add dbgcnt support for devirt
[official-gcc.git] / gcc / tree-ssa-coalesce.c
blob9a1ac67bf7767cb359eae702b0fefc27cde2666d
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-pretty-print.h"
28 #include "bitmap.h"
29 #include "dumpfile.h"
30 #include "hash-table.h"
31 #include "basic-block.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-ssa-live.h"
44 #include "tree-ssa-coalesce.h"
45 #include "diagnostic-core.h"
48 /* This set of routines implements a coalesce_list. This is an object which
49 is used to track pairs of ssa_names which are desirable to coalesce
50 together to avoid copies. Costs are associated with each pair, and when
51 all desired information has been collected, the object can be used to
52 order the pairs for processing. */
54 /* This structure defines a pair entry. */
56 typedef struct coalesce_pair
58 int first_element;
59 int second_element;
60 int cost;
61 } * coalesce_pair_p;
62 typedef const struct coalesce_pair *const_coalesce_pair_p;
64 /* Coalesce pair hashtable helpers. */
66 struct coalesce_pair_hasher : typed_noop_remove <coalesce_pair>
68 typedef coalesce_pair value_type;
69 typedef coalesce_pair compare_type;
70 static inline hashval_t hash (const value_type *);
71 static inline bool equal (const value_type *, const compare_type *);
74 /* Hash function for coalesce list. Calculate hash for PAIR. */
76 inline hashval_t
77 coalesce_pair_hasher::hash (const value_type *pair)
79 hashval_t a = (hashval_t)(pair->first_element);
80 hashval_t b = (hashval_t)(pair->second_element);
82 return b * (b - 1) / 2 + a;
85 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
86 returning TRUE if the two pairs are equivalent. */
88 inline bool
89 coalesce_pair_hasher::equal (const value_type *p1, const compare_type *p2)
91 return (p1->first_element == p2->first_element
92 && p1->second_element == p2->second_element);
95 typedef hash_table <coalesce_pair_hasher> coalesce_table_type;
96 typedef coalesce_table_type::iterator coalesce_iterator_type;
99 typedef struct cost_one_pair_d
101 int first_element;
102 int second_element;
103 struct cost_one_pair_d *next;
104 } * cost_one_pair_p;
106 /* This structure maintains the list of coalesce pairs. */
108 typedef struct coalesce_list_d
110 coalesce_table_type list; /* Hash table. */
111 coalesce_pair_p *sorted; /* List when sorted. */
112 int num_sorted; /* Number in the sorted list. */
113 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
114 } *coalesce_list_p;
116 #define NO_BEST_COALESCE -1
117 #define MUST_COALESCE_COST INT_MAX
120 /* Return cost of execution of copy instruction with FREQUENCY. */
122 static inline int
123 coalesce_cost (int frequency, bool optimize_for_size)
125 /* Base costs on BB frequencies bounded by 1. */
126 int cost = frequency;
128 if (!cost)
129 cost = 1;
131 if (optimize_for_size)
132 cost = 1;
134 return cost;
138 /* Return the cost of executing a copy instruction in basic block BB. */
140 static inline int
141 coalesce_cost_bb (basic_block bb)
143 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
147 /* Return the cost of executing a copy instruction on edge E. */
149 static inline int
150 coalesce_cost_edge (edge e)
152 int mult = 1;
154 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
155 if (EDGE_CRITICAL_P (e))
156 mult = 2;
157 if (e->flags & EDGE_ABNORMAL)
158 return MUST_COALESCE_COST;
159 if (e->flags & EDGE_EH)
161 edge e2;
162 edge_iterator ei;
163 FOR_EACH_EDGE (e2, ei, e->dest->preds)
164 if (e2 != e)
166 /* Putting code on EH edge that leads to BB
167 with multiple predecestors imply splitting of
168 edge too. */
169 if (mult < 2)
170 mult = 2;
171 /* If there are multiple EH predecestors, we
172 also copy EH regions and produce separate
173 landing pad. This is expensive. */
174 if (e2->flags & EDGE_EH)
176 mult = 5;
177 break;
182 return coalesce_cost (EDGE_FREQUENCY (e),
183 optimize_edge_for_size_p (e)) * mult;
187 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
188 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
189 NO_BEST_COALESCE is returned if there aren't any. */
191 static inline int
192 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
194 cost_one_pair_p ptr;
196 ptr = cl->cost_one_list;
197 if (!ptr)
198 return NO_BEST_COALESCE;
200 *p1 = ptr->first_element;
201 *p2 = ptr->second_element;
202 cl->cost_one_list = ptr->next;
204 free (ptr);
206 return 1;
209 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
210 2 elements via P1 and P2. Their calculated cost is returned by the function.
211 NO_BEST_COALESCE is returned if the coalesce list is empty. */
213 static inline int
214 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
216 coalesce_pair_p node;
217 int ret;
219 if (cl->sorted == NULL)
220 return pop_cost_one_pair (cl, p1, p2);
222 if (cl->num_sorted == 0)
223 return pop_cost_one_pair (cl, p1, p2);
225 node = cl->sorted[--(cl->num_sorted)];
226 *p1 = node->first_element;
227 *p2 = node->second_element;
228 ret = node->cost;
229 free (node);
231 return ret;
235 /* Create a new empty coalesce list object and return it. */
237 static inline coalesce_list_p
238 create_coalesce_list (void)
240 coalesce_list_p list;
241 unsigned size = num_ssa_names * 3;
243 if (size < 40)
244 size = 40;
246 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
247 list->list.create (size);
248 list->sorted = NULL;
249 list->num_sorted = 0;
250 list->cost_one_list = NULL;
251 return list;
255 /* Delete coalesce list CL. */
257 static inline void
258 delete_coalesce_list (coalesce_list_p cl)
260 gcc_assert (cl->cost_one_list == NULL);
261 cl->list.dispose ();
262 free (cl->sorted);
263 gcc_assert (cl->num_sorted == 0);
264 free (cl);
268 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
269 one isn't found, return NULL if CREATE is false, otherwise create a new
270 coalesce pair object and return it. */
272 static coalesce_pair_p
273 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
275 struct coalesce_pair p;
276 coalesce_pair **slot;
277 unsigned int hash;
279 /* Normalize so that p1 is the smaller value. */
280 if (p2 < p1)
282 p.first_element = p2;
283 p.second_element = p1;
285 else
287 p.first_element = p1;
288 p.second_element = p2;
291 hash = coalesce_pair_hasher::hash (&p);
292 slot = cl->list.find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
293 if (!slot)
294 return NULL;
296 if (!*slot)
298 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
299 gcc_assert (cl->sorted == NULL);
300 pair->first_element = p.first_element;
301 pair->second_element = p.second_element;
302 pair->cost = 0;
303 *slot = pair;
306 return (struct coalesce_pair *) *slot;
309 static inline void
310 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
312 cost_one_pair_p pair;
314 pair = XNEW (struct cost_one_pair_d);
315 pair->first_element = p1;
316 pair->second_element = p2;
317 pair->next = cl->cost_one_list;
318 cl->cost_one_list = pair;
322 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
324 static inline void
325 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
327 coalesce_pair_p node;
329 gcc_assert (cl->sorted == NULL);
330 if (p1 == p2)
331 return;
333 node = find_coalesce_pair (cl, p1, p2, true);
335 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
336 if (node->cost < MUST_COALESCE_COST - 1)
338 if (value < MUST_COALESCE_COST - 1)
339 node->cost += value;
340 else
341 node->cost = value;
346 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
348 static int
349 compare_pairs (const void *p1, const void *p2)
351 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
352 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
353 int result;
355 result = (* pp1)->cost - (* pp2)->cost;
356 /* Since qsort does not guarantee stability we use the elements
357 as a secondary key. This provides us with independence from
358 the host's implementation of the sorting algorithm. */
359 if (result == 0)
361 result = (* pp2)->first_element - (* pp1)->first_element;
362 if (result == 0)
363 result = (* pp2)->second_element - (* pp1)->second_element;
366 return result;
370 /* Return the number of unique coalesce pairs in CL. */
372 static inline int
373 num_coalesce_pairs (coalesce_list_p cl)
375 return cl->list.elements ();
379 /* Iterate over CL using ITER, returning values in PAIR. */
381 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
382 FOR_EACH_HASH_TABLE_ELEMENT ((CL)->list, (PAIR), coalesce_pair_p, (ITER))
385 /* Prepare CL for removal of preferred pairs. When finished they are sorted
386 in order from most important coalesce to least important. */
388 static void
389 sort_coalesce_list (coalesce_list_p cl)
391 unsigned x, num;
392 coalesce_pair_p p;
393 coalesce_iterator_type ppi;
395 gcc_assert (cl->sorted == NULL);
397 num = num_coalesce_pairs (cl);
398 cl->num_sorted = num;
399 if (num == 0)
400 return;
402 /* Allocate a vector for the pair pointers. */
403 cl->sorted = XNEWVEC (coalesce_pair_p, num);
405 /* Populate the vector with pointers to the pairs. */
406 x = 0;
407 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
408 cl->sorted[x++] = p;
409 gcc_assert (x == num);
411 /* Already sorted. */
412 if (num == 1)
413 return;
415 /* If there are only 2, just pick swap them if the order isn't correct. */
416 if (num == 2)
418 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
420 p = cl->sorted[0];
421 cl->sorted[0] = cl->sorted[1];
422 cl->sorted[1] = p;
424 return;
427 /* Only call qsort if there are more than 2 items. */
428 if (num > 2)
429 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
433 /* Send debug info for coalesce list CL to file F. */
435 static void
436 dump_coalesce_list (FILE *f, coalesce_list_p cl)
438 coalesce_pair_p node;
439 coalesce_iterator_type ppi;
441 int x;
442 tree var;
444 if (cl->sorted == NULL)
446 fprintf (f, "Coalesce List:\n");
447 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
449 tree var1 = ssa_name (node->first_element);
450 tree var2 = ssa_name (node->second_element);
451 print_generic_expr (f, var1, TDF_SLIM);
452 fprintf (f, " <-> ");
453 print_generic_expr (f, var2, TDF_SLIM);
454 fprintf (f, " (%1d), ", node->cost);
455 fprintf (f, "\n");
458 else
460 fprintf (f, "Sorted Coalesce list:\n");
461 for (x = cl->num_sorted - 1 ; x >=0; x--)
463 node = cl->sorted[x];
464 fprintf (f, "(%d) ", node->cost);
465 var = ssa_name (node->first_element);
466 print_generic_expr (f, var, TDF_SLIM);
467 fprintf (f, " <-> ");
468 var = ssa_name (node->second_element);
469 print_generic_expr (f, var, TDF_SLIM);
470 fprintf (f, "\n");
476 /* This represents a conflict graph. Implemented as an array of bitmaps.
477 A full matrix is used for conflicts rather than just upper triangular form.
478 this make sit much simpler and faster to perform conflict merges. */
480 typedef struct ssa_conflicts_d
482 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
483 vec<bitmap> conflicts;
484 } * ssa_conflicts_p;
486 /* Return an empty new conflict graph for SIZE elements. */
488 static inline ssa_conflicts_p
489 ssa_conflicts_new (unsigned size)
491 ssa_conflicts_p ptr;
493 ptr = XNEW (struct ssa_conflicts_d);
494 bitmap_obstack_initialize (&ptr->obstack);
495 ptr->conflicts.create (size);
496 ptr->conflicts.safe_grow_cleared (size);
497 return ptr;
501 /* Free storage for conflict graph PTR. */
503 static inline void
504 ssa_conflicts_delete (ssa_conflicts_p ptr)
506 bitmap_obstack_release (&ptr->obstack);
507 ptr->conflicts.release ();
508 free (ptr);
512 /* Test if elements X and Y conflict in graph PTR. */
514 static inline bool
515 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
517 bitmap bx = ptr->conflicts[x];
518 bitmap by = ptr->conflicts[y];
520 gcc_checking_assert (x != y);
522 if (bx)
523 /* Avoid the lookup if Y has no conflicts. */
524 return by ? bitmap_bit_p (bx, y) : false;
525 else
526 return false;
530 /* Add a conflict with Y to the bitmap for X in graph PTR. */
532 static inline void
533 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
535 bitmap bx = ptr->conflicts[x];
536 /* If there are no conflicts yet, allocate the bitmap and set bit. */
537 if (! bx)
538 bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
539 bitmap_set_bit (bx, y);
543 /* Add conflicts between X and Y in graph PTR. */
545 static inline void
546 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
548 gcc_checking_assert (x != y);
549 ssa_conflicts_add_one (ptr, x, y);
550 ssa_conflicts_add_one (ptr, y, x);
554 /* Merge all Y's conflict into X in graph PTR. */
556 static inline void
557 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
559 unsigned z;
560 bitmap_iterator bi;
561 bitmap bx = ptr->conflicts[x];
562 bitmap by = ptr->conflicts[y];
564 gcc_checking_assert (x != y);
565 if (! by)
566 return;
568 /* Add a conflict between X and every one Y has. If the bitmap doesn't
569 exist, then it has already been coalesced, and we don't need to add a
570 conflict. */
571 EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
573 bitmap bz = ptr->conflicts[z];
574 if (bz)
575 bitmap_set_bit (bz, x);
578 if (bx)
580 /* If X has conflicts, add Y's to X. */
581 bitmap_ior_into (bx, by);
582 BITMAP_FREE (by);
583 ptr->conflicts[y] = NULL;
585 else
587 /* If X has no conflicts, simply use Y's. */
588 ptr->conflicts[x] = by;
589 ptr->conflicts[y] = NULL;
594 /* Dump a conflicts graph. */
596 static void
597 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
599 unsigned x;
600 bitmap b;
602 fprintf (file, "\nConflict graph:\n");
604 FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
605 if (b)
607 fprintf (file, "%d: ", x);
608 dump_bitmap (file, b);
613 /* This structure is used to efficiently record the current status of live
614 SSA_NAMES when building a conflict graph.
615 LIVE_BASE_VAR has a bit set for each base variable which has at least one
616 ssa version live.
617 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
618 index, and is used to track what partitions of each base variable are
619 live. This makes it easy to add conflicts between just live partitions
620 with the same base variable.
621 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
622 marked as being live. This delays clearing of these bitmaps until
623 they are actually needed again. */
625 typedef struct live_track_d
627 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
628 bitmap live_base_var; /* Indicates if a basevar is live. */
629 bitmap *live_base_partitions; /* Live partitions for each basevar. */
630 var_map map; /* Var_map being used for partition mapping. */
631 } * live_track_p;
634 /* This routine will create a new live track structure based on the partitions
635 in MAP. */
637 static live_track_p
638 new_live_track (var_map map)
640 live_track_p ptr;
641 int lim, x;
643 /* Make sure there is a partition view in place. */
644 gcc_assert (map->partition_to_base_index != NULL);
646 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
647 ptr->map = map;
648 lim = num_basevars (map);
649 bitmap_obstack_initialize (&ptr->obstack);
650 ptr->live_base_partitions = (bitmap *) xmalloc (sizeof (bitmap *) * lim);
651 ptr->live_base_var = BITMAP_ALLOC (&ptr->obstack);
652 for (x = 0; x < lim; x++)
653 ptr->live_base_partitions[x] = BITMAP_ALLOC (&ptr->obstack);
654 return ptr;
658 /* This routine will free the memory associated with PTR. */
660 static void
661 delete_live_track (live_track_p ptr)
663 bitmap_obstack_release (&ptr->obstack);
664 free (ptr->live_base_partitions);
665 free (ptr);
669 /* This function will remove PARTITION from the live list in PTR. */
671 static inline void
672 live_track_remove_partition (live_track_p ptr, int partition)
674 int root;
676 root = basevar_index (ptr->map, partition);
677 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
678 /* If the element list is empty, make the base variable not live either. */
679 if (bitmap_empty_p (ptr->live_base_partitions[root]))
680 bitmap_clear_bit (ptr->live_base_var, root);
684 /* This function will adds PARTITION to the live list in PTR. */
686 static inline void
687 live_track_add_partition (live_track_p ptr, int partition)
689 int root;
691 root = basevar_index (ptr->map, partition);
692 /* If this base var wasn't live before, it is now. Clear the element list
693 since it was delayed until needed. */
694 if (bitmap_set_bit (ptr->live_base_var, root))
695 bitmap_clear (ptr->live_base_partitions[root]);
696 bitmap_set_bit (ptr->live_base_partitions[root], partition);
701 /* Clear the live bit for VAR in PTR. */
703 static inline void
704 live_track_clear_var (live_track_p ptr, tree var)
706 int p;
708 p = var_to_partition (ptr->map, var);
709 if (p != NO_PARTITION)
710 live_track_remove_partition (ptr, p);
714 /* Return TRUE if VAR is live in PTR. */
716 static inline bool
717 live_track_live_p (live_track_p ptr, tree var)
719 int p, root;
721 p = var_to_partition (ptr->map, var);
722 if (p != NO_PARTITION)
724 root = basevar_index (ptr->map, p);
725 if (bitmap_bit_p (ptr->live_base_var, root))
726 return bitmap_bit_p (ptr->live_base_partitions[root], p);
728 return false;
732 /* This routine will add USE to PTR. USE will be marked as live in both the
733 ssa live map and the live bitmap for the root of USE. */
735 static inline void
736 live_track_process_use (live_track_p ptr, tree use)
738 int p;
740 p = var_to_partition (ptr->map, use);
741 if (p == NO_PARTITION)
742 return;
744 /* Mark as live in the appropriate live list. */
745 live_track_add_partition (ptr, p);
749 /* This routine will process a DEF in PTR. DEF will be removed from the live
750 lists, and if there are any other live partitions with the same base
751 variable, conflicts will be added to GRAPH. */
753 static inline void
754 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
756 int p, root;
757 bitmap b;
758 unsigned x;
759 bitmap_iterator bi;
761 p = var_to_partition (ptr->map, def);
762 if (p == NO_PARTITION)
763 return;
765 /* Clear the liveness bit. */
766 live_track_remove_partition (ptr, p);
768 /* If the bitmap isn't empty now, conflicts need to be added. */
769 root = basevar_index (ptr->map, p);
770 if (bitmap_bit_p (ptr->live_base_var, root))
772 b = ptr->live_base_partitions[root];
773 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
774 ssa_conflicts_add (graph, p, x);
779 /* Initialize PTR with the partitions set in INIT. */
781 static inline void
782 live_track_init (live_track_p ptr, bitmap init)
784 unsigned p;
785 bitmap_iterator bi;
787 /* Mark all live on exit partitions. */
788 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
789 live_track_add_partition (ptr, p);
793 /* This routine will clear all live partitions in PTR. */
795 static inline void
796 live_track_clear_base_vars (live_track_p ptr)
798 /* Simply clear the live base list. Anything marked as live in the element
799 lists will be cleared later if/when the base variable ever comes alive
800 again. */
801 bitmap_clear (ptr->live_base_var);
805 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
806 partition view of the var_map liveinfo is based on get entries in the
807 conflict graph. Only conflicts between ssa_name partitions with the same
808 base variable are added. */
810 static ssa_conflicts_p
811 build_ssa_conflict_graph (tree_live_info_p liveinfo)
813 ssa_conflicts_p graph;
814 var_map map;
815 basic_block bb;
816 ssa_op_iter iter;
817 live_track_p live;
819 map = live_var_map (liveinfo);
820 graph = ssa_conflicts_new (num_var_partitions (map));
822 live = new_live_track (map);
824 FOR_EACH_BB_FN (bb, cfun)
826 gimple_stmt_iterator gsi;
828 /* Start with live on exit temporaries. */
829 live_track_init (live, live_on_exit (liveinfo, bb));
831 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
833 tree var;
834 gimple stmt = gsi_stmt (gsi);
836 /* A copy between 2 partitions does not introduce an interference
837 by itself. If they did, you would never be able to coalesce
838 two things which are copied. If the two variables really do
839 conflict, they will conflict elsewhere in the program.
841 This is handled by simply removing the SRC of the copy from the
842 live list, and processing the stmt normally. */
843 if (is_gimple_assign (stmt))
845 tree lhs = gimple_assign_lhs (stmt);
846 tree rhs1 = gimple_assign_rhs1 (stmt);
847 if (gimple_assign_copy_p (stmt)
848 && TREE_CODE (lhs) == SSA_NAME
849 && TREE_CODE (rhs1) == SSA_NAME)
850 live_track_clear_var (live, rhs1);
852 else if (is_gimple_debug (stmt))
853 continue;
855 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
856 live_track_process_def (live, var, graph);
858 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
859 live_track_process_use (live, var);
862 /* If result of a PHI is unused, looping over the statements will not
863 record any conflicts since the def was never live. Since the PHI node
864 is going to be translated out of SSA form, it will insert a copy.
865 There must be a conflict recorded between the result of the PHI and
866 any variables that are live. Otherwise the out-of-ssa translation
867 may create incorrect code. */
868 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
870 gimple phi = gsi_stmt (gsi);
871 tree result = PHI_RESULT (phi);
872 if (live_track_live_p (live, result))
873 live_track_process_def (live, result, graph);
876 live_track_clear_base_vars (live);
879 delete_live_track (live);
880 return graph;
884 /* Shortcut routine to print messages to file F of the form:
885 "STR1 EXPR1 STR2 EXPR2 STR3." */
887 static inline void
888 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
889 tree expr2, const char *str3)
891 fprintf (f, "%s", str1);
892 print_generic_expr (f, expr1, TDF_SLIM);
893 fprintf (f, "%s", str2);
894 print_generic_expr (f, expr2, TDF_SLIM);
895 fprintf (f, "%s", str3);
899 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
901 static inline void
902 fail_abnormal_edge_coalesce (int x, int y)
904 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
905 fprintf (stderr, " which are marked as MUST COALESCE.\n");
906 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
907 fprintf (stderr, " and ");
908 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
910 internal_error ("SSA corruption");
914 /* This function creates a var_map for the current function as well as creating
915 a coalesce list for use later in the out of ssa process. */
917 static var_map
918 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
920 gimple_stmt_iterator gsi;
921 basic_block bb;
922 tree var;
923 gimple stmt;
924 tree first;
925 var_map map;
926 ssa_op_iter iter;
927 int v1, v2, cost;
928 unsigned i;
930 map = init_var_map (num_ssa_names);
932 FOR_EACH_BB_FN (bb, cfun)
934 tree arg;
936 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
938 gimple phi = gsi_stmt (gsi);
939 size_t i;
940 int ver;
941 tree res;
942 bool saw_copy = false;
944 res = gimple_phi_result (phi);
945 ver = SSA_NAME_VERSION (res);
946 register_ssa_partition (map, res);
948 /* Register ssa_names and coalesces between the args and the result
949 of all PHI. */
950 for (i = 0; i < gimple_phi_num_args (phi); i++)
952 edge e = gimple_phi_arg_edge (phi, i);
953 arg = PHI_ARG_DEF (phi, i);
954 if (TREE_CODE (arg) != SSA_NAME)
955 continue;
957 register_ssa_partition (map, arg);
958 if (gimple_can_coalesce_p (arg, res)
959 || (e->flags & EDGE_ABNORMAL))
961 saw_copy = true;
962 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
963 if ((e->flags & EDGE_ABNORMAL) == 0)
965 int cost = coalesce_cost_edge (e);
966 if (cost == 1 && has_single_use (arg))
967 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
968 else
969 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
973 if (saw_copy)
974 bitmap_set_bit (used_in_copy, ver);
977 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
979 stmt = gsi_stmt (gsi);
981 if (is_gimple_debug (stmt))
982 continue;
984 /* Register USE and DEF operands in each statement. */
985 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
986 register_ssa_partition (map, var);
988 /* Check for copy coalesces. */
989 switch (gimple_code (stmt))
991 case GIMPLE_ASSIGN:
993 tree lhs = gimple_assign_lhs (stmt);
994 tree rhs1 = gimple_assign_rhs1 (stmt);
995 if (gimple_assign_ssa_name_copy_p (stmt)
996 && gimple_can_coalesce_p (lhs, rhs1))
998 v1 = SSA_NAME_VERSION (lhs);
999 v2 = SSA_NAME_VERSION (rhs1);
1000 cost = coalesce_cost_bb (bb);
1001 add_coalesce (cl, v1, v2, cost);
1002 bitmap_set_bit (used_in_copy, v1);
1003 bitmap_set_bit (used_in_copy, v2);
1006 break;
1008 case GIMPLE_ASM:
1010 unsigned long noutputs, i;
1011 unsigned long ninputs;
1012 tree *outputs, link;
1013 noutputs = gimple_asm_noutputs (stmt);
1014 ninputs = gimple_asm_ninputs (stmt);
1015 outputs = (tree *) alloca (noutputs * sizeof (tree));
1016 for (i = 0; i < noutputs; ++i)
1018 link = gimple_asm_output_op (stmt, i);
1019 outputs[i] = TREE_VALUE (link);
1022 for (i = 0; i < ninputs; ++i)
1024 const char *constraint;
1025 tree input;
1026 char *end;
1027 unsigned long match;
1029 link = gimple_asm_input_op (stmt, i);
1030 constraint
1031 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1032 input = TREE_VALUE (link);
1034 if (TREE_CODE (input) != SSA_NAME)
1035 continue;
1037 match = strtoul (constraint, &end, 10);
1038 if (match >= noutputs || end == constraint)
1039 continue;
1041 if (TREE_CODE (outputs[match]) != SSA_NAME)
1042 continue;
1044 v1 = SSA_NAME_VERSION (outputs[match]);
1045 v2 = SSA_NAME_VERSION (input);
1047 if (gimple_can_coalesce_p (outputs[match], input))
1049 cost = coalesce_cost (REG_BR_PROB_BASE,
1050 optimize_bb_for_size_p (bb));
1051 add_coalesce (cl, v1, v2, cost);
1052 bitmap_set_bit (used_in_copy, v1);
1053 bitmap_set_bit (used_in_copy, v2);
1056 break;
1059 default:
1060 break;
1065 /* Now process result decls and live on entry variables for entry into
1066 the coalesce list. */
1067 first = NULL_TREE;
1068 for (i = 1; i < num_ssa_names; i++)
1070 var = ssa_name (i);
1071 if (var != NULL_TREE && !virtual_operand_p (var))
1073 /* Add coalesces between all the result decls. */
1074 if (SSA_NAME_VAR (var)
1075 && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1077 if (first == NULL_TREE)
1078 first = var;
1079 else
1081 gcc_assert (gimple_can_coalesce_p (var, first));
1082 v1 = SSA_NAME_VERSION (first);
1083 v2 = SSA_NAME_VERSION (var);
1084 bitmap_set_bit (used_in_copy, v1);
1085 bitmap_set_bit (used_in_copy, v2);
1086 cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
1087 add_coalesce (cl, v1, v2, cost);
1090 /* Mark any default_def variables as being in the coalesce list
1091 since they will have to be coalesced with the base variable. If
1092 not marked as present, they won't be in the coalesce view. */
1093 if (SSA_NAME_IS_DEFAULT_DEF (var)
1094 && !has_zero_uses (var))
1095 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1099 return map;
1103 /* Attempt to coalesce ssa versions X and Y together using the partition
1104 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1105 DEBUG, if it is nun-NULL. */
1107 static inline bool
1108 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1109 FILE *debug)
1111 int z;
1112 tree var1, var2;
1113 int p1, p2;
1115 p1 = var_to_partition (map, ssa_name (x));
1116 p2 = var_to_partition (map, ssa_name (y));
1118 if (debug)
1120 fprintf (debug, "(%d)", x);
1121 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1122 fprintf (debug, " & (%d)", y);
1123 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1126 if (p1 == p2)
1128 if (debug)
1129 fprintf (debug, ": Already Coalesced.\n");
1130 return true;
1133 if (debug)
1134 fprintf (debug, " [map: %d, %d] ", p1, p2);
1137 if (!ssa_conflicts_test_p (graph, p1, p2))
1139 var1 = partition_to_var (map, p1);
1140 var2 = partition_to_var (map, p2);
1141 z = var_union (map, var1, var2);
1142 if (z == NO_PARTITION)
1144 if (debug)
1145 fprintf (debug, ": Unable to perform partition union.\n");
1146 return false;
1149 /* z is the new combined partition. Remove the other partition from
1150 the list, and merge the conflicts. */
1151 if (z == p1)
1152 ssa_conflicts_merge (graph, p1, p2);
1153 else
1154 ssa_conflicts_merge (graph, p2, p1);
1156 if (debug)
1157 fprintf (debug, ": Success -> %d\n", z);
1158 return true;
1161 if (debug)
1162 fprintf (debug, ": Fail due to conflict\n");
1164 return false;
1168 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1169 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1171 static void
1172 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1173 FILE *debug)
1175 int x = 0, y = 0;
1176 tree var1, var2;
1177 int cost;
1178 basic_block bb;
1179 edge e;
1180 edge_iterator ei;
1182 /* First, coalesce all the copies across abnormal edges. These are not placed
1183 in the coalesce list because they do not need to be sorted, and simply
1184 consume extra memory/compilation time in large programs. */
1186 FOR_EACH_BB_FN (bb, cfun)
1188 FOR_EACH_EDGE (e, ei, bb->preds)
1189 if (e->flags & EDGE_ABNORMAL)
1191 gimple_stmt_iterator gsi;
1192 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1193 gsi_next (&gsi))
1195 gimple phi = gsi_stmt (gsi);
1196 tree res = PHI_RESULT (phi);
1197 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1198 int v1 = SSA_NAME_VERSION (res);
1199 int v2 = SSA_NAME_VERSION (arg);
1201 if (debug)
1202 fprintf (debug, "Abnormal coalesce: ");
1204 if (!attempt_coalesce (map, graph, v1, v2, debug))
1205 fail_abnormal_edge_coalesce (v1, v2);
1210 /* Now process the items in the coalesce list. */
1212 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1214 var1 = ssa_name (x);
1215 var2 = ssa_name (y);
1217 /* Assert the coalesces have the same base variable. */
1218 gcc_assert (gimple_can_coalesce_p (var1, var2));
1220 if (debug)
1221 fprintf (debug, "Coalesce list: ");
1222 attempt_coalesce (map, graph, x, y, debug);
1227 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1229 struct ssa_name_var_hash : typed_noop_remove <tree_node>
1231 typedef union tree_node value_type;
1232 typedef union tree_node compare_type;
1233 static inline hashval_t hash (const value_type *);
1234 static inline int equal (const value_type *, const compare_type *);
1237 inline hashval_t
1238 ssa_name_var_hash::hash (const_tree n)
1240 return DECL_UID (SSA_NAME_VAR (n));
1243 inline int
1244 ssa_name_var_hash::equal (const value_type *n1, const compare_type *n2)
1246 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1250 /* Reduce the number of copies by coalescing variables in the function. Return
1251 a partition map with the resulting coalesces. */
1253 extern var_map
1254 coalesce_ssa_name (void)
1256 tree_live_info_p liveinfo;
1257 ssa_conflicts_p graph;
1258 coalesce_list_p cl;
1259 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1260 var_map map;
1261 unsigned int i;
1263 cl = create_coalesce_list ();
1264 map = create_outofssa_var_map (cl, used_in_copies);
1266 /* If optimization is disabled, we need to coalesce all the names originating
1267 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1268 if (!optimize)
1270 hash_table <ssa_name_var_hash> ssa_name_hash;
1272 ssa_name_hash.create (10);
1273 for (i = 1; i < num_ssa_names; i++)
1275 tree a = ssa_name (i);
1277 if (a
1278 && SSA_NAME_VAR (a)
1279 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1280 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1282 tree *slot = ssa_name_hash.find_slot (a, INSERT);
1284 if (!*slot)
1285 *slot = a;
1286 else
1288 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1289 _require_ that all the names originating from it be
1290 coalesced, because there must be a single partition
1291 containing all the names so that it can be assigned
1292 the canonical RTL location of the DECL safely.
1293 If in_lto_p, a function could have been compiled
1294 originally with optimizations and only the link
1295 performed at -O0, so we can't actually require it. */
1296 const int cost
1297 = (TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL || in_lto_p)
1298 ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
1299 add_coalesce (cl, SSA_NAME_VERSION (a),
1300 SSA_NAME_VERSION (*slot), cost);
1301 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1302 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1306 ssa_name_hash.dispose ();
1308 if (dump_file && (dump_flags & TDF_DETAILS))
1309 dump_var_map (dump_file, map);
1311 /* Don't calculate live ranges for variables not in the coalesce list. */
1312 partition_view_bitmap (map, used_in_copies, true);
1313 BITMAP_FREE (used_in_copies);
1315 if (num_var_partitions (map) < 1)
1317 delete_coalesce_list (cl);
1318 return map;
1321 if (dump_file && (dump_flags & TDF_DETAILS))
1322 dump_var_map (dump_file, map);
1324 liveinfo = calculate_live_ranges (map);
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1327 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1329 /* Build a conflict graph. */
1330 graph = build_ssa_conflict_graph (liveinfo);
1331 delete_tree_live_info (liveinfo);
1332 if (dump_file && (dump_flags & TDF_DETAILS))
1333 ssa_conflicts_dump (dump_file, graph);
1335 sort_coalesce_list (cl);
1337 if (dump_file && (dump_flags & TDF_DETAILS))
1339 fprintf (dump_file, "\nAfter sorting:\n");
1340 dump_coalesce_list (dump_file, cl);
1343 /* First, coalesce all live on entry variables to their base variable.
1344 This will ensure the first use is coming from the correct location. */
1346 if (dump_file && (dump_flags & TDF_DETAILS))
1347 dump_var_map (dump_file, map);
1349 /* Now coalesce everything in the list. */
1350 coalesce_partitions (map, graph, cl,
1351 ((dump_flags & TDF_DETAILS) ? dump_file
1352 : NULL));
1354 delete_coalesce_list (cl);
1355 ssa_conflicts_delete (graph);
1357 return map;