2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
12 /* Modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, see
31 <http://www.gnu.org/licenses/>. */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
59 #include "quadmath-imp.h"
61 static const __float128
62 invsqrtpi
= 5.6418958354775628694807945156077258584405E-1Q
,
69 jnq (int n
, __float128 x
)
73 __float128 a
, b
, temp
, di
, ret
;
78 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
79 * Thus, J(-n,x) = J(n,-x)
86 /* if J(n,NaN) is NaN */
89 if ((u
.words32
.w0
& 0xffff) | u
.words32
.w1
| u
.words32
.w2
| u
.words32
.w3
)
103 sgn
= (n
& 1) & (se
>> 31); /* even n -- 0, odd n -- sign(x) */
107 SET_RESTORE_ROUNDF128 (FE_TONEAREST
);
108 if (x
== 0 || ix
>= 0x7fff0000) /* if x is 0 or inf */
109 return sgn
== 1 ? -zero
: zero
;
110 else if ((__float128
) n
<= x
)
112 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
113 if (ix
>= 0x412D0000)
116 /* ??? Could use an expansion for large x here. */
119 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
120 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
121 * Let s=sin(x), c=cos(x),
122 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
124 * n sin(xn)*sqt2 cos(xn)*sqt2
125 * ----------------------------------
149 b
= invsqrtpi
* temp
/ sqrtq (x
);
155 for (i
= 1; i
< n
; i
++)
158 b
= b
* ((__float128
) (i
+ i
) / x
) - a
; /* avoid underflow */
167 /* x is tiny, return the first Taylor expansion of J(n,x)
168 * J(n,x) = 1/n!*(x/2)^n - ...
170 if (n
>= 400) /* underflow, result < 10^-4952 */
176 for (a
= one
, i
= 2; i
<= n
; i
++)
178 a
*= (__float128
) i
; /* a = n! */
179 b
*= temp
; /* b = (x/2)^n */
186 /* use backward recurrence */
188 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
189 * 2n - 2(n+1) - 2(n+2)
192 * (for large x) = ---- ------ ------ .....
194 * -- - ------ - ------ -
197 * Let w = 2n/x and h=2/x, then the above quotient
198 * is equal to the continued fraction:
200 * = -----------------------
202 * w - -----------------
207 * To determine how many terms needed, let
208 * Q(0) = w, Q(1) = w(w+h) - 1,
209 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
210 * When Q(k) > 1e4 good for single
211 * When Q(k) > 1e9 good for double
212 * When Q(k) > 1e17 good for quadruple
216 __float128 q0
, q1
, h
, tmp
;
218 w
= (n
+ n
) / (__float128
) x
;
219 h
= 2 / (__float128
) x
;
233 for (t
= zero
, i
= 2 * (n
+ k
); i
>= m
; i
-= 2)
234 t
= one
/ (i
/ x
- t
);
237 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
238 * Hence, if n*(log(2n/x)) > ...
239 * single 8.8722839355e+01
240 * double 7.09782712893383973096e+02
241 * long double 1.1356523406294143949491931077970765006170e+04
242 * then recurrent value may overflow and the result is
243 * likely underflow to zero
247 tmp
= tmp
* logq (fabsq (v
* tmp
));
249 if (tmp
< 1.1356523406294143949491931077970765006170e+04Q
)
251 for (i
= n
- 1, di
= (__float128
) (i
+ i
); i
> 0; i
--)
262 for (i
= n
- 1, di
= (__float128
) (i
+ i
); i
> 0; i
--)
269 /* scale b to avoid spurious overflow */
278 /* j0() and j1() suffer enormous loss of precision at and
279 * near zero; however, we know that their zero points never
280 * coincide, so just choose the one further away from zero.
284 if (fabsq (z
) >= fabsq (w
))
297 ret
= copysignq (FLT128_MIN
, ret
) * FLT128_MIN
;
301 math_check_force_underflow (ret
);
307 ynq (int n
, __float128 x
)
312 __float128 a
, b
, temp
, ret
;
317 ix
= se
& 0x7fffffff;
319 /* if Y(n,NaN) is NaN */
320 if (ix
>= 0x7fff0000)
322 if ((u
.words32
.w0
& 0xffff) | u
.words32
.w1
| u
.words32
.w2
| u
.words32
.w3
)
328 return ((n
< 0 && (n
& 1) != 0) ? 1 : -1) / 0.0Q
;
330 return zero
/ (zero
* x
);
336 sign
= 1 - ((n
& 1) << 1);
341 SET_RESTORE_ROUNDF128 (FE_TONEAREST
);
344 ret
= sign
* y1q (x
);
347 if (ix
>= 0x7fff0000)
349 if (ix
>= 0x412D0000)
352 /* ??? See comment above on the possible futility of this. */
355 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
356 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
357 * Let s=sin(x), c=cos(x),
358 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
360 * n sin(xn)*sqt2 cos(xn)*sqt2
361 * ----------------------------------
385 b
= invsqrtpi
* temp
/ sqrtq (x
);
391 /* quit if b is -inf */
393 se
= u
.words32
.w0
& 0xffff0000;
394 for (i
= 1; i
< n
&& se
!= 0xffff0000; i
++)
397 b
= ((__float128
) (i
+ i
) / x
) * b
- a
;
399 se
= u
.words32
.w0
& 0xffff0000;
403 /* If B is +-Inf, set up errno accordingly. */
413 ret
= copysignq (FLT128_MAX
, ret
) * FLT128_MAX
;