1 /* Conditional Dead Call Elimination pass for the GNU compiler.
2 Copyright (C) 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "basic-block.h"
28 #include "diagnostic.h"
29 #include "gimple-pretty-print.h"
30 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "tree-pass.h"
38 /* Conditional dead call elimination
40 Some builtin functions can set errno on error conditions, but they
41 are otherwise pure. If the result of a call to such a function is
42 not used, the compiler can still not eliminate the call without
43 powerful interprocedural analysis to prove that the errno is not
44 checked. However, if the conditions under which the error occurs
45 are known, the compiler can conditionally dead code eliminate the
46 calls by shrink-wrapping the semi-dead calls into the error condition:
50 if (error_cond (args))
53 An actual simple example is :
54 log (x); // Mostly dead call
58 With this change, call to log (x) is effectively eliminated, as
59 in majority of the cases, log won't be called with x out of
60 range. The branch is totally predictable, so the branch cost
63 Note that library functions are not supposed to clear errno to zero without
64 error. See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
67 The condition wrapping the builtin call is conservatively set to avoid too
68 aggressive (wrong) shrink wrapping. The optimization is called conditional
69 dead call elimination because the call is eliminated under the condition
70 that the input arguments would not lead to domain or range error (for
71 instance when x <= 0 for a log (x) call), however the chances that the error
72 condition is hit is very low (those builtin calls which are conditionally
73 dead are usually part of the C++ abstraction penalty exposed after
77 /* A structure for representing input domain of
78 a function argument in integer. If the lower
79 bound is -inf, has_lb is set to false. If the
80 upper bound is +inf, has_ub is false.
81 is_lb_inclusive and is_ub_inclusive are flags
82 to indicate if lb and ub value are inclusive
85 typedef struct input_domain
95 /* A helper function to construct and return an input
96 domain object. LB is the lower bound, HAS_LB is
97 a boolean flag indicating if the lower bound exists,
98 and LB_INCLUSIVE is a boolean flag indicating if the
99 lower bound is inclusive or not. UB, HAS_UB, and
100 UB_INCLUSIVE have the same meaning, but for upper
101 bound of the domain. */
104 get_domain (int lb
, bool has_lb
, bool lb_inclusive
,
105 int ub
, bool has_ub
, bool ub_inclusive
)
109 domain
.has_lb
= has_lb
;
110 domain
.is_lb_inclusive
= lb_inclusive
;
112 domain
.has_ub
= has_ub
;
113 domain
.is_ub_inclusive
= ub_inclusive
;
117 /* A helper function to check the target format for the
118 argument type. In this implementation, only IEEE formats
119 are supported. ARG is the call argument to be checked.
120 Returns true if the format is supported. To support other
121 target formats, function get_no_error_domain needs to be
122 enhanced to have range bounds properly computed. Since
123 the check is cheap (very small number of candidates
124 to be checked), the result is not cached for each float type. */
127 check_target_format (tree arg
)
130 enum machine_mode mode
;
131 const struct real_format
*rfmt
;
133 type
= TREE_TYPE (arg
);
134 mode
= TYPE_MODE (type
);
135 rfmt
= REAL_MODE_FORMAT (mode
);
137 && (rfmt
== &ieee_single_format
|| rfmt
== &mips_single_format
138 || rfmt
== &motorola_single_format
))
140 && (rfmt
== &ieee_double_format
|| rfmt
== &mips_double_format
141 || rfmt
== &motorola_double_format
))
142 /* For long double, we can not really check XFmode
143 which is only defined on intel platforms.
144 Candidate pre-selection using builtin function
145 code guarantees that we are checking formats
146 for long double modes: double, quad, and extended. */
147 || (mode
!= SFmode
&& mode
!= DFmode
148 && (rfmt
== &ieee_quad_format
149 || rfmt
== &mips_quad_format
150 || rfmt
== &ieee_extended_motorola_format
151 || rfmt
== &ieee_extended_intel_96_format
152 || rfmt
== &ieee_extended_intel_128_format
153 || rfmt
== &ieee_extended_intel_96_round_53_format
)))
160 /* A helper function to help select calls to pow that are suitable for
161 conditional DCE transformation. It looks for pow calls that can be
162 guided with simple conditions. Such calls either have constant base
163 values or base values converted from integers. Returns true if
164 the pow call POW_CALL is a candidate. */
166 /* The maximum integer bit size for base argument of a pow call
167 that is suitable for shrink-wrapping transformation. */
168 #define MAX_BASE_INT_BIT_SIZE 32
171 check_pow (gimple pow_call
)
174 enum tree_code bc
, ec
;
176 if (gimple_call_num_args (pow_call
) != 2)
179 base
= gimple_call_arg (pow_call
, 0);
180 expn
= gimple_call_arg (pow_call
, 1);
182 if (!check_target_format (expn
))
185 bc
= TREE_CODE (base
);
186 ec
= TREE_CODE (expn
);
188 /* Folding candidates are not interesting.
189 Can actually assert that it is already folded. */
190 if (ec
== REAL_CST
&& bc
== REAL_CST
)
195 /* Only handle a fixed range of constant. */
197 REAL_VALUE_TYPE bcv
= TREE_REAL_CST (base
);
198 if (REAL_VALUES_EQUAL (bcv
, dconst1
))
200 if (REAL_VALUES_LESS (bcv
, dconst1
))
202 real_from_integer (&mv
, TYPE_MODE (TREE_TYPE (base
)), 256, 0, 1);
203 if (REAL_VALUES_LESS (mv
, bcv
))
207 else if (bc
== SSA_NAME
)
209 tree base_val0
, base_var
, type
;
213 /* Only handles cases where base value is converted
214 from integer values. */
215 base_def
= SSA_NAME_DEF_STMT (base
);
216 if (gimple_code (base_def
) != GIMPLE_ASSIGN
)
219 if (gimple_assign_rhs_code (base_def
) != FLOAT_EXPR
)
221 base_val0
= gimple_assign_rhs1 (base_def
);
223 base_var
= SSA_NAME_VAR (base_val0
);
224 if (!DECL_P (base_var
))
227 type
= TREE_TYPE (base_var
);
228 if (TREE_CODE (type
) != INTEGER_TYPE
)
230 bit_sz
= TYPE_PRECISION (type
);
231 /* If the type of the base is too wide,
232 the resulting shrink wrapping condition
233 will be too conservative. */
234 if (bit_sz
> MAX_BASE_INT_BIT_SIZE
)
243 /* A helper function to help select candidate function calls that are
244 suitable for conditional DCE. Candidate functions must have single
245 valid input domain in this implementation except for pow (see check_pow).
246 Returns true if the function call is a candidate. */
249 check_builtin_call (gimple bcall
)
253 arg
= gimple_call_arg (bcall
, 0);
254 return check_target_format (arg
);
257 /* A helper function to determine if a builtin function call is a
258 candidate for conditional DCE. Returns true if the builtin call
262 is_call_dce_candidate (gimple call
)
265 enum built_in_function fnc
;
267 /* Only potentially dead calls are considered. */
268 if (gimple_call_lhs (call
))
271 fn
= gimple_call_fndecl (call
);
273 || !DECL_BUILT_IN (fn
)
274 || (DECL_BUILT_IN_CLASS (fn
) != BUILT_IN_NORMAL
))
277 fnc
= DECL_FUNCTION_CODE (fn
);
280 /* Trig functions. */
281 CASE_FLT_FN (BUILT_IN_ACOS
):
282 CASE_FLT_FN (BUILT_IN_ASIN
):
283 /* Hyperbolic functions. */
284 CASE_FLT_FN (BUILT_IN_ACOSH
):
285 CASE_FLT_FN (BUILT_IN_ATANH
):
286 CASE_FLT_FN (BUILT_IN_COSH
):
287 CASE_FLT_FN (BUILT_IN_SINH
):
289 CASE_FLT_FN (BUILT_IN_LOG
):
290 CASE_FLT_FN (BUILT_IN_LOG2
):
291 CASE_FLT_FN (BUILT_IN_LOG10
):
292 CASE_FLT_FN (BUILT_IN_LOG1P
):
294 CASE_FLT_FN (BUILT_IN_EXP
):
295 CASE_FLT_FN (BUILT_IN_EXP2
):
296 CASE_FLT_FN (BUILT_IN_EXP10
):
297 CASE_FLT_FN (BUILT_IN_EXPM1
):
298 CASE_FLT_FN (BUILT_IN_POW10
):
300 CASE_FLT_FN (BUILT_IN_SQRT
):
301 return check_builtin_call (call
);
302 /* Special one: two argument pow. */
304 return check_pow (call
);
313 /* A helper function to generate gimple statements for
314 one bound comparison. ARG is the call argument to
315 be compared with the bound, LBUB is the bound value
316 in integer, TCODE is the tree_code of the comparison,
317 TEMP_NAME1/TEMP_NAME2 are names of the temporaries,
318 CONDS is a vector holding the produced GIMPLE statements,
319 and NCONDS points to the variable holding the number
320 of logical comparisons. CONDS is either empty or
321 a list ended with a null tree. */
324 gen_one_condition (tree arg
, int lbub
,
325 enum tree_code tcode
,
326 const char *temp_name1
,
327 const char *temp_name2
,
328 VEC (gimple
, heap
) *conds
,
331 tree lbub_real_cst
, lbub_cst
, float_type
;
332 tree temp
, tempn
, tempc
, tempcn
;
333 gimple stmt1
, stmt2
, stmt3
;
335 float_type
= TREE_TYPE (arg
);
336 lbub_cst
= build_int_cst (integer_type_node
, lbub
);
337 lbub_real_cst
= build_real_from_int_cst (float_type
, lbub_cst
);
339 temp
= create_tmp_var (float_type
, temp_name1
);
340 stmt1
= gimple_build_assign (temp
, arg
);
341 tempn
= make_ssa_name (temp
, stmt1
);
342 gimple_assign_set_lhs (stmt1
, tempn
);
344 tempc
= create_tmp_var (boolean_type_node
, temp_name2
);
345 stmt2
= gimple_build_assign (tempc
,
348 tempn
, lbub_real_cst
));
349 tempcn
= make_ssa_name (tempc
, stmt2
);
350 gimple_assign_set_lhs (stmt2
, tempcn
);
352 stmt3
= gimple_build_cond_from_tree (tempcn
, NULL_TREE
, NULL_TREE
);
353 VEC_quick_push (gimple
, conds
, stmt1
);
354 VEC_quick_push (gimple
, conds
, stmt2
);
355 VEC_quick_push (gimple
, conds
, stmt3
);
359 /* A helper function to generate GIMPLE statements for
360 out of input domain check. ARG is the call argument
361 to be runtime checked, DOMAIN holds the valid domain
362 for the given function, CONDS points to the vector
363 holding the result GIMPLE statements. *NCONDS is
364 the number of logical comparisons. This function
365 produces no more than two logical comparisons, one
366 for lower bound check, one for upper bound check. */
369 gen_conditions_for_domain (tree arg
, inp_domain domain
,
370 VEC (gimple
, heap
) *conds
,
374 gen_one_condition (arg
, domain
.lb
,
375 (domain
.is_lb_inclusive
376 ? LT_EXPR
: LE_EXPR
),
377 "DCE_COND_LB", "DCE_COND_LB_TEST",
382 /* Now push a separator. */
384 VEC_quick_push (gimple
, conds
, NULL
);
386 gen_one_condition (arg
, domain
.ub
,
387 (domain
.is_ub_inclusive
388 ? GT_EXPR
: GE_EXPR
),
389 "DCE_COND_UB", "DCE_COND_UB_TEST",
395 /* A helper function to generate condition
396 code for the y argument in call pow (some_const, y).
397 See candidate selection in check_pow. Since the
398 candidates' base values have a limited range,
399 the guarded code generated for y are simple:
402 Note max_y can be computed separately for each
403 const base, but in this implementation, we
404 choose to compute it using the max base
405 in the allowed range for the purpose of
406 simplicity. BASE is the constant base value,
407 EXPN is the expression for the exponent argument,
408 *CONDS is the vector to hold resulting statements,
409 and *NCONDS is the number of logical conditions. */
412 gen_conditions_for_pow_cst_base (tree base
, tree expn
,
413 VEC (gimple
, heap
) *conds
,
416 inp_domain exp_domain
;
417 /* Validate the range of the base constant to make
418 sure it is consistent with check_pow. */
420 REAL_VALUE_TYPE bcv
= TREE_REAL_CST (base
);
421 gcc_assert (!REAL_VALUES_EQUAL (bcv
, dconst1
)
422 && !REAL_VALUES_LESS (bcv
, dconst1
));
423 real_from_integer (&mv
, TYPE_MODE (TREE_TYPE (base
)), 256, 0, 1);
424 gcc_assert (!REAL_VALUES_LESS (mv
, bcv
));
426 exp_domain
= get_domain (0, false, false,
429 gen_conditions_for_domain (expn
, exp_domain
,
433 /* Generate error condition code for pow calls with
434 non constant base values. The candidates selected
435 have their base argument value converted from
436 integer (see check_pow) value (1, 2, 4 bytes), and
437 the max exp value is computed based on the size
438 of the integer type (i.e. max possible base value).
439 The resulting input domain for exp argument is thus
440 conservative (smaller than the max value allowed by
441 the runtime value of the base). BASE is the integer
442 base value, EXPN is the expression for the exponent
443 argument, *CONDS is the vector to hold resulting
444 statements, and *NCONDS is the number of logical
448 gen_conditions_for_pow_int_base (tree base
, tree expn
,
449 VEC (gimple
, heap
) *conds
,
454 tree base_var
, int_type
;
459 inp_domain exp_domain
;
461 base_def
= SSA_NAME_DEF_STMT (base
);
462 base_val0
= gimple_assign_rhs1 (base_def
);
463 base_var
= SSA_NAME_VAR (base_val0
);
464 int_type
= TREE_TYPE (base_var
);
465 bit_sz
= TYPE_PRECISION (int_type
);
466 gcc_assert (bit_sz
> 0
467 && bit_sz
<= MAX_BASE_INT_BIT_SIZE
);
469 /* Determine the max exp argument value according to
470 the size of the base integer. The max exp value
471 is conservatively estimated assuming IEEE754 double
475 else if (bit_sz
== 16)
479 gcc_assert (bit_sz
== MAX_BASE_INT_BIT_SIZE
);
483 /* For pow ((double)x, y), generate the following conditions:
490 if (temp2 > max_exp_real_cst) */
492 /* Generate condition in reverse order -- first
493 the condition for the exp argument. */
495 exp_domain
= get_domain (0, false, false,
496 max_exp
, true, true);
498 gen_conditions_for_domain (expn
, exp_domain
,
501 /* Now generate condition for the base argument.
502 Note it does not use the helper function
503 gen_conditions_for_domain because the base
506 /* Push a separator. */
507 VEC_quick_push (gimple
, conds
, NULL
);
509 temp
= create_tmp_var (int_type
, "DCE_COND1");
510 cst0
= build_int_cst (int_type
, 0);
511 stmt1
= gimple_build_assign (temp
, base_val0
);
512 tempn
= make_ssa_name (temp
, stmt1
);
513 gimple_assign_set_lhs (stmt1
, tempn
);
514 stmt2
= gimple_build_cond (LE_EXPR
, tempn
, cst0
, NULL_TREE
, NULL_TREE
);
516 VEC_quick_push (gimple
, conds
, stmt1
);
517 VEC_quick_push (gimple
, conds
, stmt2
);
521 /* Method to generate conditional statements for guarding conditionally
522 dead calls to pow. One or more statements can be generated for
523 each logical condition. Statement groups of different conditions
524 are separated by a NULL tree and they are stored in the VEC
525 conds. The number of logical conditions are stored in *nconds.
527 See C99 standard, 7.12.7.4:2, for description of pow (x, y).
528 The precise condition for domain errors are complex. In this
529 implementation, a simplified (but conservative) valid domain
530 for x and y are used: x is positive to avoid dom errors, while
531 y is smaller than a upper bound (depending on x) to avoid range
532 errors. Runtime code is generated to check x (if not constant)
533 and y against the valid domain. If it is out, jump to the call,
534 otherwise the call is bypassed. POW_CALL is the call statement,
535 *CONDS is a vector holding the resulting condition statements,
536 and *NCONDS is the number of logical conditions. */
539 gen_conditions_for_pow (gimple pow_call
, VEC (gimple
, heap
) *conds
,
545 #ifdef ENABLE_CHECKING
546 gcc_assert (check_pow (pow_call
));
551 base
= gimple_call_arg (pow_call
, 0);
552 expn
= gimple_call_arg (pow_call
, 1);
554 bc
= TREE_CODE (base
);
557 gen_conditions_for_pow_cst_base (base
, expn
, conds
, nconds
);
558 else if (bc
== SSA_NAME
)
559 gen_conditions_for_pow_int_base (base
, expn
, conds
, nconds
);
564 /* A helper routine to help computing the valid input domain
565 for a builtin function. See C99 7.12.7 for details. In this
566 implementation, we only handle single region domain. The
567 resulting region can be conservative (smaller) than the actual
568 one and rounded to integers. Some of the bounds are documented
569 in the standard, while other limit constants are computed
570 assuming IEEE floating point format (for SF and DF modes).
571 Since IEEE only sets minimum requirements for long double format,
572 different long double formats exist under different implementations
573 (e.g, 64 bit double precision (DF), 80 bit double-extended
574 precision (XF), and 128 bit quad precision (QF) ). For simplicity,
575 in this implementation, the computed bounds for long double assume
576 64 bit format (DF), and are therefore conservative. Another
577 assumption is that single precision float type is always SF mode,
578 and double type is DF mode. This function is quite
579 implementation specific, so it may not be suitable to be part of
580 builtins.c. This needs to be revisited later to see if it can
581 be leveraged in x87 assembly expansion. */
584 get_no_error_domain (enum built_in_function fnc
)
588 /* Trig functions: return [-1, +1] */
589 CASE_FLT_FN (BUILT_IN_ACOS
):
590 CASE_FLT_FN (BUILT_IN_ASIN
):
591 return get_domain (-1, true, true,
593 /* Hyperbolic functions. */
594 CASE_FLT_FN (BUILT_IN_ACOSH
):
595 /* acosh: [1, +inf) */
596 return get_domain (1, true, true,
598 CASE_FLT_FN (BUILT_IN_ATANH
):
599 /* atanh: (-1, +1) */
600 return get_domain (-1, true, false,
604 /* coshf: (-89, +89) */
605 return get_domain (-89, true, false,
611 /* cosh: (-710, +710) */
612 return get_domain (-710, true, false,
614 /* Log functions: (0, +inf) */
615 CASE_FLT_FN (BUILT_IN_LOG
):
616 CASE_FLT_FN (BUILT_IN_LOG2
):
617 CASE_FLT_FN (BUILT_IN_LOG10
):
618 return get_domain (0, true, false,
620 CASE_FLT_FN (BUILT_IN_LOG1P
):
621 return get_domain (-1, true, false,
625 case BUILT_IN_EXPM1F
:
626 /* expf: (-inf, 88) */
627 return get_domain (-1, false, false,
632 case BUILT_IN_EXPM1L
:
633 /* exp: (-inf, 709) */
634 return get_domain (-1, false, false,
637 /* exp2f: (-inf, 128) */
638 return get_domain (-1, false, false,
642 /* exp2: (-inf, 1024) */
643 return get_domain (-1, false, false,
645 case BUILT_IN_EXP10F
:
646 case BUILT_IN_POW10F
:
647 /* exp10f: (-inf, 38) */
648 return get_domain (-1, false, false,
652 case BUILT_IN_EXP10L
:
653 case BUILT_IN_POW10L
:
654 /* exp10: (-inf, 308) */
655 return get_domain (-1, false, false,
657 /* sqrt: [0, +inf) */
658 CASE_FLT_FN (BUILT_IN_SQRT
):
659 return get_domain (0, true, true,
668 /* The function to generate shrink wrap conditions for a partially
669 dead builtin call whose return value is not used anywhere,
670 but has to be kept live due to potential error condition.
671 BI_CALL is the builtin call, CONDS is the vector of statements
672 for condition code, NCODES is the pointer to the number of
673 logical conditions. Statements belonging to different logical
674 condition are separated by NULL tree in the vector. */
677 gen_shrink_wrap_conditions (gimple bi_call
, VEC (gimple
, heap
) *conds
,
678 unsigned int *nconds
)
682 enum built_in_function fnc
;
684 gcc_assert (nconds
&& conds
);
685 gcc_assert (VEC_length (gimple
, conds
) == 0);
686 gcc_assert (is_gimple_call (bi_call
));
689 fn
= gimple_call_fndecl (call
);
690 gcc_assert (fn
&& DECL_BUILT_IN (fn
));
691 fnc
= DECL_FUNCTION_CODE (fn
);
694 if (fnc
== BUILT_IN_POW
)
695 gen_conditions_for_pow (call
, conds
, nconds
);
699 inp_domain domain
= get_no_error_domain (fnc
);
701 arg
= gimple_call_arg (bi_call
, 0);
702 gen_conditions_for_domain (arg
, domain
, conds
, nconds
);
709 /* Probability of the branch (to the call) is taken. */
710 #define ERR_PROB 0.01
712 /* The function to shrink wrap a partially dead builtin call
713 whose return value is not used anywhere, but has to be kept
714 live due to potential error condition. Returns true if the
715 transformation actually happens. */
718 shrink_wrap_one_built_in_call (gimple bi_call
)
720 gimple_stmt_iterator bi_call_bsi
;
721 basic_block bi_call_bb
, join_tgt_bb
, guard_bb
, guard_bb0
;
722 edge join_tgt_in_edge_from_call
, join_tgt_in_edge_fall_thru
;
723 edge bi_call_in_edge0
, guard_bb_in_edge
;
724 VEC (gimple
, heap
) *conds
;
725 unsigned tn_cond_stmts
, nconds
;
727 gimple cond_expr
= NULL
;
728 gimple cond_expr_start
;
729 tree bi_call_label_decl
;
730 gimple bi_call_label
;
732 conds
= VEC_alloc (gimple
, heap
, 12);
733 gen_shrink_wrap_conditions (bi_call
, conds
, &nconds
);
735 /* This can happen if the condition generator decides
736 it is not beneficial to do the transformation. Just
737 return false and do not do any transformation for
742 bi_call_bb
= gimple_bb (bi_call
);
744 /* Now find the join target bb -- split
745 bi_call_bb if needed. */
746 bi_call_bsi
= gsi_for_stmt (bi_call
);
748 join_tgt_in_edge_from_call
= split_block (bi_call_bb
, bi_call
);
749 bi_call_bsi
= gsi_for_stmt (bi_call
);
751 join_tgt_bb
= join_tgt_in_edge_from_call
->dest
;
753 /* Now it is time to insert the first conditional expression
754 into bi_call_bb and split this bb so that bi_call is
756 tn_cond_stmts
= VEC_length (gimple
, conds
);
758 cond_expr_start
= VEC_index (gimple
, conds
, 0);
759 for (ci
= 0; ci
< tn_cond_stmts
; ci
++)
761 gimple c
= VEC_index (gimple
, conds
, ci
);
762 gcc_assert (c
|| ci
!= 0);
765 gsi_insert_before (&bi_call_bsi
, c
, GSI_SAME_STMT
);
770 gcc_assert (cond_expr
&& gimple_code (cond_expr
) == GIMPLE_COND
);
773 bi_call_label_decl
= create_artificial_label (gimple_location (bi_call
));
774 bi_call_label
= gimple_build_label (bi_call_label_decl
);
775 gsi_insert_before (&bi_call_bsi
, bi_call_label
, GSI_SAME_STMT
);
777 bi_call_in_edge0
= split_block (bi_call_bb
, cond_expr
);
778 bi_call_in_edge0
->flags
&= ~EDGE_FALLTHRU
;
779 bi_call_in_edge0
->flags
|= EDGE_TRUE_VALUE
;
780 guard_bb0
= bi_call_bb
;
781 bi_call_bb
= bi_call_in_edge0
->dest
;
782 join_tgt_in_edge_fall_thru
= make_edge (guard_bb0
, join_tgt_bb
,
785 bi_call_in_edge0
->probability
= REG_BR_PROB_BASE
* ERR_PROB
;
786 join_tgt_in_edge_fall_thru
->probability
=
787 REG_BR_PROB_BASE
- bi_call_in_edge0
->probability
;
789 /* Code generation for the rest of the conditions */
790 guard_bb
= guard_bb0
;
794 edge bi_call_in_edge
;
795 gimple_stmt_iterator guard_bsi
= gsi_for_stmt (cond_expr_start
);
797 cond_expr_start
= VEC_index (gimple
, conds
, ci0
);
798 for (; ci
< tn_cond_stmts
; ci
++)
800 gimple c
= VEC_index (gimple
, conds
, ci
);
801 gcc_assert (c
|| ci
!= ci0
);
804 gsi_insert_before (&guard_bsi
, c
, GSI_SAME_STMT
);
809 gcc_assert (cond_expr
&& gimple_code (cond_expr
) == GIMPLE_COND
);
810 guard_bb_in_edge
= split_block (guard_bb
, cond_expr
);
811 guard_bb_in_edge
->flags
&= ~EDGE_FALLTHRU
;
812 guard_bb_in_edge
->flags
|= EDGE_FALSE_VALUE
;
814 bi_call_in_edge
= make_edge (guard_bb
, bi_call_bb
, EDGE_TRUE_VALUE
);
816 bi_call_in_edge
->probability
= REG_BR_PROB_BASE
* ERR_PROB
;
817 guard_bb_in_edge
->probability
=
818 REG_BR_PROB_BASE
- bi_call_in_edge
->probability
;
821 VEC_free (gimple
, heap
, conds
);
822 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
825 loc
= gimple_location (bi_call
);
827 "%s:%d: note: function call is shrink-wrapped"
828 " into error conditions.\n",
829 LOCATION_FILE (loc
), LOCATION_LINE (loc
));
835 /* The top level function for conditional dead code shrink
836 wrapping transformation. */
839 shrink_wrap_conditional_dead_built_in_calls (VEC (gimple
, heap
) *calls
)
841 bool changed
= false;
844 unsigned n
= VEC_length (gimple
, calls
);
850 gimple bi_call
= VEC_index (gimple
, calls
, i
);
851 changed
|= shrink_wrap_one_built_in_call (bi_call
);
857 /* Pass entry points. */
860 tree_call_cdce (void)
863 gimple_stmt_iterator i
;
864 bool something_changed
= false;
865 VEC (gimple
, heap
) *cond_dead_built_in_calls
= NULL
;
868 /* Collect dead call candidates. */
869 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
871 gimple stmt
= gsi_stmt (i
);
872 if (is_gimple_call (stmt
)
873 && is_call_dce_candidate (stmt
))
875 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
877 fprintf (dump_file
, "Found conditional dead call: ");
878 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
879 fprintf (dump_file
, "\n");
881 if (cond_dead_built_in_calls
== NULL
)
882 cond_dead_built_in_calls
= VEC_alloc (gimple
, heap
, 64);
883 VEC_safe_push (gimple
, heap
, cond_dead_built_in_calls
, stmt
);
888 if (cond_dead_built_in_calls
== NULL
)
892 = shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls
);
894 VEC_free (gimple
, heap
, cond_dead_built_in_calls
);
896 if (something_changed
)
898 free_dominance_info (CDI_DOMINATORS
);
899 free_dominance_info (CDI_POST_DOMINATORS
);
900 /* As we introduced new control-flow we need to insert PHI-nodes
901 for the call-clobbers of the remaining call. */
902 mark_sym_for_renaming (gimple_vop (cfun
));
903 return (TODO_update_ssa
| TODO_cleanup_cfg
| TODO_ggc_collect
904 | TODO_remove_unused_locals
);
911 gate_call_cdce (void)
913 /* The limit constants used in the implementation
914 assume IEEE floating point format. Other formats
915 can be supported in the future if needed. */
916 return flag_tree_builtin_call_dce
!= 0 && optimize_function_for_speed_p (cfun
);
919 struct gimple_opt_pass pass_call_cdce
=
924 gate_call_cdce
, /* gate */
925 tree_call_cdce
, /* execute */
928 0, /* static_pass_number */
929 TV_TREE_CALL_CDCE
, /* tv_id */
930 PROP_cfg
| PROP_ssa
, /* properties_required */
931 0, /* properties_provided */
932 0, /* properties_destroyed */
933 0, /* todo_flags_start */
934 TODO_dump_func
| TODO_verify_ssa
/* todo_flags_finish */