Mark ChangeLog
[official-gcc.git] / gcc / ada / a-crbtgo.adb
blob9f9b7125c6f700056c3edfd5035bbc0b2910f97f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004 Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 2, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
21 -- for more details. You should have received a copy of the GNU General --
22 -- Public License distributed with GNAT; see file COPYING. If not, write --
23 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
24 -- MA 02111-1307, USA. --
25 -- --
26 -- As a special exception, if other files instantiate generics from this --
27 -- unit, or you link this unit with other files to produce an executable, --
28 -- this unit does not by itself cause the resulting executable to be --
29 -- covered by the GNU General Public License. This exception does not --
30 -- however invalidate any other reasons why the executable file might be --
31 -- covered by the GNU Public License. --
32 -- --
33 -- This unit was originally developed by Matthew J Heaney. --
34 ------------------------------------------------------------------------------
36 package body Ada.Containers.Red_Black_Trees.Generic_Operations is
38 -----------------------
39 -- Local Subprograms --
40 -----------------------
42 procedure Delete_Fixup (Tree : in out Tree_Type; Node : Node_Access);
44 procedure Delete_Swap (Tree : in out Tree_Type; Z, Y : Node_Access);
46 procedure Left_Rotate (Tree : in out Tree_Type; X : Node_Access);
47 procedure Right_Rotate (Tree : in out Tree_Type; Y : Node_Access);
49 ---------------------
50 -- Check_Invariant --
51 ---------------------
53 procedure Check_Invariant (Tree : Tree_Type) is
54 Root : constant Node_Access := Tree.Root;
56 function Check (Node : Node_Access) return Natural;
58 -----------
59 -- Check --
60 -----------
62 function Check (Node : Node_Access) return Natural is
63 begin
64 if Node = Null_Node then
65 return 0;
66 end if;
68 if Color (Node) = Red then
69 declare
70 L : constant Node_Access := Left (Node);
71 begin
72 pragma Assert (L = Null_Node or else Color (L) = Black);
73 null;
74 end;
76 declare
77 R : constant Node_Access := Right (Node);
78 begin
79 pragma Assert (R = Null_Node or else Color (R) = Black);
80 null;
81 end;
83 declare
84 NL : constant Natural := Check (Left (Node));
85 NR : constant Natural := Check (Right (Node));
86 begin
87 pragma Assert (NL = NR);
88 return NL;
89 end;
90 end if;
92 declare
93 NL : constant Natural := Check (Left (Node));
94 NR : constant Natural := Check (Right (Node));
95 begin
96 pragma Assert (NL = NR);
97 return NL + 1;
98 end;
99 end Check;
101 -- Start of processing for Check_Invariant
103 begin
104 if Root = Null_Node then
105 pragma Assert (Tree.First = Null_Node);
106 pragma Assert (Tree.Last = Null_Node);
107 pragma Assert (Tree.Length = 0);
108 null;
110 else
111 pragma Assert (Color (Root) = Black);
112 pragma Assert (Tree.Length > 0);
113 pragma Assert (Tree.Root /= Null_Node);
114 pragma Assert (Tree.First /= Null_Node);
115 pragma Assert (Tree.Last /= Null_Node);
116 pragma Assert (Parent (Tree.Root) = Null_Node);
117 pragma Assert ((Tree.Length > 1)
118 or else (Tree.First = Tree.Last
119 and Tree.First = Tree.Root));
120 pragma Assert (Left (Tree.First) = Null_Node);
121 pragma Assert (Right (Tree.Last) = Null_Node);
123 declare
124 L : constant Node_Access := Left (Root);
125 R : constant Node_Access := Right (Root);
126 NL : constant Natural := Check (L);
127 NR : constant Natural := Check (R);
128 begin
129 pragma Assert (NL = NR);
130 null;
131 end;
132 end if;
133 end Check_Invariant;
135 ------------------
136 -- Delete_Fixup --
137 ------------------
139 procedure Delete_Fixup (Tree : in out Tree_Type; Node : Node_Access) is
141 -- CLR p274 ???
143 X : Node_Access := Node;
144 W : Node_Access;
146 begin
147 while X /= Tree.Root
148 and then Color (X) = Black
149 loop
150 if X = Left (Parent (X)) then
151 W := Right (Parent (X));
153 if Color (W) = Red then
154 Set_Color (W, Black);
155 Set_Color (Parent (X), Red);
156 Left_Rotate (Tree, Parent (X));
157 W := Right (Parent (X));
158 end if;
160 if (Left (W) = Null_Node or else Color (Left (W)) = Black)
161 and then
162 (Right (W) = Null_Node or else Color (Right (W)) = Black)
163 then
164 Set_Color (W, Red);
165 X := Parent (X);
167 else
168 if Right (W) = Null_Node
169 or else Color (Right (W)) = Black
170 then
171 if Left (W) /= Null_Node then
172 Set_Color (Left (W), Black);
173 end if;
175 Set_Color (W, Red);
176 Right_Rotate (Tree, W);
177 W := Right (Parent (X));
178 end if;
180 Set_Color (W, Color (Parent (X)));
181 Set_Color (Parent (X), Black);
182 Set_Color (Right (W), Black);
183 Left_Rotate (Tree, Parent (X));
184 X := Tree.Root;
185 end if;
187 else
188 pragma Assert (X = Right (Parent (X)));
190 W := Left (Parent (X));
192 if Color (W) = Red then
193 Set_Color (W, Black);
194 Set_Color (Parent (X), Red);
195 Right_Rotate (Tree, Parent (X));
196 W := Left (Parent (X));
197 end if;
199 if (Left (W) = Null_Node or else Color (Left (W)) = Black)
200 and then
201 (Right (W) = Null_Node or else Color (Right (W)) = Black)
202 then
203 Set_Color (W, Red);
204 X := Parent (X);
206 else
207 if Left (W) = Null_Node or else Color (Left (W)) = Black then
208 if Right (W) /= Null_Node then
209 Set_Color (Right (W), Black);
210 end if;
212 Set_Color (W, Red);
213 Left_Rotate (Tree, W);
214 W := Left (Parent (X));
215 end if;
217 Set_Color (W, Color (Parent (X)));
218 Set_Color (Parent (X), Black);
219 Set_Color (Left (W), Black);
220 Right_Rotate (Tree, Parent (X));
221 X := Tree.Root;
222 end if;
223 end if;
224 end loop;
226 Set_Color (X, Black);
227 end Delete_Fixup;
229 ---------------------------
230 -- Delete_Node_Sans_Free --
231 ---------------------------
233 procedure Delete_Node_Sans_Free
234 (Tree : in out Tree_Type;
235 Node : Node_Access)
237 -- CLR p273 ???
239 X, Y : Node_Access;
241 Z : constant Node_Access := Node;
242 pragma Assert (Z /= Null_Node);
244 begin
245 pragma Assert (Tree.Length > 0);
246 pragma Assert (Tree.Root /= Null_Node);
247 pragma Assert (Tree.First /= Null_Node);
248 pragma Assert (Tree.Last /= Null_Node);
249 pragma Assert (Parent (Tree.Root) = Null_Node);
250 pragma Assert ((Tree.Length > 1)
251 or else (Tree.First = Tree.Last
252 and then Tree.First = Tree.Root));
253 pragma Assert ((Left (Node) = Null_Node)
254 or else (Parent (Left (Node)) = Node));
255 pragma Assert ((Right (Node) = Null_Node)
256 or else (Parent (Right (Node)) = Node));
257 pragma Assert (((Parent (Node) = Null_Node) and then (Tree.Root = Node))
258 or else ((Parent (Node) /= Null_Node) and then
259 ((Left (Parent (Node)) = Node)
260 or else (Right (Parent (Node)) = Node))));
262 if Left (Z) = Null_Node then
263 if Right (Z) = Null_Node then
264 if Z = Tree.First then
265 Tree.First := Parent (Z);
266 end if;
268 if Z = Tree.Last then
269 Tree.Last := Parent (Z);
270 end if;
272 if Color (Z) = Black then
273 Delete_Fixup (Tree, Z);
274 end if;
276 pragma Assert (Left (Z) = Null_Node);
277 pragma Assert (Right (Z) = Null_Node);
279 if Z = Tree.Root then
280 pragma Assert (Tree.Length = 1);
281 pragma Assert (Parent (Z) = Null_Node);
282 Tree.Root := Null_Node;
283 elsif Z = Left (Parent (Z)) then
284 Set_Left (Parent (Z), Null_Node);
285 else
286 pragma Assert (Z = Right (Parent (Z)));
287 Set_Right (Parent (Z), Null_Node);
288 end if;
290 else
291 pragma Assert (Z /= Tree.Last);
293 X := Right (Z);
295 if Z = Tree.First then
296 Tree.First := Min (X);
297 end if;
299 if Z = Tree.Root then
300 Tree.Root := X;
301 elsif Z = Left (Parent (Z)) then
302 Set_Left (Parent (Z), X);
303 else
304 pragma Assert (Z = Right (Parent (Z)));
305 Set_Right (Parent (Z), X);
306 end if;
308 Set_Parent (X, Parent (Z));
310 if Color (Z) = Black then
311 Delete_Fixup (Tree, X);
312 end if;
313 end if;
315 elsif Right (Z) = Null_Node then
316 pragma Assert (Z /= Tree.First);
318 X := Left (Z);
320 if Z = Tree.Last then
321 Tree.Last := Max (X);
322 end if;
324 if Z = Tree.Root then
325 Tree.Root := X;
326 elsif Z = Left (Parent (Z)) then
327 Set_Left (Parent (Z), X);
328 else
329 pragma Assert (Z = Right (Parent (Z)));
330 Set_Right (Parent (Z), X);
331 end if;
333 Set_Parent (X, Parent (Z));
335 if Color (Z) = Black then
336 Delete_Fixup (Tree, X);
337 end if;
339 else
340 pragma Assert (Z /= Tree.First);
341 pragma Assert (Z /= Tree.Last);
343 Y := Next (Z);
344 pragma Assert (Left (Y) = Null_Node);
346 X := Right (Y);
348 if X = Null_Node then
349 if Y = Left (Parent (Y)) then
350 pragma Assert (Parent (Y) /= Z);
351 Delete_Swap (Tree, Z, Y);
352 Set_Left (Parent (Z), Z);
354 else
355 pragma Assert (Y = Right (Parent (Y)));
356 pragma Assert (Parent (Y) = Z);
357 Set_Parent (Y, Parent (Z));
359 if Z = Tree.Root then
360 Tree.Root := Y;
361 elsif Z = Left (Parent (Z)) then
362 Set_Left (Parent (Z), Y);
363 else
364 pragma Assert (Z = Right (Parent (Z)));
365 Set_Right (Parent (Z), Y);
366 end if;
368 Set_Left (Y, Left (Z));
369 Set_Parent (Left (Y), Y);
370 Set_Right (Y, Z);
371 Set_Parent (Z, Y);
372 Set_Left (Z, Null_Node);
373 Set_Right (Z, Null_Node);
375 declare
376 Y_Color : constant Color_Type := Color (Y);
377 begin
378 Set_Color (Y, Color (Z));
379 Set_Color (Z, Y_Color);
380 end;
381 end if;
383 if Color (Z) = Black then
384 Delete_Fixup (Tree, Z);
385 end if;
387 pragma Assert (Left (Z) = Null_Node);
388 pragma Assert (Right (Z) = Null_Node);
390 if Z = Right (Parent (Z)) then
391 Set_Right (Parent (Z), Null_Node);
392 else
393 pragma Assert (Z = Left (Parent (Z)));
394 Set_Left (Parent (Z), Null_Node);
395 end if;
397 else
398 if Y = Left (Parent (Y)) then
399 pragma Assert (Parent (Y) /= Z);
401 Delete_Swap (Tree, Z, Y);
403 Set_Left (Parent (Z), X);
404 Set_Parent (X, Parent (Z));
406 else
407 pragma Assert (Y = Right (Parent (Y)));
408 pragma Assert (Parent (Y) = Z);
410 Set_Parent (Y, Parent (Z));
412 if Z = Tree.Root then
413 Tree.Root := Y;
414 elsif Z = Left (Parent (Z)) then
415 Set_Left (Parent (Z), Y);
416 else
417 pragma Assert (Z = Right (Parent (Z)));
418 Set_Right (Parent (Z), Y);
419 end if;
421 Set_Left (Y, Left (Z));
422 Set_Parent (Left (Y), Y);
424 declare
425 Y_Color : constant Color_Type := Color (Y);
426 begin
427 Set_Color (Y, Color (Z));
428 Set_Color (Z, Y_Color);
429 end;
430 end if;
432 if Color (Z) = Black then
433 Delete_Fixup (Tree, X);
434 end if;
435 end if;
436 end if;
438 Tree.Length := Tree.Length - 1;
439 end Delete_Node_Sans_Free;
441 -----------------
442 -- Delete_Swap --
443 -----------------
445 procedure Delete_Swap
446 (Tree : in out Tree_Type;
447 Z, Y : Node_Access)
449 pragma Assert (Z /= Y);
450 pragma Assert (Parent (Y) /= Z);
452 Y_Parent : constant Node_Access := Parent (Y);
453 Y_Color : constant Color_Type := Color (Y);
455 begin
456 Set_Parent (Y, Parent (Z));
457 Set_Left (Y, Left (Z));
458 Set_Right (Y, Right (Z));
459 Set_Color (Y, Color (Z));
461 if Tree.Root = Z then
462 Tree.Root := Y;
463 elsif Right (Parent (Y)) = Z then
464 Set_Right (Parent (Y), Y);
465 else
466 pragma Assert (Left (Parent (Y)) = Z);
467 Set_Left (Parent (Y), Y);
468 end if;
470 if Right (Y) /= Null_Node then
471 Set_Parent (Right (Y), Y);
472 end if;
474 if Left (Y) /= Null_Node then
475 Set_Parent (Left (Y), Y);
476 end if;
478 Set_Parent (Z, Y_Parent);
479 Set_Color (Z, Y_Color);
480 Set_Left (Z, Null_Node);
481 Set_Right (Z, Null_Node);
482 end Delete_Swap;
484 -------------------
485 -- Generic_Equal --
486 -------------------
488 function Generic_Equal (Left, Right : Tree_Type) return Boolean is
489 L_Node : Node_Access;
490 R_Node : Node_Access;
492 begin
493 if Left.Length /= Right.Length then
494 return False;
495 end if;
497 L_Node := Left.First;
498 R_Node := Right.First;
499 while L_Node /= Null_Node loop
500 if not Is_Equal (L_Node, R_Node) then
501 return False;
502 end if;
504 L_Node := Next (L_Node);
505 R_Node := Next (R_Node);
506 end loop;
508 return True;
509 end Generic_Equal;
511 -----------------------
512 -- Generic_Iteration --
513 -----------------------
515 procedure Generic_Iteration (Tree : Tree_Type) is
516 procedure Iterate (P : Node_Access);
518 -------------
519 -- Iterate --
520 -------------
522 procedure Iterate (P : Node_Access) is
523 X : Node_Access := P;
524 begin
525 while X /= Null_Node loop
526 Iterate (Left (X));
527 Process (X);
528 X := Right (X);
529 end loop;
530 end Iterate;
532 -- Start of processing for Generic_Iteration
534 begin
535 Iterate (Tree.Root);
536 end Generic_Iteration;
538 ------------------
539 -- Generic_Read --
540 ------------------
542 procedure Generic_Read (Tree : in out Tree_Type; N : Count_Type) is
544 pragma Assert (Tree.Length = 0);
545 -- Clear and back node reinit was done by caller
547 Node, Last_Node : Node_Access;
549 begin
550 if N = 0 then
551 return;
552 end if;
554 Node := New_Node;
555 pragma Assert (Node /= Null_Node);
556 pragma Assert (Color (Node) = Red);
558 Set_Color (Node, Black);
560 Tree.Root := Node;
561 Tree.First := Node;
562 Tree.Last := Node;
564 Tree.Length := 1;
566 for J in Count_Type range 2 .. N loop
567 Last_Node := Node;
568 pragma Assert (Last_Node = Tree.Last);
570 Node := New_Node;
571 pragma Assert (Node /= Null_Node);
572 pragma Assert (Color (Node) = Red);
574 Set_Right (Node => Last_Node, Right => Node);
575 Tree.Last := Node;
576 Set_Parent (Node => Node, Parent => Last_Node);
577 Rebalance_For_Insert (Tree, Node);
578 Tree.Length := Tree.Length + 1;
579 end loop;
580 end Generic_Read;
582 -------------------------------
583 -- Generic_Reverse_Iteration --
584 -------------------------------
586 procedure Generic_Reverse_Iteration (Tree : Tree_Type)
588 procedure Iterate (P : Node_Access);
590 -------------
591 -- Iterate --
592 -------------
594 procedure Iterate (P : Node_Access) is
595 X : Node_Access := P;
596 begin
597 while X /= Null_Node loop
598 Iterate (Right (X));
599 Process (X);
600 X := Left (X);
601 end loop;
602 end Iterate;
604 -- Start of processing for Generic_Reverse_Iteration
606 begin
607 Iterate (Tree.Root);
608 end Generic_Reverse_Iteration;
610 -----------------
611 -- Left_Rotate --
612 -----------------
614 procedure Left_Rotate (Tree : in out Tree_Type; X : Node_Access) is
616 -- CLR p266 ???
618 Y : constant Node_Access := Right (X);
619 pragma Assert (Y /= Null_Node);
621 begin
622 Set_Right (X, Left (Y));
624 if Left (Y) /= Null_Node then
625 Set_Parent (Left (Y), X);
626 end if;
628 Set_Parent (Y, Parent (X));
630 if X = Tree.Root then
631 Tree.Root := Y;
632 elsif X = Left (Parent (X)) then
633 Set_Left (Parent (X), Y);
634 else
635 pragma Assert (X = Right (Parent (X)));
636 Set_Right (Parent (X), Y);
637 end if;
639 Set_Left (Y, X);
640 Set_Parent (X, Y);
641 end Left_Rotate;
643 ---------
644 -- Max --
645 ---------
647 function Max (Node : Node_Access) return Node_Access is
649 -- CLR p248 ???
651 X : Node_Access := Node;
652 Y : Node_Access;
654 begin
655 loop
656 Y := Right (X);
658 if Y = Null_Node then
659 return X;
660 end if;
662 X := Y;
663 end loop;
664 end Max;
666 ---------
667 -- Min --
668 ---------
670 function Min (Node : Node_Access) return Node_Access is
672 -- CLR p248 ???
674 X : Node_Access := Node;
675 Y : Node_Access;
677 begin
678 loop
679 Y := Left (X);
681 if Y = Null_Node then
682 return X;
683 end if;
685 X := Y;
686 end loop;
687 end Min;
689 ----------
690 -- Move --
691 ----------
693 procedure Move (Target, Source : in out Tree_Type) is
694 begin
695 if Target.Length > 0 then
696 raise Constraint_Error;
697 end if;
699 Target := Source;
700 Source := (First => Null_Node,
701 Last => Null_Node,
702 Root => Null_Node,
703 Length => 0);
704 end Move;
706 ----------
707 -- Next --
708 ----------
710 function Next (Node : Node_Access) return Node_Access is
711 begin
712 -- CLR p249 ???
714 if Node = Null_Node then
715 return Null_Node;
716 end if;
718 if Right (Node) /= Null_Node then
719 return Min (Right (Node));
720 end if;
722 declare
723 X : Node_Access := Node;
724 Y : Node_Access := Parent (Node);
726 begin
727 while Y /= Null_Node
728 and then X = Right (Y)
729 loop
730 X := Y;
731 Y := Parent (Y);
732 end loop;
734 -- Why is this code commented out ???
736 -- if Right (X) /= Y then
737 -- return Y;
738 -- else
739 -- return X;
740 -- end if;
742 return Y;
743 end;
744 end Next;
746 --------------
747 -- Previous --
748 --------------
750 function Previous (Node : Node_Access) return Node_Access is
751 begin
752 if Node = Null_Node then
753 return Null_Node;
754 end if;
756 if Left (Node) /= Null_Node then
757 return Max (Left (Node));
758 end if;
760 declare
761 X : Node_Access := Node;
762 Y : Node_Access := Parent (Node);
764 begin
765 while Y /= Null_Node
766 and then X = Left (Y)
767 loop
768 X := Y;
769 Y := Parent (Y);
770 end loop;
772 -- Why is this code commented out ???
774 -- if Left (X) /= Y then
775 -- return Y;
776 -- else
777 -- return X;
778 -- end if;
780 return Y;
781 end;
782 end Previous;
784 --------------------------
785 -- Rebalance_For_Insert --
786 --------------------------
788 procedure Rebalance_For_Insert
789 (Tree : in out Tree_Type;
790 Node : Node_Access)
792 -- CLR p.268 ???
794 X : Node_Access := Node;
795 pragma Assert (X /= Null_Node);
796 pragma Assert (Color (X) = Red);
798 Y : Node_Access;
800 begin
801 while X /= Tree.Root and then Color (Parent (X)) = Red loop
802 if Parent (X) = Left (Parent (Parent (X))) then
803 Y := Right (Parent (Parent (X)));
805 if Y /= Null_Node and then Color (Y) = Red then
806 Set_Color (Parent (X), Black);
807 Set_Color (Y, Black);
808 Set_Color (Parent (Parent (X)), Red);
809 X := Parent (Parent (X));
811 else
812 if X = Right (Parent (X)) then
813 X := Parent (X);
814 Left_Rotate (Tree, X);
815 end if;
817 Set_Color (Parent (X), Black);
818 Set_Color (Parent (Parent (X)), Red);
819 Right_Rotate (Tree, Parent (Parent (X)));
820 end if;
822 else
823 pragma Assert (Parent (X) = Right (Parent (Parent (X))));
825 Y := Left (Parent (Parent (X)));
827 if Y /= Null_Node and then Color (Y) = Red then
828 Set_Color (Parent (X), Black);
829 Set_Color (Y, Black);
830 Set_Color (Parent (Parent (X)), Red);
831 X := Parent (Parent (X));
833 else
834 if X = Left (Parent (X)) then
835 X := Parent (X);
836 Right_Rotate (Tree, X);
837 end if;
839 Set_Color (Parent (X), Black);
840 Set_Color (Parent (Parent (X)), Red);
841 Left_Rotate (Tree, Parent (Parent (X)));
842 end if;
843 end if;
844 end loop;
846 Set_Color (Tree.Root, Black);
847 end Rebalance_For_Insert;
849 ------------------
850 -- Right_Rotate --
851 ------------------
853 procedure Right_Rotate (Tree : in out Tree_Type; Y : Node_Access) is
854 X : constant Node_Access := Left (Y);
855 pragma Assert (X /= Null_Node);
857 begin
858 Set_Left (Y, Right (X));
860 if Right (X) /= Null_Node then
861 Set_Parent (Right (X), Y);
862 end if;
864 Set_Parent (X, Parent (Y));
866 if Y = Tree.Root then
867 Tree.Root := X;
868 elsif Y = Left (Parent (Y)) then
869 Set_Left (Parent (Y), X);
870 else
871 pragma Assert (Y = Right (Parent (Y)));
872 Set_Right (Parent (Y), X);
873 end if;
875 Set_Right (X, Y);
876 Set_Parent (Y, X);
877 end Right_Rotate;
879 end Ada.Containers.Red_Black_Trees.Generic_Operations;