497 end if;
3498 end if;
3500 -- If the parent type is not a derived type itself, and is
3501 -- declared in a closed scope (e.g., a subprogram), then we
3502 -- need to explicitly introduce the new type's concatenation
3503 -- operator since Derive_Subprograms will not inherit the
3504 -- parent's operator. If the parent type is unconstrained, the
3505 -- operator is of the unconstrained base type.
3507 if Number_Dimensions (Parent_Type) = 1
3508 and then not Is_Limited_Type (Parent_Type)
3509 and then not Is_Derived_Type (Parent_Type)
3510 and then not Is_Package (Scope (Base_Type (Parent_Type)))
3511 then
3512 if not Is_Constrained (Parent_Type)
3513 and then Is_Constrained (Derived_Type)
3514 then
3515 New_Concatenation_Op (Implicit_Base);
3516 else
3517 New_Concatenation_Op (Derived_Type);
3518 end if;
3519 end if;
3520 end Build_Derived_Array_Type;
3522 -----------------------------------
3523 -- Build_Derived_Concurrent_Type --
3524 -----------------------------------
3526 procedure Build_Derived_Concurrent_Type
3527 (N : Node_Id;
3528 Parent_Type : Entity_Id;
3529 Derived_Type : Entity_Id)
3531 D_Constraint : Node_Id;
3532 Disc_Spec : Node_Id;
3533 Old_Disc : Entity_Id;
3534 New_Disc : Entity_Id;
3536 Constraint_Present : constant Boolean :=
3537 Nkind (Subtype_Indication (Type_Definition (N)))
3538 = N_Subtype_Indication;
3540 begin
3541 Set_Stored_Constraint (Derived_Type, No_Elist);
3543 if Is_Task_Type (Parent_Type) then
3544 Set_Storage_Size_Variable (Derived_Type,
3545 Storage_Size_Variable (Parent_Type));
3546 end if;
3548 if Present (Discriminant_Specifications (N)) then
3549 New_Scope (Derived_Type);
3550 Check_Or_Process_Discriminants (N, Derived_Type);
3551 End_Scope;
3553 elsif Constraint_Present then
3555 -- Build constrained subtype and derive from it
3557 declare
3558 Loc : constant Source_Ptr := Sloc (N);
3559 Anon : constant Entity_Id :=
3560 Make_Defining_Identifier (Loc,
3561 New_External_Name (Chars (Derived_Type), 'T'));
3562 Decl : Node_Id;
3564 begin
3565 Decl :=
3566 Make_Subtype_Declaration (Loc,
3567 Defining_Identifier => Anon,
3568 Subtype_Indication =>
3569 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
3570 Insert_Before (N, Decl);
3571 Rewrite (Subtype_Indication (Type_Definition (N)),
3572 New_Occurrence_Of (Anon, Loc));
3573 Analyze (Decl);
3574 Set_Analyzed (Derived_Type, False);
3575 Analyze (N);
3576 return;
3577 end;
3578 end if;
3580 -- All attributes are inherited from parent. In particular,
3581 -- entries and the corresponding record type are the same.
3582 -- Discriminants may be renamed, and must be treated separately.
3584 Set_Has_Discriminants
3585 (Derived_Type, Has_Discriminants (Parent_Type));
3586 Set_Corresponding_Record_Type
3587 (Derived_Type, Corresponding_Record_Type (Parent_Type));
3589 if Constraint_Present then
3590 if not Has_Discriminants (Parent_Type) then
3591 Error_Msg_N ("untagged parent must have discriminants", N);
3593 elsif Present (Discriminant_Specifications (N)) then
3595 -- Verify that new discriminants are used to constrain
3596 -- the old ones.
3598 Old_Disc := First_Discriminant (Parent_Type);
3599 New_Disc := First_Discriminant (Derived_Type);
3600 Disc_Spec := First (Discriminant_Specifications (N));
3601 D_Constraint :=
3602 First
3603 (Constraints
3604 (Constraint (Subtype_Indication (Type_Definition (N)))));
3606 while Present (Old_Disc) and then Present (Disc_Spec) loop
3608 if Nkind (Discriminant_Type (Disc_Spec)) /=
3609 N_Access_Definition
3610 then
3611 Analyze (Discriminant_Type (Disc_Spec));
3613 if not Subtypes_Statically_Compatible (
3614 Etype (Discriminant_Type (Disc_Spec)),
3615 Etype (Old_Disc))
3616 then
3617 Error_Msg_N
3618 ("not statically compatible with parent discriminant",
3619 Discriminant_Type (Disc_Spec));
3620 end if;
3621 end if;
3623 if Nkind (D_Constraint) = N_Identifier
3624 and then Chars (D_Constraint) /=
3625 Chars (Defining_Identifier (Disc_Spec))
3626 then
3627 Error_Msg_N ("new discriminants must constrain old ones",
3628 D_Constraint);
3629 else
3630 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
3631 end if;
3633 Next_Discriminant (Old_Disc);
3634 Next_Discriminant (New_Disc);
3635 Next (Disc_Spec);
3636 end loop;
3638 if Present (Old_Disc) or else Present (Disc_Spec) then
3639 Error_Msg_N ("discriminant mismatch in derivation", N);
3640 end if;
3642 end if;
3644 elsif Present (Discriminant_Specifications (N)) then
3645 Error_Msg_N
3646 ("missing discriminant constraint in untagged derivation",
3648 end if;
3650 if Present (Discriminant_Specifications (N)) then
3651 Old_Disc := First_Discriminant (Parent_Type);
3652 while Present (Old_Disc) loop
3654 if No (Next_Entity (Old_Disc))
3655 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
3656 then
3657 Set_Next_Entity (Last_Entity (Derived_Type),
3658 Next_Entity (Old_Disc));
3659 exit;
3660 end if;
3662 Next_Discriminant (Old_Disc);
3663 end loop;
3665 else
3666 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
3667 if Has_Discriminants (Parent_Type) then
3668 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3669 Set_Discriminant_Constraint (
3670 Derived_Type, Discriminant_Constraint (Parent_Type));
3671 end if;
3672 end if;
3674 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
3676 Set_Has_Completion (Derived_Type);
3677 end Build_Derived_Concurrent_Type;
3679 ------------------------------------
3680 -- Build_Derived_Enumeration_Type --
3681 ------------------------------------
3683 procedure Build_Derived_Enumeration_Type
3684 (N : Node_Id;
3685 Parent_Type : Entity_Id;
3686 Derived_Type : Entity_Id)
3688 Loc : constant Source_Ptr := Sloc (N);
3689 Def : constant Node_Id := Type_Definition (N);
3690 Indic : constant Node_Id := Subtype_Indication (Def);
3691 Implicit_Base : Entity_Id;
3692 Literal : Entity_Id;
3693 New_Lit : Entity_Id;
3694 Literals_List : List_Id;
3695 Type_Decl : Node_Id;
3696 Hi, Lo : Node_Id;
3697 Rang_Expr : Node_Id;
3699 begin
3700 -- Since types Standard.Character and Standard.Wide_Character do
3701 -- not have explicit literals lists we need to process types derived
3702 -- from them specially. This is handled by Derived_Standard_Character.
3703 -- If the parent type is a generic type, there are no literals either,
3704 -- and we construct the same skeletal representation as for the generic
3705 -- parent type.
3707 if Root_Type (Parent_Type) = Standard_Character
3708 or else Root_Type (Parent_Type) = Standard_Wide_Character
3709 or else Root_Type (Parent_Type) = Standard_Wide_Wide_Character
3710 then
3711 Derived_Standard_Character (N, Parent_Type, Derived_Type);
3713 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
3714 declare
3715 Lo : Node_Id;
3716 Hi : Node_Id;
3718 begin
3719 Lo :=
3720 Make_Attribute_Reference (Loc,
3721 Attribute_Name => Name_First,
3722 Prefix => New_Reference_To (Derived_Type, Loc));
3723 Set_Etype (Lo, Derived_Type);
3725 Hi :=
3726 Make_Attribute_Reference (Loc,
3727 Attribute_Name => Name_Last,
3728 Prefix => New_Reference_To (Derived_Type, Loc));
3729 Set_Etype (Hi, Derived_Type);
3731 Set_Scalar_Range (Derived_Type,
3732 Make_Range (Loc,
3733 Low_Bound => Lo,
3734 High_Bound => Hi));
3735 end;
3737 else
3738 -- If a constraint is present, analyze the bounds to catch
3739 -- premature usage of the derived literals.
3741 if Nkind (Indic) = N_Subtype_Indication
3742 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
3743 then
3744 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
3745 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
3746 end if;
3748 -- Introduce an implicit base type for the derived type even
3749 -- if there is no constraint attached to it, since this seems
3750 -- closer to the Ada semantics. Build a full type declaration
3751 -- tree for the derived type using the implicit base type as
3752 -- the defining identifier. The build a subtype declaration
3753 -- tree which applies the constraint (if any) have it replace
3754 -- the derived type declaration.
3756 Literal := First_Literal (Parent_Type);
3757 Literals_List := New_List;
3759 while Present (Literal)
3760 and then Ekind (Literal) = E_Enumeration_Literal
3761 loop
3762 -- Literals of the derived type have the same representation as
3763 -- those of the parent type, but this representation can be
3764 -- overridden by an explicit representation clause. Indicate
3765 -- that there is no explicit representation given yet. These
3766 -- derived literals are implicit operations of the new type,
3767 -- and can be overriden by explicit ones.
3769 if Nkind (Literal) = N_Defining_Character_Literal then
3770 New_Lit :=
3771 Make_Defining_Character_Literal (Loc, Chars (Literal));
3772 else
3773 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
3774 end if;
3776 Set_Ekind (New_Lit, E_Enumeration_Literal);
3777 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
3778 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
3779 Set_Enumeration_Rep_Expr (New_Lit, Empty);
3780 Set_Alias (New_Lit, Literal);
3781 Set_Is_Known_Valid (New_Lit, True);
3783 Append (New_Lit, Literals_List);
3784 Next_Literal (Literal);
3785 end loop;
3787 Implicit_Base :=
3788 Make_Defining_Identifier (Sloc (Derived_Type),
3789 New_External_Name (Chars (Derived_Type), 'B'));
3791 -- Indicate the proper nature of the derived type. This must
3792 -- be done before analysis of the literals, to recognize cases
3793 -- when a literal may be hidden by a previous explicit function
3794 -- definition (cf. c83031a).
3796 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
3797 Set_Etype (Derived_Type, Implicit_Base);
3799 Type_Decl :=
3800 Make_Full_Type_Declaration (Loc,
3801 Defining_Identifier => Implicit_Base,
3802 Discriminant_Specifications => No_List,
3803 Type_Definition =>
3804 Make_Enumeration_Type_Definition (Loc, Literals_List));
3806 Mark_Rewrite_Insertion (Type_Decl);
3807 Insert_Before (N, Type_Decl);
3808 Analyze (Type_Decl);
3810 -- After the implicit base is analyzed its Etype needs to be changed
3811 -- to reflect the fact that it is derived from the parent type which
3812 -- was ignored during analysis. We also set the size at this point.
3814 Set_Etype (Implicit_Base, Parent_Type);
3816 Set_Size_Info (Implicit_Base, Parent_Type);
3817 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
3818 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
3820 Set_Has_Non_Standard_Rep
3821 (Implicit_Base, Has_Non_Standard_Rep
3822 (Parent_Type));
3823 Set_Has_Delayed_Freeze (Implicit_Base);
3825 -- Process the subtype indication including a validation check
3826 -- on the constraint, if any. If a constraint is given, its bounds
3827 -- must be implicitly converted to the new type.
3829 if Nkind (Indic) = N_Subtype_Indication then
3830 declare
3831 R : constant Node_Id :=
3832 Range_Expression (Constraint (Indic));
3834 begin
3835 if Nkind (R) = N_Range then
3836 Hi := Build_Scalar_Bound
3837 (High_Bound (R), Parent_Type, Implicit_Base);
3838 Lo := Build_Scalar_Bound
3839 (Low_Bound (R), Parent_Type, Implicit_Base);
3841 else
3842 -- Constraint is a Range attribute. Replace with the
3843 -- explicit mention of the bounds of the prefix, which must
3844 -- be a subtype.
3846 Analyze (Prefix (R));
3847 Hi :=
3848 Convert_To (Implicit_Base,
3849 Make_Attribute_Reference (Loc,
3850 Attribute_Name => Name_Last,
3851 Prefix =>
3852 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3854 Lo :=
3855 Convert_To (Implicit_Base,
3856 Make_Attribute_Reference (Loc,
3857 Attribute_Name => Name_First,
3858 Prefix =>
3859 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3860 end if;
3861 end;
3863 else
3864 Hi :=
3865 Build_Scalar_Bound
3866 (Type_High_Bound (Parent_Type),
3867 Parent_Type, Implicit_Base);
3868 Lo :=
3869 Build_Scalar_Bound
3870 (Type_Low_Bound (Parent_Type),
3871 Parent_Type, Implicit_Base);
3872 end if;
3874 Rang_Expr :=
3875 Make_Range (Loc,
3876 Low_Bound => Lo,
3877 High_Bound => Hi);
3879 -- If we constructed a default range for the case where no range
3880 -- was given, then the expressions in the range must not freeze
3881 -- since they do not correspond to expressions in the source.
3883 if Nkind (Indic) /= N_Subtype_Indication then
3884 Set_Must_Not_Freeze (Lo);
3885 Set_Must_Not_Freeze (Hi);
3886 Set_Must_Not_Freeze (Rang_Expr);
3887 end if;
3889 Rewrite (N,
3890 Make_Subtype_Declaration (Loc,
3891 Defining_Identifier => Derived_Type,
3892 Subtype_Indication =>
3893 Make_Subtype_Indication (Loc,
3894 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
3895 Constraint =>
3896 Make_Range_Constraint (Loc,
3897 Range_Expression => Rang_Expr))));
3899 Analyze (N);
3901 -- If pragma Discard_Names applies on the first subtype of the
3902 -- parent type, then it must be applied on this subtype as well.
3904 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
3905 Set_Discard_Names (Derived_Type);
3906 end if;
3908 -- Apply a range check. Since this range expression doesn't have an
3909 -- Etype, we have to specifically pass the Source_Typ parameter. Is
3910 -- this right???
3912 if Nkind (Indic) = N_Subtype_Indication then
3913 Apply_Range_Check (Range_Expression (Constraint (Indic)),
3914 Parent_Type,
3915 Source_Typ => Entity (Subtype_Mark (Indic)));
3916 end if;
3917 end if;
3918 end Build_Derived_Enumeration_Type;
3920 --------------------------------
3921 -- Build_Derived_Numeric_Type --
3922 --------------------------------
3924 procedure Build_Derived_Numeric_Type
3925 (N : Node_Id;
3926 Parent_Type : Entity_Id;
3927 Derived_Type : Entity_Id)
3929 Loc : constant Source_Ptr := Sloc (N);
3930 Tdef : constant Node_Id := Type_Definition (N);
3931 Indic : constant Node_Id := Subtype_Indication (Tdef);
3932 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3933 No_Constraint : constant Boolean := Nkind (Indic) /=
3934 N_Subtype_Indication;
3935 Implicit_Base : Entity_Id;
3937 Lo : Node_Id;
3938 Hi : Node_Id;
3940 begin
3941 -- Process the subtype indication including a validation check on
3942 -- the constraint if any.
3944 Discard_Node (Process_Subtype (Indic, N));
3946 -- Introduce an implicit base type for the derived type even if there
3947 -- is no constraint attached to it, since this seems closer to the Ada
3948 -- semantics.
3950 Implicit_Base :=
3951 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3953 Set_Etype (Implicit_Base, Parent_Base);
3954 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3955 Set_Size_Info (Implicit_Base, Parent_Base);
3956 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3957 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
3958 Set_Parent (Implicit_Base, Parent (Derived_Type));
3960 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
3961 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3962 end if;
3964 Set_Has_Delayed_Freeze (Implicit_Base);
3966 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
3967 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
3969 Set_Scalar_Range (Implicit_Base,
3970 Make_Range (Loc,
3971 Low_Bound => Lo,
3972 High_Bound => Hi));
3974 if Has_Infinities (Parent_Base) then
3975 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
3976 end if;
3978 -- The Derived_Type, which is the entity of the declaration, is a
3979 -- subtype of the implicit base. Its Ekind is a subtype, even in the
3980 -- absence of an explicit constraint.
3982 Set_Etype (Derived_Type, Implicit_Base);
3984 -- If we did not have a constraint, then the Ekind is set from the
3985 -- parent type (otherwise Process_Subtype has set the bounds)
3987 if No_Constraint then
3988 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
3989 end if;
3991 -- If we did not have a range constraint, then set the range from the
3992 -- parent type. Otherwise, the call to Process_Subtype has set the
3993 -- bounds.
3995 if No_Constraint
3996 or else not Has_Range_Constraint (Indic)
3997 then
3998 Set_Scalar_Range (Derived_Type,
3999 Make_Range (Loc,
4000 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
4001 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
4002 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4004 if Has_Infinities (Parent_Type) then
4005 Set_Includes_Infinities (Scalar_Range (Derived_Type));
4006 end if;
4007 end if;
4009 -- Set remaining type-specific fields, depending on numeric type
4011 if Is_Modular_Integer_Type (Parent_Type) then
4012 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
4014 Set_Non_Binary_Modulus
4015 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
4017 elsif Is_Floating_Point_Type (Parent_Type) then
4019 -- Digits of base type is always copied from the digits value of
4020 -- the parent base type, but the digits of the derived type will
4021 -- already have been set if there was a constraint present.
4023 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4024 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
4026 if No_Constraint then
4027 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
4028 end if;
4030 elsif Is_Fixed_Point_Type (Parent_Type) then
4032 -- Small of base type and derived type are always copied from the
4033 -- parent base type, since smalls never change. The delta of the
4034 -- base type is also copied from the parent base type. However the
4035 -- delta of the derived type will have been set already if a
4036 -- constraint was present.
4038 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
4039 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
4040 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
4042 if No_Constraint then
4043 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
4044 end if;
4046 -- The scale and machine radix in the decimal case are always
4047 -- copied from the parent base type.
4049 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
4050 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
4051 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
4053 Set_Machine_Radix_10
4054 (Derived_Type, Machine_Radix_10 (Parent_Base));
4055 Set_Machine_Radix_10
4056 (Implicit_Base, Machine_Radix_10 (Parent_Base));
4058 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4060 if No_Constraint then
4061 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
4063 else
4064 -- the analysis of the subtype_indication sets the
4065 -- digits value of the derived type.
4067 null;
4068 end if;
4069 end if;
4070 end if;
4072 -- The type of the bounds is that of the parent type, and they
4073 -- must be converted to the derived type.
4075 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
4077 -- The implicit_base should be frozen when the derived type is frozen,
4078 -- but note that it is used in the conversions of the bounds. For fixed
4079 -- types we delay the determination of the bounds until the proper
4080 -- freezing point. For other numeric types this is rejected by GCC, for
4081 -- reasons that are currently unclear (???), so we choose to freeze the
4082 -- implicit base now. In the case of integers and floating point types
4083 -- this is harmless because subsequent representation clauses cannot
4084 -- affect anything, but it is still baffling that we cannot use the
4085 -- same mechanism for all derived numeric types.
4087 if Is_Fixed_Point_Type (Parent_Type) then
4088 Conditional_Delay (Implicit_Base, Parent_Type);
4089 else
4090 Freeze_Before (N, Implicit_Base);
4091 end if;
4092 end Build_Derived_Numeric_Type;
4094 --------------------------------
4095 -- Build_Derived_Private_Type --
4096 --------------------------------
4098 procedure Build_Derived_Private_Type
4099 (N : Node_Id;
4100 Parent_Type : Entity_Id;
4101 Derived_Type : Entity_Id;
4102 Is_Completion : Boolean;
4103 Derive_Subps : Boolean := True)
4105 Der_Base : Entity_Id;
4106 Discr : Entity_Id;
4107 Full_Decl : Node_Id := Empty;
4108 Full_Der : Entity_Id;
4109 Full_P : Entity_Id;
4110 Last_Discr : Entity_Id;
4111 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
4112 Swapped : Boolean := False;
4114 procedure Copy_And_Build;
4115 -- Copy derived type declaration, replace parent with its full view,
4116 -- and analyze new declaration.
4118 --------------------
4119 -- Copy_And_Build --
4120 --------------------
4122 procedure Copy_And_Build is
4123 Full_N : Node_Id;
4125 begin
4126 if Ekind (Parent_Type) in Record_Kind
4127 or else
4128 (Ekind (Parent_Type) in Enumeration_Kind
4129 and then Root_Type (Parent_Type) /= Standard_Character
4130 and then Root_Type (Parent_Type) /= Standard_Wide_Character
4131 and then Root_Type (Parent_Type) /= Standard_Wide_Wide_Character
4132 and then not Is_Generic_Type (Root_Type (Parent_Type)))
4133 then
4134 Full_N := New_Copy_Tree (N);
4135 Insert_After (N, Full_N);
4136 Build_Derived_Type (
4137 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
4139 else
4140 Build_Derived_Type (
4141 N, Parent_Type, Full_Der, True, Derive_Subps => False);
4142 end if;
4143 end Copy_And_Build;
4145 -- Start of processing for Build_Derived_Private_Type
4147 begin
4148 if Is_Tagged_Type (Parent_Type) then
4149 Build_Derived_Record_Type
4150 (N, Parent_Type, Derived_Type, Derive_Subps);
4151 return;
4153 elsif Has_Discriminants (Parent_Type) then
4154 if Present (Full_View (Parent_Type)) then
4155 if not Is_Completion then
4157 -- Copy declaration for subsequent analysis, to provide a
4158 -- completion for what is a private declaration. Indicate that
4159 -- the full type is internally generated.
4161 Full_Decl := New_Copy_Tree (N);
4162 Full_Der := New_Copy (Derived_Type);
4163 Set_Comes_From_Source (Full_Decl, False);
4165 Insert_After (N, Full_Decl);
4167 else
4168 -- If this is a completion, the full view being built is
4169 -- itself private. We build a subtype of the parent with
4170 -- the same constraints as this full view, to convey to the
4171 -- back end the constrained components and the size of this
4172 -- subtype. If the parent is constrained, its full view can
4173 -- serve as the underlying full view of the derived type.
4175 if No (Discriminant_Specifications (N)) then
4176 if Nkind (Subtype_Indication (Type_Definition (N))) =
4177 N_Subtype_Indication
4178 then
4179 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
4181 elsif Is_Constrained (Full_View (Parent_Type)) then
4182 Set_Underlying_Full_View (Derived_Type,
4183 Full_View (Parent_Type));
4184 end if;
4186 else
4187 -- If there are new discriminants, the parent subtype is
4188 -- constrained by them, but it is not clear how to build
4189 -- the underlying_full_view in this case ???
4191 null;
4192 end if;
4193 end if;
4194 end if;
4196 -- Build partial view of derived type from partial view of parent
4198 Build_Derived_Record_Type
4199 (N, Parent_Type, Derived_Type, Derive_Subps);
4201 if Present (Full_View (Parent_Type))
4202 and then not Is_Completion
4203 then
4204 if not In_Open_Scopes (Par_Scope)
4205 or else not In_Same_Source_Unit (N, Parent_Type)
4206 then
4207 -- Swap partial and full views temporarily
4209 Install_Private_Declarations (Par_Scope);
4210 Install_Visible_Declarations (Par_Scope);
4211 Swapped := True;
4212 end if;
4214 -- Build full view of derived type from full view of parent which
4215 -- is now installed. Subprograms have been derived on the partial
4216 -- view, the completion does not derive them anew.
4218 if not Is_Tagged_Type (Parent_Type) then
4219 Build_Derived_Record_Type
4220 (Full_Decl, Parent_Type, Full_Der, False);
4222 else
4223 -- If full view of parent is tagged, the completion
4224 -- inherits the proper primitive operations.
4226 Set_Defining_Identifier (Full_Decl, Full_Der);
4227 Build_Derived_Record_Type
4228 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
4229 Set_Analyzed (Full_Decl);
4230 end if;
4232 if Swapped then
4233 Uninstall_Declarations (Par_Scope);
4235 if In_Open_Scopes (Par_Scope) then
4236 Install_Visible_Declarations (Par_Scope);
4237 end if;
4238 end if;
4240 Der_Base := Base_Type (Derived_Type);
4241 Set_Full_View (Derived_Type, Full_Der);
4242 Set_Full_View (Der_Base, Base_Type (Full_Der));
4244 -- Copy the discriminant list from full view to the partial views
4245 -- (base type and its subtype). Gigi requires that the partial
4246 -- and full views have the same discriminants.
4248 -- Note that since the partial view is pointing to discriminants
4249 -- in the full view, their scope will be that of the full view.
4250 -- This might cause some front end problems and need
4251 -- adjustment???
4253 Discr := First_Discriminant (Base_Type (Full_Der));
4254 Set_First_Entity (Der_Base, Discr);
4256 loop
4257 Last_Discr := Discr;
4258 Next_Discriminant (Discr);
4259 exit when No (Discr);
4260 end loop;
4262 Set_Last_Entity (Der_Base, Last_Discr);
4264 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
4265 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
4266 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
4268 else
4269 -- If this is a completion, the derived type stays private
4270 -- and there is no need to create a further full view, except
4271 -- in the unusual case when the derivation is nested within a
4272 -- child unit, see below.
4274 null;
4275 end if;
4277 elsif Present (Full_View (Parent_Type))
4278 and then Has_Discriminants (Full_View (Parent_Type))
4279 then
4280 if Has_Unknown_Discriminants (Parent_Type)
4281 and then Nkind (Subtype_Indication (Type_Definition (N)))
4282 = N_Subtype_Indication
4283 then
4284 Error_Msg_N
4285 ("cannot constrain type with unknown discriminants",
4286 Subtype_Indication (Type_Definition (N)));
4287 return;
4288 end if;
4290 -- If full view of parent is a record type, Build full view as
4291 -- a derivation from the parent's full view. Partial view remains
4292 -- private. For code generation and linking, the full view must
4293 -- have the same public status as the partial one. This full view
4294 -- is only needed if the parent type is in an enclosing scope, so
4295 -- that the full view may actually become visible, e.g. in a child
4296 -- unit. This is both more efficient, and avoids order of freezing
4297 -- problems with the added entities.
4299 if not Is_Private_Type (Full_View (Parent_Type))
4300 and then (In_Open_Scopes (Scope (Parent_Type)))
4301 then
4302 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
4303 Chars (Derived_Type));
4304 Set_Is_Itype (Full_Der);
4305 Set_Has_Private_Declaration (Full_Der);
4306 Set_Has_Private_Declaration (Derived_Type);
4307 Set_Associated_Node_For_Itype (Full_Der, N);
4308 Set_Parent (Full_Der, Parent (Derived_Type));
4309 Set_Full_View (Derived_Type, Full_Der);
4310 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
4311 Full_P := Full_View (Parent_Type);
4312 Exchange_Declarations (Parent_Type);
4313 Copy_And_Build;
4314 Exchange_Declarations (Full_P);
4316 else
4317 Build_Derived_Record_Type
4318 (N, Full_View (Parent_Type), Derived_Type,
4319 Derive_Subps => False);
4320 end if;
4322 -- In any case, the primitive operations are inherited from
4323 -- the parent type, not from the internal full view.
4325 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
4327 if Derive_Subps then
4328 Derive_Subprograms (Parent_Type, Derived_Type);
4329 end if;
4331 else
4332 -- Untagged type, No discriminants on either view
4334 if Nkind (Subtype_Indication (Type_Definition (N))) =
4335 N_Subtype_Indication
4336 then
4337 Error_Msg_N
4338 ("illegal constraint on type without discriminants", N);
4339 end if;
4341 if Present (Discriminant_Specifications (N))
4342 and then Present (Full_View (Parent_Type))
4343 and then not Is_Tagged_Type (Full_View (Parent_Type))
4344 then
4345 Error_Msg_N
4346 ("cannot add discriminants to untagged type", N);
4347 end if;
4349 Set_Stored_Constraint (Derived_Type, No_Elist);
4350 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4351 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
4352 Set_Has_Controlled_Component
4353 (Derived_Type, Has_Controlled_Component
4354 (Parent_Type));
4356 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4358 if not Is_Controlled (Parent_Type) then
4359 Set_Finalize_Storage_Only
4360 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
4361 end if;
4363 -- Construct the implicit full view by deriving from full view of
4364 -- the parent type. In order to get proper visibility, we install
4365 -- the parent scope and its declarations.
4367 -- ??? if the parent is untagged private and its completion is
4368 -- tagged, this mechanism will not work because we cannot derive
4369 -- from the tagged full view unless we have an extension
4371 if Present (Full_View (Parent_Type))
4372 and then not Is_Tagged_Type (Full_View (Parent_Type))
4373 and then not Is_Completion
4374 then
4375 Full_Der :=
4376 Make_Defining_Identifier (Sloc (Derived_Type),
4377 Chars => Chars (Derived_Type));
4378 Set_Is_Itype (Full_Der);
4379 Set_Has_Private_Declaration (Full_Der);
4380 Set_Has_Private_Declaration (Derived_Type);
4381 Set_Associated_Node_For_Itype (Full_Der, N);
4382 Set_Parent (Full_Der, Parent (Derived_Type));
4383 Set_Full_View (Derived_Type, Full_Der);
4385 if not In_Open_Scopes (Par_Scope) then
4386 Install_Private_Declarations (Par_Scope);
4387 Install_Visible_Declarations (Par_Scope);
4388 Copy_And_Build;
4389 Uninstall_Declarations (Par_Scope);
4391 -- If parent scope is open and in another unit, and parent has a
4392 -- completion, then the derivation is taking place in the visible
4393 -- part of a child unit. In that case retrieve the full view of
4394 -- the parent momentarily.
4396 elsif not In_Same_Source_Unit (N, Parent_Type) then
4397 Full_P := Full_View (Parent_Type);
4398 Exchange_Declarations (Parent_Type);
4399 Copy_And_Build;
4400 Exchange_Declarations (Full_P);
4402 -- Otherwise it is a local derivation
4404 else
4405 Copy_And_Build;
4406 end if;
4408 Set_Scope (Full_Der, Current_Scope);
4409 Set_Is_First_Subtype (Full_Der,
4410 Is_First_Subtype (Derived_Type));
4411 Set_Has_Size_Clause (Full_Der, False);
4412 Set_Has_Alignment_Clause (Full_Der, False);
4413 Set_Next_Entity (Full_Der, Empty);
4414 Set_Has_Delayed_Freeze (Full_Der);
4415 Set_Is_Frozen (Full_Der, False);
4416 Set_Freeze_Node (Full_Der, Empty);
4417 Set_Depends_On_Private (Full_Der,
4418 Has_Private_Component (Full_Der));
4419 Set_Public_Status (Full_Der);
4420 end if;
4421 end if;
4423 Set_Has_Unknown_Discriminants (Derived_Type,
4424 Has_Unknown_Discriminants (Parent_Type));
4426 if Is_Private_Type (Derived_Type) then
4427 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4428 end if;
4430 if Is_Private_Type (Parent_Type)
4431 and then Base_Type (Parent_Type) = Parent_Type
4432 and then In_Open_Scopes (Scope (Parent_Type))
4433 then
4434 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
4436 if Is_Child_Unit (Scope (Current_Scope))
4437 and then Is_Completion
4438 and then In_Private_Part (Current_Scope)
4439 and then Scope (Parent_Type) /= Current_Scope
4440 then
4441 -- This is the unusual case where a type completed by a private
4442 -- derivation occurs within a package nested in a child unit,
4443 -- and the parent is declared in an ancestor. In this case, the
4444 -- full view of the parent type will become visible in the body
4445 -- of the enclosing child, and only then will the current type
4446 -- be possibly non-private. We build a underlying full view that
4447 -- will be installed when the enclosing child body is compiled.
4449 declare
4450 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
4452 begin
4453 Full_Der :=
4454 Make_Defining_Identifier (Sloc (Derived_Type),
4455 Chars (Derived_Type));
4456 Set_Is_Itype (Full_Der);
4457 Set_Itype (IR, Full_Der);
4458 Insert_After (N, IR);
4460 -- The full view will be used to swap entities on entry/exit
4461 -- to the body, and must appear in the entity list for the
4462 -- package.
4464 Append_Entity (Full_Der, Scope (Derived_Type));
4465 Set_Has_Private_Declaration (Full_Der);
4466 Set_Has_Private_Declaration (Derived_Type);
4467 Set_Associated_Node_For_Itype (Full_Der, N);
4468 Set_Parent (Full_Der, Parent (Derived_Type));
4469 Full_P := Full_View (Parent_Type);
4470 Exchange_Declarations (Parent_Type);
4471 Copy_And_Build;
4472 Exchange_Declarations (Full_P);
4473 Set_Underlying_Full_View (Derived_Type, Full_Der);
4474 end;
4475 end if;
4476 end if;
4477 end Build_Derived_Private_Type;
4479 -------------------------------
4480 -- Build_Derived_Record_Type --
4481 -------------------------------
4483 -- 1. INTRODUCTION
4485 -- Ideally we would like to use the same model of type derivation for
4486 -- tagged and untagged record types. Unfortunately this is not quite
4487 -- possible because the semantics of representation clauses is different
4488 -- for tagged and untagged records under inheritance. Consider the
4489 -- following:
4491 -- type R (...) is [tagged] record ... end record;
4492 -- type T (...) is new R (...) [with ...];
4494 -- The representation clauses of T can specify a completely different
4495 -- record layout from R's. Hence the same component can be placed in
4496 -- two very different positions in objects of type T and R. If R and T
4497 -- are tagged types, representation clauses for T can only specify the
4498 -- layout of non inherited components, thus components that are common
4499 -- in R and T have the same position in objects of type R and T.
4501 -- This has two implications. The first is that the entire tree for R's
4502 -- declaration needs to be copied for T in the untagged case, so that T
4503 -- can be viewed as a record type of its own with its own representation
4504 -- clauses. The second implication is the way we handle discriminants.
4505 -- Specifically, in the untagged case we need a way to communicate to Gigi
4506 -- what are the real discriminants in the record, while for the semantics
4507 -- we need to consider those introduced by the user to rename the
4508 -- discriminants in the parent type. This is handled by introducing the
4509 -- notion of stored discriminants. See below for more.
4511 -- Fortunately the way regular components are inherited can be handled in
4512 -- the same way in tagged and untagged types.
4514 -- To complicate things a bit more the private view of a private extension
4515 -- cannot be handled in the same way as the full view (for one thing the
4516 -- semantic rules are somewhat different). We will explain what differs
4517 -- below.
4519 -- 2. DISCRIMINANTS UNDER INHERITANCE
4521 -- The semantic rules governing the discriminants of derived types are
4522 -- quite subtle.
4524 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
4525 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
4527 -- If parent type has discriminants, then the discriminants that are
4528 -- declared in the derived type are [3.4 (11)]:
4530 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
4531 -- there is one;
4533 -- o Otherwise, each discriminant of the parent type (implicitly declared
4534 -- in the same order with the same specifications). In this case, the
4535 -- discriminants are said to be "inherited", or if unknown in the parent
4536 -- are also unknown in the derived type.
4538 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
4540 -- o The parent subtype shall be constrained;
4542 -- o If the parent type is not a tagged type, then each discriminant of
4543 -- the derived type shall be used in the constraint defining a parent
4544 -- subtype [Implementation note: this ensures that the new discriminant
4545 -- can share storage with an existing discriminant.].
4547 -- For the derived type each discriminant of the parent type is either
4548 -- inherited, constrained to equal some new discriminant of the derived
4549 -- type, or constrained to the value of an expression.
4551 -- When inherited or constrained to equal some new discriminant, the
4552 -- parent discriminant and the discriminant of the derived type are said
4553 -- to "correspond".
4555 -- If a discriminant of the parent type is constrained to a specific value
4556 -- in the derived type definition, then the discriminant is said to be
4557 -- "specified" by that derived type definition.
4559 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
4561 -- We have spoken about stored discriminants in point 1 (introduction)
4562 -- above. There are two sort of stored discriminants: implicit and
4563 -- explicit. As long as the derived type inherits the same discriminants as
4564 -- the root record type, stored discriminants are the same as regular
4565 -- discriminants, and are said to be implicit. However, if any discriminant
4566 -- in the root type was renamed in the derived type, then the derived
4567 -- type will contain explicit stored discriminants. Explicit stored
4568 -- discriminants are discriminants in addition to the semantically visible
4569 -- discriminants defined for the derived type. Stored discriminants are
4570 -- used by Gigi to figure out what are the physical discriminants in
4571 -- objects of the derived type (see precise definition in einfo.ads).
4572 -- As an example, consider the following:
4574 -- type R (D1, D2, D3 : Int) is record ... end record;
4575 -- type T1 is new R;
4576 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
4577 -- type T3 is new T2;
4578 -- type T4 (Y : Int) is new T3 (Y, 99);
4580 -- The following table summarizes the discriminants and stored
4581 -- discriminants in R and T1 through T4.
4583 -- Type Discrim Stored Discrim Comment
4584 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
4585 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
4586 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
4587 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
4588 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
4590 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
4591 -- find the corresponding discriminant in the parent type, while
4592 -- Original_Record_Component (abbreviated ORC below), the actual physical
4593 -- component that is renamed. Finally the field Is_Completely_Hidden
4594 -- (abbreviated ICH below) is set for all explicit stored discriminants
4595 -- (see einfo.ads for more info). For the above example this gives:
4597 -- Discrim CD ORC ICH
4598 -- ^^^^^^^ ^^ ^^^ ^^^
4599 -- D1 in R empty itself no
4600 -- D2 in R empty itself no
4601 -- D3 in R empty itself no
4603 -- D1 in T1 D1 in R itself no
4604 -- D2 in T1 D2 in R itself no
4605 -- D3 in T1 D3 in R itself no
4607 -- X1 in T2 D3 in T1 D3 in T2 no
4608 -- X2 in T2 D1 in T1 D1 in T2 no
4609 -- D1 in T2 empty itself yes
4610 -- D2 in T2 empty itself yes
4611 -- D3 in T2 empty itself yes
4613 -- X1 in T3 X1 in T2 D3 in T3 no
4614 -- X2 in T3 X2 in T2 D1 in T3 no
4615 -- D1 in T3 empty itself yes
4616 -- D2 in T3 empty itself yes
4617 -- D3 in T3 empty itself yes
4619 -- Y in T4 X1 in T3 D3 in T3 no
4620 -- D1 in T3 empty itself yes
4621 -- D2 in T3 empty itself yes
4622 -- D3 in T3 empty itself yes
4624 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
4626 -- Type derivation for tagged types is fairly straightforward. if no
4627 -- discriminants are specified by the derived type, these are inherited
4628 -- from the parent. No explicit stored discriminants are ever necessary.
4629 -- The only manipulation that is done to the tree is that of adding a
4630 -- _parent field with parent type and constrained to the same constraint
4631 -- specified for the parent in the derived type definition. For instance:
4633 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4634 -- type T1 is new R with null record;
4635 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4637 -- are changed into:
4639 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4640 -- _parent : R (D1, D2, D3);
4641 -- end record;
4643 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4644 -- _parent : T1 (X2, 88, X1);
4645 -- end record;
4647 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4648 -- ORC and ICH fields are:
4650 -- Discrim CD ORC ICH
4651 -- ^^^^^^^ ^^ ^^^ ^^^
4652 -- D1 in R empty itself no
4653 -- D2 in R empty itself no
4654 -- D3 in R empty itself no
4656 -- D1 in T1 D1 in R D1 in R no
4657 -- D2 in T1 D2 in R D2 in R no
4658 -- D3 in T1 D3 in R D3 in R no
4660 -- X1 in T2 D3 in T1 D3 in R no
4661 -- X2 in T2 D1 in T1 D1 in R no
4663 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
4665 -- Regardless of whether we dealing with a tagged or untagged type
4666 -- we will transform all derived type declarations of the form
4668 -- type T is new R (...) [with ...];
4669 -- or
4670 -- subtype S is R (...);
4671 -- type T is new S [with ...];
4672 -- into
4673 -- type BT is new R [with ...];
4674 -- subtype T is BT (...);
4676 -- That is, the base derived type is constrained only if it has no
4677 -- discriminants. The reason for doing this is that GNAT's semantic model
4678 -- assumes that a base type with discriminants is unconstrained.
4680 -- Note that, strictly speaking, the above transformation is not always
4681 -- correct. Consider for instance the following excerpt from ACVC b34011a:
4683 -- procedure B34011A is
4684 -- type REC (D : integer := 0) is record
4685 -- I : Integer;
4686 -- end record;
4688 -- package P is
4689 -- type T6 is new Rec;
4690 -- function F return T6;
4691 -- end P;
4693 -- use P;
4694 -- package Q6 is
4695 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4696 -- end Q6;
4698 -- The definition of Q6.U is illegal. However transforming Q6.U into
4700 -- type BaseU is new T6;
4701 -- subtype U is BaseU (Q6.F.I)
4703 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4704 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4705 -- the transformation described above.
4707 -- There is another instance where the above transformation is incorrect.
4708 -- Consider:
4710 -- package Pack is
4711 -- type Base (D : Integer) is tagged null record;
4712 -- procedure P (X : Base);
4714 -- type Der is new Base (2) with null record;
4715 -- procedure P (X : Der);
4716 -- end Pack;
4718 -- Then the above transformation turns this into
4720 -- type Der_Base is new Base with null record;
4721 -- -- procedure P (X : Base) is implicitly inherited here
4722 -- -- as procedure P (X : Der_Base).
4724 -- subtype Der is Der_Base (2);
4725 -- procedure P (X : Der);
4726 -- -- The overriding of P (X : Der_Base) is illegal since we
4727 -- -- have a parameter conformance problem.
4729 -- To get around this problem, after having semantically processed Der_Base
4730 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4731 -- Discriminant_Constraint from Der so that when parameter conformance is
4732 -- checked when P is overridden, no semantic errors are flagged.
4734 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
4736 -- Regardless of whether we are dealing with a tagged or untagged type
4737 -- we will transform all derived type declarations of the form
4739 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4740 -- type T is new R [with ...];
4741 -- into
4742 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4744 -- The reason for such transformation is that it allows us to implement a
4745 -- very clean form of component inheritance as explained below.
4747 -- Note that this transformation is not achieved by direct tree rewriting
4748 -- and manipulation, but rather by redoing the semantic actions that the
4749 -- above transformation will entail. This is done directly in routine
4750 -- Inherit_Components.
4752 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
4754 -- In both tagged and untagged derived types, regular non discriminant
4755 -- components are inherited in the derived type from the parent type. In
4756 -- the absence of discriminants component, inheritance is straightforward
4757 -- as components can simply be copied from the parent.
4759 -- If the parent has discriminants, inheriting components constrained with
4760 -- these discriminants requires caution. Consider the following example:
4762 -- type R (D1, D2 : Positive) is [tagged] record
4763 -- S : String (D1 .. D2);
4764 -- end record;
4766 -- type T1 is new R [with null record];
4767 -- type T2 (X : positive) is new R (1, X) [with null record];
4769 -- As explained in 6. above, T1 is rewritten as
4770 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4771 -- which makes the treatment for T1 and T2 identical.
4773 -- What we want when inheriting S, is that references to D1 and D2 in R are
4774 -- replaced with references to their correct constraints, ie D1 and D2 in
4775 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4776 -- with either discriminant references in the derived type or expressions.
4777 -- This replacement is achieved as follows: before inheriting R's
4778 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4779 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4780 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4781 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4782 -- by String (1 .. X).
4784 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
4786 -- We explain here the rules governing private type extensions relevant to
4787 -- type derivation. These rules are explained on the following example:
4789 -- type D [(...)] is new A [(...)] with private; <-- partial view
4790 -- type D [(...)] is new P [(...)] with null record; <-- full view
4792 -- Type A is called the ancestor subtype of the private extension.
4793 -- Type P is the parent type of the full view of the private extension. It
4794 -- must be A or a type derived from A.
4796 -- The rules concerning the discriminants of private type extensions are
4797 -- [7.3(10-13)]:
4799 -- o If a private extension inherits known discriminants from the ancestor
4800 -- subtype, then the full view shall also inherit its discriminants from
4801 -- the ancestor subtype and the parent subtype of the full view shall be
4802 -- constrained if and only if the ancestor subtype is constrained.
4804 -- o If a partial view has unknown discriminants, then the full view may
4805 -- define a definite or an indefinite subtype, with or without
4806 -- discriminants.
4808 -- o If a partial view has neither known nor unknown discriminants, then
4809 -- the full view shall define a definite subtype.
4811 -- o If the ancestor subtype of a private extension has constrained
4812 -- discriminants, then the parent subtype of the full view shall impose a
4813 -- statically matching constraint on those discriminants.
4815 -- This means that only the following forms of private extensions are
4816 -- allowed:
4818 -- type D is new A with private; <-- partial view
4819 -- type D is new P with null record; <-- full view
4821 -- If A has no discriminants than P has no discriminants, otherwise P must
4822 -- inherit A's discriminants.
4824 -- type D is new A (...) with private; <-- partial view
4825 -- type D is new P (:::) with null record; <-- full view
4827 -- P must inherit A's discriminants and (...) and (:::) must statically
4828 -- match.
4830 -- subtype A is R (...);
4831 -- type D is new A with private; <-- partial view
4832 -- type D is new P with null record; <-- full view
4834 -- P must have inherited R's discriminants and must be derived from A or
4835 -- any of its subtypes.
4837 -- type D (..) is new A with private; <-- partial view
4838 -- type D (..) is new P [(:::)] with null record; <-- full view
4840 -- No specific constraints on P's discriminants or constraint (:::).
4841 -- Note that A can be unconstrained, but the parent subtype P must either
4842 -- be constrained or (:::) must be present.
4844 -- type D (..) is new A [(...)] with private; <-- partial view
4845 -- type D (..) is new P [(:::)] with null record; <-- full view
4847 -- P's constraints on A's discriminants must statically match those
4848 -- imposed by (...).
4850 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
4852 -- The full view of a private extension is handled exactly as described
4853 -- above. The model chose for the private view of a private extension is
4854 -- the same for what concerns discriminants (ie they receive the same
4855 -- treatment as in the tagged case). However, the private view of the
4856 -- private extension always inherits the components of the parent base,
4857 -- without replacing any discriminant reference. Strictly speaking this is
4858 -- incorrect. However, Gigi never uses this view to generate code so this
4859 -- is a purely semantic issue. In theory, a set of transformations similar
4860 -- to those given in 5. and 6. above could be applied to private views of
4861 -- private extensions to have the same model of component inheritance as
4862 -- for non private extensions. However, this is not done because it would
4863 -- further complicate private type processing. Semantically speaking, this
4864 -- leaves us in an uncomfortable situation. As an example consider:
4866 -- package Pack is
4867 -- type R (D : integer) is tagged record
4868 -- S : String (1 .. D);
4869 -- end record;
4870 -- procedure P (X : R);
4871 -- type T is new R (1) with private;
4872 -- private
4873 -- type T is new R (1) with null record;
4874 -- end;
4876 -- This is transformed into:
4878 -- package Pack is
4879 -- type R (D : integer) is tagged record
4880 -- S : String (1 .. D);
4881 -- end record;
4882 -- procedure P (X : R);
4883 -- type T is new R (1) with private;
4884 -- private
4885 -- type BaseT is new R with null record;
4886 -- subtype T is BaseT (1);
4887 -- end;
4889 -- (strictly speaking the above is incorrect Ada)
4891 -- From the semantic standpoint the private view of private extension T
4892 -- should be flagged as constrained since one can clearly have
4894 -- Obj : T;
4896 -- in a unit withing Pack. However, when deriving subprograms for the
4897 -- private view of private extension T, T must be seen as unconstrained
4898 -- since T has discriminants (this is a constraint of the current
4899 -- subprogram derivation model). Thus, when processing the private view of
4900 -- a private extension such as T, we first mark T as unconstrained, we
4901 -- process it, we perform program derivation and just before returning from
4902 -- Build_Derived_Record_Type we mark T as constrained.
4904 -- ??? Are there are other uncomfortable cases that we will have to
4905 -- deal with.
4907 -- 10. RECORD_TYPE_WITH_PRIVATE complications
4909 -- Types that are derived from a visible record type and have a private
4910 -- extension present other peculiarities. They behave mostly like private
4911 -- types, but if they have primitive operations defined, these will not
4912 -- have the proper signatures for further inheritance, because other
4913 -- primitive operations will use the implicit base that we define for
4914 -- private derivations below. This affect subprogram inheritance (see
4915 -- Derive_Subprograms for details). We also derive the implicit base from
4916 -- the base type of the full view, so that the implicit base is a record
4917 -- type and not another private type, This avoids infinite loops.
4919 procedure Build_Derived_Record_Type
4920 (N : Node_Id;
4921 Parent_Type : Entity_Id;
4922 Derived_Type : Entity_Id;
4923 Derive_Subps : Boolean := True)
4925 Loc : constant Source_Ptr := Sloc (N);
4926 Parent_Base : Entity_Id;
4927 Type_Def : Node_Id;
4928 Indic : Node_Id;
4929 Discrim : Entity_Id;
4930 Last_Discrim : Entity_Id;
4931 Constrs : Elist_Id;
4933 Discs : Elist_Id := New_Elmt_List;
4934 -- An empty Discs list means that there were no constraints in the
4935 -- subtype indication or that there was an error processing it.
4937 Assoc_List : Elist_Id;
4938 New_Discrs : Elist_Id;
4939 New_Base : Entity_Id;
4940 New_Decl : Node_Id;
4941 New_Indic : Node_Id;
4943 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
4944 Discriminant_Specs : constant Boolean :=
4945 Present (Discriminant_Specifications (N));
4946 Private_Extension : constant Boolean :=
4947 (Nkind (N) = N_Private_Extension_Declaration);
4949 Constraint_Present : Boolean;
4950 Inherit_Discrims : Boolean := False;
4952 Save_Etype : Entity_Id;
4953 Save_Discr_Constr : Elist_Id;
4954 Save_Next_Entity : Entity_Id;
4956 begin
4957 if Ekind (Parent_Type) = E_Record_Type_With_Private
4958 and then Present (Full_View (Parent_Type))
4959 and then Has_Discriminants (Parent_Type)
4960 then
4961 Parent_Base := Base_Type (Full_View (Parent_Type));
4962 else
4963 Parent_Base := Base_Type (Parent_Type);
4964 end if;
4966 -- Before we start the previously documented transformations, here is
4967 -- a little fix for size and alignment of tagged types. Normally when
4968 -- we derive type D from type P, we copy the size and alignment of P
4969 -- as the default for D, and in the absence of explicit representation
4970 -- clauses for D, the size and alignment are indeed the same as the
4971 -- parent.
4973 -- But this is wrong for tagged types, since fields may be added,
4974 -- and the default size may need to be larger, and the default
4975 -- alignment may need to be larger.
4977 -- We therefore reset the size and alignment fields in the tagged
4978 -- case. Note that the size and alignment will in any case be at
4979 -- least as large as the parent type (since the derived type has
4980 -- a copy of the parent type in the _parent field)
4982 if Is_Tagged then
4983 Init_Size_Align (Derived_Type);
4984 end if;
4986 -- STEP 0a: figure out what kind of derived type declaration we have
4988 if Private_Extension then
4989 Type_Def := N;
4990 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
4992 else
4993 Type_Def := Type_Definition (N);
4995 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4996 -- Parent_Base can be a private type or private extension. However,
4997 -- for tagged types with an extension the newly added fields are
4998 -- visible and hence the Derived_Type is always an E_Record_Type.
4999 -- (except that the parent may have its own private fields).
5000 -- For untagged types we preserve the Ekind of the Parent_Base.
5002 if Present (Record_Extension_Part (Type_Def)) then
5003 Set_Ekind (Derived_Type, E_Record_Type);
5004 else
5005 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5006 end if;
5007 end if;
5009 -- Indic can either be an N_Identifier if the subtype indication
5010 -- contains no constraint or an N_Subtype_Indication if the subtype
5011 -- indication has a constraint.
5013 Indic := Subtype_Indication (Type_Def);
5014 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
5016 -- Check that the type has visible discriminants. The type may be
5017 -- a private type with unknown discriminants whose full view has
5018 -- discriminants which are invisible.
5020 if Constraint_Present then
5021 if not Has_Discriminants (Parent_Base)
5022 or else
5023 (Has_Unknown_Discriminants (Parent_Base)
5024 and then Is_Private_Type (Parent_Base))
5025 then
5026 Error_Msg_N
5027 ("invalid constraint: type has no discriminant",
5028 Constraint (Indic));
5030 Constraint_Present := False;
5031 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5033 elsif Is_Constrained (Parent_Type) then
5034 Error_Msg_N
5035 ("invalid constraint: parent type is already constrained",
5036 Constraint (Indic));
5038 Constraint_Present := False;
5039 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5040 end if;
5041 end if;
5043 -- STEP 0b: If needed, apply transformation given in point 5. above
5045 if not Private_Extension
5046 and then Has_Discriminants (Parent_Type)
5047 and then not Discriminant_Specs
5048 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
5049 then
5050 -- First, we must analyze the constraint (see comment in point 5.)
5052 if Constraint_Present then
5053 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
5055 if Has_Discriminants (Derived_Type)
5056 and then Has_Private_Declaration (Derived_Type)
5057 and then Present (Discriminant_Constraint (Derived_Type))
5058 then
5059 -- Verify that constraints of the full view conform to those
5060 -- given in partial view.
5062 declare
5063 C1, C2 : Elmt_Id;
5065 begin
5066 C1 := First_Elmt (New_Discrs);
5067 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
5069 while Present (C1) and then Present (C2) loop
5070 if not
5071 Fully_Conformant_Expressions (Node (C1), Node (C2))
5072 then
5073 Error_Msg_N (
5074 "constraint not conformant to previous declaration",
5075 Node (C1));
5076 end if;
5077 Next_Elmt (C1);
5078 Next_Elmt (C2);
5079 end loop;
5080 end;
5081 end if;
5082 end if;
5084 -- Insert and analyze the declaration for the unconstrained base type
5086 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
5088 New_Decl :=
5089 Make_Full_Type_Declaration (Loc,
5090 Defining_Identifier => New_Base,
5091 Type_Definition =>
5092 Make_Derived_Type_Definition (Loc,
5093 Abstract_Present => Abstract_Present (Type_Def),
5094 Subtype_Indication =>
5095 New_Occurrence_Of (Parent_Base, Loc),
5096 Record_Extension_Part =>
5097 Relocate_Node (Record_Extension_Part (Type_Def))));
5099 Set_Parent (New_Decl, Parent (N));
5100 Mark_Rewrite_Insertion (New_Decl);
5101 Insert_Before (N, New_Decl);
5103 -- Note that this call passes False for the Derive_Subps parameter
5104 -- because subprogram derivation is deferred until after creating
5105 -- the subtype (see below).
5107 Build_Derived_Type
5108 (New_Decl, Parent_Base, New_Base,
5109 Is_Completion => True, Derive_Subps => False);
5111 -- ??? This needs re-examination to determine whether the
5112 -- above call can simply be replaced by a call to Analyze.
5114 Set_Analyzed (New_Decl);
5116 -- Insert and analyze the declaration for the constrained subtype
5118 if Constraint_Present then
5119 New_Indic :=
5120 Make_Subtype_Indication (Loc,
5121 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5122 Constraint => Relocate_Node (Constraint (Indic)));
5124 else
5125 declare
5126 Constr_List : constant List_Id := New_List;
5127 C : Elmt_Id;
5128 Expr : Node_Id;
5130 begin
5131 C := First_Elmt (Discriminant_Constraint (Parent_Type));
5132 while Present (C) loop
5133 Expr := Node (C);
5135 -- It is safe here to call New_Copy_Tree since
5136 -- Force_Evaluation was called on each constraint in
5137 -- Build_Discriminant_Constraints.
5139 Append (New_Copy_Tree (Expr), To => Constr_List);
5141 Next_Elmt (C);
5142 end loop;
5144 New_Indic :=
5145 Make_Subtype_Indication (Loc,
5146 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5147 Constraint =>
5148 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
5149 end;
5150 end if;
5152 Rewrite (N,
5153 Make_Subtype_Declaration (Loc,
5154 Defining_Identifier => Derived_Type,
5155 Subtype_Indication => New_Indic));
5157 Analyze (N);
5159 -- Derivation of subprograms must be delayed until the full subtype
5160 -- has been established to ensure proper overriding of subprograms
5161 -- inherited by full types. If the derivations occurred as part of
5162 -- the call to Build_Derived_Type above, then the check for type
5163 -- conformance would fail because earlier primitive subprograms
5164 -- could still refer to the full type prior the change to the new
5165 -- subtype and hence would not match the new base type created here.
5167 Derive_Subprograms (Parent_Type, Derived_Type);
5169 -- For tagged types the Discriminant_Constraint of the new base itype
5170 -- is inherited from the first subtype so that no subtype conformance
5171 -- problem arise when the first subtype overrides primitive
5172 -- operations inherited by the implicit base type.
5174 if Is_Tagged then
5175 Set_Discriminant_Constraint
5176 (New_Base, Discriminant_Constraint (Derived_Type));
5177 end if;
5179 return;
5180 end if;
5182 -- If we get here Derived_Type will have no discriminants or it will be
5183 -- a discriminated unconstrained base type.
5185 -- STEP 1a: perform preliminary actions/checks for derived tagged types
5187 if Is_Tagged then
5189 -- The parent type is frozen for non-private extensions (RM 13.14(7))
5191 if not Private_Extension then
5192 Freeze_Before (N, Parent_Type);
5193 end if;
5195 if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
5196 and then not Is_Generic_Type (Derived_Type)
5197 then
5198 if Is_Controlled (Parent_Type) then
5199 Error_Msg_N
5200 ("controlled type must be declared at the library level",
5201 Indic);
5202 else
5203 Error_Msg_N
5204 ("type extension at deeper accessibility level than parent",
5205 Indic);
5206 end if;
5208 else
5209 declare
5210 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
5212 begin
5213 if Present (GB)
5214 and then GB /= Enclosing_Generic_Body (Parent_Base)
5215 then
5216 Error_Msg_NE
5217 ("parent type of& must not be outside generic body"
5218 & " ('R'M 3.9.1(4))",
5219 Indic, Derived_Type);
5220 end if;
5221 end;
5222 end if;
5223 end if;
5225 -- STEP 1b : preliminary cleanup of the full view of private types
5227 -- If the type is already marked as having discriminants, then it's the
5228 -- completion of a private type or private extension and we need to
5229 -- retain the discriminants from the partial view if the current
5230 -- declaration has Discriminant_Specifications so that we can verify
5231 -- conformance. However, we must remove any existing components that
5232 -- were inherited from the parent (and attached in Copy_And_Swap)
5233 -- because the full type inherits all appropriate components anyway, and
5234 -- we do not want the partial view's components interfering.
5236 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
5237 Discrim := First_Discriminant (Derived_Type);
5238 loop
5239 Last_Discrim := Discrim;
5240 Next_Discriminant (Discrim);
5241 exit when No (Discrim);
5242 end loop;
5244 Set_Last_Entity (Derived_Type, Last_Discrim);
5246 -- In all other cases wipe out the list of inherited components (even
5247 -- inherited discriminants), it will be properly rebuilt here.
5249 else
5250 Set_First_Entity (Derived_Type, Empty);
5251 Set_Last_Entity (Derived_Type, Empty);
5252 end if;
5254 -- STEP 1c: Initialize some flags for the Derived_Type
5256 -- The following flags must be initialized here so that
5257 -- Process_Discriminants can check that discriminants of tagged types
5258 -- do not have a default initial value and that access discriminants
5259 -- are only specified for limited records. For completeness, these
5260 -- flags are also initialized along with all the other flags below.
5262 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5263 Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
5265 -- STEP 2a: process discriminants of derived type if any
5267 New_Scope (Derived_Type);
5269 if Discriminant_Specs then
5270 Set_Has_Unknown_Discriminants (Derived_Type, False);
5272 -- The following call initializes fields Has_Discriminants and
5273 -- Discriminant_Constraint, unless we are processing the completion
5274 -- of a private type declaration.
5276 Check_Or_Process_Discriminants (N, Derived_Type);
5278 -- For non-tagged types the constraint on the Parent_Type must be
5279 -- present and is used to rename the discriminants.
5281 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
5282 Error_Msg_N ("untagged parent must have discriminants", Indic);
5284 elsif not Is_Tagged and then not Constraint_Present then
5285 Error_Msg_N
5286 ("discriminant constraint needed for derived untagged records",
5287 Indic);
5289 -- Otherwise the parent subtype must be constrained unless we have a
5290 -- private extension.
5292 elsif not Constraint_Present
5293 and then not Private_Extension
5294 and then not Is_Constrained (Parent_Type)
5295 then
5296 Error_Msg_N
5297 ("unconstrained type not allowed in this context", Indic);
5299 elsif Constraint_Present then
5300 -- The following call sets the field Corresponding_Discriminant
5301 -- for the discriminants in the Derived_Type.
5303 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
5305 -- For untagged types all new discriminants must rename
5306 -- discriminants in the parent. For private extensions new
5307 -- discriminants cannot rename old ones (implied by [7.3(13)]).
5309 Discrim := First_Discriminant (Derived_Type);
5310 while Present (Discrim) loop
5311 if not Is_Tagged
5312 and then not Present (Corresponding_Discriminant (Discrim))
5313 then
5314 Error_Msg_N
5315 ("new discriminants must constrain old ones", Discrim);
5317 elsif Private_Extension
5318 and then Present (Corresponding_Discriminant (Discrim))
5319 then
5320 Error_Msg_N
5321 ("only static constraints allowed for parent"
5322 & " discriminants in the partial view", Indic);
5323 exit;
5324 end if;
5326 -- If a new discriminant is used in the constraint, then its
5327 -- subtype must be statically compatible with the parent
5328 -- discriminant's subtype (3.7(15)).
5330 if Present (Corresponding_Discriminant (Discrim))
5331 and then
5332 not Subtypes_Statically_Compatible
5333 (Etype (Discrim),
5334 Etype (Corresponding_Discriminant (Discrim)))
5335 then
5336 Error_Msg_N
5337 ("subtype must be compatible with parent discriminant",
5338 Discrim);
5339 end if;
5341 Next_Discriminant (Discrim);
5342 end loop;
5344 -- Check whether the constraints of the full view statically
5345 -- match those imposed by the parent subtype [7.3(13)].
5347 if Present (Stored_Constraint (Derived_Type)) then
5348 declare
5349 C1, C2 : Elmt_Id;
5351 begin
5352 C1 := First_Elmt (Discs);
5353 C2 := First_Elmt (Stored_Constraint (Derived_Type));
5354 while Present (C1) and then Present (C2) loop
5355 if not
5356 Fully_Conformant_Expressions (Node (C1), Node (C2))
5357 then
5358 Error_Msg_N (
5359 "not conformant with previous declaration",
5360 Node (C1));
5361 end if;
5363 Next_Elmt (C1);
5364 Next_Elmt (C2);
5365 end loop;
5366 end;
5367 end if;
5368 end if;
5370 -- STEP 2b: No new discriminants, inherit discriminants if any
5372 else
5373 if Private_Extension then
5374 Set_Has_Unknown_Discriminants
5375 (Derived_Type,
5376 Has_Unknown_Discriminants (Parent_Type)
5377 or else Unknown_Discriminants_Present (N));
5379 -- The partial view of the parent may have unknown discriminants,
5380 -- but if the full view has discriminants and the parent type is
5381 -- in scope they must be inherited.
5383 elsif Has_Unknown_Discriminants (Parent_Type)
5384 and then
5385 (not Has_Discriminants (Parent_Type)
5386 or else not In_Open_Scopes (Scope (Parent_Type)))
5387 then
5388 Set_Has_Unknown_Discriminants (Derived_Type);
5389 end if;
5391 if not Has_Unknown_Discriminants (Derived_Type)
5392 and then not Has_Unknown_Discriminants (Parent_Base)
5393 and then Has_Discriminants (Parent_Type)
5394 then
5395 Inherit_Discrims := True;
5396 Set_Has_Discriminants
5397 (Derived_Type, True);
5398 Set_Discriminant_Constraint
5399 (Derived_Type, Discriminant_Constraint (Parent_Base));
5400 end if;
5402 -- The following test is true for private types (remember
5403 -- transformation 5. is not applied to those) and in an error
5404 -- situation.
5406 if Constraint_Present then
5407 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
5408 end if;
5410 -- For now mark a new derived type as constrained only if it has no
5411 -- discriminants. At the end of Build_Derived_Record_Type we properly
5412 -- set this flag in the case of private extensions. See comments in
5413 -- point 9. just before body of Build_Derived_Record_Type.
5415 Set_Is_Constrained
5416 (Derived_Type,
5417 not (Inherit_Discrims
5418 or else Has_Unknown_Discriminants (Derived_Type)));
5419 end if;
5421 -- STEP 3: initialize fields of derived type
5423 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5424 Set_Stored_Constraint (Derived_Type, No_Elist);
5426 -- Fields inherited from the Parent_Type
5428 Set_Discard_Names
5429 (Derived_Type, Einfo.Discard_Names (Parent_Type));
5430 Set_Has_Specified_Layout
5431 (Derived_Type, Has_Specified_Layout (Parent_Type));
5432 Set_Is_Limited_Composite
5433 (Derived_Type, Is_Limited_Composite (Parent_Type));
5434 Set_Is_Limited_Record
5435 (Derived_Type, Is_Limited_Record (Parent_Type));
5436 Set_Is_Private_Composite
5437 (Derived_Type, Is_Private_Composite (Parent_Type));
5439 -- Fields inherited from the Parent_Base
5441 Set_Has_Controlled_Component
5442 (Derived_Type, Has_Controlled_Component (Parent_Base));
5443 Set_Has_Non_Standard_Rep
5444 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5445 Set_Has_Primitive_Operations
5446 (Derived_Type, Has_Primitive_Operations (Parent_Base));
5448 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5450 if not Is_Controlled (Parent_Type) then
5451 Set_Finalize_Storage_Only
5452 (Derived_Type, Finalize_Storage_Only (Parent_Type));
5453 end if;
5455 -- Set fields for private derived types
5457 if Is_Private_Type (Derived_Type) then
5458 Set_Depends_On_Private (Derived_Type, True);
5459 Set_Private_Dependents (Derived_Type, New_Elmt_List);
5461 -- Inherit fields from non private record types. If this is the
5462 -- completion of a derivation from a private type, the parent itself
5463 -- is private, and the attributes come from its full view, which must
5464 -- be present.
5466 else
5467 if Is_Private_Type (Parent_Base)
5468 and then not Is_Record_Type (Parent_Base)
5469 then
5470 Set_Component_Alignment
5471 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
5472 Set_C_Pass_By_Copy
5473 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
5474 else
5475 Set_Component_Alignment
5476 (Derived_Type, Component_Alignment (Parent_Base));
5478 Set_C_Pass_By_Copy
5479 (Derived_Type, C_Pass_By_Copy (Parent_Base));
5480 end if;
5481 end if;
5483 -- Set fields for tagged types
5485 if Is_Tagged then
5486 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
5488 -- All tagged types defined in Ada.Finalization are controlled
5490 if Chars (Scope (Derived_Type)) = Name_Finalization
5491 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
5492 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
5493 then
5494 Set_Is_Controlled (Derived_Type);
5495 else
5496 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
5497 end if;
5499 Make_Class_Wide_Type (Derived_Type);
5500 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
5502 if Has_Discriminants (Derived_Type)
5503 and then Constraint_Present
5504 then
5505 Set_Stored_Constraint
5506 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
5507 end if;
5509 else
5510 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
5511 Set_Has_Non_Standard_Rep
5512 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5513 end if;
5515 -- STEP 4: Inherit components from the parent base and constrain them.
5516 -- Apply the second transformation described in point 6. above.
5518 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
5519 or else not Has_Discriminants (Parent_Type)
5520 or else not Is_Constrained (Parent_Type)
5521 then
5522 Constrs := Discs;
5523 else
5524 Constrs := Discriminant_Constraint (Parent_Type);
5525 end if;
5527 Assoc_List := Inherit_Components (N,
5528 Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
5530 -- STEP 5a: Copy the parent record declaration for untagged types
5532 if not Is_Tagged then
5534 -- Discriminant_Constraint (Derived_Type) has been properly
5535 -- constructed. Save it and temporarily set it to Empty because we
5536 -- do not want the call to New_Copy_Tree below to mess this list.
5538 if Has_Discriminants (Derived_Type) then
5539 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
5540 Set_Discriminant_Constraint (Derived_Type, No_Elist);
5541 else
5542 Save_Discr_Constr := No_Elist;
5543 end if;
5545 -- Save the Etype field of Derived_Type. It is correctly set now,
5546 -- but the call to New_Copy tree may remap it to point to itself,
5547 -- which is not what we want. Ditto for the Next_Entity field.
5549 Save_Etype := Etype (Derived_Type);
5550 Save_Next_Entity := Next_Entity (Derived_Type);
5552 -- Assoc_List maps all stored discriminants in the Parent_Base to
5553 -- stored discriminants in the Derived_Type. It is fundamental that
5554 -- no types or itypes with discriminants other than the stored
5555 -- discriminants appear in the entities declared inside
5556 -- Derived_Type, since the back end cannot deal with it.
5558 New_Decl :=
5559 New_Copy_Tree
5560 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
5562 -- Restore the fields saved prior to the New_Copy_Tree call
5563 -- and compute the stored constraint.
5565 Set_Etype (Derived_Type, Save_Etype);
5566 Set_Next_Entity (Derived_Type, Save_Next_Entity);
5568 if Has_Discriminants (Derived_Type) then
5569 Set_Discriminant_Constraint
5570 (Derived_Type, Save_Discr_Constr);
5571 Set_Stored_Constraint
5572 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
5573 Replace_Components (Derived_Type, New_Decl);
5574 end if;
5576 -- Insert the new derived type declaration
5578 Rewrite (N, New_Decl);
5580 -- STEP 5b: Complete the processing for record extensions in generics
5582 -- There is no completion for record extensions declared in the
5583 -- parameter part of a generic, so we need to complete processing for
5584 -- these generic record extensions here. The Record_Type_Definition call
5585 -- will change the Ekind of the components from E_Void to E_Component.
5587 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
5588 Record_Type_Definition (Empty, Derived_Type);
5590 -- STEP 5c: Process the record extension for non private tagged types
5592 elsif not Private_Extension then
5594 -- Add the _parent field in the derived type
5596 Expand_Record_Extension (Derived_Type, Type_Def);
5598 -- Analyze the record extension
5600 Record_Type_Definition
5601 (Record_Extension_Part (Type_Def), Derived_Type);
5602 end if;
5604 End_Scope;
5606 if Etype (Derived_Type) = Any_Type then
5607 return;
5608 end if;
5610 -- Set delayed freeze and then derive subprograms, we need to do
5611 -- this in this order so that derived subprograms inherit the
5612 -- derived freeze if necessary.
5614 Set_Has_Delayed_Freeze (Derived_Type);
5615 if Derive_Subps then
5616 Derive_Subprograms (Parent_Type, Derived_Type);
5617 end if;
5619 -- If we have a private extension which defines a constrained derived
5620 -- type mark as constrained here after we have derived subprograms. See
5621 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5623 if Private_Extension and then Inherit_Discrims then
5624 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
5625 Set_Is_Constrained (Derived_Type, True);
5626 Set_Discriminant_Constraint (Derived_Type, Discs);
5628 elsif Is_Constrained (Parent_Type) then
5629 Set_Is_Constrained
5630 (Derived_Type, True);
5631 Set_Discriminant_Constraint
5632 (Derived_Type, Discriminant_Constraint (Parent_Type));
5633 end if;
5634 end if;
5636 -- Update the class_wide type, which shares the now-completed
5637 -- entity list with its specific type.
5639 if Is_Tagged then
5640 Set_First_Entity
5641 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
5642 Set_Last_Entity
5643 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
5644 end if;
5646 end Build_Derived_Record_Type;
5648 ------------------------
5649 -- Build_Derived_Type --
5650 ------------------------
5652 procedure Build_Derived_Type
5653 (N : Node_Id;
5654 Parent_Type : Entity_Id;
5655 Derived_Type : Entity_Id;
5656 Is_Completion : Boolean;
5657 Derive_Subps : Boolean := True)
5659 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5661 begin
5662 -- Set common attributes
5664 Set_Scope (Derived_Type, Current_Scope);
5666 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5667 Set_Etype (Derived_Type, Parent_Base);
5668 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
5670 Set_Size_Info (Derived_Type, Parent_Type);
5671 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5672 Set_Convention (Derived_Type, Convention (Parent_Type));
5673 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
5675 -- The derived type inherits the representation clauses of the parent.
5676 -- However, for a private type that is completed by a derivation, there
5677 -- may be operation attributes that have been specified already (stream
5678 -- attributes and External_Tag) and those must be provided. Finally,
5679 -- if the partial view is a private extension, the representation items
5680 -- of the parent have been inherited already, and should not be chained
5681 -- twice to the derived type.
5683 if Is_Tagged_Type (Parent_Type)
5684 and then Present (First_Rep_Item (Derived_Type))
5685 then
5686 -- The existing items are either operational items or items inherited
5687 -- from a private extension declaration.
5689 declare
5690 Rep : Node_Id := First_Rep_Item (Derived_Type);
5691 Found : Boolean := False;
5693 begin
5694 while Present (Rep) loop
5695 if Rep = First_Rep_Item (Parent_Type) then
5696 Found := True;
5697 exit;
5698 else
5699 Rep := Next_Rep_Item (Rep);
5700 end if;
5701 end loop;
5703 if not Found then
5704 Set_Next_Rep_Item
5705 (First_Rep_Item (Derived_Type), First_Rep_Item (Parent_Type));
5706 end if;
5707 end;
5709 else
5710 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
5711 end if;
5713 case Ekind (Parent_Type) is
5714 when Numeric_Kind =>
5715 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
5717 when Array_Kind =>
5718 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
5720 when E_Record_Type
5721 | E_Record_Subtype
5722 | Class_Wide_Kind =>
5723 Build_Derived_Record_Type
5724 (N, Parent_Type, Derived_Type, Derive_Subps);
5725 return;
5727 when Enumeration_Kind =>
5728 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
5730 when Access_Kind =>
5731 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
5733 when Incomplete_Or_Private_Kind =>
5734 Build_Derived_Private_Type
5735 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
5737 -- For discriminated types, the derivation includes deriving
5738 -- primitive operations. For others it is done below.
5740 if Is_Tagged_Type (Parent_Type)
5741 or else Has_Discriminants (Parent_Type)
5742 or else (Present (Full_View (Parent_Type))
5743 and then Has_Discriminants (Full_View (Parent_Type)))
5744 then
5745 return;
5746 end if;
5748 when Concurrent_Kind =>
5749 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
5751 when others =>
5752 raise Program_Error;
5753 end case;
5755 if Etype (Derived_Type) = Any_Type then
5756 return;
5757 end if;
5759 -- Set delayed freeze and then derive subprograms, we need to do this
5760 -- in this order so that derived subprograms inherit the derived freeze
5761 -- if necessary.
5763 Set_Has_Delayed_Freeze (Derived_Type);
5764 if Derive_Subps then
5765 Derive_Subprograms (Parent_Type, Derived_Type);
5766 end if;
5768 Set_Has_Primitive_Operations
5769 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
5770 end Build_Derived_Type;
5772 -----------------------
5773 -- Build_Discriminal --
5774 -----------------------
5776 procedure Build_Discriminal (Discrim : Entity_Id) is
5777 D_Minal : Entity_Id;
5778 CR_Disc : Entity_Id;
5780 begin
5781 -- A discriminal has the same name as the discriminant
5783 D_Minal :=
5784 Make_Defining_Identifier (Sloc (Discrim),
5785 Chars => Chars (Discrim));
5787 Set_Ekind (D_Minal, E_In_Parameter);
5788 Set_Mechanism (D_Minal, Default_Mechanism);
5789 Set_Etype (D_Minal, Etype (Discrim));
5791 Set_Discriminal (Discrim, D_Minal);
5792 Set_Discriminal_Link (D_Minal, Discrim);
5794 -- For task types, build at once the discriminants of the corresponding
5795 -- record, which are needed if discriminants are used in entry defaults
5796 -- and in family bounds.
5798 if Is_Concurrent_Type (Current_Scope)
5799 or else Is_Limited_Type (Current_Scope)
5800 then
5801 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5803 Set_Ekind (CR_Disc, E_In_Parameter);
5804 Set_Mechanism (CR_Disc, Default_Mechanism);
5805 Set_Etype (CR_Disc, Etype (Discrim));
5806 Set_CR_Discriminant (Discrim, CR_Disc);
5807 end if;
5808 end Build_Discriminal;
5810 ------------------------------------
5811 -- Build_Discriminant_Constraints --
5812 ------------------------------------
5814 function Build_Discriminant_Constraints
5815 (T : Entity_Id;
5816 Def : Node_Id;
5817 Derived_Def : Boolean := False) return Elist_Id
5819 C : constant Node_Id := Constraint (Def);
5820 Nb_Discr : constant Nat := Number_Discriminants (T);
5822 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
5823 -- Saves the expression corresponding to a given discriminant in T
5825 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
5826 -- Return the Position number within array Discr_Expr of a discriminant
5827 -- D within the discriminant list of the discriminated type T.
5829 ------------------
5830 -- Pos_Of_Discr --
5831 ------------------
5833 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
5834 Disc : Entity_Id;
5836 begin
5837 Disc := First_Discriminant (T);
5838 for J in Discr_Expr'Range loop
5839 if Disc = D then
5840 return J;
5841 end if;
5843 Next_Discriminant (Disc);
5844 end loop;
5846 -- Note: Since this function is called on discriminants that are
5847 -- known to belong to the discriminated type, falling through the
5848 -- loop with no match signals an internal compiler error.
5850 raise Program_Error;
5851 end Pos_Of_Discr;
5853 -- Declarations local to Build_Discriminant_Constraints
5855 Discr : Entity_Id;
5856 E : Entity_Id;
5857 Elist : constant Elist_Id := New_Elmt_List;
5859 Constr : Node_Id;
5860 Expr : Node_Id;
5861 Id : Node_Id;
5862 Position : Nat;
5863 Found : Boolean;
5865 Discrim_Present : Boolean := False;
5867 -- Start of processing for Build_Discriminant_Constraints
5869 begin
5870 -- The following loop will process positional associations only.
5871 -- For a positional association, the (single) discriminant is
5872 -- implicitly specified by position, in textual order (RM 3.7.2).
5874 Discr := First_Discriminant (T);
5875 Constr := First (Constraints (C));
5877 for D in Discr_Expr'Range loop
5878 exit when Nkind (Constr) = N_Discriminant_Association;
5880 if No (Constr) then
5881 Error_Msg_N ("too few discriminants given in constraint", C);
5882 return New_Elmt_List;
5884 elsif Nkind (Constr) = N_Range
5885 or else (Nkind (Constr) = N_Attribute_Reference
5886 and then
5887 Attribute_Name (Constr) = Name_Range)
5888 then
5889 Error_Msg_N
5890 ("a range is not a valid discriminant constraint", Constr);
5891 Discr_Expr (D) := Error;
5893 else
5894 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
5895 Discr_Expr (D) := Constr;
5896 end if;
5898 Next_Discriminant (Discr);
5899 Next (Constr);
5900 end loop;
5902 if No (Discr) and then Present (Constr) then
5903 Error_Msg_N ("too many discriminants given in constraint", Constr);
5904 return New_Elmt_List;
5905 end if;
5907 -- Named associations can be given in any order, but if both positional
5908 -- and named associations are used in the same discriminant constraint,
5909 -- then positional associations must occur first, at their normal
5910 -- position. Hence once a named association is used, the rest of the
5911 -- discriminant constraint must use only named associations.
5913 while Present (Constr) loop
5915 -- Positional association forbidden after a named association
5917 if Nkind (Constr) /= N_Discriminant_Association then
5918 Error_Msg_N ("positional association follows named one", Constr);
5919 return New_Elmt_List;
5921 -- Otherwise it is a named association
5923 else
5924 -- E records the type of the discriminants in the named
5925 -- association. All the discriminants specified in the same name
5926 -- association must have the same type.
5928 E := Empty;
5930 -- Search the list of discriminants in T to see if the simple name
5931 -- given in the constraint matches any of them.
5933 Id := First (Selector_Names (Constr));
5934 while Present (Id) loop
5935 Found := False;
5937 -- If Original_Discriminant is present, we are processing a
5938 -- generic instantiation and this is an instance node. We need
5939 -- to find the name of the corresponding discriminant in the
5940 -- actual record type T and not the name of the discriminant in
5941 -- the generic formal. Example:
5943 -- generic
5944 -- type G (D : int) is private;
5945 -- package P is
5946 -- subtype W is G (D => 1);
5947 -- end package;
5948 -- type Rec (X : int) is record ... end record;
5949 -- package Q is new P (G => Rec);
5951 -- At the point of the instantiation, formal type G is Rec
5952 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5953 -- which really looks like "subtype W is Rec (D => 1);" at
5954 -- the point of instantiation, we want to find the discriminant
5955 -- that corresponds to D in Rec, ie X.
5957 if Present (Original_Discriminant (Id)) then
5958 Discr := Find_Corresponding_Discriminant (Id, T);
5959 Found := True;
5961 else
5962 Discr := First_Discriminant (T);
5963 while Present (Discr) loop
5964 if Chars (Discr) = Chars (Id) then
5965 Found := True;
5966 exit;
5967 end if;
5969 Next_Discriminant (Discr);
5970 end loop;
5972 if not Found then
5973 Error_Msg_N ("& does not match any discriminant", Id);
5974 return New_Elmt_List;
5976 -- The following is only useful for the benefit of generic
5977 -- instances but it does not interfere with other
5978 -- processing for the non-generic case so we do it in all
5979 -- cases (for generics this statement is executed when
5980 -- processing the generic definition, see comment at the
5981 -- beginning of this if statement).
5983 else
5984 Set_Original_Discriminant (Id, Discr);
5985 end if;
5986 end if;
5988 Position := Pos_Of_Discr (T, Discr);
5990 if Present (Discr_Expr (Position)) then
5991 Error_Msg_N ("duplicate constraint for discriminant&", Id);
5993 else
5994 -- Each discriminant specified in the same named association
5995 -- must be associated with a separate copy of the
5996 -- corresponding expression.
5998 if Present (Next (Id)) then
5999 Expr := New_Copy_Tree (Expression (Constr));
6000 Set_Parent (Expr, Parent (Expression (Constr)));
6001 else
6002 Expr := Expression (Constr);
6003 end if;
6005 Discr_Expr (Position) := Expr;
6006 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
6007 end if;
6009 -- A discriminant association with more than one discriminant
6010 -- name is only allowed if the named discriminants are all of
6011 -- the same type (RM 3.7.1(8)).
6013 if E = Empty then
6014 E := Base_Type (Etype (Discr));
6016 elsif Base_Type (Etype (Discr)) /= E then
6017 Error_Msg_N
6018 ("all discriminants in an association " &
6019 "must have the same type", Id);
6020 end if;
6022 Next (Id);
6023 end loop;
6024 end if;
6026 Next (Constr);
6027 end loop;
6029 -- A discriminant constraint must provide exactly one value for each
6030 -- discriminant of the type (RM 3.7.1(8)).
6032 for J in Discr_Expr'Range loop
6033 if No (Discr_Expr (J)) then
6034 Error_Msg_N ("too few discriminants given in constraint", C);
6035 return New_Elmt_List;
6036 end if;
6037 end loop;
6039 -- Determine if there are discriminant expressions in the constraint
6041 for J in Discr_Expr'Range loop
6042 if Denotes_Discriminant (Discr_Expr (J), Check_Protected => True) then
6043 Discrim_Present := True;
6044 end if;
6045 end loop;
6047 -- Build an element list consisting of the expressions given in the
6048 -- discriminant constraint and apply the appropriate checks. The list
6049 -- is constructed after resolving any named discriminant associations
6050 -- and therefore the expressions appear in the textual order of the
6051 -- discriminants.
6053 Discr := First_Discriminant (T);
6054 for J in Discr_Expr'Range loop
6055 if Discr_Expr (J) /= Error then
6057 Append_Elmt (Discr_Expr (J), Elist);
6059 -- If any of the discriminant constraints is given by a
6060 -- discriminant and we are in a derived type declaration we
6061 -- have a discriminant renaming. Establish link between new
6062 -- and old discriminant.
6064 if Denotes_Discriminant (Discr_Expr (J)) then
6065 if Derived_Def then
6066 Set_Corresponding_Discriminant
6067 (Entity (Discr_Expr (J)), Discr);
6068 end if;
6070 -- Force the evaluation of non-discriminant expressions.
6071 -- If we have found a discriminant in the constraint 3.4(26)
6072 -- and 3.8(18) demand that no range checks are performed are
6073 -- after evaluation. If the constraint is for a component
6074 -- definition that has a per-object constraint, expressions are
6075 -- evaluated but not checked either. In all other cases perform
6076 -- a range check.
6078 else
6079 if Discrim_Present then
6080 null;
6082 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
6083 and then
6084 Has_Per_Object_Constraint
6085 (Defining_Identifier (Parent (Parent (Def))))
6086 then
6087 null;
6089 elsif Is_Access_Type (Etype (Discr)) then
6090 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
6092 else
6093 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
6094 end if;
6096 Force_Evaluation (Discr_Expr (J));
6097 end if;
6099 -- Check that the designated type of an access discriminant's
6100 -- expression is not a class-wide type unless the discriminant's
6101 -- designated type is also class-wide.
6103 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
6104 and then not Is_Class_Wide_Type
6105 (Designated_Type (Etype (Discr)))
6106 and then Etype (Discr_Expr (J)) /= Any_Type
6107 and then Is_Class_Wide_Type
6108 (Designated_Type (Etype (Discr_Expr (J))))
6109 then
6110 Wrong_Type (Discr_Expr (J), Etype (Discr));
6111 end if;
6112 end if;
6114 Next_Discriminant (Discr);
6115 end loop;
6117 return Elist;
6118 end Build_Discriminant_Constraints;
6120 ---------------------------------
6121 -- Build_Discriminated_Subtype --
6122 ---------------------------------
6124 procedure Build_Discriminated_Subtype
6125 (T : Entity_Id;
6126 Def_Id : Entity_Id;
6127 Elist : Elist_Id;
6128 Related_Nod : Node_Id;
6129 For_Access : Boolean := False)
6131 Has_Discrs : constant Boolean := Has_Discriminants (T);
6132 Constrained : constant Boolean
6133 := (Has_Discrs
6134 and then not Is_Empty_Elmt_List (Elist)
6135 and then not Is_Class_Wide_Type (T))
6136 or else Is_Constrained (T);
6138 begin
6139 if Ekind (T) = E_Record_Type then
6140 if For_Access then
6141 Set_Ekind (Def_Id, E_Private_Subtype);
6142 Set_Is_For_Access_Subtype (Def_Id, True);
6143 else
6144 Set_Ekind (Def_Id, E_Record_Subtype);
6145 end if;
6147 elsif Ekind (T) = E_Task_Type then
6148 Set_Ekind (Def_Id, E_Task_Subtype);
6150 elsif Ekind (T) = E_Protected_Type then
6151 Set_Ekind (Def_Id, E_Protected_Subtype);
6153 elsif Is_Private_Type (T) then
6154 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
6156 elsif Is_Class_Wide_Type (T) then
6157 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
6159 else
6160 -- Incomplete type. attach subtype to list of dependents, to be
6161 -- completed with full view of parent type, unless is it the
6162 -- designated subtype of a record component within an init_proc.
6163 -- This last case arises for a component of an access type whose
6164 -- designated type is incomplete (e.g. a Taft Amendment type).
6165 -- The designated subtype is within an inner scope, and needs no
6166 -- elaboration, because only the access type is needed in the
6167 -- initialization procedure.
6169 Set_Ekind (Def_Id, Ekind (T));
6171 if For_Access and then Within_Init_Proc then
6172 null;
6173 else
6174 Append_Elmt (Def_Id, Private_Dependents (T));
6175 end if;
6176 end if;
6178 Set_Etype (Def_Id, T);
6179 Init_Size_Align (Def_Id);
6180 Set_Has_Discriminants (Def_Id, Has_Discrs);
6181 Set_Is_Constrained (Def_Id, Constrained);
6183 Set_First_Entity (Def_Id, First_Entity (T));
6184 Set_Last_Entity (Def_Id, Last_Entity (T));
6185 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6187 if Is_Tagged_Type (T) then
6188 Set_Is_Tagged_Type (Def_Id);
6189 Make_Class_Wide_Type (Def_Id);
6190 end if;
6192 Set_Stored_Constraint (Def_Id, No_Elist);
6194 if Has_Discrs then
6195 Set_Discriminant_Constraint (Def_Id, Elist);
6196 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
6197 end if;
6199 if Is_Tagged_Type (T) then
6200 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
6201 Set_Is_Abstract (Def_Id, Is_Abstract (T));
6202 end if;
6204 -- Subtypes introduced by component declarations do not need to be
6205 -- marked as delayed, and do not get freeze nodes, because the semantics
6206 -- verifies that the parents of the subtypes are frozen before the
6207 -- enclosing record is frozen.
6209 if not Is_Type (Scope (Def_Id)) then
6210 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
6212 if Is_Private_Type (T)
6213 and then Present (Full_View (T))
6214 then
6215 Conditional_Delay (Def_Id, Full_View (T));
6216 else
6217 Conditional_Delay (Def_Id, T);
6218 end if;
6219 end if;
6221 if Is_Record_Type (T) then
6222 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
6224 if Has_Discrs
6225 and then not Is_Empty_Elmt_List (Elist)
6226 and then not For_Access
6227 then
6228 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
6229 elsif not For_Access then
6230 Set_Cloned_Subtype (Def_Id, T);
6231 end if;
6232 end if;
6234 end Build_Discriminated_Subtype;
6236 ------------------------
6237 -- Build_Scalar_Bound --
6238 ------------------------
6240 function Build_Scalar_Bound
6241 (Bound : Node_Id;
6242 Par_T : Entity_Id;
6243 Der_T : Entity_Id) return Node_Id
6245 New_Bound : Entity_Id;
6247 begin
6248 -- Note: not clear why this is needed, how can the original bound
6249 -- be unanalyzed at this point? and if it is, what business do we
6250 -- have messing around with it? and why is the base type of the
6251 -- parent type the right type for the resolution. It probably is
6252 -- not! It is OK for the new bound we are creating, but not for
6253 -- the old one??? Still if it never happens, no problem!
6255 Analyze_And_Resolve (Bound, Base_Type (Par_T));
6257 if Nkind (Bound) = N_Integer_Literal
6258 or else Nkind (Bound) = N_Real_Literal
6259 then
6260 New_Bound := New_Copy (Bound);
6261 Set_Etype (New_Bound, Der_T);
6262 Set_Analyzed (New_Bound);
6264 elsif Is_Entity_Name (Bound) then
6265 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
6267 -- The following is almost certainly wrong. What business do we have
6268 -- relocating a node (Bound) that is presumably still attached to
6269 -- the tree elsewhere???
6271 else
6272 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
6273 end if;
6275 Set_Etype (New_Bound, Der_T);
6276 return New_Bound;
6277 end Build_Scalar_Bound;
6279 --------------------------------
6280 -- Build_Underlying_Full_View --
6281 --------------------------------
6283 procedure Build_Underlying_Full_View
6284 (N : Node_Id;
6285 Typ : Entity_Id;
6286 Par : Entity_Id)
6288 Loc : constant Source_Ptr := Sloc (N);
6289 Subt : constant Entity_Id :=
6290 Make_Defining_Identifier
6291 (Loc, New_External_Name (Chars (Typ), 'S'));
6293 Constr : Node_Id;
6294 Indic : Node_Id;
6295 C : Node_Id;
6296 Id : Node_Id;
6298 procedure Set_Discriminant_Name (Id : Node_Id);
6299 -- If the derived type has discriminants, they may rename discriminants
6300 -- of the parent. When building the full view of the parent, we need to
6301 -- recover the names of the original discriminants if the constraint is
6302 -- given by named associations.
6304 ---------------------------
6305 -- Set_Discriminant_Name --
6306 ---------------------------
6308 procedure Set_Discriminant_Name (Id : Node_Id) is
6309 Disc : Entity_Id;
6311 begin
6312 Set_Original_Discriminant (Id, Empty);
6314 if Has_Discriminants (Typ) then
6315 Disc := First_Discriminant (Typ);
6317 while Present (Disc) loop
6318 if Chars (Disc) = Chars (Id)
6319 and then Present (Corresponding_Discriminant (Disc))
6320 then
6321 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
6322 end if;
6323 Next_Discriminant (Disc);
6324 end loop;
6325 end if;
6326 end Set_Discriminant_Name;
6328 -- Start of processing for Build_Underlying_Full_View
6330 begin
6331 if Nkind (N) = N_Full_Type_Declaration then
6332 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
6334 elsif Nkind (N) = N_Subtype_Declaration then
6335 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
6337 elsif Nkind (N) = N_Component_Declaration then
6338 Constr :=
6339 New_Copy_Tree
6340 (Constraint (Subtype_Indication (Component_Definition (N))));
6342 else
6343 raise Program_Error;
6344 end if;
6346 C := First (Constraints (Constr));
6347 while Present (C) loop
6348 if Nkind (C) = N_Discriminant_Association then
6349 Id := First (Selector_Names (C));
6350 while Present (Id) loop
6351 Set_Discriminant_Name (Id);
6352 Next (Id);
6353 end loop;
6354 end if;
6356 Next (C);
6357 end loop;
6359 Indic :=
6360 Make_Subtype_Declaration (Loc,
6361 Defining_Identifier => Subt,
6362 Subtype_Indication =>
6363 Make_Subtype_Indication (Loc,
6364 Subtype_Mark => New_Reference_To (Par, Loc),
6365 Constraint => New_Copy_Tree (Constr)));
6367 -- If this is a component subtype for an outer itype, it is not
6368 -- a list member, so simply set the parent link for analysis: if
6369 -- the enclosing type does not need to be in a declarative list,
6370 -- neither do the components.
6372 if Is_List_Member (N)
6373 and then Nkind (N) /= N_Component_Declaration
6374 then
6375 Insert_Before (N, Indic);
6376 else
6377 Set_Parent (Indic, Parent (N));
6378 end if;
6380 Analyze (Indic);
6381 Set_Underlying_Full_View (Typ, Full_View (Subt));
6382 end Build_Underlying_Full_View;
6384 -------------------------------
6385 -- Check_Abstract_Overriding --
6386 -------------------------------
6388 procedure Check_Abstract_Overriding (T : Entity_Id) is
6389 Op_List : Elist_Id;
6390 Elmt : Elmt_Id;
6391 Subp : Entity_Id;
6392 Type_Def : Node_Id;
6394 begin
6395 Op_List := Primitive_Operations (T);
6397 -- Loop to check primitive operations
6399 Elmt := First_Elmt (Op_List);
6400 while Present (Elmt) loop
6401 Subp := Node (Elmt);
6403 -- Special exception, do not complain about failure to override the
6404 -- stream routines _Input and _Output, since we always provide
6405 -- automatic overridings for these subprograms.
6407 if Is_Abstract (Subp)
6408 and then not Is_TSS (Subp, TSS_Stream_Input)
6409 and then not Is_TSS (Subp, TSS_Stream_Output)
6410 and then not Is_Abstract (T)
6411 then
6412 if Present (Alias (Subp)) then
6413 -- Only perform the check for a derived subprogram when
6414 -- the type has an explicit record extension. This avoids
6415 -- incorrectly flagging abstract subprograms for the case
6416 -- of a type without an extension derived from a formal type
6417 -- with a tagged actual (can occur within a private part).
6419 Type_Def := Type_Definition (Parent (T));
6420 if Nkind (Type_Def) = N_Derived_Type_Definition
6421 and then Present (Record_Extension_Part (Type_Def))
6422 then
6423 Error_Msg_NE
6424 ("type must be declared abstract or & overridden",
6425 T, Subp);
6426 end if;
6427 else
6428 Error_Msg_NE
6429 ("abstract subprogram not allowed for type&",
6430 Subp, T);
6431 Error_Msg_NE
6432 ("nonabstract type has abstract subprogram&",
6433 T, Subp);
6434 end if;
6435 end if;
6437 Next_Elmt (Elmt);
6438 end loop;
6439 end Check_Abstract_Overriding;
6441 ------------------------------------------------
6442 -- Check_Access_Discriminant_Requires_Limited --
6443 ------------------------------------------------
6445 procedure Check_Access_Discriminant_Requires_Limited
6446 (D : Node_Id;
6447 Loc : Node_Id)
6449 begin
6450 -- A discriminant_specification for an access discriminant
6451 -- shall appear only in the declaration for a task or protected
6452 -- type, or for a type with the reserved word 'limited' in
6453 -- its definition or in one of its ancestors. (RM 3.7(10))
6455 if Nkind (Discriminant_Type (D)) = N_Access_Definition
6456 and then not Is_Concurrent_Type (Current_Scope)
6457 and then not Is_Concurrent_Record_Type (Current_Scope)
6458 and then not Is_Limited_Record (Current_Scope)
6459 and then Ekind (Current_Scope) /= E_Limited_Private_Type
6460 then
6461 Error_Msg_N
6462 ("access discriminants allowed only for limited types", Loc);
6463 end if;
6464 end Check_Access_Discriminant_Requires_Limited;
6466 -----------------------------------
6467 -- Check_Aliased_Component_Types --
6468 -----------------------------------
6470 procedure Check_Aliased_Component_Types (T : Entity_Id) is
6471 C : Entity_Id;
6473 begin
6474 -- ??? Also need to check components of record extensions, but not
6475 -- components of protected types (which are always limited).
6477 if not Is_Limited_Type (T) then
6478 if Ekind (T) = E_Record_Type then
6479 C := First_Component (T);
6480 while Present (C) loop
6481 if Is_Aliased (C)
6482 and then Has_Discriminants (Etype (C))
6483 and then not Is_Constrained (Etype (C))
6484 and then not In_Instance
6485 then
6486 Error_Msg_N
6487 ("aliased component must be constrained ('R'M 3.6(11))",
6489 end if;
6491 Next_Component (C);
6492 end loop;
6494 elsif Ekind (T) = E_Array_Type then
6495 if Has_Aliased_Components (T)
6496 and then Has_Discriminants (Component_Type (T))
6497 and then not Is_Constrained (Component_Type (T))
6498 and then not In_Instance
6499 then
6500 Error_Msg_N
6501 ("aliased component type must be constrained ('R'M 3.6(11))",
6503 end if;
6504 end if;
6505 end if;
6506 end Check_Aliased_Component_Types;
6508 ----------------------
6509 -- Check_Completion --
6510 ----------------------
6512 procedure Check_Completion (Body_Id : Node_Id := Empty) is
6513 E : Entity_Id;
6515 procedure Post_Error;
6516 -- Post error message for lack of completion for entity E
6518 ----------------
6519 -- Post_Error --
6520 ----------------
6522 procedure Post_Error is
6523 begin
6524 if not Comes_From_Source (E) then
6526 if Ekind (E) = E_Task_Type
6527 or else Ekind (E) = E_Protected_Type
6528 then
6529 -- It may be an anonymous protected type created for a
6530 -- single variable. Post error on variable, if present.
6532 declare
6533 Var : Entity_Id;
6535 begin
6536 Var := First_Entity (Current_Scope);
6538 while Present (Var) loop
6539 exit when Etype (Var) = E
6540 and then Comes_From_Source (Var);
6542 Next_Entity (Var);
6543 end loop;
6545 if Present (Var) then
6546 E := Var;
6547 end if;
6548 end;
6549 end if;
6550 end if;
6552 -- If a generated entity has no completion, then either previous
6553 -- semantic errors have disabled the expansion phase, or else we had
6554 -- missing subunits, or else we are compiling without expan- sion,
6555 -- or else something is very wrong.
6557 if not Comes_From_Source (E) then
6558 pragma Assert
6559 (Serious_Errors_Detected > 0
6560 or else Configurable_Run_Time_Violations > 0
6561 or else Subunits_Missing
6562 or else not Expander_Active);
6563 return;
6565 -- Here for source entity
6567 else
6568 -- Here if no body to post the error message, so we post the error
6569 -- on the declaration that has no completion. This is not really
6570 -- the right place to post it, think about this later ???
6572 if No (Body_Id) then
6573 if Is_Type (E) then
6574 Error_Msg_NE
6575 ("missing full declaration for }", Parent (E), E);
6576 else
6577 Error_Msg_NE
6578 ("missing body for &", Parent (E), E);
6579 end if;
6581 -- Package body has no completion for a declaration that appears
6582 -- in the corresponding spec. Post error on the body, with a
6583 -- reference to the non-completed declaration.
6585 else
6586 Error_Msg_Sloc := Sloc (E);
6588 if Is_Type (E) then
6589 Error_Msg_NE
6590 ("missing full declaration for }!", Body_Id, E);
6592 elsif Is_Overloadable (E)
6593 and then Current_Entity_In_Scope (E) /= E
6594 then
6595 -- It may be that the completion is mistyped and appears
6596 -- as a distinct overloading of the entity.
6598 declare
6599 Candidate : constant Entity_Id :=
6600 Current_Entity_In_Scope (E);
6601 Decl : constant Node_Id :=
6602 Unit_Declaration_Node (Candidate);
6604 begin
6605 if Is_Overloadable (Candidate)
6606 and then Ekind (Candidate) = Ekind (E)
6607 and then Nkind (Decl) = N_Subprogram_Body
6608 and then Acts_As_Spec (Decl)
6609 then
6610 Check_Type_Conformant (Candidate, E);
6612 else
6613 Error_Msg_NE ("missing body for & declared#!",
6614 Body_Id, E);
6615 end if;
6616 end;
6617 else
6618 Error_Msg_NE ("missing body for & declared#!",
6619 Body_Id, E);
6620 end if;
6621 end if;
6622 end if;
6623 end Post_Error;
6625 -- Start processing for Check_Completion
6627 begin
6628 E := First_Entity (Current_Scope);
6629 while Present (E) loop
6630 if Is_Intrinsic_Subprogram (E) then
6631 null;
6633 -- The following situation requires special handling: a child
6634 -- unit that appears in the context clause of the body of its
6635 -- parent:
6637 -- procedure Parent.Child (...);
6639 -- with Parent.Child;
6640 -- package body Parent is
6642 -- Here Parent.Child appears as a local entity, but should not
6643 -- be flagged as requiring completion, because it is a
6644 -- compilation unit.
6646 elsif Ekind (E) = E_Function
6647 or else Ekind (E) = E_Procedure
6648 or else Ekind (E) = E_Generic_Function
6649 or else Ekind (E) = E_Generic_Procedure
6650 then
6651 if not Has_Completion (E)
6652 and then not Is_Abstract (E)
6653 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
6654 N_Compilation_Unit
6655 and then Chars (E) /= Name_uSize
6656 then
6657 Post_Error;
6658 end if;
6660 elsif Is_Entry (E) then
6661 if not Has_Completion (E) and then
6662 (Ekind (Scope (E)) = E_Protected_Object
6663 or else Ekind (Scope (E)) = E_Protected_Type)
6664 then
6665 Post_Error;
6666 end if;
6668 elsif Is_Package (E) then
6669 if Unit_Requires_Body (E) then
6670 if not Has_Completion (E)
6671 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
6672 N_Compilation_Unit
6673 then
6674 Post_Error;
6675 end if;
6677 elsif not Is_Child_Unit (E) then
6678 May_Need_Implicit_Body (E);
6679 end if;
6681 elsif Ekind (E) = E_Incomplete_Type
6682 and then No (Underlying_Type (E))
6683 then
6684 Post_Error;
6686 elsif (Ekind (E) = E_Task_Type or else
6687 Ekind (E) = E_Protected_Type)
6688 and then not Has_Completion (E)
6689 then
6690 Post_Error;
6692 -- A single task declared in the current scope is a constant, verify
6693 -- that the body of its anonymous type is in the same scope. If the
6694 -- task is defined elsewhere, this may be a renaming declaration for
6695 -- which no completion is needed.
6697 elsif Ekind (E) = E_Constant
6698 and then Ekind (Etype (E)) = E_Task_Type
6699 and then not Has_Completion (Etype (E))
6700 and then Scope (Etype (E)) = Current_Scope
6701 then
6702 Post_Error;
6704 elsif Ekind (E) = E_Protected_Object
6705 and then not Has_Completion (Etype (E))
6706 then
6707 Post_Error;
6709 elsif Ekind (E) = E_Record_Type then
6710 if Is_Tagged_Type (E) then
6711 Check_Abstract_Overriding (E);
6712 end if;
6714 Check_Aliased_Component_Types (E);
6716 elsif Ekind (E) = E_Array_Type then
6717 Check_Aliased_Component_Types (E);
6719 end if;
6721 Next_Entity (E);
6722 end loop;
6723 end Check_Completion;
6725 ----------------------------
6726 -- Check_Delta_Expression --
6727 ----------------------------
6729 procedure Check_Delta_Expression (E : Node_Id) is
6730 begin
6731 if not (Is_Real_Type (Etype (E))) then
6732 Wrong_Type (E, Any_Real);
6734 elsif not Is_OK_Static_Expression (E) then
6735 Flag_Non_Static_Expr
6736 ("non-static expression used for delta value!", E);
6738 elsif not UR_Is_Positive (Expr_Value_R (E)) then
6739 Error_Msg_N ("delta expression must be positive", E);
6741 else
6742 return;
6743 end if;
6745 -- If any of above errors occurred, then replace the incorrect
6746 -- expression by the real 0.1, which should prevent further errors.
6748 Rewrite (E,
6749 Make_Real_Literal (Sloc (E), Ureal_Tenth));
6750 Analyze_And_Resolve (E, Standard_Float);
6751 end Check_Delta_Expression;
6753 -----------------------------
6754 -- Check_Digits_Expression --
6755 -----------------------------
6757 procedure Check_Digits_Expression (E : Node_Id) is
6758 begin
6759 if not (Is_Integer_Type (Etype (E))) then
6760 Wrong_Type (E, Any_Integer);
6762 elsif not Is_OK_Static_Expression (E) then
6763 Flag_Non_Static_Expr
6764 ("non-static expression used for digits value!", E);
6766 elsif Expr_Value (E) <= 0 then
6767 Error_Msg_N ("digits value must be greater than zero", E);
6769 else
6770 return;
6771 end if;
6773 -- If any of above errors occurred, then replace the incorrect
6774 -- expression by the integer 1, which should prevent further errors.
6776 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
6777 Analyze_And_Resolve (E, Standard_Integer);
6779 end Check_Digits_Expression;
6781 --------------------------
6782 -- Check_Initialization --
6783 --------------------------
6785 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
6786 begin
6787 if (Is_Limited_Type (T)
6788 or else Is_Limited_Composite (T))
6789 and then not In_Instance
6790 and then not In_Inlined_Body
6791 then
6792 -- Ada 2005 (AI-287): Relax the strictness of the front-end in
6793 -- case of limited aggregates and extension aggregates.
6795 if Ada_Version >= Ada_05
6796 and then (Nkind (Exp) = N_Aggregate
6797 or else Nkind (Exp) = N_Extension_Aggregate)
6798 then
6799 null;
6800 else
6801 Error_Msg_N
6802 ("cannot initialize entities of limited type", Exp);
6803 Explain_Limited_Type (T, Exp);
6804 end if;
6805 end if;
6806 end Check_Initialization;
6808 ------------------------------------
6809 -- Check_Or_Process_Discriminants --
6810 ------------------------------------
6812 -- If an incomplete or private type declaration was already given for
6813 -- the type, the discriminants may have already been processed if they
6814 -- were present on the incomplete declaration. In this case a full
6815 -- conformance check is performed otherwise just process them.
6817 procedure Check_Or_Process_Discriminants
6818 (N : Node_Id;
6819 T : Entity_Id;
6820 Prev : Entity_Id := Empty)
6822 begin
6823 if Has_Discriminants (T) then
6825 -- Make the discriminants visible to component declarations
6827 declare
6828 D : Entity_Id := First_Discriminant (T);
6829 Prev : Entity_Id;
6831 begin
6832 while Present (D) loop
6833 Prev := Current_Entity (D);
6834 Set_Current_Entity (D);
6835 Set_Is_Immediately_Visible (D);
6836 Set_Homonym (D, Prev);
6838 -- Ada 2005 (AI-230): Access discriminant allowed in
6839 -- non-limited record types.
6841 if Ada_Version < Ada_05 then
6843 -- This restriction gets applied to the full type here; it
6844 -- has already been applied earlier to the partial view
6846 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
6847 end if;
6849 Next_Discriminant (D);
6850 end loop;
6851 end;
6853 elsif Present (Discriminant_Specifications (N)) then
6854 Process_Discriminants (N, Prev);
6855 end if;
6856 end Check_Or_Process_Discriminants;
6858 ----------------------
6859 -- Check_Real_Bound --
6860 ----------------------
6862 procedure Check_Real_Bound (Bound : Node_Id) is
6863 begin
6864 if not Is_Real_Type (Etype (Bound)) then
6865 Error_Msg_N
6866 ("bound in real type definition must be of real type", Bound);
6868 elsif not Is_OK_Static_Expression (Bound) then
6869 Flag_Non_Static_Expr
6870 ("non-static expression used for real type bound!", Bound);
6872 else
6873 return;
6874 end if;
6876 Rewrite
6877 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
6878 Analyze (Bound);
6879 Resolve (Bound, Standard_Float);
6880 end Check_Real_Bound;
6882 ------------------------------
6883 -- Complete_Private_Subtype --
6884 ------------------------------
6886 procedure Complete_Private_Subtype
6887 (Priv : Entity_Id;
6888 Full : Entity_Id;
6889 Full_Base : Entity_Id;
6890 Related_Nod : Node_Id)
6892 Save_Next_Entity : Entity_Id;
6893 Save_Homonym : Entity_Id;
6895 begin
6896 -- Set semantic attributes for (implicit) private subtype completion.
6897 -- If the full type has no discriminants, then it is a copy of the full
6898 -- view of the base. Otherwise, it is a subtype of the base with a
6899 -- possible discriminant constraint. Save and restore the original
6900 -- Next_Entity field of full to ensure that the calls to Copy_Node
6901 -- do not corrupt the entity chain.
6903 -- Note that the type of the full view is the same entity as the
6904 -- type of the partial view. In this fashion, the subtype has
6905 -- access to the correct view of the parent.
6907 Save_Next_Entity := Next_Entity (Full);
6908 Save_Homonym := Homonym (Priv);
6910 case Ekind (Full_Base) is
6911 when E_Record_Type |
6912 E_Record_Subtype |
6913 Class_Wide_Kind |
6914 Private_Kind |
6915 Task_Kind |
6916 Protected_Kind =>
6917 Copy_Node (Priv, Full);
6919 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
6920 Set_First_Entity (Full, First_Entity (Full_Base));
6921 Set_Last_Entity (Full, Last_Entity (Full_Base));
6923 when others =>
6924 Copy_Node (Full_Base, Full);
6925 Set_Chars (Full, Chars (Priv));
6926 Conditional_Delay (Full, Priv);
6927 Set_Sloc (Full, Sloc (Priv));
6928 end case;
6930 Set_Next_Entity (Full, Save_Next_Entity);
6931 Set_Homonym (Full, Save_Homonym);
6932 Set_Associated_Node_For_Itype (Full, Related_Nod);
6934 -- Set common attributes for all subtypes
6936 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
6938 -- The Etype of the full view is inconsistent. Gigi needs to see the
6939 -- structural full view, which is what the current scheme gives:
6940 -- the Etype of the full view is the etype of the full base. However,
6941 -- if the full base is a derived type, the full view then looks like
6942 -- a subtype of the parent, not a subtype of the full base. If instead
6943 -- we write:
6945 -- Set_Etype (Full, Full_Base);
6947 -- then we get inconsistencies in the front-end (confusion between
6948 -- views). Several outstanding bugs are related to this ???
6950 Set_Is_First_Subtype (Full, False);
6951 Set_Scope (Full, Scope (Priv));
6952 Set_Size_Info (Full, Full_Base);
6953 Set_RM_Size (Full, RM_Size (Full_Base));
6954 Set_Is_Itype (Full);
6956 -- A subtype of a private-type-without-discriminants, whose full-view
6957 -- has discriminants with default expressions, is not constrained!
6959 if not Has_Discriminants (Priv) then
6960 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
6962 if Has_Discriminants (Full_Base) then
6963 Set_Discriminant_Constraint
6964 (Full, Discriminant_Constraint (Full_Base));
6966 -- The partial view may have been indefinite, the full view
6967 -- might not be.
6969 Set_Has_Unknown_Discriminants
6970 (Full, Has_Unknown_Discriminants (Full_Base));
6971 end if;
6972 end if;
6974 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
6975 Set_Depends_On_Private (Full, Has_Private_Component (Full));
6977 -- Freeze the private subtype entity if its parent is delayed, and not
6978 -- already frozen. We skip this processing if the type is an anonymous
6979 -- subtype of a record component, or is the corresponding record of a
6980 -- protected type, since ???
6982 if not Is_Type (Scope (Full)) then
6983 Set_Has_Delayed_Freeze (Full,
6984 Has_Delayed_Freeze (Full_Base)
6985 and then (not Is_Frozen (Full_Base)));
6986 end if;
6988 Set_Freeze_Node (Full, Empty);
6989 Set_Is_Frozen (Full, False);
6990 Set_Full_View (Priv, Full);
6992 if Has_Discriminants (Full) then
6993 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
6994 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
6996 if Has_Unknown_Discriminants (Full) then
6997 Set_Discriminant_Constraint (Full, No_Elist);
6998 end if;
6999 end if;
7001 if Ekind (Full_Base) = E_Record_Type
7002 and then Has_Discriminants (Full_Base)
7003 and then Has_Discriminants (Priv) -- might not, if errors
7004 and then not Has_Unknown_Discriminants (Priv)
7005 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
7006 then
7007 Create_Constrained_Components
7008 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
7010 -- If the full base is itself derived from private, build a congruent
7011 -- subtype of its underlying type, for use by the back end. For a
7012 -- constrained record component, the declaration cannot be placed on
7013 -- the component list, but it must neverthess be built an analyzed, to
7014 -- supply enough information for gigi to compute the size of component.
7016 elsif Ekind (Full_Base) in Private_Kind
7017 and then Is_Derived_Type (Full_Base)
7018 and then Has_Discriminants (Full_Base)
7019 and then (Ekind (Current_Scope) /= E_Record_Subtype)
7020 then
7021 if not Is_Itype (Priv)
7022 and then
7023 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
7024 then
7025 Build_Underlying_Full_View
7026 (Parent (Priv), Full, Etype (Full_Base));
7028 elsif Nkind (Related_Nod) = N_Component_Declaration then
7029 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
7030 end if;
7032 elsif Is_Record_Type (Full_Base) then
7034 -- Show Full is simply a renaming of Full_Base
7036 Set_Cloned_Subtype (Full, Full_Base);
7037 end if;
7039 -- It is unsafe to share to bounds of a scalar type, because the Itype
7040 -- is elaborated on demand, and if a bound is non-static then different
7041 -- orders of elaboration in different units will lead to different
7042 -- external symbols.
7044 if Is_Scalar_Type (Full_Base) then
7045 Set_Scalar_Range (Full,
7046 Make_Range (Sloc (Related_Nod),
7047 Low_Bound =>
7048 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
7049 High_Bound =>
7050 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
7052 -- This completion inherits the bounds of the full parent, but if
7053 -- the parent is an unconstrained floating point type, so is the
7054 -- completion.
7056 if Is_Floating_Point_Type (Full_Base) then
7057 Set_Includes_Infinities
7058 (Scalar_Range (Full), Has_Infinities (Full_Base));
7059 end if;
7060 end if;
7062 -- ??? It seems that a lot of fields are missing that should be copied
7063 -- from Full_Base to Full. Here are some that are introduced in a
7064 -- non-disruptive way but a cleanup is necessary.
7066 if Is_Tagged_Type (Full_Base) then
7067 Set_Is_Tagged_Type (Full);
7068 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
7069 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
7071 -- If this is a subtype of a protected or task type, constrain its
7072 -- corresponding record, unless this is a subtype without constraints,
7073 -- i.e. a simple renaming as with an actual subtype in an instance.
7075 elsif Is_Concurrent_Type (Full_Base) then
7076 if Has_Discriminants (Full)
7077 and then Present (Corresponding_Record_Type (Full_Base))
7078 and then
7079 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
7080 then
7081 Set_Corresponding_Record_Type (Full,
7082 Constrain_Corresponding_Record
7083 (Full, Corresponding_Record_Type (Full_Base),
7084 Related_Nod, Full_Base));
7086 else
7087 Set_Corresponding_Record_Type (Full,
7088 Corresponding_Record_Type (Full_Base));
7089 end if;
7090 end if;
7091 end Complete_Private_Subtype;
7093 ----------------------------
7094 -- Constant_Redeclaration --
7095 ----------------------------
7097 procedure Constant_Redeclaration
7098 (Id : Entity_Id;
7099 N : Node_Id;
7100 T : out Entity_Id)
7102 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
7103 Obj_Def : constant Node_Id := Object_Definition (N);
7104 New_T : Entity_Id;
7106 procedure Check_Recursive_Declaration (Typ : Entity_Id);
7107 -- If deferred constant is an access type initialized with an
7108 -- allocator, check whether there is an illegal recursion in the
7109 -- definition, through a default value of some record subcomponent.
7110 -- This is normally detected when generating init procs, but requires
7111 -- this additional mechanism when expansion is disabled.
7113 ---------------------------------
7114 -- Check_Recursive_Declaration --
7115 ---------------------------------
7117 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
7118 Comp : Entity_Id;
7120 begin
7121 if Is_Record_Type (Typ) then
7122 Comp := First_Component (Typ);
7123 while Present (Comp) loop
7124 if Comes_From_Source (Comp) then
7125 if Present (Expression (Parent (Comp)))
7126 and then Is_Entity_Name (Expression (Parent (Comp)))
7127 and then Entity (Expression (Parent (Comp))) = Prev
7128 then
7129 Error_Msg_Sloc := Sloc (Parent (Comp));
7130 Error_Msg_NE
7131 ("illegal circularity with declaration for&#",
7132 N, Comp);
7133 return;
7135 elsif Is_Record_Type (Etype (Comp)) then
7136 Check_Recursive_Declaration (Etype (Comp));
7137 end if;
7138 end if;
7140 Next_Component (Comp);
7141 end loop;
7142 end if;
7143 end Check_Recursive_Declaration;
7145 -- Start of processing for Constant_Redeclaration
7147 begin
7148 if Nkind (Parent (Prev)) = N_Object_Declaration then
7149 if Nkind (Object_Definition
7150 (Parent (Prev))) = N_Subtype_Indication
7151 then
7152 -- Find type of new declaration. The constraints of the two
7153 -- views must match statically, but there is no point in
7154 -- creating an itype for the full view.
7156 if Nkind (Obj_Def) = N_Subtype_Indication then
7157 Find_Type (Subtype_Mark (Obj_Def));
7158 New_T := Entity (Subtype_Mark (Obj_Def));
7160 else
7161 Find_Type (Obj_Def);
7162 New_T := Entity (Obj_Def);
7163 end if;
7165 T := Etype (Prev);
7167 else
7168 -- The full view may impose a constraint, even if the partial
7169 -- view does not, so construct the subtype.
7171 New_T := Find_Type_Of_Object (Obj_Def, N);
7172 T := New_T;
7173 end if;
7175 else
7176 -- Current declaration is illegal, diagnosed below in Enter_Name
7178 T := Empty;
7179 New_T := Any_Type;
7180 end if;
7182 -- If previous full declaration exists, or if a homograph is present,
7183 -- let Enter_Name handle it, either with an error, or with the removal
7184 -- of an overridden implicit subprogram.
7186 if Ekind (Prev) /= E_Constant
7187 or else Present (Expression (Parent (Prev)))
7188 or else Present (Full_View (Prev))
7189 then
7190 Enter_Name (Id);
7192 -- Verify that types of both declarations match
7194 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
7195 Error_Msg_Sloc := Sloc (Prev);
7196 Error_Msg_N ("type does not match declaration#", N);
7197 Set_Full_View (Prev, Id);
7198 Set_Etype (Id, Any_Type);
7200 -- If so, process the full constant declaration
7202 else
7203 Set_Full_View (Prev, Id);
7204 Set_Is_Public (Id, Is_Public (Prev));
7205 Set_Is_Internal (Id);
7206 Append_Entity (Id, Current_Scope);
7208 -- Check ALIASED present if present before (RM 7.4(7))
7210 if Is_Aliased (Prev)
7211 and then not Aliased_Present (N)
7212 then
7213 Error_Msg_Sloc := Sloc (Prev);
7214 Error_Msg_N ("ALIASED required (see declaration#)", N);
7215 end if;
7217 -- Check that placement is in private part and that the incomplete
7218 -- declaration appeared in the visible part.
7220 if Ekind (Current_Scope) = E_Package
7221 and then not In_Private_Part (Current_Scope)
7222 then
7223 Error_Msg_Sloc := Sloc (Prev);
7224 Error_Msg_N ("full constant for declaration#"
7225 & " must be in private part", N);
7227 elsif Ekind (Current_Scope) = E_Package
7228 and then List_Containing (Parent (Prev))
7229 /= Visible_Declarations
7230 (Specification (Unit_Declaration_Node (Current_Scope)))
7231 then
7232 Error_Msg_N
7233 ("deferred constant must be declared in visible part",
7234 Parent (Prev));
7235 end if;
7237 if Is_Access_Type (T)
7238 and then Nkind (Expression (N)) = N_Allocator
7239 then
7240 Check_Recursive_Declaration (Designated_Type (T));
7241 end if;
7242 end if;
7243 end Constant_Redeclaration;
7245 ----------------------
7246 -- Constrain_Access --
7247 ----------------------
7249 procedure Constrain_Access
7250 (Def_Id : in out Entity_Id;
7251 S : Node_Id;
7252 Related_Nod : Node_Id)
7254 T : constant Entity_Id := Entity (Subtype_Mark (S));
7255 Desig_Type : constant Entity_Id := Designated_Type (T);
7256 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
7257 Constraint_OK : Boolean := True;
7259 begin
7260 if Is_Array_Type (Desig_Type) then
7261 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
7263 elsif (Is_Record_Type (Desig_Type)
7264 or else Is_Incomplete_Or_Private_Type (Desig_Type))
7265 and then not Is_Constrained (Desig_Type)
7266 then
7267 -- ??? The following code is a temporary kludge to ignore a
7268 -- discriminant constraint on access type if it is constraining
7269 -- the current record. Avoid creating the implicit subtype of the
7270 -- record we are currently compiling since right now, we cannot
7271 -- handle these. For now, just return the access type itself.
7273 if Desig_Type = Current_Scope
7274 and then No (Def_Id)
7275 then
7276 Set_Ekind (Desig_Subtype, E_Record_Subtype);
7277 Def_Id := Entity (Subtype_Mark (S));
7279 -- This call added to ensure that the constraint is analyzed
7280 -- (needed for a B test). Note that we still return early from
7281 -- this procedure to avoid recursive processing. ???
7283 Constrain_Discriminated_Type
7284 (Desig_Subtype, S, Related_Nod, For_Access => True);
7285 return;
7286 end if;
7288 if Ekind (T) = E_General_Access_Type
7289 and then Has_Private_Declaration (Desig_Type)
7290 and then In_Open_Scopes (Scope (Desig_Type))
7291 then
7292 -- Enforce rule that the constraint is illegal if there is
7293 -- an unconstrained view of the designated type. This means
7294 -- that the partial view (either a private type declaration or
7295 -- a derivation from a private type) has no discriminants.
7296 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
7297 -- by ACATS B371001).
7299 declare
7300 Pack : constant Node_Id :=
7301 Unit_Declaration_Node (Scope (Desig_Type));
7302 Decls : List_Id;
7303 Decl : Node_Id;
7305 begin
7306 if Nkind (Pack) = N_Package_Declaration then
7307 Decls := Visible_Declarations (Specification (Pack));
7308 Decl := First (Decls);
7309 while Present (Decl) loop
7310 if (Nkind (Decl) = N_Private_Type_Declaration
7311 and then
7312 Chars (Defining_Identifier (Decl)) =
7313 Chars (Desig_Type))
7315 or else
7316 (Nkind (Decl) = N_Full_Type_Declaration
7317 and then
7318 Chars (Defining_Identifier (Decl)) =
7319 Chars (Desig_Type)
7320 and then Is_Derived_Type (Desig_Type)
7321 and then
7322 Has_Private_Declaration (Etype (Desig_Type)))
7323 then
7324 if No (Discriminant_Specifications (Decl)) then
7325 Error_Msg_N
7326 ("cannot constrain general access type " &
7327 "if designated type has unconstrained view", S);
7328 end if;
7330 exit;
7331 end if;
7333 Next (Decl);
7334 end loop;
7335 end if;
7336 end;
7337 end if;
7339 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
7340 For_Access => True);
7342 elsif (Is_Task_Type (Desig_Type)
7343 or else Is_Protected_Type (Desig_Type))
7344 and then not Is_Constrained (Desig_Type)
7345 then
7346 Constrain_Concurrent
7347 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
7349 else
7350 Error_Msg_N ("invalid constraint on access type", S);
7351 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
7352 Constraint_OK := False;
7353 end if;
7355 if No (Def_Id) then
7356 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
7357 else
7358 Set_Ekind (Def_Id, E_Access_Subtype);
7359 end if;
7361 if Constraint_OK then
7362 Set_Etype (Def_Id, Base_Type (T));
7364 if Is_Private_Type (Desig_Type) then
7365 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
7366 end if;
7367 else
7368 Set_Etype (Def_Id, Any_Type);
7369 end if;
7371 Set_Size_Info (Def_Id, T);
7372 Set_Is_Constrained (Def_Id, Constraint_OK);
7373 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
7374 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7375 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
7377 Conditional_Delay (Def_Id, T);
7378 end Constrain_Access;
7380 ---------------------
7381 -- Constrain_Array --
7382 ---------------------
7384 procedure Constrain_Array
7385 (Def_Id : in out Entity_Id;
7386 SI : Node_Id;
7387 Related_Nod : Node_Id;
7388 Related_Id : Entity_Id;
7389 Suffix : Character)
7391 C : constant Node_Id := Constraint (SI);
7392 Number_Of_Constraints : Nat := 0;
7393 Index : Node_Id;
7394 S, T : Entity_Id;
7395 Constraint_OK : Boolean := True;
7397 begin
7398 T := Entity (Subtype_Mark (SI));
7400 if Ekind (T) in Access_Kind then
7401 T := Designated_Type (T);
7402 end if;
7404 -- If an index constraint follows a subtype mark in a subtype indication
7405 -- then the type or subtype denoted by the subtype mark must not already
7406 -- impose an index constraint. The subtype mark must denote either an
7407 -- unconstrained array type or an access type whose designated type
7408 -- is such an array type... (RM 3.6.1)
7410 if Is_Constrained (T) then
7411 Error_Msg_N
7412 ("array type is already constrained", Subtype_Mark (SI));
7413 Constraint_OK := False;
7415 else
7416 S := First (Constraints (C));
7418 while Present (S) loop
7419 Number_Of_Constraints := Number_Of_Constraints + 1;
7420 Next (S);
7421 end loop;
7423 -- In either case, the index constraint must provide a discrete
7424 -- range for each index of the array type and the type of each
7425 -- discrete range must be the same as that of the corresponding
7426 -- index. (RM 3.6.1)
7428 if Number_Of_Constraints /= Number_Dimensions (T) then
7429 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
7430 Constraint_OK := False;
7432 else
7433 S := First (Constraints (C));
7434 Index := First_Index (T);
7435 Analyze (Index);
7437 -- Apply constraints to each index type
7439 for J in 1 .. Number_Of_Constraints loop
7440 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
7441 Next (Index);
7442 Next (S);
7443 end loop;
7445 end if;
7446 end if;
7448 if No (Def_Id) then
7449 Def_Id :=
7450 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
7451 Set_Parent (Def_Id, Related_Nod);
7453 else
7454 Set_Ekind (Def_Id, E_Array_Subtype);
7455 end if;
7457 Set_Size_Info (Def_Id, (T));
7458 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7459 Set_Etype (Def_Id, Base_Type (T));
7461 if Constraint_OK then
7462 Set_First_Index (Def_Id, First (Constraints (C)));
7463 end if;
7465 Set_Is_Constrained (Def_Id, True);
7466 Set_Is_Aliased (Def_Id, Is_Aliased (T));
7467 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7469 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
7470 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
7472 -- Build a freeze node if parent still needs one. Also, make sure
7473 -- that the Depends_On_Private status is set (explanation ???)
7474 -- and also that a conditional delay is set.
7476 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
7477 Conditional_Delay (Def_Id, T);
7479 end Constrain_Array;
7481 ------------------------------
7482 -- Constrain_Component_Type --
7483 ------------------------------
7485 function Constrain_Component_Type
7486 (Compon_Type : Entity_Id;
7487 Constrained_Typ : Entity_Id;
7488 Related_Node : Node_Id;
7489 Typ : Entity_Id;
7490 Constraints : Elist_Id) return Entity_Id
7492 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
7494 function Build_Constrained_Array_Type
7495 (Old_Type : Entity_Id) return Entity_Id;
7496 -- If Old_Type is an array type, one of whose indices is constrained
7497 -- by a discriminant, build an Itype whose constraint replaces the
7498 -- discriminant with its value in the constraint.
7500 function Build_Constrained_Discriminated_Type
7501 (Old_Type : Entity_Id) return Entity_Id;
7502 -- Ditto for record components
7504 function Build_Constrained_Access_Type
7505 (Old_Type : Entity_Id) return Entity_Id;
7506 -- Ditto for access types. Makes use of previous two functions, to
7507 -- constrain designated type.
7509 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
7510 -- T is an array or discriminated type, C is a list of constraints
7511 -- that apply to T. This routine builds the constrained subtype.
7513 function Is_Discriminant (Expr : Node_Id) return Boolean;
7514 -- Returns True if Expr is a discriminant
7516 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
7517 -- Find the value of discriminant Discrim in Constraint
7519 -----------------------------------
7520 -- Build_Constrained_Access_Type --
7521 -----------------------------------
7523 function Build_Constrained_Access_Type
7524 (Old_Type : Entity_Id) return Entity_Id
7526 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
7527 Itype : Entity_Id;
7528 Desig_Subtype : Entity_Id;
7529 Scop : Entity_Id;
7531 begin
7532 -- if the original access type was not embedded in the enclosing
7533 -- type definition, there is no need to produce a new access
7534 -- subtype. In fact every access type with an explicit constraint
7535 -- generates an itype whose scope is the enclosing record.
7537 if not Is_Type (Scope (Old_Type)) then
7538 return Old_Type;
7540 elsif Is_Array_Type (Desig_Type) then
7541 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
7543 elsif Has_Discriminants (Desig_Type) then
7545 -- This may be an access type to an enclosing record type for
7546 -- which we are constructing the constrained components. Return
7547 -- the enclosing record subtype. This is not always correct,
7548 -- but avoids infinite recursion. ???
7550 Desig_Subtype := Any_Type;
7552 for J in reverse 0 .. Scope_Stack.Last loop
7553 Scop := Scope_Stack.Table (J).Entity;
7555 if Is_Type (Scop)
7556 and then Base_Type (Scop) = Base_Type (Desig_Type)
7557 then
7558 Desig_Subtype := Scop;
7559 end if;
7561 exit when not Is_Type (Scop);
7562 end loop;
7564 if Desig_Subtype = Any_Type then
7565 Desig_Subtype :=
7566 Build_Constrained_Discriminated_Type (Desig_Type);
7567 end if;
7569 else
7570 return Old_Type;
7571 end if;
7573 if Desig_Subtype /= Desig_Type then
7575 -- The Related_Node better be here or else we won't be able
7576 -- to attach new itypes to a node in the tree.
7578 pragma Assert (Present (Related_Node));
7580 Itype := Create_Itype (E_Access_Subtype, Related_Node);
7582 Set_Etype (Itype, Base_Type (Old_Type));
7583 Set_Size_Info (Itype, (Old_Type));
7584 Set_Directly_Designated_Type (Itype, Desig_Subtype);
7585 Set_Depends_On_Private (Itype, Has_Private_Component
7586 (Old_Type));
7587 Set_Is_Access_Constant (Itype, Is_Access_Constant
7588 (Old_Type));
7590 -- The new itype needs freezing when it depends on a not frozen
7591 -- type and the enclosing subtype needs freezing.
7593 if Has_Delayed_Freeze (Constrained_Typ)
7594 and then not Is_Frozen (Constrained_Typ)
7595 then
7596 Conditional_Delay (Itype, Base_Type (Old_Type));
7597 end if;
7599 return Itype;
7601 else
7602 return Old_Type;
7603 end if;
7604 end Build_Constrained_Access_Type;
7606 ----------------------------------
7607 -- Build_Constrained_Array_Type --
7608 ----------------------------------
7610 function Build_Constrained_Array_Type
7611 (Old_Type : Entity_Id) return Entity_Id
7613 Lo_Expr : Node_Id;
7614 Hi_Expr : Node_Id;
7615 Old_Index : Node_Id;
7616 Range_Node : Node_Id;
7617 Constr_List : List_Id;
7619 Need_To_Create_Itype : Boolean := False;
7621 begin
7622 Old_Index := First_Index (Old_Type);
7623 while Present (Old_Index) loop
7624 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
7626 if Is_Discriminant (Lo_Expr)
7627 or else Is_Discriminant (Hi_Expr)
7628 then
7629 Need_To_Create_Itype := True;
7630 end if;
7632 Next_Index (Old_Index);
7633 end loop;
7635 if Need_To_Create_Itype then
7636 Constr_List := New_List;
7638 Old_Index := First_Index (Old_Type);
7639 while Present (Old_Index) loop
7640 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
7642 if Is_Discriminant (Lo_Expr) then
7643 Lo_Expr := Get_Discr_Value (Lo_Expr);
7644 end if;
7646 if Is_Discriminant (Hi_Expr) then
7647 Hi_Expr := Get_Discr_Value (Hi_Expr);
7648 end if;
7650 Range_Node :=
7651 Make_Range
7652 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
7654 Append (Range_Node, To => Constr_List);
7656 Next_Index (Old_Index);
7657 end loop;
7659 return Build_Subtype (Old_Type, Constr_List);
7661 else
7662 return Old_Type;
7663 end if;
7664 end Build_Constrained_Array_Type;
7666 ------------------------------------------
7667 -- Build_Constrained_Discriminated_Type --
7668 ------------------------------------------
7670 function Build_Constrained_Discriminated_Type
7671 (Old_Type : Entity_Id) return Entity_Id
7673 Expr : Node_Id;
7674 Constr_List : List_Id;
7675 Old_Constraint : Elmt_Id;
7677 Need_To_Create_Itype : Boolean := False;
7679 begin
7680 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
7681 while Present (Old_Constraint) loop
7682 Expr := Node (Old_Constraint);
7684 if Is_Discriminant (Expr) then
7685 Need_To_Create_Itype := True;
7686 end if;
7688 Next_Elmt (Old_Constraint);
7689 end loop;
7691 if Need_To_Create_Itype then
7692 Constr_List := New_List;
7694 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
7695 while Present (Old_Constraint) loop
7696 Expr := Node (Old_Constraint);
7698 if Is_Discriminant (Expr) then
7699 Expr := Get_Discr_Value (Expr);
7700 end if;
7702 Append (New_Copy_Tree (Expr), To => Constr_List);
7704 Next_Elmt (Old_Constraint);
7705 end loop;
7707 return Build_Subtype (Old_Type, Constr_List);
7709 else
7710 return Old_Type;
7711 end if;
7712 end Build_Constrained_Discriminated_Type;
7714 -------------------
7715 -- Build_Subtype --
7716 -------------------
7718 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
7719 Indic : Node_Id;
7720 Subtyp_Decl : Node_Id;
7721 Def_Id : Entity_Id;
7722 Btyp : Entity_Id := Base_Type (T);
7724 begin
7725 -- The Related_Node better be here or else we won't be able to
7726 -- attach new itypes to a node in the tree.
7728 pragma Assert (Present (Related_Node));
7730 -- If the view of the component's type is incomplete or private
7731 -- with unknown discriminants, then the constraint must be applied
7732 -- to the full type.
7734 if Has_Unknown_Discriminants (Btyp)
7735 and then Present (Underlying_Type (Btyp))
7736 then
7737 Btyp := Underlying_Type (Btyp);
7738 end if;
7740 Indic :=
7741 Make_Subtype_Indication (Loc,
7742 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7743 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
7745 Def_Id := Create_Itype (Ekind (T), Related_Node);
7747 Subtyp_Decl :=
7748 Make_Subtype_Declaration (Loc,
7749 Defining_Identifier => Def_Id,
7750 Subtype_Indication => Indic);
7752 Set_Parent (Subtyp_Decl, Parent (Related_Node));
7754 -- Itypes must be analyzed with checks off (see package Itypes)
7756 Analyze (Subtyp_Decl, Suppress => All_Checks);
7758 return Def_Id;
7759 end Build_Subtype;
7761 ---------------------
7762 -- Get_Discr_Value --
7763 ---------------------
7765 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
7766 D : Entity_Id := First_Discriminant (Typ);
7767 E : Elmt_Id := First_Elmt (Constraints);
7768 G : Elmt_Id;
7770 begin
7771 -- The discriminant may be declared for the type, in which case we
7772 -- find it by iterating over the list of discriminants. If the
7773 -- discriminant is inherited from a parent type, it appears as the
7774 -- corresponding discriminant of the current type. This will be the
7775 -- case when constraining an inherited component whose constraint is
7776 -- given by a discriminant of the parent.
7778 while Present (D) loop
7779 if D = Entity (Discrim)
7780 or else Corresponding_Discriminant (D) = Entity (Discrim)
7781 then
7782 return Node (E);
7783 end if;
7785 Next_Discriminant (D);
7786 Next_Elmt (E);
7787 end loop;
7789 -- The corresponding_Discriminant mechanism is incomplete, because
7790 -- the correspondence between new and old discriminants is not one
7791 -- to one: one new discriminant can constrain several old ones. In
7792 -- that case, scan sequentially the stored_constraint, the list of
7793 -- discriminants of the parents, and the constraints.
7795 if Is_Derived_Type (Typ)
7796 and then Present (Stored_Constraint (Typ))
7797 and then Scope (Entity (Discrim)) = Etype (Typ)
7798 then
7799 D := First_Discriminant (Etype (Typ));
7800 E := First_Elmt (Constraints);
7801 G := First_Elmt (Stored_Constraint (Typ));
7803 while Present (D) loop
7804 if D = Entity (Discrim) then
7805 return Node (E);
7806 end if;
7808 Next_Discriminant (D);
7809 Next_Elmt (E);
7810 Next_Elmt (G);
7811 end loop;
7812 end if;
7814 -- Something is wrong if we did not find the value
7816 raise Program_Error;
7817 end Get_Discr_Value;
7819 ---------------------
7820 -- Is_Discriminant --
7821 ---------------------
7823 function Is_Discriminant (Expr : Node_Id) return Boolean is
7824 Discrim_Scope : Entity_Id;
7826 begin
7827 if Denotes_Discriminant (Expr) then
7828 Discrim_Scope := Scope (Entity (Expr));
7830 -- Either we have a reference to one of Typ's discriminants,
7832 pragma Assert (Discrim_Scope = Typ
7834 -- or to the discriminants of the parent type, in the case
7835 -- of a derivation of a tagged type with variants.
7837 or else Discrim_Scope = Etype (Typ)
7838 or else Full_View (Discrim_Scope) = Etype (Typ)
7840 -- or same as above for the case where the discriminants
7841 -- were declared in Typ's private view.
7843 or else (Is_Private_Type (Discrim_Scope)
7844 and then Chars (Discrim_Scope) = Chars (Typ))
7846 -- or else we are deriving from the full view and the
7847 -- discriminant is declared in the private entity.
7849 or else (Is_Private_Type (Typ)
7850 and then Chars (Discrim_Scope) = Chars (Typ))
7852 -- or we have a class-wide type, in which case make sure the
7853 -- discriminant found belongs to the root type.
7855 or else (Is_Class_Wide_Type (Typ)
7856 and then Etype (Typ) = Discrim_Scope));
7858 return True;
7859 end if;
7861 -- In all other cases we have something wrong
7863 return False;
7864 end Is_Discriminant;
7866 -- Start of processing for Constrain_Component_Type
7868 begin
7869 if Is_Array_Type (Compon_Type) then
7870 return Build_Constrained_Array_Type (Compon_Type);
7872 elsif Has_Discriminants (Compon_Type) then
7873 return Build_Constrained_Discriminated_Type (Compon_Type);
7875 elsif Is_Access_Type (Compon_Type) then
7876 return Build_Constrained_Access_Type (Compon_Type);
7877 end if;
7879 return Compon_Type;
7880 end Constrain_Component_Type;
7882 --------------------------
7883 -- Constrain_Concurrent --
7884 --------------------------
7886 -- For concurrent types, the associated record value type carries the same
7887 -- discriminants, so when we constrain a concurrent type, we must constrain
7888 -- the value type as well.
7890 procedure Constrain_Concurrent
7891 (Def_Id : in out Entity_Id;
7892 SI : Node_Id;
7893 Related_Nod : Node_Id;
7894 Related_Id : Entity_Id;
7895 Suffix : Character)
7897 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
7898 T_Val : Entity_Id;
7900 begin
7901 if Ekind (T_Ent) in Access_Kind then
7902 T_Ent := Designated_Type (T_Ent);
7903 end if;
7905 T_Val := Corresponding_Record_Type (T_Ent);
7907 if Present (T_Val) then
7909 if No (Def_Id) then
7910 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7911 end if;
7913 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7915 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7916 Set_Corresponding_Record_Type (Def_Id,
7917 Constrain_Corresponding_Record
7918 (Def_Id, T_Val, Related_Nod, Related_Id));
7920 else
7921 -- If there is no associated record, expansion is disabled and this
7922 -- is a generic context. Create a subtype in any case, so that
7923 -- semantic analysis can proceed.
7925 if No (Def_Id) then
7926 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7927 end if;
7929 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7930 end if;
7931 end Constrain_Concurrent;
7933 ------------------------------------
7934 -- Constrain_Corresponding_Record --
7935 ------------------------------------
7937 function Constrain_Corresponding_Record
7938 (Prot_Subt : Entity_Id;
7939 Corr_Rec : Entity_Id;
7940 Related_Nod : Node_Id;
7941 Related_Id : Entity_Id) return Entity_Id
7943 T_Sub : constant Entity_Id :=
7944 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
7946 begin
7947 Set_Etype (T_Sub, Corr_Rec);
7948 Init_Size_Align (T_Sub);
7949 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
7950 Set_Is_Constrained (T_Sub, True);
7951 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
7952 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
7954 Conditional_Delay (T_Sub, Corr_Rec);
7956 if Has_Discriminants (Prot_Subt) then -- False only if errors.
7957 Set_Discriminant_Constraint
7958 (T_Sub, Discriminant_Constraint (Prot_Subt));
7959 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
7960 Create_Constrained_Components
7961 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
7962 end if;
7964 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
7966 return T_Sub;
7967 end Constrain_Corresponding_Record;
7969 -----------------------
7970 -- Constrain_Decimal --
7971 -----------------------
7973 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
7974 T : constant Entity_Id := Entity (Subtype_Mark (S));
7975 C : constant Node_Id := Constraint (S);
7976 Loc : constant Source_Ptr := Sloc (C);
7977 Range_Expr : Node_Id;
7978 Digits_Expr : Node_Id;
7979 Digits_Val : Uint;
7980 Bound_Val : Ureal;
7982 begin
7983 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
7985 if Nkind (C) = N_Range_Constraint then
7986 Range_Expr := Range_Expression (C);
7987 Digits_Val := Digits_Value (T);
7989 else
7990 pragma Assert (Nkind (C) = N_Digits_Constraint);
7991 Digits_Expr := Digits_Expression (C);
7992 Analyze_And_Resolve (Digits_Expr, Any_Integer);
7994 Check_Digits_Expression (Digits_Expr);
7995 Digits_Val := Expr_Value (Digits_Expr);
7997 if Digits_Val > Digits_Value (T) then
7998 Error_Msg_N
7999 ("digits expression is incompatible with subtype", C);
8000 Digits_Val := Digits_Value (T);
8001 end if;
8003 if Present (Range_Constraint (C)) then
8004 Range_Expr := Range_Expression (Range_Constraint (C));
8005 else
8006 Range_Expr := Empty;
8007 end if;
8008 end if;
8010 Set_Etype (Def_Id, Base_Type (T));
8011 Set_Size_Info (Def_Id, (T));
8012 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8013 Set_Delta_Value (Def_Id, Delta_Value (T));
8014 Set_Scale_Value (Def_Id, Scale_Value (T));
8015 Set_Small_Value (Def_Id, Small_Value (T));
8016 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
8017 Set_Digits_Value (Def_Id, Digits_Val);
8019 -- Manufacture range from given digits value if no range present
8021 if No (Range_Expr) then
8022 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
8023 Range_Expr :=
8024 Make_Range (Loc,
8025 Low_Bound =>
8026 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
8027 High_Bound =>
8028 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
8029 end if;
8031 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
8032 Set_Discrete_RM_Size (Def_Id);
8034 -- Unconditionally delay the freeze, since we cannot set size
8035 -- information in all cases correctly until the freeze point.
8037 Set_Has_Delayed_Freeze (Def_Id);
8038 end Constrain_Decimal;
8040 ----------------------------------
8041 -- Constrain_Discriminated_Type --
8042 ----------------------------------
8044 procedure Constrain_Discriminated_Type
8045 (Def_Id : Entity_Id;
8046 S : Node_Id;
8047 Related_Nod : Node_Id;
8048 For_Access : Boolean := False)
8050 E : constant Entity_Id := Entity (Subtype_Mark (S));
8051 T : Entity_Id;
8052 C : Node_Id;
8053 Elist : Elist_Id := New_Elmt_List;
8055 procedure Fixup_Bad_Constraint;
8056 -- This is called after finding a bad constraint, and after having
8057 -- posted an appropriate error message. The mission is to leave the
8058 -- entity T in as reasonable state as possible!
8060 --------------------------
8061 -- Fixup_Bad_Constraint --
8062 --------------------------
8064 procedure Fixup_Bad_Constraint is
8065 begin
8066 -- Set a reasonable Ekind for the entity. For an incomplete type,
8067 -- we can't do much, but for other types, we can set the proper
8068 -- corresponding subtype kind.
8070 if Ekind (T) = E_Incomplete_Type then
8071 Set_Ekind (Def_Id, Ekind (T));
8072 else
8073 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8074 end if;
8076 Set_Etype (Def_Id, Any_Type);
8077 Set_Error_Posted (Def_Id);
8078 end Fixup_Bad_Constraint;
8080 -- Start of processing for Constrain_Discriminated_Type
8082 begin
8083 C := Constraint (S);
8085 -- A discriminant constraint is only allowed in a subtype indication,
8086 -- after a subtype mark. This subtype mark must denote either a type
8087 -- with discriminants, or an access type whose designated type is a
8088 -- type with discriminants. A discriminant constraint specifies the
8089 -- values of these discriminants (RM 3.7.2(5)).
8091 T := Base_Type (Entity (Subtype_Mark (S)));
8093 if Ekind (T) in Access_Kind then
8094 T := Designated_Type (T);
8095 end if;
8097 -- Check that the type has visible discriminants. The type may be
8098 -- a private type with unknown discriminants whose full view has
8099 -- discriminants which are invisible.
8101 if not Has_Discriminants (T)
8102 or else
8103 (Has_Unknown_Discriminants (T)
8104 and then Is_Private_Type (T))
8105 then
8106 Error_Msg_N ("invalid constraint: type has no discriminant", C);
8107 Fixup_Bad_Constraint;
8108 return;
8110 elsif Is_Constrained (E)
8111 or else (Ekind (E) = E_Class_Wide_Subtype
8112 and then Present (Discriminant_Constraint (E)))
8113 then
8114 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
8115 Fixup_Bad_Constraint;
8116 return;
8117 end if;
8119 -- T may be an unconstrained subtype (e.g. a generic actual).
8120 -- Constraint applies to the base type.
8122 T := Base_Type (T);
8124 Elist := Build_Discriminant_Constraints (T, S);
8126 -- If the list returned was empty we had an error in building the
8127 -- discriminant constraint. We have also already signalled an error
8128 -- in the incomplete type case
8130 if Is_Empty_Elmt_List (Elist) then
8131 Fixup_Bad_Constraint;
8132 return;
8133 end if;
8135 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
8136 end Constrain_Discriminated_Type;
8138 ---------------------------
8139 -- Constrain_Enumeration --
8140 ---------------------------
8142 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
8143 T : constant Entity_Id := Entity (Subtype_Mark (S));
8144 C : constant Node_Id := Constraint (S);
8146 begin
8147 Set_Ekind (Def_Id, E_Enumeration_Subtype);
8149 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
8151 Set_Etype (Def_Id, Base_Type (T));
8152 Set_Size_Info (Def_Id, (T));
8153 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8154 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
8156 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8158 Set_Discrete_RM_Size (Def_Id);
8159 end Constrain_Enumeration;
8161 ----------------------
8162 -- Constrain_Float --
8163 ----------------------
8165 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
8166 T : constant Entity_Id := Entity (Subtype_Mark (S));
8167 C : Node_Id;
8168 D : Node_Id;
8169 Rais : Node_Id;
8171 begin
8172 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
8174 Set_Etype (Def_Id, Base_Type (T));
8175 Set_Size_Info (Def_Id, (T));
8176 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8178 -- Process the constraint
8180 C := Constraint (S);
8182 -- Digits constraint present
8184 if Nkind (C) = N_Digits_Constraint then
8185 Check_Restriction (No_Obsolescent_Features, C);
8187 if Warn_On_Obsolescent_Feature then
8188 Error_Msg_N
8189 ("subtype digits constraint is an " &
8190 "obsolescent feature ('R'M 'J.3(8))?", C);
8191 end if;
8193 D := Digits_Expression (C);
8194 Analyze_And_Resolve (D, Any_Integer);
8195 Check_Digits_Expression (D);
8196 Set_Digits_Value (Def_Id, Expr_Value (D));
8198 -- Check that digits value is in range. Obviously we can do this
8199 -- at compile time, but it is strictly a runtime check, and of
8200 -- course there is an ACVC test that checks this!
8202 if Digits_Value (Def_Id) > Digits_Value (T) then
8203 Error_Msg_Uint_1 := Digits_Value (T);
8204 Error_Msg_N ("?digits value is too large, maximum is ^", D);
8205 Rais :=
8206 Make_Raise_Constraint_Error (Sloc (D),
8207 Reason => CE_Range_Check_Failed);
8208 Insert_Action (Declaration_Node (Def_Id), Rais);
8209 end if;
8211 C := Range_Constraint (C);
8213 -- No digits constraint present
8215 else
8216 Set_Digits_Value (Def_Id, Digits_Value (T));
8217 end if;
8219 -- Range constraint present
8221 if Nkind (C) = N_Range_Constraint then
8222 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8224 -- No range constraint present
8226 else
8227 pragma Assert (No (C));
8228 Set_Scalar_Range (Def_Id, Scalar_Range (T));
8229 end if;
8231 Set_Is_Constrained (Def_Id);
8232 end Constrain_Float;
8234 ---------------------
8235 -- Constrain_Index --
8236 ---------------------
8238 procedure Constrain_Index
8239 (Index : Node_Id;
8240 S : Node_Id;
8241 Related_Nod : Node_Id;
8242 Related_Id : Entity_Id;
8243 Suffix : Character;
8244 Suffix_Index : Nat)
8246 Def_Id : Entity_Id;
8247 R : Node_Id := Empty;
8248 T : constant Entity_Id := Etype (Index);
8250 begin
8251 if Nkind (S) = N_Range
8252 or else
8253 (Nkind (S) = N_Attribute_Reference
8254 and then Attribute_Name (S) = Name_Range)
8255 then
8256 -- A Range attribute will transformed into N_Range by Resolve
8258 Analyze (S);
8259 Set_Etype (S, T);
8260 R := S;
8262 Process_Range_Expr_In_Decl (R, T, Empty_List);
8264 if not Error_Posted (S)
8265 and then
8266 (Nkind (S) /= N_Range
8267 or else not Covers (T, (Etype (Low_Bound (S))))
8268 or else not Covers (T, (Etype (High_Bound (S)))))
8269 then
8270 if Base_Type (T) /= Any_Type
8271 and then Etype (Low_Bound (S)) /= Any_Type
8272 and then Etype (High_Bound (S)) /= Any_Type
8273 then
8274 Error_Msg_N ("range expected", S);
8275 end if;
8276 end if;
8278 elsif Nkind (S) = N_Subtype_Indication then
8280 -- The parser has verified that this is a discrete indication
8282 Resolve_Discrete_Subtype_Indication (S, T);
8283 R := Range_Expression (Constraint (S));
8285 elsif Nkind (S) = N_Discriminant_Association then
8287 -- Syntactically valid in subtype indication
8289 Error_Msg_N ("invalid index constraint", S);
8290 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
8291 return;
8293 -- Subtype_Mark case, no anonymous subtypes to construct
8295 else
8296 Analyze (S);
8298 if Is_Entity_Name (S) then
8299 if not Is_Type (Entity (S)) then
8300 Error_Msg_N ("expect subtype mark for index constraint", S);
8302 elsif Base_Type (Entity (S)) /= Base_Type (T) then
8303 Wrong_Type (S, Base_Type (T));
8304 end if;
8306 return;
8308 else
8309 Error_Msg_N ("invalid index constraint", S);
8310 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
8311 return;
8312 end if;
8313 end if;
8315 Def_Id :=
8316 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
8318 Set_Etype (Def_Id, Base_Type (T));
8320 if Is_Modular_Integer_Type (T) then
8321 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
8323 elsif Is_Integer_Type (T) then
8324 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
8326 else
8327 Set_Ekind (Def_Id, E_Enumeration_Subtype);
8328 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
8329 end if;
8331 Set_Size_Info (Def_Id, (T));
8332 Set_RM_Size (Def_Id, RM_Size (T));
8333 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8335 Set_Scalar_Range (Def_Id, R);
8337 Set_Etype (S, Def_Id);
8338 Set_Discrete_RM_Size (Def_Id);
8339 end Constrain_Index;
8341 -----------------------
8342 -- Constrain_Integer --
8343 -----------------------
8345 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
8346 T : constant Entity_Id := Entity (Subtype_Mark (S));
8347 C : constant Node_Id := Constraint (S);
8349 begin
8350 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8352 if Is_Modular_Integer_Type (T) then
8353 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
8354 else
8355 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
8356 end if;
8358 Set_Etype (Def_Id, Base_Type (T));
8359 Set_Size_Info (Def_Id, (T));
8360 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8361 Set_Discrete_RM_Size (Def_Id);
8362 end Constrain_Integer;
8364 ------------------------------
8365 -- Constrain_Ordinary_Fixed --
8366 ------------------------------
8368 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
8369 T : constant Entity_Id := Entity (Subtype_Mark (S));
8370 C : Node_Id;
8371 D : Node_Id;
8372 Rais : Node_Id;
8374 begin
8375 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
8376 Set_Etype (Def_Id, Base_Type (T));
8377 Set_Size_Info (Def_Id, (T));
8378 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8379 Set_Small_Value (Def_Id, Small_Value (T));
8381 -- Process the constraint
8383 C := Constraint (S);
8385 -- Delta constraint present
8387 if Nkind (C) = N_Delta_Constraint then
8388 Check_Restriction (No_Obsolescent_Features, C);
8390 if Warn_On_Obsolescent_Feature then
8391 Error_Msg_S
8392 ("subtype delta constraint is an " &
8393 "obsolescent feature ('R'M 'J.3(7))?");
8394 end if;
8396 D := Delta_Expression (C);
8397 Analyze_And_Resolve (D, Any_Real);
8398 Check_Delta_Expression (D);
8399 Set_Delta_Value (Def_Id, Expr_Value_R (D));
8401 -- Check that delta value is in range. Obviously we can do this
8402 -- at compile time, but it is strictly a runtime check, and of
8403 -- course there is an ACVC test that checks this!
8405 if Delta_Value (Def_Id) < Delta_Value (T) then
8406 Error_Msg_N ("?delta value is too small", D);
8407 Rais :=
8408 Make_Raise_Constraint_Error (Sloc (D),
8409 Reason => CE_Range_Check_Failed);
8410 Insert_Action (Declaration_Node (Def_Id), Rais);
8411 end if;
8413 C := Range_Constraint (C);
8415 -- No delta constraint present
8417 else
8418 Set_Delta_Value (Def_Id, Delta_Value (T));
8419 end if;
8421 -- Range constraint present
8423 if Nkind (C) = N_Range_Constraint then
8424 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8426 -- No range constraint present
8428 else
8429 pragma Assert (No (C));
8430 Set_Scalar_Range (Def_Id, Scalar_Range (T));
8432 end if;
8434 Set_Discrete_RM_Size (Def_Id);
8436 -- Unconditionally delay the freeze, since we cannot set size
8437 -- information in all cases correctly until the freeze point.
8439 Set_Has_Delayed_Freeze (Def_Id);
8440 end Constrain_Ordinary_Fixed;
8442 ---------------------------
8443 -- Convert_Scalar_Bounds --
8444 ---------------------------
8446 procedure Convert_Scalar_Bounds
8447 (N : Node_Id;
8448 Parent_Type : Entity_Id;
8449 Derived_Type : Entity_Id;
8450 Loc : Source_Ptr)
8452 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
8454 Lo : Node_Id;
8455 Hi : Node_Id;
8456 Rng : Node_Id;
8458 begin
8459 Lo := Build_Scalar_Bound
8460 (Type_Low_Bound (Derived_Type),
8461 Parent_Type, Implicit_Base);
8463 Hi := Build_Scalar_Bound
8464 (Type_High_Bound (Derived_Type),
8465 Parent_Type, Implicit_Base);
8467 Rng :=
8468 Make_Range (Loc,
8469 Low_Bound => Lo,
8470 High_Bound => Hi);
8472 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
8474 Set_Parent (Rng, N);
8475 Set_Scalar_Range (Derived_Type, Rng);
8477 -- Analyze the bounds
8479 Analyze_And_Resolve (Lo, Implicit_Base);
8480 Analyze_And_Resolve (Hi, Implicit_Base);
8482 -- Analyze the range itself, except that we do not analyze it if
8483 -- the bounds are real literals, and we have a fixed-point type.
8484 -- The reason for this is that we delay setting the bounds in this
8485 -- case till we know the final Small and Size values (see circuit
8486 -- in Freeze.Freeze_Fixed_Point_Type for further details).
8488 if Is_Fixed_Point_Type (Parent_Type)
8489 and then Nkind (Lo) = N_Real_Literal
8490 and then Nkind (Hi) = N_Real_Literal
8491 then
8492 return;
8494 -- Here we do the analysis of the range
8496 -- Note: we do this manually, since if we do a normal Analyze and
8497 -- Resolve call, there are problems with the conversions used for
8498 -- the derived type range.
8500 else
8501 Set_Etype (Rng, Implicit_Base);
8502 Set_Analyzed (Rng, True);
8503 end if;
8504 end Convert_Scalar_Bounds;
8506 -------------------
8507 -- Copy_And_Swap --
8508 -------------------
8510 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
8511 begin
8512 -- Initialize new full declaration entity by copying the pertinent
8513 -- fields of the corresponding private declaration entity.
8515 -- We temporarily set Ekind to a value appropriate for a type to
8516 -- avoid assert failures in Einfo from checking for setting type
8517 -- attributes on something that is not a type. Ekind (Priv) is an
8518 -- appropriate choice, since it allowed the attributes to be set
8519 -- in the first place. This Ekind value will be modified later.
8521 Set_Ekind (Full, Ekind (Priv));
8523 -- Also set Etype temporarily to Any_Type, again, in the absence
8524 -- of errors, it will be properly reset, and if there are errors,
8525 -- then we want a value of Any_Type to remain.
8527 Set_Etype (Full, Any_Type);
8529 -- Now start copying attributes
8531 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
8533 if Has_Discriminants (Full) then
8534 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
8535 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
8536 end if;
8538 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
8539 Set_Homonym (Full, Homonym (Priv));
8540 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
8541 Set_Is_Public (Full, Is_Public (Priv));
8542 Set_Is_Pure (Full, Is_Pure (Priv));
8543 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
8545 Conditional_Delay (Full, Priv);
8547 if Is_Tagged_Type (Full) then
8548 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
8550 if Priv = Base_Type (Priv) then
8551 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
8552 end if;
8553 end if;
8555 Set_Is_Volatile (Full, Is_Volatile (Priv));
8556 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
8557 Set_Scope (Full, Scope (Priv));
8558 Set_Next_Entity (Full, Next_Entity (Priv));
8559 Set_First_Entity (Full, First_Entity (Priv));
8560 Set_Last_Entity (Full, Last_Entity (Priv));
8562 -- If access types have been recorded for later handling, keep them in
8563 -- the full view so that they get handled when the full view freeze
8564 -- node is expanded.
8566 if Present (Freeze_Node (Priv))
8567 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
8568 then
8569 Ensure_Freeze_Node (Full);
8570 Set_Access_Types_To_Process
8571 (Freeze_Node (Full),
8572 Access_Types_To_Process (Freeze_Node (Priv)));
8573 end if;
8575 -- Swap the two entities. Now Privat is the full type entity and
8576 -- Full is the private one. They will be swapped back at the end
8577 -- of the private part. This swapping ensures that the entity that
8578 -- is visible in the private part is the full declaration.
8580 Exchange_Entities (Priv, Full);
8581 Append_Entity (Full, Scope (Full));
8582 end Copy_And_Swap;
8584 -------------------------------------
8585 -- Copy_Array_Base_Type_Attributes --
8586 -------------------------------------
8588 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
8589 begin
8590 Set_Component_Alignment (T1, Component_Alignment (T2));
8591 Set_Component_Type (T1, Component_Type (T2));
8592 Set_Component_Size (T1, Component_Size (T2));
8593 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
8594 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
8595 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
8596 Set_Has_Task (T1, Has_Task (T2));
8597 Set_Is_Packed (T1, Is_Packed (T2));
8598 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
8599 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
8600 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
8601 end Copy_Array_Base_Type_Attributes;
8603 -----------------------------------
8604 -- Copy_Array_Subtype_Attributes --
8605 -----------------------------------
8607 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
8608 begin
8609 Set_Size_Info (T1, T2);
8611 Set_First_Index (T1, First_Index (T2));
8612 Set_Is_Aliased (T1, Is_Aliased (T2));
8613 Set_Is_Atomic (T1, Is_Atomic (T2));
8614 Set_Is_Volatile (T1, Is_Volatile (T2));
8615 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
8616 Set_Is_Constrained (T1, Is_Constrained (T2));
8617 Set_Depends_On_Private (T1, Has_Private_Component (T2));
8618 Set_First_Rep_Item (T1, First_Rep_Item (T2));
8619 Set_Convention (T1, Convention (T2));
8620 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
8621 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
8622 end Copy_Array_Subtype_Attributes;
8624 -----------------------------------
8625 -- Create_Constrained_Components --
8626 -----------------------------------
8628 procedure Create_Constrained_Components
8629 (Subt : Entity_Id;
8630 Decl_Node : Node_Id;
8631 Typ : Entity_Id;
8632 Constraints : Elist_Id)
8634 Loc : constant Source_Ptr := Sloc (Subt);
8635 Comp_List : constant Elist_Id := New_Elmt_List;
8636 Parent_Type : constant Entity_Id := Etype (Typ);
8637 Assoc_List : constant List_Id := New_List;
8638 Discr_Val : Elmt_Id;
8639 Errors : Boolean;
8640 New_C : Entity_Id;
8641 Old_C : Entity_Id;
8642 Is_Static : Boolean := True;
8644 procedure Collect_Fixed_Components (Typ : Entity_Id);
8645 -- Collect parent type components that do not appear in a variant part
8647 procedure Create_All_Components;
8648 -- Iterate over Comp_List to create the components of the subtype
8650 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
8651 -- Creates a new component from Old_Compon, copying all the fields from
8652 -- it, including its Etype, inserts the new component in the Subt entity
8653 -- chain and returns the new component.
8655 function Is_Variant_Record (T : Entity_Id) return Boolean;
8656 -- If true, and discriminants are static, collect only components from
8657 -- variants selected by discriminant values.
8659 ------------------------------
8660 -- Collect_Fixed_Components --
8661 ------------------------------
8663 procedure Collect_Fixed_Components (Typ : Entity_Id) is
8664 begin
8665 -- Build association list for discriminants, and find components of the
8666 -- variant part selected by the values of the discriminants.
8668 Old_C := First_Discriminant (Typ);
8669 Discr_Val := First_Elmt (Constraints);
8670 while Present (Old_C) loop
8671 Append_To (Assoc_List,
8672 Make_Component_Association (Loc,
8673 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
8674 Expression => New_Copy (Node (Discr_Val))));
8676 Next_Elmt (Discr_Val);
8677 Next_Discriminant (Old_C);
8678 end loop;
8680 -- The tag, and the possible parent and controller components
8681 -- are unconditionally in the subtype.
8683 if Is_Tagged_Type (Typ)
8684 or else Has_Controlled_Component (Typ)
8685 then
8686 Old_C := First_Component (Typ);
8687 while Present (Old_C) loop
8688 if Chars ((Old_C)) = Name_uTag
8689 or else Chars ((Old_C)) = Name_uParent
8690 or else Chars ((Old_C)) = Name_uController
8691 then
8692 Append_Elmt (Old_C, Comp_List);
8693 end if;
8695 Next_Component (Old_C);
8696 end loop;
8697 end if;
8698 end Collect_Fixed_Components;
8700 ---------------------------
8701 -- Create_All_Components --
8702 ---------------------------
8704 procedure Create_All_Components is
8705 Comp : Elmt_Id;
8707 begin
8708 Comp := First_Elmt (Comp_List);
8709 while Present (Comp) loop
8710 Old_C := Node (Comp);
8711 New_C := Create_Component (Old_C);
8713 Set_Etype
8714 (New_C,
8715 Constrain_Component_Type
8716 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
8717 Set_Is_Public (New_C, Is_Public (Subt));
8719 Next_Elmt (Comp);
8720 end loop;
8721 end Create_All_Components;
8723 ----------------------
8724 -- Create_Component --
8725 ----------------------
8727 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
8728 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
8730 begin
8731 -- Set the parent so we have a proper link for freezing etc. This
8732 -- is not a real parent pointer, since of course our parent does
8733 -- not own up to us and reference us, we are an illegitimate
8734 -- child of the original parent!
8736 Set_Parent (New_Compon, Parent (Old_Compon));
8738 -- We do not want this node marked as Comes_From_Source, since
8739 -- otherwise it would get first class status and a separate
8740 -- cross-reference line would be generated. Illegitimate
8741 -- children do not rate such recognition.
8743 Set_Comes_From_Source (New_Compon, False);
8745 -- But it is a real entity, and a birth certificate must be
8746 -- properly registered by entering it into the entity list.
8748 Enter_Name (New_Compon);
8749 return New_Compon;
8750 end Create_Component;
8752 -----------------------
8753 -- Is_Variant_Record --
8754 -----------------------
8756 function Is_Variant_Record (T : Entity_Id) return Boolean is
8757 begin
8758 return Nkind (Parent (T)) = N_Full_Type_Declaration
8759 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
8760 and then Present (Component_List (Type_Definition (Parent (T))))
8761 and then Present (
8762 Variant_Part (Component_List (Type_Definition (Parent (T)))));
8763 end Is_Variant_Record;
8765 -- Start of processing for Create_Constrained_Components
8767 begin
8768 pragma Assert (Subt /= Base_Type (Subt));
8769 pragma Assert (Typ = Base_Type (Typ));
8771 Set_First_Entity (Subt, Empty);
8772 Set_Last_Entity (Subt, Empty);
8774 -- Check whether constraint is fully static, in which case we can
8775 -- optimize the list of components.
8777 Discr_Val := First_Elmt (Constraints);
8778 while Present (Discr_Val) loop
8779 if not Is_OK_Static_Expression (Node (Discr_Val)) then
8780 Is_Static := False;
8781 exit;
8782 end if;
8784 Next_Elmt (Discr_Val);
8785 end loop;
8787 New_Scope (Subt);
8789 -- Inherit the discriminants of the parent type
8791 Old_C := First_Discriminant (Typ);
8792 while Present (Old_C) loop
8793 New_C := Create_Component (Old_C);
8794 Set_Is_Public (New_C, Is_Public (Subt));
8795 Next_Discriminant (Old_C);
8796 end loop;
8798 if Is_Static
8799 and then Is_Variant_Record (Typ)
8800 then
8801 Collect_Fixed_Components (Typ);
8803 Gather_Components (
8804 Typ,
8805 Component_List (Type_Definition (Parent (Typ))),
8806 Governed_By => Assoc_List,
8807 Into => Comp_List,
8808 Report_Errors => Errors);
8809 pragma Assert (not Errors);
8811 Create_All_Components;
8813 -- If the subtype declaration is created for a tagged type derivation
8814 -- with constraints, we retrieve the record definition of the parent
8815 -- type to select the components of the proper variant.
8817 elsif Is_Static
8818 and then Is_Tagged_Type (Typ)
8819 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
8820 and then
8821 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
8822 and then Is_Variant_Record (Parent_Type)
8823 then
8824 Collect_Fixed_Components (Typ);
8826 Gather_Components (
8827 Typ,
8828 Component_List (Type_Definition (Parent (Parent_Type))),
8829 Governed_By => Assoc_List,
8830 Into => Comp_List,
8831 Report_Errors => Errors);
8832 pragma Assert (not Errors);
8834 -- If the tagged derivation has a type extension, collect all the
8835 -- new components therein.
8837 if Present
8838 (Record_Extension_Part (Type_Definition (Parent (Typ))))
8839 then
8840 Old_C := First_Component (Typ);
8841 while Present (Old_C) loop
8842 if Original_Record_Component (Old_C) = Old_C
8843 and then Chars (Old_C) /= Name_uTag
8844 and then Chars (Old_C) /= Name_uParent
8845 and then Chars (Old_C) /= Name_uController
8846 then
8847 Append_Elmt (Old_C, Comp_List);
8848 end if;
8850 Next_Component (Old_C);
8851 end loop;
8852 end if;
8854 Create_All_Components;
8856 else
8857 -- If the discriminants are not static, or if this is a multi-level
8858 -- type extension, we have to include all the components of the
8859 -- parent type.
8861 Old_C := First_Component (Typ);
8862 while Present (Old_C) loop
8863 New_C := Create_Component (Old_C);
8865 Set_Etype
8866 (New_C,
8867 Constrain_Component_Type
8868 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
8869 Set_Is_Public (New_C, Is_Public (Subt));
8871 Next_Component (Old_C);
8872 end loop;
8873 end if;
8875 End_Scope;
8876 end Create_Constrained_Components;
8878 ------------------------------------------
8879 -- Decimal_Fixed_Point_Type_Declaration --
8880 ------------------------------------------
8882 procedure Decimal_Fixed_Point_Type_Declaration
8883 (T : Entity_Id;
8884 Def : Node_Id)
8886 Loc : constant Source_Ptr := Sloc (Def);
8887 Digs_Expr : constant Node_Id := Digits_Expression (Def);
8888 Delta_Expr : constant Node_Id := Delta_Expression (Def);
8889 Implicit_Base : Entity_Id;
8890 Digs_Val : Uint;
8891 Delta_Val : Ureal;
8892 Scale_Val : Uint;
8893 Bound_Val : Ureal;
8895 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
8897 begin
8898 Check_Restriction (No_Fixed_Point, Def);
8900 -- Create implicit base type
8902 Implicit_Base :=
8903 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
8904 Set_Etype (Implicit_Base, Implicit_Base);
8906 -- Analyze and process delta expression
8908 Analyze_And_Resolve (Delta_Expr, Universal_Real);
8910 Check_Delta_Expression (Delta_Expr);
8911 Delta_Val := Expr_Value_R (Delta_Expr);
8913 -- Check delta is power of 10, and determine scale value from it
8915 declare
8916 Val : Ureal := Delta_Val;
8918 begin
8919 Scale_Val := Uint_0;
8921 if Val < Ureal_1 then
8922 while Val < Ureal_1 loop
8923 Val := Val * Ureal_10;
8924 Scale_Val := Scale_Val + 1;
8925 end loop;
8927 if Scale_Val > 18 then
8928 Error_Msg_N ("scale exceeds maximum value of 18", Def);
8929 Scale_Val := UI_From_Int (+18);
8930 end if;
8932 else
8933 while Val > Ureal_1 loop
8934 Val := Val / Ureal_10;
8935 Scale_Val := Scale_Val - 1;
8936 end loop;
8938 if Scale_Val < -18 then
8939 Error_Msg_N ("scale is less than minimum value of -18", Def);
8940 Scale_Val := UI_From_Int (-18);
8941 end if;
8942 end if;
8944 if Val /= Ureal_1 then
8945 Error_Msg_N ("delta expression must be a power of 10", Def);
8946 Delta_Val := Ureal_10 ** (-Scale_Val);
8947 end if;
8948 end;
8950 -- Set delta, scale and small (small = delta for decimal type)
8952 Set_Delta_Value (Implicit_Base, Delta_Val);
8953 Set_Scale_Value (Implicit_Base, Scale_Val);
8954 Set_Small_Value (Implicit_Base, Delta_Val);
8956 -- Analyze and process digits expression
8958 Analyze_And_Resolve (Digs_Expr, Any_Integer);
8959 Check_Digits_Expression (Digs_Expr);
8960 Digs_Val := Expr_Value (Digs_Expr);
8962 if Digs_Val > 18 then
8963 Digs_Val := UI_From_Int (+18);
8964 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
8965 end if;
8967 Set_Digits_Value (Implicit_Base, Digs_Val);
8968 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
8970 -- Set range of base type from digits value for now. This will be
8971 -- expanded to represent the true underlying base range by Freeze.
8973 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
8975 -- Set size to zero for now, size will be set at freeze time. We have
8976 -- to do this for ordinary fixed-point, because the size depends on
8977 -- the specified small, and we might as well do the same for decimal
8978 -- fixed-point.
8980 Init_Size_Align (Implicit_Base);
8982 -- If there are bounds given in the declaration use them as the
8983 -- bounds of the first named subtype.
8985 if Present (Real_Range_Specification (Def)) then
8986 declare
8987 RRS : constant Node_Id := Real_Range_Specification (Def);
8988 Low : constant Node_Id := Low_Bound (RRS);
8989 High : constant Node_Id := High_Bound (RRS);
8990 Low_Val : Ureal;
8991 High_Val : Ureal;
8993 begin
8994 Analyze_And_Resolve (Low, Any_Real);
8995 Analyze_And_Resolve (High, Any_Real);
8996 Check_Real_Bound (Low);
8997 Check_Real_Bound (High);
8998 Low_Val := Expr_Value_R (Low);
8999 High_Val := Expr_Value_R (High);
9001 if Low_Val < (-Bound_Val) then
9002 Error_Msg_N
9003 ("range low bound too small for digits value", Low);
9004 Low_Val := -Bound_Val;
9005 end if;
9007 if High_Val > Bound_Val then
9008 Error_Msg_N
9009 ("range high bound too large for digits value", High);
9010 High_Val := Bound_Val;
9011 end if;
9013 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
9014 end;
9016 -- If no explicit range, use range that corresponds to given
9017 -- digits value. This will end up as the final range for the
9018 -- first subtype.
9020 else
9021 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
9022 end if;
9024 -- Complete entity for first subtype
9026 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
9027 Set_Etype (T, Implicit_Base);
9028 Set_Size_Info (T, Implicit_Base);
9029 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
9030 Set_Digits_Value (T, Digs_Val);
9031 Set_Delta_Value (T, Delta_Val);
9032 Set_Small_Value (T, Delta_Val);
9033 Set_Scale_Value (T, Scale_Val);
9034 Set_Is_Constrained (T);
9035 end Decimal_Fixed_Point_Type_Declaration;
9037 -----------------------
9038 -- Derive_Subprogram --
9039 -----------------------
9041 procedure Derive_Subprogram
9042 (New_Subp : in out Entity_Id;
9043 Parent_Subp : Entity_Id;
9044 Derived_Type : Entity_Id;
9045 Parent_Type : Entity_Id;
9046 Actual_Subp : Entity_Id := Empty)
9048 Formal : Entity_Id;
9049 New_Formal : Entity_Id;
9050 Visible_Subp : Entity_Id := Parent_Subp;
9052 function Is_Private_Overriding return Boolean;
9053 -- If Subp is a private overriding of a visible operation, the in-
9054 -- herited operation derives from the overridden op (even though
9055 -- its body is the overriding one) and the inherited operation is
9056 -- visible now. See sem_disp to see the details of the handling of
9057 -- the overridden subprogram, which is removed from the list of
9058 -- primitive operations of the type. The overridden subprogram is
9059 -- saved locally in Visible_Subp, and used to diagnose abstract
9060 -- operations that need overriding in the derived type.
9062 procedure Replace_Type (Id, New_Id : Entity_Id);
9063 -- When the type is an anonymous access type, create a new access type
9064 -- designating the derived type.
9066 procedure Set_Derived_Name;
9067 -- This procedure sets the appropriate Chars name for New_Subp. This
9068 -- is normally just a copy of the parent name. An exception arises for
9069 -- type support subprograms, where the name is changed to reflect the
9070 -- name of the derived type, e.g. if type foo is derived from type bar,
9071 -- then a procedure barDA is derived with a name fooDA.
9073 ---------------------------
9074 -- Is_Private_Overriding --
9075 ---------------------------
9077 function Is_Private_Overriding return Boolean is
9078 Prev : Entity_Id;
9080 begin
9081 -- The visible operation that is overriden is a homonym of the
9082 -- parent subprogram. We scan the homonym chain to find the one
9083 -- whose alias is the subprogram we are deriving.
9085 Prev := Homonym (Parent_Subp);
9086 while Present (Prev) loop
9087 if Is_Dispatching_Operation (Parent_Subp)
9088 and then Present (Prev)
9089 and then Ekind (Prev) = Ekind (Parent_Subp)
9090 and then Alias (Prev) = Parent_Subp
9091 and then Scope (Parent_Subp) = Scope (Prev)
9092 and then not Is_Hidden (Prev)
9093 then
9094 Visible_Subp := Prev;
9095 return True;
9096 end if;
9098 Prev := Homonym (Prev);
9099 end loop;
9101 return False;
9102 end Is_Private_Overriding;
9104 ------------------
9105 -- Replace_Type --
9106 ------------------
9108 procedure Replace_Type (Id, New_Id : Entity_Id) is
9109 Acc_Type : Entity_Id;
9110 IR : Node_Id;
9111 Par : constant Node_Id := Parent (Derived_Type);
9113 begin
9114 -- When the type is an anonymous access type, create a new access
9115 -- type designating the derived type. This itype must be elaborated
9116 -- at the point of the derivation, not on subsequent calls that may
9117 -- be out of the proper scope for Gigi, so we insert a reference to
9118 -- it after the derivation.
9120 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
9121 declare
9122 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
9124 begin
9125 if Ekind (Desig_Typ) = E_Record_Type_With_Private
9126 and then Present (Full_View (Desig_Typ))
9127 and then not Is_Private_Type (Parent_Type)
9128 then
9129 Desig_Typ := Full_View (Desig_Typ);
9130 end if;
9132 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
9133 Acc_Type := New_Copy (Etype (Id));
9134 Set_Etype (Acc_Type, Acc_Type);
9135 Set_Scope (Acc_Type, New_Subp);
9137 -- Compute size of anonymous access type
9139 if Is_Array_Type (Desig_Typ)
9140 and then not Is_Constrained (Desig_Typ)
9141 then
9142 Init_Size (Acc_Type, 2 * System_Address_Size);
9143 else
9144 Init_Size (Acc_Type, System_Address_Size);
9145 end if;
9147 Init_Alignment (Acc_Type);
9148 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
9150 Set_Etype (New_Id, Acc_Type);
9151 Set_Scope (New_Id, New_Subp);
9153 -- Create a reference to it
9155 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
9156 Set_Itype (IR, Acc_Type);
9157 Insert_After (Parent (Derived_Type), IR);
9159 else
9160 Set_Etype (New_Id, Etype (Id));
9161 end if;
9162 end;
9164 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
9165 or else
9166 (Ekind (Etype (Id)) = E_Record_Type_With_Private
9167 and then Present (Full_View (Etype (Id)))
9168 and then
9169 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
9170 then
9171 -- Constraint checks on formals are generated during expansion,
9172 -- based on the signature of the original subprogram. The bounds
9173 -- of the derived type are not relevant, and thus we can use
9174 -- the base type for the formals. However, the return type may be
9175 -- used in a context that requires that the proper static bounds
9176 -- be used (a case statement, for example) and for those cases
9177 -- we must use the derived type (first subtype), not its base.
9179 -- If the derived_type_definition has no constraints, we know that
9180 -- the derived type has the same constraints as the first subtype
9181 -- of the parent, and we can also use it rather than its base,
9182 -- which can lead to more efficient code.
9184 if Etype (Id) = Parent_Type then
9185 if Is_Scalar_Type (Parent_Type)
9186 and then
9187 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
9188 then
9189 Set_Etype (New_Id, Derived_Type);
9191 elsif Nkind (Par) = N_Full_Type_Declaration
9192 and then
9193 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
9194 and then
9195 Is_Entity_Name
9196 (Subtype_Indication (Type_Definition (Par)))
9197 then
9198 Set_Etype (New_Id, Derived_Type);
9200 else
9201 Set_Etype (New_Id, Base_Type (Derived_Type));
9202 end if;
9204 else
9205 Set_Etype (New_Id, Base_Type (Derived_Type));
9206 end if;
9208 else
9209 Set_Etype (New_Id, Etype (Id));
9210 end if;
9211 end Replace_Type;
9213 ----------------------
9214 -- Set_Derived_Name --
9215 ----------------------
9217 procedure Set_Derived_Name is
9218 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
9219 begin
9220 if Nm = TSS_Null then
9221 Set_Chars (New_Subp, Chars (Parent_Subp));
9222 else
9223 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
9224 end if;
9225 end Set_Derived_Name;
9227 -- Start of processing for Derive_Subprogram
9229 begin
9230 New_Subp :=
9231 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
9232 Set_Ekind (New_Subp, Ekind (Parent_Subp));
9234 -- Check whether the inherited subprogram is a private operation that
9235 -- should be inherited but not yet made visible. Such subprograms can
9236 -- become visible at a later point (e.g., the private part of a public
9237 -- child unit) via Declare_Inherited_Private_Subprograms. If the
9238 -- following predicate is true, then this is not such a private
9239 -- operation and the subprogram simply inherits the name of the parent
9240 -- subprogram. Note the special check for the names of controlled
9241 -- operations, which are currently exempted from being inherited with
9242 -- a hidden name because they must be findable for generation of
9243 -- implicit run-time calls.
9245 if not Is_Hidden (Parent_Subp)
9246 or else Is_Internal (Parent_Subp)
9247 or else Is_Private_Overriding
9248 or else Is_Internal_Name (Chars (Parent_Subp))
9249 or else Chars (Parent_Subp) = Name_Initialize
9250 or else Chars (Parent_Subp) = Name_Adjust
9251 or else Chars (Parent_Subp) = Name_Finalize
9252 then
9253 Set_Derived_Name;
9255 -- If parent is hidden, this can be a regular derivation if the
9256 -- parent is immediately visible in a non-instantiating context,
9257 -- or if we are in the private part of an instance. This test
9258 -- should still be refined ???
9260 -- The test for In_Instance_Not_Visible avoids inheriting the derived
9261 -- operation as a non-visible operation in cases where the parent
9262 -- subprogram might not be visible now, but was visible within the
9263 -- original generic, so it would be wrong to make the inherited
9264 -- subprogram non-visible now. (Not clear if this test is fully
9265 -- correct; are there any cases where we should declare the inherited
9266 -- operation as not visible to avoid it being overridden, e.g., when
9267 -- the parent type is a generic actual with private primitives ???)
9269 -- (they should be treated the same as other private inherited
9270 -- subprograms, but it's not clear how to do this cleanly). ???
9272 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
9273 and then Is_Immediately_Visible (Parent_Subp)
9274 and then not In_Instance)
9275 or else In_Instance_Not_Visible
9276 then
9277 Set_Derived_Name;
9279 -- The type is inheriting a private operation, so enter
9280 -- it with a special name so it can't be overridden.
9282 else
9283 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
9284 end if;
9286 Set_Parent (New_Subp, Parent (Derived_Type));
9287 Replace_Type (Parent_Subp, New_Subp);
9288 Conditional_Delay (New_Subp, Parent_Subp);
9290 Formal := First_Formal (Parent_Subp);
9291 while Present (Formal) loop
9292 New_Formal := New_Copy (Formal);
9294 -- Normally we do not go copying parents, but in the case of
9295 -- formals, we need to link up to the declaration (which is the
9296 -- parameter specification), and it is fine to link up to the
9297 -- original formal's parameter specification in this case.
9299 Set_Parent (New_Formal, Parent (Formal));
9301 Append_Entity (New_Formal, New_Subp);
9303 Replace_Type (Formal, New_Formal);
9304 Next_Formal (Formal);
9305 end loop;
9307 -- If this derivation corresponds to a tagged generic actual, then
9308 -- primitive operations rename those of the actual. Otherwise the
9309 -- primitive operations rename those of the parent type, If the
9310 -- parent renames an intrinsic operator, so does the new subprogram.
9311 -- We except concatenation, which is always properly typed, and does
9312 -- not get expanded as other intrinsic operations.
9314 if No (Actual_Subp) then
9315 if Is_Intrinsic_Subprogram (Parent_Subp) then
9316 Set_Is_Intrinsic_Subprogram (New_Subp);
9318 if Present (Alias (Parent_Subp))
9319 and then Chars (Parent_Subp) /= Name_Op_Concat
9320 then
9321 Set_Alias (New_Subp, Alias (Parent_Subp));
9322 else
9323 Set_Alias (New_Subp, Parent_Subp);
9324 end if;
9326 else
9327 Set_Alias (New_Subp, Parent_Subp);
9328 end if;
9330 else
9331 Set_Alias (New_Subp, Actual_Subp);
9332 end if;
9334 -- Derived subprograms of a tagged type must inherit the convention
9335 -- of the parent subprogram (a requirement of AI-117). Derived
9336 -- subprograms of untagged types simply get convention Ada by default.
9338 if Is_Tagged_Type (Derived_Type) then
9339 Set_Convention (New_Subp, Convention (Parent_Subp));
9340 end if;
9342 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
9343 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
9345 if Ekind (Parent_Subp) = E_Procedure then
9346 Set_Is_Valued_Procedure
9347 (New_Subp, Is_Valued_Procedure (Parent_Subp));
9348 end if;
9350 -- A derived function with a controlling result is abstract. If the
9351 -- Derived_Type is a nonabstract formal generic derived type, then
9352 -- inherited operations are not abstract: the required check is done at
9353 -- instantiation time. If the derivation is for a generic actual, the
9354 -- function is not abstract unless the actual is.
9356 if Is_Generic_Type (Derived_Type)
9357 and then not Is_Abstract (Derived_Type)
9358 then
9359 null;
9361 elsif Is_Abstract (Alias (New_Subp))
9362 or else (Is_Tagged_Type (Derived_Type)
9363 and then Etype (New_Subp) = Derived_Type
9364 and then No (Actual_Subp))
9365 then
9366 Set_Is_Abstract (New_Subp);
9368 -- Finally, if the parent type is abstract we must verify that all
9369 -- inherited operations are either non-abstract or overridden, or
9370 -- that the derived type itself is abstract (this check is performed
9371 -- at the end of a package declaration, in Check_Abstract_Overriding).
9372 -- A private overriding in the parent type will not be visible in the
9373 -- derivation if we are not in an inner package or in a child unit of
9374 -- the parent type, in which case the abstractness of the inherited
9375 -- operation is carried to the new subprogram.
9377 elsif Is_Abstract (Parent_Type)
9378 and then not In_Open_Scopes (Scope (Parent_Type))
9379 and then Is_Private_Overriding
9380 and then Is_Abstract (Visible_Subp)
9381 then
9382 Set_Alias (New_Subp, Visible_Subp);
9383 Set_Is_Abstract (New_Subp);
9384 end if;
9386 New_Overloaded_Entity (New_Subp, Derived_Type);
9388 -- Check for case of a derived subprogram for the instantiation of a
9389 -- formal derived tagged type, if so mark the subprogram as dispatching
9390 -- and inherit the dispatching attributes of the parent subprogram. The
9391 -- derived subprogram is effectively renaming of the actual subprogram,
9392 -- so it needs to have the same attributes as the actual.
9394 if Present (Actual_Subp)
9395 and then Is_Dispatching_Operation (Parent_Subp)
9396 then
9397 Set_Is_Dispatching_Operation (New_Subp);
9398 if Present (DTC_Entity (Parent_Subp)) then
9399 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
9400 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
9401 end if;
9402 end if;
9404 -- Indicate that a derived subprogram does not require a body and that
9405 -- it does not require processing of default expressions.
9407 Set_Has_Completion (New_Subp);
9408 Set_Default_Expressions_Processed (New_Subp);
9410 if Ekind (New_Subp) = E_Function then
9411 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
9412 end if;
9413 end Derive_Subprogram;
9415 ------------------------
9416 -- Derive_Subprograms --
9417 ------------------------
9419 procedure Derive_Subprograms
9420 (Parent_Type : Entity_Id;
9421 Derived_Type : Entity_Id;
9422 Generic_Actual : Entity_Id := Empty)
9424 Op_List : constant Elist_Id :=
9425 Collect_Primitive_Operations (Parent_Type);
9426 Act_List : Elist_Id;
9427 Act_Elmt : Elmt_Id;
9428 Elmt : Elmt_Id;
9429 Subp : Entity_Id;
9430 New_Subp : Entity_Id := Empty;
9431 Parent_Base : Entity_Id;
9433 begin
9434 if Ekind (Parent_Type) = E_Record_Type_With_Private
9435 and then Has_Discriminants (Parent_Type)
9436 and then Present (Full_View (Parent_Type))
9437 then
9438 Parent_Base := Full_View (Parent_Type);
9439 else
9440 Parent_Base := Parent_Type;
9441 end if;
9443 if Present (Generic_Actual) then
9444 Act_List := Collect_Primitive_Operations (Generic_Actual);
9445 Act_Elmt := First_Elmt (Act_List);
9446 else
9447 Act_Elmt := No_Elmt;
9448 end if;
9450 -- Literals are derived earlier in the process of building the derived
9451 -- type, and are skipped here.
9453 Elmt := First_Elmt (Op_List);
9454 while Present (Elmt) loop
9455 Subp := Node (Elmt);
9457 if Ekind (Subp) /= E_Enumeration_Literal then
9458 if No (Generic_Actual) then
9459 Derive_Subprogram
9460 (New_Subp, Subp, Derived_Type, Parent_Base);
9462 else
9463 Derive_Subprogram (New_Subp, Subp,
9464 Derived_Type, Parent_Base, Node (Act_Elmt));
9465 Next_Elmt (Act_Elmt);
9466 end if;
9467 end if;
9469 Next_Elmt (Elmt);
9470 end loop;
9471 end Derive_Subprograms;
9473 --------------------------------
9474 -- Derived_Standard_Character --
9475 --------------------------------
9477 procedure Derived_Standard_Character
9478 (N : Node_Id;
9479 Parent_Type : Entity_Id;
9480 Derived_Type : Entity_Id)
9482 Loc : constant Source_Ptr := Sloc (N);
9483 Def : constant Node_Id := Type_Definition (N);
9484 Indic : constant Node_Id := Subtype_Indication (Def);
9485 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9486 Implicit_Base : constant Entity_Id :=
9487 Create_Itype
9488 (E_Enumeration_Type, N, Derived_Type, 'B');
9490 Lo : Node_Id;
9491 Hi : Node_Id;
9493 begin
9494 Discard_Node (Process_Subtype (Indic, N));
9496 Set_Etype (Implicit_Base, Parent_Base);
9497 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
9498 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
9500 Set_Is_Character_Type (Implicit_Base, True);
9501 Set_Has_Delayed_Freeze (Implicit_Base);
9503 -- The bounds of the implicit base are the bounds of the parent base.
9504 -- Note that their type is the parent base.
9506 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
9507 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
9509 Set_Scalar_Range (Implicit_Base,
9510 Make_Range (Loc,
9511 Low_Bound => Lo,
9512 High_Bound => Hi));
9514 Conditional_Delay (Derived_Type, Parent_Type);
9516 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
9517 Set_Etype (Derived_Type, Implicit_Base);
9518 Set_Size_Info (Derived_Type, Parent_Type);
9520 if Unknown_RM_Size (Derived_Type) then
9521 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9522 end if;
9524 Set_Is_Character_Type (Derived_Type, True);
9526 if Nkind (Indic) /= N_Subtype_Indication then
9528 -- If no explicit constraint, the bounds are those
9529 -- of the parent type.
9531 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
9532 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
9533 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
9534 end if;
9536 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
9538 -- Because the implicit base is used in the conversion of the bounds,
9539 -- we have to freeze it now. This is similar to what is done for
9540 -- numeric types, and it equally suspicious, but otherwise a non-
9541 -- static bound will have a reference to an unfrozen type, which is
9542 -- rejected by Gigi (???).
9544 Freeze_Before (N, Implicit_Base);
9545 end Derived_Standard_Character;
9547 ------------------------------
9548 -- Derived_Type_Declaration --
9549 ------------------------------
9551 procedure Derived_Type_Declaration
9552 (T : Entity_Id;
9553 N : Node_Id;
9554 Is_Completion : Boolean)
9556 Def : constant Node_Id := Type_Definition (N);
9557 Indic : constant Node_Id := Subtype_Indication (Def);
9558 Extension : constant Node_Id := Record_Extension_Part (Def);
9559 Parent_Type : Entity_Id;
9560 Parent_Scope : Entity_Id;
9561 Taggd : Boolean;
9563 begin
9564 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
9566 if Parent_Type = Any_Type
9567 or else Etype (Parent_Type) = Any_Type
9568 or else (Is_Class_Wide_Type (Parent_Type)
9569 and then Etype (Parent_Type) = T)
9570 then
9571 -- If Parent_Type is undefined or illegal, make new type into a
9572 -- subtype of Any_Type, and set a few attributes to prevent cascaded
9573 -- errors. If this is a self-definition, emit error now.
9575 if T = Parent_Type
9576 or else T = Etype (Parent_Type)
9577 then
9578 Error_Msg_N ("type cannot be used in its own definition", Indic);
9579 end if;
9581 Set_Ekind (T, Ekind (Parent_Type));
9582 Set_Etype (T, Any_Type);
9583 Set_Scalar_Range (T, Scalar_Range (Any_Type));
9585 if Is_Tagged_Type (T) then
9586 Set_Primitive_Operations (T, New_Elmt_List);
9587 end if;
9589 return;
9591 -- Ada 2005 (AI-231): Static check
9593 elsif Is_Access_Type (Parent_Type)
9594 and then Null_Exclusion_Present (Type_Definition (N))
9595 and then Can_Never_Be_Null (Parent_Type)
9596 then
9597 Error_Msg_N ("(Ada 2005) null exclusion not allowed if parent is "
9598 & "already non-null", Type_Definition (N));
9599 end if;
9601 -- Only composite types other than array types are allowed to have
9602 -- discriminants.
9604 if Present (Discriminant_Specifications (N))
9605 and then (Is_Elementary_Type (Parent_Type)
9606 or else Is_Array_Type (Parent_Type))
9607 and then not Error_Posted (N)
9608 then
9609 Error_Msg_N
9610 ("elementary or array type cannot have discriminants",
9611 Defining_Identifier (First (Discriminant_Specifications (N))));
9612 Set_Has_Discriminants (T, False);
9613 end if;
9615 -- In Ada 83, a derived type defined in a package specification cannot
9616 -- be used for further derivation until the end of its visible part.
9617 -- Note that derivation in the private part of the package is allowed.
9619 if Ada_Version = Ada_83
9620 and then Is_Derived_Type (Parent_Type)
9621 and then In_Visible_Part (Scope (Parent_Type))
9622 then
9623 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
9624 Error_Msg_N
9625 ("(Ada 83): premature use of type for derivation", Indic);
9626 end if;
9627 end if;
9629 -- Check for early use of incomplete or private type
9631 if Ekind (Parent_Type) = E_Void
9632 or else Ekind (Parent_Type) = E_Incomplete_Type
9633 then
9634 Error_Msg_N ("premature derivation of incomplete type", Indic);
9635 return;
9637 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
9638 and then not Is_Generic_Type (Parent_Type)
9639 and then not Is_Generic_Type (Root_Type (Parent_Type))
9640 and then not Is_Generic_Actual_Type (Parent_Type))
9641 or else Has_Private_Component (Parent_Type)
9642 then
9643 -- The ancestor type of a formal type can be incomplete, in which
9644 -- case only the operations of the partial view are available in
9645 -- the generic. Subsequent checks may be required when the full
9646 -- view is analyzed, to verify that derivation from a tagged type
9647 -- has an extension.
9649 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
9650 null;
9652 elsif No (Underlying_Type (Parent_Type))
9653 or else Has_Private_Component (Parent_Type)
9654 then
9655 Error_Msg_N
9656 ("premature derivation of derived or private type", Indic);
9658 -- Flag the type itself as being in error, this prevents some
9659 -- nasty problems with people looking at the malformed type.
9661 Set_Error_Posted (T);
9663 -- Check that within the immediate scope of an untagged partial
9664 -- view it's illegal to derive from the partial view if the
9665 -- full view is tagged. (7.3(7))
9667 -- We verify that the Parent_Type is a partial view by checking
9668 -- that it is not a Full_Type_Declaration (i.e. a private type or
9669 -- private extension declaration), to distinguish a partial view
9670 -- from a derivation from a private type which also appears as
9671 -- E_Private_Type.
9673 elsif Present (Full_View (Parent_Type))
9674 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
9675 and then not Is_Tagged_Type (Parent_Type)
9676 and then Is_Tagged_Type (Full_View (Parent_Type))
9677 then
9678 Parent_Scope := Scope (T);
9679 while Present (Parent_Scope)
9680 and then Parent_Scope /= Standard_Standard
9681 loop
9682 if Parent_Scope = Scope (Parent_Type) then
9683 Error_Msg_N
9684 ("premature derivation from type with tagged full view",
9685 Indic);
9686 end if;
9688 Parent_Scope := Scope (Parent_Scope);
9689 end loop;
9690 end if;
9691 end if;
9693 -- Check that form of derivation is appropriate
9695 Taggd := Is_Tagged_Type (Parent_Type);
9697 -- Perhaps the parent type should be changed to the class-wide type's
9698 -- specific type in this case to prevent cascading errors ???
9700 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
9701 Error_Msg_N ("parent type must not be a class-wide type", Indic);
9702 return;
9703 end if;
9705 if Present (Extension) and then not Taggd then
9706 Error_Msg_N
9707 ("type derived from untagged type cannot have extension", Indic);
9709 elsif No (Extension) and then Taggd then
9711 -- If this declaration is within a private part (or body) of a
9712 -- generic instantiation then the derivation is allowed (the parent
9713 -- type can only appear tagged in this case if it's a generic actual
9714 -- type, since it would otherwise have been rejected in the analysis
9715 -- of the generic template).
9717 if not Is_Generic_Actual_Type (Parent_Type)
9718 or else In_Visible_Part (Scope (Parent_Type))
9719 then
9720 Error_Msg_N
9721 ("type derived from tagged type must have extension", Indic);
9722 end if;
9723 end if;
9725 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
9726 end Derived_Type_Declaration;
9728 ----------------------------------
9729 -- Enumeration_Type_Declaration --
9730 ----------------------------------
9732 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
9733 Ev : Uint;
9734 L : Node_Id;
9735 R_Node : Node_Id;
9736 B_Node : Node_Id;
9738 begin
9739 -- Create identifier node representing lower bound
9741 B_Node := New_Node (N_Identifier, Sloc (Def));
9742 L := First (Literals (Def));
9743 Set_Chars (B_Node, Chars (L));
9744 Set_Entity (B_Node, L);
9745 Set_Etype (B_Node, T);
9746 Set_Is_Static_Expression (B_Node, True);
9748 R_Node := New_Node (N_Range, Sloc (Def));
9749 Set_Low_Bound (R_Node, B_Node);
9751 Set_Ekind (T, E_Enumeration_Type);
9752 Set_First_Literal (T, L);
9753 Set_Etype (T, T);
9754 Set_Is_Constrained (T);
9756 Ev := Uint_0;
9758 -- Loop through literals of enumeration type setting pos and rep values
9759 -- except that if the Ekind is already set, then it means that the
9760 -- literal was already constructed (case of a derived type declaration
9761 -- and we should not disturb the Pos and Rep values.
9763 while Present (L) loop
9764 if Ekind (L) /= E_Enumeration_Literal then
9765 Set_Ekind (L, E_Enumeration_Literal);
9766 Set_Enumeration_Pos (L, Ev);
9767 Set_Enumeration_Rep (L, Ev);
9768 Set_Is_Known_Valid (L, True);
9769 end if;
9771 Set_Etype (L, T);
9772 New_Overloaded_Entity (L);
9773 Generate_Definition (L);
9774 Set_Convention (L, Convention_Intrinsic);
9776 if Nkind (L) = N_Defining_Character_Literal then
9777 Set_Is_Character_Type (T, True);
9778 end if;
9780 Ev := Ev + 1;
9781 Next (L);
9782 end loop;
9784 -- Now create a node representing upper bound
9786 B_Node := New_Node (N_Identifier, Sloc (Def));
9787 Set_Chars (B_Node, Chars (Last (Literals (Def))));
9788 Set_Entity (B_Node, Last (Literals (Def)));
9789 Set_Etype (B_Node, T);
9790 Set_Is_Static_Expression (B_Node, True);
9792 Set_High_Bound (R_Node, B_Node);
9793 Set_Scalar_Range (T, R_Node);
9794 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
9795 Set_Enum_Esize (T);
9797 -- Set Discard_Names if configuration pragma set, or if there is
9798 -- a parameterless pragma in the current declarative region
9800 if Global_Discard_Names
9801 or else Discard_Names (Scope (T))
9802 then
9803 Set_Discard_Names (T);
9804 end if;
9806 -- Process end label if there is one
9808 if Present (Def) then
9809 Process_End_Label (Def, 'e', T);
9810 end if;
9811 end Enumeration_Type_Declaration;
9813 ---------------------------------
9814 -- Expand_To_Stored_Constraint --
9815 ---------------------------------
9817 function Expand_To_Stored_Constraint
9818 (Typ : Entity_Id;
9819 Constraint : Elist_Id) return Elist_Id
9821 Explicitly_Discriminated_Type : Entity_Id;
9822 Expansion : Elist_Id;
9823 Discriminant : Entity_Id;
9825 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
9826 -- Find the nearest type that actually specifies discriminants
9828 ---------------------------------
9829 -- Type_With_Explicit_Discrims --
9830 ---------------------------------
9832 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
9833 Typ : constant E := Base_Type (Id);
9835 begin
9836 if Ekind (Typ) in Incomplete_Or_Private_Kind then
9837 if Present (Full_View (Typ)) then
9838 return Type_With_Explicit_Discrims (Full_View (Typ));
9839 end if;
9841 else
9842 if Has_Discriminants (Typ) then
9843 return Typ;
9844 end if;
9845 end if;
9847 if Etype (Typ) = Typ then
9848 return Empty;
9849 elsif Has_Discriminants (Typ) then
9850 return Typ;
9851 else
9852 return Type_With_Explicit_Discrims (Etype (Typ));
9853 end if;
9855 end Type_With_Explicit_Discrims;
9857 -- Start of processing for Expand_To_Stored_Constraint
9859 begin
9860 if No (Constraint)
9861 or else Is_Empty_Elmt_List (Constraint)
9862 then
9863 return No_Elist;
9864 end if;
9866 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
9868 if No (Explicitly_Discriminated_Type) then
9869 return No_Elist;
9870 end if;
9872 Expansion := New_Elmt_List;
9874 Discriminant :=
9875 First_Stored_Discriminant (Explicitly_Discriminated_Type);
9876 while Present (Discriminant) loop
9877 Append_Elmt (
9878 Get_Discriminant_Value (
9879 Discriminant, Explicitly_Discriminated_Type, Constraint),
9880 Expansion);
9881 Next_Stored_Discriminant (Discriminant);
9882 end loop;
9884 return Expansion;
9885 end Expand_To_Stored_Constraint;
9887 --------------------
9888 -- Find_Type_Name --
9889 --------------------
9891 function Find_Type_Name (N : Node_Id) return Entity_Id is
9892 Id : constant Entity_Id := Defining_Identifier (N);
9893 Prev : Entity_Id;
9894 New_Id : Entity_Id;
9895 Prev_Par : Node_Id;
9897 begin
9898 -- Find incomplete declaration, if one was given
9900 Prev := Current_Entity_In_Scope (Id);
9902 if Present (Prev) then
9904 -- Previous declaration exists. Error if not incomplete/private case
9905 -- except if previous declaration is implicit, etc. Enter_Name will
9906 -- emit error if appropriate.
9908 Prev_Par := Parent (Prev);
9910 if not Is_Incomplete_Or_Private_Type (Prev) then
9911 Enter_Name (Id);
9912 New_Id := Id;
9914 elsif Nkind (N) /= N_Full_Type_Declaration
9915 and then Nkind (N) /= N_Task_Type_Declaration
9916 and then Nkind (N) /= N_Protected_Type_Declaration
9917 then
9918 -- Completion must be a full type declarations (RM 7.3(4))
9920 Error_Msg_Sloc := Sloc (Prev);
9921 Error_Msg_NE ("invalid completion of }", Id, Prev);
9923 -- Set scope of Id to avoid cascaded errors. Entity is never
9924 -- examined again, except when saving globals in generics.
9926 Set_Scope (Id, Current_Scope);
9927 New_Id := Id;
9929 -- Case of full declaration of incomplete type
9931 elsif Ekind (Prev) = E_Incomplete_Type then
9933 -- Indicate that the incomplete declaration has a matching full
9934 -- declaration. The defining occurrence of the incomplete
9935 -- declaration remains the visible one, and the procedure
9936 -- Get_Full_View dereferences it whenever the type is used.
9938 if Present (Full_View (Prev)) then
9939 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9940 end if;
9942 Set_Full_View (Prev, Id);
9943 Append_Entity (Id, Current_Scope);
9944 Set_Is_Public (Id, Is_Public (Prev));
9945 Set_Is_Internal (Id);
9946 New_Id := Prev;
9948 -- Case of full declaration of private type
9950 else
9951 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
9952 if Etype (Prev) /= Prev then
9954 -- Prev is a private subtype or a derived type, and needs
9955 -- no completion.
9957 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9958 New_Id := Id;
9960 elsif Ekind (Prev) = E_Private_Type
9961 and then
9962 (Nkind (N) = N_Task_Type_Declaration
9963 or else Nkind (N) = N_Protected_Type_Declaration)
9964 then
9965 Error_Msg_N
9966 ("completion of nonlimited type cannot be limited", N);
9967 end if;
9969 elsif Nkind (N) /= N_Full_Type_Declaration
9970 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
9971 then
9972 Error_Msg_N
9973 ("full view of private extension must be an extension", N);
9975 elsif not (Abstract_Present (Parent (Prev)))
9976 and then Abstract_Present (Type_Definition (N))
9977 then
9978 Error_Msg_N
9979 ("full view of non-abstract extension cannot be abstract", N);
9980 end if;
9982 if not In_Private_Part (Current_Scope) then
9983 Error_Msg_N
9984 ("declaration of full view must appear in private part", N);
9985 end if;
9987 Copy_And_Swap (Prev, Id);
9988 Set_Has_Private_Declaration (Prev);
9989 Set_Has_Private_Declaration (Id);
9991 -- If no error, propagate freeze_node from private to full view.
9992 -- It may have been generated for an early operational item.
9994 if Present (Freeze_Node (Id))
9995 and then Serious_Errors_Detected = 0
9996 and then No (Full_View (Id))
9997 then
9998 Set_Freeze_Node (Prev, Freeze_Node (Id));
9999 Set_Freeze_Node (Id, Empty);
10000 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
10001 end if;
10003 Set_Full_View (Id, Prev);
10004 New_Id := Prev;
10005 end if;
10007 -- Verify that full declaration conforms to incomplete one
10009 if Is_Incomplete_Or_Private_Type (Prev)
10010 and then Present (Discriminant_Specifications (Prev_Par))
10011 then
10012 if Present (Discriminant_Specifications (N)) then
10013 if Ekind (Prev) = E_Incomplete_Type then
10014 Check_Discriminant_Conformance (N, Prev, Prev);
10015 else
10016 Check_Discriminant_Conformance (N, Prev, Id);
10017 end if;
10019 else
10020 Error_Msg_N
10021 ("missing discriminants in full type declaration", N);
10023 -- To avoid cascaded errors on subsequent use, share the
10024 -- discriminants of the partial view.
10026 Set_Discriminant_Specifications (N,
10027 Discriminant_Specifications (Prev_Par));
10028 end if;
10029 end if;
10031 -- A prior untagged private type can have an associated class-wide
10032 -- type due to use of the class attribute, and in this case also the
10033 -- full type is required to be tagged.
10035 if Is_Type (Prev)
10036 and then (Is_Tagged_Type (Prev)
10037 or else Present (Class_Wide_Type (Prev)))
10038 then
10039 -- The full declaration is either a tagged record or an
10040 -- extension otherwise this is an error
10042 if Nkind (Type_Definition (N)) = N_Record_Definition then
10043 if not Tagged_Present (Type_Definition (N)) then
10044 Error_Msg_NE
10045 ("full declaration of } must be tagged", Prev, Id);
10046 Set_Is_Tagged_Type (Id);
10047 Set_Primitive_Operations (Id, New_Elmt_List);
10048 end if;
10050 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
10051 if No (Record_Extension_Part (Type_Definition (N))) then
10052 Error_Msg_NE (
10053 "full declaration of } must be a record extension",
10054 Prev, Id);
10055 Set_Is_Tagged_Type (Id);
10056 Set_Primitive_Operations (Id, New_Elmt_List);
10057 end if;
10059 else
10060 Error_Msg_NE
10061 ("full declaration of } must be a tagged type", Prev, Id);
10063 end if;
10064 end if;
10066 return New_Id;
10068 else
10069 -- New type declaration
10071 Enter_Name (Id);
10072 return Id;
10073 end if;
10074 end Find_Type_Name;
10076 -------------------------
10077 -- Find_Type_Of_Object --
10078 -------------------------
10080 function Find_Type_Of_Object
10081 (Obj_Def : Node_Id;
10082 Related_Nod : Node_Id) return Entity_Id
10084 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
10085 P : Node_Id := Parent (Obj_Def);
10086 T : Entity_Id;
10087 Nam : Name_Id;
10089 begin
10090 -- If the parent is a component_definition node we climb to the
10091 -- component_declaration node
10093 if Nkind (P) = N_Component_Definition then
10094 P := Parent (P);
10095 end if;
10097 -- Case of an anonymous array subtype
10099 if Def_Kind = N_Constrained_Array_Definition
10100 or else Def_Kind = N_Unconstrained_Array_Definition
10101 then
10102 T := Empty;
10103 Array_Type_Declaration (T, Obj_Def);
10105 -- Create an explicit subtype whenever possible
10107 elsif Nkind (P) /= N_Component_Declaration
10108 and then Def_Kind = N_Subtype_Indication
10109 then
10110 -- Base name of subtype on object name, which will be unique in
10111 -- the current scope.
10113 -- If this is a duplicate declaration, return base type, to avoid
10114 -- generating duplicate anonymous types.
10116 if Error_Posted (P) then
10117 Analyze (Subtype_Mark (Obj_Def));
10118 return Entity (Subtype_Mark (Obj_Def));
10119 end if;
10121 Nam :=
10122 New_External_Name
10123 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
10125 T := Make_Defining_Identifier (Sloc (P), Nam);
10127 Insert_Action (Obj_Def,
10128 Make_Subtype_Declaration (Sloc (P),
10129 Defining_Identifier => T,
10130 Subtype_Indication => Relocate_Node (Obj_Def)));
10132 -- This subtype may need freezing, and this will not be done
10133 -- automatically if the object declaration is not in declarative
10134 -- part. Since this is an object declaration, the type cannot always
10135 -- be frozen here. Deferred constants do not freeze their type
10136 -- (which often enough will be private).
10138 if Nkind (P) = N_Object_Declaration
10139 and then Constant_Present (P)
10140 and then No (Expression (P))
10141 then
10142 null;
10144 else
10145 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
10146 end if;
10148 else
10149 T := Process_Subtype (Obj_Def, Related_Nod);
10150 end if;
10152 return T;
10153 end Find_Type_Of_Object;
10155 --------------------------------
10156 -- Find_Type_Of_Subtype_Indic --
10157 --------------------------------
10159 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
10160 Typ : Entity_Id;
10162 begin
10163 -- Case of subtype mark with a constraint
10165 if Nkind (S) = N_Subtype_Indication then
10166 Find_Type (Subtype_Mark (S));
10167 Typ := Entity (Subtype_Mark (S));
10169 if not
10170 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
10171 then
10172 Error_Msg_N
10173 ("incorrect constraint for this kind of type", Constraint (S));
10174 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
10175 end if;
10177 -- Otherwise we have a subtype mark without a constraint
10179 elsif Error_Posted (S) then
10180 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
10181 return Any_Type;
10183 else
10184 Find_Type (S);
10185 Typ := Entity (S);
10186 end if;
10188 if Typ = Standard_Wide_Character
10189 or else Typ = Standard_Wide_Wide_Character
10190 or else Typ = Standard_Wide_String
10191 or else Typ = Standard_Wide_Wide_String
10192 then
10193 Check_Restriction (No_Wide_Characters, S);
10194 end if;
10196 return Typ;
10197 end Find_Type_Of_Subtype_Indic;
10199 -------------------------------------
10200 -- Floating_Point_Type_Declaration --
10201 -------------------------------------
10203 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
10204 Digs : constant Node_Id := Digits_Expression (Def);
10205 Digs_Val : Uint;
10206 Base_Typ : Entity_Id;
10207 Implicit_Base : Entity_Id;
10208 Bound : Node_Id;
10210 function Can_Derive_From (E : Entity_Id) return Boolean;
10211 -- Find if given digits value allows derivation from specified type
10213 ---------------------
10214 -- Can_Derive_From --
10215 ---------------------
10217 function Can_Derive_From (E : Entity_Id) return Boolean is
10218 Spec : constant Entity_Id := Real_Range_Specification (Def);
10220 begin
10221 if Digs_Val > Digits_Value (E) then
10222 return False;
10223 end if;
10225 if Present (Spec) then
10226 if Expr_Value_R (Type_Low_Bound (E)) >
10227 Expr_Value_R (Low_Bound (Spec))
10228 then
10229 return False;
10230 end if;
10232 if Expr_Value_R (Type_High_Bound (E)) <
10233 Expr_Value_R (High_Bound (Spec))
10234 then
10235 return False;
10236 end if;
10237 end if;
10239 return True;
10240 end Can_Derive_From;
10242 -- Start of processing for Floating_Point_Type_Declaration
10244 begin
10245 Check_Restriction (No_Floating_Point, Def);
10247 -- Create an implicit base type
10249 Implicit_Base :=
10250 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
10252 -- Analyze and verify digits value
10254 Analyze_And_Resolve (Digs, Any_Integer);
10255 Check_Digits_Expression (Digs);
10256 Digs_Val := Expr_Value (Digs);
10258 -- Process possible range spec and find correct type to derive from
10260 Process_Real_Range_Specification (Def);
10262 if Can_Derive_From (Standard_Short_Float) then
10263 Base_Typ := Standard_Short_Float;
10264 elsif Can_Derive_From (Standard_Float) then
10265 Base_Typ := Standard_Float;
10266 elsif Can_Derive_From (Standard_Long_Float) then
10267 Base_Typ := Standard_Long_Float;
10268 elsif Can_Derive_From (Standard_Long_Long_Float) then
10269 Base_Typ := Standard_Long_Long_Float;
10271 -- If we can't derive from any existing type, use long_long_float
10272 -- and give appropriate message explaining the problem.
10274 else
10275 Base_Typ := Standard_Long_Long_Float;
10277 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
10278 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
10279 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
10281 else
10282 Error_Msg_N
10283 ("range too large for any predefined type",
10284 Real_Range_Specification (Def));
10285 end if;
10286 end if;
10288 -- If there are bounds given in the declaration use them as the bounds
10289 -- of the type, otherwise use the bounds of the predefined base type
10290 -- that was chosen based on the Digits value.
10292 if Present (Real_Range_Specification (Def)) then
10293 Set_Scalar_Range (T, Real_Range_Specification (Def));
10294 Set_Is_Constrained (T);
10296 -- The bounds of this range must be converted to machine numbers
10297 -- in accordance with RM 4.9(38).
10299 Bound := Type_Low_Bound (T);
10301 if Nkind (Bound) = N_Real_Literal then
10302 Set_Realval
10303 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
10304 Set_Is_Machine_Number (Bound);
10305 end if;
10307 Bound := Type_High_Bound (T);
10309 if Nkind (Bound) = N_Real_Literal then
10310 Set_Realval
10311 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
10312 Set_Is_Machine_Number (Bound);
10313 end if;
10315 else
10316 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
10317 end if;
10319 -- Complete definition of implicit base and declared first subtype
10321 Set_Etype (Implicit_Base, Base_Typ);
10323 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
10324 Set_Size_Info (Implicit_Base, (Base_Typ));
10325 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
10326 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
10327 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
10328 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
10330 Set_Ekind (T, E_Floating_Point_Subtype);
10331 Set_Etype (T, Implicit_Base);
10333 Set_Size_Info (T, (Implicit_Base));
10334 Set_RM_Size (T, RM_Size (Implicit_Base));
10335 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10336 Set_Digits_Value (T, Digs_Val);
10337 end Floating_Point_Type_Declaration;
10339 ----------------------------
10340 -- Get_Discriminant_Value --
10341 ----------------------------
10343 -- This is the situation:
10345 -- There is a non-derived type
10347 -- type T0 (Dx, Dy, Dz...)
10349 -- There are zero or more levels of derivation, with each derivation
10350 -- either purely inheriting the discriminants, or defining its own.
10352 -- type Ti is new Ti-1
10353 -- or
10354 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
10355 -- or
10356 -- subtype Ti is ...
10358 -- The subtype issue is avoided by the use of Original_Record_Component,
10359 -- and the fact that derived subtypes also derive the constraints.
10361 -- This chain leads back from
10363 -- Typ_For_Constraint
10365 -- Typ_For_Constraint has discriminants, and the value for each
10366 -- discriminant is given by its corresponding Elmt of Constraints.
10368 -- Discriminant is some discriminant in this hierarchy
10370 -- We need to return its value
10372 -- We do this by recursively searching each level, and looking for
10373 -- Discriminant. Once we get to the bottom, we start backing up
10374 -- returning the value for it which may in turn be a discriminant
10375 -- further up, so on the backup we continue the substitution.
10377 function Get_Discriminant_Value
10378 (Discriminant : Entity_Id;
10379 Typ_For_Constraint : Entity_Id;
10380 Constraint : Elist_Id) return Node_Id
10382 function Search_Derivation_Levels
10383 (Ti : Entity_Id;
10384 Discrim_Values : Elist_Id;
10385 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
10386 -- This is the routine that performs the recursive search of levels
10387 -- as described above.
10389 ------------------------------
10390 -- Search_Derivation_Levels --
10391 ------------------------------
10393 function Search_Derivation_Levels
10394 (Ti : Entity_Id;
10395 Discrim_Values : Elist_Id;
10396 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
10398 Assoc : Elmt_Id;
10399 Disc : Entity_Id;
10400 Result : Node_Or_Entity_Id;
10401 Result_Entity : Node_Id;
10403 begin
10404 -- If inappropriate type, return Error, this happens only in
10405 -- cascaded error situations, and we want to avoid a blow up.
10407 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
10408 return Error;
10409 end if;
10411 -- Look deeper if possible. Use Stored_Constraints only for
10412 -- untagged types. For tagged types use the given constraint.
10413 -- This asymmetry needs explanation???
10415 if not Stored_Discrim_Values
10416 and then Present (Stored_Constraint (Ti))
10417 and then not Is_Tagged_Type (Ti)
10418 then
10419 Result :=
10420 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
10421 else
10422 declare
10423 Td : constant Entity_Id := Etype (Ti);
10425 begin
10426 if Td = Ti then
10427 Result := Discriminant;
10429 else
10430 if Present (Stored_Constraint (Ti)) then
10431 Result :=
10432 Search_Derivation_Levels
10433 (Td, Stored_Constraint (Ti), True);
10434 else
10435 Result :=
10436 Search_Derivation_Levels
10437 (Td, Discrim_Values, Stored_Discrim_Values);
10438 end if;
10439 end if;
10440 end;
10441 end if;
10443 -- Extra underlying places to search, if not found above. For
10444 -- concurrent types, the relevant discriminant appears in the
10445 -- corresponding record. For a type derived from a private type
10446 -- without discriminant, the full view inherits the discriminants
10447 -- of the full view of the parent.
10449 if Result = Discriminant then
10450 if Is_Concurrent_Type (Ti)
10451 and then Present (Corresponding_Record_Type (Ti))
10452 then
10453 Result :=
10454 Search_Derivation_Levels (
10455 Corresponding_Record_Type (Ti),
10456 Discrim_Values,
10457 Stored_Discrim_Values);
10459 elsif Is_Private_Type (Ti)
10460 and then not Has_Discriminants (Ti)
10461 and then Present (Full_View (Ti))
10462 and then Etype (Full_View (Ti)) /= Ti
10463 then
10464 Result :=
10465 Search_Derivation_Levels (
10466 Full_View (Ti),
10467 Discrim_Values,
10468 Stored_Discrim_Values);
10469 end if;
10470 end if;
10472 -- If Result is not a (reference to a) discriminant, return it,
10473 -- otherwise set Result_Entity to the discriminant.
10475 if Nkind (Result) = N_Defining_Identifier then
10476 pragma Assert (Result = Discriminant);
10477 Result_Entity := Result;
10479 else
10480 if not Denotes_Discriminant (Result) then
10481 return Result;
10482 end if;
10484 Result_Entity := Entity (Result);
10485 end if;
10487 -- See if this level of derivation actually has discriminants
10488 -- because tagged derivations can add them, hence the lower
10489 -- levels need not have any.
10491 if not Has_Discriminants (Ti) then
10492 return Result;
10493 end if;
10495 -- Scan Ti's discriminants for Result_Entity,
10496 -- and return its corresponding value, if any.
10498 Result_Entity := Original_Record_Component (Result_Entity);
10500 Assoc := First_Elmt (Discrim_Values);
10502 if Stored_Discrim_Values then
10503 Disc := First_Stored_Discriminant (Ti);
10504 else
10505 Disc := First_Discriminant (Ti);
10506 end if;
10508 while Present (Disc) loop
10509 pragma Assert (Present (Assoc));
10511 if Original_Record_Component (Disc) = Result_Entity then
10512 return Node (Assoc);
10513 end if;
10515 Next_Elmt (Assoc);
10517 if Stored_Discrim_Values then
10518 Next_Stored_Discriminant (Disc);
10519 else
10520 Next_Discriminant (Disc);
10521 end if;
10522 end loop;
10524 -- Could not find it
10526 return Result;
10527 end Search_Derivation_Levels;
10529 Result : Node_Or_Entity_Id;
10531 -- Start of processing for Get_Discriminant_Value
10533 begin
10534 -- ??? This routine is a gigantic mess and will be deleted. For the
10535 -- time being just test for the trivial case before calling recurse.
10537 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
10538 declare
10539 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
10540 E : Elmt_Id := First_Elmt (Constraint);
10542 begin
10543 while Present (D) loop
10544 if Chars (D) = Chars (Discriminant) then
10545 return Node (E);
10546 end if;
10548 Next_Discriminant (D);
10549 Next_Elmt (E);
10550 end loop;
10551 end;
10552 end if;
10554 Result := Search_Derivation_Levels
10555 (Typ_For_Constraint, Constraint, False);
10557 -- ??? hack to disappear when this routine is gone
10559 if Nkind (Result) = N_Defining_Identifier then
10560 declare
10561 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
10562 E : Elmt_Id := First_Elmt (Constraint);
10564 begin
10565 while Present (D) loop
10566 if Corresponding_Discriminant (D) = Discriminant then
10567 return Node (E);
10568 end if;
10570 Next_Discriminant (D);
10571 Next_Elmt (E);
10572 end loop;
10573 end;
10574 end if;
10576 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
10577 return Result;
10578 end Get_Discriminant_Value;
10580 --------------------------
10581 -- Has_Range_Constraint --
10582 --------------------------
10584 function Has_Range_Constraint (N : Node_Id) return Boolean is
10585 C : constant Node_Id := Constraint (N);
10587 begin
10588 if Nkind (C) = N_Range_Constraint then
10589 return True;
10591 elsif Nkind (C) = N_Digits_Constraint then
10592 return
10593 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
10594 or else
10595 Present (Range_Constraint (C));
10597 elsif Nkind (C) = N_Delta_Constraint then
10598 return Present (Range_Constraint (C));
10600 else
10601 return False;
10602 end if;
10603 end Has_Range_Constraint;
10605 ------------------------
10606 -- Inherit_Components --
10607 ------------------------
10609 function Inherit_Components
10610 (N : Node_Id;
10611 Parent_Base : Entity_Id;
10612 Derived_Base : Entity_Id;
10613 Is_Tagged : Boolean;
10614 Inherit_Discr : Boolean;
10615 Discs : Elist_Id) return Elist_Id
10617 Assoc_List : constant Elist_Id := New_Elmt_List;
10619 procedure Inherit_Component
10620 (Old_C : Entity_Id;
10621 Plain_Discrim : Boolean := False;
10622 Stored_Discrim : Boolean := False);
10623 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
10624 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
10625 -- True, Old_C is a stored discriminant. If they are both false then
10626 -- Old_C is a regular component.
10628 -----------------------
10629 -- Inherit_Component --
10630 -----------------------
10632 procedure Inherit_Component
10633 (Old_C : Entity_Id;
10634 Plain_Discrim : Boolean := False;
10635 Stored_Discrim : Boolean := False)
10637 New_C : constant Entity_Id := New_Copy (Old_C);
10639 Discrim : Entity_Id;
10640 Corr_Discrim : Entity_Id;
10642 begin
10643 pragma Assert (not Is_Tagged or else not Stored_Discrim);
10645 Set_Parent (New_C, Parent (Old_C));
10647 -- Regular discriminants and components must be inserted
10648 -- in the scope of the Derived_Base. Do it here.
10650 if not Stored_Discrim then
10651 Enter_Name (New_C);
10652 end if;
10654 -- For tagged types the Original_Record_Component must point to
10655 -- whatever this field was pointing to in the parent type. This has
10656 -- already been achieved by the call to New_Copy above.
10658 if not Is_Tagged then
10659 Set_Original_Record_Component (New_C, New_C);
10660 end if;
10662 -- If we have inherited a component then see if its Etype contains
10663 -- references to Parent_Base discriminants. In this case, replace
10664 -- these references with the constraints given in Discs. We do not
10665 -- do this for the partial view of private types because this is
10666 -- not needed (only the components of the full view will be used
10667 -- for code generation) and cause problem. We also avoid this
10668 -- transformation in some error situations.
10670 if Ekind (New_C) = E_Component then
10671 if (Is_Private_Type (Derived_Base)
10672 and then not Is_Generic_Type (Derived_Base))
10673 or else (Is_Empty_Elmt_List (Discs)
10674 and then not Expander_Active)
10675 then
10676 Set_Etype (New_C, Etype (Old_C));
10677 else
10678 Set_Etype (New_C, Constrain_Component_Type (Etype (Old_C),
10679 Derived_Base, N, Parent_Base, Discs));
10680 end if;
10681 end if;
10683 -- In derived tagged types it is illegal to reference a non
10684 -- discriminant component in the parent type. To catch this, mark
10685 -- these components with an Ekind of E_Void. This will be reset in
10686 -- Record_Type_Definition after processing the record extension of
10687 -- the derived type.
10689 if Is_Tagged and then Ekind (New_C) = E_Component then
10690 Set_Ekind (New_C, E_Void);
10691 end if;
10693 if Plain_Discrim then
10694 Set_Corresponding_Discriminant (New_C, Old_C);
10695 Build_Discriminal (New_C);
10697 -- If we are explicitly inheriting a stored discriminant it will be
10698 -- completely hidden.
10700 elsif Stored_Discrim then
10701 Set_Corresponding_Discriminant (New_C, Empty);
10702 Set_Discriminal (New_C, Empty);
10703 Set_Is_Completely_Hidden (New_C);
10705 -- Set the Original_Record_Component of each discriminant in the
10706 -- derived base to point to the corresponding stored that we just
10707 -- created.
10709 Discrim := First_Discriminant (Derived_Base);
10710 while Present (Discrim) loop
10711 Corr_Discrim := Corresponding_Discriminant (Discrim);
10713 -- Corr_Discrimm could be missing in an error situation
10715 if Present (Corr_Discrim)
10716 and then Original_Record_Component (Corr_Discrim) = Old_C
10717 then
10718 Set_Original_Record_Component (Discrim, New_C);
10719 end if;
10721 Next_Discriminant (Discrim);
10722 end loop;
10724 Append_Entity (New_C, Derived_Base);
10725 end if;
10727 if not Is_Tagged then
10728 Append_Elmt (Old_C, Assoc_List);
10729 Append_Elmt (New_C, Assoc_List);
10730 end if;
10731 end Inherit_Component;
10733 -- Variables local to Inherit_Component
10735 Loc : constant Source_Ptr := Sloc (N);
10737 Parent_Discrim : Entity_Id;
10738 Stored_Discrim : Entity_Id;
10739 D : Entity_Id;
10740 Component : Entity_Id;
10742 -- Start of processing for Inherit_Components
10744 begin
10745 if not Is_Tagged then
10746 Append_Elmt (Parent_Base, Assoc_List);
10747 Append_Elmt (Derived_Base, Assoc_List);
10748 end if;
10750 -- Inherit parent discriminants if needed
10752 if Inherit_Discr then
10753 Parent_Discrim := First_Discriminant (Parent_Base);
10754 while Present (Parent_Discrim) loop
10755 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
10756 Next_Discriminant (Parent_Discrim);
10757 end loop;
10758 end if;
10760 -- Create explicit stored discrims for untagged types when necessary
10762 if not Has_Unknown_Discriminants (Derived_Base)
10763 and then Has_Discriminants (Parent_Base)
10764 and then not Is_Tagged
10765 and then
10766 (not Inherit_Discr
10767 or else First_Discriminant (Parent_Base) /=
10768 First_Stored_Discriminant (Parent_Base))
10769 then
10770 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
10771 while Present (Stored_Discrim) loop
10772 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
10773 Next_Stored_Discriminant (Stored_Discrim);
10774 end loop;
10775 end if;
10777 -- See if we can apply the second transformation for derived types, as
10778 -- explained in point 6. in the comments above Build_Derived_Record_Type
10779 -- This is achieved by appending Derived_Base discriminants into Discs,
10780 -- which has the side effect of returning a non empty Discs list to the
10781 -- caller of Inherit_Components, which is what we want. This must be
10782 -- done for private derived types if there are explicit stored
10783 -- discriminants, to ensure that we can retrieve the values of the
10784 -- constraints provided in the ancestors.
10786 if Inherit_Discr
10787 and then Is_Empty_Elmt_List (Discs)
10788 and then Present (First_Discriminant (Derived_Base))
10789 and then
10790 (not Is_Private_Type (Derived_Base)
10791 or else Is_Completely_Hidden
10792 (First_Stored_Discriminant (Derived_Base))
10793 or else Is_Generic_Type (Derived_Base))
10794 then
10795 D := First_Discriminant (Derived_Base);
10796 while Present (D) loop
10797 Append_Elmt (New_Reference_To (D, Loc), Discs);
10798 Next_Discriminant (D);
10799 end loop;
10800 end if;
10802 -- Finally, inherit non-discriminant components unless they are not
10803 -- visible because defined or inherited from the full view of the
10804 -- parent. Don't inherit the _parent field of the parent type.
10806 Component := First_Entity (Parent_Base);
10807 while Present (Component) loop
10808 if Ekind (Component) /= E_Component
10809 or else Chars (Component) = Name_uParent
10810 then
10811 null;
10813 -- If the derived type is within the parent type's declarative
10814 -- region, then the components can still be inherited even though
10815 -- they aren't visible at this point. This can occur for cases
10816 -- such as within public child units where the components must
10817 -- become visible upon entering the child unit's private part.
10819 elsif not Is_Visible_Component (Component)
10820 and then not In_Open_Scopes (Scope (Parent_Base))
10821 then
10822 null;
10824 elsif Ekind (Derived_Base) = E_Private_Type
10825 or else Ekind (Derived_Base) = E_Limited_Private_Type
10826 then
10827 null;
10829 else
10830 Inherit_Component (Component);
10831 end if;
10833 Next_Entity (Component);
10834 end loop;
10836 -- For tagged derived types, inherited discriminants cannot be used in
10837 -- component declarations of the record extension part. To achieve this
10838 -- we mark the inherited discriminants as not visible.
10840 if Is_Tagged and then Inherit_Discr then
10841 D := First_Discriminant (Derived_Base);
10842 while Present (D) loop
10843 Set_Is_Immediately_Visible (D, False);
10844 Next_Discriminant (D);
10845 end loop;
10846 end if;
10848 return Assoc_List;
10849 end Inherit_Components;
10851 ------------------------------
10852 -- Is_Valid_Constraint_Kind --
10853 ------------------------------
10855 function Is_Valid_Constraint_Kind
10856 (T_Kind : Type_Kind;
10857 Constraint_Kind : Node_Kind) return Boolean
10859 begin
10860 case T_Kind is
10861 when Enumeration_Kind |
10862 Integer_Kind =>
10863 return Constraint_Kind = N_Range_Constraint;
10865 when Decimal_Fixed_Point_Kind =>
10866 return
10867 Constraint_Kind = N_Digits_Constraint
10868 or else
10869 Constraint_Kind = N_Range_Constraint;
10871 when Ordinary_Fixed_Point_Kind =>
10872 return
10873 Constraint_Kind = N_Delta_Constraint
10874 or else
10875 Constraint_Kind = N_Range_Constraint;
10877 when Float_Kind =>
10878 return
10879 Constraint_Kind = N_Digits_Constraint
10880 or else
10881 Constraint_Kind = N_Range_Constraint;
10883 when Access_Kind |
10884 Array_Kind |
10885 E_Record_Type |
10886 E_Record_Subtype |
10887 Class_Wide_Kind |
10888 E_Incomplete_Type |
10889 Private_Kind |
10890 Concurrent_Kind =>
10891 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
10893 when others =>
10894 return True; -- Error will be detected later
10895 end case;
10896 end Is_Valid_Constraint_Kind;
10898 --------------------------
10899 -- Is_Visible_Component --
10900 --------------------------
10902 function Is_Visible_Component (C : Entity_Id) return Boolean is
10903 Original_Comp : Entity_Id := Empty;
10904 Original_Scope : Entity_Id;
10905 Type_Scope : Entity_Id;
10907 function Is_Local_Type (Typ : Entity_Id) return Boolean;
10908 -- Check whether parent type of inherited component is declared locally,
10909 -- possibly within a nested package or instance. The current scope is
10910 -- the derived record itself.
10912 -------------------
10913 -- Is_Local_Type --
10914 -------------------
10916 function Is_Local_Type (Typ : Entity_Id) return Boolean is
10917 Scop : Entity_Id := Scope (Typ);
10919 begin
10920 while Present (Scop)
10921 and then Scop /= Standard_Standard
10922 loop
10923 if Scop = Scope (Current_Scope) then
10924 return True;
10925 end if;
10927 Scop := Scope (Scop);
10928 end loop;
10930 return False;
10931 end Is_Local_Type;
10933 -- Start of processing for Is_Visible_Component
10935 begin
10936 if Ekind (C) = E_Component
10937 or else Ekind (C) = E_Discriminant
10938 then
10939 Original_Comp := Original_Record_Component (C);
10940 end if;
10942 if No (Original_Comp) then
10944 -- Premature usage, or previous error
10946 return False;
10948 else
10949 Original_Scope := Scope (Original_Comp);
10950 Type_Scope := Scope (Base_Type (Scope (C)));
10951 end if;
10953 -- This test only concerns tagged types
10955 if not Is_Tagged_Type (Original_Scope) then
10956 return True;
10958 -- If it is _Parent or _Tag, there is no visibility issue
10960 elsif not Comes_From_Source (Original_Comp) then
10961 return True;
10963 -- If we are in the body of an instantiation, the component is visible
10964 -- even when the parent type (possibly defined in an enclosing unit or
10965 -- in a parent unit) might not.
10967 elsif In_Instance_Body then
10968 return True;
10970 -- Discriminants are always visible
10972 elsif Ekind (Original_Comp) = E_Discriminant
10973 and then not Has_Unknown_Discriminants (Original_Scope)
10974 then
10975 return True;
10977 -- If the component has been declared in an ancestor which is currently
10978 -- a private type, then it is not visible. The same applies if the
10979 -- component's containing type is not in an open scope and the original
10980 -- component's enclosing type is a visible full type of a private type
10981 -- (which can occur in cases where an attempt is being made to reference
10982 -- a component in a sibling package that is inherited from a visible
10983 -- component of a type in an ancestor package; the component in the
10984 -- sibling package should not be visible even though the component it
10985 -- inherited from is visible). This does not apply however in the case
10986 -- where the scope of the type is a private child unit, or when the
10987 -- parent comes from a local package in which the ancestor is currently
10988 -- visible. The latter suppression of visibility is needed for cases
10989 -- that are tested in B730006.
10991 elsif Is_Private_Type (Original_Scope)
10992 or else
10993 (not Is_Private_Descendant (Type_Scope)
10994 and then not In_Open_Scopes (Type_Scope)
10995 and then Has_Private_Declaration (Original_Scope))
10996 then
10997 -- If the type derives from an entity in a formal package, there
10998 -- are no additional visible components.
11000 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
11001 N_Formal_Package_Declaration
11002 then
11003 return False;
11005 -- if we are not in the private part of the current package, there
11006 -- are no additional visible components.
11008 elsif Ekind (Scope (Current_Scope)) = E_Package
11009 and then not In_Private_Part (Scope (Current_Scope))
11010 then
11011 return False;
11012 else
11013 return
11014 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
11015 and then Is_Local_Type (Type_Scope);
11016 end if;
11018 -- There is another weird way in which a component may be invisible
11019 -- when the private and the full view are not derived from the same
11020 -- ancestor. Here is an example :
11022 -- type A1 is tagged record F1 : integer; end record;
11023 -- type A2 is new A1 with record F2 : integer; end record;
11024 -- type T is new A1 with private;
11025 -- private
11026 -- type T is new A2 with null record;
11028 -- In this case, the full view of T inherits F1 and F2 but the private
11029 -- view inherits only F1
11031 else
11032 declare
11033 Ancestor : Entity_Id := Scope (C);
11035 begin
11036 loop
11037 if Ancestor = Original_Scope then
11038 return True;
11039 elsif Ancestor = Etype (Ancestor) then
11040 return False;
11041 end if;
11043 Ancestor := Etype (Ancestor);
11044 end loop;
11046 return True;
11047 end;
11048 end if;
11049 end Is_Visible_Component;
11051 --------------------------
11052 -- Make_Class_Wide_Type --
11053 --------------------------
11055 procedure Make_Class_Wide_Type (T : Entity_Id) is
11056 CW_Type : Entity_Id;
11057 CW_Name : Name_Id;
11058 Next_E : Entity_Id;
11060 begin
11061 -- The class wide type can have been defined by the partial view in
11062 -- which case everything is already done
11064 if Present (Class_Wide_Type (T)) then
11065 return;
11066 end if;
11068 CW_Type :=
11069 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
11071 -- Inherit root type characteristics
11073 CW_Name := Chars (CW_Type);
11074 Next_E := Next_Entity (CW_Type);
11075 Copy_Node (T, CW_Type);
11076 Set_Comes_From_Source (CW_Type, False);
11077 Set_Chars (CW_Type, CW_Name);
11078 Set_Parent (CW_Type, Parent (T));
11079 Set_Next_Entity (CW_Type, Next_E);
11080 Set_Has_Delayed_Freeze (CW_Type);
11082 -- Customize the class-wide type: It has no prim. op., it cannot be
11083 -- abstract and its Etype points back to the specific root type.
11085 Set_Ekind (CW_Type, E_Class_Wide_Type);
11086 Set_Is_Tagged_Type (CW_Type, True);
11087 Set_Primitive_Operations (CW_Type, New_Elmt_List);
11088 Set_Is_Abstract (CW_Type, False);
11089 Set_Is_Constrained (CW_Type, False);
11090 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
11091 Init_Size_Align (CW_Type);
11093 if Ekind (T) = E_Class_Wide_Subtype then
11094 Set_Etype (CW_Type, Etype (Base_Type (T)));
11095 else
11096 Set_Etype (CW_Type, T);
11097 end if;
11099 -- If this is the class_wide type of a constrained subtype, it does
11100 -- not have discriminants.
11102 Set_Has_Discriminants (CW_Type,
11103 Has_Discriminants (T) and then not Is_Constrained (T));
11105 Set_Has_Unknown_Discriminants (CW_Type, True);
11106 Set_Class_Wide_Type (T, CW_Type);
11107 Set_Equivalent_Type (CW_Type, Empty);
11109 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
11111 Set_Class_Wide_Type (CW_Type, CW_Type);
11112 end Make_Class_Wide_Type;
11114 ----------------
11115 -- Make_Index --
11116 ----------------
11118 procedure Make_Index
11119 (I : Node_Id;
11120 Related_Nod : Node_Id;
11121 Related_Id : Entity_Id := Empty;
11122 Suffix_Index : Nat := 1)
11124 R : Node_Id;
11125 T : Entity_Id;
11126 Def_Id : Entity_Id := Empty;
11127 Found : Boolean := False;
11129 begin
11130 -- For a discrete range used in a constrained array definition and
11131 -- defined by a range, an implicit conversion to the predefined type
11132 -- INTEGER is assumed if each bound is either a numeric literal, a named
11133 -- number, or an attribute, and the type of both bounds (prior to the
11134 -- implicit conversion) is the type universal_integer. Otherwise, both
11135 -- bounds must be of the same discrete type, other than universal
11136 -- integer; this type must be determinable independently of the
11137 -- context, but using the fact that the type must be discrete and that
11138 -- both bounds must have the same type.
11140 -- Character literals also have a universal type in the absence of
11141 -- of additional context, and are resolved to Standard_Character.
11143 if Nkind (I) = N_Range then
11145 -- The index is given by a range constraint. The bounds are known
11146 -- to be of a consistent type.
11148 if not Is_Overloaded (I) then
11149 T := Etype (I);
11151 -- If the bounds are universal, choose the specific predefined
11152 -- type.
11154 if T = Universal_Integer then
11155 T := Standard_Integer;
11157 elsif T = Any_Character then
11159 if Ada_Version >= Ada_95 then
11160 Error_Msg_N
11161 ("ambiguous character literals (could be Wide_Character)",
11163 end if;
11165 T := Standard_Character;
11166 end if;
11168 else
11169 T := Any_Type;
11171 declare
11172 Ind : Interp_Index;
11173 It : Interp;
11175 begin
11176 Get_First_Interp (I, Ind, It);
11178 while Present (It.Typ) loop
11179 if Is_Discrete_Type (It.Typ) then
11181 if Found
11182 and then not Covers (It.Typ, T)
11183 and then not Covers (T, It.Typ)
11184 then
11185 Error_Msg_N ("ambiguous bounds in discrete range", I);
11186 exit;
11187 else
11188 T := It.Typ;
11189 Found := True;
11190 end if;
11191 end if;
11193 Get_Next_Interp (Ind, It);
11194 end loop;
11196 if T = Any_Type then
11197 Error_Msg_N ("discrete type required for range", I);
11198 Set_Etype (I, Any_Type);
11199 return;
11201 elsif T = Universal_Integer then
11202 T := Standard_Integer;
11203 end if;
11204 end;
11205 end if;
11207 if not Is_Discrete_Type (T) then
11208 Error_Msg_N ("discrete type required for range", I);
11209 Set_Etype (I, Any_Type);
11210 return;
11211 end if;
11213 if Nkind (Low_Bound (I)) = N_Attribute_Reference
11214 and then Attribute_Name (Low_Bound (I)) = Name_First
11215 and then Is_Entity_Name (Prefix (Low_Bound (I)))
11216 and then Is_Type (Entity (Prefix (Low_Bound (I))))
11217 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
11218 then
11219 -- The type of the index will be the type of the prefix, as long
11220 -- as the upper bound is 'Last of the same type.
11222 Def_Id := Entity (Prefix (Low_Bound (I)));
11224 if Nkind (High_Bound (I)) /= N_Attribute_Reference
11225 or else Attribute_Name (High_Bound (I)) /= Name_Last
11226 or else not Is_Entity_Name (Prefix (High_Bound (I)))
11227 or else Entity (Prefix (High_Bound (I))) /= Def_Id
11228 then
11229 Def_Id := Empty;
11230 end if;
11231 end if;
11233 R := I;
11234 Process_Range_Expr_In_Decl (R, T);
11236 elsif Nkind (I) = N_Subtype_Indication then
11238 -- The index is given by a subtype with a range constraint
11240 T := Base_Type (Entity (Subtype_Mark (I)));
11242 if not Is_Discrete_Type (T) then
11243 Error_Msg_N ("discrete type required for range", I);
11244 Set_Etype (I, Any_Type);
11245 return;
11246 end if;
11248 R := Range_Expression (Constraint (I));
11250 Resolve (R, T);
11251 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
11253 elsif Nkind (I) = N_Attribute_Reference then
11255 -- The parser guarantees that the attribute is a RANGE attribute
11257 -- If the node denotes the range of a type mark, that is also the
11258 -- resulting type, and we do no need to create an Itype for it.
11260 if Is_Entity_Name (Prefix (I))
11261 and then Comes_From_Source (I)
11262 and then Is_Type (Entity (Prefix (I)))
11263 and then Is_Discrete_Type (Entity (Prefix (I)))
11264 then
11265 Def_Id := Entity (Prefix (I));
11266 end if;
11268 Analyze_And_Resolve (I);
11269 T := Etype (I);
11270 R := I;
11272 -- If none of the above, must be a subtype. We convert this to a
11273 -- range attribute reference because in the case of declared first
11274 -- named subtypes, the types in the range reference can be different
11275 -- from the type of the entity. A range attribute normalizes the
11276 -- reference and obtains the correct types for the bounds.
11278 -- This transformation is in the nature of an expansion, is only
11279 -- done if expansion is active. In particular, it is not done on
11280 -- formal generic types, because we need to retain the name of the
11281 -- original index for instantiation purposes.
11283 else
11284 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
11285 Error_Msg_N ("invalid subtype mark in discrete range ", I);
11286 Set_Etype (I, Any_Integer);
11287 return;
11289 else
11290 -- The type mark may be that of an incomplete type. It is only
11291 -- now that we can get the full view, previous analysis does
11292 -- not look specifically for a type mark.
11294 Set_Entity (I, Get_Full_View (Entity (I)));
11295 Set_Etype (I, Entity (I));
11296 Def_Id := Entity (I);
11298 if not Is_Discrete_Type (Def_Id) then
11299 Error_Msg_N ("discrete type required for index", I);
11300 Set_Etype (I, Any_Type);
11301 return;
11302 end if;
11303 end if;
11305 if Expander_Active then
11306 Rewrite (I,
11307 Make_Attribute_Reference (Sloc (I),
11308 Attribute_Name => Name_Range,
11309 Prefix => Relocate_Node (I)));
11311 -- The original was a subtype mark that does not freeze. This
11312 -- means that the rewritten version must not freeze either.
11314 Set_Must_Not_Freeze (I);
11315 Set_Must_Not_Freeze (Prefix (I));
11317 -- Is order critical??? if so, document why, if not
11318 -- use Analyze_And_Resolve
11320 Analyze (I);
11321 T := Etype (I);
11322 Resolve (I);
11323 R := I;
11325 -- If expander is inactive, type is legal, nothing else to construct
11327 else
11328 return;
11329 end if;
11330 end if;
11332 if not Is_Discrete_Type (T) then
11333 Error_Msg_N ("discrete type required for range", I);
11334 Set_Etype (I, Any_Type);
11335 return;
11337 elsif T = Any_Type then
11338 Set_Etype (I, Any_Type);
11339 return;
11340 end if;
11342 -- We will now create the appropriate Itype to describe the range, but
11343 -- first a check. If we originally had a subtype, then we just label
11344 -- the range with this subtype. Not only is there no need to construct
11345 -- a new subtype, but it is wrong to do so for two reasons:
11347 -- 1. A legality concern, if we have a subtype, it must not freeze,
11348 -- and the Itype would cause freezing incorrectly
11350 -- 2. An efficiency concern, if we created an Itype, it would not be
11351 -- recognized as the same type for the purposes of eliminating
11352 -- checks in some circumstances.
11354 -- We signal this case by setting the subtype entity in Def_Id
11356 if No (Def_Id) then
11357 Def_Id :=
11358 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
11359 Set_Etype (Def_Id, Base_Type (T));
11361 if Is_Signed_Integer_Type (T) then
11362 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11364 elsif Is_Modular_Integer_Type (T) then
11365 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11367 else
11368 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11369 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11370 Set_First_Literal (Def_Id, First_Literal (T));
11371 end if;
11373 Set_Size_Info (Def_Id, (T));
11374 Set_RM_Size (Def_Id, RM_Size (T));
11375 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11377 Set_Scalar_Range (Def_Id, R);
11378 Conditional_Delay (Def_Id, T);
11380 -- In the subtype indication case, if the immediate parent of the
11381 -- new subtype is non-static, then the subtype we create is non-
11382 -- static, even if its bounds are static.
11384 if Nkind (I) = N_Subtype_Indication
11385 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
11386 then
11387 Set_Is_Non_Static_Subtype (Def_Id);
11388 end if;
11389 end if;
11391 -- Final step is to label the index with this constructed type
11393 Set_Etype (I, Def_Id);
11394 end Make_Index;
11396 ------------------------------
11397 -- Modular_Type_Declaration --
11398 ------------------------------
11400 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
11401 Mod_Expr : constant Node_Id := Expression (Def);
11402 M_Val : Uint;
11404 procedure Set_Modular_Size (Bits : Int);
11405 -- Sets RM_Size to Bits, and Esize to normal word size above this
11407 ----------------------
11408 -- Set_Modular_Size --
11409 ----------------------
11411 procedure Set_Modular_Size (Bits : Int) is
11412 begin
11413 Set_RM_Size (T, UI_From_Int (Bits));
11415 if Bits <= 8 then
11416 Init_Esize (T, 8);
11418 elsif Bits <= 16 then
11419 Init_Esize (T, 16);
11421 elsif Bits <= 32 then
11422 Init_Esize (T, 32);
11424 else
11425 Init_Esize (T, System_Max_Binary_Modulus_Power);
11426 end if;
11427 end Set_Modular_Size;
11429 -- Start of processing for Modular_Type_Declaration
11431 begin
11432 Analyze_And_Resolve (Mod_Expr, Any_Integer);
11433 Set_Etype (T, T);
11434 Set_Ekind (T, E_Modular_Integer_Type);
11435 Init_Alignment (T);
11436 Set_Is_Constrained (T);
11438 if not Is_OK_Static_Expression (Mod_Expr) then
11439 Flag_Non_Static_Expr
11440 ("non-static expression used for modular type bound!", Mod_Expr);
11441 M_Val := 2 ** System_Max_Binary_Modulus_Power;
11442 else
11443 M_Val := Expr_Value (Mod_Expr);
11444 end if;
11446 if M_Val < 1 then
11447 Error_Msg_N ("modulus value must be positive", Mod_Expr);
11448 M_Val := 2 ** System_Max_Binary_Modulus_Power;
11449 end if;
11451 Set_Modulus (T, M_Val);
11453 -- Create bounds for the modular type based on the modulus given in
11454 -- the type declaration and then analyze and resolve those bounds.
11456 Set_Scalar_Range (T,
11457 Make_Range (Sloc (Mod_Expr),
11458 Low_Bound =>
11459 Make_Integer_Literal (Sloc (Mod_Expr), 0),
11460 High_Bound =>
11461 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
11463 -- Properly analyze the literals for the range. We do this manually
11464 -- because we can't go calling Resolve, since we are resolving these
11465 -- bounds with the type, and this type is certainly not complete yet!
11467 Set_Etype (Low_Bound (Scalar_Range (T)), T);
11468 Set_Etype (High_Bound (Scalar_Range (T)), T);
11469 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
11470 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
11472 -- Loop through powers of two to find number of bits required
11474 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
11476 -- Binary case
11478 if M_Val = 2 ** Bits then
11479 Set_Modular_Size (Bits);
11480 return;
11482 -- Non-binary case
11484 elsif M_Val < 2 ** Bits then
11485 Set_Non_Binary_Modulus (T);
11487 if Bits > System_Max_Nonbinary_Modulus_Power then
11488 Error_Msg_Uint_1 :=
11489 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
11490 Error_Msg_N
11491 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
11492 Set_Modular_Size (System_Max_Binary_Modulus_Power);
11493 return;
11495 else
11496 -- In the non-binary case, set size as per RM 13.3(55)
11498 Set_Modular_Size (Bits);
11499 return;
11500 end if;
11501 end if;
11503 end loop;
11505 -- If we fall through, then the size exceed System.Max_Binary_Modulus
11506 -- so we just signal an error and set the maximum size.
11508 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
11509 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
11511 Set_Modular_Size (System_Max_Binary_Modulus_Power);
11512 Init_Alignment (T);
11514 end Modular_Type_Declaration;
11516 --------------------------
11517 -- New_Concatenation_Op --
11518 --------------------------
11520 procedure New_Concatenation_Op (Typ : Entity_Id) is
11521 Loc : constant Source_Ptr := Sloc (Typ);
11522 Op : Entity_Id;
11524 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
11525 -- Create abbreviated declaration for the formal of a predefined
11526 -- Operator 'Op' of type 'Typ'
11528 --------------------
11529 -- Make_Op_Formal --
11530 --------------------
11532 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
11533 Formal : Entity_Id;
11534 begin
11535 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
11536 Set_Etype (Formal, Typ);
11537 Set_Mechanism (Formal, Default_Mechanism);
11538 return Formal;
11539 end Make_Op_Formal;
11541 -- Start of processing for New_Concatenation_Op
11543 begin
11544 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
11546 Set_Ekind (Op, E_Operator);
11547 Set_Scope (Op, Current_Scope);
11548 Set_Etype (Op, Typ);
11549 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
11550 Set_Is_Immediately_Visible (Op);
11551 Set_Is_Intrinsic_Subprogram (Op);
11552 Set_Has_Completion (Op);
11553 Append_Entity (Op, Current_Scope);
11555 Set_Name_Entity_Id (Name_Op_Concat, Op);
11557 Append_Entity (Make_Op_Formal (Typ, Op), Op);
11558 Append_Entity (Make_Op_Formal (Typ, Op), Op);
11559 end New_Concatenation_Op;
11561 -------------------------------------------
11562 -- Ordinary_Fixed_Point_Type_Declaration --
11563 -------------------------------------------
11565 procedure Ordinary_Fixed_Point_Type_Declaration
11566 (T : Entity_Id;
11567 Def : Node_Id)
11569 Loc : constant Source_Ptr := Sloc (Def);
11570 Delta_Expr : constant Node_Id := Delta_Expression (Def);
11571 RRS : constant Node_Id := Real_Range_Specification (Def);
11572 Implicit_Base : Entity_Id;
11573 Delta_Val : Ureal;
11574 Small_Val : Ureal;
11575 Low_Val : Ureal;
11576 High_Val : Ureal;
11578 begin
11579 Check_Restriction (No_Fixed_Point, Def);
11581 -- Create implicit base type
11583 Implicit_Base :=
11584 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
11585 Set_Etype (Implicit_Base, Implicit_Base);
11587 -- Analyze and process delta expression
11589 Analyze_And_Resolve (Delta_Expr, Any_Real);
11591 Check_Delta_Expression (Delta_Expr);
11592 Delta_Val := Expr_Value_R (Delta_Expr);
11594 Set_Delta_Value (Implicit_Base, Delta_Val);
11596 -- Compute default small from given delta, which is the largest power
11597 -- of two that does not exceed the given delta value.
11599 declare
11600 Tmp : Ureal := Ureal_1;
11601 Scale : Int := 0;
11603 begin
11604 if Delta_Val < Ureal_1 then
11605 while Delta_Val < Tmp loop
11606 Tmp := Tmp / Ureal_2;
11607 Scale := Scale + 1;
11608 end loop;
11610 else
11611 loop
11612 Tmp := Tmp * Ureal_2;
11613 exit when Tmp > Delta_Val;
11614 Scale := Scale - 1;
11615 end loop;
11616 end if;
11618 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
11619 end;
11621 Set_Small_Value (Implicit_Base, Small_Val);
11623 -- If no range was given, set a dummy range
11625 if RRS <= Empty_Or_Error then
11626 Low_Val := -Small_Val;
11627 High_Val := Small_Val;
11629 -- Otherwise analyze and process given range
11631 else
11632 declare
11633 Low : constant Node_Id := Low_Bound (RRS);
11634 High : constant Node_Id := High_Bound (RRS);
11636 begin
11637 Analyze_And_Resolve (Low, Any_Real);
11638 Analyze_And_Resolve (High, Any_Real);
11639 Check_Real_Bound (Low);
11640 Check_Real_Bound (High);
11642 -- Obtain and set the range
11644 Low_Val := Expr_Value_R (Low);
11645 High_Val := Expr_Value_R (High);
11647 if Low_Val > High_Val then
11648 Error_Msg_NE ("?fixed point type& has null range", Def, T);
11649 end if;
11650 end;
11651 end if;
11653 -- The range for both the implicit base and the declared first subtype
11654 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
11655 -- set a temporary range in place. Note that the bounds of the base
11656 -- type will be widened to be symmetrical and to fill the available
11657 -- bits when the type is frozen.
11659 -- We could do this with all discrete types, and probably should, but
11660 -- we absolutely have to do it for fixed-point, since the end-points
11661 -- of the range and the size are determined by the small value, which
11662 -- could be reset before the freeze point.
11664 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
11665 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
11667 Init_Size_Align (Implicit_Base);
11669 -- Complete definition of first subtype
11671 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
11672 Set_Etype (T, Implicit_Base);
11673 Init_Size_Align (T);
11674 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11675 Set_Small_Value (T, Small_Val);
11676 Set_Delta_Value (T, Delta_Val);
11677 Set_Is_Constrained (T);
11679 end Ordinary_Fixed_Point_Type_Declaration;
11681 ----------------------------------------
11682 -- Prepare_Private_Subtype_Completion --
11683 ----------------------------------------
11685 procedure Prepare_Private_Subtype_Completion
11686 (Id : Entity_Id;
11687 Related_Nod : Node_Id)
11689 Id_B : constant Entity_Id := Base_Type (Id);
11690 Full_B : constant Entity_Id := Full_View (Id_B);
11691 Full : Entity_Id;
11693 begin
11694 if Present (Full_B) then
11696 -- The Base_Type is already completed, we can complete the subtype
11697 -- now. We have to create a new entity with the same name, Thus we
11698 -- can't use Create_Itype.
11700 -- This is messy, should be fixed ???
11702 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
11703 Set_Is_Itype (Full);
11704 Set_Associated_Node_For_Itype (Full, Related_Nod);
11705 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
11706 end if;
11708 -- The parent subtype may be private, but the base might not, in some
11709 -- nested instances. In that case, the subtype does not need to be
11710 -- exchanged. It would still be nice to make private subtypes and their
11711 -- bases consistent at all times ???
11713 if Is_Private_Type (Id_B) then
11714 Append_Elmt (Id, Private_Dependents (Id_B));
11715 end if;
11717 end Prepare_Private_Subtype_Completion;
11719 ---------------------------
11720 -- Process_Discriminants --
11721 ---------------------------
11723 procedure Process_Discriminants
11724 (N : Node_Id;
11725 Prev : Entity_Id := Empty)
11727 Elist : constant Elist_Id := New_Elmt_List;
11728 Id : Node_Id;
11729 Discr : Node_Id;
11730 Discr_Number : Uint;
11731 Discr_Type : Entity_Id;
11732 Default_Present : Boolean := False;
11733 Default_Not_Present : Boolean := False;
11735 begin
11736 -- A composite type other than an array type can have discriminants.
11737 -- Discriminants of non-limited types must have a discrete type.
11738 -- On entry, the current scope is the composite type.
11740 -- The discriminants are initially entered into the scope of the type
11741 -- via Enter_Name with the default Ekind of E_Void to prevent premature
11742 -- use, as explained at the end of this procedure.
11744 Discr := First (Discriminant_Specifications (N));
11745 while Present (Discr) loop
11746 Enter_Name (Defining_Identifier (Discr));
11748 -- For navigation purposes we add a reference to the discriminant
11749 -- in the entity for the type. If the current declaration is a
11750 -- completion, place references on the partial view. Otherwise the
11751 -- type is the current scope.
11753 if Present (Prev) then
11755 -- The references go on the partial view, if present. If the
11756 -- partial view has discriminants, the references have been
11757 -- generated already.
11759 if not Has_Discriminants (Prev) then
11760 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
11761 end if;
11762 else
11763 Generate_Reference
11764 (Current_Scope, Defining_Identifier (Discr), 'd');
11765 end if;
11767 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
11768 Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
11770 -- Ada 2005 (AI-254)
11772 if Present (Access_To_Subprogram_Definition
11773 (Discriminant_Type (Discr)))
11774 and then Protected_Present (Access_To_Subprogram_Definition
11775 (Discriminant_Type (Discr)))
11776 then
11777 Discr_Type :=
11778 Replace_Anonymous_Access_To_Protected_Subprogram
11779 (Discr, Discr_Type);
11780 end if;
11782 else
11783 Find_Type (Discriminant_Type (Discr));
11784 Discr_Type := Etype (Discriminant_Type (Discr));
11786 if Error_Posted (Discriminant_Type (Discr)) then
11787 Discr_Type := Any_Type;
11788 end if;
11789 end if;
11791 if Is_Access_Type (Discr_Type) then
11793 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
11794 -- record types
11796 if Ada_Version < Ada_05 then
11797 Check_Access_Discriminant_Requires_Limited
11798 (Discr, Discriminant_Type (Discr));
11799 end if;
11801 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
11802 Error_Msg_N
11803 ("(Ada 83) access discriminant not allowed", Discr);
11804 end if;
11806 elsif not Is_Discrete_Type (Discr_Type) then
11807 Error_Msg_N ("discriminants must have a discrete or access type",
11808 Discriminant_Type (Discr));
11809 end if;
11811 Set_Etype (Defining_Identifier (Discr), Discr_Type);
11813 -- If a discriminant specification includes the assignment compound
11814 -- delimiter followed by an expression, the expression is the default
11815 -- expression of the discriminant; the default expression must be of
11816 -- the type of the discriminant. (RM 3.7.1) Since this expression is
11817 -- a default expression, we do the special preanalysis, since this
11818 -- expression does not freeze (see "Handling of Default and Per-
11819 -- Object Expressions" in spec of package Sem).
11821 if Present (Expression (Discr)) then
11822 Analyze_Per_Use_Expression (Expression (Discr), Discr_Type);
11824 if Nkind (N) = N_Formal_Type_Declaration then
11825 Error_Msg_N
11826 ("discriminant defaults not allowed for formal type",
11827 Expression (Discr));
11829 -- Tagged types cannot have defaulted discriminants, but a
11830 -- non-tagged private type with defaulted discriminants
11831 -- can have a tagged completion.
11833 elsif Is_Tagged_Type (Current_Scope)
11834 and then Comes_From_Source (N)
11835 then
11836 Error_Msg_N
11837 ("discriminants of tagged type cannot have defaults",
11838 Expression (Discr));
11840 else
11841 Default_Present := True;
11842 Append_Elmt (Expression (Discr), Elist);
11844 -- Tag the defining identifiers for the discriminants with
11845 -- their corresponding default expressions from the tree.
11847 Set_Discriminant_Default_Value
11848 (Defining_Identifier (Discr), Expression (Discr));
11849 end if;
11851 else
11852 Default_Not_Present := True;
11853 end if;
11855 -- Ada 2005 (AI-231): Set the null-excluding attribute and carry
11856 -- out some static checks.
11858 if Ada_Version >= Ada_05
11859 and then (Null_Exclusion_Present (Discr)
11860 or else Can_Never_Be_Null (Discr_Type))
11861 then
11862 Set_Can_Never_Be_Null (Defining_Identifier (Discr));
11863 Null_Exclusion_Static_Checks (Discr);
11864 end if;
11866 Next (Discr);
11867 end loop;
11869 -- An element list consisting of the default expressions of the
11870 -- discriminants is constructed in the above loop and used to set
11871 -- the Discriminant_Constraint attribute for the type. If an object
11872 -- is declared of this (record or task) type without any explicit
11873 -- discriminant constraint given, this element list will form the
11874 -- actual parameters for the corresponding initialization procedure
11875 -- for the type.
11877 Set_Discriminant_Constraint (Current_Scope, Elist);
11878 Set_Stored_Constraint (Current_Scope, No_Elist);
11880 -- Default expressions must be provided either for all or for none
11881 -- of the discriminants of a discriminant part. (RM 3.7.1)
11883 if Default_Present and then Default_Not_Present then
11884 Error_Msg_N
11885 ("incomplete specification of defaults for discriminants", N);
11886 end if;
11888 -- The use of the name of a discriminant is not allowed in default
11889 -- expressions of a discriminant part if the specification of the
11890 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
11892 -- To detect this, the discriminant names are entered initially with an
11893 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
11894 -- attempt to use a void entity (for example in an expression that is
11895 -- type-checked) produces the error message: premature usage. Now after
11896 -- completing the semantic analysis of the discriminant part, we can set
11897 -- the Ekind of all the discriminants appropriately.
11899 Discr := First (Discriminant_Specifications (N));
11900 Discr_Number := Uint_1;
11902 while Present (Discr) loop
11903 Id := Defining_Identifier (Discr);
11904 Set_Ekind (Id, E_Discriminant);
11905 Init_Component_Location (Id);
11906 Init_Esize (Id);
11907 Set_Discriminant_Number (Id, Discr_Number);
11909 -- Make sure this is always set, even in illegal programs
11911 Set_Corresponding_Discriminant (Id, Empty);
11913 -- Initialize the Original_Record_Component to the entity itself.
11914 -- Inherit_Components will propagate the right value to
11915 -- discriminants in derived record types.
11917 Set_Original_Record_Component (Id, Id);
11919 -- Create the discriminal for the discriminant
11921 Build_Discriminal (Id);
11923 Next (Discr);
11924 Discr_Number := Discr_Number + 1;
11925 end loop;
11927 Set_Has_Discriminants (Current_Scope);
11928 end Process_Discriminants;
11930 -----------------------
11931 -- Process_Full_View --
11932 -----------------------
11934 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
11935 Priv_Parent : Entity_Id;
11936 Full_Parent : Entity_Id;
11937 Full_Indic : Node_Id;
11939 begin
11940 -- First some sanity checks that must be done after semantic
11941 -- decoration of the full view and thus cannot be placed with other
11942 -- similar checks in Find_Type_Name
11944 if not Is_Limited_Type (Priv_T)
11945 and then (Is_Limited_Type (Full_T)
11946 or else Is_Limited_Composite (Full_T))
11947 then
11948 Error_Msg_N
11949 ("completion of nonlimited type cannot be limited", Full_T);
11950 Explain_Limited_Type (Full_T, Full_T);
11952 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
11953 Error_Msg_N
11954 ("completion of nonabstract type cannot be abstract", Full_T);
11956 elsif Is_Tagged_Type (Priv_T)
11957 and then Is_Limited_Type (Priv_T)
11958 and then not Is_Limited_Type (Full_T)
11959 then
11960 -- GNAT allow its own definition of Limited_Controlled to disobey
11961 -- this rule in order in ease the implementation. The next test is
11962 -- safe because Root_Controlled is defined in a private system child
11964 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
11965 Set_Is_Limited_Composite (Full_T);
11966 else
11967 Error_Msg_N
11968 ("completion of limited tagged type must be limited", Full_T);
11969 end if;
11971 elsif Is_Generic_Type (Priv_T) then
11972 Error_Msg_N ("generic type cannot have a completion", Full_T);
11973 end if;
11975 if Is_Tagged_Type (Priv_T)
11976 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
11977 and then Is_Derived_Type (Full_T)
11978 then
11979 Priv_Parent := Etype (Priv_T);
11981 -- The full view of a private extension may have been transformed
11982 -- into an unconstrained derived type declaration and a subtype
11983 -- declaration (see build_derived_record_type for details).
11985 if Nkind (N) = N_Subtype_Declaration then
11986 Full_Indic := Subtype_Indication (N);
11987 Full_Parent := Etype (Base_Type (Full_T));
11988 else
11989 Full_Indic := Subtype_Indication (Type_Definition (N));
11990 Full_Parent := Etype (Full_T);
11991 end if;
11993 -- Check that the parent type of the full type is a descendant of
11994 -- the ancestor subtype given in the private extension. If either
11995 -- entity has an Etype equal to Any_Type then we had some previous
11996 -- error situation [7.3(8)].
11998 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
11999 return;
12001 elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
12002 Error_Msg_N
12003 ("parent of full type must descend from parent"
12004 & " of private extension", Full_Indic);
12006 -- Check the rules of 7.3(10): if the private extension inherits
12007 -- known discriminants, then the full type must also inherit those
12008 -- discriminants from the same (ancestor) type, and the parent
12009 -- subtype of the full type must be constrained if and only if
12010 -- the ancestor subtype of the private extension is constrained.
12012 elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
12013 and then not Has_Unknown_Discriminants (Priv_T)
12014 and then Has_Discriminants (Base_Type (Priv_Parent))
12015 then
12016 declare
12017 Priv_Indic : constant Node_Id :=
12018 Subtype_Indication (Parent (Priv_T));
12020 Priv_Constr : constant Boolean :=
12021 Is_Constrained (Priv_Parent)
12022 or else
12023 Nkind (Priv_Indic) = N_Subtype_Indication
12024 or else Is_Constrained (Entity (Priv_Indic));
12026 Full_Constr : constant Boolean :=
12027 Is_Constrained (Full_Parent)
12028 or else
12029 Nkind (Full_Indic) = N_Subtype_Indication
12030 or else Is_Constrained (Entity (Full_Indic));
12032 Priv_Discr : Entity_Id;
12033 Full_Discr : Entity_Id;
12035 begin
12036 Priv_Discr := First_Discriminant (Priv_Parent);
12037 Full_Discr := First_Discriminant (Full_Parent);
12039 while Present (Priv_Discr) and then Present (Full_Discr) loop
12040 if Original_Record_Component (Priv_Discr) =
12041 Original_Record_Component (Full_Discr)
12042 or else
12043 Corresponding_Discriminant (Priv_Discr) =
12044 Corresponding_Discriminant (Full_Discr)
12045 then
12046 null;
12047 else
12048 exit;
12049 end if;
12051 Next_Discriminant (Priv_Discr);
12052 Next_Discriminant (Full_Discr);
12053 end loop;
12055 if Present (Priv_Discr) or else Present (Full_Discr) then
12056 Error_Msg_N
12057 ("full view must inherit discriminants of the parent type"
12058 & " used in the private extension", Full_Indic);
12060 elsif Priv_Constr and then not Full_Constr then
12061 Error_Msg_N
12062 ("parent subtype of full type must be constrained",
12063 Full_Indic);
12065 elsif Full_Constr and then not Priv_Constr then
12066 Error_Msg_N
12067 ("parent subtype of full type must be unconstrained",
12068 Full_Indic);
12069 end if;
12070 end;
12072 -- Check the rules of 7.3(12): if a partial view has neither known
12073 -- or unknown discriminants, then the full type declaration shall
12074 -- define a definite subtype.
12076 elsif not Has_Unknown_Discriminants (Priv_T)
12077 and then not Has_Discriminants (Priv_T)
12078 and then not Is_Constrained (Full_T)
12079 then
12080 Error_Msg_N
12081 ("full view must define a constrained type if partial view"
12082 & " has no discriminants", Full_T);
12083 end if;
12085 -- ??????? Do we implement the following properly ?????
12086 -- If the ancestor subtype of a private extension has constrained
12087 -- discriminants, then the parent subtype of the full view shall
12088 -- impose a statically matching constraint on those discriminants
12089 -- [7.3(13)].
12091 else
12092 -- For untagged types, verify that a type without discriminants
12093 -- is not completed with an unconstrained type.
12095 if not Is_Indefinite_Subtype (Priv_T)
12096 and then Is_Indefinite_Subtype (Full_T)
12097 then
12098 Error_Msg_N ("full view of type must be definite subtype", Full_T);
12099 end if;
12100 end if;
12102 -- Create a full declaration for all its subtypes recorded in
12103 -- Private_Dependents and swap them similarly to the base type. These
12104 -- are subtypes that have been define before the full declaration of
12105 -- the private type. We also swap the entry in Private_Dependents list
12106 -- so we can properly restore the private view on exit from the scope.
12108 declare
12109 Priv_Elmt : Elmt_Id;
12110 Priv : Entity_Id;
12111 Full : Entity_Id;
12113 begin
12114 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
12115 while Present (Priv_Elmt) loop
12116 Priv := Node (Priv_Elmt);
12118 if Ekind (Priv) = E_Private_Subtype
12119 or else Ekind (Priv) = E_Limited_Private_Subtype
12120 or else Ekind (Priv) = E_Record_Subtype_With_Private
12121 then
12122 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
12123 Set_Is_Itype (Full);
12124 Set_Parent (Full, Parent (Priv));
12125 Set_Associated_Node_For_Itype (Full, N);
12127 -- Now we need to complete the private subtype, but since the
12128 -- base type has already been swapped, we must also swap the
12129 -- subtypes (and thus, reverse the arguments in the call to
12130 -- Complete_Private_Subtype).
12132 Copy_And_Swap (Priv, Full);
12133 Complete_Private_Subtype (Full, Priv, Full_T, N);
12134 Replace_Elmt (Priv_Elmt, Full);
12135 end if;
12137 Next_Elmt (Priv_Elmt);
12138 end loop;
12139 end;
12141 -- If the private view was tagged, copy the new Primitive
12142 -- operations from the private view to the full view.
12144 if Is_Tagged_Type (Full_T) then
12145 declare
12146 Priv_List : Elist_Id;
12147 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
12148 P1, P2 : Elmt_Id;
12149 Prim : Entity_Id;
12150 D_Type : Entity_Id;
12152 begin
12153 if Is_Tagged_Type (Priv_T) then
12154 Priv_List := Primitive_Operations (Priv_T);
12156 P1 := First_Elmt (Priv_List);
12157 while Present (P1) loop
12158 Prim := Node (P1);
12160 -- Transfer explicit primitives, not those inherited from
12161 -- parent of partial view, which will be re-inherited on
12162 -- the full view.
12164 if Comes_From_Source (Prim) then
12165 P2 := First_Elmt (Full_List);
12166 while Present (P2) and then Node (P2) /= Prim loop
12167 Next_Elmt (P2);
12168 end loop;
12170 -- If not found, that is a new one
12172 if No (P2) then
12173 Append_Elmt (Prim, Full_List);
12174 end if;
12175 end if;
12177 Next_Elmt (P1);
12178 end loop;
12180 else
12181 -- In this case the partial view is untagged, so here we
12182 -- locate all of the earlier primitives that need to be
12183 -- treated as dispatching (those that appear between the two
12184 -- views). Note that these additional operations must all be
12185 -- new operations (any earlier operations that override
12186 -- inherited operations of the full view will already have
12187 -- been inserted in the primitives list and marked as
12188 -- dispatching by Check_Operation_From_Private_View. Note that
12189 -- implicit "/=" operators are excluded from being added to
12190 -- the primitives list since they shouldn't be treated as
12191 -- dispatching (tagged "/=" is handled specially).
12193 Prim := Next_Entity (Full_T);
12194 while Present (Prim) and then Prim /= Priv_T loop
12195 if Ekind (Prim) = E_Procedure
12196 or else
12197 Ekind (Prim) = E_Function
12198 then
12200 D_Type := Find_Dispatching_Type (Prim);
12202 if D_Type = Full_T
12203 and then (Chars (Prim) /= Name_Op_Ne
12204 or else Comes_From_Source (Prim))
12205 then
12206 Check_Controlling_Formals (Full_T, Prim);
12208 if not Is_Dispatching_Operation (Prim) then
12209 Append_Elmt (Prim, Full_List);
12210 Set_Is_Dispatching_Operation (Prim, True);
12211 Set_DT_Position (Prim, No_Uint);
12212 end if;
12214 elsif Is_Dispatching_Operation (Prim)
12215 and then D_Type /= Full_T
12216 then
12218 -- Verify that it is not otherwise controlled by
12219 -- a formal or a return value ot type T.
12221 Check_Controlling_Formals (D_Type, Prim);
12222 end if;
12223 end if;
12225 Next_Entity (Prim);
12226 end loop;
12227 end if;
12229 -- For the tagged case, the two views can share the same
12230 -- Primitive Operation list and the same class wide type.
12231 -- Update attributes of the class-wide type which depend on
12232 -- the full declaration.
12234 if Is_Tagged_Type (Priv_T) then
12235 Set_Primitive_Operations (Priv_T, Full_List);
12236 Set_Class_Wide_Type
12237 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
12239 -- Any other attributes should be propagated to C_W ???
12241 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
12243 end if;
12244 end;
12245 end if;
12246 end Process_Full_View;
12248 -----------------------------------
12249 -- Process_Incomplete_Dependents --
12250 -----------------------------------
12252 procedure Process_Incomplete_Dependents
12253 (N : Node_Id;
12254 Full_T : Entity_Id;
12255 Inc_T : Entity_Id)
12257 Inc_Elmt : Elmt_Id;
12258 Priv_Dep : Entity_Id;
12259 New_Subt : Entity_Id;
12261 Disc_Constraint : Elist_Id;
12263 begin
12264 if No (Private_Dependents (Inc_T)) then
12265 return;
12267 else
12268 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
12270 -- Itypes that may be generated by the completion of an incomplete
12271 -- subtype are not used by the back-end and not attached to the tree.
12272 -- They are created only for constraint-checking purposes.
12273 end if;
12275 while Present (Inc_Elmt) loop
12276 Priv_Dep := Node (Inc_Elmt);
12278 if Ekind (Priv_Dep) = E_Subprogram_Type then
12280 -- An Access_To_Subprogram type may have a return type or a
12281 -- parameter type that is incomplete. Replace with the full view.
12283 if Etype (Priv_Dep) = Inc_T then
12284 Set_Etype (Priv_Dep, Full_T);
12285 end if;
12287 declare
12288 Formal : Entity_Id;
12290 begin
12291 Formal := First_Formal (Priv_Dep);
12293 while Present (Formal) loop
12295 if Etype (Formal) = Inc_T then
12296 Set_Etype (Formal, Full_T);
12297 end if;
12299 Next_Formal (Formal);
12300 end loop;
12301 end;
12303 elsif Is_Overloadable (Priv_Dep) then
12305 if Is_Tagged_Type (Full_T) then
12307 -- Subprogram has an access parameter whose designated type
12308 -- was incomplete. Reexamine declaration now, because it may
12309 -- be a primitive operation of the full type.
12311 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
12312 Set_Is_Dispatching_Operation (Priv_Dep);
12313 Check_Controlling_Formals (Full_T, Priv_Dep);
12314 end if;
12316 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
12318 -- Can happen during processing of a body before the completion
12319 -- of a TA type. Ignore, because spec is also on dependent list.
12321 return;
12323 -- Dependent is a subtype
12325 else
12326 -- We build a new subtype indication using the full view of the
12327 -- incomplete parent. The discriminant constraints have been
12328 -- elaborated already at the point of the subtype declaration.
12330 New_Subt := Create_Itype (E_Void, N);
12332 if Has_Discriminants (Full_T) then
12333 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
12334 else
12335 Disc_Constraint := No_Elist;
12336 end if;
12338 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
12339 Set_Full_View (Priv_Dep, New_Subt);
12340 end if;
12342 Next_Elmt (Inc_Elmt);
12343 end loop;
12344 end Process_Incomplete_Dependents;
12346 --------------------------------
12347 -- Process_Range_Expr_In_Decl --
12348 --------------------------------
12350 procedure Process_Range_Expr_In_Decl
12351 (R : Node_Id;
12352 T : Entity_Id;
12353 Check_List : List_Id := Empty_List;
12354 R_Check_Off : Boolean := False)
12356 Lo, Hi : Node_Id;
12357 R_Checks : Check_Result;
12358 Type_Decl : Node_Id;
12359 Def_Id : Entity_Id;
12361 begin
12362 Analyze_And_Resolve (R, Base_Type (T));
12364 if Nkind (R) = N_Range then
12365 Lo := Low_Bound (R);
12366 Hi := High_Bound (R);
12368 -- If there were errors in the declaration, try and patch up some
12369 -- common mistakes in the bounds. The cases handled are literals
12370 -- which are Integer where the expected type is Real and vice versa.
12371 -- These corrections allow the compilation process to proceed further
12372 -- along since some basic assumptions of the format of the bounds
12373 -- are guaranteed.
12375 if Etype (R) = Any_Type then
12377 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
12378 Rewrite (Lo,
12379 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
12381 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
12382 Rewrite (Hi,
12383 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
12385 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
12386 Rewrite (Lo,
12387 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
12389 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
12390 Rewrite (Hi,
12391 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
12392 end if;
12394 Set_Etype (Lo, T);
12395 Set_Etype (Hi, T);
12396 end if;
12398 -- If the bounds of the range have been mistakenly given as string
12399 -- literals (perhaps in place of character literals), then an error
12400 -- has already been reported, but we rewrite the string literal as a
12401 -- bound of the range's type to avoid blowups in later processing
12402 -- that looks at static values.
12404 if Nkind (Lo) = N_String_Literal then
12405 Rewrite (Lo,
12406 Make_Attribute_Reference (Sloc (Lo),
12407 Attribute_Name => Name_First,
12408 Prefix => New_Reference_To (T, Sloc (Lo))));
12409 Analyze_And_Resolve (Lo);
12410 end if;
12412 if Nkind (Hi) = N_String_Literal then
12413 Rewrite (Hi,
12414 Make_Attribute_Reference (Sloc (Hi),
12415 Attribute_Name => Name_First,
12416 Prefix => New_Reference_To (T, Sloc (Hi))));
12417 Analyze_And_Resolve (Hi);
12418 end if;
12420 -- If bounds aren't scalar at this point then exit, avoiding
12421 -- problems with further processing of the range in this procedure.
12423 if not Is_Scalar_Type (Etype (Lo)) then
12424 return;
12425 end if;
12427 -- Resolve (actually Sem_Eval) has checked that the bounds are in
12428 -- then range of the base type. Here we check whether the bounds
12429 -- are in the range of the subtype itself. Note that if the bounds
12430 -- represent the null range the Constraint_Error exception should
12431 -- not be raised.
12433 -- ??? The following code should be cleaned up as follows
12435 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
12436 -- is done in the call to Range_Check (R, T); below
12438 -- 2. The use of R_Check_Off should be investigated and possibly
12439 -- removed, this would clean up things a bit.
12441 if Is_Null_Range (Lo, Hi) then
12442 null;
12444 else
12445 -- Capture values of bounds and generate temporaries for them
12446 -- if needed, before applying checks, since checks may cause
12447 -- duplication of the expression without forcing evaluation.
12449 if Expander_Active then
12450 Force_Evaluation (Lo);
12451 Force_Evaluation (Hi);
12452 end if;
12454 -- We use a flag here instead of suppressing checks on the
12455 -- type because the type we check against isn't necessarily
12456 -- the place where we put the check.
12458 if not R_Check_Off then
12459 R_Checks := Range_Check (R, T);
12460 Type_Decl := Parent (R);
12462 -- Look up tree to find an appropriate insertion point.
12463 -- This seems really junk code, and very brittle, couldn't
12464 -- we just use an insert actions call of some kind ???
12466 while Present (Type_Decl) and then not
12467 (Nkind (Type_Decl) = N_Full_Type_Declaration
12468 or else
12469 Nkind (Type_Decl) = N_Subtype_Declaration
12470 or else
12471 Nkind (Type_Decl) = N_Loop_Statement
12472 or else
12473 Nkind (Type_Decl) = N_Task_Type_Declaration
12474 or else
12475 Nkind (Type_Decl) = N_Single_Task_Declaration
12476 or else
12477 Nkind (Type_Decl) = N_Protected_Type_Declaration
12478 or else
12479 Nkind (Type_Decl) = N_Single_Protected_Declaration)
12480 loop
12481 Type_Decl := Parent (Type_Decl);
12482 end loop;
12484 -- Why would Type_Decl not be present??? Without this test,
12485 -- short regression tests fail.
12487 if Present (Type_Decl) then
12489 -- Case of loop statement (more comments ???)
12491 if Nkind (Type_Decl) = N_Loop_Statement then
12492 declare
12493 Indic : Node_Id := Parent (R);
12495 begin
12496 while Present (Indic) and then not
12497 (Nkind (Indic) = N_Subtype_Indication)
12498 loop
12499 Indic := Parent (Indic);
12500 end loop;
12502 if Present (Indic) then
12503 Def_Id := Etype (Subtype_Mark (Indic));
12505 Insert_Range_Checks
12506 (R_Checks,
12507 Type_Decl,
12508 Def_Id,
12509 Sloc (Type_Decl),
12511 Do_Before => True);
12512 end if;
12513 end;
12515 -- All other cases (more comments ???)
12517 else
12518 Def_Id := Defining_Identifier (Type_Decl);
12520 if (Ekind (Def_Id) = E_Record_Type
12521 and then Depends_On_Discriminant (R))
12522 or else
12523 (Ekind (Def_Id) = E_Protected_Type
12524 and then Has_Discriminants (Def_Id))
12525 then
12526 Append_Range_Checks
12527 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
12529 else
12530 Insert_Range_Checks
12531 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
12533 end if;
12534 end if;
12535 end if;
12536 end if;
12537 end if;
12539 elsif Expander_Active then
12540 Get_Index_Bounds (R, Lo, Hi);
12541 Force_Evaluation (Lo);
12542 Force_Evaluation (Hi);
12543 end if;
12544 end Process_Range_Expr_In_Decl;
12546 --------------------------------------
12547 -- Process_Real_Range_Specification --
12548 --------------------------------------
12550 procedure Process_Real_Range_Specification (Def : Node_Id) is
12551 Spec : constant Node_Id := Real_Range_Specification (Def);
12552 Lo : Node_Id;
12553 Hi : Node_Id;
12554 Err : Boolean := False;
12556 procedure Analyze_Bound (N : Node_Id);
12557 -- Analyze and check one bound
12559 -------------------
12560 -- Analyze_Bound --
12561 -------------------
12563 procedure Analyze_Bound (N : Node_Id) is
12564 begin
12565 Analyze_And_Resolve (N, Any_Real);
12567 if not Is_OK_Static_Expression (N) then
12568 Flag_Non_Static_Expr
12569 ("bound in real type definition is not static!", N);
12570 Err := True;
12571 end if;
12572 end Analyze_Bound;
12574 -- Start of processing for Process_Real_Range_Specification
12576 begin
12577 if Present (Spec) then
12578 Lo := Low_Bound (Spec);
12579 Hi := High_Bound (Spec);
12580 Analyze_Bound (Lo);
12581 Analyze_Bound (Hi);
12583 -- If error, clear away junk range specification
12585 if Err then
12586 Set_Real_Range_Specification (Def, Empty);
12587 end if;
12588 end if;
12589 end Process_Real_Range_Specification;
12591 ---------------------
12592 -- Process_Subtype --
12593 ---------------------
12595 function Process_Subtype
12596 (S : Node_Id;
12597 Related_Nod : Node_Id;
12598 Related_Id : Entity_Id := Empty;
12599 Suffix : Character := ' ') return Entity_Id
12601 P : Node_Id;
12602 Def_Id : Entity_Id;
12603 Full_View_Id : Entity_Id;
12604 Subtype_Mark_Id : Entity_Id;
12606 procedure Check_Incomplete (T : Entity_Id);
12607 -- Called to verify that an incomplete type is not used prematurely
12609 ----------------------
12610 -- Check_Incomplete --
12611 ----------------------
12613 procedure Check_Incomplete (T : Entity_Id) is
12614 begin
12615 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
12616 Error_Msg_N ("invalid use of type before its full declaration", T);
12617 end if;
12618 end Check_Incomplete;
12620 -- Start of processing for Process_Subtype
12622 begin
12623 -- Case of no constraints present
12625 if Nkind (S) /= N_Subtype_Indication then
12627 Find_Type (S);
12628 Check_Incomplete (S);
12630 -- Ada 2005 (AI-231): Static check
12632 if Ada_Version >= Ada_05
12633 and then Present (Parent (S))
12634 and then Null_Exclusion_Present (Parent (S))
12635 and then Nkind (Parent (S)) /= N_Access_To_Object_Definition
12636 and then not Is_Access_Type (Entity (S))
12637 then
12638 Error_Msg_N
12639 ("(Ada 2005) null-exclusion part requires an access type", S);
12640 end if;
12641 return Entity (S);
12643 -- Case of constraint present, so that we have an N_Subtype_Indication
12644 -- node (this node is created only if constraints are present).
12646 else
12648 Find_Type (Subtype_Mark (S));
12650 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
12651 and then not
12652 (Nkind (Parent (S)) = N_Subtype_Declaration
12653 and then
12654 Is_Itype (Defining_Identifier (Parent (S))))
12655 then
12656 Check_Incomplete (Subtype_Mark (S));
12657 end if;
12659 P := Parent (S);
12660 Subtype_Mark_Id := Entity (Subtype_Mark (S));
12662 -- Explicit subtype declaration case
12664 if Nkind (P) = N_Subtype_Declaration then
12665 Def_Id := Defining_Identifier (P);
12667 -- Explicit derived type definition case
12669 elsif Nkind (P) = N_Derived_Type_Definition then
12670 Def_Id := Defining_Identifier (Parent (P));
12672 -- Implicit case, the Def_Id must be created as an implicit type.
12673 -- The one exception arises in the case of concurrent types, array
12674 -- and access types, where other subsidiary implicit types may be
12675 -- created and must appear before the main implicit type. In these
12676 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
12677 -- has not yet been called to create Def_Id.
12679 else
12680 if Is_Array_Type (Subtype_Mark_Id)
12681 or else Is_Concurrent_Type (Subtype_Mark_Id)
12682 or else Is_Access_Type (Subtype_Mark_Id)
12683 then
12684 Def_Id := Empty;
12686 -- For the other cases, we create a new unattached Itype,
12687 -- and set the indication to ensure it gets attached later.
12689 else
12690 Def_Id :=
12691 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12692 end if;
12693 end if;
12695 -- If the kind of constraint is invalid for this kind of type,
12696 -- then give an error, and then pretend no constraint was given.
12698 if not Is_Valid_Constraint_Kind
12699 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
12700 then
12701 Error_Msg_N
12702 ("incorrect constraint for this kind of type", Constraint (S));
12704 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
12706 -- Set Ekind of orphan itype, to prevent cascaded errors.
12708 if Present (Def_Id) then
12709 Set_Ekind (Def_Id, Ekind (Any_Type));
12710 end if;
12712 -- Make recursive call, having got rid of the bogus constraint
12714 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
12715 end if;
12717 -- Remaining processing depends on type
12719 case Ekind (Subtype_Mark_Id) is
12720 when Access_Kind =>
12721 Constrain_Access (Def_Id, S, Related_Nod);
12723 when Array_Kind =>
12724 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
12726 when Decimal_Fixed_Point_Kind =>
12727 Constrain_Decimal (Def_Id, S);
12729 when Enumeration_Kind =>
12730 Constrain_Enumeration (Def_Id, S);
12732 when Ordinary_Fixed_Point_Kind =>
12733 Constrain_Ordinary_Fixed (Def_Id, S);
12735 when Float_Kind =>
12736 Constrain_Float (Def_Id, S);
12738 when Integer_Kind =>
12739 Constrain_Integer (Def_Id, S);
12741 when E_Record_Type |
12742 E_Record_Subtype |
12743 Class_Wide_Kind |
12744 E_Incomplete_Type =>
12745 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
12747 when Private_Kind =>
12748 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
12749 Set_Private_Dependents (Def_Id, New_Elmt_List);
12751 -- In case of an invalid constraint prevent further processing
12752 -- since the type constructed is missing expected fields.
12754 if Etype (Def_Id) = Any_Type then
12755 return Def_Id;
12756 end if;
12758 -- If the full view is that of a task with discriminants,
12759 -- we must constrain both the concurrent type and its
12760 -- corresponding record type. Otherwise we will just propagate
12761 -- the constraint to the full view, if available.
12763 if Present (Full_View (Subtype_Mark_Id))
12764 and then Has_Discriminants (Subtype_Mark_Id)
12765 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
12766 then
12767 Full_View_Id :=
12768 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12770 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
12771 Constrain_Concurrent (Full_View_Id, S,
12772 Related_Nod, Related_Id, Suffix);
12773 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
12774 Set_Full_View (Def_Id, Full_View_Id);
12776 else
12777 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
12778 end if;
12780 when Concurrent_Kind =>
12781 Constrain_Concurrent (Def_Id, S,
12782 Related_Nod, Related_Id, Suffix);
12784 when others =>
12785 Error_Msg_N ("invalid subtype mark in subtype indication", S);
12786 end case;
12788 -- Size and Convention are always inherited from the base type
12790 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
12791 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
12793 return Def_Id;
12794 end if;
12795 end Process_Subtype;
12797 -----------------------------
12798 -- Record_Type_Declaration --
12799 -----------------------------
12801 procedure Record_Type_Declaration
12802 (T : Entity_Id;
12803 N : Node_Id;
12804 Prev : Entity_Id)
12806 Def : constant Node_Id := Type_Definition (N);
12808 Is_Tagged : Boolean;
12809 Tag_Comp : Entity_Id;
12811 begin
12812 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
12813 -- if it detected an error for declaration T. This arises in the case of
12814 -- private tagged types where the full view omits the word tagged.
12816 Is_Tagged :=
12817 Tagged_Present (Def)
12818 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
12820 -- Records constitute a scope for the component declarations within.
12821 -- The scope is created prior to the processing of these declarations.
12822 -- Discriminants are processed first, so that they are visible when
12823 -- processing the other components. The Ekind of the record type itself
12824 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
12826 -- Enter record scope
12828 New_Scope (T);
12830 -- These flags must be initialized before calling Process_Discriminants
12831 -- because this routine makes use of them.
12833 Set_Is_Tagged_Type (T, Is_Tagged);
12834 Set_Is_Limited_Record (T, Limited_Present (Def));
12836 -- Type is abstract if full declaration carries keyword, or if
12837 -- previous partial view did.
12839 Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
12841 Set_Ekind (T, E_Record_Type);
12842 Set_Etype (T, T);
12843 Init_Size_Align (T);
12845 Set_Stored_Constraint (T, No_Elist);
12847 -- If an incomplete or private type declaration was already given for
12848 -- the type, then this scope already exists, and the discriminants have
12849 -- been declared within. We must verify that the full declaration
12850 -- matches the incomplete one.
12852 Check_Or_Process_Discriminants (N, T, Prev);
12854 Set_Is_Constrained (T, not Has_Discriminants (T));
12855 Set_Has_Delayed_Freeze (T, True);
12857 -- For tagged types add a manually analyzed component corresponding
12858 -- to the component _tag, the corresponding piece of tree will be
12859 -- expanded as part of the freezing actions if it is not a CPP_Class.
12861 if Is_Tagged then
12863 -- Do not add the tag unless we are in expansion mode
12865 if Expander_Active then
12866 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
12867 Enter_Name (Tag_Comp);
12869 Set_Is_Tag (Tag_Comp);
12870 Set_Ekind (Tag_Comp, E_Component);
12871 Set_Etype (Tag_Comp, RTE (RE_Tag));
12872 Set_DT_Entry_Count (Tag_Comp, No_Uint);
12873 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
12874 Init_Component_Location (Tag_Comp);
12875 end if;
12877 Make_Class_Wide_Type (T);
12878 Set_Primitive_Operations (T, New_Elmt_List);
12879 end if;
12881 -- We must suppress range checks when processing the components
12882 -- of a record in the presence of discriminants, since we don't
12883 -- want spurious checks to be generated during their analysis, but
12884 -- must reset the Suppress_Range_Checks flags after having processed
12885 -- the record definition.
12887 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
12888 Set_Kill_Range_Checks (T, True);
12889 Record_Type_Definition (Def, Prev);
12890 Set_Kill_Range_Checks (T, False);
12891 else
12892 Record_Type_Definition (Def, Prev);
12893 end if;
12895 -- Exit from record scope
12897 End_Scope;
12898 end Record_Type_Declaration;
12900 ----------------------------
12901 -- Record_Type_Definition --
12902 ----------------------------
12904 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
12905 Component : Entity_Id;
12906 Ctrl_Components : Boolean := False;
12907 Final_Storage_Only : Boolean;
12908 T : Entity_Id;
12910 begin
12911 if Ekind (Prev_T) = E_Incomplete_Type then
12912 T := Full_View (Prev_T);
12913 else
12914 T := Prev_T;
12915 end if;
12917 Final_Storage_Only := not Is_Controlled (T);
12919 -- If the component list of a record type is defined by the reserved
12920 -- word null and there is no discriminant part, then the record type has
12921 -- no components and all records of the type are null records (RM 3.7)
12922 -- This procedure is also called to process the extension part of a
12923 -- record extension, in which case the current scope may have inherited
12924 -- components.
12926 if No (Def)
12927 or else No (Component_List (Def))
12928 or else Null_Present (Component_List (Def))
12929 then
12930 null;
12932 else
12933 Analyze_Declarations (Component_Items (Component_List (Def)));
12935 if Present (Variant_Part (Component_List (Def))) then
12936 Analyze (Variant_Part (Component_List (Def)));
12937 end if;
12938 end if;
12940 -- After completing the semantic analysis of the record definition,
12941 -- record components, both new and inherited, are accessible. Set
12942 -- their kind accordingly.
12944 Component := First_Entity (Current_Scope);
12945 while Present (Component) loop
12946 if Ekind (Component) = E_Void then
12947 Set_Ekind (Component, E_Component);
12948 Init_Component_Location (Component);
12949 end if;
12951 if Has_Task (Etype (Component)) then
12952 Set_Has_Task (T);
12953 end if;
12955 if Ekind (Component) /= E_Component then
12956 null;
12958 elsif Has_Controlled_Component (Etype (Component))
12959 or else (Chars (Component) /= Name_uParent
12960 and then Is_Controlled (Etype (Component)))
12961 then
12962 Set_Has_Controlled_Component (T, True);
12963 Final_Storage_Only := Final_Storage_Only
12964 and then Finalize_Storage_Only (Etype (Component));
12965 Ctrl_Components := True;
12966 end if;
12968 Next_Entity (Component);
12969 end loop;
12971 -- A type is Finalize_Storage_Only only if all its controlled
12972 -- components are so.
12974 if Ctrl_Components then
12975 Set_Finalize_Storage_Only (T, Final_Storage_Only);
12976 end if;
12978 -- Place reference to end record on the proper entity, which may
12979 -- be a partial view.
12981 if Present (Def) then
12982 Process_End_Label (Def, 'e', Prev_T);
12983 end if;
12984 end Record_Type_Definition;
12986 ------------------------
12987 -- Replace_Components --
12988 ------------------------
12990 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
12991 function Process (N : Node_Id) return Traverse_Result;
12993 -------------
12994 -- Process --
12995 -------------
12997 function Process (N : Node_Id) return Traverse_Result is
12998 Comp : Entity_Id;
13000 begin
13001 if Nkind (N) = N_Discriminant_Specification then
13002 Comp := First_Discriminant (Typ);
13004 while Present (Comp) loop
13005 if Chars (Comp) = Chars (Defining_Identifier (N)) then
13006 Set_Defining_Identifier (N, Comp);
13007 exit;
13008 end if;
13010 Next_Discriminant (Comp);
13011 end loop;
13013 elsif Nkind (N) = N_Component_Declaration then
13014 Comp := First_Component (Typ);
13016 while Present (Comp) loop
13017 if Chars (Comp) = Chars (Defining_Identifier (N)) then
13018 Set_Defining_Identifier (N, Comp);
13019 exit;
13020 end if;
13022 Next_Component (Comp);
13023 end loop;
13024 end if;
13026 return OK;
13027 end Process;
13029 procedure Replace is new Traverse_Proc (Process);
13031 -- Start of processing for Replace_Components
13033 begin
13034 Replace (Decl);
13035 end Replace_Components;
13037 -------------------------------
13038 -- Set_Completion_Referenced --
13039 -------------------------------
13041 procedure Set_Completion_Referenced (E : Entity_Id) is
13042 begin
13043 -- If in main unit, mark entity that is a completion as referenced,
13044 -- warnings go on the partial view when needed.
13046 if In_Extended_Main_Source_Unit (E) then
13047 Set_Referenced (E);
13048 end if;
13049 end Set_Completion_Referenced;
13051 ---------------------
13052 -- Set_Fixed_Range --
13053 ---------------------
13055 -- The range for fixed-point types is complicated by the fact that we
13056 -- do not know the exact end points at the time of the declaration. This
13057 -- is true for three reasons:
13059 -- A size clause may affect the fudging of the end-points
13060 -- A small clause may affect the values of the end-points
13061 -- We try to include the end-points if it does not affect the size
13063 -- This means that the actual end-points must be established at the point
13064 -- when the type is frozen. Meanwhile, we first narrow the range as
13065 -- permitted (so that it will fit if necessary in a small specified size),
13066 -- and then build a range subtree with these narrowed bounds.
13068 -- Set_Fixed_Range constructs the range from real literal values, and sets
13069 -- the range as the Scalar_Range of the given fixed-point type entity.
13071 -- The parent of this range is set to point to the entity so that it is
13072 -- properly hooked into the tree (unlike normal Scalar_Range entries for
13073 -- other scalar types, which are just pointers to the range in the
13074 -- original tree, this would otherwise be an orphan).
13076 -- The tree is left unanalyzed. When the type is frozen, the processing
13077 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
13078 -- analyzed, and uses this as an indication that it should complete
13079 -- work on the range (it will know the final small and size values).
13081 procedure Set_Fixed_Range
13082 (E : Entity_Id;
13083 Loc : Source_Ptr;
13084 Lo : Ureal;
13085 Hi : Ureal)
13087 S : constant Node_Id :=
13088 Make_Range (Loc,
13089 Low_Bound => Make_Real_Literal (Loc, Lo),
13090 High_Bound => Make_Real_Literal (Loc, Hi));
13092 begin
13093 Set_Scalar_Range (E, S);
13094 Set_Parent (S, E);
13095 end Set_Fixed_Range;
13097 ----------------------------------
13098 -- Set_Scalar_Range_For_Subtype --
13099 ----------------------------------
13101 procedure Set_Scalar_Range_For_Subtype
13102 (Def_Id : Entity_Id;
13103 R : Node_Id;
13104 Subt : Entity_Id)
13106 Kind : constant Entity_Kind := Ekind (Def_Id);
13108 begin
13109 Set_Scalar_Range (Def_Id, R);
13111 -- We need to link the range into the tree before resolving it so
13112 -- that types that are referenced, including importantly the subtype
13113 -- itself, are properly frozen (Freeze_Expression requires that the
13114 -- expression be properly linked into the tree). Of course if it is
13115 -- already linked in, then we do not disturb the current link.
13117 if No (Parent (R)) then
13118 Set_Parent (R, Def_Id);
13119 end if;
13121 -- Reset the kind of the subtype during analysis of the range, to
13122 -- catch possible premature use in the bounds themselves.
13124 Set_Ekind (Def_Id, E_Void);
13125 Process_Range_Expr_In_Decl (R, Subt);
13126 Set_Ekind (Def_Id, Kind);
13128 end Set_Scalar_Range_For_Subtype;
13130 --------------------------------------------------------
13131 -- Set_Stored_Constraint_From_Discriminant_Constraint --
13132 --------------------------------------------------------
13134 procedure Set_Stored_Constraint_From_Discriminant_Constraint
13135 (E : Entity_Id)
13137 begin
13138 -- Make sure set if encountered during Expand_To_Stored_Constraint
13140 Set_Stored_Constraint (E, No_Elist);
13142 -- Give it the right value
13144 if Is_Constrained (E) and then Has_Discriminants (E) then
13145 Set_Stored_Constraint (E,
13146 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
13147 end if;
13148 end Set_Stored_Constraint_From_Discriminant_Constraint;
13150 -------------------------------------
13151 -- Signed_Integer_Type_Declaration --
13152 -------------------------------------
13154 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
13155 Implicit_Base : Entity_Id;
13156 Base_Typ : Entity_Id;
13157 Lo_Val : Uint;
13158 Hi_Val : Uint;
13159 Errs : Boolean := False;
13160 Lo : Node_Id;
13161 Hi : Node_Id;
13163 function Can_Derive_From (E : Entity_Id) return Boolean;
13164 -- Determine whether given bounds allow derivation from specified type
13166 procedure Check_Bound (Expr : Node_Id);
13167 -- Check bound to make sure it is integral and static. If not, post
13168 -- appropriate error message and set Errs flag
13170 ---------------------
13171 -- Can_Derive_From --
13172 ---------------------
13174 -- Note we check both bounds against both end values, to deal with
13175 -- strange types like ones with a range of 0 .. -12341234.
13177 function Can_Derive_From (E : Entity_Id) return Boolean is
13178 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
13179 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
13180 begin
13181 return Lo <= Lo_Val and then Lo_Val <= Hi
13182 and then
13183 Lo <= Hi_Val and then Hi_Val <= Hi;
13184 end Can_Derive_From;
13186 -----------------
13187 -- Check_Bound --
13188 -----------------
13190 procedure Check_Bound (Expr : Node_Id) is
13191 begin
13192 -- If a range constraint is used as an integer type definition, each
13193 -- bound of the range must be defined by a static expression of some
13194 -- integer type, but the two bounds need not have the same integer
13195 -- type (Negative bounds are allowed.) (RM 3.5.4)
13197 if not Is_Integer_Type (Etype (Expr)) then
13198 Error_Msg_N
13199 ("integer type definition bounds must be of integer type", Expr);
13200 Errs := True;
13202 elsif not Is_OK_Static_Expression (Expr) then
13203 Flag_Non_Static_Expr
13204 ("non-static expression used for integer type bound!", Expr);
13205 Errs := True;
13207 -- The bounds are folded into literals, and we set their type to be
13208 -- universal, to avoid typing difficulties: we cannot set the type
13209 -- of the literal to the new type, because this would be a forward
13210 -- reference for the back end, and if the original type is user-
13211 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
13213 else
13214 if Is_Entity_Name (Expr) then
13215 Fold_Uint (Expr, Expr_Value (Expr), True);
13216 end if;
13218 Set_Etype (Expr, Universal_Integer);
13219 end if;
13220 end Check_Bound;
13222 -- Start of processing for Signed_Integer_Type_Declaration
13224 begin
13225 -- Create an anonymous base type
13227 Implicit_Base :=
13228 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
13230 -- Analyze and check the bounds, they can be of any integer type
13232 Lo := Low_Bound (Def);
13233 Hi := High_Bound (Def);
13235 -- Arbitrarily use Integer as the type if either bound had an error
13237 if Hi = Error or else Lo = Error then
13238 Base_Typ := Any_Integer;
13239 Set_Error_Posted (T, True);
13241 -- Here both bounds are OK expressions
13243 else
13244 Analyze_And_Resolve (Lo, Any_Integer);
13245 Analyze_And_Resolve (Hi, Any_Integer);
13247 Check_Bound (Lo);
13248 Check_Bound (Hi);
13250 if Errs then
13251 Hi := Type_High_Bound (Standard_Long_Long_Integer);
13252 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
13253 end if;
13255 -- Find type to derive from
13257 Lo_Val := Expr_Value (Lo);
13258 Hi_Val := Expr_Value (Hi);
13260 if Can_Derive_From (Standard_Short_Short_Integer) then
13261 Base_Typ := Base_Type (Standard_Short_Short_Integer);
13263 elsif Can_Derive_From (Standard_Short_Integer) then
13264 Base_Typ := Base_Type (Standard_Short_Integer);
13266 elsif Can_Derive_From (Standard_Integer) then
13267 Base_Typ := Base_Type (Standard_Integer);
13269 elsif Can_Derive_From (Standard_Long_Integer) then
13270 Base_Typ := Base_Type (Standard_Long_Integer);
13272 elsif Can_Derive_From (Standard_Long_Long_Integer) then
13273 Base_Typ := Base_Type (Standard_Long_Long_Integer);
13275 else
13276 Base_Typ := Base_Type (Standard_Long_Long_Integer);
13277 Error_Msg_N ("integer type definition bounds out of range", Def);
13278 Hi := Type_High_Bound (Standard_Long_Long_Integer);
13279 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
13280 end if;
13281 end if;
13283 -- Complete both implicit base and declared first subtype entities
13285 Set_Etype (Implicit_Base, Base_Typ);
13286 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
13287 Set_Size_Info (Implicit_Base, (Base_Typ));
13288 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
13289 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
13291 Set_Ekind (T, E_Signed_Integer_Subtype);
13292 Set_Etype (T, Implicit_Base);
13294 Set_Size_Info (T, (Implicit_Base));
13295 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13296 Set_Scalar_Range (T, Def);
13297 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
13298 Set_Is_Constrained (T);
13299 end Signed_Integer_Type_Declaration;
13301 end Sem_Ch3;