Mark ChangeLog
[official-gcc.git] / gcc / ada / exp_ch7.adb
blob6134df71199cb64e7df3c4ddcf020954615d3f47
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 7 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 -- This package contains virtually all expansion mechanisms related to
28 -- - controlled types
29 -- - transient scopes
31 with Atree; use Atree;
32 with Debug; use Debug;
33 with Einfo; use Einfo;
34 with Errout; use Errout;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Freeze; use Freeze;
41 with Hostparm; use Hostparm;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Targparm; use Targparm;
50 with Sinfo; use Sinfo;
51 with Sem; use Sem;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch7; use Sem_Ch7;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Res; use Sem_Res;
56 with Sem_Type; use Sem_Type;
57 with Sem_Util; use Sem_Util;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Tbuild; use Tbuild;
61 with Uintp; use Uintp;
63 package body Exp_Ch7 is
65 --------------------------------
66 -- Transient Scope Management --
67 --------------------------------
69 -- A transient scope is created when temporary objects are created by the
70 -- compiler. These temporary objects are allocated on the secondary stack
71 -- and the transient scope is responsible for finalizing the object when
72 -- appropriate and reclaiming the memory at the right time. The temporary
73 -- objects are generally the objects allocated to store the result of a
74 -- function returning an unconstrained or a tagged value. Expressions
75 -- needing to be wrapped in a transient scope (functions calls returning
76 -- unconstrained or tagged values) may appear in 3 different contexts which
77 -- lead to 3 different kinds of transient scope expansion:
79 -- 1. In a simple statement (procedure call, assignment, ...). In
80 -- this case the instruction is wrapped into a transient block.
81 -- (See Wrap_Transient_Statement for details)
83 -- 2. In an expression of a control structure (test in a IF statement,
84 -- expression in a CASE statement, ...).
85 -- (See Wrap_Transient_Expression for details)
87 -- 3. In a expression of an object_declaration. No wrapping is possible
88 -- here, so the finalization actions, if any are done right after the
89 -- declaration and the secondary stack deallocation is done in the
90 -- proper enclosing scope (see Wrap_Transient_Declaration for details)
92 -- Note about function returning tagged types: It has been decided to
93 -- always allocate their result in the secondary stack while it is not
94 -- absolutely mandatory when the tagged type is constrained because the
95 -- caller knows the size of the returned object and thus could allocate the
96 -- result in the primary stack. But, allocating them always in the
97 -- secondary stack simplifies many implementation hassles:
99 -- - If it is dispatching function call, the computation of the size of
100 -- the result is possible but complex from the outside.
102 -- - If the returned type is controlled, the assignment of the returned
103 -- value to the anonymous object involves an Adjust, and we have no
104 -- easy way to access the anonymous object created by the back-end
106 -- - If the returned type is class-wide, this is an unconstrained type
107 -- anyway
109 -- Furthermore, the little loss in efficiency which is the result of this
110 -- decision is not such a big deal because function returning tagged types
111 -- are not very much used in real life as opposed to functions returning
112 -- access to a tagged type
114 --------------------------------------------------
115 -- Transient Blocks and Finalization Management --
116 --------------------------------------------------
118 function Find_Node_To_Be_Wrapped (N : Node_Id) return Node_Id;
119 -- N is a node wich may generate a transient scope. Loop over the
120 -- parent pointers of N until it find the appropriate node to
121 -- wrap. It it returns Empty, it means that no transient scope is
122 -- needed in this context.
124 function Make_Clean
125 (N : Node_Id;
126 Clean : Entity_Id;
127 Mark : Entity_Id;
128 Flist : Entity_Id;
129 Is_Task : Boolean;
130 Is_Master : Boolean;
131 Is_Protected_Subprogram : Boolean;
132 Is_Task_Allocation_Block : Boolean;
133 Is_Asynchronous_Call_Block : Boolean) return Node_Id;
134 -- Expand a the clean-up procedure for controlled and/or transient
135 -- block, and/or task master or task body, or blocks used to
136 -- implement task allocation or asynchronous entry calls, or
137 -- procedures used to implement protected procedures. Clean is the
138 -- entity for such a procedure. Mark is the entity for the secondary
139 -- stack mark, if empty only controlled block clean-up will be
140 -- performed. Flist is the entity for the local final list, if empty
141 -- only transient scope clean-up will be performed. The flags
142 -- Is_Task and Is_Master control the calls to the corresponding
143 -- finalization actions for a task body or for an entity that is a
144 -- task master.
146 procedure Set_Node_To_Be_Wrapped (N : Node_Id);
147 -- Set the field Node_To_Be_Wrapped of the current scope
149 procedure Insert_Actions_In_Scope_Around (N : Node_Id);
150 -- Insert the before-actions kept in the scope stack before N, and the
151 -- after after-actions, after N which must be a member of a list.
153 function Make_Transient_Block
154 (Loc : Source_Ptr;
155 Action : Node_Id) return Node_Id;
156 -- Create a transient block whose name is Scope, which is also a
157 -- controlled block if Flist is not empty and whose only code is
158 -- Action (either a single statement or single declaration).
160 type Final_Primitives is (Initialize_Case, Adjust_Case, Finalize_Case);
161 -- This enumeration type is defined in order to ease sharing code for
162 -- building finalization procedures for composite types.
164 Name_Of : constant array (Final_Primitives) of Name_Id :=
165 (Initialize_Case => Name_Initialize,
166 Adjust_Case => Name_Adjust,
167 Finalize_Case => Name_Finalize);
169 Deep_Name_Of : constant array (Final_Primitives) of TSS_Name_Type :=
170 (Initialize_Case => TSS_Deep_Initialize,
171 Adjust_Case => TSS_Deep_Adjust,
172 Finalize_Case => TSS_Deep_Finalize);
174 procedure Build_Record_Deep_Procs (Typ : Entity_Id);
175 -- Build the deep Initialize/Adjust/Finalize for a record Typ with
176 -- Has_Component_Component set and store them using the TSS mechanism.
178 procedure Build_Array_Deep_Procs (Typ : Entity_Id);
179 -- Build the deep Initialize/Adjust/Finalize for a record Typ with
180 -- Has_Controlled_Component set and store them using the TSS mechanism.
182 function Make_Deep_Proc
183 (Prim : Final_Primitives;
184 Typ : Entity_Id;
185 Stmts : List_Id) return Node_Id;
186 -- This function generates the tree for Deep_Initialize, Deep_Adjust
187 -- or Deep_Finalize procedures according to the first parameter,
188 -- these procedures operate on the type Typ. The Stmts parameter
189 -- gives the body of the procedure.
191 function Make_Deep_Array_Body
192 (Prim : Final_Primitives;
193 Typ : Entity_Id) return List_Id;
194 -- This function generates the list of statements for implementing
195 -- Deep_Initialize, Deep_Adjust or Deep_Finalize procedures
196 -- according to the first parameter, these procedures operate on the
197 -- array type Typ.
199 function Make_Deep_Record_Body
200 (Prim : Final_Primitives;
201 Typ : Entity_Id) return List_Id;
202 -- This function generates the list of statements for implementing
203 -- Deep_Initialize, Deep_Adjust or Deep_Finalize procedures
204 -- according to the first parameter, these procedures operate on the
205 -- record type Typ.
207 procedure Check_Visibly_Controlled
208 (Prim : Final_Primitives;
209 Typ : Entity_Id;
210 E : in out Entity_Id;
211 Cref : in out Node_Id);
212 -- The controlled operation declared for a derived type may not be
213 -- overriding, if the controlled operations of the parent type are
214 -- hidden, for example when the parent is a private type whose full
215 -- view is controlled. For other primitive operations we modify the
216 -- name of the operation to indicate that it is not overriding, but
217 -- this is not possible for Initialize, etc. because they have to be
218 -- retrievable by name. Before generating the proper call to one of
219 -- these operations we check whether Typ is known to be controlled at
220 -- the point of definition. If it is not then we must retrieve the
221 -- hidden operation of the parent and use it instead. This is one
222 -- case that might be solved more cleanly once Overriding pragmas or
223 -- declarations are in place.
225 function Convert_View
226 (Proc : Entity_Id;
227 Arg : Node_Id;
228 Ind : Pos := 1) return Node_Id;
229 -- Proc is one of the Initialize/Adjust/Finalize operations, and
230 -- Arg is the argument being passed to it. Ind indicates which
231 -- formal of procedure Proc we are trying to match. This function
232 -- will, if necessary, generate an conversion between the partial
233 -- and full view of Arg to match the type of the formal of Proc,
234 -- or force a conversion to the class-wide type in the case where
235 -- the operation is abstract.
237 -----------------------------
238 -- Finalization Management --
239 -----------------------------
241 -- This part describe how Initialization/Adjusment/Finalization procedures
242 -- are generated and called. Two cases must be considered, types that are
243 -- Controlled (Is_Controlled flag set) and composite types that contain
244 -- controlled components (Has_Controlled_Component flag set). In the first
245 -- case the procedures to call are the user-defined primitive operations
246 -- Initialize/Adjust/Finalize. In the second case, GNAT generates
247 -- Deep_Initialize, Deep_Adjust and Deep_Finalize that are in charge of
248 -- calling the former procedures on the controlled components.
250 -- For records with Has_Controlled_Component set, a hidden "controller"
251 -- component is inserted. This controller component contains its own
252 -- finalization list on which all controlled components are attached
253 -- creating an indirection on the upper-level Finalization list. This
254 -- technique facilitates the management of objects whose number of
255 -- controlled components changes during execution. This controller
256 -- component is itself controlled and is attached to the upper-level
257 -- finalization chain. Its adjust primitive is in charge of calling
258 -- adjust on the components and adusting the finalization pointer to
259 -- match their new location (see a-finali.adb).
261 -- It is not possible to use a similar technique for arrays that have
262 -- Has_Controlled_Component set. In this case, deep procedures are
263 -- generated that call initialize/adjust/finalize + attachment or
264 -- detachment on the finalization list for all component.
266 -- Initialize calls: they are generated for declarations or dynamic
267 -- allocations of Controlled objects with no initial value. They are
268 -- always followed by an attachment to the current Finalization
269 -- Chain. For the dynamic allocation case this the chain attached to
270 -- the scope of the access type definition otherwise, this is the chain
271 -- of the current scope.
273 -- Adjust Calls: They are generated on 2 occasions: (1) for
274 -- declarations or dynamic allocations of Controlled objects with an
275 -- initial value. (2) after an assignment. In the first case they are
276 -- followed by an attachment to the final chain, in the second case
277 -- they are not.
279 -- Finalization Calls: They are generated on (1) scope exit, (2)
280 -- assignments, (3) unchecked deallocations. In case (3) they have to
281 -- be detached from the final chain, in case (2) they must not and in
282 -- case (1) this is not important since we are exiting the scope
283 -- anyway.
285 -- Other details:
286 -- - Type extensions will have a new record controller at each derivation
287 -- level containing controlled components.
288 -- - For types that are both Is_Controlled and Has_Controlled_Components,
289 -- the record controller and the object itself are handled separately.
290 -- It could seem simpler to attach the object at the end of its record
291 -- controller but this would not tackle view conversions properly.
292 -- - A classwide type can always potentially have controlled components
293 -- but the record controller of the corresponding actual type may not
294 -- be nown at compile time so the dispatch table contains a special
295 -- field that allows to compute the offset of the record controller
296 -- dynamically. See s-finimp.Deep_Tag_Attach and a-tags.RC_Offset
298 -- Here is a simple example of the expansion of a controlled block :
300 -- declare
301 -- X : Controlled ;
302 -- Y : Controlled := Init;
304 -- type R is record
305 -- C : Controlled;
306 -- end record;
307 -- W : R;
308 -- Z : R := (C => X);
309 -- begin
310 -- X := Y;
311 -- W := Z;
312 -- end;
314 -- is expanded into
316 -- declare
317 -- _L : System.FI.Finalizable_Ptr;
319 -- procedure _Clean is
320 -- begin
321 -- Abort_Defer;
322 -- System.FI.Finalize_List (_L);
323 -- Abort_Undefer;
324 -- end _Clean;
326 -- X : Controlled;
327 -- begin
328 -- Abort_Defer;
329 -- Initialize (X);
330 -- Attach_To_Final_List (_L, Finalizable (X), 1);
331 -- at end: Abort_Undefer;
332 -- Y : Controlled := Init;
333 -- Adjust (Y);
334 -- Attach_To_Final_List (_L, Finalizable (Y), 1);
336 -- type R is record
337 -- _C : Record_Controller;
338 -- C : Controlled;
339 -- end record;
340 -- W : R;
341 -- begin
342 -- Abort_Defer;
343 -- Deep_Initialize (W, _L, 1);
344 -- at end: Abort_Under;
345 -- Z : R := (C => X);
346 -- Deep_Adjust (Z, _L, 1);
348 -- begin
349 -- _Assign (X, Y);
350 -- Deep_Finalize (W, False);
351 -- <save W's final pointers>
352 -- W := Z;
353 -- <restore W's final pointers>
354 -- Deep_Adjust (W, _L, 0);
355 -- at end
356 -- _Clean;
357 -- end;
359 function Global_Flist_Ref (Flist_Ref : Node_Id) return Boolean;
360 -- Return True if Flist_Ref refers to a global final list, either
361 -- the object GLobal_Final_List which is used to attach standalone
362 -- objects, or any of the list controllers associated with library
363 -- level access to controlled objects
365 procedure Clean_Simple_Protected_Objects (N : Node_Id);
366 -- Protected objects without entries are not controlled types, and the
367 -- locks have to be released explicitly when such an object goes out
368 -- of scope. Traverse declarations in scope to determine whether such
369 -- objects are present.
371 ----------------------------
372 -- Build_Array_Deep_Procs --
373 ----------------------------
375 procedure Build_Array_Deep_Procs (Typ : Entity_Id) is
376 begin
377 Set_TSS (Typ,
378 Make_Deep_Proc (
379 Prim => Initialize_Case,
380 Typ => Typ,
381 Stmts => Make_Deep_Array_Body (Initialize_Case, Typ)));
383 if not Is_Return_By_Reference_Type (Typ) then
384 Set_TSS (Typ,
385 Make_Deep_Proc (
386 Prim => Adjust_Case,
387 Typ => Typ,
388 Stmts => Make_Deep_Array_Body (Adjust_Case, Typ)));
389 end if;
391 Set_TSS (Typ,
392 Make_Deep_Proc (
393 Prim => Finalize_Case,
394 Typ => Typ,
395 Stmts => Make_Deep_Array_Body (Finalize_Case, Typ)));
396 end Build_Array_Deep_Procs;
398 -----------------------------
399 -- Build_Controlling_Procs --
400 -----------------------------
402 procedure Build_Controlling_Procs (Typ : Entity_Id) is
403 begin
404 if Is_Array_Type (Typ) then
405 Build_Array_Deep_Procs (Typ);
407 else pragma Assert (Is_Record_Type (Typ));
408 Build_Record_Deep_Procs (Typ);
409 end if;
410 end Build_Controlling_Procs;
412 ----------------------
413 -- Build_Final_List --
414 ----------------------
416 procedure Build_Final_List (N : Node_Id; Typ : Entity_Id) is
417 Loc : constant Source_Ptr := Sloc (N);
418 Decl : Node_Id;
420 begin
421 Set_Associated_Final_Chain (Typ,
422 Make_Defining_Identifier (Loc,
423 New_External_Name (Chars (Typ), 'L')));
425 Decl :=
426 Make_Object_Declaration (Loc,
427 Defining_Identifier =>
428 Associated_Final_Chain (Typ),
429 Object_Definition =>
430 New_Reference_To
431 (RTE (RE_List_Controller), Loc));
433 -- The type may have been frozen already, and this is a late freezing
434 -- action, in which case the declaration must be elaborated at once.
435 -- If the call is for an allocator, the chain must also be created now,
436 -- because the freezing of the type does not build one. Otherwise, the
437 -- declaration is one of the freezing actions for a user-defined type.
439 if Is_Frozen (Typ)
440 or else (Nkind (N) = N_Allocator
441 and then Ekind (Etype (N)) = E_Anonymous_Access_Type)
442 then
443 Insert_Action (N, Decl);
444 else
445 Append_Freeze_Action (Typ, Decl);
446 end if;
447 end Build_Final_List;
449 ---------------------
450 -- Build_Late_Proc --
451 ---------------------
453 procedure Build_Late_Proc (Typ : Entity_Id; Nam : Name_Id) is
454 begin
455 for Final_Prim in Name_Of'Range loop
456 if Name_Of (Final_Prim) = Nam then
457 Set_TSS (Typ,
458 Make_Deep_Proc (
459 Prim => Final_Prim,
460 Typ => Typ,
461 Stmts => Make_Deep_Record_Body (Final_Prim, Typ)));
462 end if;
463 end loop;
464 end Build_Late_Proc;
466 -----------------------------
467 -- Build_Record_Deep_Procs --
468 -----------------------------
470 procedure Build_Record_Deep_Procs (Typ : Entity_Id) is
471 begin
472 Set_TSS (Typ,
473 Make_Deep_Proc (
474 Prim => Initialize_Case,
475 Typ => Typ,
476 Stmts => Make_Deep_Record_Body (Initialize_Case, Typ)));
478 if not Is_Return_By_Reference_Type (Typ) then
479 Set_TSS (Typ,
480 Make_Deep_Proc (
481 Prim => Adjust_Case,
482 Typ => Typ,
483 Stmts => Make_Deep_Record_Body (Adjust_Case, Typ)));
484 end if;
486 Set_TSS (Typ,
487 Make_Deep_Proc (
488 Prim => Finalize_Case,
489 Typ => Typ,
490 Stmts => Make_Deep_Record_Body (Finalize_Case, Typ)));
491 end Build_Record_Deep_Procs;
493 -------------------
494 -- Cleanup_Array --
495 -------------------
497 function Cleanup_Array
498 (N : Node_Id;
499 Obj : Node_Id;
500 Typ : Entity_Id) return List_Id
502 Loc : constant Source_Ptr := Sloc (N);
503 Index_List : constant List_Id := New_List;
505 function Free_Component return List_Id;
506 -- Generate the code to finalize the task or protected subcomponents
507 -- of a single component of the array.
509 function Free_One_Dimension (Dim : Int) return List_Id;
510 -- Generate a loop over one dimension of the array
512 --------------------
513 -- Free_Component --
514 --------------------
516 function Free_Component return List_Id is
517 Stmts : List_Id := New_List;
518 Tsk : Node_Id;
519 C_Typ : constant Entity_Id := Component_Type (Typ);
521 begin
522 -- Component type is known to contain tasks or protected objects
524 Tsk :=
525 Make_Indexed_Component (Loc,
526 Prefix => Duplicate_Subexpr_No_Checks (Obj),
527 Expressions => Index_List);
529 Set_Etype (Tsk, C_Typ);
531 if Is_Task_Type (C_Typ) then
532 Append_To (Stmts, Cleanup_Task (N, Tsk));
534 elsif Is_Simple_Protected_Type (C_Typ) then
535 Append_To (Stmts, Cleanup_Protected_Object (N, Tsk));
537 elsif Is_Record_Type (C_Typ) then
538 Stmts := Cleanup_Record (N, Tsk, C_Typ);
540 elsif Is_Array_Type (C_Typ) then
541 Stmts := Cleanup_Array (N, Tsk, C_Typ);
542 end if;
544 return Stmts;
545 end Free_Component;
547 ------------------------
548 -- Free_One_Dimension --
549 ------------------------
551 function Free_One_Dimension (Dim : Int) return List_Id is
552 Index : Entity_Id;
554 begin
555 if Dim > Number_Dimensions (Typ) then
556 return Free_Component;
558 -- Here we generate the required loop
560 else
561 Index :=
562 Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
564 Append (New_Reference_To (Index, Loc), Index_List);
566 return New_List (
567 Make_Implicit_Loop_Statement (N,
568 Identifier => Empty,
569 Iteration_Scheme =>
570 Make_Iteration_Scheme (Loc,
571 Loop_Parameter_Specification =>
572 Make_Loop_Parameter_Specification (Loc,
573 Defining_Identifier => Index,
574 Discrete_Subtype_Definition =>
575 Make_Attribute_Reference (Loc,
576 Prefix => Duplicate_Subexpr (Obj),
577 Attribute_Name => Name_Range,
578 Expressions => New_List (
579 Make_Integer_Literal (Loc, Dim))))),
580 Statements => Free_One_Dimension (Dim + 1)));
581 end if;
582 end Free_One_Dimension;
584 -- Start of processing for Cleanup_Array
586 begin
587 return Free_One_Dimension (1);
588 end Cleanup_Array;
590 --------------------
591 -- Cleanup_Record --
592 --------------------
594 function Cleanup_Record
595 (N : Node_Id;
596 Obj : Node_Id;
597 Typ : Entity_Id) return List_Id
599 Loc : constant Source_Ptr := Sloc (N);
600 Tsk : Node_Id;
601 Comp : Entity_Id;
602 Stmts : constant List_Id := New_List;
603 U_Typ : constant Entity_Id := Underlying_Type (Typ);
605 begin
606 if Has_Discriminants (U_Typ)
607 and then Nkind (Parent (U_Typ)) = N_Full_Type_Declaration
608 and then
609 Nkind (Type_Definition (Parent (U_Typ))) = N_Record_Definition
610 and then
611 Present
612 (Variant_Part
613 (Component_List (Type_Definition (Parent (U_Typ)))))
614 then
615 -- For now, do not attempt to free a component that may appear in
616 -- a variant, and instead issue a warning. Doing this "properly"
617 -- would require building a case statement and would be quite a
618 -- mess. Note that the RM only requires that free "work" for the
619 -- case of a task access value, so already we go way beyond this
620 -- in that we deal with the array case and non-discriminated
621 -- record cases.
623 Error_Msg_N
624 ("task/protected object in variant record will not be freed?", N);
625 return New_List (Make_Null_Statement (Loc));
626 end if;
628 Comp := First_Component (Typ);
630 while Present (Comp) loop
631 if Has_Task (Etype (Comp))
632 or else Has_Simple_Protected_Object (Etype (Comp))
633 then
634 Tsk :=
635 Make_Selected_Component (Loc,
636 Prefix => Duplicate_Subexpr_No_Checks (Obj),
637 Selector_Name => New_Occurrence_Of (Comp, Loc));
638 Set_Etype (Tsk, Etype (Comp));
640 if Is_Task_Type (Etype (Comp)) then
641 Append_To (Stmts, Cleanup_Task (N, Tsk));
643 elsif Is_Simple_Protected_Type (Etype (Comp)) then
644 Append_To (Stmts, Cleanup_Protected_Object (N, Tsk));
646 elsif Is_Record_Type (Etype (Comp)) then
648 -- Recurse, by generating the prefix of the argument to
649 -- the eventual cleanup call.
651 Append_List_To
652 (Stmts, Cleanup_Record (N, Tsk, Etype (Comp)));
654 elsif Is_Array_Type (Etype (Comp)) then
655 Append_List_To
656 (Stmts, Cleanup_Array (N, Tsk, Etype (Comp)));
657 end if;
658 end if;
660 Next_Component (Comp);
661 end loop;
663 return Stmts;
664 end Cleanup_Record;
666 ------------------------------
667 -- Cleanup_Protected_Object --
668 ------------------------------
670 function Cleanup_Protected_Object
671 (N : Node_Id;
672 Ref : Node_Id) return Node_Id
674 Loc : constant Source_Ptr := Sloc (N);
676 begin
677 return
678 Make_Procedure_Call_Statement (Loc,
679 Name => New_Reference_To (RTE (RE_Finalize_Protection), Loc),
680 Parameter_Associations => New_List (
681 Concurrent_Ref (Ref)));
682 end Cleanup_Protected_Object;
684 ------------------------------------
685 -- Clean_Simple_Protected_Objects --
686 ------------------------------------
688 procedure Clean_Simple_Protected_Objects (N : Node_Id) is
689 Stmts : constant List_Id := Statements (Handled_Statement_Sequence (N));
690 Stmt : Node_Id := Last (Stmts);
691 E : Entity_Id;
693 begin
694 E := First_Entity (Current_Scope);
695 while Present (E) loop
696 if (Ekind (E) = E_Variable
697 or else Ekind (E) = E_Constant)
698 and then Has_Simple_Protected_Object (Etype (E))
699 and then not Has_Task (Etype (E))
700 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
701 then
702 declare
703 Typ : constant Entity_Id := Etype (E);
704 Ref : constant Node_Id := New_Occurrence_Of (E, Sloc (Stmt));
706 begin
707 if Is_Simple_Protected_Type (Typ) then
708 Append_To (Stmts, Cleanup_Protected_Object (N, Ref));
710 elsif Has_Simple_Protected_Object (Typ) then
711 if Is_Record_Type (Typ) then
712 Append_List_To (Stmts, Cleanup_Record (N, Ref, Typ));
714 elsif Is_Array_Type (Typ) then
715 Append_List_To (Stmts, Cleanup_Array (N, Ref, Typ));
716 end if;
717 end if;
718 end;
719 end if;
721 Next_Entity (E);
722 end loop;
724 -- Analyze inserted cleanup statements
726 if Present (Stmt) then
727 Stmt := Next (Stmt);
729 while Present (Stmt) loop
730 Analyze (Stmt);
731 Next (Stmt);
732 end loop;
733 end if;
734 end Clean_Simple_Protected_Objects;
736 ------------------
737 -- Cleanup_Task --
738 ------------------
740 function Cleanup_Task
741 (N : Node_Id;
742 Ref : Node_Id) return Node_Id
744 Loc : constant Source_Ptr := Sloc (N);
745 begin
746 return
747 Make_Procedure_Call_Statement (Loc,
748 Name => New_Reference_To (RTE (RE_Free_Task), Loc),
749 Parameter_Associations =>
750 New_List (Concurrent_Ref (Ref)));
751 end Cleanup_Task;
753 ---------------------------------
754 -- Has_Simple_Protected_Object --
755 ---------------------------------
757 function Has_Simple_Protected_Object (T : Entity_Id) return Boolean is
758 Comp : Entity_Id;
760 begin
761 if Is_Simple_Protected_Type (T) then
762 return True;
764 elsif Is_Array_Type (T) then
765 return Has_Simple_Protected_Object (Component_Type (T));
767 elsif Is_Record_Type (T) then
768 Comp := First_Component (T);
770 while Present (Comp) loop
771 if Has_Simple_Protected_Object (Etype (Comp)) then
772 return True;
773 end if;
775 Next_Component (Comp);
776 end loop;
778 return False;
780 else
781 return False;
782 end if;
783 end Has_Simple_Protected_Object;
785 ------------------------------
786 -- Is_Simple_Protected_Type --
787 ------------------------------
789 function Is_Simple_Protected_Type (T : Entity_Id) return Boolean is
790 begin
791 return Is_Protected_Type (T) and then not Has_Entries (T);
792 end Is_Simple_Protected_Type;
794 ------------------------------
795 -- Check_Visibly_Controlled --
796 ------------------------------
798 procedure Check_Visibly_Controlled
799 (Prim : Final_Primitives;
800 Typ : Entity_Id;
801 E : in out Entity_Id;
802 Cref : in out Node_Id)
804 Parent_Type : Entity_Id;
805 Op : Entity_Id;
807 begin
808 if Is_Derived_Type (Typ)
809 and then Comes_From_Source (E)
810 and then not Is_Overriding_Operation (E)
811 then
812 -- We know that the explicit operation on the type does not override
813 -- the inherited operation of the parent, and that the derivation
814 -- is from a private type that is not visibly controlled.
816 Parent_Type := Etype (Typ);
817 Op := Find_Prim_Op (Parent_Type, Name_Of (Prim));
819 if Present (Op) then
820 E := Op;
822 -- Wrap the object to be initialized into the proper
823 -- unchecked conversion, to be compatible with the operation
824 -- to be called.
826 if Nkind (Cref) = N_Unchecked_Type_Conversion then
827 Cref := Unchecked_Convert_To (Parent_Type, Expression (Cref));
828 else
829 Cref := Unchecked_Convert_To (Parent_Type, Cref);
830 end if;
831 end if;
832 end if;
833 end Check_Visibly_Controlled;
835 ---------------------
836 -- Controlled_Type --
837 ---------------------
839 function Controlled_Type (T : Entity_Id) return Boolean is
841 function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
842 -- If type is not frozen yet, check explicitly among its components,
843 -- because flag is not necessarily set.
845 -----------------------------------
846 -- Has_Some_Controlled_Component --
847 -----------------------------------
849 function Has_Some_Controlled_Component
850 (Rec : Entity_Id) return Boolean
852 Comp : Entity_Id;
854 begin
855 if Has_Controlled_Component (Rec) then
856 return True;
858 elsif not Is_Frozen (Rec) then
859 if Is_Record_Type (Rec) then
860 Comp := First_Entity (Rec);
862 while Present (Comp) loop
863 if not Is_Type (Comp)
864 and then Controlled_Type (Etype (Comp))
865 then
866 return True;
867 end if;
869 Next_Entity (Comp);
870 end loop;
872 return False;
874 elsif Is_Array_Type (Rec) then
875 return Is_Controlled (Component_Type (Rec));
877 else
878 return Has_Controlled_Component (Rec);
879 end if;
880 else
881 return False;
882 end if;
883 end Has_Some_Controlled_Component;
885 -- Start of processing for Controlled_Type
887 begin
888 -- Class-wide types must be treated as controlled because they may
889 -- contain an extension that has controlled components
891 -- We can skip this if finalization is not available
893 return (Is_Class_Wide_Type (T)
894 and then not In_Finalization_Root (T)
895 and then not Restriction_Active (No_Finalization))
896 or else Is_Controlled (T)
897 or else Has_Some_Controlled_Component (T)
898 or else (Is_Concurrent_Type (T)
899 and then Present (Corresponding_Record_Type (T))
900 and then Controlled_Type (Corresponding_Record_Type (T)));
901 end Controlled_Type;
903 --------------------------
904 -- Controller_Component --
905 --------------------------
907 function Controller_Component (Typ : Entity_Id) return Entity_Id is
908 T : Entity_Id := Base_Type (Typ);
909 Comp : Entity_Id;
910 Comp_Scop : Entity_Id;
911 Res : Entity_Id := Empty;
912 Res_Scop : Entity_Id := Empty;
914 begin
915 if Is_Class_Wide_Type (T) then
916 T := Root_Type (T);
917 end if;
919 if Is_Private_Type (T) then
920 T := Underlying_Type (T);
921 end if;
923 -- Fetch the outermost controller
925 Comp := First_Entity (T);
926 while Present (Comp) loop
927 if Chars (Comp) = Name_uController then
928 Comp_Scop := Scope (Original_Record_Component (Comp));
930 -- If this controller is at the outermost level, no need to
931 -- look for another one
933 if Comp_Scop = T then
934 return Comp;
936 -- Otherwise record the outermost one and continue looking
938 elsif Res = Empty or else Is_Ancestor (Res_Scop, Comp_Scop) then
939 Res := Comp;
940 Res_Scop := Comp_Scop;
941 end if;
942 end if;
944 Next_Entity (Comp);
945 end loop;
947 -- If we fall through the loop, there is no controller component
949 return Res;
950 end Controller_Component;
952 ------------------
953 -- Convert_View --
954 ------------------
956 function Convert_View
957 (Proc : Entity_Id;
958 Arg : Node_Id;
959 Ind : Pos := 1) return Node_Id
961 Fent : Entity_Id := First_Entity (Proc);
962 Ftyp : Entity_Id;
963 Atyp : Entity_Id;
965 begin
966 for J in 2 .. Ind loop
967 Next_Entity (Fent);
968 end loop;
970 Ftyp := Etype (Fent);
972 if Nkind (Arg) = N_Type_Conversion
973 or else Nkind (Arg) = N_Unchecked_Type_Conversion
974 then
975 Atyp := Entity (Subtype_Mark (Arg));
976 else
977 Atyp := Etype (Arg);
978 end if;
980 if Is_Abstract (Proc) and then Is_Tagged_Type (Ftyp) then
981 return Unchecked_Convert_To (Class_Wide_Type (Ftyp), Arg);
983 elsif Ftyp /= Atyp
984 and then Present (Atyp)
985 and then
986 (Is_Private_Type (Ftyp) or else Is_Private_Type (Atyp))
987 and then Underlying_Type (Atyp) = Underlying_Type (Ftyp)
988 then
989 return Unchecked_Convert_To (Ftyp, Arg);
991 -- If the argument is already a conversion, as generated by
992 -- Make_Init_Call, set the target type to the type of the formal
993 -- directly, to avoid spurious typing problems.
995 elsif (Nkind (Arg) = N_Unchecked_Type_Conversion
996 or else Nkind (Arg) = N_Type_Conversion)
997 and then not Is_Class_Wide_Type (Atyp)
998 then
999 Set_Subtype_Mark (Arg, New_Occurrence_Of (Ftyp, Sloc (Arg)));
1000 Set_Etype (Arg, Ftyp);
1001 return Arg;
1003 else
1004 return Arg;
1005 end if;
1006 end Convert_View;
1008 -------------------------------
1009 -- Establish_Transient_Scope --
1010 -------------------------------
1012 -- This procedure is called each time a transient block has to be inserted
1013 -- that is to say for each call to a function with unconstrained ot tagged
1014 -- result. It creates a new scope on the stack scope in order to enclose
1015 -- all transient variables generated
1017 procedure Establish_Transient_Scope (N : Node_Id; Sec_Stack : Boolean) is
1018 Loc : constant Source_Ptr := Sloc (N);
1019 Wrap_Node : Node_Id;
1021 Sec_Stk : constant Boolean :=
1022 Sec_Stack and not Functions_Return_By_DSP_On_Target;
1023 -- We never need a secondary stack if functions return by DSP
1025 begin
1026 -- Do not create a transient scope if we are already inside one
1028 for S in reverse Scope_Stack.First .. Scope_Stack.Last loop
1030 if Scope_Stack.Table (S).Is_Transient then
1031 if Sec_Stk then
1032 Set_Uses_Sec_Stack (Scope_Stack.Table (S).Entity);
1033 end if;
1035 return;
1037 -- If we have encountered Standard there are no enclosing
1038 -- transient scopes.
1040 elsif Scope_Stack.Table (S).Entity = Standard_Standard then
1041 exit;
1043 end if;
1044 end loop;
1046 Wrap_Node := Find_Node_To_Be_Wrapped (N);
1048 -- Case of no wrap node, false alert, no transient scope needed
1050 if No (Wrap_Node) then
1051 null;
1053 -- If the node to wrap is an iteration_scheme, the expression is
1054 -- one of the bounds, and the expansion will make an explicit
1055 -- declaration for it (see Analyze_Iteration_Scheme, sem_ch5.adb),
1056 -- so do not apply any transformations here.
1058 elsif Nkind (Wrap_Node) = N_Iteration_Scheme then
1059 null;
1061 else
1062 New_Scope (New_Internal_Entity (E_Block, Current_Scope, Loc, 'B'));
1063 Set_Scope_Is_Transient;
1065 if Sec_Stk then
1066 Set_Uses_Sec_Stack (Current_Scope);
1067 Check_Restriction (No_Secondary_Stack, N);
1068 end if;
1070 Set_Etype (Current_Scope, Standard_Void_Type);
1071 Set_Node_To_Be_Wrapped (Wrap_Node);
1073 if Debug_Flag_W then
1074 Write_Str (" <Transient>");
1075 Write_Eol;
1076 end if;
1077 end if;
1078 end Establish_Transient_Scope;
1080 ----------------------------
1081 -- Expand_Cleanup_Actions --
1082 ----------------------------
1084 procedure Expand_Cleanup_Actions (N : Node_Id) is
1085 Loc : Source_Ptr;
1086 S : constant Entity_Id :=
1087 Current_Scope;
1088 Flist : constant Entity_Id :=
1089 Finalization_Chain_Entity (S);
1090 Is_Task : constant Boolean :=
1091 (Nkind (Original_Node (N)) = N_Task_Body);
1092 Is_Master : constant Boolean :=
1093 Nkind (N) /= N_Entry_Body
1094 and then Is_Task_Master (N);
1095 Is_Protected : constant Boolean :=
1096 Nkind (N) = N_Subprogram_Body
1097 and then Is_Protected_Subprogram_Body (N);
1098 Is_Task_Allocation : constant Boolean :=
1099 Nkind (N) = N_Block_Statement
1100 and then Is_Task_Allocation_Block (N);
1101 Is_Asynchronous_Call : constant Boolean :=
1102 Nkind (N) = N_Block_Statement
1103 and then Is_Asynchronous_Call_Block (N);
1105 Clean : Entity_Id;
1106 Mark : Entity_Id := Empty;
1107 New_Decls : constant List_Id := New_List;
1108 Blok : Node_Id;
1109 End_Lab : Node_Id;
1110 Wrapped : Boolean;
1111 Chain : Entity_Id := Empty;
1112 Decl : Node_Id;
1113 Old_Poll : Boolean;
1115 begin
1117 -- Compute a location that is not directly in the user code in
1118 -- order to avoid to generate confusing debug info. A good
1119 -- approximation is the name of the outer user-defined scope
1121 declare
1122 S1 : Entity_Id := S;
1124 begin
1125 while not Comes_From_Source (S1) and then S1 /= Standard_Standard loop
1126 S1 := Scope (S1);
1127 end loop;
1129 Loc := Sloc (S1);
1130 end;
1132 -- There are cleanup actions only if the secondary stack needs
1133 -- releasing or some finalizations are needed or in the context
1134 -- of tasking
1136 if Uses_Sec_Stack (Current_Scope)
1137 and then not Sec_Stack_Needed_For_Return (Current_Scope)
1138 then
1139 null;
1140 elsif No (Flist)
1141 and then not Is_Master
1142 and then not Is_Task
1143 and then not Is_Protected
1144 and then not Is_Task_Allocation
1145 and then not Is_Asynchronous_Call
1146 then
1147 Clean_Simple_Protected_Objects (N);
1148 return;
1149 end if;
1151 -- If the current scope is the subprogram body that is the rewriting
1152 -- of a task body, and the descriptors have not been delayed (due to
1153 -- some nested instantiations) do not generate redundant cleanup
1154 -- actions: the cleanup procedure already exists for this body.
1156 if Nkind (N) = N_Subprogram_Body
1157 and then Nkind (Original_Node (N)) = N_Task_Body
1158 and then not Delay_Subprogram_Descriptors (Corresponding_Spec (N))
1159 then
1160 return;
1161 end if;
1163 -- Set polling off, since we don't need to poll during cleanup
1164 -- actions, and indeed for the cleanup routine, which is executed
1165 -- with aborts deferred, we don't want polling.
1167 Old_Poll := Polling_Required;
1168 Polling_Required := False;
1170 -- Make sure we have a declaration list, since we will add to it
1172 if No (Declarations (N)) then
1173 Set_Declarations (N, New_List);
1174 end if;
1176 -- The task activation call has already been built for task
1177 -- allocation blocks.
1179 if not Is_Task_Allocation then
1180 Build_Task_Activation_Call (N);
1181 end if;
1183 if Is_Master then
1184 Establish_Task_Master (N);
1185 end if;
1187 -- If secondary stack is in use, expand:
1188 -- _Mxx : constant Mark_Id := SS_Mark;
1190 -- Suppress calls to SS_Mark and SS_Release if Java_VM,
1191 -- since we never use the secondary stack on the JVM.
1193 if Uses_Sec_Stack (Current_Scope)
1194 and then not Sec_Stack_Needed_For_Return (Current_Scope)
1195 and then not Java_VM
1196 then
1197 Mark := Make_Defining_Identifier (Loc, New_Internal_Name ('M'));
1198 Append_To (New_Decls,
1199 Make_Object_Declaration (Loc,
1200 Defining_Identifier => Mark,
1201 Object_Definition => New_Reference_To (RTE (RE_Mark_Id), Loc),
1202 Expression =>
1203 Make_Function_Call (Loc,
1204 Name => New_Reference_To (RTE (RE_SS_Mark), Loc))));
1206 Set_Uses_Sec_Stack (Current_Scope, False);
1207 end if;
1209 -- If finalization list is present then expand:
1210 -- Local_Final_List : System.FI.Finalizable_Ptr;
1212 if Present (Flist) then
1213 Append_To (New_Decls,
1214 Make_Object_Declaration (Loc,
1215 Defining_Identifier => Flist,
1216 Object_Definition =>
1217 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
1218 end if;
1220 -- Clean-up procedure definition
1222 Clean := Make_Defining_Identifier (Loc, Name_uClean);
1223 Set_Suppress_Elaboration_Warnings (Clean);
1224 Append_To (New_Decls,
1225 Make_Clean (N, Clean, Mark, Flist,
1226 Is_Task,
1227 Is_Master,
1228 Is_Protected,
1229 Is_Task_Allocation,
1230 Is_Asynchronous_Call));
1232 -- If exception handlers are present, wrap the Sequence of
1233 -- statements in a block because it is not possible to get
1234 -- exception handlers and an AT END call in the same scope.
1236 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1238 -- Preserve end label to provide proper cross-reference information
1240 End_Lab := End_Label (Handled_Statement_Sequence (N));
1241 Blok :=
1242 Make_Block_Statement (Loc,
1243 Handled_Statement_Sequence => Handled_Statement_Sequence (N));
1244 Set_Handled_Statement_Sequence (N,
1245 Make_Handled_Sequence_Of_Statements (Loc, New_List (Blok)));
1246 Set_End_Label (Handled_Statement_Sequence (N), End_Lab);
1247 Wrapped := True;
1249 -- Otherwise we do not wrap
1251 else
1252 Wrapped := False;
1253 Blok := Empty;
1254 end if;
1256 -- Don't move the _chain Activation_Chain declaration in task
1257 -- allocation blocks. Task allocation blocks use this object
1258 -- in their cleanup handlers, and gigi complains if it is declared
1259 -- in the sequence of statements of the scope that declares the
1260 -- handler.
1262 if Is_Task_Allocation then
1263 Chain := Activation_Chain_Entity (N);
1264 Decl := First (Declarations (N));
1266 while Nkind (Decl) /= N_Object_Declaration
1267 or else Defining_Identifier (Decl) /= Chain
1268 loop
1269 Next (Decl);
1270 pragma Assert (Present (Decl));
1271 end loop;
1273 Remove (Decl);
1274 Prepend_To (New_Decls, Decl);
1275 end if;
1277 -- Now we move the declarations into the Sequence of statements
1278 -- in order to get them protected by the AT END call. It may seem
1279 -- weird to put declarations in the sequence of statement but in
1280 -- fact nothing forbids that at the tree level. We also set the
1281 -- First_Real_Statement field so that we remember where the real
1282 -- statements (i.e. original statements) begin. Note that if we
1283 -- wrapped the statements, the first real statement is inside the
1284 -- inner block. If the First_Real_Statement is already set (as is
1285 -- the case for subprogram bodies that are expansions of task bodies)
1286 -- then do not reset it, because its declarative part would migrate
1287 -- to the statement part.
1289 if not Wrapped then
1290 if No (First_Real_Statement (Handled_Statement_Sequence (N))) then
1291 Set_First_Real_Statement (Handled_Statement_Sequence (N),
1292 First (Statements (Handled_Statement_Sequence (N))));
1293 end if;
1295 else
1296 Set_First_Real_Statement (Handled_Statement_Sequence (N), Blok);
1297 end if;
1299 Append_List_To (Declarations (N),
1300 Statements (Handled_Statement_Sequence (N)));
1301 Set_Statements (Handled_Statement_Sequence (N), Declarations (N));
1303 -- We need to reset the Sloc of the handled statement sequence to
1304 -- properly reflect the new initial "statement" in the sequence.
1306 Set_Sloc
1307 (Handled_Statement_Sequence (N), Sloc (First (Declarations (N))));
1309 -- The declarations of the _Clean procedure and finalization chain
1310 -- replace the old declarations that have been moved inward
1312 Set_Declarations (N, New_Decls);
1313 Analyze_Declarations (New_Decls);
1315 -- The At_End call is attached to the sequence of statements
1317 declare
1318 HSS : Node_Id;
1320 begin
1321 -- If the construct is a protected subprogram, then the call to
1322 -- the corresponding unprotected program appears in a block which
1323 -- is the last statement in the body, and it is this block that
1324 -- must be covered by the At_End handler.
1326 if Is_Protected then
1327 HSS := Handled_Statement_Sequence
1328 (Last (Statements (Handled_Statement_Sequence (N))));
1329 else
1330 HSS := Handled_Statement_Sequence (N);
1331 end if;
1333 Set_At_End_Proc (HSS, New_Occurrence_Of (Clean, Loc));
1334 Expand_At_End_Handler (HSS, Empty);
1335 end;
1337 -- Restore saved polling mode
1339 Polling_Required := Old_Poll;
1340 end Expand_Cleanup_Actions;
1342 -------------------------------
1343 -- Expand_Ctrl_Function_Call --
1344 -------------------------------
1346 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
1347 Loc : constant Source_Ptr := Sloc (N);
1348 Rtype : constant Entity_Id := Etype (N);
1349 Utype : constant Entity_Id := Underlying_Type (Rtype);
1350 Ref : Node_Id;
1351 Action : Node_Id;
1352 Action2 : Node_Id := Empty;
1354 Attach_Level : Uint := Uint_1;
1355 Len_Ref : Node_Id := Empty;
1357 function Last_Array_Component
1358 (Ref : Node_Id;
1359 Typ : Entity_Id) return Node_Id;
1360 -- Creates a reference to the last component of the array object
1361 -- designated by Ref whose type is Typ.
1363 --------------------------
1364 -- Last_Array_Component --
1365 --------------------------
1367 function Last_Array_Component
1368 (Ref : Node_Id;
1369 Typ : Entity_Id) return Node_Id
1371 Index_List : constant List_Id := New_List;
1373 begin
1374 for N in 1 .. Number_Dimensions (Typ) loop
1375 Append_To (Index_List,
1376 Make_Attribute_Reference (Loc,
1377 Prefix => Duplicate_Subexpr_No_Checks (Ref),
1378 Attribute_Name => Name_Last,
1379 Expressions => New_List (
1380 Make_Integer_Literal (Loc, N))));
1381 end loop;
1383 return
1384 Make_Indexed_Component (Loc,
1385 Prefix => Duplicate_Subexpr (Ref),
1386 Expressions => Index_List);
1387 end Last_Array_Component;
1389 -- Start of processing for Expand_Ctrl_Function_Call
1391 begin
1392 -- Optimization, if the returned value (which is on the sec-stack)
1393 -- is returned again, no need to copy/readjust/finalize, we can just
1394 -- pass the value thru (see Expand_N_Return_Statement), and thus no
1395 -- attachment is needed
1397 if Nkind (Parent (N)) = N_Return_Statement then
1398 return;
1399 end if;
1401 -- Resolution is now finished, make sure we don't start analysis again
1402 -- because of the duplication
1404 Set_Analyzed (N);
1405 Ref := Duplicate_Subexpr_No_Checks (N);
1407 -- Now we can generate the Attach Call, note that this value is
1408 -- always in the (secondary) stack and thus is attached to a singly
1409 -- linked final list:
1411 -- Resx := F (X)'reference;
1412 -- Attach_To_Final_List (_Lx, Resx.all, 1);
1414 -- or when there are controlled components
1416 -- Attach_To_Final_List (_Lx, Resx._controller, 1);
1418 -- or when it is both is_controlled and has_controlled_components
1420 -- Attach_To_Final_List (_Lx, Resx._controller, 1);
1421 -- Attach_To_Final_List (_Lx, Resx, 1);
1423 -- or if it is an array with is_controlled (and has_controlled)
1425 -- Attach_To_Final_List (_Lx, Resx (Resx'last), 3);
1426 -- An attach level of 3 means that a whole array is to be
1427 -- attached to the finalization list (including the controlled
1428 -- components)
1430 -- or if it is an array with has_controlled components but not
1431 -- is_controlled
1433 -- Attach_To_Final_List (_Lx, Resx (Resx'last)._controller, 3);
1435 if Has_Controlled_Component (Rtype) then
1436 declare
1437 T1 : Entity_Id := Rtype;
1438 T2 : Entity_Id := Utype;
1440 begin
1441 if Is_Array_Type (T2) then
1442 Len_Ref :=
1443 Make_Attribute_Reference (Loc,
1444 Prefix =>
1445 Duplicate_Subexpr_Move_Checks
1446 (Unchecked_Convert_To (T2, Ref)),
1447 Attribute_Name => Name_Length);
1448 end if;
1450 while Is_Array_Type (T2) loop
1451 if T1 /= T2 then
1452 Ref := Unchecked_Convert_To (T2, Ref);
1453 end if;
1455 Ref := Last_Array_Component (Ref, T2);
1456 Attach_Level := Uint_3;
1457 T1 := Component_Type (T2);
1458 T2 := Underlying_Type (T1);
1459 end loop;
1461 -- If the type has controlled components, go to the controller
1462 -- except in the case of arrays of controlled objects since in
1463 -- this case objects and their components are already chained
1464 -- and the head of the chain is the last array element.
1466 if Is_Array_Type (Rtype) and then Is_Controlled (T2) then
1467 null;
1469 elsif Has_Controlled_Component (T2) then
1470 if T1 /= T2 then
1471 Ref := Unchecked_Convert_To (T2, Ref);
1472 end if;
1474 Ref :=
1475 Make_Selected_Component (Loc,
1476 Prefix => Ref,
1477 Selector_Name => Make_Identifier (Loc, Name_uController));
1478 end if;
1479 end;
1481 -- Here we know that 'Ref' has a controller so we may as well
1482 -- attach it directly
1484 Action :=
1485 Make_Attach_Call (
1486 Obj_Ref => Ref,
1487 Flist_Ref => Find_Final_List (Current_Scope),
1488 With_Attach => Make_Integer_Literal (Loc, Attach_Level));
1490 -- If it is also Is_Controlled we need to attach the global object
1492 if Is_Controlled (Rtype) then
1493 Action2 :=
1494 Make_Attach_Call (
1495 Obj_Ref => Duplicate_Subexpr_No_Checks (N),
1496 Flist_Ref => Find_Final_List (Current_Scope),
1497 With_Attach => Make_Integer_Literal (Loc, Attach_Level));
1498 end if;
1500 else
1501 -- Here, we have a controlled type that does not seem to have
1502 -- controlled components but it could be a class wide type whose
1503 -- further derivations have controlled components. So we don't know
1504 -- if the object itself needs to be attached or if it
1505 -- has a record controller. We need to call a runtime function
1506 -- (Deep_Tag_Attach) which knows what to do thanks to the
1507 -- RC_Offset in the dispatch table.
1509 Action :=
1510 Make_Procedure_Call_Statement (Loc,
1511 Name => New_Reference_To (RTE (RE_Deep_Tag_Attach), Loc),
1512 Parameter_Associations => New_List (
1513 Find_Final_List (Current_Scope),
1515 Make_Attribute_Reference (Loc,
1516 Prefix => Ref,
1517 Attribute_Name => Name_Address),
1519 Make_Integer_Literal (Loc, Attach_Level)));
1520 end if;
1522 if Present (Len_Ref) then
1523 Action :=
1524 Make_Implicit_If_Statement (N,
1525 Condition => Make_Op_Gt (Loc,
1526 Left_Opnd => Len_Ref,
1527 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1528 Then_Statements => New_List (Action));
1529 end if;
1531 Insert_Action (N, Action);
1532 if Present (Action2) then
1533 Insert_Action (N, Action2);
1534 end if;
1535 end Expand_Ctrl_Function_Call;
1537 ---------------------------
1538 -- Expand_N_Package_Body --
1539 ---------------------------
1541 -- Add call to Activate_Tasks if body is an activator (actual
1542 -- processing is in chapter 9).
1544 -- Generate subprogram descriptor for elaboration routine
1546 -- ENcode entity names in package body
1548 procedure Expand_N_Package_Body (N : Node_Id) is
1549 Ent : constant Entity_Id := Corresponding_Spec (N);
1551 begin
1552 -- This is done only for non-generic packages
1554 if Ekind (Ent) = E_Package then
1555 New_Scope (Corresponding_Spec (N));
1556 Build_Task_Activation_Call (N);
1557 Pop_Scope;
1558 end if;
1560 Set_Elaboration_Flag (N, Corresponding_Spec (N));
1562 -- Generate a subprogram descriptor for the elaboration routine of
1563 -- a package body if the package body has no pending instantiations
1564 -- and it has generated at least one exception handler
1566 if Present (Handler_Records (Body_Entity (Ent)))
1567 and then Is_Compilation_Unit (Ent)
1568 and then not Delay_Subprogram_Descriptors (Body_Entity (Ent))
1569 then
1570 Generate_Subprogram_Descriptor_For_Package
1571 (N, Body_Entity (Ent));
1572 end if;
1574 Set_In_Package_Body (Ent, False);
1576 -- Set to encode entity names in package body before gigi is called
1578 Qualify_Entity_Names (N);
1579 end Expand_N_Package_Body;
1581 ----------------------------------
1582 -- Expand_N_Package_Declaration --
1583 ----------------------------------
1585 -- Add call to Activate_Tasks if there are tasks declared and the
1586 -- package has no body. Note that in Ada83, this may result in
1587 -- premature activation of some tasks, given that we cannot tell
1588 -- whether a body will eventually appear.
1590 procedure Expand_N_Package_Declaration (N : Node_Id) is
1591 begin
1592 if Nkind (Parent (N)) = N_Compilation_Unit
1593 and then not Body_Required (Parent (N))
1594 and then not Unit_Requires_Body (Defining_Entity (N))
1595 and then Present (Activation_Chain_Entity (N))
1596 then
1597 New_Scope (Defining_Entity (N));
1598 Build_Task_Activation_Call (N);
1599 Pop_Scope;
1600 end if;
1602 -- Note: it is not necessary to worry about generating a subprogram
1603 -- descriptor, since the only way to get exception handlers into a
1604 -- package spec is to include instantiations, and that would cause
1605 -- generation of subprogram descriptors to be delayed in any case.
1607 -- Set to encode entity names in package spec before gigi is called
1609 Qualify_Entity_Names (N);
1610 end Expand_N_Package_Declaration;
1612 ---------------------
1613 -- Find_Final_List --
1614 ---------------------
1616 function Find_Final_List
1617 (E : Entity_Id;
1618 Ref : Node_Id := Empty) return Node_Id
1620 Loc : constant Source_Ptr := Sloc (Ref);
1621 S : Entity_Id;
1622 Id : Entity_Id;
1623 R : Node_Id;
1625 begin
1626 -- Case of an internal component. The Final list is the record
1627 -- controller of the enclosing record
1629 if Present (Ref) then
1630 R := Ref;
1631 loop
1632 case Nkind (R) is
1633 when N_Unchecked_Type_Conversion | N_Type_Conversion =>
1634 R := Expression (R);
1636 when N_Indexed_Component | N_Explicit_Dereference =>
1637 R := Prefix (R);
1639 when N_Selected_Component =>
1640 R := Prefix (R);
1641 exit;
1643 when N_Identifier =>
1644 exit;
1646 when others =>
1647 raise Program_Error;
1648 end case;
1649 end loop;
1651 return
1652 Make_Selected_Component (Loc,
1653 Prefix =>
1654 Make_Selected_Component (Loc,
1655 Prefix => R,
1656 Selector_Name => Make_Identifier (Loc, Name_uController)),
1657 Selector_Name => Make_Identifier (Loc, Name_F));
1659 -- Case of a dynamically allocated object. The final list is the
1660 -- corresponding list controller (The next entity in the scope of
1661 -- the access type with the right type). If the type comes from a
1662 -- With_Type clause, no controller was created, and we use the
1663 -- global chain instead.
1665 elsif Is_Access_Type (E) then
1666 if not From_With_Type (E) then
1667 return
1668 Make_Selected_Component (Loc,
1669 Prefix =>
1670 New_Reference_To
1671 (Associated_Final_Chain (Base_Type (E)), Loc),
1672 Selector_Name => Make_Identifier (Loc, Name_F));
1673 else
1674 return New_Reference_To (RTE (RE_Global_Final_List), Sloc (E));
1675 end if;
1677 else
1678 if Is_Dynamic_Scope (E) then
1679 S := E;
1680 else
1681 S := Enclosing_Dynamic_Scope (E);
1682 end if;
1684 -- When the finalization chain entity is 'Error', it means that
1685 -- there should not be any chain at that level and that the
1686 -- enclosing one should be used
1688 -- This is a nasty kludge, see ??? note in exp_ch11
1690 while Finalization_Chain_Entity (S) = Error loop
1691 S := Enclosing_Dynamic_Scope (S);
1692 end loop;
1694 if S = Standard_Standard then
1695 return New_Reference_To (RTE (RE_Global_Final_List), Sloc (E));
1696 else
1697 if No (Finalization_Chain_Entity (S)) then
1699 Id := Make_Defining_Identifier (Sloc (S),
1700 New_Internal_Name ('F'));
1701 Set_Finalization_Chain_Entity (S, Id);
1703 -- Set momentarily some semantics attributes to allow normal
1704 -- analysis of expansions containing references to this chain.
1705 -- Will be fully decorated during the expansion of the scope
1706 -- itself
1708 Set_Ekind (Id, E_Variable);
1709 Set_Etype (Id, RTE (RE_Finalizable_Ptr));
1710 end if;
1712 return New_Reference_To (Finalization_Chain_Entity (S), Sloc (E));
1713 end if;
1714 end if;
1715 end Find_Final_List;
1717 -----------------------------
1718 -- Find_Node_To_Be_Wrapped --
1719 -----------------------------
1721 function Find_Node_To_Be_Wrapped (N : Node_Id) return Node_Id is
1722 P : Node_Id;
1723 The_Parent : Node_Id;
1725 begin
1726 The_Parent := N;
1727 loop
1728 P := The_Parent;
1729 pragma Assert (P /= Empty);
1730 The_Parent := Parent (P);
1732 case Nkind (The_Parent) is
1734 -- Simple statement can be wrapped
1736 when N_Pragma =>
1737 return The_Parent;
1739 -- Usually assignments are good candidate for wrapping
1740 -- except when they have been generated as part of a
1741 -- controlled aggregate where the wrapping should take
1742 -- place more globally.
1744 when N_Assignment_Statement =>
1745 if No_Ctrl_Actions (The_Parent) then
1746 null;
1747 else
1748 return The_Parent;
1749 end if;
1751 -- An entry call statement is a special case if it occurs in
1752 -- the context of a Timed_Entry_Call. In this case we wrap
1753 -- the entire timed entry call.
1755 when N_Entry_Call_Statement |
1756 N_Procedure_Call_Statement =>
1757 if Nkind (Parent (The_Parent)) = N_Entry_Call_Alternative
1758 and then
1759 Nkind (Parent (Parent (The_Parent))) = N_Timed_Entry_Call
1760 then
1761 return Parent (Parent (The_Parent));
1762 else
1763 return The_Parent;
1764 end if;
1766 -- Object declarations are also a boundary for the transient scope
1767 -- even if they are not really wrapped
1768 -- (see Wrap_Transient_Declaration)
1770 when N_Object_Declaration |
1771 N_Object_Renaming_Declaration |
1772 N_Subtype_Declaration =>
1773 return The_Parent;
1775 -- The expression itself is to be wrapped if its parent is a
1776 -- compound statement or any other statement where the expression
1777 -- is known to be scalar
1779 when N_Accept_Alternative |
1780 N_Attribute_Definition_Clause |
1781 N_Case_Statement |
1782 N_Code_Statement |
1783 N_Delay_Alternative |
1784 N_Delay_Until_Statement |
1785 N_Delay_Relative_Statement |
1786 N_Discriminant_Association |
1787 N_Elsif_Part |
1788 N_Entry_Body_Formal_Part |
1789 N_Exit_Statement |
1790 N_If_Statement |
1791 N_Iteration_Scheme |
1792 N_Terminate_Alternative =>
1793 return P;
1795 when N_Attribute_Reference =>
1797 if Is_Procedure_Attribute_Name
1798 (Attribute_Name (The_Parent))
1799 then
1800 return The_Parent;
1801 end if;
1803 -- If the expression is within the iteration scheme of a loop,
1804 -- we must create a declaration for it, followed by an assignment
1805 -- in order to have a usable statement to wrap.
1807 when N_Loop_Parameter_Specification =>
1808 return Parent (The_Parent);
1810 -- The following nodes contains "dummy calls" which don't
1811 -- need to be wrapped.
1813 when N_Parameter_Specification |
1814 N_Discriminant_Specification |
1815 N_Component_Declaration =>
1816 return Empty;
1818 -- The return statement is not to be wrapped when the function
1819 -- itself needs wrapping at the outer-level
1821 when N_Return_Statement =>
1822 if Requires_Transient_Scope (Return_Type (The_Parent)) then
1823 return Empty;
1824 else
1825 return The_Parent;
1826 end if;
1828 -- If we leave a scope without having been able to find a node to
1829 -- wrap, something is going wrong but this can happen in error
1830 -- situation that are not detected yet (such as a dynamic string
1831 -- in a pragma export)
1833 when N_Subprogram_Body |
1834 N_Package_Declaration |
1835 N_Package_Body |
1836 N_Block_Statement =>
1837 return Empty;
1839 -- otherwise continue the search
1841 when others =>
1842 null;
1843 end case;
1844 end loop;
1845 end Find_Node_To_Be_Wrapped;
1847 ----------------------
1848 -- Global_Flist_Ref --
1849 ----------------------
1851 function Global_Flist_Ref (Flist_Ref : Node_Id) return Boolean is
1852 Flist : Entity_Id;
1854 begin
1855 -- Look for the Global_Final_List
1857 if Is_Entity_Name (Flist_Ref) then
1858 Flist := Entity (Flist_Ref);
1860 -- Look for the final list associated with an access to controlled
1862 elsif Nkind (Flist_Ref) = N_Selected_Component
1863 and then Is_Entity_Name (Prefix (Flist_Ref))
1864 then
1865 Flist := Entity (Prefix (Flist_Ref));
1866 else
1867 return False;
1868 end if;
1870 return Present (Flist)
1871 and then Present (Scope (Flist))
1872 and then Enclosing_Dynamic_Scope (Flist) = Standard_Standard;
1873 end Global_Flist_Ref;
1875 ----------------------------------
1876 -- Has_New_Controlled_Component --
1877 ----------------------------------
1879 function Has_New_Controlled_Component (E : Entity_Id) return Boolean is
1880 Comp : Entity_Id;
1882 begin
1883 if not Is_Tagged_Type (E) then
1884 return Has_Controlled_Component (E);
1885 elsif not Is_Derived_Type (E) then
1886 return Has_Controlled_Component (E);
1887 end if;
1889 Comp := First_Component (E);
1890 while Present (Comp) loop
1892 if Chars (Comp) = Name_uParent then
1893 null;
1895 elsif Scope (Original_Record_Component (Comp)) = E
1896 and then Controlled_Type (Etype (Comp))
1897 then
1898 return True;
1899 end if;
1901 Next_Component (Comp);
1902 end loop;
1904 return False;
1905 end Has_New_Controlled_Component;
1907 --------------------------
1908 -- In_Finalization_Root --
1909 --------------------------
1911 -- It would seem simpler to test Scope (RTE (RE_Root_Controlled)) but
1912 -- the purpose of this function is to avoid a circular call to Rtsfind
1913 -- which would been caused by such a test.
1915 function In_Finalization_Root (E : Entity_Id) return Boolean is
1916 S : constant Entity_Id := Scope (E);
1918 begin
1919 return Chars (Scope (S)) = Name_System
1920 and then Chars (S) = Name_Finalization_Root
1921 and then Scope (Scope (S)) = Standard_Standard;
1922 end In_Finalization_Root;
1924 ------------------------------------
1925 -- Insert_Actions_In_Scope_Around --
1926 ------------------------------------
1928 procedure Insert_Actions_In_Scope_Around (N : Node_Id) is
1929 SE : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
1930 Target : Node_Id;
1932 begin
1933 -- If the node to be wrapped is the triggering alternative of an
1934 -- asynchronous select, it is not part of a statement list. The
1935 -- actions must be inserted before the Select itself, which is
1936 -- part of some list of statements.
1938 if Nkind (Parent (Node_To_Be_Wrapped)) = N_Triggering_Alternative then
1939 Target := Parent (Parent (Node_To_Be_Wrapped));
1940 else
1941 Target := N;
1942 end if;
1944 if Present (SE.Actions_To_Be_Wrapped_Before) then
1945 Insert_List_Before (Target, SE.Actions_To_Be_Wrapped_Before);
1946 SE.Actions_To_Be_Wrapped_Before := No_List;
1947 end if;
1949 if Present (SE.Actions_To_Be_Wrapped_After) then
1950 Insert_List_After (Target, SE.Actions_To_Be_Wrapped_After);
1951 SE.Actions_To_Be_Wrapped_After := No_List;
1952 end if;
1953 end Insert_Actions_In_Scope_Around;
1955 -----------------------
1956 -- Make_Adjust_Call --
1957 -----------------------
1959 function Make_Adjust_Call
1960 (Ref : Node_Id;
1961 Typ : Entity_Id;
1962 Flist_Ref : Node_Id;
1963 With_Attach : Node_Id) return List_Id
1965 Loc : constant Source_Ptr := Sloc (Ref);
1966 Res : constant List_Id := New_List;
1967 Utyp : Entity_Id;
1968 Proc : Entity_Id;
1969 Cref : Node_Id := Ref;
1970 Cref2 : Node_Id;
1971 Attach : Node_Id := With_Attach;
1973 begin
1974 if Is_Class_Wide_Type (Typ) then
1975 Utyp := Underlying_Type (Base_Type (Root_Type (Typ)));
1976 else
1977 Utyp := Underlying_Type (Base_Type (Typ));
1978 end if;
1980 Set_Assignment_OK (Cref);
1982 -- Deal with non-tagged derivation of private views
1984 if Is_Untagged_Derivation (Typ) then
1985 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
1986 Cref := Unchecked_Convert_To (Utyp, Cref);
1987 Set_Assignment_OK (Cref);
1988 -- To prevent problems with UC see 1.156 RH ???
1989 end if;
1991 -- If the underlying_type is a subtype, we are dealing with
1992 -- the completion of a private type. We need to access
1993 -- the base type and generate a conversion to it.
1995 if Utyp /= Base_Type (Utyp) then
1996 pragma Assert (Is_Private_Type (Typ));
1997 Utyp := Base_Type (Utyp);
1998 Cref := Unchecked_Convert_To (Utyp, Cref);
1999 end if;
2001 -- If the object is unanalyzed, set its expected type for use
2002 -- in Convert_View in case an additional conversion is needed.
2004 if No (Etype (Cref))
2005 and then Nkind (Cref) /= N_Unchecked_Type_Conversion
2006 then
2007 Set_Etype (Cref, Typ);
2008 end if;
2010 -- We do not need to attach to one of the Global Final Lists
2011 -- the objects whose type is Finalize_Storage_Only
2013 if Finalize_Storage_Only (Typ)
2014 and then (Global_Flist_Ref (Flist_Ref)
2015 or else Entity (Constant_Value (RTE (RE_Garbage_Collected)))
2016 = Standard_True)
2017 then
2018 Attach := Make_Integer_Literal (Loc, 0);
2019 end if;
2021 -- Generate:
2022 -- Deep_Adjust (Flist_Ref, Ref, With_Attach);
2024 if Has_Controlled_Component (Utyp)
2025 or else Is_Class_Wide_Type (Typ)
2026 then
2027 if Is_Tagged_Type (Utyp) then
2028 Proc := Find_Prim_Op (Utyp, TSS_Deep_Adjust);
2030 else
2031 Proc := TSS (Utyp, TSS_Deep_Adjust);
2032 end if;
2034 Cref := Convert_View (Proc, Cref, 2);
2036 Append_To (Res,
2037 Make_Procedure_Call_Statement (Loc,
2038 Name => New_Reference_To (Proc, Loc),
2039 Parameter_Associations =>
2040 New_List (Flist_Ref, Cref, Attach)));
2042 -- Generate:
2043 -- if With_Attach then
2044 -- Attach_To_Final_List (Ref, Flist_Ref);
2045 -- end if;
2046 -- Adjust (Ref);
2048 else -- Is_Controlled (Utyp)
2050 Proc := Find_Prim_Op (Utyp, Name_Of (Adjust_Case));
2051 Cref := Convert_View (Proc, Cref);
2052 Cref2 := New_Copy_Tree (Cref);
2054 Append_To (Res,
2055 Make_Procedure_Call_Statement (Loc,
2056 Name => New_Reference_To (Proc, Loc),
2057 Parameter_Associations => New_List (Cref2)));
2059 Append_To (Res, Make_Attach_Call (Cref, Flist_Ref, Attach));
2060 end if;
2062 return Res;
2063 end Make_Adjust_Call;
2065 ----------------------
2066 -- Make_Attach_Call --
2067 ----------------------
2069 -- Generate:
2070 -- System.FI.Attach_To_Final_List (Flist, Ref, Nb_Link)
2072 function Make_Attach_Call
2073 (Obj_Ref : Node_Id;
2074 Flist_Ref : Node_Id;
2075 With_Attach : Node_Id) return Node_Id
2077 Loc : constant Source_Ptr := Sloc (Obj_Ref);
2079 begin
2080 -- Optimization: If the number of links is statically '0', don't
2081 -- call the attach_proc.
2083 if Nkind (With_Attach) = N_Integer_Literal
2084 and then Intval (With_Attach) = Uint_0
2085 then
2086 return Make_Null_Statement (Loc);
2087 end if;
2089 return
2090 Make_Procedure_Call_Statement (Loc,
2091 Name => New_Reference_To (RTE (RE_Attach_To_Final_List), Loc),
2092 Parameter_Associations => New_List (
2093 Flist_Ref,
2094 OK_Convert_To (RTE (RE_Finalizable), Obj_Ref),
2095 With_Attach));
2096 end Make_Attach_Call;
2098 ----------------
2099 -- Make_Clean --
2100 ----------------
2102 function Make_Clean
2103 (N : Node_Id;
2104 Clean : Entity_Id;
2105 Mark : Entity_Id;
2106 Flist : Entity_Id;
2107 Is_Task : Boolean;
2108 Is_Master : Boolean;
2109 Is_Protected_Subprogram : Boolean;
2110 Is_Task_Allocation_Block : Boolean;
2111 Is_Asynchronous_Call_Block : Boolean) return Node_Id
2113 Loc : constant Source_Ptr := Sloc (Clean);
2114 Stmt : constant List_Id := New_List;
2116 Sbody : Node_Id;
2117 Spec : Node_Id;
2118 Name : Node_Id;
2119 Param : Node_Id;
2120 Param_Type : Entity_Id;
2121 Pid : Entity_Id := Empty;
2122 Cancel_Param : Entity_Id;
2124 begin
2125 if Is_Task then
2126 if Restricted_Profile then
2127 Append_To
2128 (Stmt, Build_Runtime_Call (Loc, RE_Complete_Restricted_Task));
2129 else
2130 Append_To (Stmt, Build_Runtime_Call (Loc, RE_Complete_Task));
2131 end if;
2133 elsif Is_Master then
2134 if Restriction_Active (No_Task_Hierarchy) = False then
2135 Append_To (Stmt, Build_Runtime_Call (Loc, RE_Complete_Master));
2136 end if;
2138 elsif Is_Protected_Subprogram then
2140 -- Add statements to the cleanup handler of the (ordinary)
2141 -- subprogram expanded to implement a protected subprogram,
2142 -- unlocking the protected object parameter and undeferring abortion.
2143 -- If this is a protected procedure, and the object contains
2144 -- entries, this also calls the entry service routine.
2146 -- NOTE: This cleanup handler references _object, a parameter
2147 -- to the procedure.
2149 -- Find the _object parameter representing the protected object
2151 Spec := Parent (Corresponding_Spec (N));
2153 Param := First (Parameter_Specifications (Spec));
2154 loop
2155 Param_Type := Etype (Parameter_Type (Param));
2157 if Ekind (Param_Type) = E_Record_Type then
2158 Pid := Corresponding_Concurrent_Type (Param_Type);
2159 end if;
2161 exit when not Present (Param) or else Present (Pid);
2162 Next (Param);
2163 end loop;
2165 pragma Assert (Present (Param));
2167 -- If the associated protected object declares entries,
2168 -- a protected procedure has to service entry queues.
2169 -- In this case, add
2171 -- Service_Entries (_object._object'Access);
2173 -- _object is the record used to implement the protected object.
2174 -- It is a parameter to the protected subprogram.
2176 if Nkind (Specification (N)) = N_Procedure_Specification
2177 and then Has_Entries (Pid)
2178 then
2179 if Abort_Allowed
2180 or else Restriction_Active (No_Entry_Queue) = False
2181 or else Number_Entries (Pid) > 1
2182 then
2183 Name := New_Reference_To (RTE (RE_Service_Entries), Loc);
2184 else
2185 Name := New_Reference_To (RTE (RE_Service_Entry), Loc);
2186 end if;
2188 Append_To (Stmt,
2189 Make_Procedure_Call_Statement (Loc,
2190 Name => Name,
2191 Parameter_Associations => New_List (
2192 Make_Attribute_Reference (Loc,
2193 Prefix =>
2194 Make_Selected_Component (Loc,
2195 Prefix => New_Reference_To (
2196 Defining_Identifier (Param), Loc),
2197 Selector_Name =>
2198 Make_Identifier (Loc, Name_uObject)),
2199 Attribute_Name => Name_Unchecked_Access))));
2201 else
2202 -- Unlock (_object._object'Access);
2204 -- object is the record used to implement the protected object.
2205 -- It is a parameter to the protected subprogram.
2207 -- If the protected object is controlled (i.e it has entries or
2208 -- needs finalization for interrupt handling), call
2209 -- Unlock_Entries, except if the protected object follows the
2210 -- ravenscar profile, in which case call Unlock_Entry, otherwise
2211 -- call the simplified version, Unlock.
2213 if Has_Entries (Pid)
2214 or else Has_Interrupt_Handler (Pid)
2215 or else (Has_Attach_Handler (Pid)
2216 and then not Restricted_Profile)
2217 then
2218 if Abort_Allowed
2219 or else Restriction_Active (No_Entry_Queue) = False
2220 or else Number_Entries (Pid) > 1
2221 then
2222 Name := New_Reference_To (RTE (RE_Unlock_Entries), Loc);
2223 else
2224 Name := New_Reference_To (RTE (RE_Unlock_Entry), Loc);
2225 end if;
2227 else
2228 Name := New_Reference_To (RTE (RE_Unlock), Loc);
2229 end if;
2231 Append_To (Stmt,
2232 Make_Procedure_Call_Statement (Loc,
2233 Name => Name,
2234 Parameter_Associations => New_List (
2235 Make_Attribute_Reference (Loc,
2236 Prefix =>
2237 Make_Selected_Component (Loc,
2238 Prefix =>
2239 New_Reference_To (Defining_Identifier (Param), Loc),
2240 Selector_Name =>
2241 Make_Identifier (Loc, Name_uObject)),
2242 Attribute_Name => Name_Unchecked_Access))));
2243 end if;
2245 if Abort_Allowed then
2247 -- Abort_Undefer;
2249 Append_To (Stmt,
2250 Make_Procedure_Call_Statement (Loc,
2251 Name =>
2252 New_Reference_To (
2253 RTE (RE_Abort_Undefer), Loc),
2254 Parameter_Associations => Empty_List));
2255 end if;
2257 elsif Is_Task_Allocation_Block then
2259 -- Add a call to Expunge_Unactivated_Tasks to the cleanup
2260 -- handler of a block created for the dynamic allocation of
2261 -- tasks:
2263 -- Expunge_Unactivated_Tasks (_chain);
2265 -- where _chain is the list of tasks created by the allocator
2266 -- but not yet activated. This list will be empty unless
2267 -- the block completes abnormally.
2269 -- This only applies to dynamically allocated tasks;
2270 -- other unactivated tasks are completed by Complete_Task or
2271 -- Complete_Master.
2273 -- NOTE: This cleanup handler references _chain, a local
2274 -- object.
2276 Append_To (Stmt,
2277 Make_Procedure_Call_Statement (Loc,
2278 Name =>
2279 New_Reference_To (
2280 RTE (RE_Expunge_Unactivated_Tasks), Loc),
2281 Parameter_Associations => New_List (
2282 New_Reference_To (Activation_Chain_Entity (N), Loc))));
2284 elsif Is_Asynchronous_Call_Block then
2286 -- Add a call to attempt to cancel the asynchronous entry call
2287 -- whenever the block containing the abortable part is exited.
2289 -- NOTE: This cleanup handler references C, a local object
2291 -- Get the argument to the Cancel procedure
2292 Cancel_Param := Entry_Cancel_Parameter (Entity (Identifier (N)));
2294 -- If it is of type Communication_Block, this must be a
2295 -- protected entry call.
2297 if Is_RTE (Etype (Cancel_Param), RE_Communication_Block) then
2299 Append_To (Stmt,
2301 -- if Enqueued (Cancel_Parameter) then
2303 Make_Implicit_If_Statement (Clean,
2304 Condition => Make_Function_Call (Loc,
2305 Name => New_Reference_To (
2306 RTE (RE_Enqueued), Loc),
2307 Parameter_Associations => New_List (
2308 New_Reference_To (Cancel_Param, Loc))),
2309 Then_Statements => New_List (
2311 -- Cancel_Protected_Entry_Call (Cancel_Param);
2313 Make_Procedure_Call_Statement (Loc,
2314 Name => New_Reference_To (
2315 RTE (RE_Cancel_Protected_Entry_Call), Loc),
2316 Parameter_Associations => New_List (
2317 New_Reference_To (Cancel_Param, Loc))))));
2319 -- Asynchronous delay
2321 elsif Is_RTE (Etype (Cancel_Param), RE_Delay_Block) then
2322 Append_To (Stmt,
2323 Make_Procedure_Call_Statement (Loc,
2324 Name => New_Reference_To (RTE (RE_Cancel_Async_Delay), Loc),
2325 Parameter_Associations => New_List (
2326 Make_Attribute_Reference (Loc,
2327 Prefix => New_Reference_To (Cancel_Param, Loc),
2328 Attribute_Name => Name_Unchecked_Access))));
2330 -- Task entry call
2332 else
2333 -- Append call to Cancel_Task_Entry_Call (C);
2335 Append_To (Stmt,
2336 Make_Procedure_Call_Statement (Loc,
2337 Name => New_Reference_To (
2338 RTE (RE_Cancel_Task_Entry_Call),
2339 Loc),
2340 Parameter_Associations => New_List (
2341 New_Reference_To (Cancel_Param, Loc))));
2343 end if;
2344 end if;
2346 if Present (Flist) then
2347 Append_To (Stmt,
2348 Make_Procedure_Call_Statement (Loc,
2349 Name => New_Reference_To (RTE (RE_Finalize_List), Loc),
2350 Parameter_Associations => New_List (
2351 New_Reference_To (Flist, Loc))));
2352 end if;
2354 if Present (Mark) then
2355 Append_To (Stmt,
2356 Make_Procedure_Call_Statement (Loc,
2357 Name => New_Reference_To (RTE (RE_SS_Release), Loc),
2358 Parameter_Associations => New_List (
2359 New_Reference_To (Mark, Loc))));
2360 end if;
2362 Sbody :=
2363 Make_Subprogram_Body (Loc,
2364 Specification =>
2365 Make_Procedure_Specification (Loc,
2366 Defining_Unit_Name => Clean),
2368 Declarations => New_List,
2370 Handled_Statement_Sequence =>
2371 Make_Handled_Sequence_Of_Statements (Loc,
2372 Statements => Stmt));
2374 if Present (Flist) or else Is_Task or else Is_Master then
2375 Wrap_Cleanup_Procedure (Sbody);
2376 end if;
2378 -- We do not want debug information for _Clean routines,
2379 -- since it just confuses the debugging operation unless
2380 -- we are debugging generated code.
2382 if not Debug_Generated_Code then
2383 Set_Debug_Info_Off (Clean, True);
2384 end if;
2386 return Sbody;
2387 end Make_Clean;
2389 --------------------------
2390 -- Make_Deep_Array_Body --
2391 --------------------------
2393 -- Array components are initialized and adjusted in the normal order
2394 -- and finalized in the reverse order. Exceptions are handled and
2395 -- Program_Error is re-raise in the Adjust and Finalize case
2396 -- (RM 7.6.1(12)). Generate the following code :
2398 -- procedure Deep_<P> -- with <P> being Initialize or Adjust or Finalize
2399 -- (L : in out Finalizable_Ptr;
2400 -- V : in out Typ)
2401 -- is
2402 -- begin
2403 -- for J1 in Typ'First (1) .. Typ'Last (1) loop
2404 -- ^ reverse ^ -- in the finalization case
2405 -- ...
2406 -- for J2 in Typ'First (n) .. Typ'Last (n) loop
2407 -- Make_<P>_Call (Typ, V (J1, .. , Jn), L, V);
2408 -- end loop;
2409 -- ...
2410 -- end loop;
2411 -- exception -- not in the
2412 -- when others => raise Program_Error; -- Initialize case
2413 -- end Deep_<P>;
2415 function Make_Deep_Array_Body
2416 (Prim : Final_Primitives;
2417 Typ : Entity_Id) return List_Id
2419 Loc : constant Source_Ptr := Sloc (Typ);
2421 Index_List : constant List_Id := New_List;
2422 -- Stores the list of references to the indexes (one per dimension)
2424 function One_Component return List_Id;
2425 -- Create one statement to initialize/adjust/finalize one array
2426 -- component, designated by a full set of indices.
2428 function One_Dimension (N : Int) return List_Id;
2429 -- Create loop to deal with one dimension of the array. The single
2430 -- statement in the body of the loop initializes the inner dimensions if
2431 -- any, or else a single component.
2433 -------------------
2434 -- One_Component --
2435 -------------------
2437 function One_Component return List_Id is
2438 Comp_Typ : constant Entity_Id := Component_Type (Typ);
2439 Comp_Ref : constant Node_Id :=
2440 Make_Indexed_Component (Loc,
2441 Prefix => Make_Identifier (Loc, Name_V),
2442 Expressions => Index_List);
2444 begin
2445 -- Set the etype of the component Reference, which is used to
2446 -- determine whether a conversion to a parent type is needed.
2448 Set_Etype (Comp_Ref, Comp_Typ);
2450 case Prim is
2451 when Initialize_Case =>
2452 return Make_Init_Call (Comp_Ref, Comp_Typ,
2453 Make_Identifier (Loc, Name_L),
2454 Make_Identifier (Loc, Name_B));
2456 when Adjust_Case =>
2457 return Make_Adjust_Call (Comp_Ref, Comp_Typ,
2458 Make_Identifier (Loc, Name_L),
2459 Make_Identifier (Loc, Name_B));
2461 when Finalize_Case =>
2462 return Make_Final_Call (Comp_Ref, Comp_Typ,
2463 Make_Identifier (Loc, Name_B));
2464 end case;
2465 end One_Component;
2467 -------------------
2468 -- One_Dimension --
2469 -------------------
2471 function One_Dimension (N : Int) return List_Id is
2472 Index : Entity_Id;
2474 begin
2475 if N > Number_Dimensions (Typ) then
2476 return One_Component;
2478 else
2479 Index :=
2480 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
2482 Append_To (Index_List, New_Reference_To (Index, Loc));
2484 return New_List (
2485 Make_Implicit_Loop_Statement (Typ,
2486 Identifier => Empty,
2487 Iteration_Scheme =>
2488 Make_Iteration_Scheme (Loc,
2489 Loop_Parameter_Specification =>
2490 Make_Loop_Parameter_Specification (Loc,
2491 Defining_Identifier => Index,
2492 Discrete_Subtype_Definition =>
2493 Make_Attribute_Reference (Loc,
2494 Prefix => Make_Identifier (Loc, Name_V),
2495 Attribute_Name => Name_Range,
2496 Expressions => New_List (
2497 Make_Integer_Literal (Loc, N))),
2498 Reverse_Present => Prim = Finalize_Case)),
2499 Statements => One_Dimension (N + 1)));
2500 end if;
2501 end One_Dimension;
2503 -- Start of processing for Make_Deep_Array_Body
2505 begin
2506 return One_Dimension (1);
2507 end Make_Deep_Array_Body;
2509 --------------------
2510 -- Make_Deep_Proc --
2511 --------------------
2513 -- Generate:
2514 -- procedure DEEP_<prim>
2515 -- (L : IN OUT Finalizable_Ptr; -- not for Finalize
2516 -- V : IN OUT <typ>;
2517 -- B : IN Short_Short_Integer) is
2518 -- begin
2519 -- <stmts>;
2520 -- exception -- Finalize and Adjust Cases only
2521 -- raise Program_Error; -- idem
2522 -- end DEEP_<prim>;
2524 function Make_Deep_Proc
2525 (Prim : Final_Primitives;
2526 Typ : Entity_Id;
2527 Stmts : List_Id) return Entity_Id
2529 Loc : constant Source_Ptr := Sloc (Typ);
2530 Formals : List_Id;
2531 Proc_Name : Entity_Id;
2532 Handler : List_Id := No_List;
2533 Type_B : Entity_Id;
2535 begin
2536 if Prim = Finalize_Case then
2537 Formals := New_List;
2538 Type_B := Standard_Boolean;
2540 else
2541 Formals := New_List (
2542 Make_Parameter_Specification (Loc,
2543 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
2544 In_Present => True,
2545 Out_Present => True,
2546 Parameter_Type =>
2547 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
2548 Type_B := Standard_Short_Short_Integer;
2549 end if;
2551 Append_To (Formals,
2552 Make_Parameter_Specification (Loc,
2553 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
2554 In_Present => True,
2555 Out_Present => True,
2556 Parameter_Type => New_Reference_To (Typ, Loc)));
2558 Append_To (Formals,
2559 Make_Parameter_Specification (Loc,
2560 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
2561 Parameter_Type => New_Reference_To (Type_B, Loc)));
2563 if Prim = Finalize_Case or else Prim = Adjust_Case then
2564 Handler := New_List (
2565 Make_Exception_Handler (Loc,
2566 Exception_Choices => New_List (Make_Others_Choice (Loc)),
2567 Statements => New_List (
2568 Make_Raise_Program_Error (Loc,
2569 Reason => PE_Finalize_Raised_Exception))));
2570 end if;
2572 Proc_Name :=
2573 Make_Defining_Identifier (Loc,
2574 Chars => Make_TSS_Name (Typ, Deep_Name_Of (Prim)));
2576 Discard_Node (
2577 Make_Subprogram_Body (Loc,
2578 Specification =>
2579 Make_Procedure_Specification (Loc,
2580 Defining_Unit_Name => Proc_Name,
2581 Parameter_Specifications => Formals),
2583 Declarations => Empty_List,
2584 Handled_Statement_Sequence =>
2585 Make_Handled_Sequence_Of_Statements (Loc,
2586 Statements => Stmts,
2587 Exception_Handlers => Handler)));
2589 return Proc_Name;
2590 end Make_Deep_Proc;
2592 ---------------------------
2593 -- Make_Deep_Record_Body --
2594 ---------------------------
2596 -- The Deep procedures call the appropriate Controlling proc on the
2597 -- the controller component. In the init case, it also attach the
2598 -- controller to the current finalization list.
2600 function Make_Deep_Record_Body
2601 (Prim : Final_Primitives;
2602 Typ : Entity_Id) return List_Id
2604 Loc : constant Source_Ptr := Sloc (Typ);
2605 Controller_Typ : Entity_Id;
2606 Obj_Ref : constant Node_Id := Make_Identifier (Loc, Name_V);
2607 Controller_Ref : constant Node_Id :=
2608 Make_Selected_Component (Loc,
2609 Prefix => Obj_Ref,
2610 Selector_Name =>
2611 Make_Identifier (Loc, Name_uController));
2612 Res : constant List_Id := New_List;
2614 begin
2615 if Is_Return_By_Reference_Type (Typ) then
2616 Controller_Typ := RTE (RE_Limited_Record_Controller);
2617 else
2618 Controller_Typ := RTE (RE_Record_Controller);
2619 end if;
2621 case Prim is
2622 when Initialize_Case =>
2623 Append_List_To (Res,
2624 Make_Init_Call (
2625 Ref => Controller_Ref,
2626 Typ => Controller_Typ,
2627 Flist_Ref => Make_Identifier (Loc, Name_L),
2628 With_Attach => Make_Identifier (Loc, Name_B)));
2630 -- When the type is also a controlled type by itself,
2631 -- Initialize it and attach it to the finalization chain
2633 if Is_Controlled (Typ) then
2634 Append_To (Res,
2635 Make_Procedure_Call_Statement (Loc,
2636 Name => New_Reference_To (
2637 Find_Prim_Op (Typ, Name_Of (Prim)), Loc),
2638 Parameter_Associations =>
2639 New_List (New_Copy_Tree (Obj_Ref))));
2641 Append_To (Res, Make_Attach_Call (
2642 Obj_Ref => New_Copy_Tree (Obj_Ref),
2643 Flist_Ref => Make_Identifier (Loc, Name_L),
2644 With_Attach => Make_Identifier (Loc, Name_B)));
2645 end if;
2647 when Adjust_Case =>
2648 Append_List_To (Res,
2649 Make_Adjust_Call (Controller_Ref, Controller_Typ,
2650 Make_Identifier (Loc, Name_L),
2651 Make_Identifier (Loc, Name_B)));
2653 -- When the type is also a controlled type by itself,
2654 -- Adjust it it and attach it to the finalization chain
2656 if Is_Controlled (Typ) then
2657 Append_To (Res,
2658 Make_Procedure_Call_Statement (Loc,
2659 Name => New_Reference_To (
2660 Find_Prim_Op (Typ, Name_Of (Prim)), Loc),
2661 Parameter_Associations =>
2662 New_List (New_Copy_Tree (Obj_Ref))));
2664 Append_To (Res, Make_Attach_Call (
2665 Obj_Ref => New_Copy_Tree (Obj_Ref),
2666 Flist_Ref => Make_Identifier (Loc, Name_L),
2667 With_Attach => Make_Identifier (Loc, Name_B)));
2668 end if;
2670 when Finalize_Case =>
2671 if Is_Controlled (Typ) then
2672 Append_To (Res,
2673 Make_Implicit_If_Statement (Obj_Ref,
2674 Condition => Make_Identifier (Loc, Name_B),
2675 Then_Statements => New_List (
2676 Make_Procedure_Call_Statement (Loc,
2677 Name => New_Reference_To (RTE (RE_Finalize_One), Loc),
2678 Parameter_Associations => New_List (
2679 OK_Convert_To (RTE (RE_Finalizable),
2680 New_Copy_Tree (Obj_Ref))))),
2682 Else_Statements => New_List (
2683 Make_Procedure_Call_Statement (Loc,
2684 Name => New_Reference_To (
2685 Find_Prim_Op (Typ, Name_Of (Prim)), Loc),
2686 Parameter_Associations =>
2687 New_List (New_Copy_Tree (Obj_Ref))))));
2688 end if;
2690 Append_List_To (Res,
2691 Make_Final_Call (Controller_Ref, Controller_Typ,
2692 Make_Identifier (Loc, Name_B)));
2693 end case;
2694 return Res;
2695 end Make_Deep_Record_Body;
2697 ----------------------
2698 -- Make_Final_Call --
2699 ----------------------
2701 function Make_Final_Call
2702 (Ref : Node_Id;
2703 Typ : Entity_Id;
2704 With_Detach : Node_Id) return List_Id
2706 Loc : constant Source_Ptr := Sloc (Ref);
2707 Res : constant List_Id := New_List;
2708 Cref : Node_Id;
2709 Cref2 : Node_Id;
2710 Proc : Entity_Id;
2711 Utyp : Entity_Id;
2713 begin
2714 if Is_Class_Wide_Type (Typ) then
2715 Utyp := Root_Type (Typ);
2716 Cref := Ref;
2718 elsif Is_Concurrent_Type (Typ) then
2719 Utyp := Corresponding_Record_Type (Typ);
2720 Cref := Convert_Concurrent (Ref, Typ);
2722 elsif Is_Private_Type (Typ)
2723 and then Present (Full_View (Typ))
2724 and then Is_Concurrent_Type (Full_View (Typ))
2725 then
2726 Utyp := Corresponding_Record_Type (Full_View (Typ));
2727 Cref := Convert_Concurrent (Ref, Full_View (Typ));
2728 else
2729 Utyp := Typ;
2730 Cref := Ref;
2731 end if;
2733 Utyp := Underlying_Type (Base_Type (Utyp));
2734 Set_Assignment_OK (Cref);
2736 -- Deal with non-tagged derivation of private views
2738 if Is_Untagged_Derivation (Typ) then
2739 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2740 Cref := Unchecked_Convert_To (Utyp, Cref);
2741 Set_Assignment_OK (Cref);
2742 -- To prevent problems with UC see 1.156 RH ???
2743 end if;
2745 -- If the underlying_type is a subtype, we are dealing with
2746 -- the completion of a private type. We need to access
2747 -- the base type and generate a conversion to it.
2749 if Utyp /= Base_Type (Utyp) then
2750 pragma Assert (Is_Private_Type (Typ));
2751 Utyp := Base_Type (Utyp);
2752 Cref := Unchecked_Convert_To (Utyp, Cref);
2753 end if;
2755 -- Generate:
2756 -- Deep_Finalize (Ref, With_Detach);
2758 if Has_Controlled_Component (Utyp)
2759 or else Is_Class_Wide_Type (Typ)
2760 then
2761 if Is_Tagged_Type (Utyp) then
2762 Proc := Find_Prim_Op (Utyp, TSS_Deep_Finalize);
2763 else
2764 Proc := TSS (Utyp, TSS_Deep_Finalize);
2765 end if;
2767 Cref := Convert_View (Proc, Cref);
2769 Append_To (Res,
2770 Make_Procedure_Call_Statement (Loc,
2771 Name => New_Reference_To (Proc, Loc),
2772 Parameter_Associations =>
2773 New_List (Cref, With_Detach)));
2775 -- Generate:
2776 -- if With_Detach then
2777 -- Finalize_One (Ref);
2778 -- else
2779 -- Finalize (Ref);
2780 -- end if;
2782 else
2783 Proc := Find_Prim_Op (Utyp, Name_Of (Finalize_Case));
2785 if Chars (With_Detach) = Chars (Standard_True) then
2786 Append_To (Res,
2787 Make_Procedure_Call_Statement (Loc,
2788 Name => New_Reference_To (RTE (RE_Finalize_One), Loc),
2789 Parameter_Associations => New_List (
2790 OK_Convert_To (RTE (RE_Finalizable), Cref))));
2792 elsif Chars (With_Detach) = Chars (Standard_False) then
2793 Append_To (Res,
2794 Make_Procedure_Call_Statement (Loc,
2795 Name => New_Reference_To (Proc, Loc),
2796 Parameter_Associations =>
2797 New_List (Convert_View (Proc, Cref))));
2799 else
2800 Cref2 := New_Copy_Tree (Cref);
2801 Append_To (Res,
2802 Make_Implicit_If_Statement (Ref,
2803 Condition => With_Detach,
2804 Then_Statements => New_List (
2805 Make_Procedure_Call_Statement (Loc,
2806 Name => New_Reference_To (RTE (RE_Finalize_One), Loc),
2807 Parameter_Associations => New_List (
2808 OK_Convert_To (RTE (RE_Finalizable), Cref)))),
2810 Else_Statements => New_List (
2811 Make_Procedure_Call_Statement (Loc,
2812 Name => New_Reference_To (Proc, Loc),
2813 Parameter_Associations =>
2814 New_List (Convert_View (Proc, Cref2))))));
2815 end if;
2816 end if;
2818 return Res;
2819 end Make_Final_Call;
2821 --------------------
2822 -- Make_Init_Call --
2823 --------------------
2825 function Make_Init_Call
2826 (Ref : Node_Id;
2827 Typ : Entity_Id;
2828 Flist_Ref : Node_Id;
2829 With_Attach : Node_Id) return List_Id
2831 Loc : constant Source_Ptr := Sloc (Ref);
2832 Is_Conc : Boolean;
2833 Res : constant List_Id := New_List;
2834 Proc : Entity_Id;
2835 Utyp : Entity_Id;
2836 Cref : Node_Id;
2837 Cref2 : Node_Id;
2838 Attach : Node_Id := With_Attach;
2840 begin
2841 if Is_Concurrent_Type (Typ) then
2842 Is_Conc := True;
2843 Utyp := Corresponding_Record_Type (Typ);
2844 Cref := Convert_Concurrent (Ref, Typ);
2846 elsif Is_Private_Type (Typ)
2847 and then Present (Full_View (Typ))
2848 and then Is_Concurrent_Type (Underlying_Type (Typ))
2849 then
2850 Is_Conc := True;
2851 Utyp := Corresponding_Record_Type (Underlying_Type (Typ));
2852 Cref := Convert_Concurrent (Ref, Underlying_Type (Typ));
2854 else
2855 Is_Conc := False;
2856 Utyp := Typ;
2857 Cref := Ref;
2858 end if;
2860 Utyp := Underlying_Type (Base_Type (Utyp));
2862 Set_Assignment_OK (Cref);
2864 -- Deal with non-tagged derivation of private views
2866 if Is_Untagged_Derivation (Typ)
2867 and then not Is_Conc
2868 then
2869 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2870 Cref := Unchecked_Convert_To (Utyp, Cref);
2871 Set_Assignment_OK (Cref);
2872 -- To prevent problems with UC see 1.156 RH ???
2873 end if;
2875 -- If the underlying_type is a subtype, we are dealing with
2876 -- the completion of a private type. We need to access
2877 -- the base type and generate a conversion to it.
2879 if Utyp /= Base_Type (Utyp) then
2880 pragma Assert (Is_Private_Type (Typ));
2881 Utyp := Base_Type (Utyp);
2882 Cref := Unchecked_Convert_To (Utyp, Cref);
2883 end if;
2885 -- We do not need to attach to one of the Global Final Lists
2886 -- the objects whose type is Finalize_Storage_Only
2888 if Finalize_Storage_Only (Typ)
2889 and then (Global_Flist_Ref (Flist_Ref)
2890 or else Entity (Constant_Value (RTE (RE_Garbage_Collected)))
2891 = Standard_True)
2892 then
2893 Attach := Make_Integer_Literal (Loc, 0);
2894 end if;
2896 -- Generate:
2897 -- Deep_Initialize (Ref, Flist_Ref);
2899 if Has_Controlled_Component (Utyp) then
2900 Proc := TSS (Utyp, Deep_Name_Of (Initialize_Case));
2902 Cref := Convert_View (Proc, Cref, 2);
2904 Append_To (Res,
2905 Make_Procedure_Call_Statement (Loc,
2906 Name => New_Reference_To (Proc, Loc),
2907 Parameter_Associations => New_List (
2908 Node1 => Flist_Ref,
2909 Node2 => Cref,
2910 Node3 => Attach)));
2912 -- Generate:
2913 -- Attach_To_Final_List (Ref, Flist_Ref);
2914 -- Initialize (Ref);
2916 else -- Is_Controlled (Utyp)
2917 Proc := Find_Prim_Op (Utyp, Name_Of (Initialize_Case));
2918 Check_Visibly_Controlled (Initialize_Case, Typ, Proc, Cref);
2920 Cref := Convert_View (Proc, Cref);
2921 Cref2 := New_Copy_Tree (Cref);
2923 Append_To (Res,
2924 Make_Procedure_Call_Statement (Loc,
2925 Name => New_Reference_To (Proc, Loc),
2926 Parameter_Associations => New_List (Cref2)));
2928 Append_To (Res,
2929 Make_Attach_Call (Cref, Flist_Ref, Attach));
2930 end if;
2932 return Res;
2933 end Make_Init_Call;
2935 --------------------------
2936 -- Make_Transient_Block --
2937 --------------------------
2939 -- If finalization is involved, this function just wraps the instruction
2940 -- into a block whose name is the transient block entity, and then
2941 -- Expand_Cleanup_Actions (called on the expansion of the handled
2942 -- sequence of statements will do the necessary expansions for
2943 -- cleanups).
2945 function Make_Transient_Block
2946 (Loc : Source_Ptr;
2947 Action : Node_Id) return Node_Id
2949 Flist : constant Entity_Id := Finalization_Chain_Entity (Current_Scope);
2950 Decls : constant List_Id := New_List;
2951 Par : constant Node_Id := Parent (Action);
2952 Instrs : constant List_Id := New_List (Action);
2953 Blk : Node_Id;
2955 begin
2956 -- Case where only secondary stack use is involved
2958 if Uses_Sec_Stack (Current_Scope)
2959 and then No (Flist)
2960 and then Nkind (Action) /= N_Return_Statement
2961 and then Nkind (Par) /= N_Exception_Handler
2962 then
2964 declare
2965 S : Entity_Id;
2966 K : Entity_Kind;
2967 begin
2968 S := Scope (Current_Scope);
2969 loop
2970 K := Ekind (S);
2972 -- At the outer level, no need to release the sec stack
2974 if S = Standard_Standard then
2975 Set_Uses_Sec_Stack (Current_Scope, False);
2976 exit;
2978 -- In a function, only release the sec stack if the
2979 -- function does not return on the sec stack otherwise
2980 -- the result may be lost. The caller is responsible for
2981 -- releasing.
2983 elsif K = E_Function then
2984 Set_Uses_Sec_Stack (Current_Scope, False);
2986 if not Requires_Transient_Scope (Etype (S)) then
2987 if not Functions_Return_By_DSP_On_Target then
2988 Set_Uses_Sec_Stack (S, True);
2989 Check_Restriction (No_Secondary_Stack, Action);
2990 end if;
2991 end if;
2993 exit;
2995 -- In a loop or entry we should install a block encompassing
2996 -- all the construct. For now just release right away.
2998 elsif K = E_Loop or else K = E_Entry then
2999 exit;
3001 -- In a procedure or a block, we release on exit of the
3002 -- procedure or block. ??? memory leak can be created by
3003 -- recursive calls.
3005 elsif K = E_Procedure
3006 or else K = E_Block
3007 then
3008 if not Functions_Return_By_DSP_On_Target then
3009 Set_Uses_Sec_Stack (S, True);
3010 Check_Restriction (No_Secondary_Stack, Action);
3011 end if;
3013 Set_Uses_Sec_Stack (Current_Scope, False);
3014 exit;
3016 else
3017 S := Scope (S);
3018 end if;
3019 end loop;
3020 end;
3021 end if;
3023 -- Insert actions stuck in the transient scopes as well as all
3024 -- freezing nodes needed by those actions
3026 Insert_Actions_In_Scope_Around (Action);
3028 declare
3029 Last_Inserted : Node_Id := Prev (Action);
3031 begin
3032 if Present (Last_Inserted) then
3033 Freeze_All (First_Entity (Current_Scope), Last_Inserted);
3034 end if;
3035 end;
3037 Blk :=
3038 Make_Block_Statement (Loc,
3039 Identifier => New_Reference_To (Current_Scope, Loc),
3040 Declarations => Decls,
3041 Handled_Statement_Sequence =>
3042 Make_Handled_Sequence_Of_Statements (Loc, Statements => Instrs),
3043 Has_Created_Identifier => True);
3045 -- When the transient scope was established, we pushed the entry for
3046 -- the transient scope onto the scope stack, so that the scope was
3047 -- active for the installation of finalizable entities etc. Now we
3048 -- must remove this entry, since we have constructed a proper block.
3050 Pop_Scope;
3052 return Blk;
3053 end Make_Transient_Block;
3055 ------------------------
3056 -- Node_To_Be_Wrapped --
3057 ------------------------
3059 function Node_To_Be_Wrapped return Node_Id is
3060 begin
3061 return Scope_Stack.Table (Scope_Stack.Last).Node_To_Be_Wrapped;
3062 end Node_To_Be_Wrapped;
3064 ----------------------------
3065 -- Set_Node_To_Be_Wrapped --
3066 ----------------------------
3068 procedure Set_Node_To_Be_Wrapped (N : Node_Id) is
3069 begin
3070 Scope_Stack.Table (Scope_Stack.Last).Node_To_Be_Wrapped := N;
3071 end Set_Node_To_Be_Wrapped;
3073 ----------------------------------
3074 -- Store_After_Actions_In_Scope --
3075 ----------------------------------
3077 procedure Store_After_Actions_In_Scope (L : List_Id) is
3078 SE : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
3080 begin
3081 if Present (SE.Actions_To_Be_Wrapped_After) then
3082 Insert_List_Before_And_Analyze (
3083 First (SE.Actions_To_Be_Wrapped_After), L);
3085 else
3086 SE.Actions_To_Be_Wrapped_After := L;
3088 if Is_List_Member (SE.Node_To_Be_Wrapped) then
3089 Set_Parent (L, Parent (SE.Node_To_Be_Wrapped));
3090 else
3091 Set_Parent (L, SE.Node_To_Be_Wrapped);
3092 end if;
3094 Analyze_List (L);
3095 end if;
3096 end Store_After_Actions_In_Scope;
3098 -----------------------------------
3099 -- Store_Before_Actions_In_Scope --
3100 -----------------------------------
3102 procedure Store_Before_Actions_In_Scope (L : List_Id) is
3103 SE : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
3105 begin
3106 if Present (SE.Actions_To_Be_Wrapped_Before) then
3107 Insert_List_After_And_Analyze (
3108 Last (SE.Actions_To_Be_Wrapped_Before), L);
3110 else
3111 SE.Actions_To_Be_Wrapped_Before := L;
3113 if Is_List_Member (SE.Node_To_Be_Wrapped) then
3114 Set_Parent (L, Parent (SE.Node_To_Be_Wrapped));
3115 else
3116 Set_Parent (L, SE.Node_To_Be_Wrapped);
3117 end if;
3119 Analyze_List (L);
3120 end if;
3121 end Store_Before_Actions_In_Scope;
3123 --------------------------------
3124 -- Wrap_Transient_Declaration --
3125 --------------------------------
3127 -- If a transient scope has been established during the processing of the
3128 -- Expression of an Object_Declaration, it is not possible to wrap the
3129 -- declaration into a transient block as usual case, otherwise the object
3130 -- would be itself declared in the wrong scope. Therefore, all entities (if
3131 -- any) defined in the transient block are moved to the proper enclosing
3132 -- scope, furthermore, if they are controlled variables they are finalized
3133 -- right after the declaration. The finalization list of the transient
3134 -- scope is defined as a renaming of the enclosing one so during their
3135 -- initialization they will be attached to the proper finalization
3136 -- list. For instance, the following declaration :
3138 -- X : Typ := F (G (A), G (B));
3140 -- (where G(A) and G(B) return controlled values, expanded as _v1 and _v2)
3141 -- is expanded into :
3143 -- _local_final_list_1 : Finalizable_Ptr;
3144 -- X : Typ := [ complex Expression-Action ];
3145 -- Finalize_One(_v1);
3146 -- Finalize_One (_v2);
3148 procedure Wrap_Transient_Declaration (N : Node_Id) is
3149 S : Entity_Id;
3150 LC : Entity_Id := Empty;
3151 Nodes : List_Id;
3152 Loc : constant Source_Ptr := Sloc (N);
3153 Enclosing_S : Entity_Id;
3154 Uses_SS : Boolean;
3155 Next_N : constant Node_Id := Next (N);
3157 begin
3158 S := Current_Scope;
3159 Enclosing_S := Scope (S);
3161 -- Insert Actions kept in the Scope stack
3163 Insert_Actions_In_Scope_Around (N);
3165 -- If the declaration is consuming some secondary stack, mark the
3166 -- Enclosing scope appropriately.
3168 Uses_SS := Uses_Sec_Stack (S);
3169 Pop_Scope;
3171 -- Create a List controller and rename the final list to be its
3172 -- internal final pointer:
3173 -- Lxxx : Simple_List_Controller;
3174 -- Fxxx : Finalizable_Ptr renames Lxxx.F;
3176 if Present (Finalization_Chain_Entity (S)) then
3177 LC := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
3179 Nodes := New_List (
3180 Make_Object_Declaration (Loc,
3181 Defining_Identifier => LC,
3182 Object_Definition =>
3183 New_Reference_To (RTE (RE_Simple_List_Controller), Loc)),
3185 Make_Object_Renaming_Declaration (Loc,
3186 Defining_Identifier => Finalization_Chain_Entity (S),
3187 Subtype_Mark => New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
3188 Name =>
3189 Make_Selected_Component (Loc,
3190 Prefix => New_Reference_To (LC, Loc),
3191 Selector_Name => Make_Identifier (Loc, Name_F))));
3193 -- Put the declaration at the beginning of the declaration part
3194 -- to make sure it will be before all other actions that have been
3195 -- inserted before N.
3197 Insert_List_Before_And_Analyze (First (List_Containing (N)), Nodes);
3199 -- Generate the Finalization calls by finalizing the list
3200 -- controller right away. It will be re-finalized on scope
3201 -- exit but it doesn't matter. It cannot be done when the
3202 -- call initializes a renaming object though because in this
3203 -- case, the object becomes a pointer to the temporary and thus
3204 -- increases its life span.
3206 if Nkind (N) = N_Object_Renaming_Declaration
3207 and then Controlled_Type (Etype (Defining_Identifier (N)))
3208 then
3209 null;
3211 else
3212 Nodes :=
3213 Make_Final_Call (
3214 Ref => New_Reference_To (LC, Loc),
3215 Typ => Etype (LC),
3216 With_Detach => New_Reference_To (Standard_False, Loc));
3217 if Present (Next_N) then
3218 Insert_List_Before_And_Analyze (Next_N, Nodes);
3219 else
3220 Append_List_To (List_Containing (N), Nodes);
3221 end if;
3222 end if;
3223 end if;
3225 -- Put the local entities back in the enclosing scope, and set the
3226 -- Is_Public flag appropriately.
3228 Transfer_Entities (S, Enclosing_S);
3230 -- Mark the enclosing dynamic scope so that the sec stack will be
3231 -- released upon its exit unless this is a function that returns on
3232 -- the sec stack in which case this will be done by the caller.
3234 if Uses_SS then
3235 S := Enclosing_Dynamic_Scope (S);
3237 if Ekind (S) = E_Function
3238 and then Requires_Transient_Scope (Etype (S))
3239 then
3240 null;
3241 else
3242 Set_Uses_Sec_Stack (S);
3243 Check_Restriction (No_Secondary_Stack, N);
3244 end if;
3245 end if;
3246 end Wrap_Transient_Declaration;
3248 -------------------------------
3249 -- Wrap_Transient_Expression --
3250 -------------------------------
3252 -- Insert actions before <Expression>:
3254 -- (lines marked with <CTRL> are expanded only in presence of Controlled
3255 -- objects needing finalization)
3257 -- _E : Etyp;
3258 -- declare
3259 -- _M : constant Mark_Id := SS_Mark;
3260 -- Local_Final_List : System.FI.Finalizable_Ptr; <CTRL>
3262 -- procedure _Clean is
3263 -- begin
3264 -- Abort_Defer;
3265 -- System.FI.Finalize_List (Local_Final_List); <CTRL>
3266 -- SS_Release (M);
3267 -- Abort_Undefer;
3268 -- end _Clean;
3270 -- begin
3271 -- _E := <Expression>;
3272 -- at end
3273 -- _Clean;
3274 -- end;
3276 -- then expression is replaced by _E
3278 procedure Wrap_Transient_Expression (N : Node_Id) is
3279 Loc : constant Source_Ptr := Sloc (N);
3280 E : constant Entity_Id :=
3281 Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
3282 Etyp : constant Entity_Id := Etype (N);
3284 begin
3285 Insert_Actions (N, New_List (
3286 Make_Object_Declaration (Loc,
3287 Defining_Identifier => E,
3288 Object_Definition => New_Reference_To (Etyp, Loc)),
3290 Make_Transient_Block (Loc,
3291 Action =>
3292 Make_Assignment_Statement (Loc,
3293 Name => New_Reference_To (E, Loc),
3294 Expression => Relocate_Node (N)))));
3296 Rewrite (N, New_Reference_To (E, Loc));
3297 Analyze_And_Resolve (N, Etyp);
3298 end Wrap_Transient_Expression;
3300 ------------------------------
3301 -- Wrap_Transient_Statement --
3302 ------------------------------
3304 -- Transform <Instruction> into
3306 -- (lines marked with <CTRL> are expanded only in presence of Controlled
3307 -- objects needing finalization)
3309 -- declare
3310 -- _M : Mark_Id := SS_Mark;
3311 -- Local_Final_List : System.FI.Finalizable_Ptr ; <CTRL>
3313 -- procedure _Clean is
3314 -- begin
3315 -- Abort_Defer;
3316 -- System.FI.Finalize_List (Local_Final_List); <CTRL>
3317 -- SS_Release (_M);
3318 -- Abort_Undefer;
3319 -- end _Clean;
3321 -- begin
3322 -- <Instr uction>;
3323 -- at end
3324 -- _Clean;
3325 -- end;
3327 procedure Wrap_Transient_Statement (N : Node_Id) is
3328 Loc : constant Source_Ptr := Sloc (N);
3329 New_Statement : constant Node_Id := Relocate_Node (N);
3331 begin
3332 Rewrite (N, Make_Transient_Block (Loc, New_Statement));
3334 -- With the scope stack back to normal, we can call analyze on the
3335 -- resulting block. At this point, the transient scope is being
3336 -- treated like a perfectly normal scope, so there is nothing
3337 -- special about it.
3339 -- Note: Wrap_Transient_Statement is called with the node already
3340 -- analyzed (i.e. Analyzed (N) is True). This is important, since
3341 -- otherwise we would get a recursive processing of the node when
3342 -- we do this Analyze call.
3344 Analyze (N);
3345 end Wrap_Transient_Statement;
3347 end Exp_Ch7;