2010-05-28 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / expr.c
blob82c037172095dc5b71ef9b409ceb0f44854fb412
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces_d
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces_d
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces_d *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
145 tree, tree, alias_set_type, bool);
147 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149 static int is_aligning_offset (const_tree, const_tree);
150 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
151 enum expand_modifier);
152 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
153 static rtx do_store_flag (sepops, rtx, enum machine_mode);
154 #ifdef PUSH_ROUNDING
155 static void emit_single_push_insn (enum machine_mode, rtx, tree);
156 #endif
157 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
158 static rtx const_vector_from_tree (tree);
159 static void write_complex_part (rtx, rtx, bool);
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
168 /* Record for each mode whether we can float-extend from memory. */
170 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
178 #endif
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
186 #endif
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero. */
190 #ifndef SET_BY_PIECES_P
191 #define SET_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
194 #endif
196 /* This macro is used to determine whether store_by_pieces should be
197 called to "memcpy" storage when the source is a constant string. */
198 #ifndef STORE_BY_PIECES_P
199 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
200 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
201 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
202 #endif
204 /* This array records the insn_code of insns to perform block moves. */
205 enum insn_code movmem_optab[NUM_MACHINE_MODES];
207 /* This array records the insn_code of insns to perform block sets. */
208 enum insn_code setmem_optab[NUM_MACHINE_MODES];
210 /* These arrays record the insn_code of three different kinds of insns
211 to perform block compares. */
212 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
213 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
216 /* Synchronization primitives. */
217 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
236 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
237 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
239 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
241 #ifndef SLOW_UNALIGNED_ACCESS
242 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
243 #endif
245 /* This is run to set up which modes can be used
246 directly in memory and to initialize the block move optab. It is run
247 at the beginning of compilation and when the target is reinitialized. */
249 void
250 init_expr_target (void)
252 rtx insn, pat;
253 enum machine_mode mode;
254 int num_clobbers;
255 rtx mem, mem1;
256 rtx reg;
258 /* Try indexing by frame ptr and try by stack ptr.
259 It is known that on the Convex the stack ptr isn't a valid index.
260 With luck, one or the other is valid on any machine. */
261 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
262 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
264 /* A scratch register we can modify in-place below to avoid
265 useless RTL allocations. */
266 reg = gen_rtx_REG (VOIDmode, -1);
268 insn = rtx_alloc (INSN);
269 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
270 PATTERN (insn) = pat;
272 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
273 mode = (enum machine_mode) ((int) mode + 1))
275 int regno;
277 direct_load[(int) mode] = direct_store[(int) mode] = 0;
278 PUT_MODE (mem, mode);
279 PUT_MODE (mem1, mode);
280 PUT_MODE (reg, mode);
282 /* See if there is some register that can be used in this mode and
283 directly loaded or stored from memory. */
285 if (mode != VOIDmode && mode != BLKmode)
286 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
287 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
288 regno++)
290 if (! HARD_REGNO_MODE_OK (regno, mode))
291 continue;
293 SET_REGNO (reg, regno);
295 SET_SRC (pat) = mem;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = mem1;
301 SET_DEST (pat) = reg;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_load[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
310 SET_SRC (pat) = reg;
311 SET_DEST (pat) = mem1;
312 if (recog (pat, insn, &num_clobbers) >= 0)
313 direct_store[(int) mode] = 1;
317 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
320 mode = GET_MODE_WIDER_MODE (mode))
322 enum machine_mode srcmode;
323 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
324 srcmode = GET_MODE_WIDER_MODE (srcmode))
326 enum insn_code ic;
328 ic = can_extend_p (mode, srcmode, 0);
329 if (ic == CODE_FOR_nothing)
330 continue;
332 PUT_MODE (mem, srcmode);
334 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
335 float_extend_from_mem[mode][srcmode] = true;
340 /* This is run at the start of compiling a function. */
342 void
343 init_expr (void)
345 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 /* Copy data from FROM to TO, where the machine modes are not the same.
349 Both modes may be integer, or both may be floating, or both may be
350 fixed-point.
351 UNSIGNEDP should be nonzero if FROM is an unsigned type.
352 This causes zero-extension instead of sign-extension. */
354 void
355 convert_move (rtx to, rtx from, int unsignedp)
357 enum machine_mode to_mode = GET_MODE (to);
358 enum machine_mode from_mode = GET_MODE (from);
359 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
360 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
361 enum insn_code code;
362 rtx libcall;
364 /* rtx code for making an equivalent value. */
365 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
366 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369 gcc_assert (to_real == from_real);
370 gcc_assert (to_mode != BLKmode);
371 gcc_assert (from_mode != BLKmode);
373 /* If the source and destination are already the same, then there's
374 nothing to do. */
375 if (to == from)
376 return;
378 /* If FROM is a SUBREG that indicates that we have already done at least
379 the required extension, strip it. We don't handle such SUBREGs as
380 TO here. */
382 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
383 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
384 >= GET_MODE_SIZE (to_mode))
385 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
386 from = gen_lowpart (to_mode, from), from_mode = to_mode;
388 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
390 if (to_mode == from_mode
391 || (from_mode == VOIDmode && CONSTANT_P (from)))
393 emit_move_insn (to, from);
394 return;
397 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
399 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
401 if (VECTOR_MODE_P (to_mode))
402 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
403 else
404 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
406 emit_move_insn (to, from);
407 return;
410 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
412 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
413 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
414 return;
417 if (to_real)
419 rtx value, insns;
420 convert_optab tab;
422 gcc_assert ((GET_MODE_PRECISION (from_mode)
423 != GET_MODE_PRECISION (to_mode))
424 || (DECIMAL_FLOAT_MODE_P (from_mode)
425 != DECIMAL_FLOAT_MODE_P (to_mode)));
427 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
428 /* Conversion between decimal float and binary float, same size. */
429 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
430 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
431 tab = sext_optab;
432 else
433 tab = trunc_optab;
435 /* Try converting directly if the insn is supported. */
437 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
438 if (code != CODE_FOR_nothing)
440 emit_unop_insn (code, to, from,
441 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
442 return;
445 /* Otherwise use a libcall. */
446 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
448 /* Is this conversion implemented yet? */
449 gcc_assert (libcall);
451 start_sequence ();
452 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
453 1, from, from_mode);
454 insns = get_insns ();
455 end_sequence ();
456 emit_libcall_block (insns, to, value,
457 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
458 from)
459 : gen_rtx_FLOAT_EXTEND (to_mode, from));
460 return;
463 /* Handle pointer conversion. */ /* SPEE 900220. */
464 /* Targets are expected to provide conversion insns between PxImode and
465 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
466 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
468 enum machine_mode full_mode
469 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
471 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
472 != CODE_FOR_nothing);
474 if (full_mode != from_mode)
475 from = convert_to_mode (full_mode, from, unsignedp);
476 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
477 to, from, UNKNOWN);
478 return;
480 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
482 rtx new_from;
483 enum machine_mode full_mode
484 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
486 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
487 != CODE_FOR_nothing);
489 if (to_mode == full_mode)
491 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
492 to, from, UNKNOWN);
493 return;
496 new_from = gen_reg_rtx (full_mode);
497 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
498 new_from, from, UNKNOWN);
500 /* else proceed to integer conversions below. */
501 from_mode = full_mode;
502 from = new_from;
505 /* Make sure both are fixed-point modes or both are not. */
506 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
507 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
508 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
510 /* If we widen from_mode to to_mode and they are in the same class,
511 we won't saturate the result.
512 Otherwise, always saturate the result to play safe. */
513 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
514 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
515 expand_fixed_convert (to, from, 0, 0);
516 else
517 expand_fixed_convert (to, from, 0, 1);
518 return;
521 /* Now both modes are integers. */
523 /* Handle expanding beyond a word. */
524 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
525 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
527 rtx insns;
528 rtx lowpart;
529 rtx fill_value;
530 rtx lowfrom;
531 int i;
532 enum machine_mode lowpart_mode;
533 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
535 /* Try converting directly if the insn is supported. */
536 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
537 != CODE_FOR_nothing)
539 /* If FROM is a SUBREG, put it into a register. Do this
540 so that we always generate the same set of insns for
541 better cse'ing; if an intermediate assignment occurred,
542 we won't be doing the operation directly on the SUBREG. */
543 if (optimize > 0 && GET_CODE (from) == SUBREG)
544 from = force_reg (from_mode, from);
545 emit_unop_insn (code, to, from, equiv_code);
546 return;
548 /* Next, try converting via full word. */
549 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
550 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
551 != CODE_FOR_nothing))
553 rtx word_to = gen_reg_rtx (word_mode);
554 if (REG_P (to))
556 if (reg_overlap_mentioned_p (to, from))
557 from = force_reg (from_mode, from);
558 emit_clobber (to);
560 convert_move (word_to, from, unsignedp);
561 emit_unop_insn (code, to, word_to, equiv_code);
562 return;
565 /* No special multiword conversion insn; do it by hand. */
566 start_sequence ();
568 /* Since we will turn this into a no conflict block, we must ensure
569 that the source does not overlap the target. */
571 if (reg_overlap_mentioned_p (to, from))
572 from = force_reg (from_mode, from);
574 /* Get a copy of FROM widened to a word, if necessary. */
575 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
576 lowpart_mode = word_mode;
577 else
578 lowpart_mode = from_mode;
580 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
582 lowpart = gen_lowpart (lowpart_mode, to);
583 emit_move_insn (lowpart, lowfrom);
585 /* Compute the value to put in each remaining word. */
586 if (unsignedp)
587 fill_value = const0_rtx;
588 else
589 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
590 LT, lowfrom, const0_rtx,
591 VOIDmode, 0, -1);
593 /* Fill the remaining words. */
594 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
596 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
597 rtx subword = operand_subword (to, index, 1, to_mode);
599 gcc_assert (subword);
601 if (fill_value != subword)
602 emit_move_insn (subword, fill_value);
605 insns = get_insns ();
606 end_sequence ();
608 emit_insn (insns);
609 return;
612 /* Truncating multi-word to a word or less. */
613 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
614 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
616 if (!((MEM_P (from)
617 && ! MEM_VOLATILE_P (from)
618 && direct_load[(int) to_mode]
619 && ! mode_dependent_address_p (XEXP (from, 0)))
620 || REG_P (from)
621 || GET_CODE (from) == SUBREG))
622 from = force_reg (from_mode, from);
623 convert_move (to, gen_lowpart (word_mode, from), 0);
624 return;
627 /* Now follow all the conversions between integers
628 no more than a word long. */
630 /* For truncation, usually we can just refer to FROM in a narrower mode. */
631 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
633 GET_MODE_BITSIZE (from_mode)))
635 if (!((MEM_P (from)
636 && ! MEM_VOLATILE_P (from)
637 && direct_load[(int) to_mode]
638 && ! mode_dependent_address_p (XEXP (from, 0)))
639 || REG_P (from)
640 || GET_CODE (from) == SUBREG))
641 from = force_reg (from_mode, from);
642 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
643 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
644 from = copy_to_reg (from);
645 emit_move_insn (to, gen_lowpart (to_mode, from));
646 return;
649 /* Handle extension. */
650 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
652 /* Convert directly if that works. */
653 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
654 != CODE_FOR_nothing)
656 emit_unop_insn (code, to, from, equiv_code);
657 return;
659 else
661 enum machine_mode intermediate;
662 rtx tmp;
663 tree shift_amount;
665 /* Search for a mode to convert via. */
666 for (intermediate = from_mode; intermediate != VOIDmode;
667 intermediate = GET_MODE_WIDER_MODE (intermediate))
668 if (((can_extend_p (to_mode, intermediate, unsignedp)
669 != CODE_FOR_nothing)
670 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
671 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
672 GET_MODE_BITSIZE (intermediate))))
673 && (can_extend_p (intermediate, from_mode, unsignedp)
674 != CODE_FOR_nothing))
676 convert_move (to, convert_to_mode (intermediate, from,
677 unsignedp), unsignedp);
678 return;
681 /* No suitable intermediate mode.
682 Generate what we need with shifts. */
683 shift_amount = build_int_cst (NULL_TREE,
684 GET_MODE_BITSIZE (to_mode)
685 - GET_MODE_BITSIZE (from_mode));
686 from = gen_lowpart (to_mode, force_reg (from_mode, from));
687 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
688 to, unsignedp);
689 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
690 to, unsignedp);
691 if (tmp != to)
692 emit_move_insn (to, tmp);
693 return;
697 /* Support special truncate insns for certain modes. */
698 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
700 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
701 to, from, UNKNOWN);
702 return;
705 /* Handle truncation of volatile memrefs, and so on;
706 the things that couldn't be truncated directly,
707 and for which there was no special instruction.
709 ??? Code above formerly short-circuited this, for most integer
710 mode pairs, with a force_reg in from_mode followed by a recursive
711 call to this routine. Appears always to have been wrong. */
712 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
714 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
715 emit_move_insn (to, temp);
716 return;
719 /* Mode combination is not recognized. */
720 gcc_unreachable ();
723 /* Return an rtx for a value that would result
724 from converting X to mode MODE.
725 Both X and MODE may be floating, or both integer.
726 UNSIGNEDP is nonzero if X is an unsigned value.
727 This can be done by referring to a part of X in place
728 or by copying to a new temporary with conversion. */
731 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
733 return convert_modes (mode, VOIDmode, x, unsignedp);
736 /* Return an rtx for a value that would result
737 from converting X from mode OLDMODE to mode MODE.
738 Both modes may be floating, or both integer.
739 UNSIGNEDP is nonzero if X is an unsigned value.
741 This can be done by referring to a part of X in place
742 or by copying to a new temporary with conversion.
744 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
747 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
749 rtx temp;
751 /* If FROM is a SUBREG that indicates that we have already done at least
752 the required extension, strip it. */
754 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
755 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
756 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
757 x = gen_lowpart (mode, x);
759 if (GET_MODE (x) != VOIDmode)
760 oldmode = GET_MODE (x);
762 if (mode == oldmode)
763 return x;
765 /* There is one case that we must handle specially: If we are converting
766 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
767 we are to interpret the constant as unsigned, gen_lowpart will do
768 the wrong if the constant appears negative. What we want to do is
769 make the high-order word of the constant zero, not all ones. */
771 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
772 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
773 && CONST_INT_P (x) && INTVAL (x) < 0)
775 double_int val = uhwi_to_double_int (INTVAL (x));
777 /* We need to zero extend VAL. */
778 if (oldmode != VOIDmode)
779 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
781 return immed_double_int_const (val, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((CONST_INT_P (x)
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (CONST_INT_P (x) && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces_d data;
873 enum machine_mode to_addr_mode, from_addr_mode
874 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
875 rtx to_addr, from_addr = XEXP (from, 0);
876 unsigned int max_size = MOVE_MAX_PIECES + 1;
877 enum machine_mode mode = VOIDmode, tmode;
878 enum insn_code icode;
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
895 else
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
925 /* Find the mode of the largest move... */
926 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
927 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
928 if (GET_MODE_SIZE (tmode) < max_size)
929 mode = tmode;
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
964 if (align >= GET_MODE_ALIGNMENT (tmode))
965 align = GET_MODE_ALIGNMENT (tmode);
966 else
968 enum machine_mode xmode;
970 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
971 tmode != VOIDmode;
972 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
973 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
974 || SLOW_UNALIGNED_ACCESS (tmode, align))
975 break;
977 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
980 /* First move what we can in the largest integer mode, then go to
981 successively smaller modes. */
983 while (max_size > 1)
985 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
986 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
987 if (GET_MODE_SIZE (tmode) < max_size)
988 mode = tmode;
990 if (mode == VOIDmode)
991 break;
993 icode = optab_handler (mov_optab, mode)->insn_code;
994 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
995 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
997 max_size = GET_MODE_SIZE (mode);
1000 /* The code above should have handled everything. */
1001 gcc_assert (!data.len);
1003 if (endp)
1005 rtx to1;
1007 gcc_assert (!data.reverse);
1008 if (data.autinc_to)
1010 if (endp == 2)
1012 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1013 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1014 else
1015 data.to_addr = copy_to_mode_reg (to_addr_mode,
1016 plus_constant (data.to_addr,
1017 -1));
1019 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1020 data.offset);
1022 else
1024 if (endp == 2)
1025 --data.offset;
1026 to1 = adjust_address (data.to, QImode, data.offset);
1028 return to1;
1030 else
1031 return data.to;
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1039 unsigned int max_size)
1041 unsigned HOST_WIDE_INT n_insns = 0;
1042 enum machine_mode tmode;
1044 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1045 if (align >= GET_MODE_ALIGNMENT (tmode))
1046 align = GET_MODE_ALIGNMENT (tmode);
1047 else
1049 enum machine_mode tmode, xmode;
1051 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1052 tmode != VOIDmode;
1053 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1054 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode, align))
1056 break;
1058 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1061 while (max_size > 1)
1063 enum machine_mode mode = VOIDmode;
1064 enum insn_code icode;
1066 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1067 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1068 if (GET_MODE_SIZE (tmode) < max_size)
1069 mode = tmode;
1071 if (mode == VOIDmode)
1072 break;
1074 icode = optab_handler (mov_optab, mode)->insn_code;
1075 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1076 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1078 max_size = GET_MODE_SIZE (mode);
1081 gcc_assert (!l);
1082 return n_insns;
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1089 static void
1090 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1091 struct move_by_pieces_d *data)
1093 unsigned int size = GET_MODE_SIZE (mode);
1094 rtx to1 = NULL_RTX, from1;
1096 while (data->len >= size)
1098 if (data->reverse)
1099 data->offset -= size;
1101 if (data->to)
1103 if (data->autinc_to)
1104 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1105 data->offset);
1106 else
1107 to1 = adjust_address (data->to, mode, data->offset);
1110 if (data->autinc_from)
1111 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1112 data->offset);
1113 else
1114 from1 = adjust_address (data->from, mode, data->offset);
1116 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1117 emit_insn (gen_add2_insn (data->to_addr,
1118 GEN_INT (-(HOST_WIDE_INT)size)));
1119 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1120 emit_insn (gen_add2_insn (data->from_addr,
1121 GEN_INT (-(HOST_WIDE_INT)size)));
1123 if (data->to)
1124 emit_insn ((*genfun) (to1, from1));
1125 else
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode, from1, NULL);
1129 #else
1130 gcc_unreachable ();
1131 #endif
1134 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1135 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1136 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1137 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1139 if (! data->reverse)
1140 data->offset += size;
1142 data->len -= size;
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1155 Return the address of the new block, if memcpy is called and returns it,
1156 0 otherwise. */
1159 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1160 unsigned int expected_align, HOST_WIDE_INT expected_size)
1162 bool may_use_call;
1163 rtx retval = 0;
1164 unsigned int align;
1166 switch (method)
1168 case BLOCK_OP_NORMAL:
1169 case BLOCK_OP_TAILCALL:
1170 may_use_call = true;
1171 break;
1173 case BLOCK_OP_CALL_PARM:
1174 may_use_call = block_move_libcall_safe_for_call_parm ();
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1178 NO_DEFER_POP;
1179 break;
1181 case BLOCK_OP_NO_LIBCALL:
1182 may_use_call = false;
1183 break;
1185 default:
1186 gcc_unreachable ();
1189 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1190 gcc_assert (align >= BITS_PER_UNIT);
1192 gcc_assert (MEM_P (x));
1193 gcc_assert (MEM_P (y));
1194 gcc_assert (size);
1196 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1197 block copy is more efficient for other large modes, e.g. DCmode. */
1198 x = adjust_address (x, BLKmode, 0);
1199 y = adjust_address (y, BLKmode, 0);
1201 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1202 can be incorrect is coming from __builtin_memcpy. */
1203 if (CONST_INT_P (size))
1205 if (INTVAL (size) == 0)
1206 return 0;
1208 x = shallow_copy_rtx (x);
1209 y = shallow_copy_rtx (y);
1210 set_mem_size (x, size);
1211 set_mem_size (y, size);
1214 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1215 move_by_pieces (x, y, INTVAL (size), align, 0);
1216 else if (emit_block_move_via_movmem (x, y, size, align,
1217 expected_align, expected_size))
1219 else if (may_use_call
1220 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1221 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1222 retval = emit_block_move_via_libcall (x, y, size,
1223 method == BLOCK_OP_TAILCALL);
1224 else
1225 emit_block_move_via_loop (x, y, size, align);
1227 if (method == BLOCK_OP_CALL_PARM)
1228 OK_DEFER_POP;
1230 return retval;
1234 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1236 return emit_block_move_hints (x, y, size, method, 0, -1);
1239 /* A subroutine of emit_block_move. Returns true if calling the
1240 block move libcall will not clobber any parameters which may have
1241 already been placed on the stack. */
1243 static bool
1244 block_move_libcall_safe_for_call_parm (void)
1246 #if defined (REG_PARM_STACK_SPACE)
1247 tree fn;
1248 #endif
1250 /* If arguments are pushed on the stack, then they're safe. */
1251 if (PUSH_ARGS)
1252 return true;
1254 /* If registers go on the stack anyway, any argument is sure to clobber
1255 an outgoing argument. */
1256 #if defined (REG_PARM_STACK_SPACE)
1257 fn = emit_block_move_libcall_fn (false);
1258 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1259 depend on its argument. */
1260 (void) fn;
1261 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1262 && REG_PARM_STACK_SPACE (fn) != 0)
1263 return false;
1264 #endif
1266 /* If any argument goes in memory, then it might clobber an outgoing
1267 argument. */
1269 CUMULATIVE_ARGS args_so_far;
1270 tree fn, arg;
1272 fn = emit_block_move_libcall_fn (false);
1273 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1275 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1276 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1278 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1279 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1280 if (!tmp || !REG_P (tmp))
1281 return false;
1282 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1283 return false;
1284 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1287 return true;
1290 /* A subroutine of emit_block_move. Expand a movmem pattern;
1291 return true if successful. */
1293 static bool
1294 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1295 unsigned int expected_align, HOST_WIDE_INT expected_size)
1297 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1298 int save_volatile_ok = volatile_ok;
1299 enum machine_mode mode;
1301 if (expected_align < align)
1302 expected_align = align;
1304 /* Since this is a move insn, we don't care about volatility. */
1305 volatile_ok = 1;
1307 /* Try the most limited insn first, because there's no point
1308 including more than one in the machine description unless
1309 the more limited one has some advantage. */
1311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1312 mode = GET_MODE_WIDER_MODE (mode))
1314 enum insn_code code = movmem_optab[(int) mode];
1315 insn_operand_predicate_fn pred;
1317 if (code != CODE_FOR_nothing
1318 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1319 here because if SIZE is less than the mode mask, as it is
1320 returned by the macro, it will definitely be less than the
1321 actual mode mask. */
1322 && ((CONST_INT_P (size)
1323 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1324 <= (GET_MODE_MASK (mode) >> 1)))
1325 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1326 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1327 || (*pred) (x, BLKmode))
1328 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1329 || (*pred) (y, BLKmode))
1330 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1331 || (*pred) (opalign, VOIDmode)))
1333 rtx op2;
1334 rtx last = get_last_insn ();
1335 rtx pat;
1337 op2 = convert_to_mode (mode, size, 1);
1338 pred = insn_data[(int) code].operand[2].predicate;
1339 if (pred != 0 && ! (*pred) (op2, mode))
1340 op2 = copy_to_mode_reg (mode, op2);
1342 /* ??? When called via emit_block_move_for_call, it'd be
1343 nice if there were some way to inform the backend, so
1344 that it doesn't fail the expansion because it thinks
1345 emitting the libcall would be more efficient. */
1347 if (insn_data[(int) code].n_operands == 4)
1348 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1349 else
1350 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1351 GEN_INT (expected_align
1352 / BITS_PER_UNIT),
1353 GEN_INT (expected_size));
1354 if (pat)
1356 emit_insn (pat);
1357 volatile_ok = save_volatile_ok;
1358 return true;
1360 else
1361 delete_insns_since (last);
1365 volatile_ok = save_volatile_ok;
1366 return false;
1369 /* A subroutine of emit_block_move. Expand a call to memcpy.
1370 Return the return value from memcpy, 0 otherwise. */
1373 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1375 rtx dst_addr, src_addr;
1376 tree call_expr, fn, src_tree, dst_tree, size_tree;
1377 enum machine_mode size_mode;
1378 rtx retval;
1380 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1381 pseudos. We can then place those new pseudos into a VAR_DECL and
1382 use them later. */
1384 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1385 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1387 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1388 src_addr = convert_memory_address (ptr_mode, src_addr);
1390 dst_tree = make_tree (ptr_type_node, dst_addr);
1391 src_tree = make_tree (ptr_type_node, src_addr);
1393 size_mode = TYPE_MODE (sizetype);
1395 size = convert_to_mode (size_mode, size, 1);
1396 size = copy_to_mode_reg (size_mode, size);
1398 /* It is incorrect to use the libcall calling conventions to call
1399 memcpy in this context. This could be a user call to memcpy and
1400 the user may wish to examine the return value from memcpy. For
1401 targets where libcalls and normal calls have different conventions
1402 for returning pointers, we could end up generating incorrect code. */
1404 size_tree = make_tree (sizetype, size);
1406 fn = emit_block_move_libcall_fn (true);
1407 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1408 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1410 retval = expand_normal (call_expr);
1412 return retval;
1415 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1416 for the function we use for block copies. The first time FOR_CALL
1417 is true, we call assemble_external. */
1419 static GTY(()) tree block_move_fn;
1421 void
1422 init_block_move_fn (const char *asmspec)
1424 if (!block_move_fn)
1426 tree args, fn;
1428 fn = get_identifier ("memcpy");
1429 args = build_function_type_list (ptr_type_node, ptr_type_node,
1430 const_ptr_type_node, sizetype,
1431 NULL_TREE);
1433 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1434 DECL_EXTERNAL (fn) = 1;
1435 TREE_PUBLIC (fn) = 1;
1436 DECL_ARTIFICIAL (fn) = 1;
1437 TREE_NOTHROW (fn) = 1;
1438 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1439 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1441 block_move_fn = fn;
1444 if (asmspec)
1445 set_user_assembler_name (block_move_fn, asmspec);
1448 static tree
1449 emit_block_move_libcall_fn (int for_call)
1451 static bool emitted_extern;
1453 if (!block_move_fn)
1454 init_block_move_fn (NULL);
1456 if (for_call && !emitted_extern)
1458 emitted_extern = true;
1459 make_decl_rtl (block_move_fn);
1460 assemble_external (block_move_fn);
1463 return block_move_fn;
1466 /* A subroutine of emit_block_move. Copy the data via an explicit
1467 loop. This is used only when libcalls are forbidden. */
1468 /* ??? It'd be nice to copy in hunks larger than QImode. */
1470 static void
1471 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1472 unsigned int align ATTRIBUTE_UNUSED)
1474 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1475 enum machine_mode x_addr_mode
1476 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1477 enum machine_mode y_addr_mode
1478 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1479 enum machine_mode iter_mode;
1481 iter_mode = GET_MODE (size);
1482 if (iter_mode == VOIDmode)
1483 iter_mode = word_mode;
1485 top_label = gen_label_rtx ();
1486 cmp_label = gen_label_rtx ();
1487 iter = gen_reg_rtx (iter_mode);
1489 emit_move_insn (iter, const0_rtx);
1491 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1492 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1493 do_pending_stack_adjust ();
1495 emit_jump (cmp_label);
1496 emit_label (top_label);
1498 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1499 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1501 if (x_addr_mode != y_addr_mode)
1502 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1503 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1505 x = change_address (x, QImode, x_addr);
1506 y = change_address (y, QImode, y_addr);
1508 emit_move_insn (x, y);
1510 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1511 true, OPTAB_LIB_WIDEN);
1512 if (tmp != iter)
1513 emit_move_insn (iter, tmp);
1515 emit_label (cmp_label);
1517 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1518 true, top_label);
1521 /* Copy all or part of a value X into registers starting at REGNO.
1522 The number of registers to be filled is NREGS. */
1524 void
1525 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1527 int i;
1528 #ifdef HAVE_load_multiple
1529 rtx pat;
1530 rtx last;
1531 #endif
1533 if (nregs == 0)
1534 return;
1536 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1537 x = validize_mem (force_const_mem (mode, x));
1539 /* See if the machine can do this with a load multiple insn. */
1540 #ifdef HAVE_load_multiple
1541 if (HAVE_load_multiple)
1543 last = get_last_insn ();
1544 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1545 GEN_INT (nregs));
1546 if (pat)
1548 emit_insn (pat);
1549 return;
1551 else
1552 delete_insns_since (last);
1554 #endif
1556 for (i = 0; i < nregs; i++)
1557 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1558 operand_subword_force (x, i, mode));
1561 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1562 The number of registers to be filled is NREGS. */
1564 void
1565 move_block_from_reg (int regno, rtx x, int nregs)
1567 int i;
1569 if (nregs == 0)
1570 return;
1572 /* See if the machine can do this with a store multiple insn. */
1573 #ifdef HAVE_store_multiple
1574 if (HAVE_store_multiple)
1576 rtx last = get_last_insn ();
1577 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1578 GEN_INT (nregs));
1579 if (pat)
1581 emit_insn (pat);
1582 return;
1584 else
1585 delete_insns_since (last);
1587 #endif
1589 for (i = 0; i < nregs; i++)
1591 rtx tem = operand_subword (x, i, 1, BLKmode);
1593 gcc_assert (tem);
1595 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1599 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1600 ORIG, where ORIG is a non-consecutive group of registers represented by
1601 a PARALLEL. The clone is identical to the original except in that the
1602 original set of registers is replaced by a new set of pseudo registers.
1603 The new set has the same modes as the original set. */
1606 gen_group_rtx (rtx orig)
1608 int i, length;
1609 rtx *tmps;
1611 gcc_assert (GET_CODE (orig) == PARALLEL);
1613 length = XVECLEN (orig, 0);
1614 tmps = XALLOCAVEC (rtx, length);
1616 /* Skip a NULL entry in first slot. */
1617 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1619 if (i)
1620 tmps[0] = 0;
1622 for (; i < length; i++)
1624 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1625 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1627 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1630 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1633 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1634 except that values are placed in TMPS[i], and must later be moved
1635 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1637 static void
1638 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1640 rtx src;
1641 int start, i;
1642 enum machine_mode m = GET_MODE (orig_src);
1644 gcc_assert (GET_CODE (dst) == PARALLEL);
1646 if (m != VOIDmode
1647 && !SCALAR_INT_MODE_P (m)
1648 && !MEM_P (orig_src)
1649 && GET_CODE (orig_src) != CONCAT)
1651 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1652 if (imode == BLKmode)
1653 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1654 else
1655 src = gen_reg_rtx (imode);
1656 if (imode != BLKmode)
1657 src = gen_lowpart (GET_MODE (orig_src), src);
1658 emit_move_insn (src, orig_src);
1659 /* ...and back again. */
1660 if (imode != BLKmode)
1661 src = gen_lowpart (imode, src);
1662 emit_group_load_1 (tmps, dst, src, type, ssize);
1663 return;
1666 /* Check for a NULL entry, used to indicate that the parameter goes
1667 both on the stack and in registers. */
1668 if (XEXP (XVECEXP (dst, 0, 0), 0))
1669 start = 0;
1670 else
1671 start = 1;
1673 /* Process the pieces. */
1674 for (i = start; i < XVECLEN (dst, 0); i++)
1676 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1677 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1678 unsigned int bytelen = GET_MODE_SIZE (mode);
1679 int shift = 0;
1681 /* Handle trailing fragments that run over the size of the struct. */
1682 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1684 /* Arrange to shift the fragment to where it belongs.
1685 extract_bit_field loads to the lsb of the reg. */
1686 if (
1687 #ifdef BLOCK_REG_PADDING
1688 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1689 == (BYTES_BIG_ENDIAN ? upward : downward)
1690 #else
1691 BYTES_BIG_ENDIAN
1692 #endif
1694 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1695 bytelen = ssize - bytepos;
1696 gcc_assert (bytelen > 0);
1699 /* If we won't be loading directly from memory, protect the real source
1700 from strange tricks we might play; but make sure that the source can
1701 be loaded directly into the destination. */
1702 src = orig_src;
1703 if (!MEM_P (orig_src)
1704 && (!CONSTANT_P (orig_src)
1705 || (GET_MODE (orig_src) != mode
1706 && GET_MODE (orig_src) != VOIDmode)))
1708 if (GET_MODE (orig_src) == VOIDmode)
1709 src = gen_reg_rtx (mode);
1710 else
1711 src = gen_reg_rtx (GET_MODE (orig_src));
1713 emit_move_insn (src, orig_src);
1716 /* Optimize the access just a bit. */
1717 if (MEM_P (src)
1718 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1719 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1720 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1721 && bytelen == GET_MODE_SIZE (mode))
1723 tmps[i] = gen_reg_rtx (mode);
1724 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1726 else if (COMPLEX_MODE_P (mode)
1727 && GET_MODE (src) == mode
1728 && bytelen == GET_MODE_SIZE (mode))
1729 /* Let emit_move_complex do the bulk of the work. */
1730 tmps[i] = src;
1731 else if (GET_CODE (src) == CONCAT)
1733 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1734 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1736 if ((bytepos == 0 && bytelen == slen0)
1737 || (bytepos != 0 && bytepos + bytelen <= slen))
1739 /* The following assumes that the concatenated objects all
1740 have the same size. In this case, a simple calculation
1741 can be used to determine the object and the bit field
1742 to be extracted. */
1743 tmps[i] = XEXP (src, bytepos / slen0);
1744 if (! CONSTANT_P (tmps[i])
1745 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1746 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1747 (bytepos % slen0) * BITS_PER_UNIT,
1748 1, NULL_RTX, mode, mode);
1750 else
1752 rtx mem;
1754 gcc_assert (!bytepos);
1755 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1756 emit_move_insn (mem, src);
1757 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1758 0, 1, NULL_RTX, mode, mode);
1761 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1762 SIMD register, which is currently broken. While we get GCC
1763 to emit proper RTL for these cases, let's dump to memory. */
1764 else if (VECTOR_MODE_P (GET_MODE (dst))
1765 && REG_P (src))
1767 int slen = GET_MODE_SIZE (GET_MODE (src));
1768 rtx mem;
1770 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1771 emit_move_insn (mem, src);
1772 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1774 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1775 && XVECLEN (dst, 0) > 1)
1776 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1777 else if (CONSTANT_P (src))
1779 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1781 if (len == ssize)
1782 tmps[i] = src;
1783 else
1785 rtx first, second;
1787 gcc_assert (2 * len == ssize);
1788 split_double (src, &first, &second);
1789 if (i)
1790 tmps[i] = second;
1791 else
1792 tmps[i] = first;
1795 else if (REG_P (src) && GET_MODE (src) == mode)
1796 tmps[i] = src;
1797 else
1798 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1799 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1800 mode, mode);
1802 if (shift)
1803 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1804 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1808 /* Emit code to move a block SRC of type TYPE to a block DST,
1809 where DST is non-consecutive registers represented by a PARALLEL.
1810 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1811 if not known. */
1813 void
1814 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1816 rtx *tmps;
1817 int i;
1819 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1820 emit_group_load_1 (tmps, dst, src, type, ssize);
1822 /* Copy the extracted pieces into the proper (probable) hard regs. */
1823 for (i = 0; i < XVECLEN (dst, 0); i++)
1825 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1826 if (d == NULL)
1827 continue;
1828 emit_move_insn (d, tmps[i]);
1832 /* Similar, but load SRC into new pseudos in a format that looks like
1833 PARALLEL. This can later be fed to emit_group_move to get things
1834 in the right place. */
1837 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1839 rtvec vec;
1840 int i;
1842 vec = rtvec_alloc (XVECLEN (parallel, 0));
1843 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1845 /* Convert the vector to look just like the original PARALLEL, except
1846 with the computed values. */
1847 for (i = 0; i < XVECLEN (parallel, 0); i++)
1849 rtx e = XVECEXP (parallel, 0, i);
1850 rtx d = XEXP (e, 0);
1852 if (d)
1854 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1855 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1857 RTVEC_ELT (vec, i) = e;
1860 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1863 /* Emit code to move a block SRC to block DST, where SRC and DST are
1864 non-consecutive groups of registers, each represented by a PARALLEL. */
1866 void
1867 emit_group_move (rtx dst, rtx src)
1869 int i;
1871 gcc_assert (GET_CODE (src) == PARALLEL
1872 && GET_CODE (dst) == PARALLEL
1873 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1875 /* Skip first entry if NULL. */
1876 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1877 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1878 XEXP (XVECEXP (src, 0, i), 0));
1881 /* Move a group of registers represented by a PARALLEL into pseudos. */
1884 emit_group_move_into_temps (rtx src)
1886 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1887 int i;
1889 for (i = 0; i < XVECLEN (src, 0); i++)
1891 rtx e = XVECEXP (src, 0, i);
1892 rtx d = XEXP (e, 0);
1894 if (d)
1895 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1896 RTVEC_ELT (vec, i) = e;
1899 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1902 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1903 where SRC is non-consecutive registers represented by a PARALLEL.
1904 SSIZE represents the total size of block ORIG_DST, or -1 if not
1905 known. */
1907 void
1908 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1910 rtx *tmps, dst;
1911 int start, finish, i;
1912 enum machine_mode m = GET_MODE (orig_dst);
1914 gcc_assert (GET_CODE (src) == PARALLEL);
1916 if (!SCALAR_INT_MODE_P (m)
1917 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1919 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1920 if (imode == BLKmode)
1921 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1922 else
1923 dst = gen_reg_rtx (imode);
1924 emit_group_store (dst, src, type, ssize);
1925 if (imode != BLKmode)
1926 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1927 emit_move_insn (orig_dst, dst);
1928 return;
1931 /* Check for a NULL entry, used to indicate that the parameter goes
1932 both on the stack and in registers. */
1933 if (XEXP (XVECEXP (src, 0, 0), 0))
1934 start = 0;
1935 else
1936 start = 1;
1937 finish = XVECLEN (src, 0);
1939 tmps = XALLOCAVEC (rtx, finish);
1941 /* Copy the (probable) hard regs into pseudos. */
1942 for (i = start; i < finish; i++)
1944 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1945 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1947 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1948 emit_move_insn (tmps[i], reg);
1950 else
1951 tmps[i] = reg;
1954 /* If we won't be storing directly into memory, protect the real destination
1955 from strange tricks we might play. */
1956 dst = orig_dst;
1957 if (GET_CODE (dst) == PARALLEL)
1959 rtx temp;
1961 /* We can get a PARALLEL dst if there is a conditional expression in
1962 a return statement. In that case, the dst and src are the same,
1963 so no action is necessary. */
1964 if (rtx_equal_p (dst, src))
1965 return;
1967 /* It is unclear if we can ever reach here, but we may as well handle
1968 it. Allocate a temporary, and split this into a store/load to/from
1969 the temporary. */
1971 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1972 emit_group_store (temp, src, type, ssize);
1973 emit_group_load (dst, temp, type, ssize);
1974 return;
1976 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1978 enum machine_mode outer = GET_MODE (dst);
1979 enum machine_mode inner;
1980 HOST_WIDE_INT bytepos;
1981 bool done = false;
1982 rtx temp;
1984 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1985 dst = gen_reg_rtx (outer);
1987 /* Make life a bit easier for combine. */
1988 /* If the first element of the vector is the low part
1989 of the destination mode, use a paradoxical subreg to
1990 initialize the destination. */
1991 if (start < finish)
1993 inner = GET_MODE (tmps[start]);
1994 bytepos = subreg_lowpart_offset (inner, outer);
1995 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1997 temp = simplify_gen_subreg (outer, tmps[start],
1998 inner, 0);
1999 if (temp)
2001 emit_move_insn (dst, temp);
2002 done = true;
2003 start++;
2008 /* If the first element wasn't the low part, try the last. */
2009 if (!done
2010 && start < finish - 1)
2012 inner = GET_MODE (tmps[finish - 1]);
2013 bytepos = subreg_lowpart_offset (inner, outer);
2014 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2016 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2017 inner, 0);
2018 if (temp)
2020 emit_move_insn (dst, temp);
2021 done = true;
2022 finish--;
2027 /* Otherwise, simply initialize the result to zero. */
2028 if (!done)
2029 emit_move_insn (dst, CONST0_RTX (outer));
2032 /* Process the pieces. */
2033 for (i = start; i < finish; i++)
2035 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2036 enum machine_mode mode = GET_MODE (tmps[i]);
2037 unsigned int bytelen = GET_MODE_SIZE (mode);
2038 unsigned int adj_bytelen = bytelen;
2039 rtx dest = dst;
2041 /* Handle trailing fragments that run over the size of the struct. */
2042 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2043 adj_bytelen = ssize - bytepos;
2045 if (GET_CODE (dst) == CONCAT)
2047 if (bytepos + adj_bytelen
2048 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2049 dest = XEXP (dst, 0);
2050 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2052 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2053 dest = XEXP (dst, 1);
2055 else
2057 enum machine_mode dest_mode = GET_MODE (dest);
2058 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2060 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2062 if (GET_MODE_ALIGNMENT (dest_mode)
2063 >= GET_MODE_ALIGNMENT (tmp_mode))
2065 dest = assign_stack_temp (dest_mode,
2066 GET_MODE_SIZE (dest_mode),
2068 emit_move_insn (adjust_address (dest,
2069 tmp_mode,
2070 bytepos),
2071 tmps[i]);
2072 dst = dest;
2074 else
2076 dest = assign_stack_temp (tmp_mode,
2077 GET_MODE_SIZE (tmp_mode),
2079 emit_move_insn (dest, tmps[i]);
2080 dst = adjust_address (dest, dest_mode, bytepos);
2082 break;
2086 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2088 /* store_bit_field always takes its value from the lsb.
2089 Move the fragment to the lsb if it's not already there. */
2090 if (
2091 #ifdef BLOCK_REG_PADDING
2092 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2093 == (BYTES_BIG_ENDIAN ? upward : downward)
2094 #else
2095 BYTES_BIG_ENDIAN
2096 #endif
2099 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2100 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2101 build_int_cst (NULL_TREE, shift),
2102 tmps[i], 0);
2104 bytelen = adj_bytelen;
2107 /* Optimize the access just a bit. */
2108 if (MEM_P (dest)
2109 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2110 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2111 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2112 && bytelen == GET_MODE_SIZE (mode))
2113 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2114 else
2115 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2116 mode, tmps[i]);
2119 /* Copy from the pseudo into the (probable) hard reg. */
2120 if (orig_dst != dst)
2121 emit_move_insn (orig_dst, dst);
2124 /* Generate code to copy a BLKmode object of TYPE out of a
2125 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2126 is null, a stack temporary is created. TGTBLK is returned.
2128 The purpose of this routine is to handle functions that return
2129 BLKmode structures in registers. Some machines (the PA for example)
2130 want to return all small structures in registers regardless of the
2131 structure's alignment. */
2134 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2136 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2137 rtx src = NULL, dst = NULL;
2138 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2139 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2140 enum machine_mode copy_mode;
2142 if (tgtblk == 0)
2144 tgtblk = assign_temp (build_qualified_type (type,
2145 (TYPE_QUALS (type)
2146 | TYPE_QUAL_CONST)),
2147 0, 1, 1);
2148 preserve_temp_slots (tgtblk);
2151 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2152 into a new pseudo which is a full word. */
2154 if (GET_MODE (srcreg) != BLKmode
2155 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2156 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2158 /* If the structure doesn't take up a whole number of words, see whether
2159 SRCREG is padded on the left or on the right. If it's on the left,
2160 set PADDING_CORRECTION to the number of bits to skip.
2162 In most ABIs, the structure will be returned at the least end of
2163 the register, which translates to right padding on little-endian
2164 targets and left padding on big-endian targets. The opposite
2165 holds if the structure is returned at the most significant
2166 end of the register. */
2167 if (bytes % UNITS_PER_WORD != 0
2168 && (targetm.calls.return_in_msb (type)
2169 ? !BYTES_BIG_ENDIAN
2170 : BYTES_BIG_ENDIAN))
2171 padding_correction
2172 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2174 /* Copy the structure BITSIZE bits at a time. If the target lives in
2175 memory, take care of not reading/writing past its end by selecting
2176 a copy mode suited to BITSIZE. This should always be possible given
2177 how it is computed.
2179 We could probably emit more efficient code for machines which do not use
2180 strict alignment, but it doesn't seem worth the effort at the current
2181 time. */
2183 copy_mode = word_mode;
2184 if (MEM_P (tgtblk))
2186 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2187 if (mem_mode != BLKmode)
2188 copy_mode = mem_mode;
2191 for (bitpos = 0, xbitpos = padding_correction;
2192 bitpos < bytes * BITS_PER_UNIT;
2193 bitpos += bitsize, xbitpos += bitsize)
2195 /* We need a new source operand each time xbitpos is on a
2196 word boundary and when xbitpos == padding_correction
2197 (the first time through). */
2198 if (xbitpos % BITS_PER_WORD == 0
2199 || xbitpos == padding_correction)
2200 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2201 GET_MODE (srcreg));
2203 /* We need a new destination operand each time bitpos is on
2204 a word boundary. */
2205 if (bitpos % BITS_PER_WORD == 0)
2206 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2208 /* Use xbitpos for the source extraction (right justified) and
2209 bitpos for the destination store (left justified). */
2210 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2211 extract_bit_field (src, bitsize,
2212 xbitpos % BITS_PER_WORD, 1,
2213 NULL_RTX, copy_mode, copy_mode));
2216 return tgtblk;
2219 /* Add a USE expression for REG to the (possibly empty) list pointed
2220 to by CALL_FUSAGE. REG must denote a hard register. */
2222 void
2223 use_reg (rtx *call_fusage, rtx reg)
2225 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2227 *call_fusage
2228 = gen_rtx_EXPR_LIST (VOIDmode,
2229 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2232 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2233 starting at REGNO. All of these registers must be hard registers. */
2235 void
2236 use_regs (rtx *call_fusage, int regno, int nregs)
2238 int i;
2240 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2242 for (i = 0; i < nregs; i++)
2243 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2246 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2247 PARALLEL REGS. This is for calls that pass values in multiple
2248 non-contiguous locations. The Irix 6 ABI has examples of this. */
2250 void
2251 use_group_regs (rtx *call_fusage, rtx regs)
2253 int i;
2255 for (i = 0; i < XVECLEN (regs, 0); i++)
2257 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2259 /* A NULL entry means the parameter goes both on the stack and in
2260 registers. This can also be a MEM for targets that pass values
2261 partially on the stack and partially in registers. */
2262 if (reg != 0 && REG_P (reg))
2263 use_reg (call_fusage, reg);
2267 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2268 assigment and the code of the expresion on the RHS is CODE. Return
2269 NULL otherwise. */
2271 static gimple
2272 get_def_for_expr (tree name, enum tree_code code)
2274 gimple def_stmt;
2276 if (TREE_CODE (name) != SSA_NAME)
2277 return NULL;
2279 def_stmt = get_gimple_for_ssa_name (name);
2280 if (!def_stmt
2281 || gimple_assign_rhs_code (def_stmt) != code)
2282 return NULL;
2284 return def_stmt;
2288 /* Determine whether the LEN bytes generated by CONSTFUN can be
2289 stored to memory using several move instructions. CONSTFUNDATA is
2290 a pointer which will be passed as argument in every CONSTFUN call.
2291 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2292 a memset operation and false if it's a copy of a constant string.
2293 Return nonzero if a call to store_by_pieces should succeed. */
2296 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2297 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2298 void *constfundata, unsigned int align, bool memsetp)
2300 unsigned HOST_WIDE_INT l;
2301 unsigned int max_size;
2302 HOST_WIDE_INT offset = 0;
2303 enum machine_mode mode, tmode;
2304 enum insn_code icode;
2305 int reverse;
2306 rtx cst;
2308 if (len == 0)
2309 return 1;
2311 if (! (memsetp
2312 ? SET_BY_PIECES_P (len, align)
2313 : STORE_BY_PIECES_P (len, align)))
2314 return 0;
2316 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2317 if (align >= GET_MODE_ALIGNMENT (tmode))
2318 align = GET_MODE_ALIGNMENT (tmode);
2319 else
2321 enum machine_mode xmode;
2323 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2324 tmode != VOIDmode;
2325 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2326 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2327 || SLOW_UNALIGNED_ACCESS (tmode, align))
2328 break;
2330 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2333 /* We would first store what we can in the largest integer mode, then go to
2334 successively smaller modes. */
2336 for (reverse = 0;
2337 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2338 reverse++)
2340 l = len;
2341 mode = VOIDmode;
2342 max_size = STORE_MAX_PIECES + 1;
2343 while (max_size > 1)
2345 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2346 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2347 if (GET_MODE_SIZE (tmode) < max_size)
2348 mode = tmode;
2350 if (mode == VOIDmode)
2351 break;
2353 icode = optab_handler (mov_optab, mode)->insn_code;
2354 if (icode != CODE_FOR_nothing
2355 && align >= GET_MODE_ALIGNMENT (mode))
2357 unsigned int size = GET_MODE_SIZE (mode);
2359 while (l >= size)
2361 if (reverse)
2362 offset -= size;
2364 cst = (*constfun) (constfundata, offset, mode);
2365 if (!LEGITIMATE_CONSTANT_P (cst))
2366 return 0;
2368 if (!reverse)
2369 offset += size;
2371 l -= size;
2375 max_size = GET_MODE_SIZE (mode);
2378 /* The code above should have handled everything. */
2379 gcc_assert (!l);
2382 return 1;
2385 /* Generate several move instructions to store LEN bytes generated by
2386 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2387 pointer which will be passed as argument in every CONSTFUN call.
2388 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2389 a memset operation and false if it's a copy of a constant string.
2390 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2391 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2392 stpcpy. */
2395 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2396 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2397 void *constfundata, unsigned int align, bool memsetp, int endp)
2399 enum machine_mode to_addr_mode
2400 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2401 struct store_by_pieces_d data;
2403 if (len == 0)
2405 gcc_assert (endp != 2);
2406 return to;
2409 gcc_assert (memsetp
2410 ? SET_BY_PIECES_P (len, align)
2411 : STORE_BY_PIECES_P (len, align));
2412 data.constfun = constfun;
2413 data.constfundata = constfundata;
2414 data.len = len;
2415 data.to = to;
2416 store_by_pieces_1 (&data, align);
2417 if (endp)
2419 rtx to1;
2421 gcc_assert (!data.reverse);
2422 if (data.autinc_to)
2424 if (endp == 2)
2426 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2427 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2428 else
2429 data.to_addr = copy_to_mode_reg (to_addr_mode,
2430 plus_constant (data.to_addr,
2431 -1));
2433 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2434 data.offset);
2436 else
2438 if (endp == 2)
2439 --data.offset;
2440 to1 = adjust_address (data.to, QImode, data.offset);
2442 return to1;
2444 else
2445 return data.to;
2448 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2449 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2451 static void
2452 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2454 struct store_by_pieces_d data;
2456 if (len == 0)
2457 return;
2459 data.constfun = clear_by_pieces_1;
2460 data.constfundata = NULL;
2461 data.len = len;
2462 data.to = to;
2463 store_by_pieces_1 (&data, align);
2466 /* Callback routine for clear_by_pieces.
2467 Return const0_rtx unconditionally. */
2469 static rtx
2470 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2471 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2472 enum machine_mode mode ATTRIBUTE_UNUSED)
2474 return const0_rtx;
2477 /* Subroutine of clear_by_pieces and store_by_pieces.
2478 Generate several move instructions to store LEN bytes of block TO. (A MEM
2479 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2481 static void
2482 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2483 unsigned int align ATTRIBUTE_UNUSED)
2485 enum machine_mode to_addr_mode
2486 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2487 rtx to_addr = XEXP (data->to, 0);
2488 unsigned int max_size = STORE_MAX_PIECES + 1;
2489 enum machine_mode mode = VOIDmode, tmode;
2490 enum insn_code icode;
2492 data->offset = 0;
2493 data->to_addr = to_addr;
2494 data->autinc_to
2495 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2496 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2498 data->explicit_inc_to = 0;
2499 data->reverse
2500 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2501 if (data->reverse)
2502 data->offset = data->len;
2504 /* If storing requires more than two move insns,
2505 copy addresses to registers (to make displacements shorter)
2506 and use post-increment if available. */
2507 if (!data->autinc_to
2508 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2510 /* Determine the main mode we'll be using. */
2511 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2512 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2513 if (GET_MODE_SIZE (tmode) < max_size)
2514 mode = tmode;
2516 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2518 data->to_addr = copy_to_mode_reg (to_addr_mode,
2519 plus_constant (to_addr, data->len));
2520 data->autinc_to = 1;
2521 data->explicit_inc_to = -1;
2524 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2525 && ! data->autinc_to)
2527 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2528 data->autinc_to = 1;
2529 data->explicit_inc_to = 1;
2532 if ( !data->autinc_to && CONSTANT_P (to_addr))
2533 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2536 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2537 if (align >= GET_MODE_ALIGNMENT (tmode))
2538 align = GET_MODE_ALIGNMENT (tmode);
2539 else
2541 enum machine_mode xmode;
2543 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2544 tmode != VOIDmode;
2545 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2546 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2547 || SLOW_UNALIGNED_ACCESS (tmode, align))
2548 break;
2550 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2553 /* First store what we can in the largest integer mode, then go to
2554 successively smaller modes. */
2556 while (max_size > 1)
2558 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2559 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2560 if (GET_MODE_SIZE (tmode) < max_size)
2561 mode = tmode;
2563 if (mode == VOIDmode)
2564 break;
2566 icode = optab_handler (mov_optab, mode)->insn_code;
2567 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2568 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2570 max_size = GET_MODE_SIZE (mode);
2573 /* The code above should have handled everything. */
2574 gcc_assert (!data->len);
2577 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2578 with move instructions for mode MODE. GENFUN is the gen_... function
2579 to make a move insn for that mode. DATA has all the other info. */
2581 static void
2582 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2583 struct store_by_pieces_d *data)
2585 unsigned int size = GET_MODE_SIZE (mode);
2586 rtx to1, cst;
2588 while (data->len >= size)
2590 if (data->reverse)
2591 data->offset -= size;
2593 if (data->autinc_to)
2594 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2595 data->offset);
2596 else
2597 to1 = adjust_address (data->to, mode, data->offset);
2599 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2600 emit_insn (gen_add2_insn (data->to_addr,
2601 GEN_INT (-(HOST_WIDE_INT) size)));
2603 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2604 emit_insn ((*genfun) (to1, cst));
2606 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2607 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2609 if (! data->reverse)
2610 data->offset += size;
2612 data->len -= size;
2616 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2617 its length in bytes. */
2620 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2621 unsigned int expected_align, HOST_WIDE_INT expected_size)
2623 enum machine_mode mode = GET_MODE (object);
2624 unsigned int align;
2626 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2628 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2629 just move a zero. Otherwise, do this a piece at a time. */
2630 if (mode != BLKmode
2631 && CONST_INT_P (size)
2632 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2634 rtx zero = CONST0_RTX (mode);
2635 if (zero != NULL)
2637 emit_move_insn (object, zero);
2638 return NULL;
2641 if (COMPLEX_MODE_P (mode))
2643 zero = CONST0_RTX (GET_MODE_INNER (mode));
2644 if (zero != NULL)
2646 write_complex_part (object, zero, 0);
2647 write_complex_part (object, zero, 1);
2648 return NULL;
2653 if (size == const0_rtx)
2654 return NULL;
2656 align = MEM_ALIGN (object);
2658 if (CONST_INT_P (size)
2659 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2660 clear_by_pieces (object, INTVAL (size), align);
2661 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2662 expected_align, expected_size))
2664 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2665 return set_storage_via_libcall (object, size, const0_rtx,
2666 method == BLOCK_OP_TAILCALL);
2667 else
2668 gcc_unreachable ();
2670 return NULL;
2674 clear_storage (rtx object, rtx size, enum block_op_methods method)
2676 return clear_storage_hints (object, size, method, 0, -1);
2680 /* A subroutine of clear_storage. Expand a call to memset.
2681 Return the return value of memset, 0 otherwise. */
2684 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2686 tree call_expr, fn, object_tree, size_tree, val_tree;
2687 enum machine_mode size_mode;
2688 rtx retval;
2690 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2691 place those into new pseudos into a VAR_DECL and use them later. */
2693 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2695 size_mode = TYPE_MODE (sizetype);
2696 size = convert_to_mode (size_mode, size, 1);
2697 size = copy_to_mode_reg (size_mode, size);
2699 /* It is incorrect to use the libcall calling conventions to call
2700 memset in this context. This could be a user call to memset and
2701 the user may wish to examine the return value from memset. For
2702 targets where libcalls and normal calls have different conventions
2703 for returning pointers, we could end up generating incorrect code. */
2705 object_tree = make_tree (ptr_type_node, object);
2706 if (!CONST_INT_P (val))
2707 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2708 size_tree = make_tree (sizetype, size);
2709 val_tree = make_tree (integer_type_node, val);
2711 fn = clear_storage_libcall_fn (true);
2712 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2713 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2715 retval = expand_normal (call_expr);
2717 return retval;
2720 /* A subroutine of set_storage_via_libcall. Create the tree node
2721 for the function we use for block clears. The first time FOR_CALL
2722 is true, we call assemble_external. */
2724 tree block_clear_fn;
2726 void
2727 init_block_clear_fn (const char *asmspec)
2729 if (!block_clear_fn)
2731 tree fn, args;
2733 fn = get_identifier ("memset");
2734 args = build_function_type_list (ptr_type_node, ptr_type_node,
2735 integer_type_node, sizetype,
2736 NULL_TREE);
2738 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2739 DECL_EXTERNAL (fn) = 1;
2740 TREE_PUBLIC (fn) = 1;
2741 DECL_ARTIFICIAL (fn) = 1;
2742 TREE_NOTHROW (fn) = 1;
2743 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2744 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2746 block_clear_fn = fn;
2749 if (asmspec)
2750 set_user_assembler_name (block_clear_fn, asmspec);
2753 static tree
2754 clear_storage_libcall_fn (int for_call)
2756 static bool emitted_extern;
2758 if (!block_clear_fn)
2759 init_block_clear_fn (NULL);
2761 if (for_call && !emitted_extern)
2763 emitted_extern = true;
2764 make_decl_rtl (block_clear_fn);
2765 assemble_external (block_clear_fn);
2768 return block_clear_fn;
2771 /* Expand a setmem pattern; return true if successful. */
2773 bool
2774 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2775 unsigned int expected_align, HOST_WIDE_INT expected_size)
2777 /* Try the most limited insn first, because there's no point
2778 including more than one in the machine description unless
2779 the more limited one has some advantage. */
2781 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2782 enum machine_mode mode;
2784 if (expected_align < align)
2785 expected_align = align;
2787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2788 mode = GET_MODE_WIDER_MODE (mode))
2790 enum insn_code code = setmem_optab[(int) mode];
2791 insn_operand_predicate_fn pred;
2793 if (code != CODE_FOR_nothing
2794 /* We don't need MODE to be narrower than
2795 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2796 the mode mask, as it is returned by the macro, it will
2797 definitely be less than the actual mode mask. */
2798 && ((CONST_INT_P (size)
2799 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2800 <= (GET_MODE_MASK (mode) >> 1)))
2801 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2802 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2803 || (*pred) (object, BLKmode))
2804 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2805 || (*pred) (opalign, VOIDmode)))
2807 rtx opsize, opchar;
2808 enum machine_mode char_mode;
2809 rtx last = get_last_insn ();
2810 rtx pat;
2812 opsize = convert_to_mode (mode, size, 1);
2813 pred = insn_data[(int) code].operand[1].predicate;
2814 if (pred != 0 && ! (*pred) (opsize, mode))
2815 opsize = copy_to_mode_reg (mode, opsize);
2817 opchar = val;
2818 char_mode = insn_data[(int) code].operand[2].mode;
2819 if (char_mode != VOIDmode)
2821 opchar = convert_to_mode (char_mode, opchar, 1);
2822 pred = insn_data[(int) code].operand[2].predicate;
2823 if (pred != 0 && ! (*pred) (opchar, char_mode))
2824 opchar = copy_to_mode_reg (char_mode, opchar);
2827 if (insn_data[(int) code].n_operands == 4)
2828 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2829 else
2830 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2831 GEN_INT (expected_align
2832 / BITS_PER_UNIT),
2833 GEN_INT (expected_size));
2834 if (pat)
2836 emit_insn (pat);
2837 return true;
2839 else
2840 delete_insns_since (last);
2844 return false;
2848 /* Write to one of the components of the complex value CPLX. Write VAL to
2849 the real part if IMAG_P is false, and the imaginary part if its true. */
2851 static void
2852 write_complex_part (rtx cplx, rtx val, bool imag_p)
2854 enum machine_mode cmode;
2855 enum machine_mode imode;
2856 unsigned ibitsize;
2858 if (GET_CODE (cplx) == CONCAT)
2860 emit_move_insn (XEXP (cplx, imag_p), val);
2861 return;
2864 cmode = GET_MODE (cplx);
2865 imode = GET_MODE_INNER (cmode);
2866 ibitsize = GET_MODE_BITSIZE (imode);
2868 /* For MEMs simplify_gen_subreg may generate an invalid new address
2869 because, e.g., the original address is considered mode-dependent
2870 by the target, which restricts simplify_subreg from invoking
2871 adjust_address_nv. Instead of preparing fallback support for an
2872 invalid address, we call adjust_address_nv directly. */
2873 if (MEM_P (cplx))
2875 emit_move_insn (adjust_address_nv (cplx, imode,
2876 imag_p ? GET_MODE_SIZE (imode) : 0),
2877 val);
2878 return;
2881 /* If the sub-object is at least word sized, then we know that subregging
2882 will work. This special case is important, since store_bit_field
2883 wants to operate on integer modes, and there's rarely an OImode to
2884 correspond to TCmode. */
2885 if (ibitsize >= BITS_PER_WORD
2886 /* For hard regs we have exact predicates. Assume we can split
2887 the original object if it spans an even number of hard regs.
2888 This special case is important for SCmode on 64-bit platforms
2889 where the natural size of floating-point regs is 32-bit. */
2890 || (REG_P (cplx)
2891 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2892 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2894 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2895 imag_p ? GET_MODE_SIZE (imode) : 0);
2896 if (part)
2898 emit_move_insn (part, val);
2899 return;
2901 else
2902 /* simplify_gen_subreg may fail for sub-word MEMs. */
2903 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2906 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2909 /* Extract one of the components of the complex value CPLX. Extract the
2910 real part if IMAG_P is false, and the imaginary part if it's true. */
2912 static rtx
2913 read_complex_part (rtx cplx, bool imag_p)
2915 enum machine_mode cmode, imode;
2916 unsigned ibitsize;
2918 if (GET_CODE (cplx) == CONCAT)
2919 return XEXP (cplx, imag_p);
2921 cmode = GET_MODE (cplx);
2922 imode = GET_MODE_INNER (cmode);
2923 ibitsize = GET_MODE_BITSIZE (imode);
2925 /* Special case reads from complex constants that got spilled to memory. */
2926 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2928 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2929 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2931 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2932 if (CONSTANT_CLASS_P (part))
2933 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2937 /* For MEMs simplify_gen_subreg may generate an invalid new address
2938 because, e.g., the original address is considered mode-dependent
2939 by the target, which restricts simplify_subreg from invoking
2940 adjust_address_nv. Instead of preparing fallback support for an
2941 invalid address, we call adjust_address_nv directly. */
2942 if (MEM_P (cplx))
2943 return adjust_address_nv (cplx, imode,
2944 imag_p ? GET_MODE_SIZE (imode) : 0);
2946 /* If the sub-object is at least word sized, then we know that subregging
2947 will work. This special case is important, since extract_bit_field
2948 wants to operate on integer modes, and there's rarely an OImode to
2949 correspond to TCmode. */
2950 if (ibitsize >= BITS_PER_WORD
2951 /* For hard regs we have exact predicates. Assume we can split
2952 the original object if it spans an even number of hard regs.
2953 This special case is important for SCmode on 64-bit platforms
2954 where the natural size of floating-point regs is 32-bit. */
2955 || (REG_P (cplx)
2956 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2957 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2959 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2960 imag_p ? GET_MODE_SIZE (imode) : 0);
2961 if (ret)
2962 return ret;
2963 else
2964 /* simplify_gen_subreg may fail for sub-word MEMs. */
2965 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2968 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2969 true, NULL_RTX, imode, imode);
2972 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2973 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2974 represented in NEW_MODE. If FORCE is true, this will never happen, as
2975 we'll force-create a SUBREG if needed. */
2977 static rtx
2978 emit_move_change_mode (enum machine_mode new_mode,
2979 enum machine_mode old_mode, rtx x, bool force)
2981 rtx ret;
2983 if (push_operand (x, GET_MODE (x)))
2985 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2986 MEM_COPY_ATTRIBUTES (ret, x);
2988 else if (MEM_P (x))
2990 /* We don't have to worry about changing the address since the
2991 size in bytes is supposed to be the same. */
2992 if (reload_in_progress)
2994 /* Copy the MEM to change the mode and move any
2995 substitutions from the old MEM to the new one. */
2996 ret = adjust_address_nv (x, new_mode, 0);
2997 copy_replacements (x, ret);
2999 else
3000 ret = adjust_address (x, new_mode, 0);
3002 else
3004 /* Note that we do want simplify_subreg's behavior of validating
3005 that the new mode is ok for a hard register. If we were to use
3006 simplify_gen_subreg, we would create the subreg, but would
3007 probably run into the target not being able to implement it. */
3008 /* Except, of course, when FORCE is true, when this is exactly what
3009 we want. Which is needed for CCmodes on some targets. */
3010 if (force)
3011 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3012 else
3013 ret = simplify_subreg (new_mode, x, old_mode, 0);
3016 return ret;
3019 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3020 an integer mode of the same size as MODE. Returns the instruction
3021 emitted, or NULL if such a move could not be generated. */
3023 static rtx
3024 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3026 enum machine_mode imode;
3027 enum insn_code code;
3029 /* There must exist a mode of the exact size we require. */
3030 imode = int_mode_for_mode (mode);
3031 if (imode == BLKmode)
3032 return NULL_RTX;
3034 /* The target must support moves in this mode. */
3035 code = optab_handler (mov_optab, imode)->insn_code;
3036 if (code == CODE_FOR_nothing)
3037 return NULL_RTX;
3039 x = emit_move_change_mode (imode, mode, x, force);
3040 if (x == NULL_RTX)
3041 return NULL_RTX;
3042 y = emit_move_change_mode (imode, mode, y, force);
3043 if (y == NULL_RTX)
3044 return NULL_RTX;
3045 return emit_insn (GEN_FCN (code) (x, y));
3048 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3049 Return an equivalent MEM that does not use an auto-increment. */
3051 static rtx
3052 emit_move_resolve_push (enum machine_mode mode, rtx x)
3054 enum rtx_code code = GET_CODE (XEXP (x, 0));
3055 HOST_WIDE_INT adjust;
3056 rtx temp;
3058 adjust = GET_MODE_SIZE (mode);
3059 #ifdef PUSH_ROUNDING
3060 adjust = PUSH_ROUNDING (adjust);
3061 #endif
3062 if (code == PRE_DEC || code == POST_DEC)
3063 adjust = -adjust;
3064 else if (code == PRE_MODIFY || code == POST_MODIFY)
3066 rtx expr = XEXP (XEXP (x, 0), 1);
3067 HOST_WIDE_INT val;
3069 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3070 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3071 val = INTVAL (XEXP (expr, 1));
3072 if (GET_CODE (expr) == MINUS)
3073 val = -val;
3074 gcc_assert (adjust == val || adjust == -val);
3075 adjust = val;
3078 /* Do not use anti_adjust_stack, since we don't want to update
3079 stack_pointer_delta. */
3080 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3081 GEN_INT (adjust), stack_pointer_rtx,
3082 0, OPTAB_LIB_WIDEN);
3083 if (temp != stack_pointer_rtx)
3084 emit_move_insn (stack_pointer_rtx, temp);
3086 switch (code)
3088 case PRE_INC:
3089 case PRE_DEC:
3090 case PRE_MODIFY:
3091 temp = stack_pointer_rtx;
3092 break;
3093 case POST_INC:
3094 case POST_DEC:
3095 case POST_MODIFY:
3096 temp = plus_constant (stack_pointer_rtx, -adjust);
3097 break;
3098 default:
3099 gcc_unreachable ();
3102 return replace_equiv_address (x, temp);
3105 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3106 X is known to satisfy push_operand, and MODE is known to be complex.
3107 Returns the last instruction emitted. */
3110 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3112 enum machine_mode submode = GET_MODE_INNER (mode);
3113 bool imag_first;
3115 #ifdef PUSH_ROUNDING
3116 unsigned int submodesize = GET_MODE_SIZE (submode);
3118 /* In case we output to the stack, but the size is smaller than the
3119 machine can push exactly, we need to use move instructions. */
3120 if (PUSH_ROUNDING (submodesize) != submodesize)
3122 x = emit_move_resolve_push (mode, x);
3123 return emit_move_insn (x, y);
3125 #endif
3127 /* Note that the real part always precedes the imag part in memory
3128 regardless of machine's endianness. */
3129 switch (GET_CODE (XEXP (x, 0)))
3131 case PRE_DEC:
3132 case POST_DEC:
3133 imag_first = true;
3134 break;
3135 case PRE_INC:
3136 case POST_INC:
3137 imag_first = false;
3138 break;
3139 default:
3140 gcc_unreachable ();
3143 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3144 read_complex_part (y, imag_first));
3145 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3146 read_complex_part (y, !imag_first));
3149 /* A subroutine of emit_move_complex. Perform the move from Y to X
3150 via two moves of the parts. Returns the last instruction emitted. */
3153 emit_move_complex_parts (rtx x, rtx y)
3155 /* Show the output dies here. This is necessary for SUBREGs
3156 of pseudos since we cannot track their lifetimes correctly;
3157 hard regs shouldn't appear here except as return values. */
3158 if (!reload_completed && !reload_in_progress
3159 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3160 emit_clobber (x);
3162 write_complex_part (x, read_complex_part (y, false), false);
3163 write_complex_part (x, read_complex_part (y, true), true);
3165 return get_last_insn ();
3168 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3169 MODE is known to be complex. Returns the last instruction emitted. */
3171 static rtx
3172 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3174 bool try_int;
3176 /* Need to take special care for pushes, to maintain proper ordering
3177 of the data, and possibly extra padding. */
3178 if (push_operand (x, mode))
3179 return emit_move_complex_push (mode, x, y);
3181 /* See if we can coerce the target into moving both values at once. */
3183 /* Move floating point as parts. */
3184 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3185 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3186 try_int = false;
3187 /* Not possible if the values are inherently not adjacent. */
3188 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3189 try_int = false;
3190 /* Is possible if both are registers (or subregs of registers). */
3191 else if (register_operand (x, mode) && register_operand (y, mode))
3192 try_int = true;
3193 /* If one of the operands is a memory, and alignment constraints
3194 are friendly enough, we may be able to do combined memory operations.
3195 We do not attempt this if Y is a constant because that combination is
3196 usually better with the by-parts thing below. */
3197 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3198 && (!STRICT_ALIGNMENT
3199 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3200 try_int = true;
3201 else
3202 try_int = false;
3204 if (try_int)
3206 rtx ret;
3208 /* For memory to memory moves, optimal behavior can be had with the
3209 existing block move logic. */
3210 if (MEM_P (x) && MEM_P (y))
3212 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3213 BLOCK_OP_NO_LIBCALL);
3214 return get_last_insn ();
3217 ret = emit_move_via_integer (mode, x, y, true);
3218 if (ret)
3219 return ret;
3222 return emit_move_complex_parts (x, y);
3225 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3226 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3228 static rtx
3229 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3231 rtx ret;
3233 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3234 if (mode != CCmode)
3236 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3237 if (code != CODE_FOR_nothing)
3239 x = emit_move_change_mode (CCmode, mode, x, true);
3240 y = emit_move_change_mode (CCmode, mode, y, true);
3241 return emit_insn (GEN_FCN (code) (x, y));
3245 /* Otherwise, find the MODE_INT mode of the same width. */
3246 ret = emit_move_via_integer (mode, x, y, false);
3247 gcc_assert (ret != NULL);
3248 return ret;
3251 /* Return true if word I of OP lies entirely in the
3252 undefined bits of a paradoxical subreg. */
3254 static bool
3255 undefined_operand_subword_p (const_rtx op, int i)
3257 enum machine_mode innermode, innermostmode;
3258 int offset;
3259 if (GET_CODE (op) != SUBREG)
3260 return false;
3261 innermode = GET_MODE (op);
3262 innermostmode = GET_MODE (SUBREG_REG (op));
3263 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3264 /* The SUBREG_BYTE represents offset, as if the value were stored in
3265 memory, except for a paradoxical subreg where we define
3266 SUBREG_BYTE to be 0; undo this exception as in
3267 simplify_subreg. */
3268 if (SUBREG_BYTE (op) == 0
3269 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3271 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3272 if (WORDS_BIG_ENDIAN)
3273 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3274 if (BYTES_BIG_ENDIAN)
3275 offset += difference % UNITS_PER_WORD;
3277 if (offset >= GET_MODE_SIZE (innermostmode)
3278 || offset <= -GET_MODE_SIZE (word_mode))
3279 return true;
3280 return false;
3283 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3284 MODE is any multi-word or full-word mode that lacks a move_insn
3285 pattern. Note that you will get better code if you define such
3286 patterns, even if they must turn into multiple assembler instructions. */
3288 static rtx
3289 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3291 rtx last_insn = 0;
3292 rtx seq, inner;
3293 bool need_clobber;
3294 int i;
3296 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3298 /* If X is a push on the stack, do the push now and replace
3299 X with a reference to the stack pointer. */
3300 if (push_operand (x, mode))
3301 x = emit_move_resolve_push (mode, x);
3303 /* If we are in reload, see if either operand is a MEM whose address
3304 is scheduled for replacement. */
3305 if (reload_in_progress && MEM_P (x)
3306 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3307 x = replace_equiv_address_nv (x, inner);
3308 if (reload_in_progress && MEM_P (y)
3309 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3310 y = replace_equiv_address_nv (y, inner);
3312 start_sequence ();
3314 need_clobber = false;
3315 for (i = 0;
3316 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3317 i++)
3319 rtx xpart = operand_subword (x, i, 1, mode);
3320 rtx ypart;
3322 /* Do not generate code for a move if it would come entirely
3323 from the undefined bits of a paradoxical subreg. */
3324 if (undefined_operand_subword_p (y, i))
3325 continue;
3327 ypart = operand_subword (y, i, 1, mode);
3329 /* If we can't get a part of Y, put Y into memory if it is a
3330 constant. Otherwise, force it into a register. Then we must
3331 be able to get a part of Y. */
3332 if (ypart == 0 && CONSTANT_P (y))
3334 y = use_anchored_address (force_const_mem (mode, y));
3335 ypart = operand_subword (y, i, 1, mode);
3337 else if (ypart == 0)
3338 ypart = operand_subword_force (y, i, mode);
3340 gcc_assert (xpart && ypart);
3342 need_clobber |= (GET_CODE (xpart) == SUBREG);
3344 last_insn = emit_move_insn (xpart, ypart);
3347 seq = get_insns ();
3348 end_sequence ();
3350 /* Show the output dies here. This is necessary for SUBREGs
3351 of pseudos since we cannot track their lifetimes correctly;
3352 hard regs shouldn't appear here except as return values.
3353 We never want to emit such a clobber after reload. */
3354 if (x != y
3355 && ! (reload_in_progress || reload_completed)
3356 && need_clobber != 0)
3357 emit_clobber (x);
3359 emit_insn (seq);
3361 return last_insn;
3364 /* Low level part of emit_move_insn.
3365 Called just like emit_move_insn, but assumes X and Y
3366 are basically valid. */
3369 emit_move_insn_1 (rtx x, rtx y)
3371 enum machine_mode mode = GET_MODE (x);
3372 enum insn_code code;
3374 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3376 code = optab_handler (mov_optab, mode)->insn_code;
3377 if (code != CODE_FOR_nothing)
3378 return emit_insn (GEN_FCN (code) (x, y));
3380 /* Expand complex moves by moving real part and imag part. */
3381 if (COMPLEX_MODE_P (mode))
3382 return emit_move_complex (mode, x, y);
3384 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3385 || ALL_FIXED_POINT_MODE_P (mode))
3387 rtx result = emit_move_via_integer (mode, x, y, true);
3389 /* If we can't find an integer mode, use multi words. */
3390 if (result)
3391 return result;
3392 else
3393 return emit_move_multi_word (mode, x, y);
3396 if (GET_MODE_CLASS (mode) == MODE_CC)
3397 return emit_move_ccmode (mode, x, y);
3399 /* Try using a move pattern for the corresponding integer mode. This is
3400 only safe when simplify_subreg can convert MODE constants into integer
3401 constants. At present, it can only do this reliably if the value
3402 fits within a HOST_WIDE_INT. */
3403 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3405 rtx ret = emit_move_via_integer (mode, x, y, false);
3406 if (ret)
3407 return ret;
3410 return emit_move_multi_word (mode, x, y);
3413 /* Generate code to copy Y into X.
3414 Both Y and X must have the same mode, except that
3415 Y can be a constant with VOIDmode.
3416 This mode cannot be BLKmode; use emit_block_move for that.
3418 Return the last instruction emitted. */
3421 emit_move_insn (rtx x, rtx y)
3423 enum machine_mode mode = GET_MODE (x);
3424 rtx y_cst = NULL_RTX;
3425 rtx last_insn, set;
3427 gcc_assert (mode != BLKmode
3428 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3430 if (CONSTANT_P (y))
3432 if (optimize
3433 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3434 && (last_insn = compress_float_constant (x, y)))
3435 return last_insn;
3437 y_cst = y;
3439 if (!LEGITIMATE_CONSTANT_P (y))
3441 y = force_const_mem (mode, y);
3443 /* If the target's cannot_force_const_mem prevented the spill,
3444 assume that the target's move expanders will also take care
3445 of the non-legitimate constant. */
3446 if (!y)
3447 y = y_cst;
3448 else
3449 y = use_anchored_address (y);
3453 /* If X or Y are memory references, verify that their addresses are valid
3454 for the machine. */
3455 if (MEM_P (x)
3456 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3457 MEM_ADDR_SPACE (x))
3458 && ! push_operand (x, GET_MODE (x))))
3459 x = validize_mem (x);
3461 if (MEM_P (y)
3462 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3463 MEM_ADDR_SPACE (y)))
3464 y = validize_mem (y);
3466 gcc_assert (mode != BLKmode);
3468 last_insn = emit_move_insn_1 (x, y);
3470 if (y_cst && REG_P (x)
3471 && (set = single_set (last_insn)) != NULL_RTX
3472 && SET_DEST (set) == x
3473 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3474 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3476 return last_insn;
3479 /* If Y is representable exactly in a narrower mode, and the target can
3480 perform the extension directly from constant or memory, then emit the
3481 move as an extension. */
3483 static rtx
3484 compress_float_constant (rtx x, rtx y)
3486 enum machine_mode dstmode = GET_MODE (x);
3487 enum machine_mode orig_srcmode = GET_MODE (y);
3488 enum machine_mode srcmode;
3489 REAL_VALUE_TYPE r;
3490 int oldcost, newcost;
3491 bool speed = optimize_insn_for_speed_p ();
3493 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3495 if (LEGITIMATE_CONSTANT_P (y))
3496 oldcost = rtx_cost (y, SET, speed);
3497 else
3498 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3500 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3501 srcmode != orig_srcmode;
3502 srcmode = GET_MODE_WIDER_MODE (srcmode))
3504 enum insn_code ic;
3505 rtx trunc_y, last_insn;
3507 /* Skip if the target can't extend this way. */
3508 ic = can_extend_p (dstmode, srcmode, 0);
3509 if (ic == CODE_FOR_nothing)
3510 continue;
3512 /* Skip if the narrowed value isn't exact. */
3513 if (! exact_real_truncate (srcmode, &r))
3514 continue;
3516 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3518 if (LEGITIMATE_CONSTANT_P (trunc_y))
3520 /* Skip if the target needs extra instructions to perform
3521 the extension. */
3522 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3523 continue;
3524 /* This is valid, but may not be cheaper than the original. */
3525 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3526 if (oldcost < newcost)
3527 continue;
3529 else if (float_extend_from_mem[dstmode][srcmode])
3531 trunc_y = force_const_mem (srcmode, trunc_y);
3532 /* This is valid, but may not be cheaper than the original. */
3533 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3534 if (oldcost < newcost)
3535 continue;
3536 trunc_y = validize_mem (trunc_y);
3538 else
3539 continue;
3541 /* For CSE's benefit, force the compressed constant pool entry
3542 into a new pseudo. This constant may be used in different modes,
3543 and if not, combine will put things back together for us. */
3544 trunc_y = force_reg (srcmode, trunc_y);
3545 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3546 last_insn = get_last_insn ();
3548 if (REG_P (x))
3549 set_unique_reg_note (last_insn, REG_EQUAL, y);
3551 return last_insn;
3554 return NULL_RTX;
3557 /* Pushing data onto the stack. */
3559 /* Push a block of length SIZE (perhaps variable)
3560 and return an rtx to address the beginning of the block.
3561 The value may be virtual_outgoing_args_rtx.
3563 EXTRA is the number of bytes of padding to push in addition to SIZE.
3564 BELOW nonzero means this padding comes at low addresses;
3565 otherwise, the padding comes at high addresses. */
3568 push_block (rtx size, int extra, int below)
3570 rtx temp;
3572 size = convert_modes (Pmode, ptr_mode, size, 1);
3573 if (CONSTANT_P (size))
3574 anti_adjust_stack (plus_constant (size, extra));
3575 else if (REG_P (size) && extra == 0)
3576 anti_adjust_stack (size);
3577 else
3579 temp = copy_to_mode_reg (Pmode, size);
3580 if (extra != 0)
3581 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3582 temp, 0, OPTAB_LIB_WIDEN);
3583 anti_adjust_stack (temp);
3586 #ifndef STACK_GROWS_DOWNWARD
3587 if (0)
3588 #else
3589 if (1)
3590 #endif
3592 temp = virtual_outgoing_args_rtx;
3593 if (extra != 0 && below)
3594 temp = plus_constant (temp, extra);
3596 else
3598 if (CONST_INT_P (size))
3599 temp = plus_constant (virtual_outgoing_args_rtx,
3600 -INTVAL (size) - (below ? 0 : extra));
3601 else if (extra != 0 && !below)
3602 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3603 negate_rtx (Pmode, plus_constant (size, extra)));
3604 else
3605 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3606 negate_rtx (Pmode, size));
3609 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3612 #ifdef PUSH_ROUNDING
3614 /* Emit single push insn. */
3616 static void
3617 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3619 rtx dest_addr;
3620 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3621 rtx dest;
3622 enum insn_code icode;
3623 insn_operand_predicate_fn pred;
3625 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3626 /* If there is push pattern, use it. Otherwise try old way of throwing
3627 MEM representing push operation to move expander. */
3628 icode = optab_handler (push_optab, mode)->insn_code;
3629 if (icode != CODE_FOR_nothing)
3631 if (((pred = insn_data[(int) icode].operand[0].predicate)
3632 && !((*pred) (x, mode))))
3633 x = force_reg (mode, x);
3634 emit_insn (GEN_FCN (icode) (x));
3635 return;
3637 if (GET_MODE_SIZE (mode) == rounded_size)
3638 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3639 /* If we are to pad downward, adjust the stack pointer first and
3640 then store X into the stack location using an offset. This is
3641 because emit_move_insn does not know how to pad; it does not have
3642 access to type. */
3643 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3645 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3646 HOST_WIDE_INT offset;
3648 emit_move_insn (stack_pointer_rtx,
3649 expand_binop (Pmode,
3650 #ifdef STACK_GROWS_DOWNWARD
3651 sub_optab,
3652 #else
3653 add_optab,
3654 #endif
3655 stack_pointer_rtx,
3656 GEN_INT (rounded_size),
3657 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3659 offset = (HOST_WIDE_INT) padding_size;
3660 #ifdef STACK_GROWS_DOWNWARD
3661 if (STACK_PUSH_CODE == POST_DEC)
3662 /* We have already decremented the stack pointer, so get the
3663 previous value. */
3664 offset += (HOST_WIDE_INT) rounded_size;
3665 #else
3666 if (STACK_PUSH_CODE == POST_INC)
3667 /* We have already incremented the stack pointer, so get the
3668 previous value. */
3669 offset -= (HOST_WIDE_INT) rounded_size;
3670 #endif
3671 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3673 else
3675 #ifdef STACK_GROWS_DOWNWARD
3676 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3677 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3678 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3679 #else
3680 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3681 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3682 GEN_INT (rounded_size));
3683 #endif
3684 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3687 dest = gen_rtx_MEM (mode, dest_addr);
3689 if (type != 0)
3691 set_mem_attributes (dest, type, 1);
3693 if (flag_optimize_sibling_calls)
3694 /* Function incoming arguments may overlap with sibling call
3695 outgoing arguments and we cannot allow reordering of reads
3696 from function arguments with stores to outgoing arguments
3697 of sibling calls. */
3698 set_mem_alias_set (dest, 0);
3700 emit_move_insn (dest, x);
3702 #endif
3704 /* Generate code to push X onto the stack, assuming it has mode MODE and
3705 type TYPE.
3706 MODE is redundant except when X is a CONST_INT (since they don't
3707 carry mode info).
3708 SIZE is an rtx for the size of data to be copied (in bytes),
3709 needed only if X is BLKmode.
3711 ALIGN (in bits) is maximum alignment we can assume.
3713 If PARTIAL and REG are both nonzero, then copy that many of the first
3714 bytes of X into registers starting with REG, and push the rest of X.
3715 The amount of space pushed is decreased by PARTIAL bytes.
3716 REG must be a hard register in this case.
3717 If REG is zero but PARTIAL is not, take any all others actions for an
3718 argument partially in registers, but do not actually load any
3719 registers.
3721 EXTRA is the amount in bytes of extra space to leave next to this arg.
3722 This is ignored if an argument block has already been allocated.
3724 On a machine that lacks real push insns, ARGS_ADDR is the address of
3725 the bottom of the argument block for this call. We use indexing off there
3726 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3727 argument block has not been preallocated.
3729 ARGS_SO_FAR is the size of args previously pushed for this call.
3731 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3732 for arguments passed in registers. If nonzero, it will be the number
3733 of bytes required. */
3735 void
3736 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3737 unsigned int align, int partial, rtx reg, int extra,
3738 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3739 rtx alignment_pad)
3741 rtx xinner;
3742 enum direction stack_direction
3743 #ifdef STACK_GROWS_DOWNWARD
3744 = downward;
3745 #else
3746 = upward;
3747 #endif
3749 /* Decide where to pad the argument: `downward' for below,
3750 `upward' for above, or `none' for don't pad it.
3751 Default is below for small data on big-endian machines; else above. */
3752 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3754 /* Invert direction if stack is post-decrement.
3755 FIXME: why? */
3756 if (STACK_PUSH_CODE == POST_DEC)
3757 if (where_pad != none)
3758 where_pad = (where_pad == downward ? upward : downward);
3760 xinner = x;
3762 if (mode == BLKmode
3763 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3765 /* Copy a block into the stack, entirely or partially. */
3767 rtx temp;
3768 int used;
3769 int offset;
3770 int skip;
3772 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3773 used = partial - offset;
3775 if (mode != BLKmode)
3777 /* A value is to be stored in an insufficiently aligned
3778 stack slot; copy via a suitably aligned slot if
3779 necessary. */
3780 size = GEN_INT (GET_MODE_SIZE (mode));
3781 if (!MEM_P (xinner))
3783 temp = assign_temp (type, 0, 1, 1);
3784 emit_move_insn (temp, xinner);
3785 xinner = temp;
3789 gcc_assert (size);
3791 /* USED is now the # of bytes we need not copy to the stack
3792 because registers will take care of them. */
3794 if (partial != 0)
3795 xinner = adjust_address (xinner, BLKmode, used);
3797 /* If the partial register-part of the arg counts in its stack size,
3798 skip the part of stack space corresponding to the registers.
3799 Otherwise, start copying to the beginning of the stack space,
3800 by setting SKIP to 0. */
3801 skip = (reg_parm_stack_space == 0) ? 0 : used;
3803 #ifdef PUSH_ROUNDING
3804 /* Do it with several push insns if that doesn't take lots of insns
3805 and if there is no difficulty with push insns that skip bytes
3806 on the stack for alignment purposes. */
3807 if (args_addr == 0
3808 && PUSH_ARGS
3809 && CONST_INT_P (size)
3810 && skip == 0
3811 && MEM_ALIGN (xinner) >= align
3812 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3813 /* Here we avoid the case of a structure whose weak alignment
3814 forces many pushes of a small amount of data,
3815 and such small pushes do rounding that causes trouble. */
3816 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3817 || align >= BIGGEST_ALIGNMENT
3818 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3819 == (align / BITS_PER_UNIT)))
3820 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3822 /* Push padding now if padding above and stack grows down,
3823 or if padding below and stack grows up.
3824 But if space already allocated, this has already been done. */
3825 if (extra && args_addr == 0
3826 && where_pad != none && where_pad != stack_direction)
3827 anti_adjust_stack (GEN_INT (extra));
3829 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3831 else
3832 #endif /* PUSH_ROUNDING */
3834 rtx target;
3836 /* Otherwise make space on the stack and copy the data
3837 to the address of that space. */
3839 /* Deduct words put into registers from the size we must copy. */
3840 if (partial != 0)
3842 if (CONST_INT_P (size))
3843 size = GEN_INT (INTVAL (size) - used);
3844 else
3845 size = expand_binop (GET_MODE (size), sub_optab, size,
3846 GEN_INT (used), NULL_RTX, 0,
3847 OPTAB_LIB_WIDEN);
3850 /* Get the address of the stack space.
3851 In this case, we do not deal with EXTRA separately.
3852 A single stack adjust will do. */
3853 if (! args_addr)
3855 temp = push_block (size, extra, where_pad == downward);
3856 extra = 0;
3858 else if (CONST_INT_P (args_so_far))
3859 temp = memory_address (BLKmode,
3860 plus_constant (args_addr,
3861 skip + INTVAL (args_so_far)));
3862 else
3863 temp = memory_address (BLKmode,
3864 plus_constant (gen_rtx_PLUS (Pmode,
3865 args_addr,
3866 args_so_far),
3867 skip));
3869 if (!ACCUMULATE_OUTGOING_ARGS)
3871 /* If the source is referenced relative to the stack pointer,
3872 copy it to another register to stabilize it. We do not need
3873 to do this if we know that we won't be changing sp. */
3875 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3876 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3877 temp = copy_to_reg (temp);
3880 target = gen_rtx_MEM (BLKmode, temp);
3882 /* We do *not* set_mem_attributes here, because incoming arguments
3883 may overlap with sibling call outgoing arguments and we cannot
3884 allow reordering of reads from function arguments with stores
3885 to outgoing arguments of sibling calls. We do, however, want
3886 to record the alignment of the stack slot. */
3887 /* ALIGN may well be better aligned than TYPE, e.g. due to
3888 PARM_BOUNDARY. Assume the caller isn't lying. */
3889 set_mem_align (target, align);
3891 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3894 else if (partial > 0)
3896 /* Scalar partly in registers. */
3898 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3899 int i;
3900 int not_stack;
3901 /* # bytes of start of argument
3902 that we must make space for but need not store. */
3903 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3904 int args_offset = INTVAL (args_so_far);
3905 int skip;
3907 /* Push padding now if padding above and stack grows down,
3908 or if padding below and stack grows up.
3909 But if space already allocated, this has already been done. */
3910 if (extra && args_addr == 0
3911 && where_pad != none && where_pad != stack_direction)
3912 anti_adjust_stack (GEN_INT (extra));
3914 /* If we make space by pushing it, we might as well push
3915 the real data. Otherwise, we can leave OFFSET nonzero
3916 and leave the space uninitialized. */
3917 if (args_addr == 0)
3918 offset = 0;
3920 /* Now NOT_STACK gets the number of words that we don't need to
3921 allocate on the stack. Convert OFFSET to words too. */
3922 not_stack = (partial - offset) / UNITS_PER_WORD;
3923 offset /= UNITS_PER_WORD;
3925 /* If the partial register-part of the arg counts in its stack size,
3926 skip the part of stack space corresponding to the registers.
3927 Otherwise, start copying to the beginning of the stack space,
3928 by setting SKIP to 0. */
3929 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3931 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3932 x = validize_mem (force_const_mem (mode, x));
3934 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3935 SUBREGs of such registers are not allowed. */
3936 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3937 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3938 x = copy_to_reg (x);
3940 /* Loop over all the words allocated on the stack for this arg. */
3941 /* We can do it by words, because any scalar bigger than a word
3942 has a size a multiple of a word. */
3943 #ifndef PUSH_ARGS_REVERSED
3944 for (i = not_stack; i < size; i++)
3945 #else
3946 for (i = size - 1; i >= not_stack; i--)
3947 #endif
3948 if (i >= not_stack + offset)
3949 emit_push_insn (operand_subword_force (x, i, mode),
3950 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3951 0, args_addr,
3952 GEN_INT (args_offset + ((i - not_stack + skip)
3953 * UNITS_PER_WORD)),
3954 reg_parm_stack_space, alignment_pad);
3956 else
3958 rtx addr;
3959 rtx dest;
3961 /* Push padding now if padding above and stack grows down,
3962 or if padding below and stack grows up.
3963 But if space already allocated, this has already been done. */
3964 if (extra && args_addr == 0
3965 && where_pad != none && where_pad != stack_direction)
3966 anti_adjust_stack (GEN_INT (extra));
3968 #ifdef PUSH_ROUNDING
3969 if (args_addr == 0 && PUSH_ARGS)
3970 emit_single_push_insn (mode, x, type);
3971 else
3972 #endif
3974 if (CONST_INT_P (args_so_far))
3975 addr
3976 = memory_address (mode,
3977 plus_constant (args_addr,
3978 INTVAL (args_so_far)));
3979 else
3980 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3981 args_so_far));
3982 dest = gen_rtx_MEM (mode, addr);
3984 /* We do *not* set_mem_attributes here, because incoming arguments
3985 may overlap with sibling call outgoing arguments and we cannot
3986 allow reordering of reads from function arguments with stores
3987 to outgoing arguments of sibling calls. We do, however, want
3988 to record the alignment of the stack slot. */
3989 /* ALIGN may well be better aligned than TYPE, e.g. due to
3990 PARM_BOUNDARY. Assume the caller isn't lying. */
3991 set_mem_align (dest, align);
3993 emit_move_insn (dest, x);
3997 /* If part should go in registers, copy that part
3998 into the appropriate registers. Do this now, at the end,
3999 since mem-to-mem copies above may do function calls. */
4000 if (partial > 0 && reg != 0)
4002 /* Handle calls that pass values in multiple non-contiguous locations.
4003 The Irix 6 ABI has examples of this. */
4004 if (GET_CODE (reg) == PARALLEL)
4005 emit_group_load (reg, x, type, -1);
4006 else
4008 gcc_assert (partial % UNITS_PER_WORD == 0);
4009 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4013 if (extra && args_addr == 0 && where_pad == stack_direction)
4014 anti_adjust_stack (GEN_INT (extra));
4016 if (alignment_pad && args_addr == 0)
4017 anti_adjust_stack (alignment_pad);
4020 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4021 operations. */
4023 static rtx
4024 get_subtarget (rtx x)
4026 return (optimize
4027 || x == 0
4028 /* Only registers can be subtargets. */
4029 || !REG_P (x)
4030 /* Don't use hard regs to avoid extending their life. */
4031 || REGNO (x) < FIRST_PSEUDO_REGISTER
4032 ? 0 : x);
4035 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4036 FIELD is a bitfield. Returns true if the optimization was successful,
4037 and there's nothing else to do. */
4039 static bool
4040 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4041 unsigned HOST_WIDE_INT bitpos,
4042 enum machine_mode mode1, rtx str_rtx,
4043 tree to, tree src)
4045 enum machine_mode str_mode = GET_MODE (str_rtx);
4046 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4047 tree op0, op1;
4048 rtx value, result;
4049 optab binop;
4051 if (mode1 != VOIDmode
4052 || bitsize >= BITS_PER_WORD
4053 || str_bitsize > BITS_PER_WORD
4054 || TREE_SIDE_EFFECTS (to)
4055 || TREE_THIS_VOLATILE (to))
4056 return false;
4058 STRIP_NOPS (src);
4059 if (!BINARY_CLASS_P (src)
4060 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4061 return false;
4063 op0 = TREE_OPERAND (src, 0);
4064 op1 = TREE_OPERAND (src, 1);
4065 STRIP_NOPS (op0);
4067 if (!operand_equal_p (to, op0, 0))
4068 return false;
4070 if (MEM_P (str_rtx))
4072 unsigned HOST_WIDE_INT offset1;
4074 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4075 str_mode = word_mode;
4076 str_mode = get_best_mode (bitsize, bitpos,
4077 MEM_ALIGN (str_rtx), str_mode, 0);
4078 if (str_mode == VOIDmode)
4079 return false;
4080 str_bitsize = GET_MODE_BITSIZE (str_mode);
4082 offset1 = bitpos;
4083 bitpos %= str_bitsize;
4084 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4085 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4087 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4088 return false;
4090 /* If the bit field covers the whole REG/MEM, store_field
4091 will likely generate better code. */
4092 if (bitsize >= str_bitsize)
4093 return false;
4095 /* We can't handle fields split across multiple entities. */
4096 if (bitpos + bitsize > str_bitsize)
4097 return false;
4099 if (BYTES_BIG_ENDIAN)
4100 bitpos = str_bitsize - bitpos - bitsize;
4102 switch (TREE_CODE (src))
4104 case PLUS_EXPR:
4105 case MINUS_EXPR:
4106 /* For now, just optimize the case of the topmost bitfield
4107 where we don't need to do any masking and also
4108 1 bit bitfields where xor can be used.
4109 We might win by one instruction for the other bitfields
4110 too if insv/extv instructions aren't used, so that
4111 can be added later. */
4112 if (bitpos + bitsize != str_bitsize
4113 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4114 break;
4116 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4117 value = convert_modes (str_mode,
4118 TYPE_MODE (TREE_TYPE (op1)), value,
4119 TYPE_UNSIGNED (TREE_TYPE (op1)));
4121 /* We may be accessing data outside the field, which means
4122 we can alias adjacent data. */
4123 if (MEM_P (str_rtx))
4125 str_rtx = shallow_copy_rtx (str_rtx);
4126 set_mem_alias_set (str_rtx, 0);
4127 set_mem_expr (str_rtx, 0);
4130 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4131 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4133 value = expand_and (str_mode, value, const1_rtx, NULL);
4134 binop = xor_optab;
4136 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4137 build_int_cst (NULL_TREE, bitpos),
4138 NULL_RTX, 1);
4139 result = expand_binop (str_mode, binop, str_rtx,
4140 value, str_rtx, 1, OPTAB_WIDEN);
4141 if (result != str_rtx)
4142 emit_move_insn (str_rtx, result);
4143 return true;
4145 case BIT_IOR_EXPR:
4146 case BIT_XOR_EXPR:
4147 if (TREE_CODE (op1) != INTEGER_CST)
4148 break;
4149 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4150 value = convert_modes (GET_MODE (str_rtx),
4151 TYPE_MODE (TREE_TYPE (op1)), value,
4152 TYPE_UNSIGNED (TREE_TYPE (op1)));
4154 /* We may be accessing data outside the field, which means
4155 we can alias adjacent data. */
4156 if (MEM_P (str_rtx))
4158 str_rtx = shallow_copy_rtx (str_rtx);
4159 set_mem_alias_set (str_rtx, 0);
4160 set_mem_expr (str_rtx, 0);
4163 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4164 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4166 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4167 - 1);
4168 value = expand_and (GET_MODE (str_rtx), value, mask,
4169 NULL_RTX);
4171 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4172 build_int_cst (NULL_TREE, bitpos),
4173 NULL_RTX, 1);
4174 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4175 value, str_rtx, 1, OPTAB_WIDEN);
4176 if (result != str_rtx)
4177 emit_move_insn (str_rtx, result);
4178 return true;
4180 default:
4181 break;
4184 return false;
4188 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4189 is true, try generating a nontemporal store. */
4191 void
4192 expand_assignment (tree to, tree from, bool nontemporal)
4194 rtx to_rtx = 0;
4195 rtx result;
4197 /* Don't crash if the lhs of the assignment was erroneous. */
4198 if (TREE_CODE (to) == ERROR_MARK)
4200 result = expand_normal (from);
4201 return;
4204 /* Optimize away no-op moves without side-effects. */
4205 if (operand_equal_p (to, from, 0))
4206 return;
4208 /* Assignment of a structure component needs special treatment
4209 if the structure component's rtx is not simply a MEM.
4210 Assignment of an array element at a constant index, and assignment of
4211 an array element in an unaligned packed structure field, has the same
4212 problem. */
4213 if (handled_component_p (to)
4214 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4216 enum machine_mode mode1;
4217 HOST_WIDE_INT bitsize, bitpos;
4218 tree offset;
4219 int unsignedp;
4220 int volatilep = 0;
4221 tree tem;
4223 push_temp_slots ();
4224 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4225 &unsignedp, &volatilep, true);
4227 /* If we are going to use store_bit_field and extract_bit_field,
4228 make sure to_rtx will be safe for multiple use. */
4230 to_rtx = expand_normal (tem);
4232 if (offset != 0)
4234 enum machine_mode address_mode;
4235 rtx offset_rtx;
4237 if (!MEM_P (to_rtx))
4239 /* We can get constant negative offsets into arrays with broken
4240 user code. Translate this to a trap instead of ICEing. */
4241 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4242 expand_builtin_trap ();
4243 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4246 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4247 address_mode
4248 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4249 if (GET_MODE (offset_rtx) != address_mode)
4250 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4252 /* A constant address in TO_RTX can have VOIDmode, we must not try
4253 to call force_reg for that case. Avoid that case. */
4254 if (MEM_P (to_rtx)
4255 && GET_MODE (to_rtx) == BLKmode
4256 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4257 && bitsize > 0
4258 && (bitpos % bitsize) == 0
4259 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4260 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4262 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4263 bitpos = 0;
4266 to_rtx = offset_address (to_rtx, offset_rtx,
4267 highest_pow2_factor_for_target (to,
4268 offset));
4271 /* Handle expand_expr of a complex value returning a CONCAT. */
4272 if (GET_CODE (to_rtx) == CONCAT)
4274 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4276 gcc_assert (bitpos == 0);
4277 result = store_expr (from, to_rtx, false, nontemporal);
4279 else
4281 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4282 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4283 nontemporal);
4286 else
4288 if (MEM_P (to_rtx))
4290 /* If the field is at offset zero, we could have been given the
4291 DECL_RTX of the parent struct. Don't munge it. */
4292 to_rtx = shallow_copy_rtx (to_rtx);
4294 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4296 /* Deal with volatile and readonly fields. The former is only
4297 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4298 if (volatilep)
4299 MEM_VOLATILE_P (to_rtx) = 1;
4300 if (component_uses_parent_alias_set (to))
4301 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4304 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4305 to_rtx, to, from))
4306 result = NULL;
4307 else
4308 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4309 TREE_TYPE (tem), get_alias_set (to),
4310 nontemporal);
4313 if (result)
4314 preserve_temp_slots (result);
4315 free_temp_slots ();
4316 pop_temp_slots ();
4317 return;
4320 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4322 addr_space_t as = ADDR_SPACE_GENERIC;
4323 enum machine_mode mode, op_mode1;
4324 enum insn_code icode;
4325 rtx reg, addr, mem, insn;
4327 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4328 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4330 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4331 reg = force_not_mem (reg);
4333 mode = TYPE_MODE (TREE_TYPE (to));
4334 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4335 EXPAND_SUM);
4336 addr = memory_address_addr_space (mode, addr, as);
4337 mem = gen_rtx_MEM (mode, addr);
4339 set_mem_attributes (mem, to, 0);
4340 set_mem_addr_space (mem, as);
4342 icode = movmisalign_optab->handlers[mode].insn_code;
4343 gcc_assert (icode != CODE_FOR_nothing);
4345 op_mode1 = insn_data[icode].operand[1].mode;
4346 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4347 && op_mode1 != VOIDmode)
4348 reg = copy_to_mode_reg (op_mode1, reg);
4350 insn = GEN_FCN (icode) (mem, reg);
4351 emit_insn (insn);
4352 return;
4355 /* If the rhs is a function call and its value is not an aggregate,
4356 call the function before we start to compute the lhs.
4357 This is needed for correct code for cases such as
4358 val = setjmp (buf) on machines where reference to val
4359 requires loading up part of an address in a separate insn.
4361 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4362 since it might be a promoted variable where the zero- or sign- extension
4363 needs to be done. Handling this in the normal way is safe because no
4364 computation is done before the call. The same is true for SSA names. */
4365 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4366 && COMPLETE_TYPE_P (TREE_TYPE (from))
4367 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4368 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4369 && REG_P (DECL_RTL (to)))
4370 || TREE_CODE (to) == SSA_NAME))
4372 rtx value;
4374 push_temp_slots ();
4375 value = expand_normal (from);
4376 if (to_rtx == 0)
4377 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4379 /* Handle calls that return values in multiple non-contiguous locations.
4380 The Irix 6 ABI has examples of this. */
4381 if (GET_CODE (to_rtx) == PARALLEL)
4382 emit_group_load (to_rtx, value, TREE_TYPE (from),
4383 int_size_in_bytes (TREE_TYPE (from)));
4384 else if (GET_MODE (to_rtx) == BLKmode)
4385 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4386 else
4388 if (POINTER_TYPE_P (TREE_TYPE (to)))
4389 value = convert_memory_address_addr_space
4390 (GET_MODE (to_rtx), value,
4391 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4393 emit_move_insn (to_rtx, value);
4395 preserve_temp_slots (to_rtx);
4396 free_temp_slots ();
4397 pop_temp_slots ();
4398 return;
4401 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4402 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4404 if (to_rtx == 0)
4405 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4407 /* Don't move directly into a return register. */
4408 if (TREE_CODE (to) == RESULT_DECL
4409 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4411 rtx temp;
4413 push_temp_slots ();
4414 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4416 if (GET_CODE (to_rtx) == PARALLEL)
4417 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4418 int_size_in_bytes (TREE_TYPE (from)));
4419 else
4420 emit_move_insn (to_rtx, temp);
4422 preserve_temp_slots (to_rtx);
4423 free_temp_slots ();
4424 pop_temp_slots ();
4425 return;
4428 /* In case we are returning the contents of an object which overlaps
4429 the place the value is being stored, use a safe function when copying
4430 a value through a pointer into a structure value return block. */
4431 if (TREE_CODE (to) == RESULT_DECL
4432 && TREE_CODE (from) == INDIRECT_REF
4433 && ADDR_SPACE_GENERIC_P
4434 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4435 && refs_may_alias_p (to, from)
4436 && cfun->returns_struct
4437 && !cfun->returns_pcc_struct)
4439 rtx from_rtx, size;
4441 push_temp_slots ();
4442 size = expr_size (from);
4443 from_rtx = expand_normal (from);
4445 emit_library_call (memmove_libfunc, LCT_NORMAL,
4446 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4447 XEXP (from_rtx, 0), Pmode,
4448 convert_to_mode (TYPE_MODE (sizetype),
4449 size, TYPE_UNSIGNED (sizetype)),
4450 TYPE_MODE (sizetype));
4452 preserve_temp_slots (to_rtx);
4453 free_temp_slots ();
4454 pop_temp_slots ();
4455 return;
4458 /* Compute FROM and store the value in the rtx we got. */
4460 push_temp_slots ();
4461 result = store_expr (from, to_rtx, 0, nontemporal);
4462 preserve_temp_slots (result);
4463 free_temp_slots ();
4464 pop_temp_slots ();
4465 return;
4468 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4469 succeeded, false otherwise. */
4471 bool
4472 emit_storent_insn (rtx to, rtx from)
4474 enum machine_mode mode = GET_MODE (to), imode;
4475 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4476 rtx pattern;
4478 if (code == CODE_FOR_nothing)
4479 return false;
4481 imode = insn_data[code].operand[0].mode;
4482 if (!insn_data[code].operand[0].predicate (to, imode))
4483 return false;
4485 imode = insn_data[code].operand[1].mode;
4486 if (!insn_data[code].operand[1].predicate (from, imode))
4488 from = copy_to_mode_reg (imode, from);
4489 if (!insn_data[code].operand[1].predicate (from, imode))
4490 return false;
4493 pattern = GEN_FCN (code) (to, from);
4494 if (pattern == NULL_RTX)
4495 return false;
4497 emit_insn (pattern);
4498 return true;
4501 /* Generate code for computing expression EXP,
4502 and storing the value into TARGET.
4504 If the mode is BLKmode then we may return TARGET itself.
4505 It turns out that in BLKmode it doesn't cause a problem.
4506 because C has no operators that could combine two different
4507 assignments into the same BLKmode object with different values
4508 with no sequence point. Will other languages need this to
4509 be more thorough?
4511 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4512 stack, and block moves may need to be treated specially.
4514 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4517 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4519 rtx temp;
4520 rtx alt_rtl = NULL_RTX;
4521 location_t loc = EXPR_LOCATION (exp);
4523 if (VOID_TYPE_P (TREE_TYPE (exp)))
4525 /* C++ can generate ?: expressions with a throw expression in one
4526 branch and an rvalue in the other. Here, we resolve attempts to
4527 store the throw expression's nonexistent result. */
4528 gcc_assert (!call_param_p);
4529 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4530 return NULL_RTX;
4532 if (TREE_CODE (exp) == COMPOUND_EXPR)
4534 /* Perform first part of compound expression, then assign from second
4535 part. */
4536 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4537 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4538 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4539 nontemporal);
4541 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4543 /* For conditional expression, get safe form of the target. Then
4544 test the condition, doing the appropriate assignment on either
4545 side. This avoids the creation of unnecessary temporaries.
4546 For non-BLKmode, it is more efficient not to do this. */
4548 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4550 do_pending_stack_adjust ();
4551 NO_DEFER_POP;
4552 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4553 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4554 nontemporal);
4555 emit_jump_insn (gen_jump (lab2));
4556 emit_barrier ();
4557 emit_label (lab1);
4558 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4559 nontemporal);
4560 emit_label (lab2);
4561 OK_DEFER_POP;
4563 return NULL_RTX;
4565 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4566 /* If this is a scalar in a register that is stored in a wider mode
4567 than the declared mode, compute the result into its declared mode
4568 and then convert to the wider mode. Our value is the computed
4569 expression. */
4571 rtx inner_target = 0;
4573 /* We can do the conversion inside EXP, which will often result
4574 in some optimizations. Do the conversion in two steps: first
4575 change the signedness, if needed, then the extend. But don't
4576 do this if the type of EXP is a subtype of something else
4577 since then the conversion might involve more than just
4578 converting modes. */
4579 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4580 && TREE_TYPE (TREE_TYPE (exp)) == 0
4581 && GET_MODE_PRECISION (GET_MODE (target))
4582 == TYPE_PRECISION (TREE_TYPE (exp)))
4584 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4585 != SUBREG_PROMOTED_UNSIGNED_P (target))
4587 /* Some types, e.g. Fortran's logical*4, won't have a signed
4588 version, so use the mode instead. */
4589 tree ntype
4590 = (signed_or_unsigned_type_for
4591 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4592 if (ntype == NULL)
4593 ntype = lang_hooks.types.type_for_mode
4594 (TYPE_MODE (TREE_TYPE (exp)),
4595 SUBREG_PROMOTED_UNSIGNED_P (target));
4597 exp = fold_convert_loc (loc, ntype, exp);
4600 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4601 (GET_MODE (SUBREG_REG (target)),
4602 SUBREG_PROMOTED_UNSIGNED_P (target)),
4603 exp);
4605 inner_target = SUBREG_REG (target);
4608 temp = expand_expr (exp, inner_target, VOIDmode,
4609 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4611 /* If TEMP is a VOIDmode constant, use convert_modes to make
4612 sure that we properly convert it. */
4613 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4615 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4616 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4617 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4618 GET_MODE (target), temp,
4619 SUBREG_PROMOTED_UNSIGNED_P (target));
4622 convert_move (SUBREG_REG (target), temp,
4623 SUBREG_PROMOTED_UNSIGNED_P (target));
4625 return NULL_RTX;
4627 else if (TREE_CODE (exp) == STRING_CST
4628 && !nontemporal && !call_param_p
4629 && TREE_STRING_LENGTH (exp) > 0
4630 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4632 /* Optimize initialization of an array with a STRING_CST. */
4633 HOST_WIDE_INT exp_len, str_copy_len;
4634 rtx dest_mem;
4636 exp_len = int_expr_size (exp);
4637 if (exp_len <= 0)
4638 goto normal_expr;
4640 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4641 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4642 goto normal_expr;
4644 str_copy_len = TREE_STRING_LENGTH (exp);
4645 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4647 str_copy_len += STORE_MAX_PIECES - 1;
4648 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4650 str_copy_len = MIN (str_copy_len, exp_len);
4651 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4652 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4653 MEM_ALIGN (target), false))
4654 goto normal_expr;
4656 dest_mem = target;
4658 dest_mem = store_by_pieces (dest_mem,
4659 str_copy_len, builtin_strncpy_read_str,
4660 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4661 MEM_ALIGN (target), false,
4662 exp_len > str_copy_len ? 1 : 0);
4663 if (exp_len > str_copy_len)
4664 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4665 GEN_INT (exp_len - str_copy_len),
4666 BLOCK_OP_NORMAL);
4667 return NULL_RTX;
4669 else
4671 rtx tmp_target;
4673 normal_expr:
4674 /* If we want to use a nontemporal store, force the value to
4675 register first. */
4676 tmp_target = nontemporal ? NULL_RTX : target;
4677 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4678 (call_param_p
4679 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4680 &alt_rtl);
4683 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4684 the same as that of TARGET, adjust the constant. This is needed, for
4685 example, in case it is a CONST_DOUBLE and we want only a word-sized
4686 value. */
4687 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4688 && TREE_CODE (exp) != ERROR_MARK
4689 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4690 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4691 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4693 /* If value was not generated in the target, store it there.
4694 Convert the value to TARGET's type first if necessary and emit the
4695 pending incrementations that have been queued when expanding EXP.
4696 Note that we cannot emit the whole queue blindly because this will
4697 effectively disable the POST_INC optimization later.
4699 If TEMP and TARGET compare equal according to rtx_equal_p, but
4700 one or both of them are volatile memory refs, we have to distinguish
4701 two cases:
4702 - expand_expr has used TARGET. In this case, we must not generate
4703 another copy. This can be detected by TARGET being equal according
4704 to == .
4705 - expand_expr has not used TARGET - that means that the source just
4706 happens to have the same RTX form. Since temp will have been created
4707 by expand_expr, it will compare unequal according to == .
4708 We must generate a copy in this case, to reach the correct number
4709 of volatile memory references. */
4711 if ((! rtx_equal_p (temp, target)
4712 || (temp != target && (side_effects_p (temp)
4713 || side_effects_p (target))))
4714 && TREE_CODE (exp) != ERROR_MARK
4715 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4716 but TARGET is not valid memory reference, TEMP will differ
4717 from TARGET although it is really the same location. */
4718 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4719 /* If there's nothing to copy, don't bother. Don't call
4720 expr_size unless necessary, because some front-ends (C++)
4721 expr_size-hook must not be given objects that are not
4722 supposed to be bit-copied or bit-initialized. */
4723 && expr_size (exp) != const0_rtx)
4725 if (GET_MODE (temp) != GET_MODE (target)
4726 && GET_MODE (temp) != VOIDmode)
4728 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4729 if (GET_MODE (target) == BLKmode
4730 || GET_MODE (temp) == BLKmode)
4731 emit_block_move (target, temp, expr_size (exp),
4732 (call_param_p
4733 ? BLOCK_OP_CALL_PARM
4734 : BLOCK_OP_NORMAL));
4735 else
4736 convert_move (target, temp, unsignedp);
4739 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4741 /* Handle copying a string constant into an array. The string
4742 constant may be shorter than the array. So copy just the string's
4743 actual length, and clear the rest. First get the size of the data
4744 type of the string, which is actually the size of the target. */
4745 rtx size = expr_size (exp);
4747 if (CONST_INT_P (size)
4748 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4749 emit_block_move (target, temp, size,
4750 (call_param_p
4751 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4752 else
4754 enum machine_mode pointer_mode
4755 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4756 enum machine_mode address_mode
4757 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4759 /* Compute the size of the data to copy from the string. */
4760 tree copy_size
4761 = size_binop_loc (loc, MIN_EXPR,
4762 make_tree (sizetype, size),
4763 size_int (TREE_STRING_LENGTH (exp)));
4764 rtx copy_size_rtx
4765 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4766 (call_param_p
4767 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4768 rtx label = 0;
4770 /* Copy that much. */
4771 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4772 TYPE_UNSIGNED (sizetype));
4773 emit_block_move (target, temp, copy_size_rtx,
4774 (call_param_p
4775 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4777 /* Figure out how much is left in TARGET that we have to clear.
4778 Do all calculations in pointer_mode. */
4779 if (CONST_INT_P (copy_size_rtx))
4781 size = plus_constant (size, -INTVAL (copy_size_rtx));
4782 target = adjust_address (target, BLKmode,
4783 INTVAL (copy_size_rtx));
4785 else
4787 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4788 copy_size_rtx, NULL_RTX, 0,
4789 OPTAB_LIB_WIDEN);
4791 if (GET_MODE (copy_size_rtx) != address_mode)
4792 copy_size_rtx = convert_to_mode (address_mode,
4793 copy_size_rtx,
4794 TYPE_UNSIGNED (sizetype));
4796 target = offset_address (target, copy_size_rtx,
4797 highest_pow2_factor (copy_size));
4798 label = gen_label_rtx ();
4799 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4800 GET_MODE (size), 0, label);
4803 if (size != const0_rtx)
4804 clear_storage (target, size, BLOCK_OP_NORMAL);
4806 if (label)
4807 emit_label (label);
4810 /* Handle calls that return values in multiple non-contiguous locations.
4811 The Irix 6 ABI has examples of this. */
4812 else if (GET_CODE (target) == PARALLEL)
4813 emit_group_load (target, temp, TREE_TYPE (exp),
4814 int_size_in_bytes (TREE_TYPE (exp)));
4815 else if (GET_MODE (temp) == BLKmode)
4816 emit_block_move (target, temp, expr_size (exp),
4817 (call_param_p
4818 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4819 else if (nontemporal
4820 && emit_storent_insn (target, temp))
4821 /* If we managed to emit a nontemporal store, there is nothing else to
4822 do. */
4824 else
4826 temp = force_operand (temp, target);
4827 if (temp != target)
4828 emit_move_insn (target, temp);
4832 return NULL_RTX;
4835 /* Helper for categorize_ctor_elements. Identical interface. */
4837 static bool
4838 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4839 HOST_WIDE_INT *p_elt_count,
4840 bool *p_must_clear)
4842 unsigned HOST_WIDE_INT idx;
4843 HOST_WIDE_INT nz_elts, elt_count;
4844 tree value, purpose;
4846 /* Whether CTOR is a valid constant initializer, in accordance with what
4847 initializer_constant_valid_p does. If inferred from the constructor
4848 elements, true until proven otherwise. */
4849 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4850 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4852 nz_elts = 0;
4853 elt_count = 0;
4855 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4857 HOST_WIDE_INT mult = 1;
4859 if (TREE_CODE (purpose) == RANGE_EXPR)
4861 tree lo_index = TREE_OPERAND (purpose, 0);
4862 tree hi_index = TREE_OPERAND (purpose, 1);
4864 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4865 mult = (tree_low_cst (hi_index, 1)
4866 - tree_low_cst (lo_index, 1) + 1);
4869 switch (TREE_CODE (value))
4871 case CONSTRUCTOR:
4873 HOST_WIDE_INT nz = 0, ic = 0;
4875 bool const_elt_p
4876 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4878 nz_elts += mult * nz;
4879 elt_count += mult * ic;
4881 if (const_from_elts_p && const_p)
4882 const_p = const_elt_p;
4884 break;
4886 case INTEGER_CST:
4887 case REAL_CST:
4888 case FIXED_CST:
4889 if (!initializer_zerop (value))
4890 nz_elts += mult;
4891 elt_count += mult;
4892 break;
4894 case STRING_CST:
4895 nz_elts += mult * TREE_STRING_LENGTH (value);
4896 elt_count += mult * TREE_STRING_LENGTH (value);
4897 break;
4899 case COMPLEX_CST:
4900 if (!initializer_zerop (TREE_REALPART (value)))
4901 nz_elts += mult;
4902 if (!initializer_zerop (TREE_IMAGPART (value)))
4903 nz_elts += mult;
4904 elt_count += mult;
4905 break;
4907 case VECTOR_CST:
4909 tree v;
4910 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4912 if (!initializer_zerop (TREE_VALUE (v)))
4913 nz_elts += mult;
4914 elt_count += mult;
4917 break;
4919 default:
4921 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4922 if (tc < 1)
4923 tc = 1;
4924 nz_elts += mult * tc;
4925 elt_count += mult * tc;
4927 if (const_from_elts_p && const_p)
4928 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4929 != NULL_TREE;
4931 break;
4935 if (!*p_must_clear
4936 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4937 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4939 tree init_sub_type;
4940 bool clear_this = true;
4942 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4944 /* We don't expect more than one element of the union to be
4945 initialized. Not sure what we should do otherwise... */
4946 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4947 == 1);
4949 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4950 CONSTRUCTOR_ELTS (ctor),
4951 0)->value);
4953 /* ??? We could look at each element of the union, and find the
4954 largest element. Which would avoid comparing the size of the
4955 initialized element against any tail padding in the union.
4956 Doesn't seem worth the effort... */
4957 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4958 TYPE_SIZE (init_sub_type)) == 1)
4960 /* And now we have to find out if the element itself is fully
4961 constructed. E.g. for union { struct { int a, b; } s; } u
4962 = { .s = { .a = 1 } }. */
4963 if (elt_count == count_type_elements (init_sub_type, false))
4964 clear_this = false;
4968 *p_must_clear = clear_this;
4971 *p_nz_elts += nz_elts;
4972 *p_elt_count += elt_count;
4974 return const_p;
4977 /* Examine CTOR to discover:
4978 * how many scalar fields are set to nonzero values,
4979 and place it in *P_NZ_ELTS;
4980 * how many scalar fields in total are in CTOR,
4981 and place it in *P_ELT_COUNT.
4982 * if a type is a union, and the initializer from the constructor
4983 is not the largest element in the union, then set *p_must_clear.
4985 Return whether or not CTOR is a valid static constant initializer, the same
4986 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4988 bool
4989 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4990 HOST_WIDE_INT *p_elt_count,
4991 bool *p_must_clear)
4993 *p_nz_elts = 0;
4994 *p_elt_count = 0;
4995 *p_must_clear = false;
4997 return
4998 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5001 /* Count the number of scalars in TYPE. Return -1 on overflow or
5002 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5003 array member at the end of the structure. */
5005 HOST_WIDE_INT
5006 count_type_elements (const_tree type, bool allow_flexarr)
5008 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5009 switch (TREE_CODE (type))
5011 case ARRAY_TYPE:
5013 tree telts = array_type_nelts (type);
5014 if (telts && host_integerp (telts, 1))
5016 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5017 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5018 if (n == 0)
5019 return 0;
5020 else if (max / n > m)
5021 return n * m;
5023 return -1;
5026 case RECORD_TYPE:
5028 HOST_WIDE_INT n = 0, t;
5029 tree f;
5031 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5032 if (TREE_CODE (f) == FIELD_DECL)
5034 t = count_type_elements (TREE_TYPE (f), false);
5035 if (t < 0)
5037 /* Check for structures with flexible array member. */
5038 tree tf = TREE_TYPE (f);
5039 if (allow_flexarr
5040 && TREE_CHAIN (f) == NULL
5041 && TREE_CODE (tf) == ARRAY_TYPE
5042 && TYPE_DOMAIN (tf)
5043 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5044 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5045 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5046 && int_size_in_bytes (type) >= 0)
5047 break;
5049 return -1;
5051 n += t;
5054 return n;
5057 case UNION_TYPE:
5058 case QUAL_UNION_TYPE:
5059 return -1;
5061 case COMPLEX_TYPE:
5062 return 2;
5064 case VECTOR_TYPE:
5065 return TYPE_VECTOR_SUBPARTS (type);
5067 case INTEGER_TYPE:
5068 case REAL_TYPE:
5069 case FIXED_POINT_TYPE:
5070 case ENUMERAL_TYPE:
5071 case BOOLEAN_TYPE:
5072 case POINTER_TYPE:
5073 case OFFSET_TYPE:
5074 case REFERENCE_TYPE:
5075 return 1;
5077 case ERROR_MARK:
5078 return 0;
5080 case VOID_TYPE:
5081 case METHOD_TYPE:
5082 case FUNCTION_TYPE:
5083 case LANG_TYPE:
5084 default:
5085 gcc_unreachable ();
5089 /* Return 1 if EXP contains mostly (3/4) zeros. */
5091 static int
5092 mostly_zeros_p (const_tree exp)
5094 if (TREE_CODE (exp) == CONSTRUCTOR)
5097 HOST_WIDE_INT nz_elts, count, elts;
5098 bool must_clear;
5100 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5101 if (must_clear)
5102 return 1;
5104 elts = count_type_elements (TREE_TYPE (exp), false);
5106 return nz_elts < elts / 4;
5109 return initializer_zerop (exp);
5112 /* Return 1 if EXP contains all zeros. */
5114 static int
5115 all_zeros_p (const_tree exp)
5117 if (TREE_CODE (exp) == CONSTRUCTOR)
5120 HOST_WIDE_INT nz_elts, count;
5121 bool must_clear;
5123 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5124 return nz_elts == 0;
5127 return initializer_zerop (exp);
5130 /* Helper function for store_constructor.
5131 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5132 TYPE is the type of the CONSTRUCTOR, not the element type.
5133 CLEARED is as for store_constructor.
5134 ALIAS_SET is the alias set to use for any stores.
5136 This provides a recursive shortcut back to store_constructor when it isn't
5137 necessary to go through store_field. This is so that we can pass through
5138 the cleared field to let store_constructor know that we may not have to
5139 clear a substructure if the outer structure has already been cleared. */
5141 static void
5142 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5143 HOST_WIDE_INT bitpos, enum machine_mode mode,
5144 tree exp, tree type, int cleared,
5145 alias_set_type alias_set)
5147 if (TREE_CODE (exp) == CONSTRUCTOR
5148 /* We can only call store_constructor recursively if the size and
5149 bit position are on a byte boundary. */
5150 && bitpos % BITS_PER_UNIT == 0
5151 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5152 /* If we have a nonzero bitpos for a register target, then we just
5153 let store_field do the bitfield handling. This is unlikely to
5154 generate unnecessary clear instructions anyways. */
5155 && (bitpos == 0 || MEM_P (target)))
5157 if (MEM_P (target))
5158 target
5159 = adjust_address (target,
5160 GET_MODE (target) == BLKmode
5161 || 0 != (bitpos
5162 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5163 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5166 /* Update the alias set, if required. */
5167 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5168 && MEM_ALIAS_SET (target) != 0)
5170 target = copy_rtx (target);
5171 set_mem_alias_set (target, alias_set);
5174 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5176 else
5177 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5180 /* Store the value of constructor EXP into the rtx TARGET.
5181 TARGET is either a REG or a MEM; we know it cannot conflict, since
5182 safe_from_p has been called.
5183 CLEARED is true if TARGET is known to have been zero'd.
5184 SIZE is the number of bytes of TARGET we are allowed to modify: this
5185 may not be the same as the size of EXP if we are assigning to a field
5186 which has been packed to exclude padding bits. */
5188 static void
5189 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5191 tree type = TREE_TYPE (exp);
5192 #ifdef WORD_REGISTER_OPERATIONS
5193 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5194 #endif
5196 switch (TREE_CODE (type))
5198 case RECORD_TYPE:
5199 case UNION_TYPE:
5200 case QUAL_UNION_TYPE:
5202 unsigned HOST_WIDE_INT idx;
5203 tree field, value;
5205 /* If size is zero or the target is already cleared, do nothing. */
5206 if (size == 0 || cleared)
5207 cleared = 1;
5208 /* We either clear the aggregate or indicate the value is dead. */
5209 else if ((TREE_CODE (type) == UNION_TYPE
5210 || TREE_CODE (type) == QUAL_UNION_TYPE)
5211 && ! CONSTRUCTOR_ELTS (exp))
5212 /* If the constructor is empty, clear the union. */
5214 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5215 cleared = 1;
5218 /* If we are building a static constructor into a register,
5219 set the initial value as zero so we can fold the value into
5220 a constant. But if more than one register is involved,
5221 this probably loses. */
5222 else if (REG_P (target) && TREE_STATIC (exp)
5223 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5225 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5226 cleared = 1;
5229 /* If the constructor has fewer fields than the structure or
5230 if we are initializing the structure to mostly zeros, clear
5231 the whole structure first. Don't do this if TARGET is a
5232 register whose mode size isn't equal to SIZE since
5233 clear_storage can't handle this case. */
5234 else if (size > 0
5235 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5236 != fields_length (type))
5237 || mostly_zeros_p (exp))
5238 && (!REG_P (target)
5239 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5240 == size)))
5242 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5243 cleared = 1;
5246 if (REG_P (target) && !cleared)
5247 emit_clobber (target);
5249 /* Store each element of the constructor into the
5250 corresponding field of TARGET. */
5251 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5253 enum machine_mode mode;
5254 HOST_WIDE_INT bitsize;
5255 HOST_WIDE_INT bitpos = 0;
5256 tree offset;
5257 rtx to_rtx = target;
5259 /* Just ignore missing fields. We cleared the whole
5260 structure, above, if any fields are missing. */
5261 if (field == 0)
5262 continue;
5264 if (cleared && initializer_zerop (value))
5265 continue;
5267 if (host_integerp (DECL_SIZE (field), 1))
5268 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5269 else
5270 bitsize = -1;
5272 mode = DECL_MODE (field);
5273 if (DECL_BIT_FIELD (field))
5274 mode = VOIDmode;
5276 offset = DECL_FIELD_OFFSET (field);
5277 if (host_integerp (offset, 0)
5278 && host_integerp (bit_position (field), 0))
5280 bitpos = int_bit_position (field);
5281 offset = 0;
5283 else
5284 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5286 if (offset)
5288 enum machine_mode address_mode;
5289 rtx offset_rtx;
5291 offset
5292 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5293 make_tree (TREE_TYPE (exp),
5294 target));
5296 offset_rtx = expand_normal (offset);
5297 gcc_assert (MEM_P (to_rtx));
5299 address_mode
5300 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5301 if (GET_MODE (offset_rtx) != address_mode)
5302 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5304 to_rtx = offset_address (to_rtx, offset_rtx,
5305 highest_pow2_factor (offset));
5308 #ifdef WORD_REGISTER_OPERATIONS
5309 /* If this initializes a field that is smaller than a
5310 word, at the start of a word, try to widen it to a full
5311 word. This special case allows us to output C++ member
5312 function initializations in a form that the optimizers
5313 can understand. */
5314 if (REG_P (target)
5315 && bitsize < BITS_PER_WORD
5316 && bitpos % BITS_PER_WORD == 0
5317 && GET_MODE_CLASS (mode) == MODE_INT
5318 && TREE_CODE (value) == INTEGER_CST
5319 && exp_size >= 0
5320 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5322 tree type = TREE_TYPE (value);
5324 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5326 type = lang_hooks.types.type_for_size
5327 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5328 value = fold_convert (type, value);
5331 if (BYTES_BIG_ENDIAN)
5332 value
5333 = fold_build2 (LSHIFT_EXPR, type, value,
5334 build_int_cst (type,
5335 BITS_PER_WORD - bitsize));
5336 bitsize = BITS_PER_WORD;
5337 mode = word_mode;
5339 #endif
5341 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5342 && DECL_NONADDRESSABLE_P (field))
5344 to_rtx = copy_rtx (to_rtx);
5345 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5348 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5349 value, type, cleared,
5350 get_alias_set (TREE_TYPE (field)));
5352 break;
5354 case ARRAY_TYPE:
5356 tree value, index;
5357 unsigned HOST_WIDE_INT i;
5358 int need_to_clear;
5359 tree domain;
5360 tree elttype = TREE_TYPE (type);
5361 int const_bounds_p;
5362 HOST_WIDE_INT minelt = 0;
5363 HOST_WIDE_INT maxelt = 0;
5365 domain = TYPE_DOMAIN (type);
5366 const_bounds_p = (TYPE_MIN_VALUE (domain)
5367 && TYPE_MAX_VALUE (domain)
5368 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5369 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5371 /* If we have constant bounds for the range of the type, get them. */
5372 if (const_bounds_p)
5374 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5375 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5378 /* If the constructor has fewer elements than the array, clear
5379 the whole array first. Similarly if this is static
5380 constructor of a non-BLKmode object. */
5381 if (cleared)
5382 need_to_clear = 0;
5383 else if (REG_P (target) && TREE_STATIC (exp))
5384 need_to_clear = 1;
5385 else
5387 unsigned HOST_WIDE_INT idx;
5388 tree index, value;
5389 HOST_WIDE_INT count = 0, zero_count = 0;
5390 need_to_clear = ! const_bounds_p;
5392 /* This loop is a more accurate version of the loop in
5393 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5394 is also needed to check for missing elements. */
5395 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5397 HOST_WIDE_INT this_node_count;
5399 if (need_to_clear)
5400 break;
5402 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5404 tree lo_index = TREE_OPERAND (index, 0);
5405 tree hi_index = TREE_OPERAND (index, 1);
5407 if (! host_integerp (lo_index, 1)
5408 || ! host_integerp (hi_index, 1))
5410 need_to_clear = 1;
5411 break;
5414 this_node_count = (tree_low_cst (hi_index, 1)
5415 - tree_low_cst (lo_index, 1) + 1);
5417 else
5418 this_node_count = 1;
5420 count += this_node_count;
5421 if (mostly_zeros_p (value))
5422 zero_count += this_node_count;
5425 /* Clear the entire array first if there are any missing
5426 elements, or if the incidence of zero elements is >=
5427 75%. */
5428 if (! need_to_clear
5429 && (count < maxelt - minelt + 1
5430 || 4 * zero_count >= 3 * count))
5431 need_to_clear = 1;
5434 if (need_to_clear && size > 0)
5436 if (REG_P (target))
5437 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5438 else
5439 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5440 cleared = 1;
5443 if (!cleared && REG_P (target))
5444 /* Inform later passes that the old value is dead. */
5445 emit_clobber (target);
5447 /* Store each element of the constructor into the
5448 corresponding element of TARGET, determined by counting the
5449 elements. */
5450 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5452 enum machine_mode mode;
5453 HOST_WIDE_INT bitsize;
5454 HOST_WIDE_INT bitpos;
5455 rtx xtarget = target;
5457 if (cleared && initializer_zerop (value))
5458 continue;
5460 mode = TYPE_MODE (elttype);
5461 if (mode == BLKmode)
5462 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5463 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5464 : -1);
5465 else
5466 bitsize = GET_MODE_BITSIZE (mode);
5468 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5470 tree lo_index = TREE_OPERAND (index, 0);
5471 tree hi_index = TREE_OPERAND (index, 1);
5472 rtx index_r, pos_rtx;
5473 HOST_WIDE_INT lo, hi, count;
5474 tree position;
5476 /* If the range is constant and "small", unroll the loop. */
5477 if (const_bounds_p
5478 && host_integerp (lo_index, 0)
5479 && host_integerp (hi_index, 0)
5480 && (lo = tree_low_cst (lo_index, 0),
5481 hi = tree_low_cst (hi_index, 0),
5482 count = hi - lo + 1,
5483 (!MEM_P (target)
5484 || count <= 2
5485 || (host_integerp (TYPE_SIZE (elttype), 1)
5486 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5487 <= 40 * 8)))))
5489 lo -= minelt; hi -= minelt;
5490 for (; lo <= hi; lo++)
5492 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5494 if (MEM_P (target)
5495 && !MEM_KEEP_ALIAS_SET_P (target)
5496 && TREE_CODE (type) == ARRAY_TYPE
5497 && TYPE_NONALIASED_COMPONENT (type))
5499 target = copy_rtx (target);
5500 MEM_KEEP_ALIAS_SET_P (target) = 1;
5503 store_constructor_field
5504 (target, bitsize, bitpos, mode, value, type, cleared,
5505 get_alias_set (elttype));
5508 else
5510 rtx loop_start = gen_label_rtx ();
5511 rtx loop_end = gen_label_rtx ();
5512 tree exit_cond;
5514 expand_normal (hi_index);
5516 index = build_decl (EXPR_LOCATION (exp),
5517 VAR_DECL, NULL_TREE, domain);
5518 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5519 SET_DECL_RTL (index, index_r);
5520 store_expr (lo_index, index_r, 0, false);
5522 /* Build the head of the loop. */
5523 do_pending_stack_adjust ();
5524 emit_label (loop_start);
5526 /* Assign value to element index. */
5527 position =
5528 fold_convert (ssizetype,
5529 fold_build2 (MINUS_EXPR,
5530 TREE_TYPE (index),
5531 index,
5532 TYPE_MIN_VALUE (domain)));
5534 position =
5535 size_binop (MULT_EXPR, position,
5536 fold_convert (ssizetype,
5537 TYPE_SIZE_UNIT (elttype)));
5539 pos_rtx = expand_normal (position);
5540 xtarget = offset_address (target, pos_rtx,
5541 highest_pow2_factor (position));
5542 xtarget = adjust_address (xtarget, mode, 0);
5543 if (TREE_CODE (value) == CONSTRUCTOR)
5544 store_constructor (value, xtarget, cleared,
5545 bitsize / BITS_PER_UNIT);
5546 else
5547 store_expr (value, xtarget, 0, false);
5549 /* Generate a conditional jump to exit the loop. */
5550 exit_cond = build2 (LT_EXPR, integer_type_node,
5551 index, hi_index);
5552 jumpif (exit_cond, loop_end, -1);
5554 /* Update the loop counter, and jump to the head of
5555 the loop. */
5556 expand_assignment (index,
5557 build2 (PLUS_EXPR, TREE_TYPE (index),
5558 index, integer_one_node),
5559 false);
5561 emit_jump (loop_start);
5563 /* Build the end of the loop. */
5564 emit_label (loop_end);
5567 else if ((index != 0 && ! host_integerp (index, 0))
5568 || ! host_integerp (TYPE_SIZE (elttype), 1))
5570 tree position;
5572 if (index == 0)
5573 index = ssize_int (1);
5575 if (minelt)
5576 index = fold_convert (ssizetype,
5577 fold_build2 (MINUS_EXPR,
5578 TREE_TYPE (index),
5579 index,
5580 TYPE_MIN_VALUE (domain)));
5582 position =
5583 size_binop (MULT_EXPR, index,
5584 fold_convert (ssizetype,
5585 TYPE_SIZE_UNIT (elttype)));
5586 xtarget = offset_address (target,
5587 expand_normal (position),
5588 highest_pow2_factor (position));
5589 xtarget = adjust_address (xtarget, mode, 0);
5590 store_expr (value, xtarget, 0, false);
5592 else
5594 if (index != 0)
5595 bitpos = ((tree_low_cst (index, 0) - minelt)
5596 * tree_low_cst (TYPE_SIZE (elttype), 1));
5597 else
5598 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5600 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5601 && TREE_CODE (type) == ARRAY_TYPE
5602 && TYPE_NONALIASED_COMPONENT (type))
5604 target = copy_rtx (target);
5605 MEM_KEEP_ALIAS_SET_P (target) = 1;
5607 store_constructor_field (target, bitsize, bitpos, mode, value,
5608 type, cleared, get_alias_set (elttype));
5611 break;
5614 case VECTOR_TYPE:
5616 unsigned HOST_WIDE_INT idx;
5617 constructor_elt *ce;
5618 int i;
5619 int need_to_clear;
5620 int icode = 0;
5621 tree elttype = TREE_TYPE (type);
5622 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5623 enum machine_mode eltmode = TYPE_MODE (elttype);
5624 HOST_WIDE_INT bitsize;
5625 HOST_WIDE_INT bitpos;
5626 rtvec vector = NULL;
5627 unsigned n_elts;
5628 alias_set_type alias;
5630 gcc_assert (eltmode != BLKmode);
5632 n_elts = TYPE_VECTOR_SUBPARTS (type);
5633 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5635 enum machine_mode mode = GET_MODE (target);
5637 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5638 if (icode != CODE_FOR_nothing)
5640 unsigned int i;
5642 vector = rtvec_alloc (n_elts);
5643 for (i = 0; i < n_elts; i++)
5644 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5648 /* If the constructor has fewer elements than the vector,
5649 clear the whole array first. Similarly if this is static
5650 constructor of a non-BLKmode object. */
5651 if (cleared)
5652 need_to_clear = 0;
5653 else if (REG_P (target) && TREE_STATIC (exp))
5654 need_to_clear = 1;
5655 else
5657 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5658 tree value;
5660 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5662 int n_elts_here = tree_low_cst
5663 (int_const_binop (TRUNC_DIV_EXPR,
5664 TYPE_SIZE (TREE_TYPE (value)),
5665 TYPE_SIZE (elttype), 0), 1);
5667 count += n_elts_here;
5668 if (mostly_zeros_p (value))
5669 zero_count += n_elts_here;
5672 /* Clear the entire vector first if there are any missing elements,
5673 or if the incidence of zero elements is >= 75%. */
5674 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5677 if (need_to_clear && size > 0 && !vector)
5679 if (REG_P (target))
5680 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5681 else
5682 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5683 cleared = 1;
5686 /* Inform later passes that the old value is dead. */
5687 if (!cleared && !vector && REG_P (target))
5688 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5690 if (MEM_P (target))
5691 alias = MEM_ALIAS_SET (target);
5692 else
5693 alias = get_alias_set (elttype);
5695 /* Store each element of the constructor into the corresponding
5696 element of TARGET, determined by counting the elements. */
5697 for (idx = 0, i = 0;
5698 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5699 idx++, i += bitsize / elt_size)
5701 HOST_WIDE_INT eltpos;
5702 tree value = ce->value;
5704 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5705 if (cleared && initializer_zerop (value))
5706 continue;
5708 if (ce->index)
5709 eltpos = tree_low_cst (ce->index, 1);
5710 else
5711 eltpos = i;
5713 if (vector)
5715 /* Vector CONSTRUCTORs should only be built from smaller
5716 vectors in the case of BLKmode vectors. */
5717 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5718 RTVEC_ELT (vector, eltpos)
5719 = expand_normal (value);
5721 else
5723 enum machine_mode value_mode =
5724 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5725 ? TYPE_MODE (TREE_TYPE (value))
5726 : eltmode;
5727 bitpos = eltpos * elt_size;
5728 store_constructor_field (target, bitsize, bitpos,
5729 value_mode, value, type,
5730 cleared, alias);
5734 if (vector)
5735 emit_insn (GEN_FCN (icode)
5736 (target,
5737 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5738 break;
5741 default:
5742 gcc_unreachable ();
5746 /* Store the value of EXP (an expression tree)
5747 into a subfield of TARGET which has mode MODE and occupies
5748 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5749 If MODE is VOIDmode, it means that we are storing into a bit-field.
5751 Always return const0_rtx unless we have something particular to
5752 return.
5754 TYPE is the type of the underlying object,
5756 ALIAS_SET is the alias set for the destination. This value will
5757 (in general) be different from that for TARGET, since TARGET is a
5758 reference to the containing structure.
5760 If NONTEMPORAL is true, try generating a nontemporal store. */
5762 static rtx
5763 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5764 enum machine_mode mode, tree exp, tree type,
5765 alias_set_type alias_set, bool nontemporal)
5767 if (TREE_CODE (exp) == ERROR_MARK)
5768 return const0_rtx;
5770 /* If we have nothing to store, do nothing unless the expression has
5771 side-effects. */
5772 if (bitsize == 0)
5773 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5775 /* If we are storing into an unaligned field of an aligned union that is
5776 in a register, we may have the mode of TARGET being an integer mode but
5777 MODE == BLKmode. In that case, get an aligned object whose size and
5778 alignment are the same as TARGET and store TARGET into it (we can avoid
5779 the store if the field being stored is the entire width of TARGET). Then
5780 call ourselves recursively to store the field into a BLKmode version of
5781 that object. Finally, load from the object into TARGET. This is not
5782 very efficient in general, but should only be slightly more expensive
5783 than the otherwise-required unaligned accesses. Perhaps this can be
5784 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5785 twice, once with emit_move_insn and once via store_field. */
5787 if (mode == BLKmode
5788 && (REG_P (target) || GET_CODE (target) == SUBREG))
5790 rtx object = assign_temp (type, 0, 1, 1);
5791 rtx blk_object = adjust_address (object, BLKmode, 0);
5793 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5794 emit_move_insn (object, target);
5796 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5797 nontemporal);
5799 emit_move_insn (target, object);
5801 /* We want to return the BLKmode version of the data. */
5802 return blk_object;
5805 if (GET_CODE (target) == CONCAT)
5807 /* We're storing into a struct containing a single __complex. */
5809 gcc_assert (!bitpos);
5810 return store_expr (exp, target, 0, nontemporal);
5813 /* If the structure is in a register or if the component
5814 is a bit field, we cannot use addressing to access it.
5815 Use bit-field techniques or SUBREG to store in it. */
5817 if (mode == VOIDmode
5818 || (mode != BLKmode && ! direct_store[(int) mode]
5819 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5820 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5821 || REG_P (target)
5822 || GET_CODE (target) == SUBREG
5823 /* If the field isn't aligned enough to store as an ordinary memref,
5824 store it as a bit field. */
5825 || (mode != BLKmode
5826 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5827 || bitpos % GET_MODE_ALIGNMENT (mode))
5828 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5829 || (bitpos % BITS_PER_UNIT != 0)))
5830 /* If the RHS and field are a constant size and the size of the
5831 RHS isn't the same size as the bitfield, we must use bitfield
5832 operations. */
5833 || (bitsize >= 0
5834 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5835 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5837 rtx temp;
5838 gimple nop_def;
5840 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5841 implies a mask operation. If the precision is the same size as
5842 the field we're storing into, that mask is redundant. This is
5843 particularly common with bit field assignments generated by the
5844 C front end. */
5845 nop_def = get_def_for_expr (exp, NOP_EXPR);
5846 if (nop_def)
5848 tree type = TREE_TYPE (exp);
5849 if (INTEGRAL_TYPE_P (type)
5850 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5851 && bitsize == TYPE_PRECISION (type))
5853 tree op = gimple_assign_rhs1 (nop_def);
5854 type = TREE_TYPE (op);
5855 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5856 exp = op;
5860 temp = expand_normal (exp);
5862 /* If BITSIZE is narrower than the size of the type of EXP
5863 we will be narrowing TEMP. Normally, what's wanted are the
5864 low-order bits. However, if EXP's type is a record and this is
5865 big-endian machine, we want the upper BITSIZE bits. */
5866 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5867 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5868 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5869 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5870 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5871 - bitsize),
5872 NULL_RTX, 1);
5874 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5875 MODE. */
5876 if (mode != VOIDmode && mode != BLKmode
5877 && mode != TYPE_MODE (TREE_TYPE (exp)))
5878 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5880 /* If the modes of TEMP and TARGET are both BLKmode, both
5881 must be in memory and BITPOS must be aligned on a byte
5882 boundary. If so, we simply do a block copy. Likewise
5883 for a BLKmode-like TARGET. */
5884 if (GET_MODE (temp) == BLKmode
5885 && (GET_MODE (target) == BLKmode
5886 || (MEM_P (target)
5887 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5888 && (bitpos % BITS_PER_UNIT) == 0
5889 && (bitsize % BITS_PER_UNIT) == 0)))
5891 gcc_assert (MEM_P (target) && MEM_P (temp)
5892 && (bitpos % BITS_PER_UNIT) == 0);
5894 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5895 emit_block_move (target, temp,
5896 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5897 / BITS_PER_UNIT),
5898 BLOCK_OP_NORMAL);
5900 return const0_rtx;
5903 /* Store the value in the bitfield. */
5904 store_bit_field (target, bitsize, bitpos, mode, temp);
5906 return const0_rtx;
5908 else
5910 /* Now build a reference to just the desired component. */
5911 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5913 if (to_rtx == target)
5914 to_rtx = copy_rtx (to_rtx);
5916 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5917 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5918 set_mem_alias_set (to_rtx, alias_set);
5920 return store_expr (exp, to_rtx, 0, nontemporal);
5924 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5925 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5926 codes and find the ultimate containing object, which we return.
5928 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5929 bit position, and *PUNSIGNEDP to the signedness of the field.
5930 If the position of the field is variable, we store a tree
5931 giving the variable offset (in units) in *POFFSET.
5932 This offset is in addition to the bit position.
5933 If the position is not variable, we store 0 in *POFFSET.
5935 If any of the extraction expressions is volatile,
5936 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5938 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5939 Otherwise, it is a mode that can be used to access the field.
5941 If the field describes a variable-sized object, *PMODE is set to
5942 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5943 this case, but the address of the object can be found.
5945 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5946 look through nodes that serve as markers of a greater alignment than
5947 the one that can be deduced from the expression. These nodes make it
5948 possible for front-ends to prevent temporaries from being created by
5949 the middle-end on alignment considerations. For that purpose, the
5950 normal operating mode at high-level is to always pass FALSE so that
5951 the ultimate containing object is really returned; moreover, the
5952 associated predicate handled_component_p will always return TRUE
5953 on these nodes, thus indicating that they are essentially handled
5954 by get_inner_reference. TRUE should only be passed when the caller
5955 is scanning the expression in order to build another representation
5956 and specifically knows how to handle these nodes; as such, this is
5957 the normal operating mode in the RTL expanders. */
5959 tree
5960 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5961 HOST_WIDE_INT *pbitpos, tree *poffset,
5962 enum machine_mode *pmode, int *punsignedp,
5963 int *pvolatilep, bool keep_aligning)
5965 tree size_tree = 0;
5966 enum machine_mode mode = VOIDmode;
5967 bool blkmode_bitfield = false;
5968 tree offset = size_zero_node;
5969 tree bit_offset = bitsize_zero_node;
5971 /* First get the mode, signedness, and size. We do this from just the
5972 outermost expression. */
5973 *pbitsize = -1;
5974 if (TREE_CODE (exp) == COMPONENT_REF)
5976 tree field = TREE_OPERAND (exp, 1);
5977 size_tree = DECL_SIZE (field);
5978 if (!DECL_BIT_FIELD (field))
5979 mode = DECL_MODE (field);
5980 else if (DECL_MODE (field) == BLKmode)
5981 blkmode_bitfield = true;
5983 *punsignedp = DECL_UNSIGNED (field);
5985 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5987 size_tree = TREE_OPERAND (exp, 1);
5988 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5989 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5991 /* For vector types, with the correct size of access, use the mode of
5992 inner type. */
5993 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5994 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5995 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5996 mode = TYPE_MODE (TREE_TYPE (exp));
5998 else
6000 mode = TYPE_MODE (TREE_TYPE (exp));
6001 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6003 if (mode == BLKmode)
6004 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6005 else
6006 *pbitsize = GET_MODE_BITSIZE (mode);
6009 if (size_tree != 0)
6011 if (! host_integerp (size_tree, 1))
6012 mode = BLKmode, *pbitsize = -1;
6013 else
6014 *pbitsize = tree_low_cst (size_tree, 1);
6017 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6018 and find the ultimate containing object. */
6019 while (1)
6021 switch (TREE_CODE (exp))
6023 case BIT_FIELD_REF:
6024 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6025 TREE_OPERAND (exp, 2));
6026 break;
6028 case COMPONENT_REF:
6030 tree field = TREE_OPERAND (exp, 1);
6031 tree this_offset = component_ref_field_offset (exp);
6033 /* If this field hasn't been filled in yet, don't go past it.
6034 This should only happen when folding expressions made during
6035 type construction. */
6036 if (this_offset == 0)
6037 break;
6039 offset = size_binop (PLUS_EXPR, offset, this_offset);
6040 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6041 DECL_FIELD_BIT_OFFSET (field));
6043 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6045 break;
6047 case ARRAY_REF:
6048 case ARRAY_RANGE_REF:
6050 tree index = TREE_OPERAND (exp, 1);
6051 tree low_bound = array_ref_low_bound (exp);
6052 tree unit_size = array_ref_element_size (exp);
6054 /* We assume all arrays have sizes that are a multiple of a byte.
6055 First subtract the lower bound, if any, in the type of the
6056 index, then convert to sizetype and multiply by the size of
6057 the array element. */
6058 if (! integer_zerop (low_bound))
6059 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6060 index, low_bound);
6062 offset = size_binop (PLUS_EXPR, offset,
6063 size_binop (MULT_EXPR,
6064 fold_convert (sizetype, index),
6065 unit_size));
6067 break;
6069 case REALPART_EXPR:
6070 break;
6072 case IMAGPART_EXPR:
6073 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6074 bitsize_int (*pbitsize));
6075 break;
6077 case VIEW_CONVERT_EXPR:
6078 if (keep_aligning && STRICT_ALIGNMENT
6079 && (TYPE_ALIGN (TREE_TYPE (exp))
6080 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6081 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6082 < BIGGEST_ALIGNMENT)
6083 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6084 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6085 goto done;
6086 break;
6088 default:
6089 goto done;
6092 /* If any reference in the chain is volatile, the effect is volatile. */
6093 if (TREE_THIS_VOLATILE (exp))
6094 *pvolatilep = 1;
6096 exp = TREE_OPERAND (exp, 0);
6098 done:
6100 /* If OFFSET is constant, see if we can return the whole thing as a
6101 constant bit position. Make sure to handle overflow during
6102 this conversion. */
6103 if (host_integerp (offset, 0))
6105 double_int tem = double_int_mul (tree_to_double_int (offset),
6106 uhwi_to_double_int (BITS_PER_UNIT));
6107 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6108 if (double_int_fits_in_shwi_p (tem))
6110 *pbitpos = double_int_to_shwi (tem);
6111 *poffset = offset = NULL_TREE;
6115 /* Otherwise, split it up. */
6116 if (offset)
6118 *pbitpos = tree_low_cst (bit_offset, 0);
6119 *poffset = offset;
6122 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6123 if (mode == VOIDmode
6124 && blkmode_bitfield
6125 && (*pbitpos % BITS_PER_UNIT) == 0
6126 && (*pbitsize % BITS_PER_UNIT) == 0)
6127 *pmode = BLKmode;
6128 else
6129 *pmode = mode;
6131 return exp;
6134 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6135 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6136 EXP is marked as PACKED. */
6138 bool
6139 contains_packed_reference (const_tree exp)
6141 bool packed_p = false;
6143 while (1)
6145 switch (TREE_CODE (exp))
6147 case COMPONENT_REF:
6149 tree field = TREE_OPERAND (exp, 1);
6150 packed_p = DECL_PACKED (field)
6151 || TYPE_PACKED (TREE_TYPE (field))
6152 || TYPE_PACKED (TREE_TYPE (exp));
6153 if (packed_p)
6154 goto done;
6156 break;
6158 case BIT_FIELD_REF:
6159 case ARRAY_REF:
6160 case ARRAY_RANGE_REF:
6161 case REALPART_EXPR:
6162 case IMAGPART_EXPR:
6163 case VIEW_CONVERT_EXPR:
6164 break;
6166 default:
6167 goto done;
6169 exp = TREE_OPERAND (exp, 0);
6171 done:
6172 return packed_p;
6175 /* Return a tree of sizetype representing the size, in bytes, of the element
6176 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6178 tree
6179 array_ref_element_size (tree exp)
6181 tree aligned_size = TREE_OPERAND (exp, 3);
6182 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6183 location_t loc = EXPR_LOCATION (exp);
6185 /* If a size was specified in the ARRAY_REF, it's the size measured
6186 in alignment units of the element type. So multiply by that value. */
6187 if (aligned_size)
6189 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6190 sizetype from another type of the same width and signedness. */
6191 if (TREE_TYPE (aligned_size) != sizetype)
6192 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6193 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6194 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6197 /* Otherwise, take the size from that of the element type. Substitute
6198 any PLACEHOLDER_EXPR that we have. */
6199 else
6200 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6203 /* Return a tree representing the lower bound of the array mentioned in
6204 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6206 tree
6207 array_ref_low_bound (tree exp)
6209 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6211 /* If a lower bound is specified in EXP, use it. */
6212 if (TREE_OPERAND (exp, 2))
6213 return TREE_OPERAND (exp, 2);
6215 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6216 substituting for a PLACEHOLDER_EXPR as needed. */
6217 if (domain_type && TYPE_MIN_VALUE (domain_type))
6218 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6220 /* Otherwise, return a zero of the appropriate type. */
6221 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6224 /* Return a tree representing the upper bound of the array mentioned in
6225 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6227 tree
6228 array_ref_up_bound (tree exp)
6230 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6232 /* If there is a domain type and it has an upper bound, use it, substituting
6233 for a PLACEHOLDER_EXPR as needed. */
6234 if (domain_type && TYPE_MAX_VALUE (domain_type))
6235 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6237 /* Otherwise fail. */
6238 return NULL_TREE;
6241 /* Return a tree representing the offset, in bytes, of the field referenced
6242 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6244 tree
6245 component_ref_field_offset (tree exp)
6247 tree aligned_offset = TREE_OPERAND (exp, 2);
6248 tree field = TREE_OPERAND (exp, 1);
6249 location_t loc = EXPR_LOCATION (exp);
6251 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6252 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6253 value. */
6254 if (aligned_offset)
6256 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6257 sizetype from another type of the same width and signedness. */
6258 if (TREE_TYPE (aligned_offset) != sizetype)
6259 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6260 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6261 size_int (DECL_OFFSET_ALIGN (field)
6262 / BITS_PER_UNIT));
6265 /* Otherwise, take the offset from that of the field. Substitute
6266 any PLACEHOLDER_EXPR that we have. */
6267 else
6268 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6271 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6273 static unsigned HOST_WIDE_INT
6274 target_align (const_tree target)
6276 /* We might have a chain of nested references with intermediate misaligning
6277 bitfields components, so need to recurse to find out. */
6279 unsigned HOST_WIDE_INT this_align, outer_align;
6281 switch (TREE_CODE (target))
6283 case BIT_FIELD_REF:
6284 return 1;
6286 case COMPONENT_REF:
6287 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6288 outer_align = target_align (TREE_OPERAND (target, 0));
6289 return MIN (this_align, outer_align);
6291 case ARRAY_REF:
6292 case ARRAY_RANGE_REF:
6293 this_align = TYPE_ALIGN (TREE_TYPE (target));
6294 outer_align = target_align (TREE_OPERAND (target, 0));
6295 return MIN (this_align, outer_align);
6297 CASE_CONVERT:
6298 case NON_LVALUE_EXPR:
6299 case VIEW_CONVERT_EXPR:
6300 this_align = TYPE_ALIGN (TREE_TYPE (target));
6301 outer_align = target_align (TREE_OPERAND (target, 0));
6302 return MAX (this_align, outer_align);
6304 default:
6305 return TYPE_ALIGN (TREE_TYPE (target));
6310 /* Given an rtx VALUE that may contain additions and multiplications, return
6311 an equivalent value that just refers to a register, memory, or constant.
6312 This is done by generating instructions to perform the arithmetic and
6313 returning a pseudo-register containing the value.
6315 The returned value may be a REG, SUBREG, MEM or constant. */
6318 force_operand (rtx value, rtx target)
6320 rtx op1, op2;
6321 /* Use subtarget as the target for operand 0 of a binary operation. */
6322 rtx subtarget = get_subtarget (target);
6323 enum rtx_code code = GET_CODE (value);
6325 /* Check for subreg applied to an expression produced by loop optimizer. */
6326 if (code == SUBREG
6327 && !REG_P (SUBREG_REG (value))
6328 && !MEM_P (SUBREG_REG (value)))
6330 value
6331 = simplify_gen_subreg (GET_MODE (value),
6332 force_reg (GET_MODE (SUBREG_REG (value)),
6333 force_operand (SUBREG_REG (value),
6334 NULL_RTX)),
6335 GET_MODE (SUBREG_REG (value)),
6336 SUBREG_BYTE (value));
6337 code = GET_CODE (value);
6340 /* Check for a PIC address load. */
6341 if ((code == PLUS || code == MINUS)
6342 && XEXP (value, 0) == pic_offset_table_rtx
6343 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6344 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6345 || GET_CODE (XEXP (value, 1)) == CONST))
6347 if (!subtarget)
6348 subtarget = gen_reg_rtx (GET_MODE (value));
6349 emit_move_insn (subtarget, value);
6350 return subtarget;
6353 if (ARITHMETIC_P (value))
6355 op2 = XEXP (value, 1);
6356 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6357 subtarget = 0;
6358 if (code == MINUS && CONST_INT_P (op2))
6360 code = PLUS;
6361 op2 = negate_rtx (GET_MODE (value), op2);
6364 /* Check for an addition with OP2 a constant integer and our first
6365 operand a PLUS of a virtual register and something else. In that
6366 case, we want to emit the sum of the virtual register and the
6367 constant first and then add the other value. This allows virtual
6368 register instantiation to simply modify the constant rather than
6369 creating another one around this addition. */
6370 if (code == PLUS && CONST_INT_P (op2)
6371 && GET_CODE (XEXP (value, 0)) == PLUS
6372 && REG_P (XEXP (XEXP (value, 0), 0))
6373 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6374 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6376 rtx temp = expand_simple_binop (GET_MODE (value), code,
6377 XEXP (XEXP (value, 0), 0), op2,
6378 subtarget, 0, OPTAB_LIB_WIDEN);
6379 return expand_simple_binop (GET_MODE (value), code, temp,
6380 force_operand (XEXP (XEXP (value,
6381 0), 1), 0),
6382 target, 0, OPTAB_LIB_WIDEN);
6385 op1 = force_operand (XEXP (value, 0), subtarget);
6386 op2 = force_operand (op2, NULL_RTX);
6387 switch (code)
6389 case MULT:
6390 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6391 case DIV:
6392 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6393 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6394 target, 1, OPTAB_LIB_WIDEN);
6395 else
6396 return expand_divmod (0,
6397 FLOAT_MODE_P (GET_MODE (value))
6398 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6399 GET_MODE (value), op1, op2, target, 0);
6400 case MOD:
6401 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6402 target, 0);
6403 case UDIV:
6404 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6405 target, 1);
6406 case UMOD:
6407 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6408 target, 1);
6409 case ASHIFTRT:
6410 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6411 target, 0, OPTAB_LIB_WIDEN);
6412 default:
6413 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6414 target, 1, OPTAB_LIB_WIDEN);
6417 if (UNARY_P (value))
6419 if (!target)
6420 target = gen_reg_rtx (GET_MODE (value));
6421 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6422 switch (code)
6424 case ZERO_EXTEND:
6425 case SIGN_EXTEND:
6426 case TRUNCATE:
6427 case FLOAT_EXTEND:
6428 case FLOAT_TRUNCATE:
6429 convert_move (target, op1, code == ZERO_EXTEND);
6430 return target;
6432 case FIX:
6433 case UNSIGNED_FIX:
6434 expand_fix (target, op1, code == UNSIGNED_FIX);
6435 return target;
6437 case FLOAT:
6438 case UNSIGNED_FLOAT:
6439 expand_float (target, op1, code == UNSIGNED_FLOAT);
6440 return target;
6442 default:
6443 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6447 #ifdef INSN_SCHEDULING
6448 /* On machines that have insn scheduling, we want all memory reference to be
6449 explicit, so we need to deal with such paradoxical SUBREGs. */
6450 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6451 && (GET_MODE_SIZE (GET_MODE (value))
6452 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6453 value
6454 = simplify_gen_subreg (GET_MODE (value),
6455 force_reg (GET_MODE (SUBREG_REG (value)),
6456 force_operand (SUBREG_REG (value),
6457 NULL_RTX)),
6458 GET_MODE (SUBREG_REG (value)),
6459 SUBREG_BYTE (value));
6460 #endif
6462 return value;
6465 /* Subroutine of expand_expr: return nonzero iff there is no way that
6466 EXP can reference X, which is being modified. TOP_P is nonzero if this
6467 call is going to be used to determine whether we need a temporary
6468 for EXP, as opposed to a recursive call to this function.
6470 It is always safe for this routine to return zero since it merely
6471 searches for optimization opportunities. */
6474 safe_from_p (const_rtx x, tree exp, int top_p)
6476 rtx exp_rtl = 0;
6477 int i, nops;
6479 if (x == 0
6480 /* If EXP has varying size, we MUST use a target since we currently
6481 have no way of allocating temporaries of variable size
6482 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6483 So we assume here that something at a higher level has prevented a
6484 clash. This is somewhat bogus, but the best we can do. Only
6485 do this when X is BLKmode and when we are at the top level. */
6486 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6487 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6488 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6489 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6490 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6491 != INTEGER_CST)
6492 && GET_MODE (x) == BLKmode)
6493 /* If X is in the outgoing argument area, it is always safe. */
6494 || (MEM_P (x)
6495 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6496 || (GET_CODE (XEXP (x, 0)) == PLUS
6497 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6498 return 1;
6500 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6501 find the underlying pseudo. */
6502 if (GET_CODE (x) == SUBREG)
6504 x = SUBREG_REG (x);
6505 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6506 return 0;
6509 /* Now look at our tree code and possibly recurse. */
6510 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6512 case tcc_declaration:
6513 exp_rtl = DECL_RTL_IF_SET (exp);
6514 break;
6516 case tcc_constant:
6517 return 1;
6519 case tcc_exceptional:
6520 if (TREE_CODE (exp) == TREE_LIST)
6522 while (1)
6524 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6525 return 0;
6526 exp = TREE_CHAIN (exp);
6527 if (!exp)
6528 return 1;
6529 if (TREE_CODE (exp) != TREE_LIST)
6530 return safe_from_p (x, exp, 0);
6533 else if (TREE_CODE (exp) == CONSTRUCTOR)
6535 constructor_elt *ce;
6536 unsigned HOST_WIDE_INT idx;
6538 for (idx = 0;
6539 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6540 idx++)
6541 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6542 || !safe_from_p (x, ce->value, 0))
6543 return 0;
6544 return 1;
6546 else if (TREE_CODE (exp) == ERROR_MARK)
6547 return 1; /* An already-visited SAVE_EXPR? */
6548 else
6549 return 0;
6551 case tcc_statement:
6552 /* The only case we look at here is the DECL_INITIAL inside a
6553 DECL_EXPR. */
6554 return (TREE_CODE (exp) != DECL_EXPR
6555 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6556 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6557 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6559 case tcc_binary:
6560 case tcc_comparison:
6561 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6562 return 0;
6563 /* Fall through. */
6565 case tcc_unary:
6566 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6568 case tcc_expression:
6569 case tcc_reference:
6570 case tcc_vl_exp:
6571 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6572 the expression. If it is set, we conflict iff we are that rtx or
6573 both are in memory. Otherwise, we check all operands of the
6574 expression recursively. */
6576 switch (TREE_CODE (exp))
6578 case ADDR_EXPR:
6579 /* If the operand is static or we are static, we can't conflict.
6580 Likewise if we don't conflict with the operand at all. */
6581 if (staticp (TREE_OPERAND (exp, 0))
6582 || TREE_STATIC (exp)
6583 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6584 return 1;
6586 /* Otherwise, the only way this can conflict is if we are taking
6587 the address of a DECL a that address if part of X, which is
6588 very rare. */
6589 exp = TREE_OPERAND (exp, 0);
6590 if (DECL_P (exp))
6592 if (!DECL_RTL_SET_P (exp)
6593 || !MEM_P (DECL_RTL (exp)))
6594 return 0;
6595 else
6596 exp_rtl = XEXP (DECL_RTL (exp), 0);
6598 break;
6600 case MISALIGNED_INDIRECT_REF:
6601 case ALIGN_INDIRECT_REF:
6602 case INDIRECT_REF:
6603 if (MEM_P (x)
6604 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6605 get_alias_set (exp)))
6606 return 0;
6607 break;
6609 case CALL_EXPR:
6610 /* Assume that the call will clobber all hard registers and
6611 all of memory. */
6612 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6613 || MEM_P (x))
6614 return 0;
6615 break;
6617 case WITH_CLEANUP_EXPR:
6618 case CLEANUP_POINT_EXPR:
6619 /* Lowered by gimplify.c. */
6620 gcc_unreachable ();
6622 case SAVE_EXPR:
6623 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6625 default:
6626 break;
6629 /* If we have an rtx, we do not need to scan our operands. */
6630 if (exp_rtl)
6631 break;
6633 nops = TREE_OPERAND_LENGTH (exp);
6634 for (i = 0; i < nops; i++)
6635 if (TREE_OPERAND (exp, i) != 0
6636 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6637 return 0;
6639 break;
6641 case tcc_type:
6642 /* Should never get a type here. */
6643 gcc_unreachable ();
6646 /* If we have an rtl, find any enclosed object. Then see if we conflict
6647 with it. */
6648 if (exp_rtl)
6650 if (GET_CODE (exp_rtl) == SUBREG)
6652 exp_rtl = SUBREG_REG (exp_rtl);
6653 if (REG_P (exp_rtl)
6654 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6655 return 0;
6658 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6659 are memory and they conflict. */
6660 return ! (rtx_equal_p (x, exp_rtl)
6661 || (MEM_P (x) && MEM_P (exp_rtl)
6662 && true_dependence (exp_rtl, VOIDmode, x,
6663 rtx_addr_varies_p)));
6666 /* If we reach here, it is safe. */
6667 return 1;
6671 /* Return the highest power of two that EXP is known to be a multiple of.
6672 This is used in updating alignment of MEMs in array references. */
6674 unsigned HOST_WIDE_INT
6675 highest_pow2_factor (const_tree exp)
6677 unsigned HOST_WIDE_INT c0, c1;
6679 switch (TREE_CODE (exp))
6681 case INTEGER_CST:
6682 /* We can find the lowest bit that's a one. If the low
6683 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6684 We need to handle this case since we can find it in a COND_EXPR,
6685 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6686 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6687 later ICE. */
6688 if (TREE_OVERFLOW (exp))
6689 return BIGGEST_ALIGNMENT;
6690 else
6692 /* Note: tree_low_cst is intentionally not used here,
6693 we don't care about the upper bits. */
6694 c0 = TREE_INT_CST_LOW (exp);
6695 c0 &= -c0;
6696 return c0 ? c0 : BIGGEST_ALIGNMENT;
6698 break;
6700 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6701 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6702 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6703 return MIN (c0, c1);
6705 case MULT_EXPR:
6706 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6707 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6708 return c0 * c1;
6710 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6711 case CEIL_DIV_EXPR:
6712 if (integer_pow2p (TREE_OPERAND (exp, 1))
6713 && host_integerp (TREE_OPERAND (exp, 1), 1))
6715 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6716 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6717 return MAX (1, c0 / c1);
6719 break;
6721 case BIT_AND_EXPR:
6722 /* The highest power of two of a bit-and expression is the maximum of
6723 that of its operands. We typically get here for a complex LHS and
6724 a constant negative power of two on the RHS to force an explicit
6725 alignment, so don't bother looking at the LHS. */
6726 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6728 CASE_CONVERT:
6729 case SAVE_EXPR:
6730 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6732 case COMPOUND_EXPR:
6733 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6735 case COND_EXPR:
6736 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6737 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6738 return MIN (c0, c1);
6740 default:
6741 break;
6744 return 1;
6747 /* Similar, except that the alignment requirements of TARGET are
6748 taken into account. Assume it is at least as aligned as its
6749 type, unless it is a COMPONENT_REF in which case the layout of
6750 the structure gives the alignment. */
6752 static unsigned HOST_WIDE_INT
6753 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6755 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6756 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6758 return MAX (factor, talign);
6761 /* Return &VAR expression for emulated thread local VAR. */
6763 static tree
6764 emutls_var_address (tree var)
6766 tree emuvar = emutls_decl (var);
6767 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6768 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6769 tree arglist = build_tree_list (NULL_TREE, arg);
6770 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6771 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6775 /* Subroutine of expand_expr. Expand the two operands of a binary
6776 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6777 The value may be stored in TARGET if TARGET is nonzero. The
6778 MODIFIER argument is as documented by expand_expr. */
6780 static void
6781 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6782 enum expand_modifier modifier)
6784 if (! safe_from_p (target, exp1, 1))
6785 target = 0;
6786 if (operand_equal_p (exp0, exp1, 0))
6788 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6789 *op1 = copy_rtx (*op0);
6791 else
6793 /* If we need to preserve evaluation order, copy exp0 into its own
6794 temporary variable so that it can't be clobbered by exp1. */
6795 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6796 exp0 = save_expr (exp0);
6797 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6798 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6803 /* Return a MEM that contains constant EXP. DEFER is as for
6804 output_constant_def and MODIFIER is as for expand_expr. */
6806 static rtx
6807 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6809 rtx mem;
6811 mem = output_constant_def (exp, defer);
6812 if (modifier != EXPAND_INITIALIZER)
6813 mem = use_anchored_address (mem);
6814 return mem;
6817 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6818 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6820 static rtx
6821 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6822 enum expand_modifier modifier, addr_space_t as)
6824 rtx result, subtarget;
6825 tree inner, offset;
6826 HOST_WIDE_INT bitsize, bitpos;
6827 int volatilep, unsignedp;
6828 enum machine_mode mode1;
6830 /* If we are taking the address of a constant and are at the top level,
6831 we have to use output_constant_def since we can't call force_const_mem
6832 at top level. */
6833 /* ??? This should be considered a front-end bug. We should not be
6834 generating ADDR_EXPR of something that isn't an LVALUE. The only
6835 exception here is STRING_CST. */
6836 if (CONSTANT_CLASS_P (exp))
6837 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6839 /* Everything must be something allowed by is_gimple_addressable. */
6840 switch (TREE_CODE (exp))
6842 case INDIRECT_REF:
6843 /* This case will happen via recursion for &a->b. */
6844 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6846 case CONST_DECL:
6847 /* Expand the initializer like constants above. */
6848 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6850 case REALPART_EXPR:
6851 /* The real part of the complex number is always first, therefore
6852 the address is the same as the address of the parent object. */
6853 offset = 0;
6854 bitpos = 0;
6855 inner = TREE_OPERAND (exp, 0);
6856 break;
6858 case IMAGPART_EXPR:
6859 /* The imaginary part of the complex number is always second.
6860 The expression is therefore always offset by the size of the
6861 scalar type. */
6862 offset = 0;
6863 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6864 inner = TREE_OPERAND (exp, 0);
6865 break;
6867 case VAR_DECL:
6868 /* TLS emulation hook - replace __thread VAR's &VAR with
6869 __emutls_get_address (&_emutls.VAR). */
6870 if (! targetm.have_tls
6871 && TREE_CODE (exp) == VAR_DECL
6872 && DECL_THREAD_LOCAL_P (exp))
6874 exp = emutls_var_address (exp);
6875 return expand_expr (exp, target, tmode, modifier);
6877 /* Fall through. */
6879 default:
6880 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6881 expand_expr, as that can have various side effects; LABEL_DECLs for
6882 example, may not have their DECL_RTL set yet. Expand the rtl of
6883 CONSTRUCTORs too, which should yield a memory reference for the
6884 constructor's contents. Assume language specific tree nodes can
6885 be expanded in some interesting way. */
6886 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6887 if (DECL_P (exp)
6888 || TREE_CODE (exp) == CONSTRUCTOR
6889 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6891 result = expand_expr (exp, target, tmode,
6892 modifier == EXPAND_INITIALIZER
6893 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6895 /* If the DECL isn't in memory, then the DECL wasn't properly
6896 marked TREE_ADDRESSABLE, which will be either a front-end
6897 or a tree optimizer bug. */
6898 gcc_assert (MEM_P (result));
6899 result = XEXP (result, 0);
6901 /* ??? Is this needed anymore? */
6902 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6904 assemble_external (exp);
6905 TREE_USED (exp) = 1;
6908 if (modifier != EXPAND_INITIALIZER
6909 && modifier != EXPAND_CONST_ADDRESS)
6910 result = force_operand (result, target);
6911 return result;
6914 /* Pass FALSE as the last argument to get_inner_reference although
6915 we are expanding to RTL. The rationale is that we know how to
6916 handle "aligning nodes" here: we can just bypass them because
6917 they won't change the final object whose address will be returned
6918 (they actually exist only for that purpose). */
6919 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6920 &mode1, &unsignedp, &volatilep, false);
6921 break;
6924 /* We must have made progress. */
6925 gcc_assert (inner != exp);
6927 subtarget = offset || bitpos ? NULL_RTX : target;
6928 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6929 inner alignment, force the inner to be sufficiently aligned. */
6930 if (CONSTANT_CLASS_P (inner)
6931 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6933 inner = copy_node (inner);
6934 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6935 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6936 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6938 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6940 if (offset)
6942 rtx tmp;
6944 if (modifier != EXPAND_NORMAL)
6945 result = force_operand (result, NULL);
6946 tmp = expand_expr (offset, NULL_RTX, tmode,
6947 modifier == EXPAND_INITIALIZER
6948 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6950 result = convert_memory_address_addr_space (tmode, result, as);
6951 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6953 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6954 result = gen_rtx_PLUS (tmode, result, tmp);
6955 else
6957 subtarget = bitpos ? NULL_RTX : target;
6958 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6959 1, OPTAB_LIB_WIDEN);
6963 if (bitpos)
6965 /* Someone beforehand should have rejected taking the address
6966 of such an object. */
6967 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6969 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6970 if (modifier < EXPAND_SUM)
6971 result = force_operand (result, target);
6974 return result;
6977 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6978 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6980 static rtx
6981 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6982 enum expand_modifier modifier)
6984 addr_space_t as = ADDR_SPACE_GENERIC;
6985 enum machine_mode address_mode = Pmode;
6986 enum machine_mode pointer_mode = ptr_mode;
6987 enum machine_mode rmode;
6988 rtx result;
6990 /* Target mode of VOIDmode says "whatever's natural". */
6991 if (tmode == VOIDmode)
6992 tmode = TYPE_MODE (TREE_TYPE (exp));
6994 if (POINTER_TYPE_P (TREE_TYPE (exp)))
6996 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
6997 address_mode = targetm.addr_space.address_mode (as);
6998 pointer_mode = targetm.addr_space.pointer_mode (as);
7001 /* We can get called with some Weird Things if the user does silliness
7002 like "(short) &a". In that case, convert_memory_address won't do
7003 the right thing, so ignore the given target mode. */
7004 if (tmode != address_mode && tmode != pointer_mode)
7005 tmode = address_mode;
7007 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7008 tmode, modifier, as);
7010 /* Despite expand_expr claims concerning ignoring TMODE when not
7011 strictly convenient, stuff breaks if we don't honor it. Note
7012 that combined with the above, we only do this for pointer modes. */
7013 rmode = GET_MODE (result);
7014 if (rmode == VOIDmode)
7015 rmode = tmode;
7016 if (rmode != tmode)
7017 result = convert_memory_address_addr_space (tmode, result, as);
7019 return result;
7022 /* Generate code for computing CONSTRUCTOR EXP.
7023 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7024 is TRUE, instead of creating a temporary variable in memory
7025 NULL is returned and the caller needs to handle it differently. */
7027 static rtx
7028 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7029 bool avoid_temp_mem)
7031 tree type = TREE_TYPE (exp);
7032 enum machine_mode mode = TYPE_MODE (type);
7034 /* Try to avoid creating a temporary at all. This is possible
7035 if all of the initializer is zero.
7036 FIXME: try to handle all [0..255] initializers we can handle
7037 with memset. */
7038 if (TREE_STATIC (exp)
7039 && !TREE_ADDRESSABLE (exp)
7040 && target != 0 && mode == BLKmode
7041 && all_zeros_p (exp))
7043 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7044 return target;
7047 /* All elts simple constants => refer to a constant in memory. But
7048 if this is a non-BLKmode mode, let it store a field at a time
7049 since that should make a CONST_INT or CONST_DOUBLE when we
7050 fold. Likewise, if we have a target we can use, it is best to
7051 store directly into the target unless the type is large enough
7052 that memcpy will be used. If we are making an initializer and
7053 all operands are constant, put it in memory as well.
7055 FIXME: Avoid trying to fill vector constructors piece-meal.
7056 Output them with output_constant_def below unless we're sure
7057 they're zeros. This should go away when vector initializers
7058 are treated like VECTOR_CST instead of arrays. */
7059 if ((TREE_STATIC (exp)
7060 && ((mode == BLKmode
7061 && ! (target != 0 && safe_from_p (target, exp, 1)))
7062 || TREE_ADDRESSABLE (exp)
7063 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7064 && (! MOVE_BY_PIECES_P
7065 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7066 TYPE_ALIGN (type)))
7067 && ! mostly_zeros_p (exp))))
7068 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7069 && TREE_CONSTANT (exp)))
7071 rtx constructor;
7073 if (avoid_temp_mem)
7074 return NULL_RTX;
7076 constructor = expand_expr_constant (exp, 1, modifier);
7078 if (modifier != EXPAND_CONST_ADDRESS
7079 && modifier != EXPAND_INITIALIZER
7080 && modifier != EXPAND_SUM)
7081 constructor = validize_mem (constructor);
7083 return constructor;
7086 /* Handle calls that pass values in multiple non-contiguous
7087 locations. The Irix 6 ABI has examples of this. */
7088 if (target == 0 || ! safe_from_p (target, exp, 1)
7089 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7091 if (avoid_temp_mem)
7092 return NULL_RTX;
7094 target
7095 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7096 | (TREE_READONLY (exp)
7097 * TYPE_QUAL_CONST))),
7098 0, TREE_ADDRESSABLE (exp), 1);
7101 store_constructor (exp, target, 0, int_expr_size (exp));
7102 return target;
7106 /* expand_expr: generate code for computing expression EXP.
7107 An rtx for the computed value is returned. The value is never null.
7108 In the case of a void EXP, const0_rtx is returned.
7110 The value may be stored in TARGET if TARGET is nonzero.
7111 TARGET is just a suggestion; callers must assume that
7112 the rtx returned may not be the same as TARGET.
7114 If TARGET is CONST0_RTX, it means that the value will be ignored.
7116 If TMODE is not VOIDmode, it suggests generating the
7117 result in mode TMODE. But this is done only when convenient.
7118 Otherwise, TMODE is ignored and the value generated in its natural mode.
7119 TMODE is just a suggestion; callers must assume that
7120 the rtx returned may not have mode TMODE.
7122 Note that TARGET may have neither TMODE nor MODE. In that case, it
7123 probably will not be used.
7125 If MODIFIER is EXPAND_SUM then when EXP is an addition
7126 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7127 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7128 products as above, or REG or MEM, or constant.
7129 Ordinarily in such cases we would output mul or add instructions
7130 and then return a pseudo reg containing the sum.
7132 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7133 it also marks a label as absolutely required (it can't be dead).
7134 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7135 This is used for outputting expressions used in initializers.
7137 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7138 with a constant address even if that address is not normally legitimate.
7139 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7141 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7142 a call parameter. Such targets require special care as we haven't yet
7143 marked TARGET so that it's safe from being trashed by libcalls. We
7144 don't want to use TARGET for anything but the final result;
7145 Intermediate values must go elsewhere. Additionally, calls to
7146 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7148 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7149 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7150 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7151 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7152 recursively. */
7155 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7156 enum expand_modifier modifier, rtx *alt_rtl)
7158 rtx ret;
7160 /* Handle ERROR_MARK before anybody tries to access its type. */
7161 if (TREE_CODE (exp) == ERROR_MARK
7162 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7164 ret = CONST0_RTX (tmode);
7165 return ret ? ret : const0_rtx;
7168 /* If this is an expression of some kind and it has an associated line
7169 number, then emit the line number before expanding the expression.
7171 We need to save and restore the file and line information so that
7172 errors discovered during expansion are emitted with the right
7173 information. It would be better of the diagnostic routines
7174 used the file/line information embedded in the tree nodes rather
7175 than globals. */
7176 if (cfun && EXPR_HAS_LOCATION (exp))
7178 location_t saved_location = input_location;
7179 location_t saved_curr_loc = get_curr_insn_source_location ();
7180 tree saved_block = get_curr_insn_block ();
7181 input_location = EXPR_LOCATION (exp);
7182 set_curr_insn_source_location (input_location);
7184 /* Record where the insns produced belong. */
7185 set_curr_insn_block (TREE_BLOCK (exp));
7187 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7189 input_location = saved_location;
7190 set_curr_insn_block (saved_block);
7191 set_curr_insn_source_location (saved_curr_loc);
7193 else
7195 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7198 return ret;
7202 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7203 enum expand_modifier modifier)
7205 rtx op0, op1, op2, temp;
7206 tree type;
7207 int unsignedp;
7208 enum machine_mode mode;
7209 enum tree_code code = ops->code;
7210 optab this_optab;
7211 rtx subtarget, original_target;
7212 int ignore;
7213 bool reduce_bit_field;
7214 gimple subexp0_def, subexp1_def;
7215 tree top0, top1;
7216 location_t loc = ops->location;
7217 tree treeop0, treeop1;
7218 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7219 ? reduce_to_bit_field_precision ((expr), \
7220 target, \
7221 type) \
7222 : (expr))
7224 type = ops->type;
7225 mode = TYPE_MODE (type);
7226 unsignedp = TYPE_UNSIGNED (type);
7228 treeop0 = ops->op0;
7229 treeop1 = ops->op1;
7231 /* We should be called only on simple (binary or unary) expressions,
7232 exactly those that are valid in gimple expressions that aren't
7233 GIMPLE_SINGLE_RHS (or invalid). */
7234 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7235 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS);
7237 ignore = (target == const0_rtx
7238 || ((CONVERT_EXPR_CODE_P (code)
7239 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7240 && TREE_CODE (type) == VOID_TYPE));
7242 /* We should be called only if we need the result. */
7243 gcc_assert (!ignore);
7245 /* An operation in what may be a bit-field type needs the
7246 result to be reduced to the precision of the bit-field type,
7247 which is narrower than that of the type's mode. */
7248 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7249 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7251 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7252 target = 0;
7254 /* Use subtarget as the target for operand 0 of a binary operation. */
7255 subtarget = get_subtarget (target);
7256 original_target = target;
7258 switch (code)
7260 case NON_LVALUE_EXPR:
7261 case PAREN_EXPR:
7262 CASE_CONVERT:
7263 if (treeop0 == error_mark_node)
7264 return const0_rtx;
7266 if (TREE_CODE (type) == UNION_TYPE)
7268 tree valtype = TREE_TYPE (treeop0);
7270 /* If both input and output are BLKmode, this conversion isn't doing
7271 anything except possibly changing memory attribute. */
7272 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7274 rtx result = expand_expr (treeop0, target, tmode,
7275 modifier);
7277 result = copy_rtx (result);
7278 set_mem_attributes (result, type, 0);
7279 return result;
7282 if (target == 0)
7284 if (TYPE_MODE (type) != BLKmode)
7285 target = gen_reg_rtx (TYPE_MODE (type));
7286 else
7287 target = assign_temp (type, 0, 1, 1);
7290 if (MEM_P (target))
7291 /* Store data into beginning of memory target. */
7292 store_expr (treeop0,
7293 adjust_address (target, TYPE_MODE (valtype), 0),
7294 modifier == EXPAND_STACK_PARM,
7295 false);
7297 else
7299 gcc_assert (REG_P (target));
7301 /* Store this field into a union of the proper type. */
7302 store_field (target,
7303 MIN ((int_size_in_bytes (TREE_TYPE
7304 (treeop0))
7305 * BITS_PER_UNIT),
7306 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7307 0, TYPE_MODE (valtype), treeop0,
7308 type, 0, false);
7311 /* Return the entire union. */
7312 return target;
7315 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7317 op0 = expand_expr (treeop0, target, VOIDmode,
7318 modifier);
7320 /* If the signedness of the conversion differs and OP0 is
7321 a promoted SUBREG, clear that indication since we now
7322 have to do the proper extension. */
7323 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7324 && GET_CODE (op0) == SUBREG)
7325 SUBREG_PROMOTED_VAR_P (op0) = 0;
7327 return REDUCE_BIT_FIELD (op0);
7330 op0 = expand_expr (treeop0, NULL_RTX, mode,
7331 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7332 if (GET_MODE (op0) == mode)
7335 /* If OP0 is a constant, just convert it into the proper mode. */
7336 else if (CONSTANT_P (op0))
7338 tree inner_type = TREE_TYPE (treeop0);
7339 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7341 if (modifier == EXPAND_INITIALIZER)
7342 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7343 subreg_lowpart_offset (mode,
7344 inner_mode));
7345 else
7346 op0= convert_modes (mode, inner_mode, op0,
7347 TYPE_UNSIGNED (inner_type));
7350 else if (modifier == EXPAND_INITIALIZER)
7351 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7353 else if (target == 0)
7354 op0 = convert_to_mode (mode, op0,
7355 TYPE_UNSIGNED (TREE_TYPE
7356 (treeop0)));
7357 else
7359 convert_move (target, op0,
7360 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7361 op0 = target;
7364 return REDUCE_BIT_FIELD (op0);
7366 case ADDR_SPACE_CONVERT_EXPR:
7368 tree treeop0_type = TREE_TYPE (treeop0);
7369 addr_space_t as_to;
7370 addr_space_t as_from;
7372 gcc_assert (POINTER_TYPE_P (type));
7373 gcc_assert (POINTER_TYPE_P (treeop0_type));
7375 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7376 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7378 /* Conversions between pointers to the same address space should
7379 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7380 gcc_assert (as_to != as_from);
7382 /* Ask target code to handle conversion between pointers
7383 to overlapping address spaces. */
7384 if (targetm.addr_space.subset_p (as_to, as_from)
7385 || targetm.addr_space.subset_p (as_from, as_to))
7387 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7388 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7389 gcc_assert (op0);
7390 return op0;
7393 /* For disjoint address spaces, converting anything but
7394 a null pointer invokes undefined behaviour. We simply
7395 always return a null pointer here. */
7396 return CONST0_RTX (mode);
7399 case POINTER_PLUS_EXPR:
7400 /* Even though the sizetype mode and the pointer's mode can be different
7401 expand is able to handle this correctly and get the correct result out
7402 of the PLUS_EXPR code. */
7403 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7404 if sizetype precision is smaller than pointer precision. */
7405 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7406 treeop1 = fold_convert_loc (loc, type,
7407 fold_convert_loc (loc, ssizetype,
7408 treeop1));
7409 case PLUS_EXPR:
7411 /* Check if this is a case for multiplication and addition. */
7412 if ((TREE_CODE (type) == INTEGER_TYPE
7413 || TREE_CODE (type) == FIXED_POINT_TYPE)
7414 && (subexp0_def = get_def_for_expr (treeop0,
7415 MULT_EXPR)))
7417 tree subsubexp0, subsubexp1;
7418 gimple subsubexp0_def, subsubexp1_def;
7419 enum tree_code this_code;
7421 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7422 : FIXED_CONVERT_EXPR;
7423 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
7424 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7425 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
7426 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7427 if (subsubexp0_def && subsubexp1_def
7428 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7429 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7430 && (TYPE_PRECISION (TREE_TYPE (top0))
7431 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7432 && (TYPE_PRECISION (TREE_TYPE (top0))
7433 == TYPE_PRECISION (TREE_TYPE (top1)))
7434 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7435 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7437 tree op0type = TREE_TYPE (top0);
7438 enum machine_mode innermode = TYPE_MODE (op0type);
7439 bool zextend_p = TYPE_UNSIGNED (op0type);
7440 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7441 if (sat_p == 0)
7442 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
7443 else
7444 this_optab = zextend_p ? usmadd_widen_optab
7445 : ssmadd_widen_optab;
7446 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7447 && (optab_handler (this_optab, mode)->insn_code
7448 != CODE_FOR_nothing))
7450 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7451 EXPAND_NORMAL);
7452 op2 = expand_expr (treeop1, subtarget,
7453 VOIDmode, EXPAND_NORMAL);
7454 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7455 target, unsignedp);
7456 gcc_assert (temp);
7457 return REDUCE_BIT_FIELD (temp);
7462 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7463 something else, make sure we add the register to the constant and
7464 then to the other thing. This case can occur during strength
7465 reduction and doing it this way will produce better code if the
7466 frame pointer or argument pointer is eliminated.
7468 fold-const.c will ensure that the constant is always in the inner
7469 PLUS_EXPR, so the only case we need to do anything about is if
7470 sp, ap, or fp is our second argument, in which case we must swap
7471 the innermost first argument and our second argument. */
7473 if (TREE_CODE (treeop0) == PLUS_EXPR
7474 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7475 && TREE_CODE (treeop1) == VAR_DECL
7476 && (DECL_RTL (treeop1) == frame_pointer_rtx
7477 || DECL_RTL (treeop1) == stack_pointer_rtx
7478 || DECL_RTL (treeop1) == arg_pointer_rtx))
7480 tree t = treeop1;
7482 treeop1 = TREE_OPERAND (treeop0, 0);
7483 TREE_OPERAND (treeop0, 0) = t;
7486 /* If the result is to be ptr_mode and we are adding an integer to
7487 something, we might be forming a constant. So try to use
7488 plus_constant. If it produces a sum and we can't accept it,
7489 use force_operand. This allows P = &ARR[const] to generate
7490 efficient code on machines where a SYMBOL_REF is not a valid
7491 address.
7493 If this is an EXPAND_SUM call, always return the sum. */
7494 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7495 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7497 if (modifier == EXPAND_STACK_PARM)
7498 target = 0;
7499 if (TREE_CODE (treeop0) == INTEGER_CST
7500 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7501 && TREE_CONSTANT (treeop1))
7503 rtx constant_part;
7505 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7506 EXPAND_SUM);
7507 /* Use immed_double_const to ensure that the constant is
7508 truncated according to the mode of OP1, then sign extended
7509 to a HOST_WIDE_INT. Using the constant directly can result
7510 in non-canonical RTL in a 64x32 cross compile. */
7511 constant_part
7512 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7513 (HOST_WIDE_INT) 0,
7514 TYPE_MODE (TREE_TYPE (treeop1)));
7515 op1 = plus_constant (op1, INTVAL (constant_part));
7516 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7517 op1 = force_operand (op1, target);
7518 return REDUCE_BIT_FIELD (op1);
7521 else if (TREE_CODE (treeop1) == INTEGER_CST
7522 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7523 && TREE_CONSTANT (treeop0))
7525 rtx constant_part;
7527 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7528 (modifier == EXPAND_INITIALIZER
7529 ? EXPAND_INITIALIZER : EXPAND_SUM));
7530 if (! CONSTANT_P (op0))
7532 op1 = expand_expr (treeop1, NULL_RTX,
7533 VOIDmode, modifier);
7534 /* Return a PLUS if modifier says it's OK. */
7535 if (modifier == EXPAND_SUM
7536 || modifier == EXPAND_INITIALIZER)
7537 return simplify_gen_binary (PLUS, mode, op0, op1);
7538 goto binop2;
7540 /* Use immed_double_const to ensure that the constant is
7541 truncated according to the mode of OP1, then sign extended
7542 to a HOST_WIDE_INT. Using the constant directly can result
7543 in non-canonical RTL in a 64x32 cross compile. */
7544 constant_part
7545 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7546 (HOST_WIDE_INT) 0,
7547 TYPE_MODE (TREE_TYPE (treeop0)));
7548 op0 = plus_constant (op0, INTVAL (constant_part));
7549 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7550 op0 = force_operand (op0, target);
7551 return REDUCE_BIT_FIELD (op0);
7555 /* No sense saving up arithmetic to be done
7556 if it's all in the wrong mode to form part of an address.
7557 And force_operand won't know whether to sign-extend or
7558 zero-extend. */
7559 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7560 || mode != ptr_mode)
7562 expand_operands (treeop0, treeop1,
7563 subtarget, &op0, &op1, EXPAND_NORMAL);
7564 if (op0 == const0_rtx)
7565 return op1;
7566 if (op1 == const0_rtx)
7567 return op0;
7568 goto binop2;
7571 expand_operands (treeop0, treeop1,
7572 subtarget, &op0, &op1, modifier);
7573 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7575 case MINUS_EXPR:
7576 /* Check if this is a case for multiplication and subtraction. */
7577 if ((TREE_CODE (type) == INTEGER_TYPE
7578 || TREE_CODE (type) == FIXED_POINT_TYPE)
7579 && (subexp1_def = get_def_for_expr (treeop1,
7580 MULT_EXPR)))
7582 tree subsubexp0, subsubexp1;
7583 gimple subsubexp0_def, subsubexp1_def;
7584 enum tree_code this_code;
7586 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7587 : FIXED_CONVERT_EXPR;
7588 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
7589 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7590 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
7591 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7592 if (subsubexp0_def && subsubexp1_def
7593 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7594 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7595 && (TYPE_PRECISION (TREE_TYPE (top0))
7596 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7597 && (TYPE_PRECISION (TREE_TYPE (top0))
7598 == TYPE_PRECISION (TREE_TYPE (top1)))
7599 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7600 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7602 tree op0type = TREE_TYPE (top0);
7603 enum machine_mode innermode = TYPE_MODE (op0type);
7604 bool zextend_p = TYPE_UNSIGNED (op0type);
7605 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7606 if (sat_p == 0)
7607 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
7608 else
7609 this_optab = zextend_p ? usmsub_widen_optab
7610 : ssmsub_widen_optab;
7611 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7612 && (optab_handler (this_optab, mode)->insn_code
7613 != CODE_FOR_nothing))
7615 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7616 EXPAND_NORMAL);
7617 op2 = expand_expr (treeop0, subtarget,
7618 VOIDmode, EXPAND_NORMAL);
7619 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7620 target, unsignedp);
7621 gcc_assert (temp);
7622 return REDUCE_BIT_FIELD (temp);
7627 /* For initializers, we are allowed to return a MINUS of two
7628 symbolic constants. Here we handle all cases when both operands
7629 are constant. */
7630 /* Handle difference of two symbolic constants,
7631 for the sake of an initializer. */
7632 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7633 && really_constant_p (treeop0)
7634 && really_constant_p (treeop1))
7636 expand_operands (treeop0, treeop1,
7637 NULL_RTX, &op0, &op1, modifier);
7639 /* If the last operand is a CONST_INT, use plus_constant of
7640 the negated constant. Else make the MINUS. */
7641 if (CONST_INT_P (op1))
7642 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7643 else
7644 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7647 /* No sense saving up arithmetic to be done
7648 if it's all in the wrong mode to form part of an address.
7649 And force_operand won't know whether to sign-extend or
7650 zero-extend. */
7651 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7652 || mode != ptr_mode)
7653 goto binop;
7655 expand_operands (treeop0, treeop1,
7656 subtarget, &op0, &op1, modifier);
7658 /* Convert A - const to A + (-const). */
7659 if (CONST_INT_P (op1))
7661 op1 = negate_rtx (mode, op1);
7662 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7665 goto binop2;
7667 case WIDEN_MULT_EXPR:
7668 /* If first operand is constant, swap them.
7669 Thus the following special case checks need only
7670 check the second operand. */
7671 if (TREE_CODE (treeop0) == INTEGER_CST)
7673 tree t1 = treeop0;
7674 treeop0 = treeop1;
7675 treeop1 = t1;
7678 /* First, check if we have a multiplication of one signed and one
7679 unsigned operand. */
7680 if (TREE_CODE (treeop1) != INTEGER_CST
7681 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7682 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7684 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7685 this_optab = usmul_widen_optab;
7686 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7688 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7690 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7691 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7692 EXPAND_NORMAL);
7693 else
7694 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7695 EXPAND_NORMAL);
7696 goto binop3;
7700 /* Check for a multiplication with matching signedness. */
7701 else if ((TREE_CODE (treeop1) == INTEGER_CST
7702 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7703 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7704 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7706 tree op0type = TREE_TYPE (treeop0);
7707 enum machine_mode innermode = TYPE_MODE (op0type);
7708 bool zextend_p = TYPE_UNSIGNED (op0type);
7709 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7710 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7712 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7714 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7716 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7717 EXPAND_NORMAL);
7718 temp = expand_widening_mult (mode, op0, op1, target,
7719 unsignedp, this_optab);
7720 return REDUCE_BIT_FIELD (temp);
7722 if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7723 && innermode == word_mode)
7725 rtx htem, hipart;
7726 op0 = expand_normal (treeop0);
7727 if (TREE_CODE (treeop1) == INTEGER_CST)
7728 op1 = convert_modes (innermode, mode,
7729 expand_normal (treeop1), unsignedp);
7730 else
7731 op1 = expand_normal (treeop1);
7732 temp = expand_binop (mode, other_optab, op0, op1, target,
7733 unsignedp, OPTAB_LIB_WIDEN);
7734 hipart = gen_highpart (innermode, temp);
7735 htem = expand_mult_highpart_adjust (innermode, hipart,
7736 op0, op1, hipart,
7737 zextend_p);
7738 if (htem != hipart)
7739 emit_move_insn (hipart, htem);
7740 return REDUCE_BIT_FIELD (temp);
7744 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7745 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7746 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7747 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7749 case MULT_EXPR:
7750 /* If this is a fixed-point operation, then we cannot use the code
7751 below because "expand_mult" doesn't support sat/no-sat fixed-point
7752 multiplications. */
7753 if (ALL_FIXED_POINT_MODE_P (mode))
7754 goto binop;
7756 /* If first operand is constant, swap them.
7757 Thus the following special case checks need only
7758 check the second operand. */
7759 if (TREE_CODE (treeop0) == INTEGER_CST)
7761 tree t1 = treeop0;
7762 treeop0 = treeop1;
7763 treeop1 = t1;
7766 /* Attempt to return something suitable for generating an
7767 indexed address, for machines that support that. */
7769 if (modifier == EXPAND_SUM && mode == ptr_mode
7770 && host_integerp (treeop1, 0))
7772 tree exp1 = treeop1;
7774 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7775 EXPAND_SUM);
7777 if (!REG_P (op0))
7778 op0 = force_operand (op0, NULL_RTX);
7779 if (!REG_P (op0))
7780 op0 = copy_to_mode_reg (mode, op0);
7782 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7783 gen_int_mode (tree_low_cst (exp1, 0),
7784 TYPE_MODE (TREE_TYPE (exp1)))));
7787 if (modifier == EXPAND_STACK_PARM)
7788 target = 0;
7790 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7791 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7793 case TRUNC_DIV_EXPR:
7794 case FLOOR_DIV_EXPR:
7795 case CEIL_DIV_EXPR:
7796 case ROUND_DIV_EXPR:
7797 case EXACT_DIV_EXPR:
7798 /* If this is a fixed-point operation, then we cannot use the code
7799 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7800 divisions. */
7801 if (ALL_FIXED_POINT_MODE_P (mode))
7802 goto binop;
7804 if (modifier == EXPAND_STACK_PARM)
7805 target = 0;
7806 /* Possible optimization: compute the dividend with EXPAND_SUM
7807 then if the divisor is constant can optimize the case
7808 where some terms of the dividend have coeffs divisible by it. */
7809 expand_operands (treeop0, treeop1,
7810 subtarget, &op0, &op1, EXPAND_NORMAL);
7811 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7813 case RDIV_EXPR:
7814 goto binop;
7816 case TRUNC_MOD_EXPR:
7817 case FLOOR_MOD_EXPR:
7818 case CEIL_MOD_EXPR:
7819 case ROUND_MOD_EXPR:
7820 if (modifier == EXPAND_STACK_PARM)
7821 target = 0;
7822 expand_operands (treeop0, treeop1,
7823 subtarget, &op0, &op1, EXPAND_NORMAL);
7824 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7826 case FIXED_CONVERT_EXPR:
7827 op0 = expand_normal (treeop0);
7828 if (target == 0 || modifier == EXPAND_STACK_PARM)
7829 target = gen_reg_rtx (mode);
7831 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7832 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7833 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7834 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7835 else
7836 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7837 return target;
7839 case FIX_TRUNC_EXPR:
7840 op0 = expand_normal (treeop0);
7841 if (target == 0 || modifier == EXPAND_STACK_PARM)
7842 target = gen_reg_rtx (mode);
7843 expand_fix (target, op0, unsignedp);
7844 return target;
7846 case FLOAT_EXPR:
7847 op0 = expand_normal (treeop0);
7848 if (target == 0 || modifier == EXPAND_STACK_PARM)
7849 target = gen_reg_rtx (mode);
7850 /* expand_float can't figure out what to do if FROM has VOIDmode.
7851 So give it the correct mode. With -O, cse will optimize this. */
7852 if (GET_MODE (op0) == VOIDmode)
7853 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7854 op0);
7855 expand_float (target, op0,
7856 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7857 return target;
7859 case NEGATE_EXPR:
7860 op0 = expand_expr (treeop0, subtarget,
7861 VOIDmode, EXPAND_NORMAL);
7862 if (modifier == EXPAND_STACK_PARM)
7863 target = 0;
7864 temp = expand_unop (mode,
7865 optab_for_tree_code (NEGATE_EXPR, type,
7866 optab_default),
7867 op0, target, 0);
7868 gcc_assert (temp);
7869 return REDUCE_BIT_FIELD (temp);
7871 case ABS_EXPR:
7872 op0 = expand_expr (treeop0, subtarget,
7873 VOIDmode, EXPAND_NORMAL);
7874 if (modifier == EXPAND_STACK_PARM)
7875 target = 0;
7877 /* ABS_EXPR is not valid for complex arguments. */
7878 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7879 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7881 /* Unsigned abs is simply the operand. Testing here means we don't
7882 risk generating incorrect code below. */
7883 if (TYPE_UNSIGNED (type))
7884 return op0;
7886 return expand_abs (mode, op0, target, unsignedp,
7887 safe_from_p (target, treeop0, 1));
7889 case MAX_EXPR:
7890 case MIN_EXPR:
7891 target = original_target;
7892 if (target == 0
7893 || modifier == EXPAND_STACK_PARM
7894 || (MEM_P (target) && MEM_VOLATILE_P (target))
7895 || GET_MODE (target) != mode
7896 || (REG_P (target)
7897 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7898 target = gen_reg_rtx (mode);
7899 expand_operands (treeop0, treeop1,
7900 target, &op0, &op1, EXPAND_NORMAL);
7902 /* First try to do it with a special MIN or MAX instruction.
7903 If that does not win, use a conditional jump to select the proper
7904 value. */
7905 this_optab = optab_for_tree_code (code, type, optab_default);
7906 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7907 OPTAB_WIDEN);
7908 if (temp != 0)
7909 return temp;
7911 /* At this point, a MEM target is no longer useful; we will get better
7912 code without it. */
7914 if (! REG_P (target))
7915 target = gen_reg_rtx (mode);
7917 /* If op1 was placed in target, swap op0 and op1. */
7918 if (target != op0 && target == op1)
7920 temp = op0;
7921 op0 = op1;
7922 op1 = temp;
7925 /* We generate better code and avoid problems with op1 mentioning
7926 target by forcing op1 into a pseudo if it isn't a constant. */
7927 if (! CONSTANT_P (op1))
7928 op1 = force_reg (mode, op1);
7931 enum rtx_code comparison_code;
7932 rtx cmpop1 = op1;
7934 if (code == MAX_EXPR)
7935 comparison_code = unsignedp ? GEU : GE;
7936 else
7937 comparison_code = unsignedp ? LEU : LE;
7939 /* Canonicalize to comparisons against 0. */
7940 if (op1 == const1_rtx)
7942 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7943 or (a != 0 ? a : 1) for unsigned.
7944 For MIN we are safe converting (a <= 1 ? a : 1)
7945 into (a <= 0 ? a : 1) */
7946 cmpop1 = const0_rtx;
7947 if (code == MAX_EXPR)
7948 comparison_code = unsignedp ? NE : GT;
7950 if (op1 == constm1_rtx && !unsignedp)
7952 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7953 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7954 cmpop1 = const0_rtx;
7955 if (code == MIN_EXPR)
7956 comparison_code = LT;
7958 #ifdef HAVE_conditional_move
7959 /* Use a conditional move if possible. */
7960 if (can_conditionally_move_p (mode))
7962 rtx insn;
7964 /* ??? Same problem as in expmed.c: emit_conditional_move
7965 forces a stack adjustment via compare_from_rtx, and we
7966 lose the stack adjustment if the sequence we are about
7967 to create is discarded. */
7968 do_pending_stack_adjust ();
7970 start_sequence ();
7972 /* Try to emit the conditional move. */
7973 insn = emit_conditional_move (target, comparison_code,
7974 op0, cmpop1, mode,
7975 op0, op1, mode,
7976 unsignedp);
7978 /* If we could do the conditional move, emit the sequence,
7979 and return. */
7980 if (insn)
7982 rtx seq = get_insns ();
7983 end_sequence ();
7984 emit_insn (seq);
7985 return target;
7988 /* Otherwise discard the sequence and fall back to code with
7989 branches. */
7990 end_sequence ();
7992 #endif
7993 if (target != op0)
7994 emit_move_insn (target, op0);
7996 temp = gen_label_rtx ();
7997 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7998 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7999 -1);
8001 emit_move_insn (target, op1);
8002 emit_label (temp);
8003 return target;
8005 case BIT_NOT_EXPR:
8006 op0 = expand_expr (treeop0, subtarget,
8007 VOIDmode, EXPAND_NORMAL);
8008 if (modifier == EXPAND_STACK_PARM)
8009 target = 0;
8010 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8011 gcc_assert (temp);
8012 return temp;
8014 /* ??? Can optimize bitwise operations with one arg constant.
8015 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8016 and (a bitwise1 b) bitwise2 b (etc)
8017 but that is probably not worth while. */
8019 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8020 boolean values when we want in all cases to compute both of them. In
8021 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8022 as actual zero-or-1 values and then bitwise anding. In cases where
8023 there cannot be any side effects, better code would be made by
8024 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8025 how to recognize those cases. */
8027 case TRUTH_AND_EXPR:
8028 code = BIT_AND_EXPR;
8029 case BIT_AND_EXPR:
8030 goto binop;
8032 case TRUTH_OR_EXPR:
8033 code = BIT_IOR_EXPR;
8034 case BIT_IOR_EXPR:
8035 goto binop;
8037 case TRUTH_XOR_EXPR:
8038 code = BIT_XOR_EXPR;
8039 case BIT_XOR_EXPR:
8040 goto binop;
8042 case LROTATE_EXPR:
8043 case RROTATE_EXPR:
8044 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8045 || (GET_MODE_PRECISION (TYPE_MODE (type))
8046 == TYPE_PRECISION (type)));
8047 /* fall through */
8049 case LSHIFT_EXPR:
8050 case RSHIFT_EXPR:
8051 /* If this is a fixed-point operation, then we cannot use the code
8052 below because "expand_shift" doesn't support sat/no-sat fixed-point
8053 shifts. */
8054 if (ALL_FIXED_POINT_MODE_P (mode))
8055 goto binop;
8057 if (! safe_from_p (subtarget, treeop1, 1))
8058 subtarget = 0;
8059 if (modifier == EXPAND_STACK_PARM)
8060 target = 0;
8061 op0 = expand_expr (treeop0, subtarget,
8062 VOIDmode, EXPAND_NORMAL);
8063 temp = expand_shift (code, mode, op0, treeop1, target,
8064 unsignedp);
8065 if (code == LSHIFT_EXPR)
8066 temp = REDUCE_BIT_FIELD (temp);
8067 return temp;
8069 /* Could determine the answer when only additive constants differ. Also,
8070 the addition of one can be handled by changing the condition. */
8071 case LT_EXPR:
8072 case LE_EXPR:
8073 case GT_EXPR:
8074 case GE_EXPR:
8075 case EQ_EXPR:
8076 case NE_EXPR:
8077 case UNORDERED_EXPR:
8078 case ORDERED_EXPR:
8079 case UNLT_EXPR:
8080 case UNLE_EXPR:
8081 case UNGT_EXPR:
8082 case UNGE_EXPR:
8083 case UNEQ_EXPR:
8084 case LTGT_EXPR:
8085 temp = do_store_flag (ops,
8086 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8087 tmode != VOIDmode ? tmode : mode);
8088 if (temp)
8089 return temp;
8091 /* Use a compare and a jump for BLKmode comparisons, or for function
8092 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8094 if ((target == 0
8095 || modifier == EXPAND_STACK_PARM
8096 || ! safe_from_p (target, treeop0, 1)
8097 || ! safe_from_p (target, treeop1, 1)
8098 /* Make sure we don't have a hard reg (such as function's return
8099 value) live across basic blocks, if not optimizing. */
8100 || (!optimize && REG_P (target)
8101 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8102 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8104 emit_move_insn (target, const0_rtx);
8106 op1 = gen_label_rtx ();
8107 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8109 emit_move_insn (target, const1_rtx);
8111 emit_label (op1);
8112 return target;
8114 case TRUTH_NOT_EXPR:
8115 if (modifier == EXPAND_STACK_PARM)
8116 target = 0;
8117 op0 = expand_expr (treeop0, target,
8118 VOIDmode, EXPAND_NORMAL);
8119 /* The parser is careful to generate TRUTH_NOT_EXPR
8120 only with operands that are always zero or one. */
8121 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8122 target, 1, OPTAB_LIB_WIDEN);
8123 gcc_assert (temp);
8124 return temp;
8126 case COMPLEX_EXPR:
8127 /* Get the rtx code of the operands. */
8128 op0 = expand_normal (treeop0);
8129 op1 = expand_normal (treeop1);
8131 if (!target)
8132 target = gen_reg_rtx (TYPE_MODE (type));
8134 /* Move the real (op0) and imaginary (op1) parts to their location. */
8135 write_complex_part (target, op0, false);
8136 write_complex_part (target, op1, true);
8138 return target;
8140 case WIDEN_SUM_EXPR:
8142 tree oprnd0 = treeop0;
8143 tree oprnd1 = treeop1;
8145 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8146 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8147 target, unsignedp);
8148 return target;
8151 case REDUC_MAX_EXPR:
8152 case REDUC_MIN_EXPR:
8153 case REDUC_PLUS_EXPR:
8155 op0 = expand_normal (treeop0);
8156 this_optab = optab_for_tree_code (code, type, optab_default);
8157 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8158 gcc_assert (temp);
8159 return temp;
8162 case VEC_EXTRACT_EVEN_EXPR:
8163 case VEC_EXTRACT_ODD_EXPR:
8165 expand_operands (treeop0, treeop1,
8166 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8167 this_optab = optab_for_tree_code (code, type, optab_default);
8168 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8169 OPTAB_WIDEN);
8170 gcc_assert (temp);
8171 return temp;
8174 case VEC_INTERLEAVE_HIGH_EXPR:
8175 case VEC_INTERLEAVE_LOW_EXPR:
8177 expand_operands (treeop0, treeop1,
8178 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8179 this_optab = optab_for_tree_code (code, type, optab_default);
8180 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8181 OPTAB_WIDEN);
8182 gcc_assert (temp);
8183 return temp;
8186 case VEC_LSHIFT_EXPR:
8187 case VEC_RSHIFT_EXPR:
8189 target = expand_vec_shift_expr (ops, target);
8190 return target;
8193 case VEC_UNPACK_HI_EXPR:
8194 case VEC_UNPACK_LO_EXPR:
8196 op0 = expand_normal (treeop0);
8197 this_optab = optab_for_tree_code (code, type, optab_default);
8198 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8199 target, unsignedp);
8200 gcc_assert (temp);
8201 return temp;
8204 case VEC_UNPACK_FLOAT_HI_EXPR:
8205 case VEC_UNPACK_FLOAT_LO_EXPR:
8207 op0 = expand_normal (treeop0);
8208 /* The signedness is determined from input operand. */
8209 this_optab = optab_for_tree_code (code,
8210 TREE_TYPE (treeop0),
8211 optab_default);
8212 temp = expand_widen_pattern_expr
8213 (ops, op0, NULL_RTX, NULL_RTX,
8214 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8216 gcc_assert (temp);
8217 return temp;
8220 case VEC_WIDEN_MULT_HI_EXPR:
8221 case VEC_WIDEN_MULT_LO_EXPR:
8223 tree oprnd0 = treeop0;
8224 tree oprnd1 = treeop1;
8226 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8227 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8228 target, unsignedp);
8229 gcc_assert (target);
8230 return target;
8233 case VEC_PACK_TRUNC_EXPR:
8234 case VEC_PACK_SAT_EXPR:
8235 case VEC_PACK_FIX_TRUNC_EXPR:
8236 mode = TYPE_MODE (TREE_TYPE (treeop0));
8237 goto binop;
8239 default:
8240 gcc_unreachable ();
8243 /* Here to do an ordinary binary operator. */
8244 binop:
8245 expand_operands (treeop0, treeop1,
8246 subtarget, &op0, &op1, EXPAND_NORMAL);
8247 binop2:
8248 this_optab = optab_for_tree_code (code, type, optab_default);
8249 binop3:
8250 if (modifier == EXPAND_STACK_PARM)
8251 target = 0;
8252 temp = expand_binop (mode, this_optab, op0, op1, target,
8253 unsignedp, OPTAB_LIB_WIDEN);
8254 gcc_assert (temp);
8255 return REDUCE_BIT_FIELD (temp);
8257 #undef REDUCE_BIT_FIELD
8260 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8261 enum expand_modifier modifier, rtx *alt_rtl)
8263 rtx op0, op1, temp, decl_rtl;
8264 tree type;
8265 int unsignedp;
8266 enum machine_mode mode;
8267 enum tree_code code = TREE_CODE (exp);
8268 optab this_optab;
8269 rtx subtarget, original_target;
8270 int ignore;
8271 tree context;
8272 bool reduce_bit_field;
8273 location_t loc = EXPR_LOCATION (exp);
8274 struct separate_ops ops;
8275 tree treeop0, treeop1, treeop2;
8277 type = TREE_TYPE (exp);
8278 mode = TYPE_MODE (type);
8279 unsignedp = TYPE_UNSIGNED (type);
8281 treeop0 = treeop1 = treeop2 = NULL_TREE;
8282 if (!VL_EXP_CLASS_P (exp))
8283 switch (TREE_CODE_LENGTH (code))
8285 default:
8286 case 3: treeop2 = TREE_OPERAND (exp, 2);
8287 case 2: treeop1 = TREE_OPERAND (exp, 1);
8288 case 1: treeop0 = TREE_OPERAND (exp, 0);
8289 case 0: break;
8291 ops.code = code;
8292 ops.type = type;
8293 ops.op0 = treeop0;
8294 ops.op1 = treeop1;
8295 ops.op2 = treeop2;
8296 ops.location = loc;
8298 ignore = (target == const0_rtx
8299 || ((CONVERT_EXPR_CODE_P (code)
8300 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8301 && TREE_CODE (type) == VOID_TYPE));
8303 /* An operation in what may be a bit-field type needs the
8304 result to be reduced to the precision of the bit-field type,
8305 which is narrower than that of the type's mode. */
8306 reduce_bit_field = (!ignore
8307 && TREE_CODE (type) == INTEGER_TYPE
8308 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8310 /* If we are going to ignore this result, we need only do something
8311 if there is a side-effect somewhere in the expression. If there
8312 is, short-circuit the most common cases here. Note that we must
8313 not call expand_expr with anything but const0_rtx in case this
8314 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8316 if (ignore)
8318 if (! TREE_SIDE_EFFECTS (exp))
8319 return const0_rtx;
8321 /* Ensure we reference a volatile object even if value is ignored, but
8322 don't do this if all we are doing is taking its address. */
8323 if (TREE_THIS_VOLATILE (exp)
8324 && TREE_CODE (exp) != FUNCTION_DECL
8325 && mode != VOIDmode && mode != BLKmode
8326 && modifier != EXPAND_CONST_ADDRESS)
8328 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8329 if (MEM_P (temp))
8330 temp = copy_to_reg (temp);
8331 return const0_rtx;
8334 if (TREE_CODE_CLASS (code) == tcc_unary
8335 || code == COMPONENT_REF || code == INDIRECT_REF)
8336 return expand_expr (treeop0, const0_rtx, VOIDmode,
8337 modifier);
8339 else if (TREE_CODE_CLASS (code) == tcc_binary
8340 || TREE_CODE_CLASS (code) == tcc_comparison
8341 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8343 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8344 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8345 return const0_rtx;
8347 else if (code == BIT_FIELD_REF)
8349 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8350 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8351 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8352 return const0_rtx;
8355 target = 0;
8358 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8359 target = 0;
8361 /* Use subtarget as the target for operand 0 of a binary operation. */
8362 subtarget = get_subtarget (target);
8363 original_target = target;
8365 switch (code)
8367 case LABEL_DECL:
8369 tree function = decl_function_context (exp);
8371 temp = label_rtx (exp);
8372 temp = gen_rtx_LABEL_REF (Pmode, temp);
8374 if (function != current_function_decl
8375 && function != 0)
8376 LABEL_REF_NONLOCAL_P (temp) = 1;
8378 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8379 return temp;
8382 case SSA_NAME:
8383 /* ??? ivopts calls expander, without any preparation from
8384 out-of-ssa. So fake instructions as if this was an access to the
8385 base variable. This unnecessarily allocates a pseudo, see how we can
8386 reuse it, if partition base vars have it set already. */
8387 if (!currently_expanding_to_rtl)
8388 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier, NULL);
8390 gimple g = get_gimple_for_ssa_name (exp);
8391 if (g)
8392 return expand_expr_real (gimple_assign_rhs_to_tree (g), target,
8393 tmode, modifier, NULL);
8395 decl_rtl = get_rtx_for_ssa_name (exp);
8396 exp = SSA_NAME_VAR (exp);
8397 goto expand_decl_rtl;
8399 case PARM_DECL:
8400 case VAR_DECL:
8401 /* If a static var's type was incomplete when the decl was written,
8402 but the type is complete now, lay out the decl now. */
8403 if (DECL_SIZE (exp) == 0
8404 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8405 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8406 layout_decl (exp, 0);
8408 /* TLS emulation hook - replace __thread vars with
8409 *__emutls_get_address (&_emutls.var). */
8410 if (! targetm.have_tls
8411 && TREE_CODE (exp) == VAR_DECL
8412 && DECL_THREAD_LOCAL_P (exp))
8414 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8415 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8418 /* ... fall through ... */
8420 case FUNCTION_DECL:
8421 case RESULT_DECL:
8422 decl_rtl = DECL_RTL (exp);
8423 expand_decl_rtl:
8424 gcc_assert (decl_rtl);
8425 decl_rtl = copy_rtx (decl_rtl);
8426 /* Record writes to register variables. */
8427 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8428 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8430 int i = REGNO (decl_rtl);
8431 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8432 while (nregs)
8434 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8435 i++;
8436 nregs--;
8440 /* Ensure variable marked as used even if it doesn't go through
8441 a parser. If it hasn't be used yet, write out an external
8442 definition. */
8443 if (! TREE_USED (exp))
8445 assemble_external (exp);
8446 TREE_USED (exp) = 1;
8449 /* Show we haven't gotten RTL for this yet. */
8450 temp = 0;
8452 /* Variables inherited from containing functions should have
8453 been lowered by this point. */
8454 context = decl_function_context (exp);
8455 gcc_assert (!context
8456 || context == current_function_decl
8457 || TREE_STATIC (exp)
8458 /* ??? C++ creates functions that are not TREE_STATIC. */
8459 || TREE_CODE (exp) == FUNCTION_DECL);
8461 /* This is the case of an array whose size is to be determined
8462 from its initializer, while the initializer is still being parsed.
8463 See expand_decl. */
8465 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8466 temp = validize_mem (decl_rtl);
8468 /* If DECL_RTL is memory, we are in the normal case and the
8469 address is not valid, get the address into a register. */
8471 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8473 if (alt_rtl)
8474 *alt_rtl = decl_rtl;
8475 decl_rtl = use_anchored_address (decl_rtl);
8476 if (modifier != EXPAND_CONST_ADDRESS
8477 && modifier != EXPAND_SUM
8478 && !memory_address_addr_space_p (DECL_MODE (exp),
8479 XEXP (decl_rtl, 0),
8480 MEM_ADDR_SPACE (decl_rtl)))
8481 temp = replace_equiv_address (decl_rtl,
8482 copy_rtx (XEXP (decl_rtl, 0)));
8485 /* If we got something, return it. But first, set the alignment
8486 if the address is a register. */
8487 if (temp != 0)
8489 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8490 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8492 return temp;
8495 /* If the mode of DECL_RTL does not match that of the decl, it
8496 must be a promoted value. We return a SUBREG of the wanted mode,
8497 but mark it so that we know that it was already extended. */
8499 if (REG_P (decl_rtl)
8500 && GET_MODE (decl_rtl) != DECL_MODE (exp))
8502 enum machine_mode pmode;
8504 /* Get the signedness used for this variable. Ensure we get the
8505 same mode we got when the variable was declared. */
8506 pmode = promote_decl_mode (exp, &unsignedp);
8507 gcc_assert (GET_MODE (decl_rtl) == pmode);
8509 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8510 SUBREG_PROMOTED_VAR_P (temp) = 1;
8511 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8512 return temp;
8515 return decl_rtl;
8517 case INTEGER_CST:
8518 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8519 TREE_INT_CST_HIGH (exp), mode);
8521 return temp;
8523 case VECTOR_CST:
8525 tree tmp = NULL_TREE;
8526 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8527 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8528 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8529 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8530 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8531 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8532 return const_vector_from_tree (exp);
8533 if (GET_MODE_CLASS (mode) == MODE_INT)
8535 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8536 if (type_for_mode)
8537 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8539 if (!tmp)
8540 tmp = build_constructor_from_list (type,
8541 TREE_VECTOR_CST_ELTS (exp));
8542 return expand_expr (tmp, ignore ? const0_rtx : target,
8543 tmode, modifier);
8546 case CONST_DECL:
8547 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8549 case REAL_CST:
8550 /* If optimized, generate immediate CONST_DOUBLE
8551 which will be turned into memory by reload if necessary.
8553 We used to force a register so that loop.c could see it. But
8554 this does not allow gen_* patterns to perform optimizations with
8555 the constants. It also produces two insns in cases like "x = 1.0;".
8556 On most machines, floating-point constants are not permitted in
8557 many insns, so we'd end up copying it to a register in any case.
8559 Now, we do the copying in expand_binop, if appropriate. */
8560 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8561 TYPE_MODE (TREE_TYPE (exp)));
8563 case FIXED_CST:
8564 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8565 TYPE_MODE (TREE_TYPE (exp)));
8567 case COMPLEX_CST:
8568 /* Handle evaluating a complex constant in a CONCAT target. */
8569 if (original_target && GET_CODE (original_target) == CONCAT)
8571 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8572 rtx rtarg, itarg;
8574 rtarg = XEXP (original_target, 0);
8575 itarg = XEXP (original_target, 1);
8577 /* Move the real and imaginary parts separately. */
8578 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8579 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8581 if (op0 != rtarg)
8582 emit_move_insn (rtarg, op0);
8583 if (op1 != itarg)
8584 emit_move_insn (itarg, op1);
8586 return original_target;
8589 /* ... fall through ... */
8591 case STRING_CST:
8592 temp = expand_expr_constant (exp, 1, modifier);
8594 /* temp contains a constant address.
8595 On RISC machines where a constant address isn't valid,
8596 make some insns to get that address into a register. */
8597 if (modifier != EXPAND_CONST_ADDRESS
8598 && modifier != EXPAND_INITIALIZER
8599 && modifier != EXPAND_SUM
8600 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8601 MEM_ADDR_SPACE (temp)))
8602 return replace_equiv_address (temp,
8603 copy_rtx (XEXP (temp, 0)));
8604 return temp;
8606 case SAVE_EXPR:
8608 tree val = treeop0;
8609 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8611 if (!SAVE_EXPR_RESOLVED_P (exp))
8613 /* We can indeed still hit this case, typically via builtin
8614 expanders calling save_expr immediately before expanding
8615 something. Assume this means that we only have to deal
8616 with non-BLKmode values. */
8617 gcc_assert (GET_MODE (ret) != BLKmode);
8619 val = build_decl (EXPR_LOCATION (exp),
8620 VAR_DECL, NULL, TREE_TYPE (exp));
8621 DECL_ARTIFICIAL (val) = 1;
8622 DECL_IGNORED_P (val) = 1;
8623 treeop0 = val;
8624 TREE_OPERAND (exp, 0) = treeop0;
8625 SAVE_EXPR_RESOLVED_P (exp) = 1;
8627 if (!CONSTANT_P (ret))
8628 ret = copy_to_reg (ret);
8629 SET_DECL_RTL (val, ret);
8632 return ret;
8636 case CONSTRUCTOR:
8637 /* If we don't need the result, just ensure we evaluate any
8638 subexpressions. */
8639 if (ignore)
8641 unsigned HOST_WIDE_INT idx;
8642 tree value;
8644 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8645 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8647 return const0_rtx;
8650 return expand_constructor (exp, target, modifier, false);
8652 case MISALIGNED_INDIRECT_REF:
8653 case ALIGN_INDIRECT_REF:
8654 case INDIRECT_REF:
8656 tree exp1 = treeop0;
8657 addr_space_t as = ADDR_SPACE_GENERIC;
8658 enum machine_mode address_mode = Pmode;
8660 if (modifier != EXPAND_WRITE)
8662 tree t;
8664 t = fold_read_from_constant_string (exp);
8665 if (t)
8666 return expand_expr (t, target, tmode, modifier);
8669 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8671 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8672 address_mode = targetm.addr_space.address_mode (as);
8675 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8676 op0 = memory_address_addr_space (mode, op0, as);
8678 if (code == ALIGN_INDIRECT_REF)
8680 int align = TYPE_ALIGN_UNIT (type);
8681 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8682 op0 = memory_address_addr_space (mode, op0, as);
8685 temp = gen_rtx_MEM (mode, op0);
8687 set_mem_attributes (temp, exp, 0);
8688 set_mem_addr_space (temp, as);
8690 /* Resolve the misalignment now, so that we don't have to remember
8691 to resolve it later. Of course, this only works for reads. */
8692 if (code == MISALIGNED_INDIRECT_REF)
8694 int icode;
8695 rtx reg, insn;
8697 gcc_assert (modifier == EXPAND_NORMAL
8698 || modifier == EXPAND_STACK_PARM);
8700 /* The vectorizer should have already checked the mode. */
8701 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8702 gcc_assert (icode != CODE_FOR_nothing);
8704 /* We've already validated the memory, and we're creating a
8705 new pseudo destination. The predicates really can't fail. */
8706 reg = gen_reg_rtx (mode);
8708 /* Nor can the insn generator. */
8709 insn = GEN_FCN (icode) (reg, temp);
8710 emit_insn (insn);
8712 return reg;
8715 return temp;
8718 case TARGET_MEM_REF:
8720 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8721 struct mem_address addr;
8722 tree base;
8724 get_address_description (exp, &addr);
8725 op0 = addr_for_mem_ref (&addr, as, true);
8726 op0 = memory_address_addr_space (mode, op0, as);
8727 temp = gen_rtx_MEM (mode, op0);
8728 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8729 set_mem_addr_space (temp, as);
8730 base = get_base_address (TMR_ORIGINAL (exp));
8731 if (INDIRECT_REF_P (base)
8732 && TMR_BASE (exp)
8733 && TREE_CODE (TMR_BASE (exp)) == SSA_NAME
8734 && POINTER_TYPE_P (TREE_TYPE (TMR_BASE (exp))))
8736 set_mem_expr (temp, build1 (INDIRECT_REF,
8737 TREE_TYPE (exp), TMR_BASE (exp)));
8738 set_mem_offset (temp, NULL_RTX);
8741 return temp;
8743 case ARRAY_REF:
8746 tree array = treeop0;
8747 tree index = treeop1;
8749 /* Fold an expression like: "foo"[2].
8750 This is not done in fold so it won't happen inside &.
8751 Don't fold if this is for wide characters since it's too
8752 difficult to do correctly and this is a very rare case. */
8754 if (modifier != EXPAND_CONST_ADDRESS
8755 && modifier != EXPAND_INITIALIZER
8756 && modifier != EXPAND_MEMORY)
8758 tree t = fold_read_from_constant_string (exp);
8760 if (t)
8761 return expand_expr (t, target, tmode, modifier);
8764 /* If this is a constant index into a constant array,
8765 just get the value from the array. Handle both the cases when
8766 we have an explicit constructor and when our operand is a variable
8767 that was declared const. */
8769 if (modifier != EXPAND_CONST_ADDRESS
8770 && modifier != EXPAND_INITIALIZER
8771 && modifier != EXPAND_MEMORY
8772 && TREE_CODE (array) == CONSTRUCTOR
8773 && ! TREE_SIDE_EFFECTS (array)
8774 && TREE_CODE (index) == INTEGER_CST)
8776 unsigned HOST_WIDE_INT ix;
8777 tree field, value;
8779 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8780 field, value)
8781 if (tree_int_cst_equal (field, index))
8783 if (!TREE_SIDE_EFFECTS (value))
8784 return expand_expr (fold (value), target, tmode, modifier);
8785 break;
8789 else if (optimize >= 1
8790 && modifier != EXPAND_CONST_ADDRESS
8791 && modifier != EXPAND_INITIALIZER
8792 && modifier != EXPAND_MEMORY
8793 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8794 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8795 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8796 && targetm.binds_local_p (array))
8798 if (TREE_CODE (index) == INTEGER_CST)
8800 tree init = DECL_INITIAL (array);
8802 if (TREE_CODE (init) == CONSTRUCTOR)
8804 unsigned HOST_WIDE_INT ix;
8805 tree field, value;
8807 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8808 field, value)
8809 if (tree_int_cst_equal (field, index))
8811 if (TREE_SIDE_EFFECTS (value))
8812 break;
8814 if (TREE_CODE (value) == CONSTRUCTOR)
8816 /* If VALUE is a CONSTRUCTOR, this
8817 optimization is only useful if
8818 this doesn't store the CONSTRUCTOR
8819 into memory. If it does, it is more
8820 efficient to just load the data from
8821 the array directly. */
8822 rtx ret = expand_constructor (value, target,
8823 modifier, true);
8824 if (ret == NULL_RTX)
8825 break;
8828 return expand_expr (fold (value), target, tmode,
8829 modifier);
8832 else if(TREE_CODE (init) == STRING_CST)
8834 tree index1 = index;
8835 tree low_bound = array_ref_low_bound (exp);
8836 index1 = fold_convert_loc (loc, sizetype,
8837 treeop1);
8839 /* Optimize the special-case of a zero lower bound.
8841 We convert the low_bound to sizetype to avoid some problems
8842 with constant folding. (E.g. suppose the lower bound is 1,
8843 and its mode is QI. Without the conversion,l (ARRAY
8844 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8845 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8847 if (! integer_zerop (low_bound))
8848 index1 = size_diffop_loc (loc, index1,
8849 fold_convert_loc (loc, sizetype,
8850 low_bound));
8852 if (0 > compare_tree_int (index1,
8853 TREE_STRING_LENGTH (init)))
8855 tree type = TREE_TYPE (TREE_TYPE (init));
8856 enum machine_mode mode = TYPE_MODE (type);
8858 if (GET_MODE_CLASS (mode) == MODE_INT
8859 && GET_MODE_SIZE (mode) == 1)
8860 return gen_int_mode (TREE_STRING_POINTER (init)
8861 [TREE_INT_CST_LOW (index1)],
8862 mode);
8868 goto normal_inner_ref;
8870 case COMPONENT_REF:
8871 /* If the operand is a CONSTRUCTOR, we can just extract the
8872 appropriate field if it is present. */
8873 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8875 unsigned HOST_WIDE_INT idx;
8876 tree field, value;
8878 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8879 idx, field, value)
8880 if (field == treeop1
8881 /* We can normally use the value of the field in the
8882 CONSTRUCTOR. However, if this is a bitfield in
8883 an integral mode that we can fit in a HOST_WIDE_INT,
8884 we must mask only the number of bits in the bitfield,
8885 since this is done implicitly by the constructor. If
8886 the bitfield does not meet either of those conditions,
8887 we can't do this optimization. */
8888 && (! DECL_BIT_FIELD (field)
8889 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8890 && (GET_MODE_BITSIZE (DECL_MODE (field))
8891 <= HOST_BITS_PER_WIDE_INT))))
8893 if (DECL_BIT_FIELD (field)
8894 && modifier == EXPAND_STACK_PARM)
8895 target = 0;
8896 op0 = expand_expr (value, target, tmode, modifier);
8897 if (DECL_BIT_FIELD (field))
8899 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8900 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8902 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8904 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8905 op0 = expand_and (imode, op0, op1, target);
8907 else
8909 tree count
8910 = build_int_cst (NULL_TREE,
8911 GET_MODE_BITSIZE (imode) - bitsize);
8913 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8914 target, 0);
8915 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8916 target, 0);
8920 return op0;
8923 goto normal_inner_ref;
8925 case BIT_FIELD_REF:
8926 case ARRAY_RANGE_REF:
8927 normal_inner_ref:
8929 enum machine_mode mode1, mode2;
8930 HOST_WIDE_INT bitsize, bitpos;
8931 tree offset;
8932 int volatilep = 0, must_force_mem;
8933 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8934 &mode1, &unsignedp, &volatilep, true);
8935 rtx orig_op0, memloc;
8937 /* If we got back the original object, something is wrong. Perhaps
8938 we are evaluating an expression too early. In any event, don't
8939 infinitely recurse. */
8940 gcc_assert (tem != exp);
8942 /* If TEM's type is a union of variable size, pass TARGET to the inner
8943 computation, since it will need a temporary and TARGET is known
8944 to have to do. This occurs in unchecked conversion in Ada. */
8945 orig_op0 = op0
8946 = expand_expr (tem,
8947 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8948 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8949 != INTEGER_CST)
8950 && modifier != EXPAND_STACK_PARM
8951 ? target : NULL_RTX),
8952 VOIDmode,
8953 (modifier == EXPAND_INITIALIZER
8954 || modifier == EXPAND_CONST_ADDRESS
8955 || modifier == EXPAND_STACK_PARM)
8956 ? modifier : EXPAND_NORMAL);
8958 mode2
8959 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8961 /* If we have either an offset, a BLKmode result, or a reference
8962 outside the underlying object, we must force it to memory.
8963 Such a case can occur in Ada if we have unchecked conversion
8964 of an expression from a scalar type to an aggregate type or
8965 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8966 passed a partially uninitialized object or a view-conversion
8967 to a larger size. */
8968 must_force_mem = (offset
8969 || mode1 == BLKmode
8970 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8972 /* Handle CONCAT first. */
8973 if (GET_CODE (op0) == CONCAT && !must_force_mem)
8975 if (bitpos == 0
8976 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
8977 return op0;
8978 if (bitpos == 0
8979 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8980 && bitsize)
8982 op0 = XEXP (op0, 0);
8983 mode2 = GET_MODE (op0);
8985 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8986 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
8987 && bitpos
8988 && bitsize)
8990 op0 = XEXP (op0, 1);
8991 bitpos = 0;
8992 mode2 = GET_MODE (op0);
8994 else
8995 /* Otherwise force into memory. */
8996 must_force_mem = 1;
8999 /* If this is a constant, put it in a register if it is a legitimate
9000 constant and we don't need a memory reference. */
9001 if (CONSTANT_P (op0)
9002 && mode2 != BLKmode
9003 && LEGITIMATE_CONSTANT_P (op0)
9004 && !must_force_mem)
9005 op0 = force_reg (mode2, op0);
9007 /* Otherwise, if this is a constant, try to force it to the constant
9008 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9009 is a legitimate constant. */
9010 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9011 op0 = validize_mem (memloc);
9013 /* Otherwise, if this is a constant or the object is not in memory
9014 and need be, put it there. */
9015 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9017 tree nt = build_qualified_type (TREE_TYPE (tem),
9018 (TYPE_QUALS (TREE_TYPE (tem))
9019 | TYPE_QUAL_CONST));
9020 memloc = assign_temp (nt, 1, 1, 1);
9021 emit_move_insn (memloc, op0);
9022 op0 = memloc;
9025 if (offset)
9027 enum machine_mode address_mode;
9028 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9029 EXPAND_SUM);
9031 gcc_assert (MEM_P (op0));
9033 address_mode
9034 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9035 if (GET_MODE (offset_rtx) != address_mode)
9036 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9038 if (GET_MODE (op0) == BLKmode
9039 /* A constant address in OP0 can have VOIDmode, we must
9040 not try to call force_reg in that case. */
9041 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9042 && bitsize != 0
9043 && (bitpos % bitsize) == 0
9044 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9045 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9047 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9048 bitpos = 0;
9051 op0 = offset_address (op0, offset_rtx,
9052 highest_pow2_factor (offset));
9055 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9056 record its alignment as BIGGEST_ALIGNMENT. */
9057 if (MEM_P (op0) && bitpos == 0 && offset != 0
9058 && is_aligning_offset (offset, tem))
9059 set_mem_align (op0, BIGGEST_ALIGNMENT);
9061 /* Don't forget about volatility even if this is a bitfield. */
9062 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9064 if (op0 == orig_op0)
9065 op0 = copy_rtx (op0);
9067 MEM_VOLATILE_P (op0) = 1;
9070 /* In cases where an aligned union has an unaligned object
9071 as a field, we might be extracting a BLKmode value from
9072 an integer-mode (e.g., SImode) object. Handle this case
9073 by doing the extract into an object as wide as the field
9074 (which we know to be the width of a basic mode), then
9075 storing into memory, and changing the mode to BLKmode. */
9076 if (mode1 == VOIDmode
9077 || REG_P (op0) || GET_CODE (op0) == SUBREG
9078 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9079 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9080 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9081 && modifier != EXPAND_CONST_ADDRESS
9082 && modifier != EXPAND_INITIALIZER)
9083 /* If the field isn't aligned enough to fetch as a memref,
9084 fetch it as a bit field. */
9085 || (mode1 != BLKmode
9086 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9087 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9088 || (MEM_P (op0)
9089 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9090 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9091 && ((modifier == EXPAND_CONST_ADDRESS
9092 || modifier == EXPAND_INITIALIZER)
9093 ? STRICT_ALIGNMENT
9094 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9095 || (bitpos % BITS_PER_UNIT != 0)))
9096 /* If the type and the field are a constant size and the
9097 size of the type isn't the same size as the bitfield,
9098 we must use bitfield operations. */
9099 || (bitsize >= 0
9100 && TYPE_SIZE (TREE_TYPE (exp))
9101 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9102 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9103 bitsize)))
9105 enum machine_mode ext_mode = mode;
9107 if (ext_mode == BLKmode
9108 && ! (target != 0 && MEM_P (op0)
9109 && MEM_P (target)
9110 && bitpos % BITS_PER_UNIT == 0))
9111 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9113 if (ext_mode == BLKmode)
9115 if (target == 0)
9116 target = assign_temp (type, 0, 1, 1);
9118 if (bitsize == 0)
9119 return target;
9121 /* In this case, BITPOS must start at a byte boundary and
9122 TARGET, if specified, must be a MEM. */
9123 gcc_assert (MEM_P (op0)
9124 && (!target || MEM_P (target))
9125 && !(bitpos % BITS_PER_UNIT));
9127 emit_block_move (target,
9128 adjust_address (op0, VOIDmode,
9129 bitpos / BITS_PER_UNIT),
9130 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9131 / BITS_PER_UNIT),
9132 (modifier == EXPAND_STACK_PARM
9133 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9135 return target;
9138 op0 = validize_mem (op0);
9140 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9141 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9143 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9144 (modifier == EXPAND_STACK_PARM
9145 ? NULL_RTX : target),
9146 ext_mode, ext_mode);
9148 /* If the result is a record type and BITSIZE is narrower than
9149 the mode of OP0, an integral mode, and this is a big endian
9150 machine, we must put the field into the high-order bits. */
9151 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9152 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9153 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9154 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9155 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9156 - bitsize),
9157 op0, 1);
9159 /* If the result type is BLKmode, store the data into a temporary
9160 of the appropriate type, but with the mode corresponding to the
9161 mode for the data we have (op0's mode). It's tempting to make
9162 this a constant type, since we know it's only being stored once,
9163 but that can cause problems if we are taking the address of this
9164 COMPONENT_REF because the MEM of any reference via that address
9165 will have flags corresponding to the type, which will not
9166 necessarily be constant. */
9167 if (mode == BLKmode)
9169 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9170 rtx new_rtx;
9172 /* If the reference doesn't use the alias set of its type,
9173 we cannot create the temporary using that type. */
9174 if (component_uses_parent_alias_set (exp))
9176 new_rtx = assign_stack_local (ext_mode, size, 0);
9177 set_mem_alias_set (new_rtx, get_alias_set (exp));
9179 else
9180 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9182 emit_move_insn (new_rtx, op0);
9183 op0 = copy_rtx (new_rtx);
9184 PUT_MODE (op0, BLKmode);
9185 set_mem_attributes (op0, exp, 1);
9188 return op0;
9191 /* If the result is BLKmode, use that to access the object
9192 now as well. */
9193 if (mode == BLKmode)
9194 mode1 = BLKmode;
9196 /* Get a reference to just this component. */
9197 if (modifier == EXPAND_CONST_ADDRESS
9198 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9199 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9200 else
9201 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9203 if (op0 == orig_op0)
9204 op0 = copy_rtx (op0);
9206 set_mem_attributes (op0, exp, 0);
9207 if (REG_P (XEXP (op0, 0)))
9208 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9210 MEM_VOLATILE_P (op0) |= volatilep;
9211 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9212 || modifier == EXPAND_CONST_ADDRESS
9213 || modifier == EXPAND_INITIALIZER)
9214 return op0;
9215 else if (target == 0)
9216 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9218 convert_move (target, op0, unsignedp);
9219 return target;
9222 case OBJ_TYPE_REF:
9223 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9225 case CALL_EXPR:
9226 /* All valid uses of __builtin_va_arg_pack () are removed during
9227 inlining. */
9228 if (CALL_EXPR_VA_ARG_PACK (exp))
9229 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9231 tree fndecl = get_callee_fndecl (exp), attr;
9233 if (fndecl
9234 && (attr = lookup_attribute ("error",
9235 DECL_ATTRIBUTES (fndecl))) != NULL)
9236 error ("%Kcall to %qs declared with attribute error: %s",
9237 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9238 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9239 if (fndecl
9240 && (attr = lookup_attribute ("warning",
9241 DECL_ATTRIBUTES (fndecl))) != NULL)
9242 warning_at (tree_nonartificial_location (exp),
9243 0, "%Kcall to %qs declared with attribute warning: %s",
9244 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9245 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9247 /* Check for a built-in function. */
9248 if (fndecl && DECL_BUILT_IN (fndecl))
9250 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9251 return expand_builtin (exp, target, subtarget, tmode, ignore);
9254 return expand_call (exp, target, ignore);
9256 case VIEW_CONVERT_EXPR:
9257 op0 = NULL_RTX;
9259 /* If we are converting to BLKmode, try to avoid an intermediate
9260 temporary by fetching an inner memory reference. */
9261 if (mode == BLKmode
9262 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9263 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9264 && handled_component_p (treeop0))
9266 enum machine_mode mode1;
9267 HOST_WIDE_INT bitsize, bitpos;
9268 tree offset;
9269 int unsignedp;
9270 int volatilep = 0;
9271 tree tem
9272 = get_inner_reference (treeop0, &bitsize, &bitpos,
9273 &offset, &mode1, &unsignedp, &volatilep,
9274 true);
9275 rtx orig_op0;
9277 /* ??? We should work harder and deal with non-zero offsets. */
9278 if (!offset
9279 && (bitpos % BITS_PER_UNIT) == 0
9280 && bitsize >= 0
9281 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9283 /* See the normal_inner_ref case for the rationale. */
9284 orig_op0
9285 = expand_expr (tem,
9286 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9287 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9288 != INTEGER_CST)
9289 && modifier != EXPAND_STACK_PARM
9290 ? target : NULL_RTX),
9291 VOIDmode,
9292 (modifier == EXPAND_INITIALIZER
9293 || modifier == EXPAND_CONST_ADDRESS
9294 || modifier == EXPAND_STACK_PARM)
9295 ? modifier : EXPAND_NORMAL);
9297 if (MEM_P (orig_op0))
9299 op0 = orig_op0;
9301 /* Get a reference to just this component. */
9302 if (modifier == EXPAND_CONST_ADDRESS
9303 || modifier == EXPAND_SUM
9304 || modifier == EXPAND_INITIALIZER)
9305 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9306 else
9307 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9309 if (op0 == orig_op0)
9310 op0 = copy_rtx (op0);
9312 set_mem_attributes (op0, treeop0, 0);
9313 if (REG_P (XEXP (op0, 0)))
9314 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9316 MEM_VOLATILE_P (op0) |= volatilep;
9321 if (!op0)
9322 op0 = expand_expr (treeop0,
9323 NULL_RTX, VOIDmode, modifier);
9325 /* If the input and output modes are both the same, we are done. */
9326 if (mode == GET_MODE (op0))
9328 /* If neither mode is BLKmode, and both modes are the same size
9329 then we can use gen_lowpart. */
9330 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9331 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9332 && !COMPLEX_MODE_P (GET_MODE (op0)))
9334 if (GET_CODE (op0) == SUBREG)
9335 op0 = force_reg (GET_MODE (op0), op0);
9336 op0 = gen_lowpart (mode, op0);
9338 /* If both types are integral, convert from one mode to the other. */
9339 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9340 op0 = convert_modes (mode, GET_MODE (op0), op0,
9341 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9342 /* As a last resort, spill op0 to memory, and reload it in a
9343 different mode. */
9344 else if (!MEM_P (op0))
9346 /* If the operand is not a MEM, force it into memory. Since we
9347 are going to be changing the mode of the MEM, don't call
9348 force_const_mem for constants because we don't allow pool
9349 constants to change mode. */
9350 tree inner_type = TREE_TYPE (treeop0);
9352 gcc_assert (!TREE_ADDRESSABLE (exp));
9354 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9355 target
9356 = assign_stack_temp_for_type
9357 (TYPE_MODE (inner_type),
9358 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9360 emit_move_insn (target, op0);
9361 op0 = target;
9364 /* At this point, OP0 is in the correct mode. If the output type is
9365 such that the operand is known to be aligned, indicate that it is.
9366 Otherwise, we need only be concerned about alignment for non-BLKmode
9367 results. */
9368 if (MEM_P (op0))
9370 op0 = copy_rtx (op0);
9372 if (TYPE_ALIGN_OK (type))
9373 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9374 else if (STRICT_ALIGNMENT
9375 && mode != BLKmode
9376 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9378 tree inner_type = TREE_TYPE (treeop0);
9379 HOST_WIDE_INT temp_size
9380 = MAX (int_size_in_bytes (inner_type),
9381 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9382 rtx new_rtx
9383 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9384 rtx new_with_op0_mode
9385 = adjust_address (new_rtx, GET_MODE (op0), 0);
9387 gcc_assert (!TREE_ADDRESSABLE (exp));
9389 if (GET_MODE (op0) == BLKmode)
9390 emit_block_move (new_with_op0_mode, op0,
9391 GEN_INT (GET_MODE_SIZE (mode)),
9392 (modifier == EXPAND_STACK_PARM
9393 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9394 else
9395 emit_move_insn (new_with_op0_mode, op0);
9397 op0 = new_rtx;
9400 op0 = adjust_address (op0, mode, 0);
9403 return op0;
9405 /* Use a compare and a jump for BLKmode comparisons, or for function
9406 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9408 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9409 are occassionally created by folding during expansion. */
9410 case TRUTH_ANDIF_EXPR:
9411 case TRUTH_ORIF_EXPR:
9412 if (! ignore
9413 && (target == 0
9414 || modifier == EXPAND_STACK_PARM
9415 || ! safe_from_p (target, treeop0, 1)
9416 || ! safe_from_p (target, treeop1, 1)
9417 /* Make sure we don't have a hard reg (such as function's return
9418 value) live across basic blocks, if not optimizing. */
9419 || (!optimize && REG_P (target)
9420 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9421 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9423 if (target)
9424 emit_move_insn (target, const0_rtx);
9426 op1 = gen_label_rtx ();
9427 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9429 if (target)
9430 emit_move_insn (target, const1_rtx);
9432 emit_label (op1);
9433 return ignore ? const0_rtx : target;
9435 case STATEMENT_LIST:
9437 tree_stmt_iterator iter;
9439 gcc_assert (ignore);
9441 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9442 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9444 return const0_rtx;
9446 case COND_EXPR:
9447 /* A COND_EXPR with its type being VOID_TYPE represents a
9448 conditional jump and is handled in
9449 expand_gimple_cond_expr. */
9450 gcc_assert (!VOID_TYPE_P (type));
9452 /* Note that COND_EXPRs whose type is a structure or union
9453 are required to be constructed to contain assignments of
9454 a temporary variable, so that we can evaluate them here
9455 for side effect only. If type is void, we must do likewise. */
9457 gcc_assert (!TREE_ADDRESSABLE (type)
9458 && !ignore
9459 && TREE_TYPE (treeop1) != void_type_node
9460 && TREE_TYPE (treeop2) != void_type_node);
9462 /* If we are not to produce a result, we have no target. Otherwise,
9463 if a target was specified use it; it will not be used as an
9464 intermediate target unless it is safe. If no target, use a
9465 temporary. */
9467 if (modifier != EXPAND_STACK_PARM
9468 && original_target
9469 && safe_from_p (original_target, treeop0, 1)
9470 && GET_MODE (original_target) == mode
9471 #ifdef HAVE_conditional_move
9472 && (! can_conditionally_move_p (mode)
9473 || REG_P (original_target))
9474 #endif
9475 && !MEM_P (original_target))
9476 temp = original_target;
9477 else
9478 temp = assign_temp (type, 0, 0, 1);
9480 do_pending_stack_adjust ();
9481 NO_DEFER_POP;
9482 op0 = gen_label_rtx ();
9483 op1 = gen_label_rtx ();
9484 jumpifnot (treeop0, op0, -1);
9485 store_expr (treeop1, temp,
9486 modifier == EXPAND_STACK_PARM,
9487 false);
9489 emit_jump_insn (gen_jump (op1));
9490 emit_barrier ();
9491 emit_label (op0);
9492 store_expr (treeop2, temp,
9493 modifier == EXPAND_STACK_PARM,
9494 false);
9496 emit_label (op1);
9497 OK_DEFER_POP;
9498 return temp;
9500 case VEC_COND_EXPR:
9501 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9502 return target;
9504 case MODIFY_EXPR:
9506 tree lhs = treeop0;
9507 tree rhs = treeop1;
9508 gcc_assert (ignore);
9510 /* Check for |= or &= of a bitfield of size one into another bitfield
9511 of size 1. In this case, (unless we need the result of the
9512 assignment) we can do this more efficiently with a
9513 test followed by an assignment, if necessary.
9515 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9516 things change so we do, this code should be enhanced to
9517 support it. */
9518 if (TREE_CODE (lhs) == COMPONENT_REF
9519 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9520 || TREE_CODE (rhs) == BIT_AND_EXPR)
9521 && TREE_OPERAND (rhs, 0) == lhs
9522 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9523 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9524 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9526 rtx label = gen_label_rtx ();
9527 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9528 do_jump (TREE_OPERAND (rhs, 1),
9529 value ? label : 0,
9530 value ? 0 : label, -1);
9531 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9532 MOVE_NONTEMPORAL (exp));
9533 do_pending_stack_adjust ();
9534 emit_label (label);
9535 return const0_rtx;
9538 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9539 return const0_rtx;
9542 case ADDR_EXPR:
9543 return expand_expr_addr_expr (exp, target, tmode, modifier);
9545 case REALPART_EXPR:
9546 op0 = expand_normal (treeop0);
9547 return read_complex_part (op0, false);
9549 case IMAGPART_EXPR:
9550 op0 = expand_normal (treeop0);
9551 return read_complex_part (op0, true);
9553 case RETURN_EXPR:
9554 case LABEL_EXPR:
9555 case GOTO_EXPR:
9556 case SWITCH_EXPR:
9557 case ASM_EXPR:
9558 /* Expanded in cfgexpand.c. */
9559 gcc_unreachable ();
9561 case TRY_CATCH_EXPR:
9562 case CATCH_EXPR:
9563 case EH_FILTER_EXPR:
9564 case TRY_FINALLY_EXPR:
9565 /* Lowered by tree-eh.c. */
9566 gcc_unreachable ();
9568 case WITH_CLEANUP_EXPR:
9569 case CLEANUP_POINT_EXPR:
9570 case TARGET_EXPR:
9571 case CASE_LABEL_EXPR:
9572 case VA_ARG_EXPR:
9573 case BIND_EXPR:
9574 case INIT_EXPR:
9575 case CONJ_EXPR:
9576 case COMPOUND_EXPR:
9577 case PREINCREMENT_EXPR:
9578 case PREDECREMENT_EXPR:
9579 case POSTINCREMENT_EXPR:
9580 case POSTDECREMENT_EXPR:
9581 case LOOP_EXPR:
9582 case EXIT_EXPR:
9583 /* Lowered by gimplify.c. */
9584 gcc_unreachable ();
9586 case FDESC_EXPR:
9587 /* Function descriptors are not valid except for as
9588 initialization constants, and should not be expanded. */
9589 gcc_unreachable ();
9591 case WITH_SIZE_EXPR:
9592 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9593 have pulled out the size to use in whatever context it needed. */
9594 return expand_expr_real (treeop0, original_target, tmode,
9595 modifier, alt_rtl);
9597 case REALIGN_LOAD_EXPR:
9599 tree oprnd0 = treeop0;
9600 tree oprnd1 = treeop1;
9601 tree oprnd2 = treeop2;
9602 rtx op2;
9604 this_optab = optab_for_tree_code (code, type, optab_default);
9605 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9606 op2 = expand_normal (oprnd2);
9607 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9608 target, unsignedp);
9609 gcc_assert (temp);
9610 return temp;
9613 case DOT_PROD_EXPR:
9615 tree oprnd0 = treeop0;
9616 tree oprnd1 = treeop1;
9617 tree oprnd2 = treeop2;
9618 rtx op2;
9620 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9621 op2 = expand_normal (oprnd2);
9622 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9623 target, unsignedp);
9624 return target;
9627 case COMPOUND_LITERAL_EXPR:
9629 /* Initialize the anonymous variable declared in the compound
9630 literal, then return the variable. */
9631 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9633 /* Create RTL for this variable. */
9634 if (!DECL_RTL_SET_P (decl))
9636 if (DECL_HARD_REGISTER (decl))
9637 /* The user specified an assembler name for this variable.
9638 Set that up now. */
9639 rest_of_decl_compilation (decl, 0, 0);
9640 else
9641 expand_decl (decl);
9644 return expand_expr_real (decl, original_target, tmode,
9645 modifier, alt_rtl);
9648 default:
9649 return expand_expr_real_2 (&ops, target, tmode, modifier);
9653 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9654 signedness of TYPE), possibly returning the result in TARGET. */
9655 static rtx
9656 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9658 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9659 if (target && GET_MODE (target) != GET_MODE (exp))
9660 target = 0;
9661 /* For constant values, reduce using build_int_cst_type. */
9662 if (CONST_INT_P (exp))
9664 HOST_WIDE_INT value = INTVAL (exp);
9665 tree t = build_int_cst_type (type, value);
9666 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9668 else if (TYPE_UNSIGNED (type))
9670 rtx mask = immed_double_int_const (double_int_mask (prec),
9671 GET_MODE (exp));
9672 return expand_and (GET_MODE (exp), exp, mask, target);
9674 else
9676 tree count = build_int_cst (NULL_TREE,
9677 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9678 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9679 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9683 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9684 when applied to the address of EXP produces an address known to be
9685 aligned more than BIGGEST_ALIGNMENT. */
9687 static int
9688 is_aligning_offset (const_tree offset, const_tree exp)
9690 /* Strip off any conversions. */
9691 while (CONVERT_EXPR_P (offset))
9692 offset = TREE_OPERAND (offset, 0);
9694 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9695 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9696 if (TREE_CODE (offset) != BIT_AND_EXPR
9697 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9698 || compare_tree_int (TREE_OPERAND (offset, 1),
9699 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9700 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9701 return 0;
9703 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9704 It must be NEGATE_EXPR. Then strip any more conversions. */
9705 offset = TREE_OPERAND (offset, 0);
9706 while (CONVERT_EXPR_P (offset))
9707 offset = TREE_OPERAND (offset, 0);
9709 if (TREE_CODE (offset) != NEGATE_EXPR)
9710 return 0;
9712 offset = TREE_OPERAND (offset, 0);
9713 while (CONVERT_EXPR_P (offset))
9714 offset = TREE_OPERAND (offset, 0);
9716 /* This must now be the address of EXP. */
9717 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9720 /* Return the tree node if an ARG corresponds to a string constant or zero
9721 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9722 in bytes within the string that ARG is accessing. The type of the
9723 offset will be `sizetype'. */
9725 tree
9726 string_constant (tree arg, tree *ptr_offset)
9728 tree array, offset, lower_bound;
9729 STRIP_NOPS (arg);
9731 if (TREE_CODE (arg) == ADDR_EXPR)
9733 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9735 *ptr_offset = size_zero_node;
9736 return TREE_OPERAND (arg, 0);
9738 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9740 array = TREE_OPERAND (arg, 0);
9741 offset = size_zero_node;
9743 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9745 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9746 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9747 if (TREE_CODE (array) != STRING_CST
9748 && TREE_CODE (array) != VAR_DECL)
9749 return 0;
9751 /* Check if the array has a nonzero lower bound. */
9752 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9753 if (!integer_zerop (lower_bound))
9755 /* If the offset and base aren't both constants, return 0. */
9756 if (TREE_CODE (lower_bound) != INTEGER_CST)
9757 return 0;
9758 if (TREE_CODE (offset) != INTEGER_CST)
9759 return 0;
9760 /* Adjust offset by the lower bound. */
9761 offset = size_diffop (fold_convert (sizetype, offset),
9762 fold_convert (sizetype, lower_bound));
9765 else
9766 return 0;
9768 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9770 tree arg0 = TREE_OPERAND (arg, 0);
9771 tree arg1 = TREE_OPERAND (arg, 1);
9773 STRIP_NOPS (arg0);
9774 STRIP_NOPS (arg1);
9776 if (TREE_CODE (arg0) == ADDR_EXPR
9777 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9778 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9780 array = TREE_OPERAND (arg0, 0);
9781 offset = arg1;
9783 else if (TREE_CODE (arg1) == ADDR_EXPR
9784 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9785 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9787 array = TREE_OPERAND (arg1, 0);
9788 offset = arg0;
9790 else
9791 return 0;
9793 else
9794 return 0;
9796 if (TREE_CODE (array) == STRING_CST)
9798 *ptr_offset = fold_convert (sizetype, offset);
9799 return array;
9801 else if (TREE_CODE (array) == VAR_DECL)
9803 int length;
9805 /* Variables initialized to string literals can be handled too. */
9806 if (DECL_INITIAL (array) == NULL_TREE
9807 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9808 return 0;
9810 /* If they are read-only, non-volatile and bind locally. */
9811 if (! TREE_READONLY (array)
9812 || TREE_SIDE_EFFECTS (array)
9813 || ! targetm.binds_local_p (array))
9814 return 0;
9816 /* Avoid const char foo[4] = "abcde"; */
9817 if (DECL_SIZE_UNIT (array) == NULL_TREE
9818 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9819 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9820 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9821 return 0;
9823 /* If variable is bigger than the string literal, OFFSET must be constant
9824 and inside of the bounds of the string literal. */
9825 offset = fold_convert (sizetype, offset);
9826 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9827 && (! host_integerp (offset, 1)
9828 || compare_tree_int (offset, length) >= 0))
9829 return 0;
9831 *ptr_offset = offset;
9832 return DECL_INITIAL (array);
9835 return 0;
9838 /* Generate code to calculate OPS, and exploded expression
9839 using a store-flag instruction and return an rtx for the result.
9840 OPS reflects a comparison.
9842 If TARGET is nonzero, store the result there if convenient.
9844 Return zero if there is no suitable set-flag instruction
9845 available on this machine.
9847 Once expand_expr has been called on the arguments of the comparison,
9848 we are committed to doing the store flag, since it is not safe to
9849 re-evaluate the expression. We emit the store-flag insn by calling
9850 emit_store_flag, but only expand the arguments if we have a reason
9851 to believe that emit_store_flag will be successful. If we think that
9852 it will, but it isn't, we have to simulate the store-flag with a
9853 set/jump/set sequence. */
9855 static rtx
9856 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9858 enum rtx_code code;
9859 tree arg0, arg1, type;
9860 tree tem;
9861 enum machine_mode operand_mode;
9862 int unsignedp;
9863 rtx op0, op1;
9864 rtx subtarget = target;
9865 location_t loc = ops->location;
9867 arg0 = ops->op0;
9868 arg1 = ops->op1;
9870 /* Don't crash if the comparison was erroneous. */
9871 if (arg0 == error_mark_node || arg1 == error_mark_node)
9872 return const0_rtx;
9874 type = TREE_TYPE (arg0);
9875 operand_mode = TYPE_MODE (type);
9876 unsignedp = TYPE_UNSIGNED (type);
9878 /* We won't bother with BLKmode store-flag operations because it would mean
9879 passing a lot of information to emit_store_flag. */
9880 if (operand_mode == BLKmode)
9881 return 0;
9883 /* We won't bother with store-flag operations involving function pointers
9884 when function pointers must be canonicalized before comparisons. */
9885 #ifdef HAVE_canonicalize_funcptr_for_compare
9886 if (HAVE_canonicalize_funcptr_for_compare
9887 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9888 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9889 == FUNCTION_TYPE))
9890 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9891 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9892 == FUNCTION_TYPE))))
9893 return 0;
9894 #endif
9896 STRIP_NOPS (arg0);
9897 STRIP_NOPS (arg1);
9899 /* Get the rtx comparison code to use. We know that EXP is a comparison
9900 operation of some type. Some comparisons against 1 and -1 can be
9901 converted to comparisons with zero. Do so here so that the tests
9902 below will be aware that we have a comparison with zero. These
9903 tests will not catch constants in the first operand, but constants
9904 are rarely passed as the first operand. */
9906 switch (ops->code)
9908 case EQ_EXPR:
9909 code = EQ;
9910 break;
9911 case NE_EXPR:
9912 code = NE;
9913 break;
9914 case LT_EXPR:
9915 if (integer_onep (arg1))
9916 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9917 else
9918 code = unsignedp ? LTU : LT;
9919 break;
9920 case LE_EXPR:
9921 if (! unsignedp && integer_all_onesp (arg1))
9922 arg1 = integer_zero_node, code = LT;
9923 else
9924 code = unsignedp ? LEU : LE;
9925 break;
9926 case GT_EXPR:
9927 if (! unsignedp && integer_all_onesp (arg1))
9928 arg1 = integer_zero_node, code = GE;
9929 else
9930 code = unsignedp ? GTU : GT;
9931 break;
9932 case GE_EXPR:
9933 if (integer_onep (arg1))
9934 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9935 else
9936 code = unsignedp ? GEU : GE;
9937 break;
9939 case UNORDERED_EXPR:
9940 code = UNORDERED;
9941 break;
9942 case ORDERED_EXPR:
9943 code = ORDERED;
9944 break;
9945 case UNLT_EXPR:
9946 code = UNLT;
9947 break;
9948 case UNLE_EXPR:
9949 code = UNLE;
9950 break;
9951 case UNGT_EXPR:
9952 code = UNGT;
9953 break;
9954 case UNGE_EXPR:
9955 code = UNGE;
9956 break;
9957 case UNEQ_EXPR:
9958 code = UNEQ;
9959 break;
9960 case LTGT_EXPR:
9961 code = LTGT;
9962 break;
9964 default:
9965 gcc_unreachable ();
9968 /* Put a constant second. */
9969 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9970 || TREE_CODE (arg0) == FIXED_CST)
9972 tem = arg0; arg0 = arg1; arg1 = tem;
9973 code = swap_condition (code);
9976 /* If this is an equality or inequality test of a single bit, we can
9977 do this by shifting the bit being tested to the low-order bit and
9978 masking the result with the constant 1. If the condition was EQ,
9979 we xor it with 1. This does not require an scc insn and is faster
9980 than an scc insn even if we have it.
9982 The code to make this transformation was moved into fold_single_bit_test,
9983 so we just call into the folder and expand its result. */
9985 if ((code == NE || code == EQ)
9986 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9987 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9989 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9990 return expand_expr (fold_single_bit_test (loc,
9991 code == NE ? NE_EXPR : EQ_EXPR,
9992 arg0, arg1, type),
9993 target, VOIDmode, EXPAND_NORMAL);
9996 if (! get_subtarget (target)
9997 || GET_MODE (subtarget) != operand_mode)
9998 subtarget = 0;
10000 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10002 if (target == 0)
10003 target = gen_reg_rtx (mode);
10005 /* Try a cstore if possible. */
10006 return emit_store_flag_force (target, code, op0, op1,
10007 operand_mode, unsignedp, 1);
10011 /* Stubs in case we haven't got a casesi insn. */
10012 #ifndef HAVE_casesi
10013 # define HAVE_casesi 0
10014 # define gen_casesi(a, b, c, d, e) (0)
10015 # define CODE_FOR_casesi CODE_FOR_nothing
10016 #endif
10018 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10019 0 otherwise (i.e. if there is no casesi instruction). */
10021 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10022 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10023 rtx fallback_label ATTRIBUTE_UNUSED)
10025 enum machine_mode index_mode = SImode;
10026 int index_bits = GET_MODE_BITSIZE (index_mode);
10027 rtx op1, op2, index;
10028 enum machine_mode op_mode;
10030 if (! HAVE_casesi)
10031 return 0;
10033 /* Convert the index to SImode. */
10034 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10036 enum machine_mode omode = TYPE_MODE (index_type);
10037 rtx rangertx = expand_normal (range);
10039 /* We must handle the endpoints in the original mode. */
10040 index_expr = build2 (MINUS_EXPR, index_type,
10041 index_expr, minval);
10042 minval = integer_zero_node;
10043 index = expand_normal (index_expr);
10044 if (default_label)
10045 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10046 omode, 1, default_label);
10047 /* Now we can safely truncate. */
10048 index = convert_to_mode (index_mode, index, 0);
10050 else
10052 if (TYPE_MODE (index_type) != index_mode)
10054 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10055 index_expr = fold_convert (index_type, index_expr);
10058 index = expand_normal (index_expr);
10061 do_pending_stack_adjust ();
10063 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10064 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10065 (index, op_mode))
10066 index = copy_to_mode_reg (op_mode, index);
10068 op1 = expand_normal (minval);
10070 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10071 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10072 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10073 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10074 (op1, op_mode))
10075 op1 = copy_to_mode_reg (op_mode, op1);
10077 op2 = expand_normal (range);
10079 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10080 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10081 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10082 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10083 (op2, op_mode))
10084 op2 = copy_to_mode_reg (op_mode, op2);
10086 emit_jump_insn (gen_casesi (index, op1, op2,
10087 table_label, !default_label
10088 ? fallback_label : default_label));
10089 return 1;
10092 /* Attempt to generate a tablejump instruction; same concept. */
10093 #ifndef HAVE_tablejump
10094 #define HAVE_tablejump 0
10095 #define gen_tablejump(x, y) (0)
10096 #endif
10098 /* Subroutine of the next function.
10100 INDEX is the value being switched on, with the lowest value
10101 in the table already subtracted.
10102 MODE is its expected mode (needed if INDEX is constant).
10103 RANGE is the length of the jump table.
10104 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10106 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10107 index value is out of range. */
10109 static void
10110 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10111 rtx default_label)
10113 rtx temp, vector;
10115 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10116 cfun->cfg->max_jumptable_ents = INTVAL (range);
10118 /* Do an unsigned comparison (in the proper mode) between the index
10119 expression and the value which represents the length of the range.
10120 Since we just finished subtracting the lower bound of the range
10121 from the index expression, this comparison allows us to simultaneously
10122 check that the original index expression value is both greater than
10123 or equal to the minimum value of the range and less than or equal to
10124 the maximum value of the range. */
10126 if (default_label)
10127 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10128 default_label);
10130 /* If index is in range, it must fit in Pmode.
10131 Convert to Pmode so we can index with it. */
10132 if (mode != Pmode)
10133 index = convert_to_mode (Pmode, index, 1);
10135 /* Don't let a MEM slip through, because then INDEX that comes
10136 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10137 and break_out_memory_refs will go to work on it and mess it up. */
10138 #ifdef PIC_CASE_VECTOR_ADDRESS
10139 if (flag_pic && !REG_P (index))
10140 index = copy_to_mode_reg (Pmode, index);
10141 #endif
10143 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10144 GET_MODE_SIZE, because this indicates how large insns are. The other
10145 uses should all be Pmode, because they are addresses. This code
10146 could fail if addresses and insns are not the same size. */
10147 index = gen_rtx_PLUS (Pmode,
10148 gen_rtx_MULT (Pmode, index,
10149 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10150 gen_rtx_LABEL_REF (Pmode, table_label));
10151 #ifdef PIC_CASE_VECTOR_ADDRESS
10152 if (flag_pic)
10153 index = PIC_CASE_VECTOR_ADDRESS (index);
10154 else
10155 #endif
10156 index = memory_address (CASE_VECTOR_MODE, index);
10157 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10158 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10159 convert_move (temp, vector, 0);
10161 emit_jump_insn (gen_tablejump (temp, table_label));
10163 /* If we are generating PIC code or if the table is PC-relative, the
10164 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10165 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10166 emit_barrier ();
10170 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10171 rtx table_label, rtx default_label)
10173 rtx index;
10175 if (! HAVE_tablejump)
10176 return 0;
10178 index_expr = fold_build2 (MINUS_EXPR, index_type,
10179 fold_convert (index_type, index_expr),
10180 fold_convert (index_type, minval));
10181 index = expand_normal (index_expr);
10182 do_pending_stack_adjust ();
10184 do_tablejump (index, TYPE_MODE (index_type),
10185 convert_modes (TYPE_MODE (index_type),
10186 TYPE_MODE (TREE_TYPE (range)),
10187 expand_normal (range),
10188 TYPE_UNSIGNED (TREE_TYPE (range))),
10189 table_label, default_label);
10190 return 1;
10193 /* Nonzero if the mode is a valid vector mode for this architecture.
10194 This returns nonzero even if there is no hardware support for the
10195 vector mode, but we can emulate with narrower modes. */
10198 vector_mode_valid_p (enum machine_mode mode)
10200 enum mode_class mclass = GET_MODE_CLASS (mode);
10201 enum machine_mode innermode;
10203 /* Doh! What's going on? */
10204 if (mclass != MODE_VECTOR_INT
10205 && mclass != MODE_VECTOR_FLOAT
10206 && mclass != MODE_VECTOR_FRACT
10207 && mclass != MODE_VECTOR_UFRACT
10208 && mclass != MODE_VECTOR_ACCUM
10209 && mclass != MODE_VECTOR_UACCUM)
10210 return 0;
10212 /* Hardware support. Woo hoo! */
10213 if (targetm.vector_mode_supported_p (mode))
10214 return 1;
10216 innermode = GET_MODE_INNER (mode);
10218 /* We should probably return 1 if requesting V4DI and we have no DI,
10219 but we have V2DI, but this is probably very unlikely. */
10221 /* If we have support for the inner mode, we can safely emulate it.
10222 We may not have V2DI, but me can emulate with a pair of DIs. */
10223 return targetm.scalar_mode_supported_p (innermode);
10226 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10227 static rtx
10228 const_vector_from_tree (tree exp)
10230 rtvec v;
10231 int units, i;
10232 tree link, elt;
10233 enum machine_mode inner, mode;
10235 mode = TYPE_MODE (TREE_TYPE (exp));
10237 if (initializer_zerop (exp))
10238 return CONST0_RTX (mode);
10240 units = GET_MODE_NUNITS (mode);
10241 inner = GET_MODE_INNER (mode);
10243 v = rtvec_alloc (units);
10245 link = TREE_VECTOR_CST_ELTS (exp);
10246 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10248 elt = TREE_VALUE (link);
10250 if (TREE_CODE (elt) == REAL_CST)
10251 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10252 inner);
10253 else if (TREE_CODE (elt) == FIXED_CST)
10254 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10255 inner);
10256 else
10257 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10258 inner);
10261 /* Initialize remaining elements to 0. */
10262 for (; i < units; ++i)
10263 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10265 return gen_rtx_CONST_VECTOR (mode, v);
10269 /* Build a decl for a EH personality function named NAME. */
10271 tree
10272 build_personality_function (const char *name)
10274 tree decl, type;
10276 type = build_function_type_list (integer_type_node, integer_type_node,
10277 long_long_unsigned_type_node,
10278 ptr_type_node, ptr_type_node, NULL_TREE);
10279 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10280 get_identifier (name), type);
10281 DECL_ARTIFICIAL (decl) = 1;
10282 DECL_EXTERNAL (decl) = 1;
10283 TREE_PUBLIC (decl) = 1;
10285 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10286 are the flags assigned by targetm.encode_section_info. */
10287 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10289 return decl;
10292 /* Extracts the personality function of DECL and returns the corresponding
10293 libfunc. */
10296 get_personality_function (tree decl)
10298 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10299 enum eh_personality_kind pk;
10301 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10302 if (pk == eh_personality_none)
10303 return NULL;
10305 if (!personality
10306 && pk == eh_personality_any)
10307 personality = lang_hooks.eh_personality ();
10309 if (pk == eh_personality_lang)
10310 gcc_assert (personality != NULL_TREE);
10312 return XEXP (DECL_RTL (personality), 0);
10315 #include "gt-expr.h"