1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
31 #include "tree-inline.h"
32 #include "tree-flow.h"
33 #include "tree-flow-inline.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
42 #include "diagnostic.h"
43 #include "tree-pretty-print.h"
44 #include "gimple-pretty-print.h"
50 #include "basic-block.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "ipa-struct-reorg.h"
55 #include "ipa-type-escape.h"
56 #include "tree-dump.h"
59 /* This optimization implements structure peeling.
61 For example, given a structure type:
69 it can be peeled into two structure types as follows:
71 typedef struct and typedef struct
77 or can be fully peeled:
94 When structure type is peeled all instances and their accesses
95 in the program are updated accordingly. For example, if there is
100 and structure type str_t was peeled into two structures str_t_0
101 and str_t_1 as it was shown above, then array A will be replaced
102 by two arrays as follows:
107 The field access of field a of element i of array A: A[i].a will be
108 replaced by an access to field a of element i of array A_0: A_0[i].a.
110 This optimization also supports dynamically allocated arrays.
111 If array of structures was allocated by malloc function:
113 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
115 the allocation site will be replaced to reflect new structure types:
117 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
118 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
120 The field access through the pointer p[i].a will be changed by p_0[i].a.
122 The goal of structure peeling is to improve spatial locality.
123 For example, if one of the fields of a structure is accessed frequently
126 for (i = 0; i < N; i++)
131 the allocation of field a of str_t contiguously in memory will
132 increase the chances of fetching the field from cache.
134 The analysis part of this optimization is based on the frequency of
135 field accesses, which are collected all over the program.
136 Then the fields with the frequencies that satisfy the following condition
137 get peeled out of the structure:
139 freq(f) > C * max_field_freq_in_struct
141 where max_field_freq_in_struct is the maximum field frequency
142 in the structure. C is a constant defining which portion of
143 max_field_freq_in_struct the fields should have in order to be peeled.
145 If profiling information is provided, it is used to calculate the
146 frequency of field accesses. Otherwise, the structure is fully peeled.
148 IPA type-escape analysis is used to determine when it is safe
151 The optimization is activated by flag -fipa-struct-reorg. */
153 /* New variables created by this optimization.
154 When doing struct peeling, each variable of
155 the original struct type will be replaced by
156 the set of new variables corresponding to
157 the new structure types. */
158 struct new_var_data
{
159 /* VAR_DECL for original struct type. */
161 /* Vector of new variables. */
162 VEC(tree
, heap
) *new_vars
;
165 typedef struct new_var_data
*new_var
;
166 typedef const struct new_var_data
*const_new_var
;
168 /* This structure represents allocation site of the structure. */
169 typedef struct alloc_site
175 DEF_VEC_O (alloc_site_t
);
176 DEF_VEC_ALLOC_O (alloc_site_t
, heap
);
178 /* Allocation sites that belong to the same function. */
179 struct func_alloc_sites
182 /* Vector of allocation sites for function. */
183 VEC (alloc_site_t
, heap
) *allocs
;
186 typedef struct func_alloc_sites
*fallocs_t
;
187 typedef const struct func_alloc_sites
*const_fallocs_t
;
189 /* All allocation sites in the program. */
190 htab_t alloc_sites
= NULL
;
192 /* New global variables. Generated once for whole program. */
193 htab_t new_global_vars
;
195 /* New local variables. Generated per-function. */
196 htab_t new_local_vars
;
198 /* Vector of structures to be transformed. */
199 typedef struct data_structure structure
;
200 DEF_VEC_O (structure
);
201 DEF_VEC_ALLOC_O (structure
, heap
);
202 VEC (structure
, heap
) *structures
;
204 /* Forward declarations. */
205 static bool is_equal_types (tree
, tree
);
207 /* Strip structure TYPE from pointers and arrays. */
210 strip_type (tree type
)
212 gcc_assert (TYPE_P (type
));
214 while (POINTER_TYPE_P (type
)
215 || TREE_CODE (type
) == ARRAY_TYPE
)
216 type
= TREE_TYPE (type
);
221 /* This function returns type of VAR. */
224 get_type_of_var (tree var
)
229 if (TREE_CODE (var
) == PARM_DECL
)
230 return DECL_ARG_TYPE (var
);
232 return TREE_TYPE (var
);
235 /* Set of actions we do for each newly generated STMT. */
238 finalize_stmt (gimple stmt
)
241 mark_symbols_for_renaming (stmt
);
244 /* This function finalizes STMT and appends it to the list STMTS. */
247 finalize_stmt_and_append (gimple_seq
*stmts
, gimple stmt
)
249 gimple_seq_add_stmt (stmts
, stmt
);
250 finalize_stmt (stmt
);
253 /* This function returns true if two fields FIELD1 and FIELD2 are
254 semantically equal, and false otherwise. */
257 compare_fields (tree field1
, tree field2
)
259 if (DECL_NAME (field1
) && DECL_NAME (field2
))
261 const char *name1
= IDENTIFIER_POINTER (DECL_NAME (field1
));
262 const char *name2
= IDENTIFIER_POINTER (DECL_NAME (field2
));
264 gcc_assert (name1
&& name2
);
266 if (strcmp (name1
, name2
))
270 else if (DECL_NAME (field1
) || DECL_NAME (field2
))
273 if (!is_equal_types (TREE_TYPE (field1
), TREE_TYPE (field2
)))
279 /* Given structure type SRT_TYPE and field FIELD,
280 this function is looking for a field with the same name
281 and type as FIELD in STR_TYPE. It returns it if found,
282 or NULL_TREE otherwise. */
285 find_field_in_struct_1 (tree str_type
, tree field
)
289 if (!DECL_NAME (field
))
292 for (str_field
= TYPE_FIELDS (str_type
); str_field
;
293 str_field
= TREE_CHAIN (str_field
))
296 if (!DECL_NAME (str_field
))
299 if (compare_fields (field
, str_field
))
306 /* Given a field declaration FIELD_DECL, this function
307 returns corresponding field entry in structure STR. */
309 static struct field_entry
*
310 find_field_in_struct (d_str str
, tree field_decl
)
314 tree field
= find_field_in_struct_1 (str
->decl
, field_decl
);
316 for (i
= 0; i
< str
->num_fields
; i
++)
317 if (str
->fields
[i
].decl
== field
)
318 return &(str
->fields
[i
]);
323 /* This function checks whether ARG is a result of multiplication
324 of some number by STRUCT_SIZE. If yes, the function returns true
325 and this number is filled into NUM. */
328 is_result_of_mult (tree arg
, tree
*num
, tree struct_size
)
330 gimple size_def_stmt
= SSA_NAME_DEF_STMT (arg
);
332 /* If the allocation statement was of the form
333 D.2229_10 = <alloc_func> (D.2228_9);
334 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
336 if (size_def_stmt
&& is_gimple_assign (size_def_stmt
))
338 tree lhs
= gimple_assign_lhs (size_def_stmt
);
340 /* We expect temporary here. */
341 if (!is_gimple_reg (lhs
))
344 if (gimple_assign_rhs_code (size_def_stmt
) == MULT_EXPR
)
346 tree arg0
= gimple_assign_rhs1 (size_def_stmt
);
347 tree arg1
= gimple_assign_rhs2 (size_def_stmt
);
349 if (operand_equal_p (arg0
, struct_size
, OEP_ONLY_CONST
))
355 if (operand_equal_p (arg1
, struct_size
, OEP_ONLY_CONST
))
368 /* This function returns true if access ACC corresponds to the pattern
369 generated by compiler when an address of element i of an array
370 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
371 pattern is recognized correctly, this function returns true
372 and fills missing fields in ACC. Otherwise it returns false. */
375 decompose_indirect_ref_acc (tree str_decl
, struct field_access_site
*acc
)
378 tree struct_size
, op0
, op1
;
380 enum tree_code rhs_code
;
382 ref_var
= TREE_OPERAND (acc
->ref
, 0);
384 if (TREE_CODE (ref_var
) != SSA_NAME
)
387 acc
->ref_def_stmt
= SSA_NAME_DEF_STMT (ref_var
);
388 if (!(acc
->ref_def_stmt
)
389 || (gimple_code (acc
->ref_def_stmt
) != GIMPLE_ASSIGN
))
392 rhs_code
= gimple_assign_rhs_code (acc
->ref_def_stmt
);
394 if (rhs_code
!= PLUS_EXPR
395 && rhs_code
!= MINUS_EXPR
396 && rhs_code
!= POINTER_PLUS_EXPR
)
399 op0
= gimple_assign_rhs1 (acc
->ref_def_stmt
);
400 op1
= gimple_assign_rhs2 (acc
->ref_def_stmt
);
402 if (!is_array_access_through_pointer_and_index (rhs_code
, op0
, op1
,
403 &acc
->base
, &acc
->offset
,
408 before_cast
= SINGLE_SSA_TREE_OPERAND (acc
->cast_stmt
, SSA_OP_USE
);
410 before_cast
= acc
->offset
;
416 if (SSA_NAME_IS_DEFAULT_DEF (before_cast
))
419 struct_size
= TYPE_SIZE_UNIT (str_decl
);
421 if (!is_result_of_mult (before_cast
, &acc
->num
, struct_size
))
428 /* This function checks whether the access ACC of structure type STR
429 is of the form suitable for transformation. If yes, it returns true.
433 decompose_access (tree str_decl
, struct field_access_site
*acc
)
435 gcc_assert (acc
->ref
);
437 if (TREE_CODE (acc
->ref
) == INDIRECT_REF
)
438 return decompose_indirect_ref_acc (str_decl
, acc
);
439 else if (TREE_CODE (acc
->ref
) == ARRAY_REF
)
441 else if (TREE_CODE (acc
->ref
) == VAR_DECL
)
447 /* This function creates empty field_access_site node. */
449 static inline struct field_access_site
*
450 make_field_acc_node (void)
452 return XCNEW (struct field_access_site
);
455 /* This function returns the structure field access, defined by STMT,
456 if it is already in hashtable of function accesses F_ACCS. */
458 static struct field_access_site
*
459 is_in_field_accs (gimple stmt
, htab_t f_accs
)
461 return (struct field_access_site
*)
462 htab_find_with_hash (f_accs
, stmt
, htab_hash_pointer (stmt
));
465 /* This function adds an access ACC to the hashtable
466 F_ACCS of field accesses. */
469 add_field_acc_to_acc_sites (struct field_access_site
*acc
,
474 gcc_assert (!is_in_field_accs (acc
->stmt
, f_accs
));
475 slot
= htab_find_slot_with_hash (f_accs
, acc
->stmt
,
476 htab_hash_pointer (acc
->stmt
),
481 /* This function adds the VAR to vector of variables of
482 an access site defined by statement STMT. If access entry
483 with statement STMT does not exist in hashtable of
484 accesses ACCS, this function creates it. */
487 add_access_to_acc_sites (gimple stmt
, tree var
, htab_t accs
)
489 struct access_site
*acc
;
491 acc
= (struct access_site
*)
492 htab_find_with_hash (accs
, stmt
, htab_hash_pointer (stmt
));
498 acc
= XNEW (struct access_site
);
500 if (!is_gimple_debug (stmt
))
501 acc
->vars
= VEC_alloc (tree
, heap
, 10);
504 slot
= htab_find_slot_with_hash (accs
, stmt
,
505 htab_hash_pointer (stmt
), INSERT
);
508 if (!is_gimple_debug (stmt
))
509 VEC_safe_push (tree
, heap
, acc
->vars
, var
);
512 /* This function adds NEW_DECL to function
513 referenced vars, and marks it for renaming. */
516 finalize_var_creation (tree new_decl
)
518 add_referenced_var (new_decl
);
519 mark_sym_for_renaming (new_decl
);
522 /* This function finalizes VAR creation if it is a global VAR_DECL. */
525 finalize_global_creation (tree var
)
527 if (TREE_CODE (var
) == VAR_DECL
528 && is_global_var (var
))
529 finalize_var_creation (var
);
532 /* This function inserts NEW_DECL to varpool. */
535 insert_global_to_varpool (tree new_decl
)
537 struct varpool_node
*new_node
;
539 new_node
= varpool_node (new_decl
);
540 notice_global_symbol (new_decl
);
541 varpool_mark_needed_node (new_node
);
542 varpool_finalize_decl (new_decl
);
545 /* This function finalizes the creation of new variables,
546 defined by *SLOT->new_vars. */
549 finalize_new_vars_creation (void **slot
, void *data ATTRIBUTE_UNUSED
)
551 new_var n_var
= *(new_var
*) slot
;
555 for (i
= 0; VEC_iterate (tree
, n_var
->new_vars
, i
, var
); i
++)
556 finalize_var_creation (var
);
560 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
561 It returns it, if found, and NULL_TREE otherwise. */
564 find_var_in_new_vars_vec (new_var var
, tree new_type
)
569 for (i
= 0; VEC_iterate (tree
, var
->new_vars
, i
, n_var
); i
++)
571 tree type
= strip_type(get_type_of_var (n_var
));
574 if (type
== new_type
)
581 /* This function returns new_var node, the orig_var of which is DECL.
582 It looks for new_var's in NEW_VARS_HTAB. If not found,
583 the function returns NULL. */
586 is_in_new_vars_htab (tree decl
, htab_t new_vars_htab
)
588 return (new_var
) htab_find_with_hash (new_vars_htab
, decl
,
592 /* Given original variable ORIG_VAR, this function returns
593 new variable corresponding to it of NEW_TYPE type. */
596 find_new_var_of_type (tree orig_var
, tree new_type
)
599 gcc_assert (orig_var
&& new_type
);
601 if (TREE_CODE (orig_var
) == SSA_NAME
)
602 orig_var
= SSA_NAME_VAR (orig_var
);
604 var
= is_in_new_vars_htab (orig_var
, new_global_vars
);
606 var
= is_in_new_vars_htab (orig_var
, new_local_vars
);
608 return find_var_in_new_vars_vec (var
, new_type
);
611 /* This function generates stmt:
612 res = NUM * sizeof(TYPE) and returns it.
613 res is filled into RES. */
616 gen_size (tree num
, tree type
, tree
*res
)
618 tree struct_size
= TYPE_SIZE_UNIT (type
);
619 HOST_WIDE_INT struct_size_int
= TREE_INT_CST_LOW (struct_size
);
622 *res
= create_tmp_var (TREE_TYPE (num
), NULL
);
625 add_referenced_var (*res
);
627 if (exact_log2 (struct_size_int
) == -1)
629 tree size
= build_int_cst (TREE_TYPE (num
), struct_size_int
);
630 new_stmt
= gimple_build_assign (*res
, fold_build2 (MULT_EXPR
,
636 tree C
= build_int_cst (TREE_TYPE (num
), exact_log2 (struct_size_int
));
638 new_stmt
= gimple_build_assign (*res
, fold_build2 (LSHIFT_EXPR
,
643 finalize_stmt (new_stmt
);
647 /* This function generates and returns a statement, that cast variable
648 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
649 into RES_P. ORIG_CAST_STMT is the original cast statement. */
652 gen_cast_stmt (tree before_cast
, tree new_type
, gimple orig_cast_stmt
,
658 lhs
= gimple_assign_lhs (orig_cast_stmt
);
659 new_lhs
= find_new_var_of_type (lhs
, new_type
);
660 gcc_assert (new_lhs
);
662 new_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, new_lhs
, before_cast
, 0);
663 finalize_stmt (new_stmt
);
668 /* This function builds an edge between BB and E->dest and updates
669 phi nodes of E->dest. It returns newly created edge. */
672 make_edge_and_fix_phis_of_dest (basic_block bb
, edge e
)
676 gimple_stmt_iterator si
;
678 new_e
= make_edge (bb
, e
->dest
, e
->flags
);
680 for (si
= gsi_start_phis (new_e
->dest
); !gsi_end_p (si
); gsi_next (&si
))
682 gimple phi
= gsi_stmt (si
);
683 arg
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
684 add_phi_arg (phi
, arg
, new_e
, gimple_phi_arg_location_from_edge (phi
, e
));
690 /* This function inserts NEW_STMT before STMT. */
693 insert_before_stmt (gimple stmt
, gimple new_stmt
)
695 gimple_stmt_iterator bsi
;
697 if (!stmt
|| !new_stmt
)
700 bsi
= gsi_for_stmt (stmt
);
701 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
704 /* Insert NEW_STMTS after STMT. */
707 insert_seq_after_stmt (gimple stmt
, gimple_seq new_stmts
)
709 gimple_stmt_iterator bsi
;
711 if (!stmt
|| !new_stmts
)
714 bsi
= gsi_for_stmt (stmt
);
715 gsi_insert_seq_after (&bsi
, new_stmts
, GSI_SAME_STMT
);
718 /* Insert NEW_STMT after STMT. */
721 insert_after_stmt (gimple stmt
, gimple new_stmt
)
723 gimple_stmt_iterator bsi
;
725 if (!stmt
|| !new_stmt
)
728 bsi
= gsi_for_stmt (stmt
);
729 gsi_insert_after (&bsi
, new_stmt
, GSI_SAME_STMT
);
732 /* This function returns vector of allocation sites
733 that appear in function FN_DECL. */
736 get_fallocs (tree fn_decl
)
738 return (fallocs_t
) htab_find_with_hash (alloc_sites
, fn_decl
,
739 htab_hash_pointer (fn_decl
));
742 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
743 and it is a part of allocation of a structure,
744 then it is usually followed by a cast stmt
745 p_8 = (struct str_t *) D.2225_7;
746 which is returned by this function. */
749 get_final_alloc_stmt (gimple alloc_stmt
)
758 if (!is_gimple_call (alloc_stmt
))
761 alloc_res
= gimple_get_lhs (alloc_stmt
);
763 if (TREE_CODE (alloc_res
) != SSA_NAME
)
766 if (!single_imm_use (alloc_res
, &use_p
, &final_stmt
))
772 /* This function returns true if STMT is one of allocation
773 sites of function FN_DECL. It returns false otherwise. */
776 is_part_of_malloc (gimple stmt
, tree fn_decl
)
778 fallocs_t fallocs
= get_fallocs (fn_decl
);
785 for (i
= 0; VEC_iterate (alloc_site_t
, fallocs
->allocs
, i
, call
); i
++)
786 if (call
->stmt
== stmt
787 || get_final_alloc_stmt (call
->stmt
) == stmt
)
793 /* Auxiliary structure for a lookup over field accesses. */
794 struct find_stmt_data
800 /* This function looks for DATA->stmt among
801 the statements involved in the field access,
802 defined by SLOT. It stops when it's found. */
805 find_in_field_accs (void **slot
, void *data
)
807 struct field_access_site
*f_acc
= *(struct field_access_site
**) slot
;
808 gimple stmt
= ((struct find_stmt_data
*)data
)->stmt
;
810 if (f_acc
->stmt
== stmt
811 || f_acc
->ref_def_stmt
== stmt
812 || f_acc
->cast_stmt
== stmt
)
814 ((struct find_stmt_data
*)data
)->found
= true;
821 /* This function checks whether STMT is part of field
822 accesses of structure STR. It returns true, if found,
823 and false otherwise. */
826 is_part_of_field_access (gimple stmt
, d_str str
)
830 for (i
= 0; i
< str
->num_fields
; i
++)
832 struct find_stmt_data data
;
836 if (str
->fields
[i
].acc_sites
)
837 htab_traverse (str
->fields
[i
].acc_sites
, find_in_field_accs
, &data
);
846 /* Auxiliary data for exclude_from_accs function. */
854 /* This function returns component_ref with the BASE and
855 field named FIELD_ID from structure TYPE. */
858 build_comp_ref (tree base
, tree field_id
, tree type
)
864 /* Find field of structure type with the same name as field_id. */
865 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
867 if (DECL_NAME (field
) == field_id
)
876 return build3 (COMPONENT_REF
, TREE_TYPE (field
), base
, field
, NULL_TREE
);
880 /* This struct represent data used for walk_tree
881 called from function find_pos_in_stmt.
882 - ref is a tree to be found,
883 - and pos is a pointer that points to ref in stmt. */
892 /* This is a callback function for walk_tree, called from
893 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
894 When *TP is equal to DATA->ref, the walk_tree stops,
895 and found position, equal to TP, is assigned to DATA->pos. */
898 find_pos_in_stmt_1 (tree
*tp
, int *walk_subtrees
, void * data
)
900 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
901 struct ref_pos
*r_pos
= (struct ref_pos
*) wi
->info
;
902 tree ref
= r_pos
->ref
;
905 if (t
== ref
|| (TREE_CODE (t
) == SSA_NAME
&& SSA_NAME_VAR (t
) == ref
))
911 r_pos
->container
= t
;
917 /* This function looks for the pointer of REF in STMT,
918 It returns it, if found, and NULL otherwise. */
921 find_pos_in_stmt (gimple stmt
, tree ref
, struct ref_pos
* r_pos
)
923 struct walk_stmt_info wi
;
927 r_pos
->container
= NULL_TREE
;
928 memset (&wi
, 0, sizeof (wi
));
930 walk_gimple_op (stmt
, find_pos_in_stmt_1
, &wi
);
935 /* This structure is used to represent array
936 or pointer-to wrappers of structure type.
937 For example, if type1 is structure type,
938 then for type1 ** we generate two type_wrapper
939 structures with wrap = 0 each one.
940 It's used to unwind the original type up to
941 structure type, replace it with the new structure type
942 and wrap it back in the opposite order. */
944 typedef struct type_wrapper
946 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
949 /* Relevant for arrays as domain or index. */
953 DEF_VEC_O (type_wrapper_t
);
954 DEF_VEC_ALLOC_O (type_wrapper_t
, heap
);
956 /* This function replace field access ACC by the new
957 field access of structure type NEW_TYPE. */
960 replace_field_acc (struct field_access_site
*acc
, tree new_type
)
962 tree ref_var
= acc
->ref
;
967 tree field_id
= DECL_NAME (acc
->field_decl
);
968 VEC (type_wrapper_t
, heap
) *wrapper
= VEC_alloc (type_wrapper_t
, heap
, 10);
969 type_wrapper_t
*wr_p
= NULL
;
970 struct ref_pos r_pos
;
972 while (TREE_CODE (ref_var
) == INDIRECT_REF
973 || TREE_CODE (ref_var
) == ARRAY_REF
)
977 if ( TREE_CODE (ref_var
) == INDIRECT_REF
)
985 wr
.domain
= TREE_OPERAND (ref_var
, 1);
988 VEC_safe_push (type_wrapper_t
, heap
, wrapper
, &wr
);
989 ref_var
= TREE_OPERAND (ref_var
, 0);
992 new_ref
= find_new_var_of_type (ref_var
, new_type
);
993 finalize_global_creation (new_ref
);
995 while (VEC_length (type_wrapper_t
, wrapper
) != 0)
997 tree type
= TREE_TYPE (TREE_TYPE (new_ref
));
999 wr_p
= VEC_last (type_wrapper_t
, wrapper
);
1000 if (wr_p
->wrap
) /* Array. */
1001 new_ref
= build4 (ARRAY_REF
, type
, new_ref
,
1002 wr_p
->domain
, NULL_TREE
, NULL_TREE
);
1004 new_ref
= build1 (INDIRECT_REF
, type
, new_ref
);
1005 VEC_pop (type_wrapper_t
, wrapper
);
1008 new_acc
= build_comp_ref (new_ref
, field_id
, new_type
);
1009 VEC_free (type_wrapper_t
, heap
, wrapper
);
1011 if (is_gimple_assign (acc
->stmt
))
1013 lhs
= gimple_assign_lhs (acc
->stmt
);
1014 rhs
= gimple_assign_rhs1 (acc
->stmt
);
1016 if (lhs
== acc
->comp_ref
)
1017 gimple_assign_set_lhs (acc
->stmt
, new_acc
);
1018 else if (rhs
== acc
->comp_ref
)
1019 gimple_assign_set_rhs1 (acc
->stmt
, new_acc
);
1022 pos
= find_pos_in_stmt (acc
->stmt
, acc
->comp_ref
, &r_pos
);
1029 pos
= find_pos_in_stmt (acc
->stmt
, acc
->comp_ref
, &r_pos
);
1034 finalize_stmt (acc
->stmt
);
1037 /* This function replace field access ACC by a new field access
1038 of structure type NEW_TYPE. */
1041 replace_field_access_stmt (struct field_access_site
*acc
, tree new_type
)
1044 if (TREE_CODE (acc
->ref
) == INDIRECT_REF
1045 ||TREE_CODE (acc
->ref
) == ARRAY_REF
1046 ||TREE_CODE (acc
->ref
) == VAR_DECL
)
1047 replace_field_acc (acc
, new_type
);
1052 /* This function looks for d_str, represented by TYPE, in the structures
1053 vector. If found, it returns an index of found structure. Otherwise
1054 it returns a length of the structures vector. */
1057 find_structure (tree type
)
1062 type
= TYPE_MAIN_VARIANT (type
);
1064 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
1065 if (is_equal_types (str
->decl
, type
))
1068 return VEC_length (structure
, structures
);
1071 /* In this function we create new statements that have the same
1072 form as ORIG_STMT, but of type NEW_TYPE. The statements
1073 treated by this function are simple assignments,
1074 like assignments: p.8_7 = p; or statements with rhs of
1075 tree codes PLUS_EXPR and MINUS_EXPR. */
1078 create_base_plus_offset (gimple orig_stmt
, tree new_type
, tree offset
)
1083 tree new_op0
= NULL_TREE
, new_op1
= NULL_TREE
;
1085 lhs
= gimple_assign_lhs (orig_stmt
);
1087 gcc_assert (TREE_CODE (lhs
) == VAR_DECL
1088 || TREE_CODE (lhs
) == SSA_NAME
);
1090 new_lhs
= find_new_var_of_type (lhs
, new_type
);
1091 gcc_assert (new_lhs
);
1092 finalize_var_creation (new_lhs
);
1094 switch (gimple_assign_rhs_code (orig_stmt
))
1098 case POINTER_PLUS_EXPR
:
1100 tree op0
= gimple_assign_rhs1 (orig_stmt
);
1101 tree op1
= gimple_assign_rhs2 (orig_stmt
);
1102 unsigned str0
, str1
;
1103 unsigned length
= VEC_length (structure
, structures
);
1106 str0
= find_structure (strip_type (get_type_of_var (op0
)));
1107 str1
= find_structure (strip_type (get_type_of_var (op1
)));
1108 gcc_assert ((str0
!= length
) || (str1
!= length
));
1111 new_op0
= find_new_var_of_type (op0
, new_type
);
1113 new_op1
= find_new_var_of_type (op1
, new_type
);
1126 new_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt
),
1127 new_lhs
, new_op0
, new_op1
);
1128 finalize_stmt (new_stmt
);
1133 /* Given a field access F_ACC of the FIELD, this function
1134 replaces it by the new field access. */
1137 create_new_field_access (struct field_access_site
*f_acc
,
1138 struct field_entry field
)
1140 tree new_type
= field
.field_mapping
;
1145 tree cast_res
= NULL
;
1149 mult_stmt
= gen_size (f_acc
->num
, new_type
, &size_res
);
1150 insert_before_stmt (f_acc
->ref_def_stmt
, mult_stmt
);
1153 if (f_acc
->cast_stmt
)
1155 cast_stmt
= gen_cast_stmt (size_res
, new_type
,
1156 f_acc
->cast_stmt
, &cast_res
);
1157 insert_after_stmt (f_acc
->cast_stmt
, cast_stmt
);
1160 if (f_acc
->ref_def_stmt
)
1168 new_stmt
= create_base_plus_offset (f_acc
->ref_def_stmt
,
1170 insert_after_stmt (f_acc
->ref_def_stmt
, new_stmt
);
1173 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1174 D.2162_18 by an appropriate variable of new_type type. */
1175 replace_field_access_stmt (f_acc
, new_type
);
1178 /* This function creates a new condition statement
1179 corresponding to the original COND_STMT, adds new basic block
1180 and redirects condition edges. NEW_VAR is a new condition
1181 variable located in the condition statement at the position POS. */
1184 create_new_stmts_for_cond_expr_1 (tree new_var
, gimple cond_stmt
, unsigned pos
)
1187 edge true_e
= NULL
, false_e
= NULL
;
1189 gimple_stmt_iterator si
;
1191 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
1194 new_stmt
= gimple_build_cond (gimple_cond_code (cond_stmt
),
1195 pos
== 0 ? new_var
: gimple_cond_lhs (cond_stmt
),
1196 pos
== 1 ? new_var
: gimple_cond_rhs (cond_stmt
),
1200 finalize_stmt (new_stmt
);
1202 /* Create new basic block after bb. */
1203 new_bb
= create_empty_bb (gimple_bb (cond_stmt
));
1205 /* Add new condition stmt to the new_bb. */
1206 si
= gsi_start_bb (new_bb
);
1207 gsi_insert_after (&si
, new_stmt
, GSI_NEW_STMT
);
1209 /* Create false and true edges from new_bb. */
1210 make_edge_and_fix_phis_of_dest (new_bb
, true_e
);
1211 make_edge_and_fix_phis_of_dest (new_bb
, false_e
);
1213 /* Redirect one of original edges to point to new_bb. */
1214 if (gimple_cond_code (cond_stmt
) == NE_EXPR
)
1215 redirect_edge_succ (true_e
, new_bb
);
1217 redirect_edge_succ (false_e
, new_bb
);
1220 /* This function creates new condition statements corresponding
1221 to original condition STMT, one for each new type, and
1222 recursively redirect edges to newly generated basic blocks. */
1225 create_new_stmts_for_cond_expr (gimple stmt
)
1227 tree arg0
, arg1
, arg
;
1228 unsigned str0
, str1
;
1234 unsigned length
= VEC_length (structure
, structures
);
1236 gcc_assert (gimple_cond_code (stmt
) == EQ_EXPR
1237 || gimple_cond_code (stmt
) == NE_EXPR
);
1239 arg0
= gimple_cond_lhs (stmt
);
1240 arg1
= gimple_cond_rhs (stmt
);
1242 str0
= find_structure (strip_type (get_type_of_var (arg0
)));
1243 str1
= find_structure (strip_type (get_type_of_var (arg1
)));
1245 s0
= (str0
!= length
) ? true : false;
1246 s1
= (str1
!= length
) ? true : false;
1248 gcc_assert (s0
|| s1
);
1249 /* For now we allow only comparison with 0 or NULL. */
1250 gcc_assert (integer_zerop (arg0
) || integer_zerop (arg1
));
1252 str
= integer_zerop (arg0
) ?
1253 VEC_index (structure
, structures
, str1
):
1254 VEC_index (structure
, structures
, str0
);
1255 arg
= integer_zerop (arg0
) ? arg1
: arg0
;
1256 pos
= integer_zerop (arg0
) ? 1 : 0;
1258 for (i
= 0; VEC_iterate (tree
, str
->new_types
, i
, type
); i
++)
1262 new_arg
= find_new_var_of_type (arg
, type
);
1263 create_new_stmts_for_cond_expr_1 (new_arg
, stmt
, pos
);
1267 /* This function looks for VAR in STMT, and replace it with NEW_VAR.
1268 If needed, it wraps NEW_VAR in pointers and indirect references
1269 before insertion. */
1272 insert_new_var_in_stmt (gimple stmt
, tree var
, tree new_var
)
1274 struct ref_pos r_pos
;
1277 pos
= find_pos_in_stmt (stmt
, var
, &r_pos
);
1280 while (r_pos
.container
&& (TREE_CODE(r_pos
.container
) == INDIRECT_REF
1281 || TREE_CODE(r_pos
.container
) == ADDR_EXPR
))
1283 tree type
= TREE_TYPE (TREE_TYPE (new_var
));
1285 if (TREE_CODE(r_pos
.container
) == INDIRECT_REF
)
1286 new_var
= build1 (INDIRECT_REF
, type
, new_var
);
1288 new_var
= build_fold_addr_expr (new_var
);
1289 pos
= find_pos_in_stmt (stmt
, r_pos
.container
, &r_pos
);
1296 /* Create a new general access to replace original access ACC
1297 for structure type NEW_TYPE. */
1300 create_general_new_stmt (struct access_site
*acc
, tree new_type
)
1302 gimple old_stmt
= acc
->stmt
;
1304 gimple new_stmt
= gimple_copy (old_stmt
);
1307 /* We are really building a new stmt, clear the virtual operands. */
1308 if (gimple_has_mem_ops (new_stmt
))
1310 gimple_set_vuse (new_stmt
, NULL_TREE
);
1311 gimple_set_vdef (new_stmt
, NULL_TREE
);
1314 for (i
= 0; VEC_iterate (tree
, acc
->vars
, i
, var
); i
++)
1316 tree new_var
= find_new_var_of_type (var
, new_type
);
1317 tree lhs
, rhs
= NULL_TREE
;
1319 gcc_assert (new_var
);
1320 finalize_var_creation (new_var
);
1322 if (is_gimple_assign (new_stmt
))
1324 lhs
= gimple_assign_lhs (new_stmt
);
1326 if (TREE_CODE (lhs
) == SSA_NAME
)
1327 lhs
= SSA_NAME_VAR (lhs
);
1328 if (gimple_assign_rhs_code (new_stmt
) == SSA_NAME
)
1329 rhs
= SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt
));
1331 /* It can happen that rhs is a constructor.
1332 Then we have to replace it to be of new_type. */
1333 if (gimple_assign_rhs_code (new_stmt
) == CONSTRUCTOR
)
1335 /* Dealing only with empty constructors right now. */
1336 gcc_assert (VEC_empty (constructor_elt
,
1337 CONSTRUCTOR_ELTS (rhs
)));
1338 rhs
= build_constructor (new_type
, 0);
1339 gimple_assign_set_rhs1 (new_stmt
, rhs
);
1343 gimple_assign_set_lhs (new_stmt
, new_var
);
1344 else if (rhs
== var
)
1345 gimple_assign_set_rhs1 (new_stmt
, new_var
);
1347 insert_new_var_in_stmt (new_stmt
, var
, new_var
);
1350 insert_new_var_in_stmt (new_stmt
, var
, new_var
);
1353 finalize_stmt (new_stmt
);
1357 /* For each new type in STR this function creates new general accesses
1358 corresponding to the original access ACC. */
1361 create_new_stmts_for_general_acc (struct access_site
*acc
, d_str str
)
1364 gimple stmt
= acc
->stmt
;
1367 for (i
= 0; VEC_iterate (tree
, str
->new_types
, i
, type
); i
++)
1371 new_stmt
= create_general_new_stmt (acc
, type
);
1372 insert_after_stmt (stmt
, new_stmt
);
1376 /* This function creates a new general access of structure STR
1377 to replace the access ACC. */
1380 create_new_general_access (struct access_site
*acc
, d_str str
)
1382 gimple stmt
= acc
->stmt
;
1383 switch (gimple_code (stmt
))
1386 create_new_stmts_for_cond_expr (stmt
);
1390 /* It is very hard to maintain usable debug info after struct peeling,
1391 for now just reset all debug stmts referencing objects that have
1393 gimple_debug_bind_reset_value (stmt
);
1398 create_new_stmts_for_general_acc (acc
, str
);
1402 /* Auxiliary data for creation of accesses. */
1403 struct create_acc_data
1410 /* This function creates a new general access, defined by SLOT.
1411 DATA is a pointer to create_acc_data structure. */
1414 create_new_acc (void **slot
, void *data
)
1416 struct access_site
*acc
= *(struct access_site
**) slot
;
1417 basic_block bb
= ((struct create_acc_data
*)data
)->bb
;
1418 d_str str
= ((struct create_acc_data
*)data
)->str
;
1420 if (gimple_bb (acc
->stmt
) == bb
)
1421 create_new_general_access (acc
, str
);
1425 /* This function creates a new field access, defined by SLOT.
1426 DATA is a pointer to create_acc_data structure. */
1429 create_new_field_acc (void **slot
, void *data
)
1431 struct field_access_site
*f_acc
= *(struct field_access_site
**) slot
;
1432 basic_block bb
= ((struct create_acc_data
*)data
)->bb
;
1433 d_str str
= ((struct create_acc_data
*)data
)->str
;
1434 int i
= ((struct create_acc_data
*)data
)->field_index
;
1436 if (gimple_bb (f_acc
->stmt
) == bb
)
1437 create_new_field_access (f_acc
, str
->fields
[i
]);
1441 /* This function creates new accesses for the structure
1442 type STR in basic block BB. */
1445 create_new_accs_for_struct (d_str str
, basic_block bb
)
1448 struct create_acc_data dt
;
1452 dt
.field_index
= -1;
1454 for (i
= 0; i
< str
->num_fields
; i
++)
1458 if (str
->fields
[i
].acc_sites
)
1459 htab_traverse (str
->fields
[i
].acc_sites
,
1460 create_new_field_acc
, &dt
);
1463 htab_traverse (str
->accs
, create_new_acc
, &dt
);
1466 /* This function inserts new variables from new_var,
1467 defined by SLOT, into varpool. */
1470 update_varpool_with_new_var (void **slot
, void *data ATTRIBUTE_UNUSED
)
1472 new_var n_var
= *(new_var
*) slot
;
1476 for (i
= 0; VEC_iterate (tree
, n_var
->new_vars
, i
, var
); i
++)
1477 insert_global_to_varpool (var
);
1481 /* This function prints a field access site, defined by SLOT. */
1484 dump_field_acc (void **slot
, void *data ATTRIBUTE_UNUSED
)
1486 struct field_access_site
*f_acc
=
1487 *(struct field_access_site
**) slot
;
1489 fprintf(dump_file
, "\n");
1491 print_gimple_stmt (dump_file
, f_acc
->stmt
, 0, 0);
1492 if (f_acc
->ref_def_stmt
)
1493 print_gimple_stmt (dump_file
, f_acc
->ref_def_stmt
, 0, 0);
1494 if (f_acc
->cast_stmt
)
1495 print_gimple_stmt (dump_file
, f_acc
->cast_stmt
, 0, 0);
1499 /* Print field accesses from hashtable F_ACCS. */
1502 dump_field_acc_sites (htab_t f_accs
)
1508 htab_traverse (f_accs
, dump_field_acc
, NULL
);
1511 /* Hash value for fallocs_t. */
1514 malloc_hash (const void *x
)
1516 return htab_hash_pointer (((const_fallocs_t
)x
)->func
);
1519 /* This function returns nonzero if function of func_alloc_sites' X
1523 malloc_eq (const void *x
, const void *y
)
1525 return ((const_fallocs_t
)x
)->func
== (const_tree
)y
;
1528 /* This function is a callback for traversal over a structure accesses.
1529 It frees an access represented by SLOT. */
1532 free_accs (void **slot
, void *data ATTRIBUTE_UNUSED
)
1534 struct access_site
* acc
= *(struct access_site
**) slot
;
1536 VEC_free (tree
, heap
, acc
->vars
);
1541 /* This is a callback function for traversal over field accesses.
1542 It frees a field access represented by SLOT. */
1545 free_field_accs (void **slot
, void *data ATTRIBUTE_UNUSED
)
1547 struct field_access_site
*f_acc
= *(struct field_access_site
**) slot
;
1553 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1554 if it is not there yet. */
1557 add_unsuitable_type (VEC (tree
, heap
) **unsuitable_types
, tree type
)
1565 type
= TYPE_MAIN_VARIANT (type
);
1567 for (i
= 0; VEC_iterate (tree
, *unsuitable_types
, i
, t
); i
++)
1568 if (is_equal_types (t
, type
))
1571 if (i
== VEC_length (tree
, *unsuitable_types
))
1572 VEC_safe_push (tree
, heap
, *unsuitable_types
, type
);
1575 /* Given a type TYPE, this function returns the name of the type. */
1578 get_type_name (tree type
)
1580 if (! TYPE_NAME (type
))
1583 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
1584 return IDENTIFIER_POINTER (TYPE_NAME (type
));
1585 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1586 && DECL_NAME (TYPE_NAME (type
)))
1587 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1592 /* This function is a temporary hack to overcome the types problem.
1593 When several compilation units are compiled together
1594 with -combine, the TYPE_MAIN_VARIANT of the same type
1595 can appear differently in different compilation units.
1596 Therefore this function first compares type names.
1597 If there are no names, structure bodies are recursively
1601 is_equal_types (tree type1
, tree type2
)
1603 const char * name1
,* name2
;
1605 if ((!type1
&& type2
)
1606 ||(!type2
&& type1
))
1609 if (!type1
&& !type2
)
1612 if (TREE_CODE (type1
) != TREE_CODE (type2
))
1618 if (TYPE_MAIN_VARIANT (type1
) == TYPE_MAIN_VARIANT (type2
))
1621 name1
= get_type_name (type1
);
1622 name2
= get_type_name (type2
);
1625 return strcmp (name1
, name2
) == 0;
1627 switch (TREE_CODE (type1
))
1630 case REFERENCE_TYPE
:
1632 return is_equal_types (TREE_TYPE (type1
), TREE_TYPE (type2
));
1638 case QUAL_UNION_TYPE
:
1641 tree field1
, field2
;
1643 /* Compare fields of structure. */
1644 for (field1
= TYPE_FIELDS (type1
), field2
= TYPE_FIELDS (type2
);
1646 field1
= TREE_CHAIN (field1
), field2
= TREE_CHAIN (field2
))
1648 if (!compare_fields (field1
, field2
))
1651 if (field1
|| field2
)
1660 if (TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
1661 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
))
1669 tree max1
, min1
, max2
, min2
;
1671 if (!is_equal_types (TREE_TYPE (type1
), TREE_TYPE (type2
)))
1674 d1
= TYPE_DOMAIN (type1
);
1675 d2
= TYPE_DOMAIN (type2
);
1680 max1
= TYPE_MAX_VALUE (d1
);
1681 max2
= TYPE_MAX_VALUE (d2
);
1682 min1
= TYPE_MIN_VALUE (d1
);
1683 min2
= TYPE_MIN_VALUE (d2
);
1685 if (max1
&& max2
&& min1
&& min2
1686 && TREE_CODE (max1
) == TREE_CODE (max2
)
1687 && TREE_CODE (max1
) == INTEGER_CST
1688 && TREE_CODE (min1
) == TREE_CODE (min2
)
1689 && TREE_CODE (min1
) == INTEGER_CST
1690 && tree_int_cst_equal (max1
, max2
)
1691 && tree_int_cst_equal (min1
, min2
))
1703 /* This function free non-field accesses from hashtable ACCS. */
1706 free_accesses (htab_t accs
)
1709 htab_traverse (accs
, free_accs
, NULL
);
1713 /* This function free field accesses hashtable F_ACCS. */
1716 free_field_accesses (htab_t f_accs
)
1719 htab_traverse (f_accs
, free_field_accs
, NULL
);
1720 htab_delete (f_accs
);
1723 /* Update call graph with new edge generated by new MALLOC_STMT.
1724 The edge origin is CONTEXT function. */
1727 update_cgraph_with_malloc_call (gimple malloc_stmt
, tree context
)
1729 struct cgraph_node
*src
, *dest
;
1730 tree malloc_fn_decl
;
1735 malloc_fn_decl
= gimple_call_fndecl (malloc_stmt
);
1737 src
= cgraph_node (context
);
1738 dest
= cgraph_node (malloc_fn_decl
);
1739 cgraph_create_edge (src
, dest
, malloc_stmt
,
1740 gimple_bb (malloc_stmt
)->count
,
1741 compute_call_stmt_bb_frequency
1742 (context
, gimple_bb (malloc_stmt
)),
1743 gimple_bb (malloc_stmt
)->loop_depth
);
1746 /* This function generates set of statements required
1747 to allocate number NUM of structures of type NEW_TYPE.
1748 The statements are stored in NEW_STMTS. The statement that contain
1749 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1752 create_new_malloc (gimple malloc_stmt
, tree new_type
, gimple_seq
*new_stmts
,
1755 tree new_malloc_size
;
1756 tree malloc_fn_decl
;
1759 gimple call_stmt
, final_stmt
;
1762 gcc_assert (num
&& malloc_stmt
&& new_type
);
1763 *new_stmts
= gimple_seq_alloc ();
1765 /* Generate argument to malloc as multiplication of num
1766 and size of new_type. */
1767 new_stmt
= gen_size (num
, new_type
, &new_malloc_size
);
1768 gimple_seq_add_stmt (new_stmts
, new_stmt
);
1770 /* Generate new call for malloc. */
1771 malloc_res
= create_tmp_var (ptr_type_node
, NULL
);
1772 add_referenced_var (malloc_res
);
1774 malloc_fn_decl
= gimple_call_fndecl (malloc_stmt
);
1775 call_stmt
= gimple_build_call (malloc_fn_decl
, 1, new_malloc_size
);
1776 gimple_call_set_lhs (call_stmt
, malloc_res
);
1777 finalize_stmt_and_append (new_stmts
, call_stmt
);
1779 /* Create new cast statement. */
1780 final_stmt
= get_final_alloc_stmt (malloc_stmt
);
1781 gcc_assert (final_stmt
);
1782 new_stmt
= gen_cast_stmt (malloc_res
, new_type
, final_stmt
, &cast_res
);
1783 gimple_seq_add_stmt (new_stmts
, new_stmt
);
1788 /* This function returns a tree representing
1789 the number of instances of structure STR_DECL allocated
1790 by allocation STMT. If new statements are generated,
1791 they are filled into NEW_STMTS_P. */
1794 gen_num_of_structs_in_malloc (gimple stmt
, tree str_decl
,
1795 gimple_seq
*new_stmts_p
)
1799 HOST_WIDE_INT struct_size_int
;
1804 /* Get malloc argument. */
1805 if (!is_gimple_call (stmt
))
1808 arg
= gimple_call_arg (stmt
, 0);
1810 if (TREE_CODE (arg
) != SSA_NAME
1811 && !TREE_CONSTANT (arg
))
1814 struct_size
= TYPE_SIZE_UNIT (str_decl
);
1815 struct_size_int
= TREE_INT_CST_LOW (struct_size
);
1817 gcc_assert (struct_size
);
1819 if (TREE_CODE (arg
) == SSA_NAME
)
1824 if (is_result_of_mult (arg
, &num
, struct_size
))
1827 num
= create_tmp_var (integer_type_node
, NULL
);
1830 add_referenced_var (num
);
1832 if (exact_log2 (struct_size_int
) == -1)
1833 div_stmt
= gimple_build_assign_with_ops (TRUNC_DIV_EXPR
, num
, arg
,
1837 tree C
= build_int_cst (integer_type_node
,
1838 exact_log2 (struct_size_int
));
1840 div_stmt
= gimple_build_assign_with_ops (RSHIFT_EXPR
, num
, arg
, C
);
1842 gimple_seq_add_stmt (new_stmts_p
, div_stmt
);
1843 finalize_stmt (div_stmt
);
1847 if (CONSTANT_CLASS_P (arg
)
1848 && multiple_of_p (TREE_TYPE (struct_size
), arg
, struct_size
))
1849 return int_const_binop (TRUNC_DIV_EXPR
, arg
, struct_size
, 0);
1854 /* This function is a callback for traversal on new_var's hashtable.
1855 SLOT is a pointer to new_var. This function prints to dump_file
1856 an original variable and all new variables from the new_var
1857 pointed by *SLOT. */
1860 dump_new_var (void **slot
, void *data ATTRIBUTE_UNUSED
)
1862 new_var n_var
= *(new_var
*) slot
;
1867 var_type
= get_type_of_var (n_var
->orig_var
);
1869 fprintf (dump_file
, "\nOrig var: ");
1870 print_generic_expr (dump_file
, n_var
->orig_var
, 0);
1871 fprintf (dump_file
, " of type ");
1872 print_generic_expr (dump_file
, var_type
, 0);
1873 fprintf (dump_file
, "\n");
1876 VEC_iterate (tree
, n_var
->new_vars
, i
, var
); i
++)
1878 var_type
= get_type_of_var (var
);
1880 fprintf (dump_file
, " ");
1881 print_generic_expr (dump_file
, var
, 0);
1882 fprintf (dump_file
, " of type ");
1883 print_generic_expr (dump_file
, var_type
, 0);
1884 fprintf (dump_file
, "\n");
1889 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1892 copy_decl_attributes (tree new_decl
, tree orig_decl
)
1895 DECL_ARTIFICIAL (new_decl
) = 1;
1896 DECL_EXTERNAL (new_decl
) = DECL_EXTERNAL (orig_decl
);
1897 TREE_STATIC (new_decl
) = TREE_STATIC (orig_decl
);
1898 TREE_PUBLIC (new_decl
) = TREE_PUBLIC (orig_decl
);
1899 TREE_USED (new_decl
) = TREE_USED (orig_decl
);
1900 DECL_CONTEXT (new_decl
) = DECL_CONTEXT (orig_decl
);
1901 TREE_THIS_VOLATILE (new_decl
) = TREE_THIS_VOLATILE (orig_decl
);
1902 TREE_ADDRESSABLE (new_decl
) = TREE_ADDRESSABLE (orig_decl
);
1904 if (TREE_CODE (orig_decl
) == VAR_DECL
)
1906 TREE_READONLY (new_decl
) = TREE_READONLY (orig_decl
);
1907 DECL_TLS_MODEL (new_decl
) = DECL_TLS_MODEL (orig_decl
);
1911 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1912 the same way as a structure type is wrapped in DECL.
1913 It returns the generated type. */
1916 gen_struct_type (tree decl
, tree new_str_type
)
1918 tree type_orig
= get_type_of_var (decl
);
1919 tree new_type
= new_str_type
;
1920 VEC (type_wrapper_t
, heap
) *wrapper
= VEC_alloc (type_wrapper_t
, heap
, 10);
1922 type_wrapper_t
*wr_p
;
1924 while (POINTER_TYPE_P (type_orig
)
1925 || TREE_CODE (type_orig
) == ARRAY_TYPE
)
1927 if (POINTER_TYPE_P (type_orig
))
1930 wr
.domain
= NULL_TREE
;
1934 gcc_assert (TREE_CODE (type_orig
) == ARRAY_TYPE
);
1936 wr
.domain
= TYPE_DOMAIN (type_orig
);
1938 VEC_safe_push (type_wrapper_t
, heap
, wrapper
, &wr
);
1939 type_orig
= TREE_TYPE (type_orig
);
1942 while (VEC_length (type_wrapper_t
, wrapper
) != 0)
1944 wr_p
= VEC_last (type_wrapper_t
, wrapper
);
1946 if (wr_p
->wrap
) /* Array. */
1947 new_type
= build_array_type (new_type
, wr_p
->domain
);
1949 new_type
= build_pointer_type (new_type
);
1951 VEC_pop (type_wrapper_t
, wrapper
);
1954 VEC_free (type_wrapper_t
, heap
, wrapper
);
1958 /* This function generates and returns new variable name based on
1959 ORIG_DECL name, combined with index I.
1960 The form of the new name is <orig_name>.<I> . */
1963 gen_var_name (tree orig_decl
, unsigned HOST_WIDE_INT i
)
1965 const char *old_name
;
1969 if (!DECL_NAME (orig_decl
)
1970 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl
)))
1973 /* If the original variable has a name, create an
1974 appropriate new name for the new variable. */
1976 old_name
= IDENTIFIER_POINTER (DECL_NAME (orig_decl
));
1977 prefix
= XALLOCAVEC (char, strlen (old_name
) + 1);
1978 strcpy (prefix
, old_name
);
1979 ASM_FORMAT_PRIVATE_NAME (new_name
, prefix
, i
);
1980 return get_identifier (new_name
);
1983 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1986 add_to_new_vars_htab (new_var new_node
, htab_t new_vars_htab
)
1990 slot
= htab_find_slot_with_hash (new_vars_htab
, new_node
->orig_var
,
1991 DECL_UID (new_node
->orig_var
),
1996 /* This function creates and returns new_var_data node
1997 with empty new_vars and orig_var equal to VAR. */
2000 create_new_var_node (tree var
, d_str str
)
2004 node
= XNEW (struct new_var_data
);
2005 node
->orig_var
= var
;
2006 node
->new_vars
= VEC_alloc (tree
, heap
, VEC_length (tree
, str
->new_types
));
2010 /* Check whether the type of VAR is potential candidate for peeling.
2011 Returns true if yes, false otherwise. If yes, TYPE_P will contain
2012 candidate type. If VAR is initialized, the type of VAR will be added
2013 to UNSUITABLE_TYPES. */
2016 is_candidate (tree var
, tree
*type_p
, VEC (tree
, heap
) **unsuitable_types
)
2019 bool initialized
= false;
2026 /* There is no support of initialized vars. */
2027 if (TREE_CODE (var
) == VAR_DECL
2028 && DECL_INITIAL (var
) != NULL_TREE
)
2031 type
= get_type_of_var (var
);
2035 type
= TYPE_MAIN_VARIANT (strip_type (type
));
2036 if (TREE_CODE (type
) != RECORD_TYPE
)
2040 if (initialized
&& unsuitable_types
&& *unsuitable_types
)
2044 fprintf (dump_file
, "The type ");
2045 print_generic_expr (dump_file
, type
, 0);
2046 fprintf (dump_file
, " is initialized...Excluded.");
2048 add_unsuitable_type (unsuitable_types
, type
);
2058 /* Hash value for field_access_site. */
2061 field_acc_hash (const void *x
)
2063 return htab_hash_pointer (((const struct field_access_site
*)x
)->stmt
);
2066 /* This function returns nonzero if stmt of field_access_site X
2070 field_acc_eq (const void *x
, const void *y
)
2072 return ((const struct field_access_site
*)x
)->stmt
== (const_gimple
)y
;
2075 /* This function prints an access site, defined by SLOT. */
2078 dump_acc (void **slot
, void *data ATTRIBUTE_UNUSED
)
2080 struct access_site
*acc
= *(struct access_site
**) slot
;
2084 fprintf(dump_file
, "\n");
2086 print_gimple_stmt (dump_file
, acc
->stmt
, 0, 0);
2087 fprintf(dump_file
, " : ");
2089 for (i
= 0; VEC_iterate (tree
, acc
->vars
, i
, var
); i
++)
2091 print_generic_expr (dump_file
, var
, 0);
2092 fprintf(dump_file
, ", ");
2097 /* This function frees memory allocated for structure clusters,
2098 starting from CLUSTER. */
2101 free_struct_cluster (struct field_cluster
* cluster
)
2105 if (cluster
->fields_in_cluster
)
2106 sbitmap_free (cluster
->fields_in_cluster
);
2107 if (cluster
->sibling
)
2108 free_struct_cluster (cluster
->sibling
);
2113 /* Free all allocated memory under the structure node pointed by D_NODE. */
2116 free_data_struct (d_str d_node
)
2125 fprintf (dump_file
, "\nRemoving data structure \"");
2126 print_generic_expr (dump_file
, d_node
->decl
, 0);
2127 fprintf (dump_file
, "\" from data_struct_list.");
2130 /* Free all space under d_node. */
2133 for (i
= 0; i
< d_node
->num_fields
; i
++)
2134 free_field_accesses (d_node
->fields
[i
].acc_sites
);
2135 free (d_node
->fields
);
2139 free_accesses (d_node
->accs
);
2141 if (d_node
->struct_clustering
)
2142 free_struct_cluster (d_node
->struct_clustering
);
2144 if (d_node
->new_types
)
2145 VEC_free (tree
, heap
, d_node
->new_types
);
2148 /* This function creates new general and field accesses in BB. */
2151 create_new_accesses_in_bb (basic_block bb
)
2156 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
2157 create_new_accs_for_struct (str
, bb
);
2160 /* This function adds allocation sites for peeled structures.
2161 M_DATA is vector of allocation sites of function CONTEXT. */
2164 create_new_alloc_sites (fallocs_t m_data
, tree context
)
2169 for (j
= 0; VEC_iterate (alloc_site_t
, m_data
->allocs
, j
, call
); j
++)
2171 gimple stmt
= call
->stmt
;
2172 d_str str
= call
->str
;
2174 gimple_seq new_stmts
= NULL
;
2175 gimple last_stmt
= get_final_alloc_stmt (stmt
);
2179 num
= gen_num_of_structs_in_malloc (stmt
, str
->decl
, &new_stmts
);
2182 gimple last_stmt_tmp
= gimple_seq_last_stmt (new_stmts
);
2183 insert_seq_after_stmt (last_stmt
, new_stmts
);
2184 last_stmt
= last_stmt_tmp
;
2187 /* Generate an allocation sites for each new structure type. */
2188 for (i
= 0; VEC_iterate (tree
, str
->new_types
, i
, type
); i
++)
2190 gimple new_malloc_stmt
= NULL
;
2191 gimple last_stmt_tmp
= NULL
;
2194 new_malloc_stmt
= create_new_malloc (stmt
, type
, &new_stmts
, num
);
2195 last_stmt_tmp
= gimple_seq_last_stmt (new_stmts
);
2196 insert_seq_after_stmt (last_stmt
, new_stmts
);
2197 update_cgraph_with_malloc_call (new_malloc_stmt
, context
);
2198 last_stmt
= last_stmt_tmp
;
2203 /* This function prints new variables from hashtable
2204 NEW_VARS_HTAB to dump_file. */
2207 dump_new_vars (htab_t new_vars_htab
)
2213 htab_traverse (new_vars_htab
, dump_new_var
, NULL
);
2216 /* Given an original variable ORIG_DECL of structure type STR,
2217 this function generates new variables of the types defined
2218 by STR->new_type. Generated types are saved in new_var node NODE.
2219 ORIG_DECL should has VAR_DECL tree_code. */
2222 create_new_var_1 (tree orig_decl
, d_str str
, new_var node
)
2228 VEC_iterate (tree
, str
->new_types
, i
, type
); i
++)
2230 tree new_decl
= NULL
;
2233 new_name
= gen_var_name (orig_decl
, i
);
2234 type
= gen_struct_type (orig_decl
, type
);
2236 if (is_global_var (orig_decl
))
2237 new_decl
= build_decl (DECL_SOURCE_LOCATION (orig_decl
),
2238 VAR_DECL
, new_name
, type
);
2241 const char *name
= new_name
? IDENTIFIER_POINTER (new_name
) : NULL
;
2242 new_decl
= create_tmp_var (type
, name
);
2245 copy_decl_attributes (new_decl
, orig_decl
);
2246 VEC_safe_push (tree
, heap
, node
->new_vars
, new_decl
);
2250 /* This function creates new variables to
2251 substitute the original variable VAR_DECL and adds
2252 them to the new_var's hashtable NEW_VARS_HTAB. */
2255 create_new_var (tree var_decl
, htab_t new_vars_htab
)
2262 if (!var_decl
|| is_in_new_vars_htab (var_decl
, new_vars_htab
))
2265 if (!is_candidate (var_decl
, &type
, NULL
))
2268 i
= find_structure (type
);
2269 if (i
== VEC_length (structure
, structures
))
2272 str
= VEC_index (structure
, structures
, i
);
2273 node
= create_new_var_node (var_decl
, str
);
2274 create_new_var_1 (var_decl
, str
, node
);
2275 add_to_new_vars_htab (node
, new_vars_htab
);
2278 /* Hash value for new_var. */
2281 new_var_hash (const void *x
)
2283 return DECL_UID (((const_new_var
)x
)->orig_var
);
2286 /* This function returns nonzero if orig_var of new_var X
2287 and tree Y have equal UIDs. */
2290 new_var_eq (const void *x
, const void *y
)
2292 if (DECL_P ((const_tree
)y
))
2293 return DECL_UID (((const_new_var
)x
)->orig_var
) == DECL_UID ((const_tree
)y
);
2298 /* This function check whether a structure type represented by STR
2299 escapes due to ipa-type-escape analysis. If yes, this type is added
2300 to UNSUITABLE_TYPES vector. */
2303 check_type_escape (d_str str
, VEC (tree
, heap
) **unsuitable_types
)
2305 tree type
= str
->decl
;
2307 if (!ipa_type_escape_type_contained_p (type
))
2311 fprintf (dump_file
, "\nEscaping type is ");
2312 print_generic_expr (dump_file
, type
, 0);
2314 add_unsuitable_type (unsuitable_types
, type
);
2318 /* Hash value for access_site. */
2321 acc_hash (const void *x
)
2323 return htab_hash_pointer (((const struct access_site
*)x
)->stmt
);
2326 /* Return nonzero if stmt of access_site X is equal to Y. */
2329 acc_eq (const void *x
, const void *y
)
2331 return ((const struct access_site
*)x
)->stmt
== (const_gimple
)y
;
2334 /* Given a structure declaration STRUCT_DECL, and number of fields
2335 in the structure NUM_FIELDS, this function creates and returns
2336 corresponding field_entry's. */
2338 static struct field_entry
*
2339 get_fields (tree struct_decl
, int num_fields
)
2341 struct field_entry
*list
;
2342 tree t
= TYPE_FIELDS (struct_decl
);
2345 list
= XNEWVEC (struct field_entry
, num_fields
);
2347 for (idx
= 0 ; t
; t
= TREE_CHAIN (t
), idx
++)
2348 if (TREE_CODE (t
) == FIELD_DECL
)
2350 list
[idx
].index
= idx
;
2352 list
[idx
].acc_sites
=
2353 htab_create (32, field_acc_hash
, field_acc_eq
, NULL
);
2354 list
[idx
].count
= 0;
2355 list
[idx
].field_mapping
= NULL_TREE
;
2361 /* Print non-field accesses from hashtable ACCS of structure. */
2364 dump_access_sites (htab_t accs
)
2370 htab_traverse (accs
, dump_acc
, NULL
);
2373 /* This function is a callback for alloc_sites hashtable
2374 traversal. SLOT is a pointer to fallocs_t. This function
2375 removes all allocations of the structure defined by DATA. */
2378 remove_str_allocs_in_func (void **slot
, void *data
)
2380 fallocs_t fallocs
= *(fallocs_t
*) slot
;
2384 while (VEC_iterate (alloc_site_t
, fallocs
->allocs
, i
, call
))
2386 if (call
->str
== (d_str
) data
)
2387 VEC_ordered_remove (alloc_site_t
, fallocs
->allocs
, i
);
2395 /* This function remove all entries corresponding to the STR structure
2396 from alloc_sites hashtable. */
2399 remove_str_allocs (d_str str
)
2405 htab_traverse (alloc_sites
, remove_str_allocs_in_func
, str
);
2408 /* This function removes the structure with index I from structures vector. */
2411 remove_structure (unsigned i
)
2415 if (i
>= VEC_length (structure
, structures
))
2418 str
= VEC_index (structure
, structures
, i
);
2420 /* Before removing the structure str, we have to remove its
2421 allocations from alloc_sites hashtable. */
2422 remove_str_allocs (str
);
2423 free_data_struct (str
);
2424 VEC_ordered_remove (structure
, structures
, i
);
2427 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2428 COND_STMT is a condition statement to check. */
2431 is_safe_cond_expr (gimple cond_stmt
)
2434 unsigned str0
, str1
;
2436 unsigned length
= VEC_length (structure
, structures
);
2438 if (gimple_cond_code (cond_stmt
) != EQ_EXPR
2439 && gimple_cond_code (cond_stmt
) != NE_EXPR
)
2442 arg0
= gimple_cond_lhs (cond_stmt
);
2443 arg1
= gimple_cond_rhs (cond_stmt
);
2445 str0
= find_structure (strip_type (get_type_of_var (arg0
)));
2446 str1
= find_structure (strip_type (get_type_of_var (arg1
)));
2448 s0
= (str0
!= length
) ? true : false;
2449 s1
= (str1
!= length
) ? true : false;
2454 /* For now we allow only comparison with 0 or NULL. */
2455 if (!integer_zerop (arg0
) && !integer_zerop (arg1
))
2461 /* This function excludes statements, that are
2462 part of allocation sites or field accesses, from the
2463 hashtable of general accesses. SLOT represents general
2464 access that will be checked. DATA is a pointer to
2465 exclude_data structure. */
2468 exclude_from_accs (void **slot
, void *data
)
2470 struct access_site
*acc
= *(struct access_site
**) slot
;
2471 tree fn_decl
= ((struct exclude_data
*)data
)->fn_decl
;
2472 d_str str
= ((struct exclude_data
*)data
)->str
;
2474 if (is_part_of_malloc (acc
->stmt
, fn_decl
)
2475 || is_part_of_field_access (acc
->stmt
, str
))
2477 VEC_free (tree
, heap
, acc
->vars
);
2479 htab_clear_slot (str
->accs
, slot
);
2484 /* Callback function for walk_tree called from collect_accesses_in_bb
2485 function. DATA is the statement which is analyzed. */
2488 get_stmt_accesses (tree
*tp
, int *walk_subtrees
, void *data
)
2490 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
2491 gimple stmt
= (gimple
) wi
->info
;
2497 switch (TREE_CODE (t
))
2501 tree var
= TREE_OPERAND(t
, 0);
2502 tree type
= TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var
)));
2503 unsigned i
= find_structure (type
);
2505 if (i
!= VEC_length (structure
, structures
))
2507 if (is_gimple_debug (stmt
))
2511 str
= VEC_index (structure
, structures
, i
);
2512 add_access_to_acc_sites (stmt
, NULL
, str
->accs
);
2518 fprintf (dump_file
, "\nThe type ");
2519 print_generic_expr (dump_file
, type
, 0);
2520 fprintf (dump_file
, " has bitfield.");
2522 remove_structure (i
);
2529 tree ref
= TREE_OPERAND (t
, 0);
2530 tree field_decl
= TREE_OPERAND (t
, 1);
2533 if ((TREE_CODE (ref
) == INDIRECT_REF
2534 || TREE_CODE (ref
) == ARRAY_REF
2535 || TREE_CODE (ref
) == VAR_DECL
)
2536 && TREE_CODE (field_decl
) == FIELD_DECL
)
2538 tree type
= TYPE_MAIN_VARIANT (TREE_TYPE (ref
));
2539 unsigned i
= find_structure (type
);
2541 if (i
!= VEC_length (structure
, structures
))
2543 d_str str
= VEC_index (structure
, structures
, i
);
2544 struct field_entry
* field
=
2545 find_field_in_struct (str
, field_decl
);
2547 if (is_gimple_debug (stmt
))
2549 add_access_to_acc_sites (stmt
, NULL
, str
->accs
);
2556 struct field_access_site
*acc
= make_field_acc_node ();
2563 acc
->field_decl
= field_decl
;
2565 /* Check whether the access is of the form
2566 we can deal with. */
2567 if (!decompose_access (str
->decl
, acc
))
2571 fprintf (dump_file
, "\nThe type ");
2572 print_generic_expr (dump_file
, type
, 0);
2574 " has complicate access in statement ");
2575 print_gimple_stmt (dump_file
, stmt
, 0, 0);
2578 remove_structure (i
);
2583 /* Increase count of field. */
2584 basic_block bb
= gimple_bb (stmt
);
2585 field
->count
+= bb
->count
;
2587 /* Add stmt to the acc_sites of field. */
2588 add_field_acc_to_acc_sites (acc
, field
->acc_sites
);
2599 tree cond
= COND_EXPR_COND (t
);
2601 for (i
= 0; i
< TREE_CODE_LENGTH (TREE_CODE (cond
)); i
++)
2603 tree t
= TREE_OPERAND (cond
, i
);
2606 walk_tree (&t
, get_stmt_accesses
, data
, NULL
);
2617 if (TREE_CODE (t
) == SSA_NAME
)
2618 t
= SSA_NAME_VAR (t
);
2620 i
= find_structure (strip_type (get_type_of_var (t
)));
2621 if (i
!= VEC_length (structure
, structures
))
2625 str
= VEC_index (structure
, structures
, i
);
2626 add_access_to_acc_sites (stmt
, t
, str
->accs
);
2639 /* Free structures hashtable. */
2642 free_structures (void)
2647 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
2648 free_data_struct (str
);
2650 VEC_free (structure
, heap
, structures
);
2654 /* This function is a callback for traversal over new_var's hashtable.
2655 SLOT is a pointer to new_var. This function frees memory allocated
2656 for new_var and pointed by *SLOT. */
2659 free_new_var (void **slot
, void *data ATTRIBUTE_UNUSED
)
2661 new_var n_var
= *(new_var
*) slot
;
2663 /* Free vector of new_vars. */
2664 VEC_free (tree
, heap
, n_var
->new_vars
);
2669 /* Free new_vars hashtable NEW_VARS_HTAB. */
2672 free_new_vars_htab (htab_t new_vars_htab
)
2675 htab_traverse (new_vars_htab
, free_new_var
, NULL
);
2676 htab_delete (new_vars_htab
);
2677 new_vars_htab
= NULL
;
2680 /* This function creates new general and field accesses that appear in cfun. */
2683 create_new_accesses_for_func (void)
2687 FOR_EACH_BB_FN (bb
, cfun
)
2688 create_new_accesses_in_bb (bb
);
2691 /* Create new allocation sites for the function represented by NODE. */
2694 create_new_alloc_sites_for_func (struct cgraph_node
*node
)
2696 fallocs_t fallocs
= get_fallocs (node
->decl
);
2699 create_new_alloc_sites (fallocs
, node
->decl
);
2702 /* For each local variable of structure type from the vector of structures
2703 this function generates new variable(s) to replace it. */
2706 create_new_local_vars (void)
2709 referenced_var_iterator rvi
;
2711 new_local_vars
= htab_create (num_referenced_vars
,
2712 new_var_hash
, new_var_eq
, NULL
);
2714 FOR_EACH_REFERENCED_VAR (var
, rvi
)
2716 if (!is_global_var (var
))
2717 create_new_var (var
, new_local_vars
);
2721 htab_traverse (new_local_vars
, finalize_new_vars_creation
, NULL
);
2722 dump_new_vars (new_local_vars
);
2725 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2728 print_shift (unsigned HOST_WIDE_INT shift
)
2730 unsigned HOST_WIDE_INT sh
= shift
;
2733 fprintf (dump_file
, " ");
2736 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2739 update_fields_mapping (struct field_cluster
*cluster
, tree new_type
,
2740 struct field_entry
* fields
, int num_fields
)
2744 for (i
= 0; i
< num_fields
; i
++)
2745 if (TEST_BIT (cluster
->fields_in_cluster
, i
))
2746 fields
[i
].field_mapping
= new_type
;
2749 /* This functions builds structure with FIELDS,
2750 NAME and attributes similar to ORIG_STRUCT.
2751 It returns the newly created structure. */
2754 build_basic_struct (tree fields
, tree name
, tree orig_struct
)
2756 tree attributes
= NULL_TREE
;
2760 if (TYPE_ATTRIBUTES (orig_struct
))
2761 attributes
= unshare_expr (TYPE_ATTRIBUTES (orig_struct
));
2762 ref
= make_node (RECORD_TYPE
);
2763 TYPE_SIZE (ref
) = 0;
2764 decl_attributes (&ref
, attributes
, (int) ATTR_FLAG_TYPE_IN_PLACE
);
2765 TYPE_PACKED (ref
) = TYPE_PACKED (orig_struct
);
2766 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2768 DECL_CONTEXT (x
) = ref
;
2769 DECL_PACKED (x
) |= TYPE_PACKED (ref
);
2771 TYPE_FIELDS (ref
) = fields
;
2773 TYPE_NAME (ref
) = name
;
2778 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2779 of preparation for new structure building. NUM_FIELDS is a total
2780 number of fields in the structure. The function returns newly
2781 generated fields. */
2784 create_fields (struct field_cluster
* cluster
,
2785 struct field_entry
* fields
, int num_fields
)
2788 tree new_types
= NULL_TREE
;
2789 tree last
= NULL_TREE
;
2791 for (i
= 0; i
< num_fields
; i
++)
2792 if (TEST_BIT (cluster
->fields_in_cluster
, i
))
2794 tree new_decl
= unshare_expr (fields
[i
].decl
);
2797 new_types
= new_decl
;
2799 TREE_CHAIN (last
) = new_decl
;
2803 TREE_CHAIN (last
) = NULL_TREE
;
2808 /* This function creates a cluster name. The name is based on
2809 the original structure name, if it is present. It has a form:
2811 <original_struct_name>_sub.<CLUST_NUM>
2813 The original structure name is taken from the type of DECL.
2814 If an original structure name is not present, it's generated to be:
2818 The function returns identifier of the new cluster name. */
2821 gen_cluster_name (tree decl
, int clust_num
, int str_num
)
2823 const char * orig_name
= get_type_name (decl
);
2824 char * tmp_name
= NULL
;
2830 ASM_FORMAT_PRIVATE_NAME(tmp_name
, "struct", str_num
);
2832 len
= strlen (tmp_name
? tmp_name
: orig_name
) + strlen ("_sub");
2833 prefix
= XALLOCAVEC (char, len
+ 1);
2834 memcpy (prefix
, tmp_name
? tmp_name
: orig_name
,
2835 strlen (tmp_name
? tmp_name
: orig_name
));
2836 strcpy (prefix
+ strlen (tmp_name
? tmp_name
: orig_name
), "_sub");
2838 ASM_FORMAT_PRIVATE_NAME (new_name
, prefix
, clust_num
);
2839 return get_identifier (new_name
);
2842 /* This function checks whether the structure STR has bitfields.
2843 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2846 check_bitfields (d_str str
, VEC (tree
, heap
) **unsuitable_types
)
2848 tree type
= str
->decl
;
2851 for (i
= 0; i
< str
->num_fields
; i
++)
2852 if (DECL_BIT_FIELD (str
->fields
[i
].decl
))
2854 add_unsuitable_type (unsuitable_types
, type
);
2857 fprintf (dump_file
, "\nType ");
2858 print_generic_expr (dump_file
, type
, 0);
2859 fprintf (dump_file
, "\nescapes due to bitfield ");
2860 print_generic_expr (dump_file
, str
->fields
[i
].decl
, 0);
2866 /* This function adds to UNSUITABLE_TYPES those types that escape
2867 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2870 exclude_escaping_types_1 (VEC (tree
, heap
) **unsuitable_types
)
2875 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
2876 check_type_escape (str
, unsuitable_types
);
2879 /* If a structure type is a return type of any function,
2880 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2883 exclude_returned_types (VEC (tree
, heap
) **unsuitable_types
)
2885 struct cgraph_node
*c_node
;
2887 for (c_node
= cgraph_nodes
; c_node
; c_node
= c_node
->next
)
2889 tree ret_t
= TREE_TYPE (TREE_TYPE (c_node
->decl
));
2893 ret_t
= strip_type (ret_t
);
2894 if (TREE_CODE (ret_t
) == RECORD_TYPE
)
2896 add_unsuitable_type (unsuitable_types
, TYPE_MAIN_VARIANT (ret_t
));
2899 fprintf (dump_file
, "\nThe type \"");
2900 print_generic_expr (dump_file
, ret_t
, 0);
2902 "\" is return type of function...Excluded.");
2909 /* This function looks for parameters of local functions
2910 which are of structure types, or derived from them (arrays
2911 of structures, pointers to structures, or their combinations).
2912 We are not handling peeling of such structures right now.
2913 The found structures types are added to UNSUITABLE_TYPES vector. */
2916 exclude_types_passed_to_local_func (VEC (tree
, heap
) **unsuitable_types
)
2918 struct cgraph_node
*c_node
;
2920 for (c_node
= cgraph_nodes
; c_node
; c_node
= c_node
->next
)
2921 if (cgraph_function_body_availability (c_node
) == AVAIL_LOCAL
)
2923 tree fn
= c_node
->decl
;
2926 for (arg
= DECL_ARGUMENTS (fn
); arg
; arg
= TREE_CHAIN (arg
))
2928 tree type
= TREE_TYPE (arg
);
2930 type
= strip_type (type
);
2931 if (TREE_CODE (type
) == RECORD_TYPE
)
2933 add_unsuitable_type (unsuitable_types
,
2934 TYPE_MAIN_VARIANT (type
));
2937 fprintf (dump_file
, "\nPointer to type \"");
2938 print_generic_expr (dump_file
, type
, 0);
2940 "\" is passed to local function...Excluded.");
2947 /* This function analyzes structure form of structures
2948 potential for transformation. If we are not capable to transform
2949 structure of some form, we remove it from the structures hashtable.
2950 Right now we cannot handle nested structs, when nesting is
2951 through any level of pointers or arrays.
2953 TBD: release these constrains in future.
2955 Note, that in this function we suppose that all structures
2956 in the program are members of the structures hashtable right now,
2957 without excluding escaping types. */
2960 check_struct_form (d_str str
, VEC (tree
, heap
) **unsuitable_types
)
2964 for (i
= 0; i
< str
->num_fields
; i
++)
2966 tree f_type
= strip_type(TREE_TYPE (str
->fields
[i
].decl
));
2968 if (TREE_CODE (f_type
) == RECORD_TYPE
)
2970 add_unsuitable_type (unsuitable_types
, TYPE_MAIN_VARIANT (f_type
));
2971 add_unsuitable_type (unsuitable_types
, str
->decl
);
2974 fprintf (dump_file
, "\nType ");
2975 print_generic_expr (dump_file
, f_type
, 0);
2976 fprintf (dump_file
, " is a field in the structure ");
2977 print_generic_expr (dump_file
, str
->decl
, 0);
2978 fprintf (dump_file
, ". Escaping...");
2984 /* This function adds a structure TYPE to the vector of structures,
2985 if it's not already there. */
2988 add_structure (tree type
)
2990 struct data_structure node
;
2994 type
= TYPE_MAIN_VARIANT (type
);
2996 i
= find_structure (type
);
2998 if (i
!= VEC_length (structure
, structures
))
3001 num_fields
= fields_length (type
);
3003 node
.num_fields
= num_fields
;
3004 node
.fields
= get_fields (type
, num_fields
);
3005 node
.struct_clustering
= NULL
;
3006 node
.accs
= htab_create (32, acc_hash
, acc_eq
, NULL
);
3007 node
.new_types
= VEC_alloc (tree
, heap
, num_fields
);
3010 VEC_safe_push (structure
, heap
, structures
, &node
);
3014 fprintf (dump_file
, "\nAdding data structure \"");
3015 print_generic_expr (dump_file
, type
, 0);
3016 fprintf (dump_file
, "\" to data_struct_list.");
3020 /* This function adds an allocation site to alloc_sites hashtable.
3021 The allocation site appears in STMT of function FN_DECL and
3022 allocates the structure represented by STR. */
3025 add_alloc_site (tree fn_decl
, gimple stmt
, d_str str
)
3027 fallocs_t fallocs
= NULL
;
3028 alloc_site_t m_call
;
3034 (fallocs_t
) htab_find_with_hash (alloc_sites
,
3035 fn_decl
, htab_hash_pointer (fn_decl
));
3041 fallocs
= XNEW (struct func_alloc_sites
);
3042 fallocs
->func
= fn_decl
;
3043 fallocs
->allocs
= VEC_alloc (alloc_site_t
, heap
, 1);
3044 slot
= htab_find_slot_with_hash (alloc_sites
, fn_decl
,
3045 htab_hash_pointer (fn_decl
), INSERT
);
3048 VEC_safe_push (alloc_site_t
, heap
,
3049 fallocs
->allocs
, &m_call
);
3053 fprintf (dump_file
, "\nAdding stmt ");
3054 print_gimple_stmt (dump_file
, stmt
, 0, 0);
3055 fprintf (dump_file
, " to list of mallocs.");
3059 /* This function returns true if the result of STMT, that contains a call
3060 to an allocation function, is cast to one of the structure types.
3061 STMT should be of the form: T.2 = <alloc_func> (T.1);
3062 If true, I_P contains an index of an allocated structure.
3063 Otherwise I_P contains the length of the vector of structures. */
3066 is_alloc_of_struct (gimple stmt
, unsigned *i_p
)
3072 final_stmt
= get_final_alloc_stmt (stmt
);
3077 /* final_stmt should be of the form:
3078 T.3 = (struct_type *) T.2; */
3080 if (gimple_code (final_stmt
) != GIMPLE_ASSIGN
)
3083 lhs
= gimple_assign_lhs (final_stmt
);
3085 type
= get_type_of_var (lhs
);
3090 if (!POINTER_TYPE_P (type
)
3091 || TREE_CODE (strip_type (type
)) != RECORD_TYPE
)
3094 *i_p
= find_structure (strip_type (type
));
3096 if (*i_p
== VEC_length (structure
, structures
))
3102 /* This function prints non-field and field accesses
3103 of the structure STR. */
3106 dump_accs (d_str str
)
3110 fprintf (dump_file
, "\nAccess sites of struct ");
3111 print_generic_expr (dump_file
, str
->decl
, 0);
3113 for (i
= 0; i
< str
->num_fields
; i
++)
3115 fprintf (dump_file
, "\nAccess site of field ");
3116 print_generic_expr (dump_file
, str
->fields
[i
].decl
, 0);
3117 dump_field_acc_sites (str
->fields
[i
].acc_sites
);
3118 fprintf (dump_file
, ":\n");
3120 fprintf (dump_file
, "\nGeneral access sites\n");
3121 dump_access_sites (str
->accs
);
3124 /* This function checks whether an access statement, pointed by SLOT,
3125 is a condition we are capable to transform. It returns false if not,
3126 setting bool *DATA to false. */
3129 safe_cond_expr_check (void **slot
, void *data
)
3131 struct access_site
*acc
= *(struct access_site
**) slot
;
3133 if (gimple_code (acc
->stmt
) == GIMPLE_COND
3134 && !is_safe_cond_expr (acc
->stmt
))
3138 fprintf (dump_file
, "\nUnsafe conditional statement ");
3139 print_gimple_stmt (dump_file
, acc
->stmt
, 0, 0);
3141 *(bool *) data
= false;
3147 /* This function excludes statements that are part of allocation sites and
3148 field accesses from the hashtable of general accesses of the structure
3149 type STR. Only accesses that belong to the function represented by
3150 NODE are treated. */
3153 exclude_alloc_and_field_accs_1 (d_str str
, struct cgraph_node
*node
)
3155 struct exclude_data dt
;
3157 dt
.fn_decl
= node
->decl
;
3160 htab_traverse (dt
.str
->accs
, exclude_from_accs
, &dt
);
3163 /* Collect accesses to the structure types that appear in basic block BB. */
3166 collect_accesses_in_bb (basic_block bb
)
3168 gimple_stmt_iterator bsi
;
3169 struct walk_stmt_info wi
;
3171 memset (&wi
, 0, sizeof (wi
));
3173 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
3175 gimple stmt
= gsi_stmt (bsi
);
3177 /* In asm stmt we cannot always track the arguments,
3178 so we just give up. */
3179 if (gimple_code (stmt
) == GIMPLE_ASM
)
3185 wi
.info
= (void *) stmt
;
3186 walk_gimple_op (stmt
, get_stmt_accesses
, &wi
);
3190 /* This function generates cluster substructure that contains FIELDS.
3191 The cluster added to the set of clusters of the structure STR. */
3194 gen_cluster (sbitmap fields
, d_str str
)
3196 struct field_cluster
*crr_cluster
= XCNEW (struct field_cluster
);
3198 crr_cluster
->sibling
= str
->struct_clustering
;
3199 str
->struct_clustering
= crr_cluster
;
3200 crr_cluster
->fields_in_cluster
= fields
;
3203 /* This function peels a field with the index I from the structure DS. */
3206 peel_field (int i
, d_str ds
)
3208 struct field_cluster
*crr_cluster
= XCNEW (struct field_cluster
);
3210 crr_cluster
->sibling
= ds
->struct_clustering
;
3211 ds
->struct_clustering
= crr_cluster
;
3212 crr_cluster
->fields_in_cluster
=
3213 sbitmap_alloc ((unsigned int) ds
->num_fields
);
3214 sbitmap_zero (crr_cluster
->fields_in_cluster
);
3215 SET_BIT (crr_cluster
->fields_in_cluster
, i
);
3218 /* This function calculates maximum field count in
3219 the structure STR. */
3222 get_max_field_count (d_str str
)
3227 for (i
= 0; i
< str
->num_fields
; i
++)
3228 if (str
->fields
[i
].count
> max
)
3229 max
= str
->fields
[i
].count
;
3234 /* Do struct-reorg transformation for individual function
3235 represented by NODE. All structure types relevant
3236 for this function are transformed. */
3239 do_reorg_for_func (struct cgraph_node
*node
)
3241 create_new_local_vars ();
3242 create_new_alloc_sites_for_func (node
);
3243 create_new_accesses_for_func ();
3244 update_ssa (TODO_update_ssa
);
3245 cleanup_tree_cfg ();
3246 cgraph_rebuild_references ();
3248 /* Free auxiliary data representing local variables. */
3249 free_new_vars_htab (new_local_vars
);
3252 /* Print structure TYPE, its name, if it exists, and body.
3253 INDENT defines the level of indentation (similar
3254 to the option -i of indent command). SHIFT parameter
3255 defines a number of spaces by which a structure will
3256 be shifted right. */
3259 dump_struct_type (tree type
, unsigned HOST_WIDE_INT indent
,
3260 unsigned HOST_WIDE_INT shift
)
3262 const char *struct_name
;
3265 if (!type
|| !dump_file
)
3268 if (TREE_CODE (type
) != RECORD_TYPE
)
3270 print_generic_expr (dump_file
, type
, 0);
3274 print_shift (shift
);
3275 struct_name
= get_type_name (type
);
3276 fprintf (dump_file
, "struct ");
3278 fprintf (dump_file
, "%s\n",struct_name
);
3279 print_shift (shift
);
3280 fprintf (dump_file
, "{\n");
3282 for (field
= TYPE_FIELDS (type
); field
;
3283 field
= TREE_CHAIN (field
))
3285 unsigned HOST_WIDE_INT s
= indent
;
3286 tree f_type
= TREE_TYPE (field
);
3288 print_shift (shift
);
3290 fprintf (dump_file
, " ");
3291 dump_struct_type (f_type
, indent
, shift
+ indent
);
3292 fprintf(dump_file
, " ");
3293 print_generic_expr (dump_file
, field
, 0);
3294 fprintf(dump_file
, ";\n");
3296 print_shift (shift
);
3297 fprintf (dump_file
, "}\n");
3300 /* This function creates new structure types to replace original type,
3301 indicated by STR->decl. The names of the new structure types are
3302 derived from the original structure type. If the original structure
3303 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3306 create_new_type (d_str str
, int *str_num
)
3308 int cluster_num
= 0;
3310 struct field_cluster
*cluster
= str
->struct_clustering
;
3313 tree name
= gen_cluster_name (str
->decl
, cluster_num
,
3319 fields
= create_fields (cluster
, str
->fields
,
3321 new_type
= build_basic_struct (fields
, name
, str
->decl
);
3323 update_fields_mapping (cluster
, new_type
,
3324 str
->fields
, str
->num_fields
);
3326 VEC_safe_push (tree
, heap
, str
->new_types
, new_type
);
3327 cluster
= cluster
->sibling
;
3332 /* This function is a callback for alloc_sites hashtable
3333 traversal. SLOT is a pointer to fallocs_t.
3334 This function frees memory pointed by *SLOT. */
3337 free_falloc_sites (void **slot
, void *data ATTRIBUTE_UNUSED
)
3339 fallocs_t fallocs
= *(fallocs_t
*) slot
;
3341 VEC_free (alloc_site_t
, heap
, fallocs
->allocs
);
3346 /* Remove structures collected in UNSUITABLE_TYPES
3347 from structures vector. */
3350 remove_unsuitable_types (VEC (tree
, heap
) *unsuitable_types
)
3356 for (j
= 0; VEC_iterate (tree
, unsuitable_types
, j
, type
); j
++)
3357 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3358 if (is_equal_types (str
->decl
, type
))
3360 remove_structure (i
);
3365 /* Exclude structure types with bitfields.
3366 We would not want to interfere with other optimizations
3367 that can be done in this case. The structure types with
3368 bitfields are added to UNSUITABLE_TYPES vector. */
3371 exclude_types_with_bit_fields (VEC (tree
, heap
) **unsuitable_types
)
3376 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3377 check_bitfields (str
, unsuitable_types
);
3380 /* This function checks three types of escape. A structure type escapes:
3382 1. if it's a type of parameter of a local function.
3383 2. if it's a type of function return value.
3384 3. if it escapes as a result of ipa-type-escape analysis.
3386 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3389 exclude_escaping_types (VEC (tree
, heap
) **unsuitable_types
)
3391 exclude_types_passed_to_local_func (unsuitable_types
);
3392 exclude_returned_types (unsuitable_types
);
3393 exclude_escaping_types_1 (unsuitable_types
);
3396 /* This function analyzes whether the form of
3397 structure is such that we are capable to transform it.
3398 Nested structures are checked here. Unsuitable structure
3399 types are added to UNSUITABLE_TYPE vector. */
3402 analyze_struct_form (VEC (tree
, heap
) **unsuitable_types
)
3407 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3408 check_struct_form (str
, unsuitable_types
);
3411 /* This function looks for structure types instantiated in the program.
3412 The candidate types are added to the structures vector.
3413 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3416 build_data_structure (VEC (tree
, heap
) **unsuitable_types
)
3420 struct varpool_node
*current_varpool
;
3421 struct cgraph_node
*c_node
;
3423 /* Check global variables. */
3424 FOR_EACH_STATIC_VARIABLE (current_varpool
)
3426 var
= current_varpool
->decl
;
3427 if (is_candidate (var
, &type
, unsuitable_types
))
3428 add_structure (type
);
3431 /* Now add structures that are types of function parameters and
3433 for (c_node
= cgraph_nodes
; c_node
; c_node
= c_node
->next
)
3435 enum availability avail
=
3436 cgraph_function_body_availability (c_node
);
3438 /* We need AVAIL_AVAILABLE for main function. */
3439 if (avail
== AVAIL_LOCAL
|| avail
== AVAIL_AVAILABLE
)
3441 struct function
*fn
= DECL_STRUCT_FUNCTION (c_node
->decl
);
3443 for (var
= DECL_ARGUMENTS (c_node
->decl
); var
;
3444 var
= TREE_CHAIN (var
))
3445 if (is_candidate (var
, &type
, unsuitable_types
))
3446 add_structure (type
);
3450 /* Skip cones that haven't been materialized yet. */
3451 gcc_assert (c_node
->clone_of
3452 && c_node
->clone_of
->decl
!= c_node
->decl
);
3456 /* Check function local variables. */
3457 for (var_list
= fn
->local_decls
; var_list
;
3458 var_list
= TREE_CHAIN (var_list
))
3460 var
= TREE_VALUE (var_list
);
3462 if (is_candidate (var
, &type
, unsuitable_types
))
3463 add_structure (type
);
3469 /* This function returns true if the program contains
3470 a call to user defined allocation function, or other
3471 functions that can interfere with struct-reorg optimizations. */
3474 program_redefines_malloc_p (void)
3476 struct cgraph_node
*c_node
;
3477 struct cgraph_node
*c_node2
;
3478 struct cgraph_edge
*c_edge
;
3481 for (c_node
= cgraph_nodes
; c_node
; c_node
= c_node
->next
)
3483 for (c_edge
= c_node
->callees
; c_edge
; c_edge
= c_edge
->next_callee
)
3485 c_node2
= c_edge
->callee
;
3486 fndecl2
= c_node2
->decl
;
3487 if (is_gimple_call (c_edge
->call_stmt
))
3489 const char * fname
= get_name (fndecl2
);
3491 if ((gimple_call_flags (c_edge
->call_stmt
) & ECF_MALLOC
)
3492 && (DECL_FUNCTION_CODE (fndecl2
) != BUILT_IN_MALLOC
)
3493 && (DECL_FUNCTION_CODE (fndecl2
) != BUILT_IN_CALLOC
)
3494 && (DECL_FUNCTION_CODE (fndecl2
) != BUILT_IN_ALLOCA
))
3497 /* Check that there is no __builtin_object_size,
3498 __builtin_offsetof, or realloc's in the program. */
3499 if (DECL_FUNCTION_CODE (fndecl2
) == BUILT_IN_OBJECT_SIZE
3500 || !strcmp (fname
, "__builtin_offsetof")
3501 || !strcmp (fname
, "realloc"))
3510 /* In this function we assume that an allocation statement
3512 var = (type_cast) malloc (size);
3514 is converted into the following set of statements:
3518 T.3 = (type_cast) T.2;
3521 In this function we collect into alloc_sites the allocation
3522 sites of variables of structure types that are present
3523 in structures vector. */
3526 collect_alloc_sites (void)
3528 struct cgraph_node
*node
;
3529 struct cgraph_edge
*cs
;
3531 for (node
= cgraph_nodes
; node
; node
= node
->next
)
3532 if (node
->analyzed
&& node
->decl
)
3534 for (cs
= node
->callees
; cs
; cs
= cs
->next_callee
)
3536 gimple stmt
= cs
->call_stmt
;
3542 if (is_gimple_call (stmt
)
3543 && (decl
= gimple_call_fndecl (stmt
))
3544 && gimple_call_lhs (stmt
))
3548 if (is_alloc_of_struct (stmt
, &i
))
3550 /* We support only malloc now. */
3551 if (DECL_FUNCTION_CODE (decl
) == BUILT_IN_MALLOC
)
3555 str
= VEC_index (structure
, structures
, i
);
3556 add_alloc_site (node
->decl
, stmt
, str
);
3563 "\nUnsupported allocation function ");
3564 print_gimple_stmt (dump_file
, stmt
, 0, 0);
3566 remove_structure (i
);
3575 /* Print collected accesses. */
3578 dump_accesses (void)
3586 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3590 /* This function checks whether the accesses of structures in condition
3591 expressions are of the kind we are capable to transform.
3592 If not, such structures are removed from the vector of structures. */
3595 check_cond_exprs (void)
3601 while (VEC_iterate (structure
, structures
, i
, str
))
3606 htab_traverse (str
->accs
, safe_cond_expr_check
, &safe_p
);
3608 remove_structure (i
);
3614 /* We exclude from non-field accesses of the structure
3615 all statements that will be treated as part of the structure
3616 allocation sites or field accesses. */
3619 exclude_alloc_and_field_accs (struct cgraph_node
*node
)
3624 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3625 exclude_alloc_and_field_accs_1 (str
, node
);
3628 /* This function collects accesses of the fields of the structures
3629 that appear at function FN. */
3632 collect_accesses_in_func (struct function
*fn
)
3639 /* Collect accesses for each basic blocks separately. */
3640 FOR_EACH_BB_FN (bb
, fn
)
3641 collect_accesses_in_bb (bb
);
3644 /* This function summarizes counts of the fields into the structure count. */
3647 sum_counts (d_str str
, gcov_type
*hottest
)
3652 for (i
= 0; i
< str
->num_fields
; i
++)
3656 fprintf (dump_file
, "\nCounter of field \"");
3657 print_generic_expr (dump_file
, str
->fields
[i
].decl
, 0);
3658 fprintf (dump_file
, "\" is " HOST_WIDEST_INT_PRINT_DEC
,
3659 str
->fields
[i
].count
);
3661 str
->count
+= str
->fields
[i
].count
;
3666 fprintf (dump_file
, "\nCounter of struct \"");
3667 print_generic_expr (dump_file
, str
->decl
, 0);
3668 fprintf (dump_file
, "\" is " HOST_WIDEST_INT_PRINT_DEC
, str
->count
);
3671 if (str
->count
> *hottest
)
3672 *hottest
= str
->count
;
3675 /* This function peels the field into separate structure if it's
3676 sufficiently hot, i.e. if its count provides at least 90% of
3677 the maximum field count in the structure. */
3680 peel_hot_fields (d_str str
)
3682 gcov_type max_field_count
;
3683 sbitmap fields_left
= sbitmap_alloc (str
->num_fields
);
3686 sbitmap_ones (fields_left
);
3688 (gcov_type
) (get_max_field_count (str
)/100)*90;
3690 str
->struct_clustering
= NULL
;
3692 for (i
= 0; i
< str
->num_fields
; i
++)
3694 if (str
->count
>= max_field_count
)
3696 RESET_BIT (fields_left
, i
);
3697 peel_field (i
, str
);
3701 i
= sbitmap_first_set_bit (fields_left
);
3703 gen_cluster (fields_left
, str
);
3705 sbitmap_free (fields_left
);
3708 /* This function is a helper for do_reorg. It goes over
3709 functions in call graph and performs actual transformation
3715 struct cgraph_node
*node
;
3717 /* Initialize the default bitmap obstack. */
3718 bitmap_obstack_initialize (NULL
);
3720 for (node
= cgraph_nodes
; node
; node
= node
->next
)
3721 if (node
->analyzed
&& node
->decl
)
3723 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
3724 current_function_decl
= node
->decl
;
3726 fprintf (dump_file
, "\nFunction to do reorg is %s: \n",
3727 (const char *) IDENTIFIER_POINTER (DECL_NAME (node
->decl
)));
3728 do_reorg_for_func (node
);
3729 free_dominance_info (CDI_DOMINATORS
);
3730 free_dominance_info (CDI_POST_DOMINATORS
);
3731 current_function_decl
= NULL
;
3736 bitmap_obstack_release (NULL
);
3739 /* This function creates new global struct variables.
3740 For each original variable, the set of new variables
3741 is created with the new structure types corresponding
3742 to the structure type of original variable.
3743 Only VAR_DECL variables are treated by this function. */
3746 create_new_global_vars (void)
3748 struct varpool_node
*current_varpool
;
3749 unsigned HOST_WIDE_INT i
;
3750 unsigned HOST_WIDE_INT varpool_size
= 0;
3752 for (i
= 0; i
< 2; i
++)
3755 new_global_vars
= htab_create (varpool_size
,
3756 new_var_hash
, new_var_eq
, NULL
);
3757 FOR_EACH_STATIC_VARIABLE(current_varpool
)
3759 tree var_decl
= current_varpool
->decl
;
3761 if (!var_decl
|| TREE_CODE (var_decl
) != VAR_DECL
)
3766 create_new_var (var_decl
, new_global_vars
);
3770 if (new_global_vars
)
3771 htab_traverse (new_global_vars
, update_varpool_with_new_var
, NULL
);
3774 /* Dump all new types generated by this optimization. */
3777 dump_new_types (void)
3786 fprintf (dump_file
, "\nThe following are the new types generated by"
3787 " this optimization:\n");
3789 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3793 fprintf (dump_file
, "\nFor type ");
3794 dump_struct_type (str
->decl
, 2, 0);
3795 fprintf (dump_file
, "\nthe number of new types is %d\n",
3796 VEC_length (tree
, str
->new_types
));
3798 for (j
= 0; VEC_iterate (tree
, str
->new_types
, j
, type
); j
++)
3799 dump_struct_type (type
, 2, 0);
3803 /* This function creates new types to replace old structure types. */
3806 create_new_types (void)
3812 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3813 create_new_type (str
, &str_num
);
3816 /* Free allocation sites hashtable. */
3819 free_alloc_sites (void)
3822 htab_traverse (alloc_sites
, free_falloc_sites
, NULL
);
3823 htab_delete (alloc_sites
);
3827 /* This function collects structures potential
3828 for peeling transformation, and inserts
3829 them into structures hashtable. */
3832 collect_structures (void)
3834 VEC (tree
, heap
) *unsuitable_types
= VEC_alloc (tree
, heap
, 32);
3836 structures
= VEC_alloc (structure
, heap
, 32);
3838 /* If program contains user defined mallocs, we give up. */
3839 if (program_redefines_malloc_p ())
3842 /* Build data structures hashtable of all data structures
3844 build_data_structure (&unsuitable_types
);
3846 /* This function analyzes whether the form of
3847 structure is such that we are capable to transform it.
3848 Nested structures are checked here. */
3849 analyze_struct_form (&unsuitable_types
);
3851 /* This function excludes those structure types
3852 that escape compilation unit. */
3853 exclude_escaping_types (&unsuitable_types
);
3855 /* We do not want to change data layout of the structures with bitfields. */
3856 exclude_types_with_bit_fields (&unsuitable_types
);
3858 remove_unsuitable_types (unsuitable_types
);
3859 VEC_free (tree
, heap
, unsuitable_types
);
3862 /* Collect structure allocation sites. In case of arrays
3863 we have nothing to do. */
3866 collect_allocation_sites (void)
3868 alloc_sites
= htab_create (32, malloc_hash
, malloc_eq
, NULL
);
3869 collect_alloc_sites ();
3872 /* This function collects data accesses for the
3873 structures to be transformed. For each structure
3874 field it updates the count field in field_entry. */
3877 collect_data_accesses (void)
3879 struct cgraph_node
*c_node
;
3881 for (c_node
= cgraph_nodes
; c_node
; c_node
= c_node
->next
)
3883 enum availability avail
= cgraph_function_body_availability (c_node
);
3885 if (avail
== AVAIL_LOCAL
|| avail
== AVAIL_AVAILABLE
)
3887 struct function
*func
= DECL_STRUCT_FUNCTION (c_node
->decl
);
3889 collect_accesses_in_func (func
);
3890 exclude_alloc_and_field_accs (c_node
);
3894 check_cond_exprs ();
3895 /* Print collected accesses. */
3899 /* We do not bother to transform cold structures.
3900 Coldness of the structure is defined relatively
3901 to the highest structure count among the structures
3902 to be transformed. It's triggered by the compiler parameter
3904 --param struct-reorg-cold-struct-ratio=<value>
3906 where <value> ranges from 0 to 100. Structures with count ratios
3907 that are less than this parameter are considered to be cold. */
3910 exclude_cold_structs (void)
3912 gcov_type hottest
= 0;
3916 /* We summarize counts of fields of a structure into the structure count. */
3917 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3918 sum_counts (str
, &hottest
);
3920 /* Remove cold structures from structures vector. */
3922 while (VEC_iterate (structure
, structures
, i
, str
))
3923 if (str
->count
* 100 < (hottest
* STRUCT_REORG_COLD_STRUCT_RATIO
))
3927 fprintf (dump_file
, "\nThe structure ");
3928 print_generic_expr (dump_file
, str
->decl
, 0);
3929 fprintf (dump_file
, " is cold.");
3931 remove_structure (i
);
3937 /* This function decomposes original structure into substructures,
3946 for (i
= 0; VEC_iterate (structure
, structures
, i
, str
); i
++)
3947 peel_hot_fields (str
);
3951 /* Do the actual transformation for each structure
3952 from the structures hashtable. */
3957 /* Check that there is a work to do. */
3958 if (!VEC_length (structure
, structures
))
3961 fprintf (dump_file
, "\nNo structures to transform. Exiting...");
3968 fprintf (dump_file
, "\nNumber of structures to transform is %d",
3969 VEC_length (structure
, structures
));
3973 /* Generate new types. */
3974 create_new_types ();
3977 /* Create new global variables. */
3978 create_new_global_vars ();
3979 dump_new_vars (new_global_vars
);
3981 /* Decompose structures for each function separately. */
3984 /* Free auxiliary data collected for global variables. */
3985 free_new_vars_htab (new_global_vars
);
3988 /* Free all auxiliary data used by this optimization. */
3991 free_data_structs (void)
3994 free_alloc_sites ();
3997 /* Perform structure decomposition (peeling). */
4000 reorg_structs (void)
4004 /* Collect structure types. */
4005 collect_structures ();
4007 /* Collect structure allocation sites. */
4008 collect_allocation_sites ();
4010 /* Collect structure accesses. */
4011 collect_data_accesses ();
4013 /* We transform only hot structures. */
4014 exclude_cold_structs ();
4017 /* Decompose structures into substructures, i.e. clusters. */
4021 /* Do the actual transformation for each structure
4022 from the structures hashtable. */
4025 /* Free all auxiliary data used by this optimization. */
4026 free_data_structs ();
4029 /* Struct-reorg optimization entry point function. */
4032 reorg_structs_drive (void)
4038 /* Struct-reorg optimization gate function. */
4041 struct_reorg_gate (void)
4043 return flag_ipa_struct_reorg
4044 && flag_whole_program
4048 struct simple_ipa_opt_pass pass_ipa_struct_reorg
=
4052 "ipa_struct_reorg", /* name */
4053 struct_reorg_gate
, /* gate */
4054 reorg_structs_drive
, /* execute */
4057 0, /* static_pass_number */
4058 TV_INTEGRATION
, /* tv_id */
4059 0, /* properties_required */
4060 0, /* properties_provided */
4061 0, /* properties_destroyed */
4062 TODO_verify_ssa
, /* todo_flags_start */
4063 TODO_dump_func
| TODO_verify_ssa
/* todo_flags_finish */