2010-05-28 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / tree-scalar-evolution.c
blobe2ed1f59ee2c9ddf87c53b36b977cfca4191e9be
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 Description:
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
74 Examples:
76 Example 1: Illustration of the basic algorithm.
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
120 or in terms of a C program:
122 | a = 3
123 | for (x = 0; x <= 7; x++)
125 | b = x + 3
126 | c = x + 4
129 Example 2a: Illustration of the algorithm on nested loops.
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
158 Example 2b: Multivariate chains of recurrences.
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
181 Example 3: Higher degree polynomials.
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
198 Example 4: Lucas, Fibonacci, or mixers in general.
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
207 a -> (1, c)_1
208 c -> {3, +, a}_1
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
219 Example 5: Flip-flops, or exchangers.
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
228 a -> (1, c)_1
229 c -> (3, a)_1
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
234 a -> |1, 3|_1
235 c -> |3, 1|_1
237 This transformation is not yet implemented.
239 Further readings:
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "tm.h"
261 #include "ggc.h"
262 #include "tree.h"
263 #include "basic-block.h"
264 #include "diagnostic.h"
265 #include "tree-pretty-print.h"
266 #include "gimple-pretty-print.h"
267 #include "tree-flow.h"
268 #include "tree-dump.h"
269 #include "timevar.h"
270 #include "cfgloop.h"
271 #include "tree-chrec.h"
272 #include "tree-scalar-evolution.h"
273 #include "tree-pass.h"
274 #include "flags.h"
275 #include "params.h"
277 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
279 /* The cached information about an SSA name VAR, claiming that below
280 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
281 as CHREC. */
283 struct GTY(()) scev_info_str {
284 basic_block instantiated_below;
285 tree var;
286 tree chrec;
289 /* Counters for the scev database. */
290 static unsigned nb_set_scev = 0;
291 static unsigned nb_get_scev = 0;
293 /* The following trees are unique elements. Thus the comparison of
294 another element to these elements should be done on the pointer to
295 these trees, and not on their value. */
297 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
298 tree chrec_not_analyzed_yet;
300 /* Reserved to the cases where the analyzer has detected an
301 undecidable property at compile time. */
302 tree chrec_dont_know;
304 /* When the analyzer has detected that a property will never
305 happen, then it qualifies it with chrec_known. */
306 tree chrec_known;
308 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
311 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
313 static inline struct scev_info_str *
314 new_scev_info_str (basic_block instantiated_below, tree var)
316 struct scev_info_str *res;
318 res = GGC_NEW (struct scev_info_str);
319 res->var = var;
320 res->chrec = chrec_not_analyzed_yet;
321 res->instantiated_below = instantiated_below;
323 return res;
326 /* Computes a hash function for database element ELT. */
328 static hashval_t
329 hash_scev_info (const void *elt)
331 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
334 /* Compares database elements E1 and E2. */
336 static int
337 eq_scev_info (const void *e1, const void *e2)
339 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
340 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
342 return (elt1->var == elt2->var
343 && elt1->instantiated_below == elt2->instantiated_below);
346 /* Deletes database element E. */
348 static void
349 del_scev_info (void *e)
351 ggc_free (e);
354 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
355 A first query on VAR returns chrec_not_analyzed_yet. */
357 static tree *
358 find_var_scev_info (basic_block instantiated_below, tree var)
360 struct scev_info_str *res;
361 struct scev_info_str tmp;
362 PTR *slot;
364 tmp.var = var;
365 tmp.instantiated_below = instantiated_below;
366 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
368 if (!*slot)
369 *slot = new_scev_info_str (instantiated_below, var);
370 res = (struct scev_info_str *) *slot;
372 return &res->chrec;
375 /* Return true when CHREC contains symbolic names defined in
376 LOOP_NB. */
378 bool
379 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
381 int i, n;
383 if (chrec == NULL_TREE)
384 return false;
386 if (is_gimple_min_invariant (chrec))
387 return false;
389 if (TREE_CODE (chrec) == VAR_DECL
390 || TREE_CODE (chrec) == PARM_DECL
391 || TREE_CODE (chrec) == FUNCTION_DECL
392 || TREE_CODE (chrec) == LABEL_DECL
393 || TREE_CODE (chrec) == RESULT_DECL
394 || TREE_CODE (chrec) == FIELD_DECL)
395 return true;
397 if (TREE_CODE (chrec) == SSA_NAME)
399 gimple def = SSA_NAME_DEF_STMT (chrec);
400 struct loop *def_loop = loop_containing_stmt (def);
401 struct loop *loop = get_loop (loop_nb);
403 if (def_loop == NULL)
404 return false;
406 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
407 return true;
409 return false;
412 n = TREE_OPERAND_LENGTH (chrec);
413 for (i = 0; i < n; i++)
414 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
415 loop_nb))
416 return true;
417 return false;
420 /* Return true when PHI is a loop-phi-node. */
422 static bool
423 loop_phi_node_p (gimple phi)
425 /* The implementation of this function is based on the following
426 property: "all the loop-phi-nodes of a loop are contained in the
427 loop's header basic block". */
429 return loop_containing_stmt (phi)->header == gimple_bb (phi);
432 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
433 In general, in the case of multivariate evolutions we want to get
434 the evolution in different loops. LOOP specifies the level for
435 which to get the evolution.
437 Example:
439 | for (j = 0; j < 100; j++)
441 | for (k = 0; k < 100; k++)
443 | i = k + j; - Here the value of i is a function of j, k.
445 | ... = i - Here the value of i is a function of j.
447 | ... = i - Here the value of i is a scalar.
449 Example:
451 | i_0 = ...
452 | loop_1 10 times
453 | i_1 = phi (i_0, i_2)
454 | i_2 = i_1 + 2
455 | endloop
457 This loop has the same effect as:
458 LOOP_1 has the same effect as:
460 | i_1 = i_0 + 20
462 The overall effect of the loop, "i_0 + 20" in the previous example,
463 is obtained by passing in the parameters: LOOP = 1,
464 EVOLUTION_FN = {i_0, +, 2}_1.
467 tree
468 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
470 bool val = false;
472 if (evolution_fn == chrec_dont_know)
473 return chrec_dont_know;
475 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
477 struct loop *inner_loop = get_chrec_loop (evolution_fn);
479 if (inner_loop == loop
480 || flow_loop_nested_p (loop, inner_loop))
482 tree nb_iter = number_of_latch_executions (inner_loop);
484 if (nb_iter == chrec_dont_know)
485 return chrec_dont_know;
486 else
488 tree res;
490 /* evolution_fn is the evolution function in LOOP. Get
491 its value in the nb_iter-th iteration. */
492 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
494 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
495 res = instantiate_parameters (loop, res);
497 /* Continue the computation until ending on a parent of LOOP. */
498 return compute_overall_effect_of_inner_loop (loop, res);
501 else
502 return evolution_fn;
505 /* If the evolution function is an invariant, there is nothing to do. */
506 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
507 return evolution_fn;
509 else
510 return chrec_dont_know;
513 /* Determine whether the CHREC is always positive/negative. If the expression
514 cannot be statically analyzed, return false, otherwise set the answer into
515 VALUE. */
517 bool
518 chrec_is_positive (tree chrec, bool *value)
520 bool value0, value1, value2;
521 tree end_value, nb_iter;
523 switch (TREE_CODE (chrec))
525 case POLYNOMIAL_CHREC:
526 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
527 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
528 return false;
530 /* FIXME -- overflows. */
531 if (value0 == value1)
533 *value = value0;
534 return true;
537 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
538 and the proof consists in showing that the sign never
539 changes during the execution of the loop, from 0 to
540 loop->nb_iterations. */
541 if (!evolution_function_is_affine_p (chrec))
542 return false;
544 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
545 if (chrec_contains_undetermined (nb_iter))
546 return false;
548 #if 0
549 /* TODO -- If the test is after the exit, we may decrease the number of
550 iterations by one. */
551 if (after_exit)
552 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
553 #endif
555 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
557 if (!chrec_is_positive (end_value, &value2))
558 return false;
560 *value = value0;
561 return value0 == value1;
563 case INTEGER_CST:
564 *value = (tree_int_cst_sgn (chrec) == 1);
565 return true;
567 default:
568 return false;
572 /* Associate CHREC to SCALAR. */
574 static void
575 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
577 tree *scalar_info;
579 if (TREE_CODE (scalar) != SSA_NAME)
580 return;
582 scalar_info = find_var_scev_info (instantiated_below, scalar);
584 if (dump_file)
586 if (dump_flags & TDF_DETAILS)
588 fprintf (dump_file, "(set_scalar_evolution \n");
589 fprintf (dump_file, " instantiated_below = %d \n",
590 instantiated_below->index);
591 fprintf (dump_file, " (scalar = ");
592 print_generic_expr (dump_file, scalar, 0);
593 fprintf (dump_file, ")\n (scalar_evolution = ");
594 print_generic_expr (dump_file, chrec, 0);
595 fprintf (dump_file, "))\n");
597 if (dump_flags & TDF_STATS)
598 nb_set_scev++;
601 *scalar_info = chrec;
604 /* Retrieve the chrec associated to SCALAR instantiated below
605 INSTANTIATED_BELOW block. */
607 static tree
608 get_scalar_evolution (basic_block instantiated_below, tree scalar)
610 tree res;
612 if (dump_file)
614 if (dump_flags & TDF_DETAILS)
616 fprintf (dump_file, "(get_scalar_evolution \n");
617 fprintf (dump_file, " (scalar = ");
618 print_generic_expr (dump_file, scalar, 0);
619 fprintf (dump_file, ")\n");
621 if (dump_flags & TDF_STATS)
622 nb_get_scev++;
625 switch (TREE_CODE (scalar))
627 case SSA_NAME:
628 res = *find_var_scev_info (instantiated_below, scalar);
629 break;
631 case REAL_CST:
632 case FIXED_CST:
633 case INTEGER_CST:
634 res = scalar;
635 break;
637 default:
638 res = chrec_not_analyzed_yet;
639 break;
642 if (dump_file && (dump_flags & TDF_DETAILS))
644 fprintf (dump_file, " (scalar_evolution = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
649 return res;
652 /* Helper function for add_to_evolution. Returns the evolution
653 function for an assignment of the form "a = b + c", where "a" and
654 "b" are on the strongly connected component. CHREC_BEFORE is the
655 information that we already have collected up to this point.
656 TO_ADD is the evolution of "c".
658 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
659 evolution the expression TO_ADD, otherwise construct an evolution
660 part for this loop. */
662 static tree
663 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
664 gimple at_stmt)
666 tree type, left, right;
667 struct loop *loop = get_loop (loop_nb), *chloop;
669 switch (TREE_CODE (chrec_before))
671 case POLYNOMIAL_CHREC:
672 chloop = get_chrec_loop (chrec_before);
673 if (chloop == loop
674 || flow_loop_nested_p (chloop, loop))
676 unsigned var;
678 type = chrec_type (chrec_before);
680 /* When there is no evolution part in this loop, build it. */
681 if (chloop != loop)
683 var = loop_nb;
684 left = chrec_before;
685 right = SCALAR_FLOAT_TYPE_P (type)
686 ? build_real (type, dconst0)
687 : build_int_cst (type, 0);
689 else
691 var = CHREC_VARIABLE (chrec_before);
692 left = CHREC_LEFT (chrec_before);
693 right = CHREC_RIGHT (chrec_before);
696 to_add = chrec_convert (type, to_add, at_stmt);
697 right = chrec_convert_rhs (type, right, at_stmt);
698 right = chrec_fold_plus (chrec_type (right), right, to_add);
699 return build_polynomial_chrec (var, left, right);
701 else
703 gcc_assert (flow_loop_nested_p (loop, chloop));
705 /* Search the evolution in LOOP_NB. */
706 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
707 to_add, at_stmt);
708 right = CHREC_RIGHT (chrec_before);
709 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
710 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
711 left, right);
714 default:
715 /* These nodes do not depend on a loop. */
716 if (chrec_before == chrec_dont_know)
717 return chrec_dont_know;
719 left = chrec_before;
720 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
721 return build_polynomial_chrec (loop_nb, left, right);
725 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
726 of LOOP_NB.
728 Description (provided for completeness, for those who read code in
729 a plane, and for my poor 62 bytes brain that would have forgotten
730 all this in the next two or three months):
732 The algorithm of translation of programs from the SSA representation
733 into the chrecs syntax is based on a pattern matching. After having
734 reconstructed the overall tree expression for a loop, there are only
735 two cases that can arise:
737 1. a = loop-phi (init, a + expr)
738 2. a = loop-phi (init, expr)
740 where EXPR is either a scalar constant with respect to the analyzed
741 loop (this is a degree 0 polynomial), or an expression containing
742 other loop-phi definitions (these are higher degree polynomials).
744 Examples:
747 | init = ...
748 | loop_1
749 | a = phi (init, a + 5)
750 | endloop
753 | inita = ...
754 | initb = ...
755 | loop_1
756 | a = phi (inita, 2 * b + 3)
757 | b = phi (initb, b + 1)
758 | endloop
760 For the first case, the semantics of the SSA representation is:
762 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
764 that is, there is a loop index "x" that determines the scalar value
765 of the variable during the loop execution. During the first
766 iteration, the value is that of the initial condition INIT, while
767 during the subsequent iterations, it is the sum of the initial
768 condition with the sum of all the values of EXPR from the initial
769 iteration to the before last considered iteration.
771 For the second case, the semantics of the SSA program is:
773 | a (x) = init, if x = 0;
774 | expr (x - 1), otherwise.
776 The second case corresponds to the PEELED_CHREC, whose syntax is
777 close to the syntax of a loop-phi-node:
779 | phi (init, expr) vs. (init, expr)_x
781 The proof of the translation algorithm for the first case is a
782 proof by structural induction based on the degree of EXPR.
784 Degree 0:
785 When EXPR is a constant with respect to the analyzed loop, or in
786 other words when EXPR is a polynomial of degree 0, the evolution of
787 the variable A in the loop is an affine function with an initial
788 condition INIT, and a step EXPR. In order to show this, we start
789 from the semantics of the SSA representation:
791 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
793 and since "expr (j)" is a constant with respect to "j",
795 f (x) = init + x * expr
797 Finally, based on the semantics of the pure sum chrecs, by
798 identification we get the corresponding chrecs syntax:
800 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
801 f (x) -> {init, +, expr}_x
803 Higher degree:
804 Suppose that EXPR is a polynomial of degree N with respect to the
805 analyzed loop_x for which we have already determined that it is
806 written under the chrecs syntax:
808 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
810 We start from the semantics of the SSA program:
812 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
814 | f (x) = init + \sum_{j = 0}^{x - 1}
815 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
817 | f (x) = init + \sum_{j = 0}^{x - 1}
818 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
820 | f (x) = init + \sum_{k = 0}^{n - 1}
821 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
823 | f (x) = init + \sum_{k = 0}^{n - 1}
824 | (b_k * \binom{x}{k + 1})
826 | f (x) = init + b_0 * \binom{x}{1} + ...
827 | + b_{n-1} * \binom{x}{n}
829 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
830 | + b_{n-1} * \binom{x}{n}
833 And finally from the definition of the chrecs syntax, we identify:
834 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
836 This shows the mechanism that stands behind the add_to_evolution
837 function. An important point is that the use of symbolic
838 parameters avoids the need of an analysis schedule.
840 Example:
842 | inita = ...
843 | initb = ...
844 | loop_1
845 | a = phi (inita, a + 2 + b)
846 | b = phi (initb, b + 1)
847 | endloop
849 When analyzing "a", the algorithm keeps "b" symbolically:
851 | a -> {inita, +, 2 + b}_1
853 Then, after instantiation, the analyzer ends on the evolution:
855 | a -> {inita, +, 2 + initb, +, 1}_1
859 static tree
860 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
861 tree to_add, gimple at_stmt)
863 tree type = chrec_type (to_add);
864 tree res = NULL_TREE;
866 if (to_add == NULL_TREE)
867 return chrec_before;
869 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
870 instantiated at this point. */
871 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
872 /* This should not happen. */
873 return chrec_dont_know;
875 if (dump_file && (dump_flags & TDF_DETAILS))
877 fprintf (dump_file, "(add_to_evolution \n");
878 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
879 fprintf (dump_file, " (chrec_before = ");
880 print_generic_expr (dump_file, chrec_before, 0);
881 fprintf (dump_file, ")\n (to_add = ");
882 print_generic_expr (dump_file, to_add, 0);
883 fprintf (dump_file, ")\n");
886 if (code == MINUS_EXPR)
887 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
888 ? build_real (type, dconstm1)
889 : build_int_cst_type (type, -1));
891 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
893 if (dump_file && (dump_flags & TDF_DETAILS))
895 fprintf (dump_file, " (res = ");
896 print_generic_expr (dump_file, res, 0);
897 fprintf (dump_file, "))\n");
900 return res;
903 /* Helper function. */
905 static inline tree
906 set_nb_iterations_in_loop (struct loop *loop,
907 tree res)
909 if (dump_file && (dump_flags & TDF_DETAILS))
911 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
912 print_generic_expr (dump_file, res, 0);
913 fprintf (dump_file, "))\n");
916 loop->nb_iterations = res;
917 return res;
922 /* This section selects the loops that will be good candidates for the
923 scalar evolution analysis. For the moment, greedily select all the
924 loop nests we could analyze. */
926 /* For a loop with a single exit edge, return the COND_EXPR that
927 guards the exit edge. If the expression is too difficult to
928 analyze, then give up. */
930 gimple
931 get_loop_exit_condition (const struct loop *loop)
933 gimple res = NULL;
934 edge exit_edge = single_exit (loop);
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "(get_loop_exit_condition \n ");
939 if (exit_edge)
941 gimple stmt;
943 stmt = last_stmt (exit_edge->src);
944 if (gimple_code (stmt) == GIMPLE_COND)
945 res = stmt;
948 if (dump_file && (dump_flags & TDF_DETAILS))
950 print_gimple_stmt (dump_file, res, 0, 0);
951 fprintf (dump_file, ")\n");
954 return res;
957 /* Recursively determine and enqueue the exit conditions for a loop. */
959 static void
960 get_exit_conditions_rec (struct loop *loop,
961 VEC(gimple,heap) **exit_conditions)
963 if (!loop)
964 return;
966 /* Recurse on the inner loops, then on the next (sibling) loops. */
967 get_exit_conditions_rec (loop->inner, exit_conditions);
968 get_exit_conditions_rec (loop->next, exit_conditions);
970 if (single_exit (loop))
972 gimple loop_condition = get_loop_exit_condition (loop);
974 if (loop_condition)
975 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
979 /* Select the candidate loop nests for the analysis. This function
980 initializes the EXIT_CONDITIONS array. */
982 static void
983 select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
985 struct loop *function_body = current_loops->tree_root;
987 get_exit_conditions_rec (function_body->inner, exit_conditions);
991 /* Depth first search algorithm. */
993 typedef enum t_bool {
994 t_false,
995 t_true,
996 t_dont_know
997 } t_bool;
1000 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
1002 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
1003 Return true if the strongly connected component has been found. */
1005 static t_bool
1006 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
1007 tree type, tree rhs0, enum tree_code code, tree rhs1,
1008 gimple halting_phi, tree *evolution_of_loop, int limit)
1010 t_bool res = t_false;
1011 tree evol;
1013 switch (code)
1015 case POINTER_PLUS_EXPR:
1016 case PLUS_EXPR:
1017 if (TREE_CODE (rhs0) == SSA_NAME)
1019 if (TREE_CODE (rhs1) == SSA_NAME)
1021 /* Match an assignment under the form:
1022 "a = b + c". */
1024 /* We want only assignments of form "name + name" contribute to
1025 LIMIT, as the other cases do not necessarily contribute to
1026 the complexity of the expression. */
1027 limit++;
1029 evol = *evolution_of_loop;
1030 res = follow_ssa_edge
1031 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
1033 if (res == t_true)
1034 *evolution_of_loop = add_to_evolution
1035 (loop->num,
1036 chrec_convert (type, evol, at_stmt),
1037 code, rhs1, at_stmt);
1039 else if (res == t_false)
1041 res = follow_ssa_edge
1042 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1043 evolution_of_loop, limit);
1045 if (res == t_true)
1046 *evolution_of_loop = add_to_evolution
1047 (loop->num,
1048 chrec_convert (type, *evolution_of_loop, at_stmt),
1049 code, rhs0, at_stmt);
1051 else if (res == t_dont_know)
1052 *evolution_of_loop = chrec_dont_know;
1055 else if (res == t_dont_know)
1056 *evolution_of_loop = chrec_dont_know;
1059 else
1061 /* Match an assignment under the form:
1062 "a = b + ...". */
1063 res = follow_ssa_edge
1064 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1065 evolution_of_loop, limit);
1066 if (res == t_true)
1067 *evolution_of_loop = add_to_evolution
1068 (loop->num, chrec_convert (type, *evolution_of_loop,
1069 at_stmt),
1070 code, rhs1, at_stmt);
1072 else if (res == t_dont_know)
1073 *evolution_of_loop = chrec_dont_know;
1077 else if (TREE_CODE (rhs1) == SSA_NAME)
1079 /* Match an assignment under the form:
1080 "a = ... + c". */
1081 res = follow_ssa_edge
1082 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1083 evolution_of_loop, limit);
1084 if (res == t_true)
1085 *evolution_of_loop = add_to_evolution
1086 (loop->num, chrec_convert (type, *evolution_of_loop,
1087 at_stmt),
1088 code, rhs0, at_stmt);
1090 else if (res == t_dont_know)
1091 *evolution_of_loop = chrec_dont_know;
1094 else
1095 /* Otherwise, match an assignment under the form:
1096 "a = ... + ...". */
1097 /* And there is nothing to do. */
1098 res = t_false;
1099 break;
1101 case MINUS_EXPR:
1102 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1103 if (TREE_CODE (rhs0) == SSA_NAME)
1105 /* Match an assignment under the form:
1106 "a = b - ...". */
1108 /* We want only assignments of form "name - name" contribute to
1109 LIMIT, as the other cases do not necessarily contribute to
1110 the complexity of the expression. */
1111 if (TREE_CODE (rhs1) == SSA_NAME)
1112 limit++;
1114 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1115 evolution_of_loop, limit);
1116 if (res == t_true)
1117 *evolution_of_loop = add_to_evolution
1118 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1119 MINUS_EXPR, rhs1, at_stmt);
1121 else if (res == t_dont_know)
1122 *evolution_of_loop = chrec_dont_know;
1124 else
1125 /* Otherwise, match an assignment under the form:
1126 "a = ... - ...". */
1127 /* And there is nothing to do. */
1128 res = t_false;
1129 break;
1131 default:
1132 res = t_false;
1135 return res;
1138 /* Follow the ssa edge into the expression EXPR.
1139 Return true if the strongly connected component has been found. */
1141 static t_bool
1142 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1143 gimple halting_phi, tree *evolution_of_loop, int limit)
1145 enum tree_code code = TREE_CODE (expr);
1146 tree type = TREE_TYPE (expr), rhs0, rhs1;
1147 t_bool res;
1149 /* The EXPR is one of the following cases:
1150 - an SSA_NAME,
1151 - an INTEGER_CST,
1152 - a PLUS_EXPR,
1153 - a POINTER_PLUS_EXPR,
1154 - a MINUS_EXPR,
1155 - an ASSERT_EXPR,
1156 - other cases are not yet handled. */
1158 switch (code)
1160 CASE_CONVERT:
1161 /* This assignment is under the form "a_1 = (cast) rhs. */
1162 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1163 halting_phi, evolution_of_loop, limit);
1164 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1165 break;
1167 case INTEGER_CST:
1168 /* This assignment is under the form "a_1 = 7". */
1169 res = t_false;
1170 break;
1172 case SSA_NAME:
1173 /* This assignment is under the form: "a_1 = b_2". */
1174 res = follow_ssa_edge
1175 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1176 break;
1178 case POINTER_PLUS_EXPR:
1179 case PLUS_EXPR:
1180 case MINUS_EXPR:
1181 /* This case is under the form "rhs0 +- rhs1". */
1182 rhs0 = TREE_OPERAND (expr, 0);
1183 rhs1 = TREE_OPERAND (expr, 1);
1184 type = TREE_TYPE (rhs0);
1185 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1186 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1187 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1188 halting_phi, evolution_of_loop, limit);
1189 break;
1191 case ASSERT_EXPR:
1192 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1193 It must be handled as a copy assignment of the form a_1 = a_2. */
1194 rhs0 = ASSERT_EXPR_VAR (expr);
1195 if (TREE_CODE (rhs0) == SSA_NAME)
1196 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1197 halting_phi, evolution_of_loop, limit);
1198 else
1199 res = t_false;
1200 break;
1202 default:
1203 res = t_false;
1204 break;
1207 return res;
1210 /* Follow the ssa edge into the right hand side of an assignment STMT.
1211 Return true if the strongly connected component has been found. */
1213 static t_bool
1214 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1215 gimple halting_phi, tree *evolution_of_loop, int limit)
1217 enum tree_code code = gimple_assign_rhs_code (stmt);
1218 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1219 t_bool res;
1221 switch (code)
1223 CASE_CONVERT:
1224 /* This assignment is under the form "a_1 = (cast) rhs. */
1225 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1226 halting_phi, evolution_of_loop, limit);
1227 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1228 break;
1230 case POINTER_PLUS_EXPR:
1231 case PLUS_EXPR:
1232 case MINUS_EXPR:
1233 rhs1 = gimple_assign_rhs1 (stmt);
1234 rhs2 = gimple_assign_rhs2 (stmt);
1235 type = TREE_TYPE (rhs1);
1236 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
1237 halting_phi, evolution_of_loop, limit);
1238 break;
1240 default:
1241 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1242 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1243 halting_phi, evolution_of_loop, limit);
1244 else
1245 res = t_false;
1246 break;
1249 return res;
1252 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1254 static bool
1255 backedge_phi_arg_p (gimple phi, int i)
1257 const_edge e = gimple_phi_arg_edge (phi, i);
1259 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1260 about updating it anywhere, and this should work as well most of the
1261 time. */
1262 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1263 return true;
1265 return false;
1268 /* Helper function for one branch of the condition-phi-node. Return
1269 true if the strongly connected component has been found following
1270 this path. */
1272 static inline t_bool
1273 follow_ssa_edge_in_condition_phi_branch (int i,
1274 struct loop *loop,
1275 gimple condition_phi,
1276 gimple halting_phi,
1277 tree *evolution_of_branch,
1278 tree init_cond, int limit)
1280 tree branch = PHI_ARG_DEF (condition_phi, i);
1281 *evolution_of_branch = chrec_dont_know;
1283 /* Do not follow back edges (they must belong to an irreducible loop, which
1284 we really do not want to worry about). */
1285 if (backedge_phi_arg_p (condition_phi, i))
1286 return t_false;
1288 if (TREE_CODE (branch) == SSA_NAME)
1290 *evolution_of_branch = init_cond;
1291 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1292 evolution_of_branch, limit);
1295 /* This case occurs when one of the condition branches sets
1296 the variable to a constant: i.e. a phi-node like
1297 "a_2 = PHI <a_7(5), 2(6)>;".
1299 FIXME: This case have to be refined correctly:
1300 in some cases it is possible to say something better than
1301 chrec_dont_know, for example using a wrap-around notation. */
1302 return t_false;
1305 /* This function merges the branches of a condition-phi-node in a
1306 loop. */
1308 static t_bool
1309 follow_ssa_edge_in_condition_phi (struct loop *loop,
1310 gimple condition_phi,
1311 gimple halting_phi,
1312 tree *evolution_of_loop, int limit)
1314 int i, n;
1315 tree init = *evolution_of_loop;
1316 tree evolution_of_branch;
1317 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1318 halting_phi,
1319 &evolution_of_branch,
1320 init, limit);
1321 if (res == t_false || res == t_dont_know)
1322 return res;
1324 *evolution_of_loop = evolution_of_branch;
1326 n = gimple_phi_num_args (condition_phi);
1327 for (i = 1; i < n; i++)
1329 /* Quickly give up when the evolution of one of the branches is
1330 not known. */
1331 if (*evolution_of_loop == chrec_dont_know)
1332 return t_true;
1334 /* Increase the limit by the PHI argument number to avoid exponential
1335 time and memory complexity. */
1336 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1337 halting_phi,
1338 &evolution_of_branch,
1339 init, limit + i);
1340 if (res == t_false || res == t_dont_know)
1341 return res;
1343 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1344 evolution_of_branch);
1347 return t_true;
1350 /* Follow an SSA edge in an inner loop. It computes the overall
1351 effect of the loop, and following the symbolic initial conditions,
1352 it follows the edges in the parent loop. The inner loop is
1353 considered as a single statement. */
1355 static t_bool
1356 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1357 gimple loop_phi_node,
1358 gimple halting_phi,
1359 tree *evolution_of_loop, int limit)
1361 struct loop *loop = loop_containing_stmt (loop_phi_node);
1362 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1364 /* Sometimes, the inner loop is too difficult to analyze, and the
1365 result of the analysis is a symbolic parameter. */
1366 if (ev == PHI_RESULT (loop_phi_node))
1368 t_bool res = t_false;
1369 int i, n = gimple_phi_num_args (loop_phi_node);
1371 for (i = 0; i < n; i++)
1373 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1374 basic_block bb;
1376 /* Follow the edges that exit the inner loop. */
1377 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1378 if (!flow_bb_inside_loop_p (loop, bb))
1379 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1380 arg, halting_phi,
1381 evolution_of_loop, limit);
1382 if (res == t_true)
1383 break;
1386 /* If the path crosses this loop-phi, give up. */
1387 if (res == t_true)
1388 *evolution_of_loop = chrec_dont_know;
1390 return res;
1393 /* Otherwise, compute the overall effect of the inner loop. */
1394 ev = compute_overall_effect_of_inner_loop (loop, ev);
1395 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1396 evolution_of_loop, limit);
1399 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1400 path that is analyzed on the return walk. */
1402 static t_bool
1403 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1404 tree *evolution_of_loop, int limit)
1406 struct loop *def_loop;
1408 if (gimple_nop_p (def))
1409 return t_false;
1411 /* Give up if the path is longer than the MAX that we allow. */
1412 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1413 return t_dont_know;
1415 def_loop = loop_containing_stmt (def);
1417 switch (gimple_code (def))
1419 case GIMPLE_PHI:
1420 if (!loop_phi_node_p (def))
1421 /* DEF is a condition-phi-node. Follow the branches, and
1422 record their evolutions. Finally, merge the collected
1423 information and set the approximation to the main
1424 variable. */
1425 return follow_ssa_edge_in_condition_phi
1426 (loop, def, halting_phi, evolution_of_loop, limit);
1428 /* When the analyzed phi is the halting_phi, the
1429 depth-first search is over: we have found a path from
1430 the halting_phi to itself in the loop. */
1431 if (def == halting_phi)
1432 return t_true;
1434 /* Otherwise, the evolution of the HALTING_PHI depends
1435 on the evolution of another loop-phi-node, i.e. the
1436 evolution function is a higher degree polynomial. */
1437 if (def_loop == loop)
1438 return t_false;
1440 /* Inner loop. */
1441 if (flow_loop_nested_p (loop, def_loop))
1442 return follow_ssa_edge_inner_loop_phi
1443 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1445 /* Outer loop. */
1446 return t_false;
1448 case GIMPLE_ASSIGN:
1449 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1450 evolution_of_loop, limit);
1452 default:
1453 /* At this level of abstraction, the program is just a set
1454 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1455 other node to be handled. */
1456 return t_false;
1462 /* Given a LOOP_PHI_NODE, this function determines the evolution
1463 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1465 static tree
1466 analyze_evolution_in_loop (gimple loop_phi_node,
1467 tree init_cond)
1469 int i, n = gimple_phi_num_args (loop_phi_node);
1470 tree evolution_function = chrec_not_analyzed_yet;
1471 struct loop *loop = loop_containing_stmt (loop_phi_node);
1472 basic_block bb;
1474 if (dump_file && (dump_flags & TDF_DETAILS))
1476 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1477 fprintf (dump_file, " (loop_phi_node = ");
1478 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1479 fprintf (dump_file, ")\n");
1482 for (i = 0; i < n; i++)
1484 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1485 gimple ssa_chain;
1486 tree ev_fn;
1487 t_bool res;
1489 /* Select the edges that enter the loop body. */
1490 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1491 if (!flow_bb_inside_loop_p (loop, bb))
1492 continue;
1494 if (TREE_CODE (arg) == SSA_NAME)
1496 bool val = false;
1498 ssa_chain = SSA_NAME_DEF_STMT (arg);
1500 /* Pass in the initial condition to the follow edge function. */
1501 ev_fn = init_cond;
1502 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1504 /* If ev_fn has no evolution in the inner loop, and the
1505 init_cond is not equal to ev_fn, then we have an
1506 ambiguity between two possible values, as we cannot know
1507 the number of iterations at this point. */
1508 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1509 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1510 && !operand_equal_p (init_cond, ev_fn, 0))
1511 ev_fn = chrec_dont_know;
1513 else
1514 res = t_false;
1516 /* When it is impossible to go back on the same
1517 loop_phi_node by following the ssa edges, the
1518 evolution is represented by a peeled chrec, i.e. the
1519 first iteration, EV_FN has the value INIT_COND, then
1520 all the other iterations it has the value of ARG.
1521 For the moment, PEELED_CHREC nodes are not built. */
1522 if (res != t_true)
1523 ev_fn = chrec_dont_know;
1525 /* When there are multiple back edges of the loop (which in fact never
1526 happens currently, but nevertheless), merge their evolutions. */
1527 evolution_function = chrec_merge (evolution_function, ev_fn);
1530 if (dump_file && (dump_flags & TDF_DETAILS))
1532 fprintf (dump_file, " (evolution_function = ");
1533 print_generic_expr (dump_file, evolution_function, 0);
1534 fprintf (dump_file, "))\n");
1537 return evolution_function;
1540 /* Given a loop-phi-node, return the initial conditions of the
1541 variable on entry of the loop. When the CCP has propagated
1542 constants into the loop-phi-node, the initial condition is
1543 instantiated, otherwise the initial condition is kept symbolic.
1544 This analyzer does not analyze the evolution outside the current
1545 loop, and leaves this task to the on-demand tree reconstructor. */
1547 static tree
1548 analyze_initial_condition (gimple loop_phi_node)
1550 int i, n;
1551 tree init_cond = chrec_not_analyzed_yet;
1552 struct loop *loop = loop_containing_stmt (loop_phi_node);
1554 if (dump_file && (dump_flags & TDF_DETAILS))
1556 fprintf (dump_file, "(analyze_initial_condition \n");
1557 fprintf (dump_file, " (loop_phi_node = \n");
1558 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1559 fprintf (dump_file, ")\n");
1562 n = gimple_phi_num_args (loop_phi_node);
1563 for (i = 0; i < n; i++)
1565 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1566 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1568 /* When the branch is oriented to the loop's body, it does
1569 not contribute to the initial condition. */
1570 if (flow_bb_inside_loop_p (loop, bb))
1571 continue;
1573 if (init_cond == chrec_not_analyzed_yet)
1575 init_cond = branch;
1576 continue;
1579 if (TREE_CODE (branch) == SSA_NAME)
1581 init_cond = chrec_dont_know;
1582 break;
1585 init_cond = chrec_merge (init_cond, branch);
1588 /* Ooops -- a loop without an entry??? */
1589 if (init_cond == chrec_not_analyzed_yet)
1590 init_cond = chrec_dont_know;
1592 /* During early loop unrolling we do not have fully constant propagated IL.
1593 Handle degenerate PHIs here to not miss important unrollings. */
1594 if (TREE_CODE (init_cond) == SSA_NAME)
1596 gimple def = SSA_NAME_DEF_STMT (init_cond);
1597 tree res;
1598 if (gimple_code (def) == GIMPLE_PHI
1599 && (res = degenerate_phi_result (def)) != NULL_TREE
1600 /* Only allow invariants here, otherwise we may break
1601 loop-closed SSA form. */
1602 && is_gimple_min_invariant (res))
1603 init_cond = res;
1606 if (dump_file && (dump_flags & TDF_DETAILS))
1608 fprintf (dump_file, " (init_cond = ");
1609 print_generic_expr (dump_file, init_cond, 0);
1610 fprintf (dump_file, "))\n");
1613 return init_cond;
1616 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1618 static tree
1619 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1621 tree res;
1622 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1623 tree init_cond;
1625 if (phi_loop != loop)
1627 struct loop *subloop;
1628 tree evolution_fn = analyze_scalar_evolution
1629 (phi_loop, PHI_RESULT (loop_phi_node));
1631 /* Dive one level deeper. */
1632 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1634 /* Interpret the subloop. */
1635 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1636 return res;
1639 /* Otherwise really interpret the loop phi. */
1640 init_cond = analyze_initial_condition (loop_phi_node);
1641 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1643 /* Verify we maintained the correct initial condition throughout
1644 possible conversions in the SSA chain. */
1645 if (res != chrec_dont_know)
1647 tree new_init = res;
1648 if (CONVERT_EXPR_P (res)
1649 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1650 new_init = fold_convert (TREE_TYPE (res),
1651 CHREC_LEFT (TREE_OPERAND (res, 0)));
1652 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1653 new_init = CHREC_LEFT (res);
1654 STRIP_USELESS_TYPE_CONVERSION (new_init);
1655 gcc_assert (TREE_CODE (new_init) != POLYNOMIAL_CHREC);
1656 if (!operand_equal_p (init_cond, new_init, 0))
1657 return chrec_dont_know;
1660 return res;
1663 /* This function merges the branches of a condition-phi-node,
1664 contained in the outermost loop, and whose arguments are already
1665 analyzed. */
1667 static tree
1668 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1670 int i, n = gimple_phi_num_args (condition_phi);
1671 tree res = chrec_not_analyzed_yet;
1673 for (i = 0; i < n; i++)
1675 tree branch_chrec;
1677 if (backedge_phi_arg_p (condition_phi, i))
1679 res = chrec_dont_know;
1680 break;
1683 branch_chrec = analyze_scalar_evolution
1684 (loop, PHI_ARG_DEF (condition_phi, i));
1686 res = chrec_merge (res, branch_chrec);
1689 return res;
1692 /* Interpret the operation RHS1 OP RHS2. If we didn't
1693 analyze this node before, follow the definitions until ending
1694 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1695 return path, this function propagates evolutions (ala constant copy
1696 propagation). OPND1 is not a GIMPLE expression because we could
1697 analyze the effect of an inner loop: see interpret_loop_phi. */
1699 static tree
1700 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1701 tree type, tree rhs1, enum tree_code code, tree rhs2)
1703 tree res, chrec1, chrec2;
1705 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1707 if (is_gimple_min_invariant (rhs1))
1708 return chrec_convert (type, rhs1, at_stmt);
1710 if (code == SSA_NAME)
1711 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1712 at_stmt);
1714 if (code == ASSERT_EXPR)
1716 rhs1 = ASSERT_EXPR_VAR (rhs1);
1717 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1718 at_stmt);
1721 return chrec_dont_know;
1724 switch (code)
1726 case POINTER_PLUS_EXPR:
1727 chrec1 = analyze_scalar_evolution (loop, rhs1);
1728 chrec2 = analyze_scalar_evolution (loop, rhs2);
1729 chrec1 = chrec_convert (type, chrec1, at_stmt);
1730 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1731 res = chrec_fold_plus (type, chrec1, chrec2);
1732 break;
1734 case PLUS_EXPR:
1735 chrec1 = analyze_scalar_evolution (loop, rhs1);
1736 chrec2 = analyze_scalar_evolution (loop, rhs2);
1737 chrec1 = chrec_convert (type, chrec1, at_stmt);
1738 chrec2 = chrec_convert (type, chrec2, at_stmt);
1739 res = chrec_fold_plus (type, chrec1, chrec2);
1740 break;
1742 case MINUS_EXPR:
1743 chrec1 = analyze_scalar_evolution (loop, rhs1);
1744 chrec2 = analyze_scalar_evolution (loop, rhs2);
1745 chrec1 = chrec_convert (type, chrec1, at_stmt);
1746 chrec2 = chrec_convert (type, chrec2, at_stmt);
1747 res = chrec_fold_minus (type, chrec1, chrec2);
1748 break;
1750 case NEGATE_EXPR:
1751 chrec1 = analyze_scalar_evolution (loop, rhs1);
1752 chrec1 = chrec_convert (type, chrec1, at_stmt);
1753 /* TYPE may be integer, real or complex, so use fold_convert. */
1754 res = chrec_fold_multiply (type, chrec1,
1755 fold_convert (type, integer_minus_one_node));
1756 break;
1758 case BIT_NOT_EXPR:
1759 /* Handle ~X as -1 - X. */
1760 chrec1 = analyze_scalar_evolution (loop, rhs1);
1761 chrec1 = chrec_convert (type, chrec1, at_stmt);
1762 res = chrec_fold_minus (type,
1763 fold_convert (type, integer_minus_one_node),
1764 chrec1);
1765 break;
1767 case MULT_EXPR:
1768 chrec1 = analyze_scalar_evolution (loop, rhs1);
1769 chrec2 = analyze_scalar_evolution (loop, rhs2);
1770 chrec1 = chrec_convert (type, chrec1, at_stmt);
1771 chrec2 = chrec_convert (type, chrec2, at_stmt);
1772 res = chrec_fold_multiply (type, chrec1, chrec2);
1773 break;
1775 CASE_CONVERT:
1776 chrec1 = analyze_scalar_evolution (loop, rhs1);
1777 res = chrec_convert (type, chrec1, at_stmt);
1778 break;
1780 default:
1781 res = chrec_dont_know;
1782 break;
1785 return res;
1788 /* Interpret the expression EXPR. */
1790 static tree
1791 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1793 enum tree_code code;
1794 tree type = TREE_TYPE (expr), op0, op1;
1796 if (automatically_generated_chrec_p (expr))
1797 return expr;
1799 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1800 return chrec_dont_know;
1802 extract_ops_from_tree (expr, &code, &op0, &op1);
1804 return interpret_rhs_expr (loop, at_stmt, type,
1805 op0, code, op1);
1808 /* Interpret the rhs of the assignment STMT. */
1810 static tree
1811 interpret_gimple_assign (struct loop *loop, gimple stmt)
1813 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1814 enum tree_code code = gimple_assign_rhs_code (stmt);
1816 return interpret_rhs_expr (loop, stmt, type,
1817 gimple_assign_rhs1 (stmt), code,
1818 gimple_assign_rhs2 (stmt));
1823 /* This section contains all the entry points:
1824 - number_of_iterations_in_loop,
1825 - analyze_scalar_evolution,
1826 - instantiate_parameters.
1829 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1830 common ancestor of DEF_LOOP and USE_LOOP. */
1832 static tree
1833 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1834 struct loop *def_loop,
1835 tree ev)
1837 tree res;
1838 if (def_loop == wrto_loop)
1839 return ev;
1841 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1842 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1844 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1847 /* Helper recursive function. */
1849 static tree
1850 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1852 tree type = TREE_TYPE (var);
1853 gimple def;
1854 basic_block bb;
1855 struct loop *def_loop;
1857 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1858 return chrec_dont_know;
1860 if (TREE_CODE (var) != SSA_NAME)
1861 return interpret_expr (loop, NULL, var);
1863 def = SSA_NAME_DEF_STMT (var);
1864 bb = gimple_bb (def);
1865 def_loop = bb ? bb->loop_father : NULL;
1867 if (bb == NULL
1868 || !flow_bb_inside_loop_p (loop, bb))
1870 /* Keep the symbolic form. */
1871 res = var;
1872 goto set_and_end;
1875 if (res != chrec_not_analyzed_yet)
1877 if (loop != bb->loop_father)
1878 res = compute_scalar_evolution_in_loop
1879 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1881 goto set_and_end;
1884 if (loop != def_loop)
1886 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1887 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1889 goto set_and_end;
1892 switch (gimple_code (def))
1894 case GIMPLE_ASSIGN:
1895 res = interpret_gimple_assign (loop, def);
1896 break;
1898 case GIMPLE_PHI:
1899 if (loop_phi_node_p (def))
1900 res = interpret_loop_phi (loop, def);
1901 else
1902 res = interpret_condition_phi (loop, def);
1903 break;
1905 default:
1906 res = chrec_dont_know;
1907 break;
1910 set_and_end:
1912 /* Keep the symbolic form. */
1913 if (res == chrec_dont_know)
1914 res = var;
1916 if (loop == def_loop)
1917 set_scalar_evolution (block_before_loop (loop), var, res);
1919 return res;
1922 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
1923 LOOP. LOOP is the loop in which the variable is used.
1925 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1926 pointer to the statement that uses this variable, in order to
1927 determine the evolution function of the variable, use the following
1928 calls:
1930 loop_p loop = loop_containing_stmt (stmt);
1931 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
1932 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1935 tree
1936 analyze_scalar_evolution (struct loop *loop, tree var)
1938 tree res;
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1942 fprintf (dump_file, "(analyze_scalar_evolution \n");
1943 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1944 fprintf (dump_file, " (scalar = ");
1945 print_generic_expr (dump_file, var, 0);
1946 fprintf (dump_file, ")\n");
1949 res = get_scalar_evolution (block_before_loop (loop), var);
1950 res = analyze_scalar_evolution_1 (loop, var, res);
1952 if (dump_file && (dump_flags & TDF_DETAILS))
1953 fprintf (dump_file, ")\n");
1955 return res;
1958 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1959 WRTO_LOOP (which should be a superloop of USE_LOOP)
1961 FOLDED_CASTS is set to true if resolve_mixers used
1962 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1963 at the moment in order to keep things simple).
1965 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
1966 example:
1968 for (i = 0; i < 100; i++) -- loop 1
1970 for (j = 0; j < 100; j++) -- loop 2
1972 k1 = i;
1973 k2 = j;
1975 use2 (k1, k2);
1977 for (t = 0; t < 100; t++) -- loop 3
1978 use3 (k1, k2);
1981 use1 (k1, k2);
1984 Both k1 and k2 are invariants in loop3, thus
1985 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
1986 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
1988 As they are invariant, it does not matter whether we consider their
1989 usage in loop 3 or loop 2, hence
1990 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
1991 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
1992 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
1993 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
1995 Similarly for their evolutions with respect to loop 1. The values of K2
1996 in the use in loop 2 vary independently on loop 1, thus we cannot express
1997 the evolution with respect to loop 1:
1998 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
1999 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2000 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2001 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2003 The value of k2 in the use in loop 1 is known, though:
2004 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2005 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2008 static tree
2009 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2010 tree version, bool *folded_casts)
2012 bool val = false;
2013 tree ev = version, tmp;
2015 /* We cannot just do
2017 tmp = analyze_scalar_evolution (use_loop, version);
2018 ev = resolve_mixers (wrto_loop, tmp);
2020 as resolve_mixers would query the scalar evolution with respect to
2021 wrto_loop. For example, in the situation described in the function
2022 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2023 version = k2. Then
2025 analyze_scalar_evolution (use_loop, version) = k2
2027 and resolve_mixers (loop1, k2) finds that the value of k2 in loop 1
2028 is 100, which is a wrong result, since we are interested in the
2029 value in loop 3.
2031 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2032 each time checking that there is no evolution in the inner loop. */
2034 if (folded_casts)
2035 *folded_casts = false;
2036 while (1)
2038 tmp = analyze_scalar_evolution (use_loop, ev);
2039 ev = resolve_mixers (use_loop, tmp);
2041 if (folded_casts && tmp != ev)
2042 *folded_casts = true;
2044 if (use_loop == wrto_loop)
2045 return ev;
2047 /* If the value of the use changes in the inner loop, we cannot express
2048 its value in the outer loop (we might try to return interval chrec,
2049 but we do not have a user for it anyway) */
2050 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2051 || !val)
2052 return chrec_dont_know;
2054 use_loop = loop_outer (use_loop);
2058 /* Returns from CACHE the value for VERSION instantiated below
2059 INSTANTIATED_BELOW block. */
2061 static tree
2062 get_instantiated_value (htab_t cache, basic_block instantiated_below,
2063 tree version)
2065 struct scev_info_str *info, pattern;
2067 pattern.var = version;
2068 pattern.instantiated_below = instantiated_below;
2069 info = (struct scev_info_str *) htab_find (cache, &pattern);
2071 if (info)
2072 return info->chrec;
2073 else
2074 return NULL_TREE;
2077 /* Sets in CACHE the value of VERSION instantiated below basic block
2078 INSTANTIATED_BELOW to VAL. */
2080 static void
2081 set_instantiated_value (htab_t cache, basic_block instantiated_below,
2082 tree version, tree val)
2084 struct scev_info_str *info, pattern;
2085 PTR *slot;
2087 pattern.var = version;
2088 pattern.instantiated_below = instantiated_below;
2089 slot = htab_find_slot (cache, &pattern, INSERT);
2091 if (!*slot)
2092 *slot = new_scev_info_str (instantiated_below, version);
2093 info = (struct scev_info_str *) *slot;
2094 info->chrec = val;
2097 /* Return the closed_loop_phi node for VAR. If there is none, return
2098 NULL_TREE. */
2100 static tree
2101 loop_closed_phi_def (tree var)
2103 struct loop *loop;
2104 edge exit;
2105 gimple phi;
2106 gimple_stmt_iterator psi;
2108 if (var == NULL_TREE
2109 || TREE_CODE (var) != SSA_NAME)
2110 return NULL_TREE;
2112 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2113 exit = single_exit (loop);
2114 if (!exit)
2115 return NULL_TREE;
2117 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2119 phi = gsi_stmt (psi);
2120 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2121 return PHI_RESULT (phi);
2124 return NULL_TREE;
2127 static tree instantiate_scev_r (basic_block, struct loop *, tree, bool,
2128 htab_t, int);
2130 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2131 and EVOLUTION_LOOP, that were left under a symbolic form.
2133 CHREC is an SSA_NAME to be instantiated.
2135 CACHE is the cache of already instantiated values.
2137 FOLD_CONVERSIONS should be set to true when the conversions that
2138 may wrap in signed/pointer type are folded, as long as the value of
2139 the chrec is preserved.
2141 SIZE_EXPR is used for computing the size of the expression to be
2142 instantiated, and to stop if it exceeds some limit. */
2144 static tree
2145 instantiate_scev_name (basic_block instantiate_below,
2146 struct loop *evolution_loop, tree chrec,
2147 bool fold_conversions, htab_t cache, int size_expr)
2149 tree res;
2150 struct loop *def_loop;
2151 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2153 /* A parameter (or loop invariant and we do not want to include
2154 evolutions in outer loops), nothing to do. */
2155 if (!def_bb
2156 || loop_depth (def_bb->loop_father) == 0
2157 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2158 return chrec;
2160 /* We cache the value of instantiated variable to avoid exponential
2161 time complexity due to reevaluations. We also store the convenient
2162 value in the cache in order to prevent infinite recursion -- we do
2163 not want to instantiate the SSA_NAME if it is in a mixer
2164 structure. This is used for avoiding the instantiation of
2165 recursively defined functions, such as:
2167 | a_2 -> {0, +, 1, +, a_2}_1 */
2169 res = get_instantiated_value (cache, instantiate_below, chrec);
2170 if (res)
2171 return res;
2173 res = chrec_dont_know;
2174 set_instantiated_value (cache, instantiate_below, chrec, res);
2176 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2178 /* If the analysis yields a parametric chrec, instantiate the
2179 result again. */
2180 res = analyze_scalar_evolution (def_loop, chrec);
2182 /* Don't instantiate loop-closed-ssa phi nodes. */
2183 if (TREE_CODE (res) == SSA_NAME
2184 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2185 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2186 > loop_depth (def_loop))))
2188 if (res == chrec)
2189 res = loop_closed_phi_def (chrec);
2190 else
2191 res = chrec;
2193 if (res == NULL_TREE
2194 || !dominated_by_p (CDI_DOMINATORS, instantiate_below,
2195 gimple_bb (SSA_NAME_DEF_STMT (res))))
2196 res = chrec_dont_know;
2199 else if (res != chrec_dont_know)
2200 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
2201 fold_conversions, cache, size_expr);
2203 /* Store the correct value to the cache. */
2204 set_instantiated_value (cache, instantiate_below, chrec, res);
2205 return res;
2209 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2210 and EVOLUTION_LOOP, that were left under a symbolic form.
2212 CHREC is a polynomial chain of recurrence to be instantiated.
2214 CACHE is the cache of already instantiated values.
2216 FOLD_CONVERSIONS should be set to true when the conversions that
2217 may wrap in signed/pointer type are folded, as long as the value of
2218 the chrec is preserved.
2220 SIZE_EXPR is used for computing the size of the expression to be
2221 instantiated, and to stop if it exceeds some limit. */
2223 static tree
2224 instantiate_scev_poly (basic_block instantiate_below,
2225 struct loop *evolution_loop, tree chrec,
2226 bool fold_conversions, htab_t cache, int size_expr)
2228 tree op1;
2229 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2230 CHREC_LEFT (chrec), fold_conversions, cache,
2231 size_expr);
2232 if (op0 == chrec_dont_know)
2233 return chrec_dont_know;
2235 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2236 CHREC_RIGHT (chrec), fold_conversions, cache,
2237 size_expr);
2238 if (op1 == chrec_dont_know)
2239 return chrec_dont_know;
2241 if (CHREC_LEFT (chrec) != op0
2242 || CHREC_RIGHT (chrec) != op1)
2244 unsigned var = CHREC_VARIABLE (chrec);
2246 /* When the instantiated stride or base has an evolution in an
2247 innermost loop, return chrec_dont_know, as this is not a
2248 valid SCEV representation. In the reduced testcase for
2249 PR40281 we would have {0, +, {1, +, 1}_2}_1 that has no
2250 meaning. */
2251 if ((tree_is_chrec (op0) && CHREC_VARIABLE (op0) > var)
2252 || (tree_is_chrec (op1) && CHREC_VARIABLE (op1) > var))
2253 return chrec_dont_know;
2255 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2256 chrec = build_polynomial_chrec (var, op0, op1);
2259 return chrec;
2262 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2263 and EVOLUTION_LOOP, that were left under a symbolic form.
2265 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2267 CACHE is the cache of already instantiated values.
2269 FOLD_CONVERSIONS should be set to true when the conversions that
2270 may wrap in signed/pointer type are folded, as long as the value of
2271 the chrec is preserved.
2273 SIZE_EXPR is used for computing the size of the expression to be
2274 instantiated, and to stop if it exceeds some limit. */
2276 static tree
2277 instantiate_scev_binary (basic_block instantiate_below,
2278 struct loop *evolution_loop, tree chrec, enum tree_code code,
2279 tree type, tree c0, tree c1,
2280 bool fold_conversions, htab_t cache, int size_expr)
2282 tree op1;
2283 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2284 c0, fold_conversions, cache,
2285 size_expr);
2286 if (op0 == chrec_dont_know)
2287 return chrec_dont_know;
2289 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2290 c1, fold_conversions, cache,
2291 size_expr);
2292 if (op1 == chrec_dont_know)
2293 return chrec_dont_know;
2295 if (c0 != op0
2296 || c1 != op1)
2298 op0 = chrec_convert (type, op0, NULL);
2299 op1 = chrec_convert_rhs (type, op1, NULL);
2301 switch (code)
2303 case POINTER_PLUS_EXPR:
2304 case PLUS_EXPR:
2305 return chrec_fold_plus (type, op0, op1);
2307 case MINUS_EXPR:
2308 return chrec_fold_minus (type, op0, op1);
2310 case MULT_EXPR:
2311 return chrec_fold_multiply (type, op0, op1);
2313 default:
2314 gcc_unreachable ();
2318 return chrec ? chrec : fold_build2 (code, type, c0, c1);
2321 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2322 and EVOLUTION_LOOP, that were left under a symbolic form.
2324 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2325 instantiated.
2327 CACHE is the cache of already instantiated values.
2329 FOLD_CONVERSIONS should be set to true when the conversions that
2330 may wrap in signed/pointer type are folded, as long as the value of
2331 the chrec is preserved.
2333 SIZE_EXPR is used for computing the size of the expression to be
2334 instantiated, and to stop if it exceeds some limit. */
2336 static tree
2337 instantiate_scev_convert (basic_block instantiate_below,
2338 struct loop *evolution_loop, tree chrec,
2339 tree type, tree op,
2340 bool fold_conversions, htab_t cache, int size_expr)
2342 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
2343 fold_conversions, cache, size_expr);
2345 if (op0 == chrec_dont_know)
2346 return chrec_dont_know;
2348 if (fold_conversions)
2350 tree tmp = chrec_convert_aggressive (type, op0);
2351 if (tmp)
2352 return tmp;
2355 if (chrec && op0 == op)
2356 return chrec;
2358 /* If we used chrec_convert_aggressive, we can no longer assume that
2359 signed chrecs do not overflow, as chrec_convert does, so avoid
2360 calling it in that case. */
2361 if (fold_conversions)
2362 return fold_convert (type, op0);
2364 return chrec_convert (type, op0, NULL);
2367 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2368 and EVOLUTION_LOOP, that were left under a symbolic form.
2370 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2371 Handle ~X as -1 - X.
2372 Handle -X as -1 * X.
2374 CACHE is the cache of already instantiated values.
2376 FOLD_CONVERSIONS should be set to true when the conversions that
2377 may wrap in signed/pointer type are folded, as long as the value of
2378 the chrec is preserved.
2380 SIZE_EXPR is used for computing the size of the expression to be
2381 instantiated, and to stop if it exceeds some limit. */
2383 static tree
2384 instantiate_scev_not (basic_block instantiate_below,
2385 struct loop *evolution_loop, tree chrec,
2386 enum tree_code code, tree type, tree op,
2387 bool fold_conversions, htab_t cache, int size_expr)
2389 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
2390 fold_conversions, cache, size_expr);
2392 if (op0 == chrec_dont_know)
2393 return chrec_dont_know;
2395 if (op != op0)
2397 op0 = chrec_convert (type, op0, NULL);
2399 switch (code)
2401 case BIT_NOT_EXPR:
2402 return chrec_fold_minus
2403 (type, fold_convert (type, integer_minus_one_node), op0);
2405 case NEGATE_EXPR:
2406 return chrec_fold_multiply
2407 (type, fold_convert (type, integer_minus_one_node), op0);
2409 default:
2410 gcc_unreachable ();
2414 return chrec ? chrec : fold_build1 (code, type, op0);
2417 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2418 and EVOLUTION_LOOP, that were left under a symbolic form.
2420 CHREC is an expression with 3 operands to be instantiated.
2422 CACHE is the cache of already instantiated values.
2424 FOLD_CONVERSIONS should be set to true when the conversions that
2425 may wrap in signed/pointer type are folded, as long as the value of
2426 the chrec is preserved.
2428 SIZE_EXPR is used for computing the size of the expression to be
2429 instantiated, and to stop if it exceeds some limit. */
2431 static tree
2432 instantiate_scev_3 (basic_block instantiate_below,
2433 struct loop *evolution_loop, tree chrec,
2434 bool fold_conversions, htab_t cache, int size_expr)
2436 tree op1, op2;
2437 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2438 TREE_OPERAND (chrec, 0),
2439 fold_conversions, cache, size_expr);
2440 if (op0 == chrec_dont_know)
2441 return chrec_dont_know;
2443 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2444 TREE_OPERAND (chrec, 1),
2445 fold_conversions, cache, size_expr);
2446 if (op1 == chrec_dont_know)
2447 return chrec_dont_know;
2449 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
2450 TREE_OPERAND (chrec, 2),
2451 fold_conversions, cache, size_expr);
2452 if (op2 == chrec_dont_know)
2453 return chrec_dont_know;
2455 if (op0 == TREE_OPERAND (chrec, 0)
2456 && op1 == TREE_OPERAND (chrec, 1)
2457 && op2 == TREE_OPERAND (chrec, 2))
2458 return chrec;
2460 return fold_build3 (TREE_CODE (chrec),
2461 TREE_TYPE (chrec), op0, op1, op2);
2464 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2465 and EVOLUTION_LOOP, that were left under a symbolic form.
2467 CHREC is an expression with 2 operands to be instantiated.
2469 CACHE is the cache of already instantiated values.
2471 FOLD_CONVERSIONS should be set to true when the conversions that
2472 may wrap in signed/pointer type are folded, as long as the value of
2473 the chrec is preserved.
2475 SIZE_EXPR is used for computing the size of the expression to be
2476 instantiated, and to stop if it exceeds some limit. */
2478 static tree
2479 instantiate_scev_2 (basic_block instantiate_below,
2480 struct loop *evolution_loop, tree chrec,
2481 bool fold_conversions, htab_t cache, int size_expr)
2483 tree op1;
2484 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2485 TREE_OPERAND (chrec, 0),
2486 fold_conversions, cache, size_expr);
2487 if (op0 == chrec_dont_know)
2488 return chrec_dont_know;
2490 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2491 TREE_OPERAND (chrec, 1),
2492 fold_conversions, cache, size_expr);
2493 if (op1 == chrec_dont_know)
2494 return chrec_dont_know;
2496 if (op0 == TREE_OPERAND (chrec, 0)
2497 && op1 == TREE_OPERAND (chrec, 1))
2498 return chrec;
2500 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2503 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2504 and EVOLUTION_LOOP, that were left under a symbolic form.
2506 CHREC is an expression with 2 operands to be instantiated.
2508 CACHE is the cache of already instantiated values.
2510 FOLD_CONVERSIONS should be set to true when the conversions that
2511 may wrap in signed/pointer type are folded, as long as the value of
2512 the chrec is preserved.
2514 SIZE_EXPR is used for computing the size of the expression to be
2515 instantiated, and to stop if it exceeds some limit. */
2517 static tree
2518 instantiate_scev_1 (basic_block instantiate_below,
2519 struct loop *evolution_loop, tree chrec,
2520 bool fold_conversions, htab_t cache, int size_expr)
2522 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2523 TREE_OPERAND (chrec, 0),
2524 fold_conversions, cache, size_expr);
2526 if (op0 == chrec_dont_know)
2527 return chrec_dont_know;
2529 if (op0 == TREE_OPERAND (chrec, 0))
2530 return chrec;
2532 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2535 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2536 and EVOLUTION_LOOP, that were left under a symbolic form.
2538 CHREC is the scalar evolution to instantiate.
2540 CACHE is the cache of already instantiated values.
2542 FOLD_CONVERSIONS should be set to true when the conversions that
2543 may wrap in signed/pointer type are folded, as long as the value of
2544 the chrec is preserved.
2546 SIZE_EXPR is used for computing the size of the expression to be
2547 instantiated, and to stop if it exceeds some limit. */
2549 static tree
2550 instantiate_scev_r (basic_block instantiate_below,
2551 struct loop *evolution_loop, tree chrec,
2552 bool fold_conversions, htab_t cache, int size_expr)
2554 /* Give up if the expression is larger than the MAX that we allow. */
2555 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2556 return chrec_dont_know;
2558 if (automatically_generated_chrec_p (chrec)
2559 || is_gimple_min_invariant (chrec))
2560 return chrec;
2562 switch (TREE_CODE (chrec))
2564 case SSA_NAME:
2565 return instantiate_scev_name (instantiate_below, evolution_loop, chrec,
2566 fold_conversions, cache, size_expr);
2568 case POLYNOMIAL_CHREC:
2569 return instantiate_scev_poly (instantiate_below, evolution_loop, chrec,
2570 fold_conversions, cache, size_expr);
2572 case POINTER_PLUS_EXPR:
2573 case PLUS_EXPR:
2574 case MINUS_EXPR:
2575 case MULT_EXPR:
2576 return instantiate_scev_binary (instantiate_below, evolution_loop, chrec,
2577 TREE_CODE (chrec), chrec_type (chrec),
2578 TREE_OPERAND (chrec, 0),
2579 TREE_OPERAND (chrec, 1),
2580 fold_conversions, cache, size_expr);
2582 CASE_CONVERT:
2583 return instantiate_scev_convert (instantiate_below, evolution_loop, chrec,
2584 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
2585 fold_conversions, cache, size_expr);
2587 case NEGATE_EXPR:
2588 case BIT_NOT_EXPR:
2589 return instantiate_scev_not (instantiate_below, evolution_loop, chrec,
2590 TREE_CODE (chrec), TREE_TYPE (chrec),
2591 TREE_OPERAND (chrec, 0),
2592 fold_conversions, cache, size_expr);
2594 case SCEV_NOT_KNOWN:
2595 return chrec_dont_know;
2597 case SCEV_KNOWN:
2598 return chrec_known;
2600 default:
2601 break;
2604 if (VL_EXP_CLASS_P (chrec))
2605 return chrec_dont_know;
2607 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2609 case 3:
2610 return instantiate_scev_3 (instantiate_below, evolution_loop, chrec,
2611 fold_conversions, cache, size_expr);
2613 case 2:
2614 return instantiate_scev_2 (instantiate_below, evolution_loop, chrec,
2615 fold_conversions, cache, size_expr);
2617 case 1:
2618 return instantiate_scev_1 (instantiate_below, evolution_loop, chrec,
2619 fold_conversions, cache, size_expr);
2621 case 0:
2622 return chrec;
2624 default:
2625 break;
2628 /* Too complicated to handle. */
2629 return chrec_dont_know;
2632 /* Analyze all the parameters of the chrec that were left under a
2633 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2634 recursive instantiation of parameters: a parameter is a variable
2635 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2636 a function parameter. */
2638 tree
2639 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2640 tree chrec)
2642 tree res;
2643 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2645 if (dump_file && (dump_flags & TDF_DETAILS))
2647 fprintf (dump_file, "(instantiate_scev \n");
2648 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2649 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2650 fprintf (dump_file, " (chrec = ");
2651 print_generic_expr (dump_file, chrec, 0);
2652 fprintf (dump_file, ")\n");
2655 res = instantiate_scev_r (instantiate_below, evolution_loop, chrec, false,
2656 cache, 0);
2658 if (dump_file && (dump_flags & TDF_DETAILS))
2660 fprintf (dump_file, " (res = ");
2661 print_generic_expr (dump_file, res, 0);
2662 fprintf (dump_file, "))\n");
2665 htab_delete (cache);
2667 return res;
2670 /* Similar to instantiate_parameters, but does not introduce the
2671 evolutions in outer loops for LOOP invariants in CHREC, and does not
2672 care about causing overflows, as long as they do not affect value
2673 of an expression. */
2675 tree
2676 resolve_mixers (struct loop *loop, tree chrec)
2678 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2679 tree ret = instantiate_scev_r (block_before_loop (loop), loop, chrec, true,
2680 cache, 0);
2681 htab_delete (cache);
2682 return ret;
2685 /* Entry point for the analysis of the number of iterations pass.
2686 This function tries to safely approximate the number of iterations
2687 the loop will run. When this property is not decidable at compile
2688 time, the result is chrec_dont_know. Otherwise the result is
2689 a scalar or a symbolic parameter.
2691 Example of analysis: suppose that the loop has an exit condition:
2693 "if (b > 49) goto end_loop;"
2695 and that in a previous analysis we have determined that the
2696 variable 'b' has an evolution function:
2698 "EF = {23, +, 5}_2".
2700 When we evaluate the function at the point 5, i.e. the value of the
2701 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2702 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2703 the loop body has been executed 6 times. */
2705 tree
2706 number_of_latch_executions (struct loop *loop)
2708 tree res, type;
2709 edge exit;
2710 struct tree_niter_desc niter_desc;
2712 /* Determine whether the number_of_iterations_in_loop has already
2713 been computed. */
2714 res = loop->nb_iterations;
2715 if (res)
2716 return res;
2717 res = chrec_dont_know;
2719 if (dump_file && (dump_flags & TDF_DETAILS))
2720 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2722 exit = single_exit (loop);
2723 if (!exit)
2724 goto end;
2726 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2727 goto end;
2729 type = TREE_TYPE (niter_desc.niter);
2730 if (integer_nonzerop (niter_desc.may_be_zero))
2731 res = build_int_cst (type, 0);
2732 else if (integer_zerop (niter_desc.may_be_zero))
2733 res = niter_desc.niter;
2734 else
2735 res = chrec_dont_know;
2737 end:
2738 return set_nb_iterations_in_loop (loop, res);
2741 /* Returns the number of executions of the exit condition of LOOP,
2742 i.e., the number by one higher than number_of_latch_executions.
2743 Note that unlike number_of_latch_executions, this number does
2744 not necessarily fit in the unsigned variant of the type of
2745 the control variable -- if the number of iterations is a constant,
2746 we return chrec_dont_know if adding one to number_of_latch_executions
2747 overflows; however, in case the number of iterations is symbolic
2748 expression, the caller is responsible for dealing with this
2749 the possible overflow. */
2751 tree
2752 number_of_exit_cond_executions (struct loop *loop)
2754 tree ret = number_of_latch_executions (loop);
2755 tree type = chrec_type (ret);
2757 if (chrec_contains_undetermined (ret))
2758 return ret;
2760 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2761 if (TREE_CODE (ret) == INTEGER_CST
2762 && TREE_OVERFLOW (ret))
2763 return chrec_dont_know;
2765 return ret;
2768 /* One of the drivers for testing the scalar evolutions analysis.
2769 This function computes the number of iterations for all the loops
2770 from the EXIT_CONDITIONS array. */
2772 static void
2773 number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
2775 unsigned int i;
2776 unsigned nb_chrec_dont_know_loops = 0;
2777 unsigned nb_static_loops = 0;
2778 gimple cond;
2780 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2782 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2783 if (chrec_contains_undetermined (res))
2784 nb_chrec_dont_know_loops++;
2785 else
2786 nb_static_loops++;
2789 if (dump_file)
2791 fprintf (dump_file, "\n(\n");
2792 fprintf (dump_file, "-----------------------------------------\n");
2793 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2794 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2795 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2796 fprintf (dump_file, "-----------------------------------------\n");
2797 fprintf (dump_file, ")\n\n");
2799 print_loops (dump_file, 3);
2805 /* Counters for the stats. */
2807 struct chrec_stats
2809 unsigned nb_chrecs;
2810 unsigned nb_affine;
2811 unsigned nb_affine_multivar;
2812 unsigned nb_higher_poly;
2813 unsigned nb_chrec_dont_know;
2814 unsigned nb_undetermined;
2817 /* Reset the counters. */
2819 static inline void
2820 reset_chrecs_counters (struct chrec_stats *stats)
2822 stats->nb_chrecs = 0;
2823 stats->nb_affine = 0;
2824 stats->nb_affine_multivar = 0;
2825 stats->nb_higher_poly = 0;
2826 stats->nb_chrec_dont_know = 0;
2827 stats->nb_undetermined = 0;
2830 /* Dump the contents of a CHREC_STATS structure. */
2832 static void
2833 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2835 fprintf (file, "\n(\n");
2836 fprintf (file, "-----------------------------------------\n");
2837 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2838 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2839 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2840 stats->nb_higher_poly);
2841 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2842 fprintf (file, "-----------------------------------------\n");
2843 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2844 fprintf (file, "%d\twith undetermined coefficients\n",
2845 stats->nb_undetermined);
2846 fprintf (file, "-----------------------------------------\n");
2847 fprintf (file, "%d\tchrecs in the scev database\n",
2848 (int) htab_elements (scalar_evolution_info));
2849 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2850 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2851 fprintf (file, "-----------------------------------------\n");
2852 fprintf (file, ")\n\n");
2855 /* Gather statistics about CHREC. */
2857 static void
2858 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2860 if (dump_file && (dump_flags & TDF_STATS))
2862 fprintf (dump_file, "(classify_chrec ");
2863 print_generic_expr (dump_file, chrec, 0);
2864 fprintf (dump_file, "\n");
2867 stats->nb_chrecs++;
2869 if (chrec == NULL_TREE)
2871 stats->nb_undetermined++;
2872 return;
2875 switch (TREE_CODE (chrec))
2877 case POLYNOMIAL_CHREC:
2878 if (evolution_function_is_affine_p (chrec))
2880 if (dump_file && (dump_flags & TDF_STATS))
2881 fprintf (dump_file, " affine_univariate\n");
2882 stats->nb_affine++;
2884 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2886 if (dump_file && (dump_flags & TDF_STATS))
2887 fprintf (dump_file, " affine_multivariate\n");
2888 stats->nb_affine_multivar++;
2890 else
2892 if (dump_file && (dump_flags & TDF_STATS))
2893 fprintf (dump_file, " higher_degree_polynomial\n");
2894 stats->nb_higher_poly++;
2897 break;
2899 default:
2900 break;
2903 if (chrec_contains_undetermined (chrec))
2905 if (dump_file && (dump_flags & TDF_STATS))
2906 fprintf (dump_file, " undetermined\n");
2907 stats->nb_undetermined++;
2910 if (dump_file && (dump_flags & TDF_STATS))
2911 fprintf (dump_file, ")\n");
2914 /* One of the drivers for testing the scalar evolutions analysis.
2915 This function analyzes the scalar evolution of all the scalars
2916 defined as loop phi nodes in one of the loops from the
2917 EXIT_CONDITIONS array.
2919 TODO Optimization: A loop is in canonical form if it contains only
2920 a single scalar loop phi node. All the other scalars that have an
2921 evolution in the loop are rewritten in function of this single
2922 index. This allows the parallelization of the loop. */
2924 static void
2925 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
2927 unsigned int i;
2928 struct chrec_stats stats;
2929 gimple cond, phi;
2930 gimple_stmt_iterator psi;
2932 reset_chrecs_counters (&stats);
2934 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2936 struct loop *loop;
2937 basic_block bb;
2938 tree chrec;
2940 loop = loop_containing_stmt (cond);
2941 bb = loop->header;
2943 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2945 phi = gsi_stmt (psi);
2946 if (is_gimple_reg (PHI_RESULT (phi)))
2948 chrec = instantiate_parameters
2949 (loop,
2950 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2952 if (dump_file && (dump_flags & TDF_STATS))
2953 gather_chrec_stats (chrec, &stats);
2958 if (dump_file && (dump_flags & TDF_STATS))
2959 dump_chrecs_stats (dump_file, &stats);
2962 /* Callback for htab_traverse, gathers information on chrecs in the
2963 hashtable. */
2965 static int
2966 gather_stats_on_scev_database_1 (void **slot, void *stats)
2968 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2970 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2972 return 1;
2975 /* Classify the chrecs of the whole database. */
2977 void
2978 gather_stats_on_scev_database (void)
2980 struct chrec_stats stats;
2982 if (!dump_file)
2983 return;
2985 reset_chrecs_counters (&stats);
2987 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2988 &stats);
2990 dump_chrecs_stats (dump_file, &stats);
2995 /* Initializer. */
2997 static void
2998 initialize_scalar_evolutions_analyzer (void)
3000 /* The elements below are unique. */
3001 if (chrec_dont_know == NULL_TREE)
3003 chrec_not_analyzed_yet = NULL_TREE;
3004 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3005 chrec_known = make_node (SCEV_KNOWN);
3006 TREE_TYPE (chrec_dont_know) = void_type_node;
3007 TREE_TYPE (chrec_known) = void_type_node;
3011 /* Initialize the analysis of scalar evolutions for LOOPS. */
3013 void
3014 scev_initialize (void)
3016 loop_iterator li;
3017 struct loop *loop;
3019 scalar_evolution_info = htab_create_alloc (100,
3020 hash_scev_info,
3021 eq_scev_info,
3022 del_scev_info,
3023 ggc_calloc,
3024 ggc_free);
3026 initialize_scalar_evolutions_analyzer ();
3028 FOR_EACH_LOOP (li, loop, 0)
3030 loop->nb_iterations = NULL_TREE;
3034 /* Cleans up the information cached by the scalar evolutions analysis
3035 in the hash table. */
3037 void
3038 scev_reset_htab (void)
3040 if (!scalar_evolution_info)
3041 return;
3043 htab_empty (scalar_evolution_info);
3046 /* Cleans up the information cached by the scalar evolutions analysis
3047 in the hash table and in the loop->nb_iterations. */
3049 void
3050 scev_reset (void)
3052 loop_iterator li;
3053 struct loop *loop;
3055 scev_reset_htab ();
3057 if (!current_loops)
3058 return;
3060 FOR_EACH_LOOP (li, loop, 0)
3062 loop->nb_iterations = NULL_TREE;
3066 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3067 respect to WRTO_LOOP and returns its base and step in IV if possible
3068 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3069 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3070 invariant in LOOP. Otherwise we require it to be an integer constant.
3072 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3073 because it is computed in signed arithmetics). Consequently, adding an
3074 induction variable
3076 for (i = IV->base; ; i += IV->step)
3078 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3079 false for the type of the induction variable, or you can prove that i does
3080 not wrap by some other argument. Otherwise, this might introduce undefined
3081 behavior, and
3083 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3085 must be used instead. */
3087 bool
3088 simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3089 affine_iv *iv, bool allow_nonconstant_step)
3091 tree type, ev;
3092 bool folded_casts;
3094 iv->base = NULL_TREE;
3095 iv->step = NULL_TREE;
3096 iv->no_overflow = false;
3098 type = TREE_TYPE (op);
3099 if (TREE_CODE (type) != INTEGER_TYPE
3100 && TREE_CODE (type) != POINTER_TYPE)
3101 return false;
3103 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
3104 &folded_casts);
3105 if (chrec_contains_undetermined (ev)
3106 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
3107 return false;
3109 if (tree_does_not_contain_chrecs (ev))
3111 iv->base = ev;
3112 iv->step = build_int_cst (TREE_TYPE (ev), 0);
3113 iv->no_overflow = true;
3114 return true;
3117 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
3118 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
3119 return false;
3121 iv->step = CHREC_RIGHT (ev);
3122 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3123 || tree_contains_chrecs (iv->step, NULL))
3124 return false;
3126 iv->base = CHREC_LEFT (ev);
3127 if (tree_contains_chrecs (iv->base, NULL))
3128 return false;
3130 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
3132 return true;
3135 /* Runs the analysis of scalar evolutions. */
3137 void
3138 scev_analysis (void)
3140 VEC(gimple,heap) *exit_conditions;
3142 exit_conditions = VEC_alloc (gimple, heap, 37);
3143 select_loops_exit_conditions (&exit_conditions);
3145 if (dump_file && (dump_flags & TDF_STATS))
3146 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
3148 number_of_iterations_for_all_loops (&exit_conditions);
3149 VEC_free (gimple, heap, exit_conditions);
3152 /* Finalize the scalar evolution analysis. */
3154 void
3155 scev_finalize (void)
3157 if (!scalar_evolution_info)
3158 return;
3159 htab_delete (scalar_evolution_info);
3160 scalar_evolution_info = NULL;
3163 /* Returns true if the expression EXPR is considered to be too expensive
3164 for scev_const_prop. */
3166 bool
3167 expression_expensive_p (tree expr)
3169 enum tree_code code;
3171 if (is_gimple_val (expr))
3172 return false;
3174 code = TREE_CODE (expr);
3175 if (code == TRUNC_DIV_EXPR
3176 || code == CEIL_DIV_EXPR
3177 || code == FLOOR_DIV_EXPR
3178 || code == ROUND_DIV_EXPR
3179 || code == TRUNC_MOD_EXPR
3180 || code == CEIL_MOD_EXPR
3181 || code == FLOOR_MOD_EXPR
3182 || code == ROUND_MOD_EXPR
3183 || code == EXACT_DIV_EXPR)
3185 /* Division by power of two is usually cheap, so we allow it.
3186 Forbid anything else. */
3187 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3188 return true;
3191 switch (TREE_CODE_CLASS (code))
3193 case tcc_binary:
3194 case tcc_comparison:
3195 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3196 return true;
3198 /* Fallthru. */
3199 case tcc_unary:
3200 return expression_expensive_p (TREE_OPERAND (expr, 0));
3202 default:
3203 return true;
3207 /* Replace ssa names for that scev can prove they are constant by the
3208 appropriate constants. Also perform final value replacement in loops,
3209 in case the replacement expressions are cheap.
3211 We only consider SSA names defined by phi nodes; rest is left to the
3212 ordinary constant propagation pass. */
3214 unsigned int
3215 scev_const_prop (void)
3217 basic_block bb;
3218 tree name, type, ev;
3219 gimple phi, ass;
3220 struct loop *loop, *ex_loop;
3221 bitmap ssa_names_to_remove = NULL;
3222 unsigned i;
3223 loop_iterator li;
3224 gimple_stmt_iterator psi;
3226 if (number_of_loops () <= 1)
3227 return 0;
3229 FOR_EACH_BB (bb)
3231 loop = bb->loop_father;
3233 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3235 phi = gsi_stmt (psi);
3236 name = PHI_RESULT (phi);
3238 if (!is_gimple_reg (name))
3239 continue;
3241 type = TREE_TYPE (name);
3243 if (!POINTER_TYPE_P (type)
3244 && !INTEGRAL_TYPE_P (type))
3245 continue;
3247 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
3248 if (!is_gimple_min_invariant (ev)
3249 || !may_propagate_copy (name, ev))
3250 continue;
3252 /* Replace the uses of the name. */
3253 if (name != ev)
3254 replace_uses_by (name, ev);
3256 if (!ssa_names_to_remove)
3257 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3258 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3262 /* Remove the ssa names that were replaced by constants. We do not
3263 remove them directly in the previous cycle, since this
3264 invalidates scev cache. */
3265 if (ssa_names_to_remove)
3267 bitmap_iterator bi;
3269 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3271 gimple_stmt_iterator psi;
3272 name = ssa_name (i);
3273 phi = SSA_NAME_DEF_STMT (name);
3275 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3276 psi = gsi_for_stmt (phi);
3277 remove_phi_node (&psi, true);
3280 BITMAP_FREE (ssa_names_to_remove);
3281 scev_reset ();
3284 /* Now the regular final value replacement. */
3285 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
3287 edge exit;
3288 tree def, rslt, niter;
3289 gimple_stmt_iterator bsi;
3291 /* If we do not know exact number of iterations of the loop, we cannot
3292 replace the final value. */
3293 exit = single_exit (loop);
3294 if (!exit)
3295 continue;
3297 niter = number_of_latch_executions (loop);
3298 if (niter == chrec_dont_know)
3299 continue;
3301 /* Ensure that it is possible to insert new statements somewhere. */
3302 if (!single_pred_p (exit->dest))
3303 split_loop_exit_edge (exit);
3304 bsi = gsi_after_labels (exit->dest);
3306 ex_loop = superloop_at_depth (loop,
3307 loop_depth (exit->dest->loop_father) + 1);
3309 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3311 phi = gsi_stmt (psi);
3312 rslt = PHI_RESULT (phi);
3313 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3314 if (!is_gimple_reg (def))
3316 gsi_next (&psi);
3317 continue;
3320 if (!POINTER_TYPE_P (TREE_TYPE (def))
3321 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3323 gsi_next (&psi);
3324 continue;
3327 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
3328 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3329 if (!tree_does_not_contain_chrecs (def)
3330 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3331 /* Moving the computation from the loop may prolong life range
3332 of some ssa names, which may cause problems if they appear
3333 on abnormal edges. */
3334 || contains_abnormal_ssa_name_p (def)
3335 /* Do not emit expensive expressions. The rationale is that
3336 when someone writes a code like
3338 while (n > 45) n -= 45;
3340 he probably knows that n is not large, and does not want it
3341 to be turned into n %= 45. */
3342 || expression_expensive_p (def))
3344 gsi_next (&psi);
3345 continue;
3348 /* Eliminate the PHI node and replace it by a computation outside
3349 the loop. */
3350 def = unshare_expr (def);
3351 remove_phi_node (&psi, false);
3353 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3354 true, GSI_SAME_STMT);
3355 ass = gimple_build_assign (rslt, def);
3356 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3359 return 0;
3362 #include "gt-tree-scalar-evolution.h"