1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "diagnostic-core.h"
33 #include "insn-attr.h"
37 /* This structure is used to record liveness information at the targets or
38 fallthrough insns of branches. We will most likely need the information
39 at targets again, so save them in a hash table rather than recomputing them
44 int uid
; /* INSN_UID of target. */
45 struct target_info
*next
; /* Next info for same hash bucket. */
46 HARD_REG_SET live_regs
; /* Registers live at target. */
47 int block
; /* Basic block number containing target. */
48 int bb_tick
; /* Generation count of basic block info. */
51 #define TARGET_HASH_PRIME 257
53 /* Indicates what resources are required at the beginning of the epilogue. */
54 static struct resources start_of_epilogue_needs
;
56 /* Indicates what resources are required at function end. */
57 static struct resources end_of_function_needs
;
59 /* Define the hash table itself. */
60 static struct target_info
**target_hash_table
= NULL
;
62 /* For each basic block, we maintain a generation number of its basic
63 block info, which is updated each time we move an insn from the
64 target of a jump. This is the generation number indexed by block
69 /* Marks registers possibly live at the current place being scanned by
70 mark_target_live_regs. Also used by update_live_status. */
72 static HARD_REG_SET current_live_regs
;
74 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
75 Also only used by the next two functions. */
77 static HARD_REG_SET pending_dead_regs
;
79 static void update_live_status (rtx
, const_rtx
, void *);
80 static int find_basic_block (rtx_insn
*, int);
81 static rtx_insn
*next_insn_no_annul (rtx_insn
*);
82 static rtx_insn
*find_dead_or_set_registers (rtx_insn
*, struct resources
*,
83 rtx
*, int, struct resources
,
86 /* Utility function called from mark_target_live_regs via note_stores.
87 It deadens any CLOBBERed registers and livens any SET registers. */
90 update_live_status (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
92 int first_regno
, last_regno
;
96 && (GET_CODE (dest
) != SUBREG
|| !REG_P (SUBREG_REG (dest
))))
99 if (GET_CODE (dest
) == SUBREG
)
101 first_regno
= subreg_regno (dest
);
102 last_regno
= first_regno
+ subreg_nregs (dest
);
107 first_regno
= REGNO (dest
);
108 last_regno
= END_REGNO (dest
);
111 if (GET_CODE (x
) == CLOBBER
)
112 for (i
= first_regno
; i
< last_regno
; i
++)
113 CLEAR_HARD_REG_BIT (current_live_regs
, i
);
115 for (i
= first_regno
; i
< last_regno
; i
++)
117 SET_HARD_REG_BIT (current_live_regs
, i
);
118 CLEAR_HARD_REG_BIT (pending_dead_regs
, i
);
122 /* Find the number of the basic block with correct live register
123 information that starts closest to INSN. Return -1 if we couldn't
124 find such a basic block or the beginning is more than
125 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 The delay slot filling code destroys the control-flow graph so,
129 instead of finding the basic block containing INSN, we search
130 backwards toward a BARRIER where the live register information is
134 find_basic_block (rtx_insn
*insn
, int search_limit
)
136 /* Scan backwards to the previous BARRIER. Then see if we can find a
137 label that starts a basic block. Return the basic block number. */
138 for (insn
= prev_nonnote_insn (insn
);
139 insn
&& !BARRIER_P (insn
) && search_limit
!= 0;
140 insn
= prev_nonnote_insn (insn
), --search_limit
)
143 /* The closest BARRIER is too far away. */
144 if (search_limit
== 0)
147 /* The start of the function. */
149 return ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
->index
;
151 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
152 anything other than a CODE_LABEL or note, we can't find this code. */
153 for (insn
= next_nonnote_insn (insn
);
154 insn
&& LABEL_P (insn
);
155 insn
= next_nonnote_insn (insn
))
156 if (BLOCK_FOR_INSN (insn
))
157 return BLOCK_FOR_INSN (insn
)->index
;
162 /* Similar to next_insn, but ignores insns in the delay slots of
163 an annulled branch. */
166 next_insn_no_annul (rtx_insn
*insn
)
170 /* If INSN is an annulled branch, skip any insns from the target
173 && INSN_ANNULLED_BRANCH_P (insn
)
174 && NEXT_INSN (PREV_INSN (insn
)) != insn
)
176 rtx_insn
*next
= NEXT_INSN (insn
);
178 while ((NONJUMP_INSN_P (next
) || JUMP_P (next
) || CALL_P (next
))
179 && INSN_FROM_TARGET_P (next
))
182 next
= NEXT_INSN (insn
);
186 insn
= NEXT_INSN (insn
);
187 if (insn
&& NONJUMP_INSN_P (insn
)
188 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
189 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
195 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
196 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
197 is TRUE, resources used by the called routine will be included for
201 mark_referenced_resources (rtx x
, struct resources
*res
,
202 bool include_delayed_effects
)
204 enum rtx_code code
= GET_CODE (x
);
207 const char *format_ptr
;
209 /* Handle leaf items for which we set resource flags. Also, special-case
210 CALL, SET and CLOBBER operators. */
221 if (!REG_P (SUBREG_REG (x
)))
222 mark_referenced_resources (SUBREG_REG (x
), res
, false);
225 unsigned int regno
= subreg_regno (x
);
226 unsigned int last_regno
= regno
+ subreg_nregs (x
);
228 gcc_assert (last_regno
<= FIRST_PSEUDO_REGISTER
);
229 for (r
= regno
; r
< last_regno
; r
++)
230 SET_HARD_REG_BIT (res
->regs
, r
);
235 gcc_assert (HARD_REGISTER_P (x
));
236 add_to_hard_reg_set (&res
->regs
, GET_MODE (x
), REGNO (x
));
240 /* If this memory shouldn't change, it really isn't referencing
242 if (! MEM_READONLY_P (x
))
244 res
->volatil
|= MEM_VOLATILE_P (x
);
246 /* Mark registers used to access memory. */
247 mark_referenced_resources (XEXP (x
, 0), res
, false);
254 case UNSPEC_VOLATILE
:
257 /* Traditional asm's are always volatile. */
262 res
->volatil
|= MEM_VOLATILE_P (x
);
264 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
265 We can not just fall through here since then we would be confused
266 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
267 traditional asms unlike their normal usage. */
269 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
270 mark_referenced_resources (ASM_OPERANDS_INPUT (x
, i
), res
, false);
274 /* The first operand will be a (MEM (xxx)) but doesn't really reference
275 memory. The second operand may be referenced, though. */
276 mark_referenced_resources (XEXP (XEXP (x
, 0), 0), res
, false);
277 mark_referenced_resources (XEXP (x
, 1), res
, false);
281 /* Usually, the first operand of SET is set, not referenced. But
282 registers used to access memory are referenced. SET_DEST is
283 also referenced if it is a ZERO_EXTRACT. */
285 mark_referenced_resources (SET_SRC (x
), res
, false);
288 if (GET_CODE (x
) == ZERO_EXTRACT
289 || GET_CODE (x
) == STRICT_LOW_PART
)
290 mark_referenced_resources (x
, res
, false);
291 else if (GET_CODE (x
) == SUBREG
)
294 mark_referenced_resources (XEXP (x
, 0), res
, false);
301 if (include_delayed_effects
)
303 /* A CALL references memory, the frame pointer if it exists, the
304 stack pointer, any global registers and any registers given in
305 USE insns immediately in front of the CALL.
307 However, we may have moved some of the parameter loading insns
308 into the delay slot of this CALL. If so, the USE's for them
309 don't count and should be skipped. */
310 rtx_insn
*insn
= PREV_INSN (as_a
<rtx_insn
*> (x
));
311 rtx_sequence
*sequence
= 0;
315 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
316 if (NEXT_INSN (insn
) != x
)
318 sequence
= as_a
<rtx_sequence
*> (PATTERN (NEXT_INSN (insn
)));
319 seq_size
= sequence
->len ();
320 gcc_assert (GET_CODE (sequence
) == SEQUENCE
);
324 SET_HARD_REG_BIT (res
->regs
, STACK_POINTER_REGNUM
);
325 if (frame_pointer_needed
)
327 SET_HARD_REG_BIT (res
->regs
, FRAME_POINTER_REGNUM
);
328 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
329 SET_HARD_REG_BIT (res
->regs
, HARD_FRAME_POINTER_REGNUM
);
332 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
334 SET_HARD_REG_BIT (res
->regs
, i
);
336 /* Check for a REG_SETJMP. If it exists, then we must
337 assume that this call can need any register.
339 This is done to be more conservative about how we handle setjmp.
340 We assume that they both use and set all registers. Using all
341 registers ensures that a register will not be considered dead
342 just because it crosses a setjmp call. A register should be
343 considered dead only if the setjmp call returns nonzero. */
344 if (find_reg_note (x
, REG_SETJMP
, NULL
))
345 SET_HARD_REG_SET (res
->regs
);
350 for (link
= CALL_INSN_FUNCTION_USAGE (x
);
352 link
= XEXP (link
, 1))
353 if (GET_CODE (XEXP (link
, 0)) == USE
)
355 for (i
= 1; i
< seq_size
; i
++)
357 rtx slot_pat
= PATTERN (sequence
->element (i
));
358 if (GET_CODE (slot_pat
) == SET
359 && rtx_equal_p (SET_DEST (slot_pat
),
360 XEXP (XEXP (link
, 0), 0)))
364 mark_referenced_resources (XEXP (XEXP (link
, 0), 0),
370 /* ... fall through to other INSN processing ... */
375 if (GET_CODE (PATTERN (x
)) == COND_EXEC
)
376 /* In addition to the usual references, also consider all outputs
377 as referenced, to compensate for mark_set_resources treating
378 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
379 handling, execpt that we got a partial incidence instead of a partial
381 mark_set_resources (x
, res
, 0,
382 include_delayed_effects
383 ? MARK_SRC_DEST_CALL
: MARK_SRC_DEST
);
385 if (! include_delayed_effects
386 && INSN_REFERENCES_ARE_DELAYED (as_a
<rtx_insn
*> (x
)))
389 /* No special processing, just speed up. */
390 mark_referenced_resources (PATTERN (x
), res
, include_delayed_effects
);
397 /* Process each sub-expression and flag what it needs. */
398 format_ptr
= GET_RTX_FORMAT (code
);
399 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
400 switch (*format_ptr
++)
403 mark_referenced_resources (XEXP (x
, i
), res
, include_delayed_effects
);
407 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
408 mark_referenced_resources (XVECEXP (x
, i
, j
), res
,
409 include_delayed_effects
);
414 /* A subroutine of mark_target_live_regs. Search forward from TARGET
415 looking for registers that are set before they are used. These are dead.
416 Stop after passing a few conditional jumps, and/or a small
417 number of unconditional branches. */
420 find_dead_or_set_registers (rtx_insn
*target
, struct resources
*res
,
421 rtx
*jump_target
, int jump_count
,
422 struct resources set
, struct resources needed
)
424 HARD_REG_SET scratch
;
427 rtx_insn
*jump_insn
= 0;
430 for (insn
= target
; insn
; insn
= next_insn
)
432 rtx_insn
*this_insn
= insn
;
434 next_insn
= NEXT_INSN (insn
);
436 /* If this instruction can throw an exception, then we don't
437 know where we might end up next. That means that we have to
438 assume that whatever we have already marked as live really is
440 if (can_throw_internal (insn
))
443 switch (GET_CODE (insn
))
446 /* After a label, any pending dead registers that weren't yet
447 used can be made dead. */
448 AND_COMPL_HARD_REG_SET (pending_dead_regs
, needed
.regs
);
449 AND_COMPL_HARD_REG_SET (res
->regs
, pending_dead_regs
);
450 CLEAR_HARD_REG_SET (pending_dead_regs
);
459 if (GET_CODE (PATTERN (insn
)) == USE
)
461 /* If INSN is a USE made by update_block, we care about the
462 underlying insn. Any registers set by the underlying insn
463 are live since the insn is being done somewhere else. */
464 if (INSN_P (XEXP (PATTERN (insn
), 0)))
465 mark_set_resources (XEXP (PATTERN (insn
), 0), res
, 0,
468 /* All other USE insns are to be ignored. */
471 else if (GET_CODE (PATTERN (insn
)) == CLOBBER
)
473 else if (rtx_sequence
*seq
=
474 dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
476 /* An unconditional jump can be used to fill the delay slot
477 of a call, so search for a JUMP_INSN in any position. */
478 for (i
= 0; i
< seq
->len (); i
++)
480 this_insn
= seq
->insn (i
);
481 if (JUMP_P (this_insn
))
490 if (rtx_jump_insn
*this_jump_insn
=
491 dyn_cast
<rtx_jump_insn
*> (this_insn
))
493 if (jump_count
++ < 10)
495 if (any_uncondjump_p (this_jump_insn
)
496 || ANY_RETURN_P (PATTERN (this_jump_insn
)))
498 rtx lab_or_return
= this_jump_insn
->jump_label ();
499 if (ANY_RETURN_P (lab_or_return
))
502 next_insn
= as_a
<rtx_insn
*> (lab_or_return
);
507 *jump_target
= JUMP_LABEL (this_jump_insn
);
510 else if (any_condjump_p (this_jump_insn
))
512 struct resources target_set
, target_res
;
513 struct resources fallthrough_res
;
515 /* We can handle conditional branches here by following
516 both paths, and then IOR the results of the two paths
517 together, which will give us registers that are dead
518 on both paths. Since this is expensive, we give it
519 a much higher cost than unconditional branches. The
520 cost was chosen so that we will follow at most 1
521 conditional branch. */
524 if (jump_count
>= 10)
527 mark_referenced_resources (insn
, &needed
, true);
529 /* For an annulled branch, mark_set_resources ignores slots
530 filled by instructions from the target. This is correct
531 if the branch is not taken. Since we are following both
532 paths from the branch, we must also compute correct info
533 if the branch is taken. We do this by inverting all of
534 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
535 and then inverting the INSN_FROM_TARGET_P bits again. */
537 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
538 && INSN_ANNULLED_BRANCH_P (this_jump_insn
))
540 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (PATTERN (insn
));
541 for (i
= 1; i
< seq
->len (); i
++)
542 INSN_FROM_TARGET_P (seq
->element (i
))
543 = ! INSN_FROM_TARGET_P (seq
->element (i
));
546 mark_set_resources (insn
, &target_set
, 0,
549 for (i
= 1; i
< seq
->len (); i
++)
550 INSN_FROM_TARGET_P (seq
->element (i
))
551 = ! INSN_FROM_TARGET_P (seq
->element (i
));
553 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
557 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
562 COPY_HARD_REG_SET (scratch
, target_set
.regs
);
563 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
564 AND_COMPL_HARD_REG_SET (target_res
.regs
, scratch
);
566 fallthrough_res
= *res
;
567 COPY_HARD_REG_SET (scratch
, set
.regs
);
568 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
569 AND_COMPL_HARD_REG_SET (fallthrough_res
.regs
, scratch
);
571 if (!ANY_RETURN_P (this_jump_insn
->jump_label ()))
572 find_dead_or_set_registers
573 (this_jump_insn
->jump_target (),
574 &target_res
, 0, jump_count
, target_set
, needed
);
575 find_dead_or_set_registers (next_insn
,
576 &fallthrough_res
, 0, jump_count
,
578 IOR_HARD_REG_SET (fallthrough_res
.regs
, target_res
.regs
);
579 AND_HARD_REG_SET (res
->regs
, fallthrough_res
.regs
);
587 /* Don't try this optimization if we expired our jump count
588 above, since that would mean there may be an infinite loop
589 in the function being compiled. */
595 mark_referenced_resources (insn
, &needed
, true);
596 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
598 COPY_HARD_REG_SET (scratch
, set
.regs
);
599 AND_COMPL_HARD_REG_SET (scratch
, needed
.regs
);
600 AND_COMPL_HARD_REG_SET (res
->regs
, scratch
);
606 /* Given X, a part of an insn, and a pointer to a `struct resource',
607 RES, indicate which resources are modified by the insn. If
608 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
609 set by the called routine.
611 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
612 objects are being referenced instead of set.
614 We never mark the insn as modifying the condition code unless it explicitly
615 SETs CC0 even though this is not totally correct. The reason for this is
616 that we require a SET of CC0 to immediately precede the reference to CC0.
617 So if some other insn sets CC0 as a side-effect, we know it cannot affect
618 our computation and thus may be placed in a delay slot. */
621 mark_set_resources (rtx x
, struct resources
*res
, int in_dest
,
622 enum mark_resource_type mark_type
)
627 const char *format_ptr
;
644 /* These don't set any resources. */
653 /* Called routine modifies the condition code, memory, any registers
654 that aren't saved across calls, global registers and anything
655 explicitly CLOBBERed immediately after the CALL_INSN. */
657 if (mark_type
== MARK_SRC_DEST_CALL
)
659 rtx_call_insn
*call_insn
= as_a
<rtx_call_insn
*> (x
);
663 res
->cc
= res
->memory
= 1;
665 get_call_reg_set_usage (call_insn
, ®s
, regs_invalidated_by_call
);
666 IOR_HARD_REG_SET (res
->regs
, regs
);
668 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
669 link
; link
= XEXP (link
, 1))
670 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
671 mark_set_resources (SET_DEST (XEXP (link
, 0)), res
, 1,
674 /* Check for a REG_SETJMP. If it exists, then we must
675 assume that this call can clobber any register. */
676 if (find_reg_note (call_insn
, REG_SETJMP
, NULL
))
677 SET_HARD_REG_SET (res
->regs
);
680 /* ... and also what its RTL says it modifies, if anything. */
685 /* An insn consisting of just a CLOBBER (or USE) is just for flow
686 and doesn't actually do anything, so we ignore it. */
688 if (mark_type
!= MARK_SRC_DEST_CALL
689 && INSN_SETS_ARE_DELAYED (as_a
<rtx_insn
*> (x
)))
693 if (GET_CODE (x
) != USE
&& GET_CODE (x
) != CLOBBER
)
698 /* If the source of a SET is a CALL, this is actually done by
699 the called routine. So only include it if we are to include the
700 effects of the calling routine. */
702 mark_set_resources (SET_DEST (x
), res
,
703 (mark_type
== MARK_SRC_DEST_CALL
704 || GET_CODE (SET_SRC (x
)) != CALL
),
707 mark_set_resources (SET_SRC (x
), res
, 0, MARK_SRC_DEST
);
711 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
716 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
717 rtx control
= seq
->element (0);
718 bool annul_p
= JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
);
720 mark_set_resources (control
, res
, 0, mark_type
);
721 for (i
= seq
->len () - 1; i
>= 0; --i
)
723 rtx elt
= seq
->element (i
);
724 if (!annul_p
&& INSN_FROM_TARGET_P (elt
))
725 mark_set_resources (elt
, res
, 0, mark_type
);
734 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
739 mark_set_resources (XEXP (x
, 0), res
, 1, MARK_SRC_DEST
);
740 mark_set_resources (XEXP (XEXP (x
, 1), 0), res
, 0, MARK_SRC_DEST
);
741 mark_set_resources (XEXP (XEXP (x
, 1), 1), res
, 0, MARK_SRC_DEST
);
746 mark_set_resources (XEXP (x
, 0), res
, in_dest
, MARK_SRC_DEST
);
747 mark_set_resources (XEXP (x
, 1), res
, 0, MARK_SRC_DEST
);
748 mark_set_resources (XEXP (x
, 2), res
, 0, MARK_SRC_DEST
);
755 res
->volatil
|= MEM_VOLATILE_P (x
);
758 mark_set_resources (XEXP (x
, 0), res
, 0, MARK_SRC_DEST
);
764 if (!REG_P (SUBREG_REG (x
)))
765 mark_set_resources (SUBREG_REG (x
), res
, in_dest
, mark_type
);
768 unsigned int regno
= subreg_regno (x
);
769 unsigned int last_regno
= regno
+ subreg_nregs (x
);
771 gcc_assert (last_regno
<= FIRST_PSEUDO_REGISTER
);
772 for (r
= regno
; r
< last_regno
; r
++)
773 SET_HARD_REG_BIT (res
->regs
, r
);
781 gcc_assert (HARD_REGISTER_P (x
));
782 add_to_hard_reg_set (&res
->regs
, GET_MODE (x
), REGNO (x
));
786 case UNSPEC_VOLATILE
:
788 /* Traditional asm's are always volatile. */
797 res
->volatil
|= MEM_VOLATILE_P (x
);
799 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
800 We can not just fall through here since then we would be confused
801 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
802 traditional asms unlike their normal usage. */
804 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
805 mark_set_resources (ASM_OPERANDS_INPUT (x
, i
), res
, in_dest
,
813 /* Process each sub-expression and flag what it needs. */
814 format_ptr
= GET_RTX_FORMAT (code
);
815 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
816 switch (*format_ptr
++)
819 mark_set_resources (XEXP (x
, i
), res
, in_dest
, mark_type
);
823 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
824 mark_set_resources (XVECEXP (x
, i
, j
), res
, in_dest
, mark_type
);
829 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
832 return_insn_p (const_rtx insn
)
834 if (JUMP_P (insn
) && ANY_RETURN_P (PATTERN (insn
)))
837 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
838 return return_insn_p (XVECEXP (PATTERN (insn
), 0, 0));
843 /* Set the resources that are live at TARGET.
845 If TARGET is zero, we refer to the end of the current function and can
846 return our precomputed value.
848 Otherwise, we try to find out what is live by consulting the basic block
849 information. This is tricky, because we must consider the actions of
850 reload and jump optimization, which occur after the basic block information
853 Accordingly, we proceed as follows::
855 We find the previous BARRIER and look at all immediately following labels
856 (with no intervening active insns) to see if any of them start a basic
857 block. If we hit the start of the function first, we use block 0.
859 Once we have found a basic block and a corresponding first insn, we can
860 accurately compute the live status (by starting at a label following a
861 BARRIER, we are immune to actions taken by reload and jump.) Then we
862 scan all insns between that point and our target. For each CLOBBER (or
863 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
864 registers are dead. For a SET, mark them as live.
866 We have to be careful when using REG_DEAD notes because they are not
867 updated by such things as find_equiv_reg. So keep track of registers
868 marked as dead that haven't been assigned to, and mark them dead at the
869 next CODE_LABEL since reload and jump won't propagate values across labels.
871 If we cannot find the start of a basic block (should be a very rare
872 case, if it can happen at all), mark everything as potentially live.
874 Next, scan forward from TARGET looking for things set or clobbered
875 before they are used. These are not live.
877 Because we can be called many times on the same target, save our results
878 in a hash table indexed by INSN_UID. This is only done if the function
879 init_resource_info () was invoked before we are called. */
882 mark_target_live_regs (rtx_insn
*insns
, rtx target_maybe_return
, struct resources
*res
)
886 struct target_info
*tinfo
= NULL
;
889 HARD_REG_SET scratch
;
890 struct resources set
, needed
;
892 /* Handle end of function. */
893 if (target_maybe_return
== 0 || ANY_RETURN_P (target_maybe_return
))
895 *res
= end_of_function_needs
;
899 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
901 rtx_insn
*target
= as_a
<rtx_insn
*> (target_maybe_return
);
903 /* Handle return insn. */
904 if (return_insn_p (target
))
906 *res
= end_of_function_needs
;
907 mark_referenced_resources (target
, res
, false);
911 /* We have to assume memory is needed, but the CC isn't. */
916 /* See if we have computed this value already. */
917 if (target_hash_table
!= NULL
)
919 for (tinfo
= target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
];
920 tinfo
; tinfo
= tinfo
->next
)
921 if (tinfo
->uid
== INSN_UID (target
))
924 /* Start by getting the basic block number. If we have saved
925 information, we can get it from there unless the insn at the
926 start of the basic block has been deleted. */
927 if (tinfo
&& tinfo
->block
!= -1
928 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun
, tinfo
->block
))->deleted ())
933 b
= find_basic_block (target
, MAX_DELAY_SLOT_LIVE_SEARCH
);
935 if (target_hash_table
!= NULL
)
939 /* If the information is up-to-date, use it. Otherwise, we will
941 if (b
== tinfo
->block
&& b
!= -1 && tinfo
->bb_tick
== bb_ticks
[b
])
943 COPY_HARD_REG_SET (res
->regs
, tinfo
->live_regs
);
949 /* Allocate a place to put our results and chain it into the
951 tinfo
= XNEW (struct target_info
);
952 tinfo
->uid
= INSN_UID (target
);
955 = target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
];
956 target_hash_table
[INSN_UID (target
) % TARGET_HASH_PRIME
] = tinfo
;
960 CLEAR_HARD_REG_SET (pending_dead_regs
);
962 /* If we found a basic block, get the live registers from it and update
963 them with anything set or killed between its start and the insn before
964 TARGET; this custom life analysis is really about registers so we need
965 to use the LR problem. Otherwise, we must assume everything is live. */
968 regset regs_live
= DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun
, b
));
969 rtx_insn
*start_insn
, *stop_insn
;
971 /* Compute hard regs live at start of block. */
972 REG_SET_TO_HARD_REG_SET (current_live_regs
, regs_live
);
974 /* Get starting and ending insn, handling the case where each might
976 start_insn
= (b
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
->index
?
977 insns
: BB_HEAD (BASIC_BLOCK_FOR_FN (cfun
, b
)));
980 if (NONJUMP_INSN_P (start_insn
)
981 && GET_CODE (PATTERN (start_insn
)) == SEQUENCE
)
982 start_insn
= as_a
<rtx_sequence
*> (PATTERN (start_insn
))->insn (0);
984 if (NONJUMP_INSN_P (stop_insn
)
985 && GET_CODE (PATTERN (stop_insn
)) == SEQUENCE
)
986 stop_insn
= next_insn (PREV_INSN (stop_insn
));
988 for (insn
= start_insn
; insn
!= stop_insn
;
989 insn
= next_insn_no_annul (insn
))
992 rtx_insn
*real_insn
= insn
;
993 enum rtx_code code
= GET_CODE (insn
);
995 if (DEBUG_INSN_P (insn
))
998 /* If this insn is from the target of a branch, it isn't going to
999 be used in the sequel. If it is used in both cases, this
1000 test will not be true. */
1001 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
1002 && INSN_FROM_TARGET_P (insn
))
1005 /* If this insn is a USE made by update_block, we care about the
1008 && GET_CODE (PATTERN (insn
)) == USE
1009 && INSN_P (XEXP (PATTERN (insn
), 0)))
1010 real_insn
= as_a
<rtx_insn
*> (XEXP (PATTERN (insn
), 0));
1012 if (CALL_P (real_insn
))
1014 /* Values in call-clobbered registers survive a COND_EXEC CALL
1015 if that is not executed; this matters for resoure use because
1016 they may be used by a complementarily (or more strictly)
1017 predicated instruction, or if the CALL is NORETURN. */
1018 if (GET_CODE (PATTERN (real_insn
)) != COND_EXEC
)
1020 HARD_REG_SET regs_invalidated_by_this_call
;
1021 get_call_reg_set_usage (real_insn
,
1022 ®s_invalidated_by_this_call
,
1023 regs_invalidated_by_call
);
1024 /* CALL clobbers all call-used regs that aren't fixed except
1025 sp, ap, and fp. Do this before setting the result of the
1027 AND_COMPL_HARD_REG_SET (current_live_regs
,
1028 regs_invalidated_by_this_call
);
1031 /* A CALL_INSN sets any global register live, since it may
1032 have been modified by the call. */
1033 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1035 SET_HARD_REG_BIT (current_live_regs
, i
);
1038 /* Mark anything killed in an insn to be deadened at the next
1039 label. Ignore USE insns; the only REG_DEAD notes will be for
1040 parameters. But they might be early. A CALL_INSN will usually
1041 clobber registers used for parameters. It isn't worth bothering
1042 with the unlikely case when it won't. */
1043 if ((NONJUMP_INSN_P (real_insn
)
1044 && GET_CODE (PATTERN (real_insn
)) != USE
1045 && GET_CODE (PATTERN (real_insn
)) != CLOBBER
)
1046 || JUMP_P (real_insn
)
1047 || CALL_P (real_insn
))
1049 for (link
= REG_NOTES (real_insn
); link
; link
= XEXP (link
, 1))
1050 if (REG_NOTE_KIND (link
) == REG_DEAD
1051 && REG_P (XEXP (link
, 0))
1052 && REGNO (XEXP (link
, 0)) < FIRST_PSEUDO_REGISTER
)
1053 add_to_hard_reg_set (&pending_dead_regs
,
1054 GET_MODE (XEXP (link
, 0)),
1055 REGNO (XEXP (link
, 0)));
1057 note_stores (PATTERN (real_insn
), update_live_status
, NULL
);
1059 /* If any registers were unused after this insn, kill them.
1060 These notes will always be accurate. */
1061 for (link
= REG_NOTES (real_insn
); link
; link
= XEXP (link
, 1))
1062 if (REG_NOTE_KIND (link
) == REG_UNUSED
1063 && REG_P (XEXP (link
, 0))
1064 && REGNO (XEXP (link
, 0)) < FIRST_PSEUDO_REGISTER
)
1065 remove_from_hard_reg_set (¤t_live_regs
,
1066 GET_MODE (XEXP (link
, 0)),
1067 REGNO (XEXP (link
, 0)));
1070 else if (LABEL_P (real_insn
))
1074 /* A label clobbers the pending dead registers since neither
1075 reload nor jump will propagate a value across a label. */
1076 AND_COMPL_HARD_REG_SET (current_live_regs
, pending_dead_regs
);
1077 CLEAR_HARD_REG_SET (pending_dead_regs
);
1079 /* We must conservatively assume that all registers that used
1080 to be live here still are. The fallthrough edge may have
1081 left a live register uninitialized. */
1082 bb
= BLOCK_FOR_INSN (real_insn
);
1085 HARD_REG_SET extra_live
;
1087 REG_SET_TO_HARD_REG_SET (extra_live
, DF_LR_IN (bb
));
1088 IOR_HARD_REG_SET (current_live_regs
, extra_live
);
1092 /* The beginning of the epilogue corresponds to the end of the
1093 RTL chain when there are no epilogue insns. Certain resources
1094 are implicitly required at that point. */
1095 else if (NOTE_P (real_insn
)
1096 && NOTE_KIND (real_insn
) == NOTE_INSN_EPILOGUE_BEG
)
1097 IOR_HARD_REG_SET (current_live_regs
, start_of_epilogue_needs
.regs
);
1100 COPY_HARD_REG_SET (res
->regs
, current_live_regs
);
1104 tinfo
->bb_tick
= bb_ticks
[b
];
1108 /* We didn't find the start of a basic block. Assume everything
1109 in use. This should happen only extremely rarely. */
1110 SET_HARD_REG_SET (res
->regs
);
1112 CLEAR_RESOURCE (&set
);
1113 CLEAR_RESOURCE (&needed
);
1115 rtx_insn
*jump_insn
= find_dead_or_set_registers (target
, res
, &jump_target
,
1118 /* If we hit an unconditional branch, we have another way of finding out
1119 what is live: we can see what is live at the branch target and include
1120 anything used but not set before the branch. We add the live
1121 resources found using the test below to those found until now. */
1125 struct resources new_resources
;
1126 rtx_insn
*stop_insn
= next_active_insn (jump_insn
);
1128 if (!ANY_RETURN_P (jump_target
))
1129 jump_target
= next_active_insn (jump_target
);
1130 mark_target_live_regs (insns
, jump_target
, &new_resources
);
1131 CLEAR_RESOURCE (&set
);
1132 CLEAR_RESOURCE (&needed
);
1134 /* Include JUMP_INSN in the needed registers. */
1135 for (insn
= target
; insn
!= stop_insn
; insn
= next_active_insn (insn
))
1137 mark_referenced_resources (insn
, &needed
, true);
1139 COPY_HARD_REG_SET (scratch
, needed
.regs
);
1140 AND_COMPL_HARD_REG_SET (scratch
, set
.regs
);
1141 IOR_HARD_REG_SET (new_resources
.regs
, scratch
);
1143 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1146 IOR_HARD_REG_SET (res
->regs
, new_resources
.regs
);
1151 COPY_HARD_REG_SET (tinfo
->live_regs
, res
->regs
);
1155 /* Initialize the resources required by mark_target_live_regs ().
1156 This should be invoked before the first call to mark_target_live_regs. */
1159 init_resource_info (rtx_insn
*epilogue_insn
)
1164 /* Indicate what resources are required to be valid at the end of the current
1165 function. The condition code never is and memory always is.
1166 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1167 and there is an epilogue that restores the original stack pointer
1168 from the frame pointer. Registers used to return the function value
1169 are needed. Registers holding global variables are needed. */
1171 end_of_function_needs
.cc
= 0;
1172 end_of_function_needs
.memory
= 1;
1173 CLEAR_HARD_REG_SET (end_of_function_needs
.regs
);
1175 if (frame_pointer_needed
)
1177 SET_HARD_REG_BIT (end_of_function_needs
.regs
, FRAME_POINTER_REGNUM
);
1178 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
1179 SET_HARD_REG_BIT (end_of_function_needs
.regs
,
1180 HARD_FRAME_POINTER_REGNUM
);
1182 if (!(frame_pointer_needed
1183 && EXIT_IGNORE_STACK
1185 && !crtl
->sp_is_unchanging
))
1186 SET_HARD_REG_BIT (end_of_function_needs
.regs
, STACK_POINTER_REGNUM
);
1188 if (crtl
->return_rtx
!= 0)
1189 mark_referenced_resources (crtl
->return_rtx
,
1190 &end_of_function_needs
, true);
1192 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1193 if (global_regs
[i
] || EPILOGUE_USES (i
))
1194 SET_HARD_REG_BIT (end_of_function_needs
.regs
, i
);
1196 /* The registers required to be live at the end of the function are
1197 represented in the flow information as being dead just prior to
1198 reaching the end of the function. For example, the return of a value
1199 might be represented by a USE of the return register immediately
1200 followed by an unconditional jump to the return label where the
1201 return label is the end of the RTL chain. The end of the RTL chain
1202 is then taken to mean that the return register is live.
1204 This sequence is no longer maintained when epilogue instructions are
1205 added to the RTL chain. To reconstruct the original meaning, the
1206 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1207 point where these registers become live (start_of_epilogue_needs).
1208 If epilogue instructions are present, the registers set by those
1209 instructions won't have been processed by flow. Thus, those
1210 registers are additionally required at the end of the RTL chain
1211 (end_of_function_needs). */
1213 start_of_epilogue_needs
= end_of_function_needs
;
1215 while ((epilogue_insn
= next_nonnote_insn (epilogue_insn
)))
1217 mark_set_resources (epilogue_insn
, &end_of_function_needs
, 0,
1218 MARK_SRC_DEST_CALL
);
1219 if (return_insn_p (epilogue_insn
))
1223 /* Allocate and initialize the tables used by mark_target_live_regs. */
1224 target_hash_table
= XCNEWVEC (struct target_info
*, TARGET_HASH_PRIME
);
1225 bb_ticks
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
1227 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1228 FOR_EACH_BB_FN (bb
, cfun
)
1229 if (LABEL_P (BB_HEAD (bb
)))
1230 BLOCK_FOR_INSN (BB_HEAD (bb
)) = bb
;
1233 /* Free up the resources allocated to mark_target_live_regs (). This
1234 should be invoked after the last call to mark_target_live_regs (). */
1237 free_resource_info (void)
1241 if (target_hash_table
!= NULL
)
1245 for (i
= 0; i
< TARGET_HASH_PRIME
; ++i
)
1247 struct target_info
*ti
= target_hash_table
[i
];
1251 struct target_info
*next
= ti
->next
;
1257 free (target_hash_table
);
1258 target_hash_table
= NULL
;
1261 if (bb_ticks
!= NULL
)
1267 FOR_EACH_BB_FN (bb
, cfun
)
1268 if (LABEL_P (BB_HEAD (bb
)))
1269 BLOCK_FOR_INSN (BB_HEAD (bb
)) = NULL
;
1272 /* Clear any hashed information that we have stored for INSN. */
1275 clear_hashed_info_for_insn (rtx_insn
*insn
)
1277 struct target_info
*tinfo
;
1279 if (target_hash_table
!= NULL
)
1281 for (tinfo
= target_hash_table
[INSN_UID (insn
) % TARGET_HASH_PRIME
];
1282 tinfo
; tinfo
= tinfo
->next
)
1283 if (tinfo
->uid
== INSN_UID (insn
))
1291 /* Increment the tick count for the basic block that contains INSN. */
1294 incr_ticks_for_insn (rtx_insn
*insn
)
1296 int b
= find_basic_block (insn
, MAX_DELAY_SLOT_LIVE_SEARCH
);
1302 /* Add TRIAL to the set of resources used at the end of the current
1305 mark_end_of_function_resources (rtx trial
, bool include_delayed_effects
)
1307 mark_referenced_resources (trial
, &end_of_function_needs
,
1308 include_delayed_effects
);