1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
39 #include "coretypes.h"
49 #include "hard-reg-set.h"
51 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
63 /* Commonly used modes. */
65 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
66 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
67 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
68 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
70 /* Datastructures maintained for currently processed function in RTL form. */
72 struct rtl_data x_rtl
;
74 /* Indexed by pseudo register number, gives the rtx for that pseudo.
75 Allocated in parallel with regno_pointer_align.
76 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
77 with length attribute nested in top level structures. */
81 /* This is *not* reset after each function. It gives each CODE_LABEL
82 in the entire compilation a unique label number. */
84 static GTY(()) int label_num
= 1;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these are unique; no other rtx-object will be equal to any
91 rtx global_rtl
[GR_MAX
];
93 /* Commonly used RTL for hard registers. These objects are not necessarily
94 unique, so we allocate them separately from global_rtl. They are
95 initialized once per compilation unit, then copied into regno_reg_rtx
96 at the beginning of each function. */
97 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
99 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
100 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
101 record a copy of const[012]_rtx. */
103 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
107 REAL_VALUE_TYPE dconst0
;
108 REAL_VALUE_TYPE dconst1
;
109 REAL_VALUE_TYPE dconst2
;
110 REAL_VALUE_TYPE dconstm1
;
111 REAL_VALUE_TYPE dconsthalf
;
113 /* Record fixed-point constant 0 and 1. */
114 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
115 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
117 /* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
128 should be used if it is being set, and frame_pointer_rtx otherwise. After
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
135 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
146 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
152 htab_t const_int_htab
;
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
156 htab_t mem_attrs_htab
;
158 /* A hash table storing register attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
160 htab_t reg_attrs_htab
;
162 /* A hash table storing all CONST_DOUBLEs. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
164 htab_t const_double_htab
;
166 /* A hash table storing all CONST_FIXEDs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
168 htab_t const_fixed_htab
;
170 #define first_insn (crtl->emit.x_first_insn)
171 #define last_insn (crtl->emit.x_last_insn)
172 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
173 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
174 #define last_location (crtl->emit.x_last_location)
175 #define first_label_num (crtl->emit.x_first_label_num)
177 static rtx
make_call_insn_raw (rtx
);
178 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
179 static void set_used_decls (tree
);
180 static void mark_label_nuses (rtx
);
181 static hashval_t
const_int_htab_hash (const void *);
182 static int const_int_htab_eq (const void *, const void *);
183 static hashval_t
const_double_htab_hash (const void *);
184 static int const_double_htab_eq (const void *, const void *);
185 static rtx
lookup_const_double (rtx
);
186 static hashval_t
const_fixed_htab_hash (const void *);
187 static int const_fixed_htab_eq (const void *, const void *);
188 static rtx
lookup_const_fixed (rtx
);
189 static hashval_t
mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
192 addr_space_t
, enum machine_mode
);
193 static hashval_t
reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs
*get_reg_attrs (tree
, int);
196 static rtx
gen_const_vector (enum machine_mode
, int);
197 static void copy_rtx_if_shared_1 (rtx
*orig
);
199 /* Probability of the conditional branch currently proceeded by try_split.
200 Set to -1 otherwise. */
201 int split_branch_probability
= -1;
203 /* Returns a hash code for X (which is a really a CONST_INT). */
206 const_int_htab_hash (const void *x
)
208 return (hashval_t
) INTVAL ((const_rtx
) x
);
211 /* Returns nonzero if the value represented by X (which is really a
212 CONST_INT) is the same as that given by Y (which is really a
216 const_int_htab_eq (const void *x
, const void *y
)
218 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
221 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
223 const_double_htab_hash (const void *x
)
225 const_rtx
const value
= (const_rtx
) x
;
228 if (GET_MODE (value
) == VOIDmode
)
229 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
232 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h
^= GET_MODE (value
);
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...) */
242 const_double_htab_eq (const void *x
, const void *y
)
244 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
246 if (GET_MODE (a
) != GET_MODE (b
))
248 if (GET_MODE (a
) == VOIDmode
)
249 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
250 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
252 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
253 CONST_DOUBLE_REAL_VALUE (b
));
256 /* Returns a hash code for X (which is really a CONST_FIXED). */
259 const_fixed_htab_hash (const void *x
)
261 const_rtx
const value
= (const_rtx
) x
;
264 h
= fixed_hash (CONST_FIXED_VALUE (value
));
265 /* MODE is used in the comparison, so it should be in the hash. */
266 h
^= GET_MODE (value
);
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...). */
274 const_fixed_htab_eq (const void *x
, const void *y
)
276 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
278 if (GET_MODE (a
) != GET_MODE (b
))
280 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
283 /* Returns a hash code for X (which is a really a mem_attrs *). */
286 mem_attrs_htab_hash (const void *x
)
288 const mem_attrs
*const p
= (const mem_attrs
*) x
;
290 return (p
->alias
^ (p
->align
* 1000)
291 ^ (p
->addrspace
* 4000)
292 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
293 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
294 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
297 /* Returns nonzero if the value represented by X (which is really a
298 mem_attrs *) is the same as that given by Y (which is also really a
302 mem_attrs_htab_eq (const void *x
, const void *y
)
304 const mem_attrs
*const p
= (const mem_attrs
*) x
;
305 const mem_attrs
*const q
= (const mem_attrs
*) y
;
307 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
308 && p
->size
== q
->size
&& p
->align
== q
->align
309 && p
->addrspace
== q
->addrspace
310 && (p
->expr
== q
->expr
311 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
312 && operand_equal_p (p
->expr
, q
->expr
, 0))));
315 /* Allocate a new mem_attrs structure and insert it into the hash table if
316 one identical to it is not already in the table. We are doing this for
320 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
321 unsigned int align
, addr_space_t addrspace
, enum machine_mode mode
)
326 /* If everything is the default, we can just return zero.
327 This must match what the corresponding MEM_* macros return when the
328 field is not present. */
329 if (alias
== 0 && expr
== 0 && offset
== 0 && addrspace
== 0
331 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
332 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
333 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
338 attrs
.offset
= offset
;
341 attrs
.addrspace
= addrspace
;
343 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
346 *slot
= ggc_alloc (sizeof (mem_attrs
));
347 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
350 return (mem_attrs
*) *slot
;
353 /* Returns a hash code for X (which is a really a reg_attrs *). */
356 reg_attrs_htab_hash (const void *x
)
358 const reg_attrs
*const p
= (const reg_attrs
*) x
;
360 return ((p
->offset
* 1000) ^ (long) p
->decl
);
363 /* Returns nonzero if the value represented by X (which is really a
364 reg_attrs *) is the same as that given by Y (which is also really a
368 reg_attrs_htab_eq (const void *x
, const void *y
)
370 const reg_attrs
*const p
= (const reg_attrs
*) x
;
371 const reg_attrs
*const q
= (const reg_attrs
*) y
;
373 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
380 get_reg_attrs (tree decl
, int offset
)
385 /* If everything is the default, we can just return zero. */
386 if (decl
== 0 && offset
== 0)
390 attrs
.offset
= offset
;
392 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
395 *slot
= ggc_alloc (sizeof (reg_attrs
));
396 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
399 return (reg_attrs
*) *slot
;
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
410 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
411 MEM_VOLATILE_P (x
) = true;
417 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
418 don't attempt to share with the various global pieces of rtl (such as
419 frame_pointer_rtx). */
422 gen_raw_REG (enum machine_mode mode
, int regno
)
424 rtx x
= gen_rtx_raw_REG (mode
, regno
);
425 ORIGINAL_REGNO (x
) = regno
;
429 /* There are some RTL codes that require special attention; the generation
430 functions do the raw handling. If you add to this list, modify
431 special_rtx in gengenrtl.c as well. */
434 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
438 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
439 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
441 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
442 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
443 return const_true_rtx
;
446 /* Look up the CONST_INT in the hash table. */
447 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
448 (hashval_t
) arg
, INSERT
);
450 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
456 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
458 return GEN_INT (trunc_int_for_mode (c
, mode
));
461 /* CONST_DOUBLEs might be created from pairs of integers, or from
462 REAL_VALUE_TYPEs. Also, their length is known only at run time,
463 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
465 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
466 hash table. If so, return its counterpart; otherwise add it
467 to the hash table and return it. */
469 lookup_const_double (rtx real
)
471 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
478 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
479 VALUE in mode MODE. */
481 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
483 rtx real
= rtx_alloc (CONST_DOUBLE
);
484 PUT_MODE (real
, mode
);
488 return lookup_const_double (real
);
491 /* Determine whether FIXED, a CONST_FIXED, already exists in the
492 hash table. If so, return its counterpart; otherwise add it
493 to the hash table and return it. */
496 lookup_const_fixed (rtx fixed
)
498 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
505 /* Return a CONST_FIXED rtx for a fixed-point value specified by
506 VALUE in mode MODE. */
509 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
511 rtx fixed
= rtx_alloc (CONST_FIXED
);
512 PUT_MODE (fixed
, mode
);
516 return lookup_const_fixed (fixed
);
519 /* Constructs double_int from rtx CST. */
522 rtx_to_double_int (const_rtx cst
)
526 if (CONST_INT_P (cst
))
527 r
= shwi_to_double_int (INTVAL (cst
));
528 else if (CONST_DOUBLE_P (cst
) && GET_MODE (cst
) == VOIDmode
)
530 r
.low
= CONST_DOUBLE_LOW (cst
);
531 r
.high
= CONST_DOUBLE_HIGH (cst
);
540 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
544 immed_double_int_const (double_int i
, enum machine_mode mode
)
546 return immed_double_const (i
.low
, i
.high
, mode
);
549 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
550 of ints: I0 is the low-order word and I1 is the high-order word.
551 Do not use this routine for non-integer modes; convert to
552 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
555 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
560 /* There are the following cases (note that there are no modes with
561 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
563 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
565 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
566 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
567 from copies of the sign bit, and sign of i0 and i1 are the same), then
568 we return a CONST_INT for i0.
569 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
570 if (mode
!= VOIDmode
)
572 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
573 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
574 /* We can get a 0 for an error mark. */
575 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
576 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
578 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
579 return gen_int_mode (i0
, mode
);
581 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
584 /* If this integer fits in one word, return a CONST_INT. */
585 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
588 /* We use VOIDmode for integers. */
589 value
= rtx_alloc (CONST_DOUBLE
);
590 PUT_MODE (value
, VOIDmode
);
592 CONST_DOUBLE_LOW (value
) = i0
;
593 CONST_DOUBLE_HIGH (value
) = i1
;
595 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
596 XWINT (value
, i
) = 0;
598 return lookup_const_double (value
);
602 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
604 /* In case the MD file explicitly references the frame pointer, have
605 all such references point to the same frame pointer. This is
606 used during frame pointer elimination to distinguish the explicit
607 references to these registers from pseudos that happened to be
610 If we have eliminated the frame pointer or arg pointer, we will
611 be using it as a normal register, for example as a spill
612 register. In such cases, we might be accessing it in a mode that
613 is not Pmode and therefore cannot use the pre-allocated rtx.
615 Also don't do this when we are making new REGs in reload, since
616 we don't want to get confused with the real pointers. */
618 if (mode
== Pmode
&& !reload_in_progress
)
620 if (regno
== FRAME_POINTER_REGNUM
621 && (!reload_completed
|| frame_pointer_needed
))
622 return frame_pointer_rtx
;
623 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
624 if (regno
== HARD_FRAME_POINTER_REGNUM
625 && (!reload_completed
|| frame_pointer_needed
))
626 return hard_frame_pointer_rtx
;
628 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
629 if (regno
== ARG_POINTER_REGNUM
)
630 return arg_pointer_rtx
;
632 #ifdef RETURN_ADDRESS_POINTER_REGNUM
633 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
634 return return_address_pointer_rtx
;
636 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
637 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
638 return pic_offset_table_rtx
;
639 if (regno
== STACK_POINTER_REGNUM
)
640 return stack_pointer_rtx
;
644 /* If the per-function register table has been set up, try to re-use
645 an existing entry in that table to avoid useless generation of RTL.
647 This code is disabled for now until we can fix the various backends
648 which depend on having non-shared hard registers in some cases. Long
649 term we want to re-enable this code as it can significantly cut down
650 on the amount of useless RTL that gets generated.
652 We'll also need to fix some code that runs after reload that wants to
653 set ORIGINAL_REGNO. */
658 && regno
< FIRST_PSEUDO_REGISTER
659 && reg_raw_mode
[regno
] == mode
)
660 return regno_reg_rtx
[regno
];
663 return gen_raw_REG (mode
, regno
);
667 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
669 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
671 /* This field is not cleared by the mere allocation of the rtx, so
678 /* Generate a memory referring to non-trapping constant memory. */
681 gen_const_mem (enum machine_mode mode
, rtx addr
)
683 rtx mem
= gen_rtx_MEM (mode
, addr
);
684 MEM_READONLY_P (mem
) = 1;
685 MEM_NOTRAP_P (mem
) = 1;
689 /* Generate a MEM referring to fixed portions of the frame, e.g., register
693 gen_frame_mem (enum machine_mode mode
, rtx addr
)
695 rtx mem
= gen_rtx_MEM (mode
, addr
);
696 MEM_NOTRAP_P (mem
) = 1;
697 set_mem_alias_set (mem
, get_frame_alias_set ());
701 /* Generate a MEM referring to a temporary use of the stack, not part
702 of the fixed stack frame. For example, something which is pushed
703 by a target splitter. */
705 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
707 rtx mem
= gen_rtx_MEM (mode
, addr
);
708 MEM_NOTRAP_P (mem
) = 1;
709 if (!cfun
->calls_alloca
)
710 set_mem_alias_set (mem
, get_frame_alias_set ());
714 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
715 this construct would be valid, and false otherwise. */
718 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
719 const_rtx reg
, unsigned int offset
)
721 unsigned int isize
= GET_MODE_SIZE (imode
);
722 unsigned int osize
= GET_MODE_SIZE (omode
);
724 /* All subregs must be aligned. */
725 if (offset
% osize
!= 0)
728 /* The subreg offset cannot be outside the inner object. */
732 /* ??? This should not be here. Temporarily continue to allow word_mode
733 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
734 Generally, backends are doing something sketchy but it'll take time to
736 if (omode
== word_mode
)
738 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
739 is the culprit here, and not the backends. */
740 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
742 /* Allow component subregs of complex and vector. Though given the below
743 extraction rules, it's not always clear what that means. */
744 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
745 && GET_MODE_INNER (imode
) == omode
)
747 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
748 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
749 represent this. It's questionable if this ought to be represented at
750 all -- why can't this all be hidden in post-reload splitters that make
751 arbitrarily mode changes to the registers themselves. */
752 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
754 /* Subregs involving floating point modes are not allowed to
755 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
756 (subreg:SI (reg:DF) 0) isn't. */
757 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
763 /* Paradoxical subregs must have offset zero. */
767 /* This is a normal subreg. Verify that the offset is representable. */
769 /* For hard registers, we already have most of these rules collected in
770 subreg_offset_representable_p. */
771 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
773 unsigned int regno
= REGNO (reg
);
775 #ifdef CANNOT_CHANGE_MODE_CLASS
776 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
777 && GET_MODE_INNER (imode
) == omode
)
779 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
783 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
786 /* For pseudo registers, we want most of the same checks. Namely:
787 If the register no larger than a word, the subreg must be lowpart.
788 If the register is larger than a word, the subreg must be the lowpart
789 of a subword. A subreg does *not* perform arbitrary bit extraction.
790 Given that we've already checked mode/offset alignment, we only have
791 to check subword subregs here. */
792 if (osize
< UNITS_PER_WORD
)
794 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
795 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
796 if (offset
% UNITS_PER_WORD
!= low_off
)
803 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
805 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
806 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
809 /* Generate a SUBREG representing the least-significant part of REG if MODE
810 is smaller than mode of REG, otherwise paradoxical SUBREG. */
813 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
815 enum machine_mode inmode
;
817 inmode
= GET_MODE (reg
);
818 if (inmode
== VOIDmode
)
820 return gen_rtx_SUBREG (mode
, reg
,
821 subreg_lowpart_offset (mode
, inmode
));
825 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
828 gen_rtvec (int n
, ...)
836 /* Don't allocate an empty rtvec... */
840 rt_val
= rtvec_alloc (n
);
842 for (i
= 0; i
< n
; i
++)
843 rt_val
->elem
[i
] = va_arg (p
, rtx
);
850 gen_rtvec_v (int n
, rtx
*argp
)
855 /* Don't allocate an empty rtvec... */
859 rt_val
= rtvec_alloc (n
);
861 for (i
= 0; i
< n
; i
++)
862 rt_val
->elem
[i
] = *argp
++;
867 /* Return the number of bytes between the start of an OUTER_MODE
868 in-memory value and the start of an INNER_MODE in-memory value,
869 given that the former is a lowpart of the latter. It may be a
870 paradoxical lowpart, in which case the offset will be negative
871 on big-endian targets. */
874 byte_lowpart_offset (enum machine_mode outer_mode
,
875 enum machine_mode inner_mode
)
877 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
878 return subreg_lowpart_offset (outer_mode
, inner_mode
);
880 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
883 /* Generate a REG rtx for a new pseudo register of mode MODE.
884 This pseudo is assigned the next sequential register number. */
887 gen_reg_rtx (enum machine_mode mode
)
890 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
892 gcc_assert (can_create_pseudo_p ());
894 /* If a virtual register with bigger mode alignment is generated,
895 increase stack alignment estimation because it might be spilled
897 if (SUPPORTS_STACK_ALIGNMENT
898 && crtl
->stack_alignment_estimated
< align
899 && !crtl
->stack_realign_processed
)
901 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
902 if (crtl
->stack_alignment_estimated
< min_align
)
903 crtl
->stack_alignment_estimated
= min_align
;
906 if (generating_concat_p
907 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
908 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
910 /* For complex modes, don't make a single pseudo.
911 Instead, make a CONCAT of two pseudos.
912 This allows noncontiguous allocation of the real and imaginary parts,
913 which makes much better code. Besides, allocating DCmode
914 pseudos overstrains reload on some machines like the 386. */
915 rtx realpart
, imagpart
;
916 enum machine_mode partmode
= GET_MODE_INNER (mode
);
918 realpart
= gen_reg_rtx (partmode
);
919 imagpart
= gen_reg_rtx (partmode
);
920 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
923 /* Make sure regno_pointer_align, and regno_reg_rtx are large
924 enough to have an element for this pseudo reg number. */
926 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
928 int old_size
= crtl
->emit
.regno_pointer_align_length
;
932 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
933 memset (tmp
+ old_size
, 0, old_size
);
934 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
936 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
937 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
938 regno_reg_rtx
= new1
;
940 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
943 val
= gen_raw_REG (mode
, reg_rtx_no
);
944 regno_reg_rtx
[reg_rtx_no
++] = val
;
948 /* Update NEW with the same attributes as REG, but with OFFSET added
949 to the REG_OFFSET. */
952 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
954 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
955 REG_OFFSET (reg
) + offset
);
958 /* Generate a register with same attributes as REG, but with OFFSET
959 added to the REG_OFFSET. */
962 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
965 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
967 update_reg_offset (new_rtx
, reg
, offset
);
971 /* Generate a new pseudo-register with the same attributes as REG, but
972 with OFFSET added to the REG_OFFSET. */
975 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
977 rtx new_rtx
= gen_reg_rtx (mode
);
979 update_reg_offset (new_rtx
, reg
, offset
);
983 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
984 new register is a (possibly paradoxical) lowpart of the old one. */
987 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
989 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
990 PUT_MODE (reg
, mode
);
993 /* Copy REG's attributes from X, if X has any attributes. If REG and X
994 have different modes, REG is a (possibly paradoxical) lowpart of X. */
997 set_reg_attrs_from_value (rtx reg
, rtx x
)
1001 /* Hard registers can be reused for multiple purposes within the same
1002 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1003 on them is wrong. */
1004 if (HARD_REGISTER_P (reg
))
1007 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1010 if (MEM_OFFSET (x
) && CONST_INT_P (MEM_OFFSET (x
)))
1012 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
1013 if (MEM_POINTER (x
))
1014 mark_reg_pointer (reg
, 0);
1019 update_reg_offset (reg
, x
, offset
);
1020 if (REG_POINTER (x
))
1021 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1025 /* Generate a REG rtx for a new pseudo register, copying the mode
1026 and attributes from X. */
1029 gen_reg_rtx_and_attrs (rtx x
)
1031 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1032 set_reg_attrs_from_value (reg
, x
);
1036 /* Set the register attributes for registers contained in PARM_RTX.
1037 Use needed values from memory attributes of MEM. */
1040 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1042 if (REG_P (parm_rtx
))
1043 set_reg_attrs_from_value (parm_rtx
, mem
);
1044 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1046 /* Check for a NULL entry in the first slot, used to indicate that the
1047 parameter goes both on the stack and in registers. */
1048 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1049 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1051 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1052 if (REG_P (XEXP (x
, 0)))
1053 REG_ATTRS (XEXP (x
, 0))
1054 = get_reg_attrs (MEM_EXPR (mem
),
1055 INTVAL (XEXP (x
, 1)));
1060 /* Set the REG_ATTRS for registers in value X, given that X represents
1064 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1066 if (GET_CODE (x
) == SUBREG
)
1068 gcc_assert (subreg_lowpart_p (x
));
1073 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1075 if (GET_CODE (x
) == CONCAT
)
1077 if (REG_P (XEXP (x
, 0)))
1078 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1079 if (REG_P (XEXP (x
, 1)))
1080 REG_ATTRS (XEXP (x
, 1))
1081 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1083 if (GET_CODE (x
) == PARALLEL
)
1087 /* Check for a NULL entry, used to indicate that the parameter goes
1088 both on the stack and in registers. */
1089 if (XEXP (XVECEXP (x
, 0, 0), 0))
1094 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1096 rtx y
= XVECEXP (x
, 0, i
);
1097 if (REG_P (XEXP (y
, 0)))
1098 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1103 /* Assign the RTX X to declaration T. */
1106 set_decl_rtl (tree t
, rtx x
)
1108 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1110 set_reg_attrs_for_decl_rtl (t
, x
);
1113 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1114 if the ABI requires the parameter to be passed by reference. */
1117 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1119 DECL_INCOMING_RTL (t
) = x
;
1120 if (x
&& !by_reference_p
)
1121 set_reg_attrs_for_decl_rtl (t
, x
);
1124 /* Identify REG (which may be a CONCAT) as a user register. */
1127 mark_user_reg (rtx reg
)
1129 if (GET_CODE (reg
) == CONCAT
)
1131 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1132 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1136 gcc_assert (REG_P (reg
));
1137 REG_USERVAR_P (reg
) = 1;
1141 /* Identify REG as a probable pointer register and show its alignment
1142 as ALIGN, if nonzero. */
1145 mark_reg_pointer (rtx reg
, int align
)
1147 if (! REG_POINTER (reg
))
1149 REG_POINTER (reg
) = 1;
1152 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1154 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1155 /* We can no-longer be sure just how aligned this pointer is. */
1156 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1159 /* Return 1 plus largest pseudo reg number used in the current function. */
1167 /* Return 1 + the largest label number used so far in the current function. */
1170 max_label_num (void)
1175 /* Return first label number used in this function (if any were used). */
1178 get_first_label_num (void)
1180 return first_label_num
;
1183 /* If the rtx for label was created during the expansion of a nested
1184 function, then first_label_num won't include this label number.
1185 Fix this now so that array indices work later. */
1188 maybe_set_first_label_num (rtx x
)
1190 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1191 first_label_num
= CODE_LABEL_NUMBER (x
);
1194 /* Return a value representing some low-order bits of X, where the number
1195 of low-order bits is given by MODE. Note that no conversion is done
1196 between floating-point and fixed-point values, rather, the bit
1197 representation is returned.
1199 This function handles the cases in common between gen_lowpart, below,
1200 and two variants in cse.c and combine.c. These are the cases that can
1201 be safely handled at all points in the compilation.
1203 If this is not a case we can handle, return 0. */
1206 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1208 int msize
= GET_MODE_SIZE (mode
);
1211 enum machine_mode innermode
;
1213 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1214 so we have to make one up. Yuk. */
1215 innermode
= GET_MODE (x
);
1217 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1218 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1219 else if (innermode
== VOIDmode
)
1220 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1222 xsize
= GET_MODE_SIZE (innermode
);
1224 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1226 if (innermode
== mode
)
1229 /* MODE must occupy no more words than the mode of X. */
1230 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1231 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1234 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1235 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1238 offset
= subreg_lowpart_offset (mode
, innermode
);
1240 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1241 && (GET_MODE_CLASS (mode
) == MODE_INT
1242 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1244 /* If we are getting the low-order part of something that has been
1245 sign- or zero-extended, we can either just use the object being
1246 extended or make a narrower extension. If we want an even smaller
1247 piece than the size of the object being extended, call ourselves
1250 This case is used mostly by combine and cse. */
1252 if (GET_MODE (XEXP (x
, 0)) == mode
)
1254 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1255 return gen_lowpart_common (mode
, XEXP (x
, 0));
1256 else if (msize
< xsize
)
1257 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1259 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1260 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1261 || GET_CODE (x
) == CONST_DOUBLE
|| CONST_INT_P (x
))
1262 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1264 /* Otherwise, we can't do this. */
1269 gen_highpart (enum machine_mode mode
, rtx x
)
1271 unsigned int msize
= GET_MODE_SIZE (mode
);
1274 /* This case loses if X is a subreg. To catch bugs early,
1275 complain if an invalid MODE is used even in other cases. */
1276 gcc_assert (msize
<= UNITS_PER_WORD
1277 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1279 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1280 subreg_highpart_offset (mode
, GET_MODE (x
)));
1281 gcc_assert (result
);
1283 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1284 the target if we have a MEM. gen_highpart must return a valid operand,
1285 emitting code if necessary to do so. */
1288 result
= validize_mem (result
);
1289 gcc_assert (result
);
1295 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1296 be VOIDmode constant. */
1298 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1300 if (GET_MODE (exp
) != VOIDmode
)
1302 gcc_assert (GET_MODE (exp
) == innermode
);
1303 return gen_highpart (outermode
, exp
);
1305 return simplify_gen_subreg (outermode
, exp
, innermode
,
1306 subreg_highpart_offset (outermode
, innermode
));
1309 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1312 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1314 unsigned int offset
= 0;
1315 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1319 if (WORDS_BIG_ENDIAN
)
1320 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1321 if (BYTES_BIG_ENDIAN
)
1322 offset
+= difference
% UNITS_PER_WORD
;
1328 /* Return offset in bytes to get OUTERMODE high part
1329 of the value in mode INNERMODE stored in memory in target format. */
1331 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1333 unsigned int offset
= 0;
1334 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1336 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1340 if (! WORDS_BIG_ENDIAN
)
1341 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1342 if (! BYTES_BIG_ENDIAN
)
1343 offset
+= difference
% UNITS_PER_WORD
;
1349 /* Return 1 iff X, assumed to be a SUBREG,
1350 refers to the least significant part of its containing reg.
1351 If X is not a SUBREG, always return 1 (it is its own low part!). */
1354 subreg_lowpart_p (const_rtx x
)
1356 if (GET_CODE (x
) != SUBREG
)
1358 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1361 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1362 == SUBREG_BYTE (x
));
1365 /* Return subword OFFSET of operand OP.
1366 The word number, OFFSET, is interpreted as the word number starting
1367 at the low-order address. OFFSET 0 is the low-order word if not
1368 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1370 If we cannot extract the required word, we return zero. Otherwise,
1371 an rtx corresponding to the requested word will be returned.
1373 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1374 reload has completed, a valid address will always be returned. After
1375 reload, if a valid address cannot be returned, we return zero.
1377 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1378 it is the responsibility of the caller.
1380 MODE is the mode of OP in case it is a CONST_INT.
1382 ??? This is still rather broken for some cases. The problem for the
1383 moment is that all callers of this thing provide no 'goal mode' to
1384 tell us to work with. This exists because all callers were written
1385 in a word based SUBREG world.
1386 Now use of this function can be deprecated by simplify_subreg in most
1391 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1393 if (mode
== VOIDmode
)
1394 mode
= GET_MODE (op
);
1396 gcc_assert (mode
!= VOIDmode
);
1398 /* If OP is narrower than a word, fail. */
1400 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1403 /* If we want a word outside OP, return zero. */
1405 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1408 /* Form a new MEM at the requested address. */
1411 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1413 if (! validate_address
)
1416 else if (reload_completed
)
1418 if (! strict_memory_address_addr_space_p (word_mode
,
1420 MEM_ADDR_SPACE (op
)))
1424 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1427 /* Rest can be handled by simplify_subreg. */
1428 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1431 /* Similar to `operand_subword', but never return 0. If we can't
1432 extract the required subword, put OP into a register and try again.
1433 The second attempt must succeed. We always validate the address in
1436 MODE is the mode of OP, in case it is CONST_INT. */
1439 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1441 rtx result
= operand_subword (op
, offset
, 1, mode
);
1446 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1448 /* If this is a register which can not be accessed by words, copy it
1449 to a pseudo register. */
1451 op
= copy_to_reg (op
);
1453 op
= force_reg (mode
, op
);
1456 result
= operand_subword (op
, offset
, 1, mode
);
1457 gcc_assert (result
);
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1466 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1471 if (! expr1
|| ! expr2
)
1474 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1477 return operand_equal_p (expr1
, expr2
, 0);
1480 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1481 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1485 get_mem_align_offset (rtx mem
, unsigned int align
)
1488 unsigned HOST_WIDE_INT offset
;
1490 /* This function can't use
1491 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1492 || !CONST_INT_P (MEM_OFFSET (mem))
1493 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1497 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1499 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1500 for <variable>. get_inner_reference doesn't handle it and
1501 even if it did, the alignment in that case needs to be determined
1502 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1503 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1504 isn't sufficiently aligned, the object it is in might be. */
1505 gcc_assert (MEM_P (mem
));
1506 expr
= MEM_EXPR (mem
);
1507 if (expr
== NULL_TREE
1508 || MEM_OFFSET (mem
) == NULL_RTX
1509 || !CONST_INT_P (MEM_OFFSET (mem
)))
1512 offset
= INTVAL (MEM_OFFSET (mem
));
1515 if (DECL_ALIGN (expr
) < align
)
1518 else if (INDIRECT_REF_P (expr
))
1520 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1523 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1527 tree inner
= TREE_OPERAND (expr
, 0);
1528 tree field
= TREE_OPERAND (expr
, 1);
1529 tree byte_offset
= component_ref_field_offset (expr
);
1530 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1533 || !host_integerp (byte_offset
, 1)
1534 || !host_integerp (bit_offset
, 1))
1537 offset
+= tree_low_cst (byte_offset
, 1);
1538 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1540 if (inner
== NULL_TREE
)
1542 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1543 < (unsigned int) align
)
1547 else if (DECL_P (inner
))
1549 if (DECL_ALIGN (inner
) < align
)
1553 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1561 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1564 /* Given REF (a MEM) and T, either the type of X or the expression
1565 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1566 if we are making a new object of this type. BITPOS is nonzero if
1567 there is an offset outstanding on T that will be applied later. */
1570 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1571 HOST_WIDE_INT bitpos
)
1573 alias_set_type alias
= MEM_ALIAS_SET (ref
);
1574 tree expr
= MEM_EXPR (ref
);
1575 rtx offset
= MEM_OFFSET (ref
);
1576 rtx size
= MEM_SIZE (ref
);
1577 unsigned int align
= MEM_ALIGN (ref
);
1578 HOST_WIDE_INT apply_bitpos
= 0;
1581 /* It can happen that type_for_mode was given a mode for which there
1582 is no language-level type. In which case it returns NULL, which
1587 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1588 if (type
== error_mark_node
)
1591 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1592 wrong answer, as it assumes that DECL_RTL already has the right alias
1593 info. Callers should not set DECL_RTL until after the call to
1594 set_mem_attributes. */
1595 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1597 /* Get the alias set from the expression or type (perhaps using a
1598 front-end routine) and use it. */
1599 alias
= get_alias_set (t
);
1601 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1602 MEM_IN_STRUCT_P (ref
)
1603 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1604 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1606 /* If we are making an object of this type, or if this is a DECL, we know
1607 that it is a scalar if the type is not an aggregate. */
1608 if ((objectp
|| DECL_P (t
))
1609 && ! AGGREGATE_TYPE_P (type
)
1610 && TREE_CODE (type
) != COMPLEX_TYPE
)
1611 MEM_SCALAR_P (ref
) = 1;
1613 /* We can set the alignment from the type if we are making an object,
1614 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1615 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1616 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1617 || TYPE_ALIGN_OK (type
))
1618 align
= MAX (align
, TYPE_ALIGN (type
));
1620 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1622 if (integer_zerop (TREE_OPERAND (t
, 1)))
1623 /* We don't know anything about the alignment. */
1624 align
= BITS_PER_UNIT
;
1626 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1629 /* If the size is known, we can set that. */
1630 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1631 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1633 /* If T is not a type, we may be able to deduce some more information about
1638 bool align_computed
= false;
1640 if (TREE_THIS_VOLATILE (t
))
1641 MEM_VOLATILE_P (ref
) = 1;
1643 /* Now remove any conversions: they don't change what the underlying
1644 object is. Likewise for SAVE_EXPR. */
1645 while (CONVERT_EXPR_P (t
)
1646 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1647 || TREE_CODE (t
) == SAVE_EXPR
)
1648 t
= TREE_OPERAND (t
, 0);
1650 /* We may look through structure-like accesses for the purposes of
1651 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1653 while (TREE_CODE (base
) == COMPONENT_REF
1654 || TREE_CODE (base
) == REALPART_EXPR
1655 || TREE_CODE (base
) == IMAGPART_EXPR
1656 || TREE_CODE (base
) == BIT_FIELD_REF
)
1657 base
= TREE_OPERAND (base
, 0);
1661 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1662 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1664 MEM_NOTRAP_P (ref
) = 1;
1667 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1669 base
= get_base_address (base
);
1670 if (base
&& DECL_P (base
)
1671 && TREE_READONLY (base
)
1672 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1674 tree base_type
= TREE_TYPE (base
);
1675 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1676 || DECL_ARTIFICIAL (base
));
1677 MEM_READONLY_P (ref
) = 1;
1680 /* If this expression uses it's parent's alias set, mark it such
1681 that we won't change it. */
1682 if (component_uses_parent_alias_set (t
))
1683 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1685 /* If this is a decl, set the attributes of the MEM from it. */
1689 offset
= const0_rtx
;
1690 apply_bitpos
= bitpos
;
1691 size
= (DECL_SIZE_UNIT (t
)
1692 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1693 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1694 align
= DECL_ALIGN (t
);
1695 align_computed
= true;
1698 /* If this is a constant, we know the alignment. */
1699 else if (CONSTANT_CLASS_P (t
))
1701 align
= TYPE_ALIGN (type
);
1702 #ifdef CONSTANT_ALIGNMENT
1703 align
= CONSTANT_ALIGNMENT (t
, align
);
1705 align_computed
= true;
1708 /* If this is a field reference and not a bit-field, record it. */
1709 /* ??? There is some information that can be gleaned from bit-fields,
1710 such as the word offset in the structure that might be modified.
1711 But skip it for now. */
1712 else if (TREE_CODE (t
) == COMPONENT_REF
1713 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1716 offset
= const0_rtx
;
1717 apply_bitpos
= bitpos
;
1718 /* ??? Any reason the field size would be different than
1719 the size we got from the type? */
1722 /* If this is an array reference, look for an outer field reference. */
1723 else if (TREE_CODE (t
) == ARRAY_REF
)
1725 tree off_tree
= size_zero_node
;
1726 /* We can't modify t, because we use it at the end of the
1732 tree index
= TREE_OPERAND (t2
, 1);
1733 tree low_bound
= array_ref_low_bound (t2
);
1734 tree unit_size
= array_ref_element_size (t2
);
1736 /* We assume all arrays have sizes that are a multiple of a byte.
1737 First subtract the lower bound, if any, in the type of the
1738 index, then convert to sizetype and multiply by the size of
1739 the array element. */
1740 if (! integer_zerop (low_bound
))
1741 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1744 off_tree
= size_binop (PLUS_EXPR
,
1745 size_binop (MULT_EXPR
,
1746 fold_convert (sizetype
,
1750 t2
= TREE_OPERAND (t2
, 0);
1752 while (TREE_CODE (t2
) == ARRAY_REF
);
1758 if (host_integerp (off_tree
, 1))
1760 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1761 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1762 align
= DECL_ALIGN (t2
);
1763 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1765 align_computed
= true;
1766 offset
= GEN_INT (ioff
);
1767 apply_bitpos
= bitpos
;
1770 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1774 if (host_integerp (off_tree
, 1))
1776 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1777 apply_bitpos
= bitpos
;
1779 /* ??? Any reason the field size would be different than
1780 the size we got from the type? */
1783 /* If this is an indirect reference, record it. */
1784 else if (TREE_CODE (t
) == INDIRECT_REF
1785 || TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1788 offset
= const0_rtx
;
1789 apply_bitpos
= bitpos
;
1793 /* If this is an indirect reference, record it. */
1794 else if (TREE_CODE (t
) == INDIRECT_REF
1795 || TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1798 offset
= const0_rtx
;
1799 apply_bitpos
= bitpos
;
1802 if (!align_computed
&& !INDIRECT_REF_P (t
))
1804 unsigned int obj_align
1805 = get_object_alignment (t
, align
, BIGGEST_ALIGNMENT
);
1806 align
= MAX (align
, obj_align
);
1810 /* If we modified OFFSET based on T, then subtract the outstanding
1811 bit position offset. Similarly, increase the size of the accessed
1812 object to contain the negative offset. */
1815 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1817 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1820 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1822 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1823 we're overlapping. */
1828 /* Now set the attributes we computed above. */
1830 = get_mem_attrs (alias
, expr
, offset
, size
, align
,
1831 TYPE_ADDR_SPACE (type
), GET_MODE (ref
));
1833 /* If this is already known to be a scalar or aggregate, we are done. */
1834 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1837 /* If it is a reference into an aggregate, this is part of an aggregate.
1838 Otherwise we don't know. */
1839 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1840 || TREE_CODE (t
) == ARRAY_RANGE_REF
1841 || TREE_CODE (t
) == BIT_FIELD_REF
)
1842 MEM_IN_STRUCT_P (ref
) = 1;
1846 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1848 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1851 /* Set the alias set of MEM to SET. */
1854 set_mem_alias_set (rtx mem
, alias_set_type set
)
1856 #ifdef ENABLE_CHECKING
1857 /* If the new and old alias sets don't conflict, something is wrong. */
1858 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1861 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1862 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1863 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1866 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1869 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1871 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1872 MEM_OFFSET (mem
), MEM_SIZE (mem
),
1873 MEM_ALIGN (mem
), addrspace
, GET_MODE (mem
));
1876 /* Set the alignment of MEM to ALIGN bits. */
1879 set_mem_align (rtx mem
, unsigned int align
)
1881 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1882 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1883 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1886 /* Set the expr for MEM to EXPR. */
1889 set_mem_expr (rtx mem
, tree expr
)
1892 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1893 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1894 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1897 /* Set the offset of MEM to OFFSET. */
1900 set_mem_offset (rtx mem
, rtx offset
)
1902 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1903 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1904 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1907 /* Set the size of MEM to SIZE. */
1910 set_mem_size (rtx mem
, rtx size
)
1912 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1913 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1914 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1917 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1918 and its address changed to ADDR. (VOIDmode means don't change the mode.
1919 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1920 returned memory location is required to be valid. The memory
1921 attributes are not changed. */
1924 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1929 gcc_assert (MEM_P (memref
));
1930 as
= MEM_ADDR_SPACE (memref
);
1931 if (mode
== VOIDmode
)
1932 mode
= GET_MODE (memref
);
1934 addr
= XEXP (memref
, 0);
1935 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1936 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1941 if (reload_in_progress
|| reload_completed
)
1942 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1944 addr
= memory_address_addr_space (mode
, addr
, as
);
1947 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1950 new_rtx
= gen_rtx_MEM (mode
, addr
);
1951 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1955 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1956 way we are changing MEMREF, so we only preserve the alias set. */
1959 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1961 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1962 enum machine_mode mmode
= GET_MODE (new_rtx
);
1965 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1966 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1968 /* If there are no changes, just return the original memory reference. */
1969 if (new_rtx
== memref
)
1971 if (MEM_ATTRS (memref
) == 0
1972 || (MEM_EXPR (memref
) == NULL
1973 && MEM_OFFSET (memref
) == NULL
1974 && MEM_SIZE (memref
) == size
1975 && MEM_ALIGN (memref
) == align
))
1978 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1979 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1983 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
,
1984 MEM_ADDR_SPACE (memref
), mmode
);
1989 /* Return a memory reference like MEMREF, but with its mode changed
1990 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1991 nonzero, the memory address is forced to be valid.
1992 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1993 and caller is responsible for adjusting MEMREF base register. */
1996 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1997 int validate
, int adjust
)
1999 rtx addr
= XEXP (memref
, 0);
2001 rtx memoffset
= MEM_OFFSET (memref
);
2003 unsigned int memalign
= MEM_ALIGN (memref
);
2004 addr_space_t as
= MEM_ADDR_SPACE (memref
);
2005 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2008 /* If there are no changes, just return the original memory reference. */
2009 if (mode
== GET_MODE (memref
) && !offset
2010 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2013 /* ??? Prefer to create garbage instead of creating shared rtl.
2014 This may happen even if offset is nonzero -- consider
2015 (plus (plus reg reg) const_int) -- so do this always. */
2016 addr
= copy_rtx (addr
);
2018 /* Convert a possibly large offset to a signed value within the
2019 range of the target address space. */
2020 pbits
= GET_MODE_BITSIZE (address_mode
);
2021 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2023 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2024 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2030 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2031 object, we can merge it into the LO_SUM. */
2032 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2034 && (unsigned HOST_WIDE_INT
) offset
2035 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2036 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2037 plus_constant (XEXP (addr
, 1), offset
));
2039 addr
= plus_constant (addr
, offset
);
2042 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2044 /* If the address is a REG, change_address_1 rightfully returns memref,
2045 but this would destroy memref's MEM_ATTRS. */
2046 if (new_rtx
== memref
&& offset
!= 0)
2047 new_rtx
= copy_rtx (new_rtx
);
2049 /* Compute the new values of the memory attributes due to this adjustment.
2050 We add the offsets and update the alignment. */
2052 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
2054 /* Compute the new alignment by taking the MIN of the alignment and the
2055 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2060 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
2062 /* We can compute the size in a number of ways. */
2063 if (GET_MODE (new_rtx
) != BLKmode
)
2064 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
2065 else if (MEM_SIZE (memref
))
2066 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2068 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2069 memoffset
, size
, memalign
, as
,
2070 GET_MODE (new_rtx
));
2072 /* At some point, we should validate that this offset is within the object,
2073 if all the appropriate values are known. */
2077 /* Return a memory reference like MEMREF, but with its mode changed
2078 to MODE and its address changed to ADDR, which is assumed to be
2079 MEMREF offset by OFFSET bytes. If VALIDATE is
2080 nonzero, the memory address is forced to be valid. */
2083 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2084 HOST_WIDE_INT offset
, int validate
)
2086 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2087 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2090 /* Return a memory reference like MEMREF, but whose address is changed by
2091 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2092 known to be in OFFSET (possibly 1). */
2095 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2097 rtx new_rtx
, addr
= XEXP (memref
, 0);
2098 addr_space_t as
= MEM_ADDR_SPACE (memref
);
2099 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2101 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2103 /* At this point we don't know _why_ the address is invalid. It
2104 could have secondary memory references, multiplies or anything.
2106 However, if we did go and rearrange things, we can wind up not
2107 being able to recognize the magic around pic_offset_table_rtx.
2108 This stuff is fragile, and is yet another example of why it is
2109 bad to expose PIC machinery too early. */
2110 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
, as
)
2111 && GET_CODE (addr
) == PLUS
2112 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2114 addr
= force_reg (GET_MODE (addr
), addr
);
2115 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2118 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2119 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2121 /* If there are no changes, just return the original memory reference. */
2122 if (new_rtx
== memref
)
2125 /* Update the alignment to reflect the offset. Reset the offset, which
2128 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2129 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2130 as
, GET_MODE (new_rtx
));
2134 /* Return a memory reference like MEMREF, but with its address changed to
2135 ADDR. The caller is asserting that the actual piece of memory pointed
2136 to is the same, just the form of the address is being changed, such as
2137 by putting something into a register. */
2140 replace_equiv_address (rtx memref
, rtx addr
)
2142 /* change_address_1 copies the memory attribute structure without change
2143 and that's exactly what we want here. */
2144 update_temp_slot_address (XEXP (memref
, 0), addr
);
2145 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2148 /* Likewise, but the reference is not required to be valid. */
2151 replace_equiv_address_nv (rtx memref
, rtx addr
)
2153 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2156 /* Return a memory reference like MEMREF, but with its mode widened to
2157 MODE and offset by OFFSET. This would be used by targets that e.g.
2158 cannot issue QImode memory operations and have to use SImode memory
2159 operations plus masking logic. */
2162 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2164 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2165 tree expr
= MEM_EXPR (new_rtx
);
2166 rtx memoffset
= MEM_OFFSET (new_rtx
);
2167 unsigned int size
= GET_MODE_SIZE (mode
);
2169 /* If there are no changes, just return the original memory reference. */
2170 if (new_rtx
== memref
)
2173 /* If we don't know what offset we were at within the expression, then
2174 we can't know if we've overstepped the bounds. */
2180 if (TREE_CODE (expr
) == COMPONENT_REF
)
2182 tree field
= TREE_OPERAND (expr
, 1);
2183 tree offset
= component_ref_field_offset (expr
);
2185 if (! DECL_SIZE_UNIT (field
))
2191 /* Is the field at least as large as the access? If so, ok,
2192 otherwise strip back to the containing structure. */
2193 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2194 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2195 && INTVAL (memoffset
) >= 0)
2198 if (! host_integerp (offset
, 1))
2204 expr
= TREE_OPERAND (expr
, 0);
2206 = (GEN_INT (INTVAL (memoffset
)
2207 + tree_low_cst (offset
, 1)
2208 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2211 /* Similarly for the decl. */
2212 else if (DECL_P (expr
)
2213 && DECL_SIZE_UNIT (expr
)
2214 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2215 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2216 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2220 /* The widened memory access overflows the expression, which means
2221 that it could alias another expression. Zap it. */
2228 memoffset
= NULL_RTX
;
2230 /* The widened memory may alias other stuff, so zap the alias set. */
2231 /* ??? Maybe use get_alias_set on any remaining expression. */
2233 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2234 MEM_ALIGN (new_rtx
),
2235 MEM_ADDR_SPACE (new_rtx
), mode
);
2240 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2241 static GTY(()) tree spill_slot_decl
;
2244 get_spill_slot_decl (bool force_build_p
)
2246 tree d
= spill_slot_decl
;
2249 if (d
|| !force_build_p
)
2252 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2253 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2254 DECL_ARTIFICIAL (d
) = 1;
2255 DECL_IGNORED_P (d
) = 1;
2257 TREE_THIS_NOTRAP (d
) = 1;
2258 spill_slot_decl
= d
;
2260 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2261 MEM_NOTRAP_P (rd
) = 1;
2262 MEM_ATTRS (rd
) = get_mem_attrs (new_alias_set (), d
, const0_rtx
,
2263 NULL_RTX
, 0, ADDR_SPACE_GENERIC
, BLKmode
);
2264 SET_DECL_RTL (d
, rd
);
2269 /* Given MEM, a result from assign_stack_local, fill in the memory
2270 attributes as appropriate for a register allocator spill slot.
2271 These slots are not aliasable by other memory. We arrange for
2272 them all to use a single MEM_EXPR, so that the aliasing code can
2273 work properly in the case of shared spill slots. */
2276 set_mem_attrs_for_spill (rtx mem
)
2278 alias_set_type alias
;
2282 expr
= get_spill_slot_decl (true);
2283 alias
= MEM_ALIAS_SET (DECL_RTL (expr
));
2285 /* We expect the incoming memory to be of the form:
2286 (mem:MODE (plus (reg sfp) (const_int offset)))
2287 with perhaps the plus missing for offset = 0. */
2288 addr
= XEXP (mem
, 0);
2289 offset
= const0_rtx
;
2290 if (GET_CODE (addr
) == PLUS
2291 && CONST_INT_P (XEXP (addr
, 1)))
2292 offset
= XEXP (addr
, 1);
2294 MEM_ATTRS (mem
) = get_mem_attrs (alias
, expr
, offset
,
2295 MEM_SIZE (mem
), MEM_ALIGN (mem
),
2296 ADDR_SPACE_GENERIC
, GET_MODE (mem
));
2297 MEM_NOTRAP_P (mem
) = 1;
2300 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2303 gen_label_rtx (void)
2305 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2306 NULL
, label_num
++, NULL
);
2309 /* For procedure integration. */
2311 /* Install new pointers to the first and last insns in the chain.
2312 Also, set cur_insn_uid to one higher than the last in use.
2313 Used for an inline-procedure after copying the insn chain. */
2316 set_new_first_and_last_insn (rtx first
, rtx last
)
2324 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2326 int debug_count
= 0;
2328 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2329 cur_debug_insn_uid
= 0;
2331 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2332 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2333 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2336 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2337 if (DEBUG_INSN_P (insn
))
2342 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2344 cur_debug_insn_uid
++;
2347 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2348 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2353 /* Go through all the RTL insn bodies and copy any invalid shared
2354 structure. This routine should only be called once. */
2357 unshare_all_rtl_1 (rtx insn
)
2359 /* Unshare just about everything else. */
2360 unshare_all_rtl_in_chain (insn
);
2362 /* Make sure the addresses of stack slots found outside the insn chain
2363 (such as, in DECL_RTL of a variable) are not shared
2364 with the insn chain.
2366 This special care is necessary when the stack slot MEM does not
2367 actually appear in the insn chain. If it does appear, its address
2368 is unshared from all else at that point. */
2369 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2372 /* Go through all the RTL insn bodies and copy any invalid shared
2373 structure, again. This is a fairly expensive thing to do so it
2374 should be done sparingly. */
2377 unshare_all_rtl_again (rtx insn
)
2382 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2385 reset_used_flags (PATTERN (p
));
2386 reset_used_flags (REG_NOTES (p
));
2389 /* Make sure that virtual stack slots are not shared. */
2390 set_used_decls (DECL_INITIAL (cfun
->decl
));
2392 /* Make sure that virtual parameters are not shared. */
2393 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2394 set_used_flags (DECL_RTL (decl
));
2396 reset_used_flags (stack_slot_list
);
2398 unshare_all_rtl_1 (insn
);
2402 unshare_all_rtl (void)
2404 unshare_all_rtl_1 (get_insns ());
2408 struct rtl_opt_pass pass_unshare_all_rtl
=
2412 "unshare", /* name */
2414 unshare_all_rtl
, /* execute */
2417 0, /* static_pass_number */
2418 TV_NONE
, /* tv_id */
2419 0, /* properties_required */
2420 0, /* properties_provided */
2421 0, /* properties_destroyed */
2422 0, /* todo_flags_start */
2423 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2428 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2429 Recursively does the same for subexpressions. */
2432 verify_rtx_sharing (rtx orig
, rtx insn
)
2437 const char *format_ptr
;
2442 code
= GET_CODE (x
);
2444 /* These types may be freely shared. */
2462 /* SCRATCH must be shared because they represent distinct values. */
2464 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2469 if (shared_const_p (orig
))
2474 /* A MEM is allowed to be shared if its address is constant. */
2475 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2476 || reload_completed
|| reload_in_progress
)
2485 /* This rtx may not be shared. If it has already been seen,
2486 replace it with a copy of itself. */
2487 #ifdef ENABLE_CHECKING
2488 if (RTX_FLAG (x
, used
))
2490 error ("invalid rtl sharing found in the insn");
2492 error ("shared rtx");
2494 internal_error ("internal consistency failure");
2497 gcc_assert (!RTX_FLAG (x
, used
));
2499 RTX_FLAG (x
, used
) = 1;
2501 /* Now scan the subexpressions recursively. */
2503 format_ptr
= GET_RTX_FORMAT (code
);
2505 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2507 switch (*format_ptr
++)
2510 verify_rtx_sharing (XEXP (x
, i
), insn
);
2514 if (XVEC (x
, i
) != NULL
)
2517 int len
= XVECLEN (x
, i
);
2519 for (j
= 0; j
< len
; j
++)
2521 /* We allow sharing of ASM_OPERANDS inside single
2523 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2524 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2526 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2528 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2537 /* Go through all the RTL insn bodies and check that there is no unexpected
2538 sharing in between the subexpressions. */
2541 verify_rtl_sharing (void)
2545 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2548 reset_used_flags (PATTERN (p
));
2549 reset_used_flags (REG_NOTES (p
));
2550 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2553 rtx q
, sequence
= PATTERN (p
);
2555 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2557 q
= XVECEXP (sequence
, 0, i
);
2558 gcc_assert (INSN_P (q
));
2559 reset_used_flags (PATTERN (q
));
2560 reset_used_flags (REG_NOTES (q
));
2565 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2568 verify_rtx_sharing (PATTERN (p
), p
);
2569 verify_rtx_sharing (REG_NOTES (p
), p
);
2573 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2574 Assumes the mark bits are cleared at entry. */
2577 unshare_all_rtl_in_chain (rtx insn
)
2579 for (; insn
; insn
= NEXT_INSN (insn
))
2582 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2583 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2587 /* Go through all virtual stack slots of a function and mark them as
2588 shared. We never replace the DECL_RTLs themselves with a copy,
2589 but expressions mentioned into a DECL_RTL cannot be shared with
2590 expressions in the instruction stream.
2592 Note that reload may convert pseudo registers into memories in-place.
2593 Pseudo registers are always shared, but MEMs never are. Thus if we
2594 reset the used flags on MEMs in the instruction stream, we must set
2595 them again on MEMs that appear in DECL_RTLs. */
2598 set_used_decls (tree blk
)
2603 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2604 if (DECL_RTL_SET_P (t
))
2605 set_used_flags (DECL_RTL (t
));
2607 /* Now process sub-blocks. */
2608 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2612 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2613 Recursively does the same for subexpressions. Uses
2614 copy_rtx_if_shared_1 to reduce stack space. */
2617 copy_rtx_if_shared (rtx orig
)
2619 copy_rtx_if_shared_1 (&orig
);
2623 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2624 use. Recursively does the same for subexpressions. */
2627 copy_rtx_if_shared_1 (rtx
*orig1
)
2633 const char *format_ptr
;
2637 /* Repeat is used to turn tail-recursion into iteration. */
2644 code
= GET_CODE (x
);
2646 /* These types may be freely shared. */
2663 /* SCRATCH must be shared because they represent distinct values. */
2666 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2671 if (shared_const_p (x
))
2681 /* The chain of insns is not being copied. */
2688 /* This rtx may not be shared. If it has already been seen,
2689 replace it with a copy of itself. */
2691 if (RTX_FLAG (x
, used
))
2693 x
= shallow_copy_rtx (x
);
2696 RTX_FLAG (x
, used
) = 1;
2698 /* Now scan the subexpressions recursively.
2699 We can store any replaced subexpressions directly into X
2700 since we know X is not shared! Any vectors in X
2701 must be copied if X was copied. */
2703 format_ptr
= GET_RTX_FORMAT (code
);
2704 length
= GET_RTX_LENGTH (code
);
2707 for (i
= 0; i
< length
; i
++)
2709 switch (*format_ptr
++)
2713 copy_rtx_if_shared_1 (last_ptr
);
2714 last_ptr
= &XEXP (x
, i
);
2718 if (XVEC (x
, i
) != NULL
)
2721 int len
= XVECLEN (x
, i
);
2723 /* Copy the vector iff I copied the rtx and the length
2725 if (copied
&& len
> 0)
2726 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2728 /* Call recursively on all inside the vector. */
2729 for (j
= 0; j
< len
; j
++)
2732 copy_rtx_if_shared_1 (last_ptr
);
2733 last_ptr
= &XVECEXP (x
, i
, j
);
2748 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2749 to look for shared sub-parts. */
2752 reset_used_flags (rtx x
)
2756 const char *format_ptr
;
2759 /* Repeat is used to turn tail-recursion into iteration. */
2764 code
= GET_CODE (x
);
2766 /* These types may be freely shared so we needn't do any resetting
2791 /* The chain of insns is not being copied. */
2798 RTX_FLAG (x
, used
) = 0;
2800 format_ptr
= GET_RTX_FORMAT (code
);
2801 length
= GET_RTX_LENGTH (code
);
2803 for (i
= 0; i
< length
; i
++)
2805 switch (*format_ptr
++)
2813 reset_used_flags (XEXP (x
, i
));
2817 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2818 reset_used_flags (XVECEXP (x
, i
, j
));
2824 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2825 to look for shared sub-parts. */
2828 set_used_flags (rtx x
)
2832 const char *format_ptr
;
2837 code
= GET_CODE (x
);
2839 /* These types may be freely shared so we needn't do any resetting
2864 /* The chain of insns is not being copied. */
2871 RTX_FLAG (x
, used
) = 1;
2873 format_ptr
= GET_RTX_FORMAT (code
);
2874 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2876 switch (*format_ptr
++)
2879 set_used_flags (XEXP (x
, i
));
2883 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2884 set_used_flags (XVECEXP (x
, i
, j
));
2890 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2891 Return X or the rtx for the pseudo reg the value of X was copied into.
2892 OTHER must be valid as a SET_DEST. */
2895 make_safe_from (rtx x
, rtx other
)
2898 switch (GET_CODE (other
))
2901 other
= SUBREG_REG (other
);
2903 case STRICT_LOW_PART
:
2906 other
= XEXP (other
, 0);
2915 && GET_CODE (x
) != SUBREG
)
2917 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2918 || reg_mentioned_p (other
, x
))))
2920 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2921 emit_move_insn (temp
, x
);
2927 /* Emission of insns (adding them to the doubly-linked list). */
2929 /* Return the first insn of the current sequence or current function. */
2937 /* Specify a new insn as the first in the chain. */
2940 set_first_insn (rtx insn
)
2942 gcc_assert (!PREV_INSN (insn
));
2946 /* Return the last insn emitted in current sequence or current function. */
2949 get_last_insn (void)
2954 /* Specify a new insn as the last in the chain. */
2957 set_last_insn (rtx insn
)
2959 gcc_assert (!NEXT_INSN (insn
));
2963 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2966 get_last_insn_anywhere (void)
2968 struct sequence_stack
*stack
;
2971 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2972 if (stack
->last
!= 0)
2977 /* Return the first nonnote insn emitted in current sequence or current
2978 function. This routine looks inside SEQUENCEs. */
2981 get_first_nonnote_insn (void)
2983 rtx insn
= first_insn
;
2988 for (insn
= next_insn (insn
);
2989 insn
&& NOTE_P (insn
);
2990 insn
= next_insn (insn
))
2994 if (NONJUMP_INSN_P (insn
)
2995 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2996 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3003 /* Return the last nonnote insn emitted in current sequence or current
3004 function. This routine looks inside SEQUENCEs. */
3007 get_last_nonnote_insn (void)
3009 rtx insn
= last_insn
;
3014 for (insn
= previous_insn (insn
);
3015 insn
&& NOTE_P (insn
);
3016 insn
= previous_insn (insn
))
3020 if (NONJUMP_INSN_P (insn
)
3021 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3022 insn
= XVECEXP (PATTERN (insn
), 0,
3023 XVECLEN (PATTERN (insn
), 0) - 1);
3030 /* Return a number larger than any instruction's uid in this function. */
3035 return cur_insn_uid
;
3038 /* Return the number of actual (non-debug) insns emitted in this
3042 get_max_insn_count (void)
3044 int n
= cur_insn_uid
;
3046 /* The table size must be stable across -g, to avoid codegen
3047 differences due to debug insns, and not be affected by
3048 -fmin-insn-uid, to avoid excessive table size and to simplify
3049 debugging of -fcompare-debug failures. */
3050 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3051 n
-= cur_debug_insn_uid
;
3053 n
-= MIN_NONDEBUG_INSN_UID
;
3059 /* Return the next insn. If it is a SEQUENCE, return the first insn
3063 next_insn (rtx insn
)
3067 insn
= NEXT_INSN (insn
);
3068 if (insn
&& NONJUMP_INSN_P (insn
)
3069 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3070 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3076 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3080 previous_insn (rtx insn
)
3084 insn
= PREV_INSN (insn
);
3085 if (insn
&& NONJUMP_INSN_P (insn
)
3086 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3087 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3093 /* Return the next insn after INSN that is not a NOTE. This routine does not
3094 look inside SEQUENCEs. */
3097 next_nonnote_insn (rtx insn
)
3101 insn
= NEXT_INSN (insn
);
3102 if (insn
== 0 || !NOTE_P (insn
))
3109 /* Return the next insn after INSN that is not a NOTE, but stop the
3110 search before we enter another basic block. This routine does not
3111 look inside SEQUENCEs. */
3114 next_nonnote_insn_bb (rtx insn
)
3118 insn
= NEXT_INSN (insn
);
3119 if (insn
== 0 || !NOTE_P (insn
))
3121 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3128 /* Return the previous insn before INSN that is not a NOTE. This routine does
3129 not look inside SEQUENCEs. */
3132 prev_nonnote_insn (rtx insn
)
3136 insn
= PREV_INSN (insn
);
3137 if (insn
== 0 || !NOTE_P (insn
))
3144 /* Return the previous insn before INSN that is not a NOTE, but stop
3145 the search before we enter another basic block. This routine does
3146 not look inside SEQUENCEs. */
3149 prev_nonnote_insn_bb (rtx insn
)
3153 insn
= PREV_INSN (insn
);
3154 if (insn
== 0 || !NOTE_P (insn
))
3156 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3163 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3164 routine does not look inside SEQUENCEs. */
3167 next_nondebug_insn (rtx insn
)
3171 insn
= NEXT_INSN (insn
);
3172 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3179 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3180 This routine does not look inside SEQUENCEs. */
3183 prev_nondebug_insn (rtx insn
)
3187 insn
= PREV_INSN (insn
);
3188 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3195 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3196 or 0, if there is none. This routine does not look inside
3200 next_real_insn (rtx insn
)
3204 insn
= NEXT_INSN (insn
);
3205 if (insn
== 0 || INSN_P (insn
))
3212 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3213 or 0, if there is none. This routine does not look inside
3217 prev_real_insn (rtx insn
)
3221 insn
= PREV_INSN (insn
);
3222 if (insn
== 0 || INSN_P (insn
))
3229 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3230 This routine does not look inside SEQUENCEs. */
3233 last_call_insn (void)
3237 for (insn
= get_last_insn ();
3238 insn
&& !CALL_P (insn
);
3239 insn
= PREV_INSN (insn
))
3245 /* Find the next insn after INSN that really does something. This routine
3246 does not look inside SEQUENCEs. After reload this also skips over
3247 standalone USE and CLOBBER insn. */
3250 active_insn_p (const_rtx insn
)
3252 return (CALL_P (insn
) || JUMP_P (insn
)
3253 || (NONJUMP_INSN_P (insn
)
3254 && (! reload_completed
3255 || (GET_CODE (PATTERN (insn
)) != USE
3256 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3260 next_active_insn (rtx insn
)
3264 insn
= NEXT_INSN (insn
);
3265 if (insn
== 0 || active_insn_p (insn
))
3272 /* Find the last insn before INSN that really does something. This routine
3273 does not look inside SEQUENCEs. After reload this also skips over
3274 standalone USE and CLOBBER insn. */
3277 prev_active_insn (rtx insn
)
3281 insn
= PREV_INSN (insn
);
3282 if (insn
== 0 || active_insn_p (insn
))
3289 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3292 next_label (rtx insn
)
3296 insn
= NEXT_INSN (insn
);
3297 if (insn
== 0 || LABEL_P (insn
))
3304 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3307 prev_label (rtx insn
)
3311 insn
= PREV_INSN (insn
);
3312 if (insn
== 0 || LABEL_P (insn
))
3319 /* Return the last label to mark the same position as LABEL. Return null
3320 if LABEL itself is null. */
3323 skip_consecutive_labels (rtx label
)
3327 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3335 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3336 and REG_CC_USER notes so we can find it. */
3339 link_cc0_insns (rtx insn
)
3341 rtx user
= next_nonnote_insn (insn
);
3343 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3344 user
= XVECEXP (PATTERN (user
), 0, 0);
3346 add_reg_note (user
, REG_CC_SETTER
, insn
);
3347 add_reg_note (insn
, REG_CC_USER
, user
);
3350 /* Return the next insn that uses CC0 after INSN, which is assumed to
3351 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3352 applied to the result of this function should yield INSN).
3354 Normally, this is simply the next insn. However, if a REG_CC_USER note
3355 is present, it contains the insn that uses CC0.
3357 Return 0 if we can't find the insn. */
3360 next_cc0_user (rtx insn
)
3362 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3365 return XEXP (note
, 0);
3367 insn
= next_nonnote_insn (insn
);
3368 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3369 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3371 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3377 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3378 note, it is the previous insn. */
3381 prev_cc0_setter (rtx insn
)
3383 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3386 return XEXP (note
, 0);
3388 insn
= prev_nonnote_insn (insn
);
3389 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3396 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3399 find_auto_inc (rtx
*xp
, void *data
)
3402 rtx reg
= (rtx
) data
;
3404 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3407 switch (GET_CODE (x
))
3415 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3426 /* Increment the label uses for all labels present in rtx. */
3429 mark_label_nuses (rtx x
)
3435 code
= GET_CODE (x
);
3436 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3437 LABEL_NUSES (XEXP (x
, 0))++;
3439 fmt
= GET_RTX_FORMAT (code
);
3440 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3443 mark_label_nuses (XEXP (x
, i
));
3444 else if (fmt
[i
] == 'E')
3445 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3446 mark_label_nuses (XVECEXP (x
, i
, j
));
3451 /* Try splitting insns that can be split for better scheduling.
3452 PAT is the pattern which might split.
3453 TRIAL is the insn providing PAT.
3454 LAST is nonzero if we should return the last insn of the sequence produced.
3456 If this routine succeeds in splitting, it returns the first or last
3457 replacement insn depending on the value of LAST. Otherwise, it
3458 returns TRIAL. If the insn to be returned can be split, it will be. */
3461 try_split (rtx pat
, rtx trial
, int last
)
3463 rtx before
= PREV_INSN (trial
);
3464 rtx after
= NEXT_INSN (trial
);
3465 int has_barrier
= 0;
3468 rtx insn_last
, insn
;
3471 /* We're not good at redistributing frame information. */
3472 if (RTX_FRAME_RELATED_P (trial
))
3475 if (any_condjump_p (trial
)
3476 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3477 split_branch_probability
= INTVAL (XEXP (note
, 0));
3478 probability
= split_branch_probability
;
3480 seq
= split_insns (pat
, trial
);
3482 split_branch_probability
= -1;
3484 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3485 We may need to handle this specially. */
3486 if (after
&& BARRIER_P (after
))
3489 after
= NEXT_INSN (after
);
3495 /* Avoid infinite loop if any insn of the result matches
3496 the original pattern. */
3500 if (INSN_P (insn_last
)
3501 && rtx_equal_p (PATTERN (insn_last
), pat
))
3503 if (!NEXT_INSN (insn_last
))
3505 insn_last
= NEXT_INSN (insn_last
);
3508 /* We will be adding the new sequence to the function. The splitters
3509 may have introduced invalid RTL sharing, so unshare the sequence now. */
3510 unshare_all_rtl_in_chain (seq
);
3513 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3517 mark_jump_label (PATTERN (insn
), insn
, 0);
3519 if (probability
!= -1
3520 && any_condjump_p (insn
)
3521 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3523 /* We can preserve the REG_BR_PROB notes only if exactly
3524 one jump is created, otherwise the machine description
3525 is responsible for this step using
3526 split_branch_probability variable. */
3527 gcc_assert (njumps
== 1);
3528 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3533 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3534 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3537 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3540 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3543 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3544 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3546 /* Update the debug information for the CALL_INSN. */
3547 if (flag_enable_icf_debug
)
3548 (*debug_hooks
->copy_call_info
) (trial
, insn
);
3552 /* Copy notes, particularly those related to the CFG. */
3553 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3555 switch (REG_NOTE_KIND (note
))
3558 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3563 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3566 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3570 case REG_NON_LOCAL_GOTO
:
3571 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3574 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3580 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3582 rtx reg
= XEXP (note
, 0);
3583 if (!FIND_REG_INC_NOTE (insn
, reg
)
3584 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3585 add_reg_note (insn
, REG_INC
, reg
);
3595 /* If there are LABELS inside the split insns increment the
3596 usage count so we don't delete the label. */
3600 while (insn
!= NULL_RTX
)
3602 /* JUMP_P insns have already been "marked" above. */
3603 if (NONJUMP_INSN_P (insn
))
3604 mark_label_nuses (PATTERN (insn
));
3606 insn
= PREV_INSN (insn
);
3610 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3612 delete_insn (trial
);
3614 emit_barrier_after (tem
);
3616 /* Recursively call try_split for each new insn created; by the
3617 time control returns here that insn will be fully split, so
3618 set LAST and continue from the insn after the one returned.
3619 We can't use next_active_insn here since AFTER may be a note.
3620 Ignore deleted insns, which can be occur if not optimizing. */
3621 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3622 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3623 tem
= try_split (PATTERN (tem
), tem
, 1);
3625 /* Return either the first or the last insn, depending on which was
3628 ? (after
? PREV_INSN (after
) : last_insn
)
3629 : NEXT_INSN (before
);
3632 /* Make and return an INSN rtx, initializing all its slots.
3633 Store PATTERN in the pattern slots. */
3636 make_insn_raw (rtx pattern
)
3640 insn
= rtx_alloc (INSN
);
3642 INSN_UID (insn
) = cur_insn_uid
++;
3643 PATTERN (insn
) = pattern
;
3644 INSN_CODE (insn
) = -1;
3645 REG_NOTES (insn
) = NULL
;
3646 INSN_LOCATOR (insn
) = curr_insn_locator ();
3647 BLOCK_FOR_INSN (insn
) = NULL
;
3649 #ifdef ENABLE_RTL_CHECKING
3652 && (returnjump_p (insn
)
3653 || (GET_CODE (insn
) == SET
3654 && SET_DEST (insn
) == pc_rtx
)))
3656 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3664 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3667 make_debug_insn_raw (rtx pattern
)
3671 insn
= rtx_alloc (DEBUG_INSN
);
3672 INSN_UID (insn
) = cur_debug_insn_uid
++;
3673 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3674 INSN_UID (insn
) = cur_insn_uid
++;
3676 PATTERN (insn
) = pattern
;
3677 INSN_CODE (insn
) = -1;
3678 REG_NOTES (insn
) = NULL
;
3679 INSN_LOCATOR (insn
) = curr_insn_locator ();
3680 BLOCK_FOR_INSN (insn
) = NULL
;
3685 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3688 make_jump_insn_raw (rtx pattern
)
3692 insn
= rtx_alloc (JUMP_INSN
);
3693 INSN_UID (insn
) = cur_insn_uid
++;
3695 PATTERN (insn
) = pattern
;
3696 INSN_CODE (insn
) = -1;
3697 REG_NOTES (insn
) = NULL
;
3698 JUMP_LABEL (insn
) = NULL
;
3699 INSN_LOCATOR (insn
) = curr_insn_locator ();
3700 BLOCK_FOR_INSN (insn
) = NULL
;
3705 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3708 make_call_insn_raw (rtx pattern
)
3712 insn
= rtx_alloc (CALL_INSN
);
3713 INSN_UID (insn
) = cur_insn_uid
++;
3715 PATTERN (insn
) = pattern
;
3716 INSN_CODE (insn
) = -1;
3717 REG_NOTES (insn
) = NULL
;
3718 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3719 INSN_LOCATOR (insn
) = curr_insn_locator ();
3720 BLOCK_FOR_INSN (insn
) = NULL
;
3725 /* Add INSN to the end of the doubly-linked list.
3726 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3731 PREV_INSN (insn
) = last_insn
;
3732 NEXT_INSN (insn
) = 0;
3734 if (NULL
!= last_insn
)
3735 NEXT_INSN (last_insn
) = insn
;
3737 if (NULL
== first_insn
)
3743 /* Add INSN into the doubly-linked list after insn AFTER. This and
3744 the next should be the only functions called to insert an insn once
3745 delay slots have been filled since only they know how to update a
3749 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3751 rtx next
= NEXT_INSN (after
);
3753 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3755 NEXT_INSN (insn
) = next
;
3756 PREV_INSN (insn
) = after
;
3760 PREV_INSN (next
) = insn
;
3761 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3762 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3764 else if (last_insn
== after
)
3768 struct sequence_stack
*stack
= seq_stack
;
3769 /* Scan all pending sequences too. */
3770 for (; stack
; stack
= stack
->next
)
3771 if (after
== stack
->last
)
3780 if (!BARRIER_P (after
)
3781 && !BARRIER_P (insn
)
3782 && (bb
= BLOCK_FOR_INSN (after
)))
3784 set_block_for_insn (insn
, bb
);
3786 df_insn_rescan (insn
);
3787 /* Should not happen as first in the BB is always
3788 either NOTE or LABEL. */
3789 if (BB_END (bb
) == after
3790 /* Avoid clobbering of structure when creating new BB. */
3791 && !BARRIER_P (insn
)
3792 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3796 NEXT_INSN (after
) = insn
;
3797 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3799 rtx sequence
= PATTERN (after
);
3800 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3804 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3805 the previous should be the only functions called to insert an insn
3806 once delay slots have been filled since only they know how to
3807 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3811 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3813 rtx prev
= PREV_INSN (before
);
3815 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3817 PREV_INSN (insn
) = prev
;
3818 NEXT_INSN (insn
) = before
;
3822 NEXT_INSN (prev
) = insn
;
3823 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3825 rtx sequence
= PATTERN (prev
);
3826 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3829 else if (first_insn
== before
)
3833 struct sequence_stack
*stack
= seq_stack
;
3834 /* Scan all pending sequences too. */
3835 for (; stack
; stack
= stack
->next
)
3836 if (before
== stack
->first
)
3838 stack
->first
= insn
;
3846 && !BARRIER_P (before
)
3847 && !BARRIER_P (insn
))
3848 bb
= BLOCK_FOR_INSN (before
);
3852 set_block_for_insn (insn
, bb
);
3854 df_insn_rescan (insn
);
3855 /* Should not happen as first in the BB is always either NOTE or
3857 gcc_assert (BB_HEAD (bb
) != insn
3858 /* Avoid clobbering of structure when creating new BB. */
3860 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3863 PREV_INSN (before
) = insn
;
3864 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3865 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3869 /* Replace insn with an deleted instruction note. */
3872 set_insn_deleted (rtx insn
)
3874 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3875 PUT_CODE (insn
, NOTE
);
3876 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3880 /* Remove an insn from its doubly-linked list. This function knows how
3881 to handle sequences. */
3883 remove_insn (rtx insn
)
3885 rtx next
= NEXT_INSN (insn
);
3886 rtx prev
= PREV_INSN (insn
);
3889 /* Later in the code, the block will be marked dirty. */
3890 df_insn_delete (NULL
, INSN_UID (insn
));
3894 NEXT_INSN (prev
) = next
;
3895 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3897 rtx sequence
= PATTERN (prev
);
3898 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3901 else if (first_insn
== insn
)
3905 struct sequence_stack
*stack
= seq_stack
;
3906 /* Scan all pending sequences too. */
3907 for (; stack
; stack
= stack
->next
)
3908 if (insn
== stack
->first
)
3910 stack
->first
= next
;
3919 PREV_INSN (next
) = prev
;
3920 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3921 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3923 else if (last_insn
== insn
)
3927 struct sequence_stack
*stack
= seq_stack
;
3928 /* Scan all pending sequences too. */
3929 for (; stack
; stack
= stack
->next
)
3930 if (insn
== stack
->last
)
3938 if (!BARRIER_P (insn
)
3939 && (bb
= BLOCK_FOR_INSN (insn
)))
3942 df_set_bb_dirty (bb
);
3943 if (BB_HEAD (bb
) == insn
)
3945 /* Never ever delete the basic block note without deleting whole
3947 gcc_assert (!NOTE_P (insn
));
3948 BB_HEAD (bb
) = next
;
3950 if (BB_END (bb
) == insn
)
3955 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3958 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3960 gcc_assert (call_insn
&& CALL_P (call_insn
));
3962 /* Put the register usage information on the CALL. If there is already
3963 some usage information, put ours at the end. */
3964 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3968 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3969 link
= XEXP (link
, 1))
3972 XEXP (link
, 1) = call_fusage
;
3975 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3978 /* Delete all insns made since FROM.
3979 FROM becomes the new last instruction. */
3982 delete_insns_since (rtx from
)
3987 NEXT_INSN (from
) = 0;
3991 /* This function is deprecated, please use sequences instead.
3993 Move a consecutive bunch of insns to a different place in the chain.
3994 The insns to be moved are those between FROM and TO.
3995 They are moved to a new position after the insn AFTER.
3996 AFTER must not be FROM or TO or any insn in between.
3998 This function does not know about SEQUENCEs and hence should not be
3999 called after delay-slot filling has been done. */
4002 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4004 /* Splice this bunch out of where it is now. */
4005 if (PREV_INSN (from
))
4006 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4008 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4009 if (last_insn
== to
)
4010 last_insn
= PREV_INSN (from
);
4011 if (first_insn
== from
)
4012 first_insn
= NEXT_INSN (to
);
4014 /* Make the new neighbors point to it and it to them. */
4015 if (NEXT_INSN (after
))
4016 PREV_INSN (NEXT_INSN (after
)) = to
;
4018 NEXT_INSN (to
) = NEXT_INSN (after
);
4019 PREV_INSN (from
) = after
;
4020 NEXT_INSN (after
) = from
;
4021 if (after
== last_insn
)
4025 /* Same as function above, but take care to update BB boundaries. */
4027 reorder_insns (rtx from
, rtx to
, rtx after
)
4029 rtx prev
= PREV_INSN (from
);
4030 basic_block bb
, bb2
;
4032 reorder_insns_nobb (from
, to
, after
);
4034 if (!BARRIER_P (after
)
4035 && (bb
= BLOCK_FOR_INSN (after
)))
4038 df_set_bb_dirty (bb
);
4040 if (!BARRIER_P (from
)
4041 && (bb2
= BLOCK_FOR_INSN (from
)))
4043 if (BB_END (bb2
) == to
)
4044 BB_END (bb2
) = prev
;
4045 df_set_bb_dirty (bb2
);
4048 if (BB_END (bb
) == after
)
4051 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4053 df_insn_change_bb (x
, bb
);
4058 /* Emit insn(s) of given code and pattern
4059 at a specified place within the doubly-linked list.
4061 All of the emit_foo global entry points accept an object
4062 X which is either an insn list or a PATTERN of a single
4065 There are thus a few canonical ways to generate code and
4066 emit it at a specific place in the instruction stream. For
4067 example, consider the instruction named SPOT and the fact that
4068 we would like to emit some instructions before SPOT. We might
4072 ... emit the new instructions ...
4073 insns_head = get_insns ();
4076 emit_insn_before (insns_head, SPOT);
4078 It used to be common to generate SEQUENCE rtl instead, but that
4079 is a relic of the past which no longer occurs. The reason is that
4080 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4081 generated would almost certainly die right after it was created. */
4083 /* Make X be output before the instruction BEFORE. */
4086 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4091 gcc_assert (before
);
4096 switch (GET_CODE (x
))
4108 rtx next
= NEXT_INSN (insn
);
4109 add_insn_before (insn
, before
, bb
);
4115 #ifdef ENABLE_RTL_CHECKING
4122 last
= make_insn_raw (x
);
4123 add_insn_before (last
, before
, bb
);
4130 /* Make an instruction with body X and code JUMP_INSN
4131 and output it before the instruction BEFORE. */
4134 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4136 rtx insn
, last
= NULL_RTX
;
4138 gcc_assert (before
);
4140 switch (GET_CODE (x
))
4152 rtx next
= NEXT_INSN (insn
);
4153 add_insn_before (insn
, before
, NULL
);
4159 #ifdef ENABLE_RTL_CHECKING
4166 last
= make_jump_insn_raw (x
);
4167 add_insn_before (last
, before
, NULL
);
4174 /* Make an instruction with body X and code CALL_INSN
4175 and output it before the instruction BEFORE. */
4178 emit_call_insn_before_noloc (rtx x
, rtx before
)
4180 rtx last
= NULL_RTX
, insn
;
4182 gcc_assert (before
);
4184 switch (GET_CODE (x
))
4196 rtx next
= NEXT_INSN (insn
);
4197 add_insn_before (insn
, before
, NULL
);
4203 #ifdef ENABLE_RTL_CHECKING
4210 last
= make_call_insn_raw (x
);
4211 add_insn_before (last
, before
, NULL
);
4218 /* Make an instruction with body X and code DEBUG_INSN
4219 and output it before the instruction BEFORE. */
4222 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4224 rtx last
= NULL_RTX
, insn
;
4226 gcc_assert (before
);
4228 switch (GET_CODE (x
))
4240 rtx next
= NEXT_INSN (insn
);
4241 add_insn_before (insn
, before
, NULL
);
4247 #ifdef ENABLE_RTL_CHECKING
4254 last
= make_debug_insn_raw (x
);
4255 add_insn_before (last
, before
, NULL
);
4262 /* Make an insn of code BARRIER
4263 and output it before the insn BEFORE. */
4266 emit_barrier_before (rtx before
)
4268 rtx insn
= rtx_alloc (BARRIER
);
4270 INSN_UID (insn
) = cur_insn_uid
++;
4272 add_insn_before (insn
, before
, NULL
);
4276 /* Emit the label LABEL before the insn BEFORE. */
4279 emit_label_before (rtx label
, rtx before
)
4281 /* This can be called twice for the same label as a result of the
4282 confusion that follows a syntax error! So make it harmless. */
4283 if (INSN_UID (label
) == 0)
4285 INSN_UID (label
) = cur_insn_uid
++;
4286 add_insn_before (label
, before
, NULL
);
4292 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4295 emit_note_before (enum insn_note subtype
, rtx before
)
4297 rtx note
= rtx_alloc (NOTE
);
4298 INSN_UID (note
) = cur_insn_uid
++;
4299 NOTE_KIND (note
) = subtype
;
4300 BLOCK_FOR_INSN (note
) = NULL
;
4301 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4303 add_insn_before (note
, before
, NULL
);
4307 /* Helper for emit_insn_after, handles lists of instructions
4311 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4315 if (!bb
&& !BARRIER_P (after
))
4316 bb
= BLOCK_FOR_INSN (after
);
4320 df_set_bb_dirty (bb
);
4321 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4322 if (!BARRIER_P (last
))
4324 set_block_for_insn (last
, bb
);
4325 df_insn_rescan (last
);
4327 if (!BARRIER_P (last
))
4329 set_block_for_insn (last
, bb
);
4330 df_insn_rescan (last
);
4332 if (BB_END (bb
) == after
)
4336 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4339 after_after
= NEXT_INSN (after
);
4341 NEXT_INSN (after
) = first
;
4342 PREV_INSN (first
) = after
;
4343 NEXT_INSN (last
) = after_after
;
4345 PREV_INSN (after_after
) = last
;
4347 if (after
== last_insn
)
4353 /* Make X be output after the insn AFTER and set the BB of insn. If
4354 BB is NULL, an attempt is made to infer the BB from AFTER. */
4357 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4366 switch (GET_CODE (x
))
4375 last
= emit_insn_after_1 (x
, after
, bb
);
4378 #ifdef ENABLE_RTL_CHECKING
4385 last
= make_insn_raw (x
);
4386 add_insn_after (last
, after
, bb
);
4394 /* Make an insn of code JUMP_INSN with body X
4395 and output it after the insn AFTER. */
4398 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4404 switch (GET_CODE (x
))
4413 last
= emit_insn_after_1 (x
, after
, NULL
);
4416 #ifdef ENABLE_RTL_CHECKING
4423 last
= make_jump_insn_raw (x
);
4424 add_insn_after (last
, after
, NULL
);
4431 /* Make an instruction with body X and code CALL_INSN
4432 and output it after the instruction AFTER. */
4435 emit_call_insn_after_noloc (rtx x
, rtx after
)
4441 switch (GET_CODE (x
))
4450 last
= emit_insn_after_1 (x
, after
, NULL
);
4453 #ifdef ENABLE_RTL_CHECKING
4460 last
= make_call_insn_raw (x
);
4461 add_insn_after (last
, after
, NULL
);
4468 /* Make an instruction with body X and code CALL_INSN
4469 and output it after the instruction AFTER. */
4472 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4478 switch (GET_CODE (x
))
4487 last
= emit_insn_after_1 (x
, after
, NULL
);
4490 #ifdef ENABLE_RTL_CHECKING
4497 last
= make_debug_insn_raw (x
);
4498 add_insn_after (last
, after
, NULL
);
4505 /* Make an insn of code BARRIER
4506 and output it after the insn AFTER. */
4509 emit_barrier_after (rtx after
)
4511 rtx insn
= rtx_alloc (BARRIER
);
4513 INSN_UID (insn
) = cur_insn_uid
++;
4515 add_insn_after (insn
, after
, NULL
);
4519 /* Emit the label LABEL after the insn AFTER. */
4522 emit_label_after (rtx label
, rtx after
)
4524 /* This can be called twice for the same label
4525 as a result of the confusion that follows a syntax error!
4526 So make it harmless. */
4527 if (INSN_UID (label
) == 0)
4529 INSN_UID (label
) = cur_insn_uid
++;
4530 add_insn_after (label
, after
, NULL
);
4536 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4539 emit_note_after (enum insn_note subtype
, rtx after
)
4541 rtx note
= rtx_alloc (NOTE
);
4542 INSN_UID (note
) = cur_insn_uid
++;
4543 NOTE_KIND (note
) = subtype
;
4544 BLOCK_FOR_INSN (note
) = NULL
;
4545 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4546 add_insn_after (note
, after
, NULL
);
4550 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4552 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4554 rtx last
= emit_insn_after_noloc (pattern
, after
, NULL
);
4556 if (pattern
== NULL_RTX
|| !loc
)
4559 after
= NEXT_INSN (after
);
4562 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4563 INSN_LOCATOR (after
) = loc
;
4566 after
= NEXT_INSN (after
);
4571 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4573 emit_insn_after (rtx pattern
, rtx after
)
4577 while (DEBUG_INSN_P (prev
))
4578 prev
= PREV_INSN (prev
);
4581 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4583 return emit_insn_after_noloc (pattern
, after
, NULL
);
4586 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4588 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4590 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4592 if (pattern
== NULL_RTX
|| !loc
)
4595 after
= NEXT_INSN (after
);
4598 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4599 INSN_LOCATOR (after
) = loc
;
4602 after
= NEXT_INSN (after
);
4607 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4609 emit_jump_insn_after (rtx pattern
, rtx after
)
4613 while (DEBUG_INSN_P (prev
))
4614 prev
= PREV_INSN (prev
);
4617 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4619 return emit_jump_insn_after_noloc (pattern
, after
);
4622 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4624 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4626 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4628 if (pattern
== NULL_RTX
|| !loc
)
4631 after
= NEXT_INSN (after
);
4634 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4635 INSN_LOCATOR (after
) = loc
;
4638 after
= NEXT_INSN (after
);
4643 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4645 emit_call_insn_after (rtx pattern
, rtx after
)
4649 while (DEBUG_INSN_P (prev
))
4650 prev
= PREV_INSN (prev
);
4653 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4655 return emit_call_insn_after_noloc (pattern
, after
);
4658 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4660 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4662 rtx last
= emit_debug_insn_after_noloc (pattern
, after
);
4664 if (pattern
== NULL_RTX
|| !loc
)
4667 after
= NEXT_INSN (after
);
4670 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4671 INSN_LOCATOR (after
) = loc
;
4674 after
= NEXT_INSN (after
);
4679 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4681 emit_debug_insn_after (rtx pattern
, rtx after
)
4684 return emit_debug_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4686 return emit_debug_insn_after_noloc (pattern
, after
);
4689 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4691 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4693 rtx first
= PREV_INSN (before
);
4694 rtx last
= emit_insn_before_noloc (pattern
, before
, NULL
);
4696 if (pattern
== NULL_RTX
|| !loc
)
4700 first
= get_insns ();
4702 first
= NEXT_INSN (first
);
4705 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4706 INSN_LOCATOR (first
) = loc
;
4709 first
= NEXT_INSN (first
);
4714 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4716 emit_insn_before (rtx pattern
, rtx before
)
4720 while (DEBUG_INSN_P (next
))
4721 next
= PREV_INSN (next
);
4724 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4726 return emit_insn_before_noloc (pattern
, before
, NULL
);
4729 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4731 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4733 rtx first
= PREV_INSN (before
);
4734 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4736 if (pattern
== NULL_RTX
)
4739 first
= NEXT_INSN (first
);
4742 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4743 INSN_LOCATOR (first
) = loc
;
4746 first
= NEXT_INSN (first
);
4751 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4753 emit_jump_insn_before (rtx pattern
, rtx before
)
4757 while (DEBUG_INSN_P (next
))
4758 next
= PREV_INSN (next
);
4761 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4763 return emit_jump_insn_before_noloc (pattern
, before
);
4766 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4768 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4770 rtx first
= PREV_INSN (before
);
4771 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4773 if (pattern
== NULL_RTX
)
4776 first
= NEXT_INSN (first
);
4779 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4780 INSN_LOCATOR (first
) = loc
;
4783 first
= NEXT_INSN (first
);
4788 /* like emit_call_insn_before_noloc,
4789 but set insn_locator according to before. */
4791 emit_call_insn_before (rtx pattern
, rtx before
)
4795 while (DEBUG_INSN_P (next
))
4796 next
= PREV_INSN (next
);
4799 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4801 return emit_call_insn_before_noloc (pattern
, before
);
4804 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4806 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4808 rtx first
= PREV_INSN (before
);
4809 rtx last
= emit_debug_insn_before_noloc (pattern
, before
);
4811 if (pattern
== NULL_RTX
)
4814 first
= NEXT_INSN (first
);
4817 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4818 INSN_LOCATOR (first
) = loc
;
4821 first
= NEXT_INSN (first
);
4826 /* like emit_debug_insn_before_noloc,
4827 but set insn_locator according to before. */
4829 emit_debug_insn_before (rtx pattern
, rtx before
)
4831 if (INSN_P (before
))
4832 return emit_debug_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4834 return emit_debug_insn_before_noloc (pattern
, before
);
4837 /* Take X and emit it at the end of the doubly-linked
4840 Returns the last insn emitted. */
4845 rtx last
= last_insn
;
4851 switch (GET_CODE (x
))
4863 rtx next
= NEXT_INSN (insn
);
4870 #ifdef ENABLE_RTL_CHECKING
4877 last
= make_insn_raw (x
);
4885 /* Make an insn of code DEBUG_INSN with pattern X
4886 and add it to the end of the doubly-linked list. */
4889 emit_debug_insn (rtx x
)
4891 rtx last
= last_insn
;
4897 switch (GET_CODE (x
))
4909 rtx next
= NEXT_INSN (insn
);
4916 #ifdef ENABLE_RTL_CHECKING
4923 last
= make_debug_insn_raw (x
);
4931 /* Make an insn of code JUMP_INSN with pattern X
4932 and add it to the end of the doubly-linked list. */
4935 emit_jump_insn (rtx x
)
4937 rtx last
= NULL_RTX
, insn
;
4939 switch (GET_CODE (x
))
4951 rtx next
= NEXT_INSN (insn
);
4958 #ifdef ENABLE_RTL_CHECKING
4965 last
= make_jump_insn_raw (x
);
4973 /* Make an insn of code CALL_INSN with pattern X
4974 and add it to the end of the doubly-linked list. */
4977 emit_call_insn (rtx x
)
4981 switch (GET_CODE (x
))
4990 insn
= emit_insn (x
);
4993 #ifdef ENABLE_RTL_CHECKING
5000 insn
= make_call_insn_raw (x
);
5008 /* Add the label LABEL to the end of the doubly-linked list. */
5011 emit_label (rtx label
)
5013 /* This can be called twice for the same label
5014 as a result of the confusion that follows a syntax error!
5015 So make it harmless. */
5016 if (INSN_UID (label
) == 0)
5018 INSN_UID (label
) = cur_insn_uid
++;
5024 /* Make an insn of code BARRIER
5025 and add it to the end of the doubly-linked list. */
5030 rtx barrier
= rtx_alloc (BARRIER
);
5031 INSN_UID (barrier
) = cur_insn_uid
++;
5036 /* Emit a copy of note ORIG. */
5039 emit_note_copy (rtx orig
)
5043 note
= rtx_alloc (NOTE
);
5045 INSN_UID (note
) = cur_insn_uid
++;
5046 NOTE_DATA (note
) = NOTE_DATA (orig
);
5047 NOTE_KIND (note
) = NOTE_KIND (orig
);
5048 BLOCK_FOR_INSN (note
) = NULL
;
5054 /* Make an insn of code NOTE or type NOTE_NO
5055 and add it to the end of the doubly-linked list. */
5058 emit_note (enum insn_note kind
)
5062 note
= rtx_alloc (NOTE
);
5063 INSN_UID (note
) = cur_insn_uid
++;
5064 NOTE_KIND (note
) = kind
;
5065 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
5066 BLOCK_FOR_INSN (note
) = NULL
;
5071 /* Emit a clobber of lvalue X. */
5074 emit_clobber (rtx x
)
5076 /* CONCATs should not appear in the insn stream. */
5077 if (GET_CODE (x
) == CONCAT
)
5079 emit_clobber (XEXP (x
, 0));
5080 return emit_clobber (XEXP (x
, 1));
5082 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5085 /* Return a sequence of insns to clobber lvalue X. */
5099 /* Emit a use of rvalue X. */
5104 /* CONCATs should not appear in the insn stream. */
5105 if (GET_CODE (x
) == CONCAT
)
5107 emit_use (XEXP (x
, 0));
5108 return emit_use (XEXP (x
, 1));
5110 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5113 /* Return a sequence of insns to use rvalue X. */
5127 /* Cause next statement to emit a line note even if the line number
5131 force_next_line_note (void)
5136 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5137 note of this type already exists, remove it first. */
5140 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5142 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5148 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5149 has multiple sets (some callers assume single_set
5150 means the insn only has one set, when in fact it
5151 means the insn only has one * useful * set). */
5152 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5158 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5159 It serves no useful purpose and breaks eliminate_regs. */
5160 if (GET_CODE (datum
) == ASM_OPERANDS
)
5165 XEXP (note
, 0) = datum
;
5166 df_notes_rescan (insn
);
5174 XEXP (note
, 0) = datum
;
5180 add_reg_note (insn
, kind
, datum
);
5186 df_notes_rescan (insn
);
5192 return REG_NOTES (insn
);
5195 /* Return an indication of which type of insn should have X as a body.
5196 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5198 static enum rtx_code
5199 classify_insn (rtx x
)
5203 if (GET_CODE (x
) == CALL
)
5205 if (GET_CODE (x
) == RETURN
)
5207 if (GET_CODE (x
) == SET
)
5209 if (SET_DEST (x
) == pc_rtx
)
5211 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5216 if (GET_CODE (x
) == PARALLEL
)
5219 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5220 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5222 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5223 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5225 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5226 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5232 /* Emit the rtl pattern X as an appropriate kind of insn.
5233 If X is a label, it is simply added into the insn chain. */
5238 enum rtx_code code
= classify_insn (x
);
5243 return emit_label (x
);
5245 return emit_insn (x
);
5248 rtx insn
= emit_jump_insn (x
);
5249 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5250 return emit_barrier ();
5254 return emit_call_insn (x
);
5256 return emit_debug_insn (x
);
5262 /* Space for free sequence stack entries. */
5263 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5265 /* Begin emitting insns to a sequence. If this sequence will contain
5266 something that might cause the compiler to pop arguments to function
5267 calls (because those pops have previously been deferred; see
5268 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5269 before calling this function. That will ensure that the deferred
5270 pops are not accidentally emitted in the middle of this sequence. */
5273 start_sequence (void)
5275 struct sequence_stack
*tem
;
5277 if (free_sequence_stack
!= NULL
)
5279 tem
= free_sequence_stack
;
5280 free_sequence_stack
= tem
->next
;
5283 tem
= GGC_NEW (struct sequence_stack
);
5285 tem
->next
= seq_stack
;
5286 tem
->first
= first_insn
;
5287 tem
->last
= last_insn
;
5295 /* Set up the insn chain starting with FIRST as the current sequence,
5296 saving the previously current one. See the documentation for
5297 start_sequence for more information about how to use this function. */
5300 push_to_sequence (rtx first
)
5306 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
5312 /* Like push_to_sequence, but take the last insn as an argument to avoid
5313 looping through the list. */
5316 push_to_sequence2 (rtx first
, rtx last
)
5324 /* Set up the outer-level insn chain
5325 as the current sequence, saving the previously current one. */
5328 push_topmost_sequence (void)
5330 struct sequence_stack
*stack
, *top
= NULL
;
5334 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5337 first_insn
= top
->first
;
5338 last_insn
= top
->last
;
5341 /* After emitting to the outer-level insn chain, update the outer-level
5342 insn chain, and restore the previous saved state. */
5345 pop_topmost_sequence (void)
5347 struct sequence_stack
*stack
, *top
= NULL
;
5349 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5352 top
->first
= first_insn
;
5353 top
->last
= last_insn
;
5358 /* After emitting to a sequence, restore previous saved state.
5360 To get the contents of the sequence just made, you must call
5361 `get_insns' *before* calling here.
5363 If the compiler might have deferred popping arguments while
5364 generating this sequence, and this sequence will not be immediately
5365 inserted into the instruction stream, use do_pending_stack_adjust
5366 before calling get_insns. That will ensure that the deferred
5367 pops are inserted into this sequence, and not into some random
5368 location in the instruction stream. See INHIBIT_DEFER_POP for more
5369 information about deferred popping of arguments. */
5374 struct sequence_stack
*tem
= seq_stack
;
5376 first_insn
= tem
->first
;
5377 last_insn
= tem
->last
;
5378 seq_stack
= tem
->next
;
5380 memset (tem
, 0, sizeof (*tem
));
5381 tem
->next
= free_sequence_stack
;
5382 free_sequence_stack
= tem
;
5385 /* Return 1 if currently emitting into a sequence. */
5388 in_sequence_p (void)
5390 return seq_stack
!= 0;
5393 /* Put the various virtual registers into REGNO_REG_RTX. */
5396 init_virtual_regs (void)
5398 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5399 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5400 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5401 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5402 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5406 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5407 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5408 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5409 static int copy_insn_n_scratches
;
5411 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5412 copied an ASM_OPERANDS.
5413 In that case, it is the original input-operand vector. */
5414 static rtvec orig_asm_operands_vector
;
5416 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5417 copied an ASM_OPERANDS.
5418 In that case, it is the copied input-operand vector. */
5419 static rtvec copy_asm_operands_vector
;
5421 /* Likewise for the constraints vector. */
5422 static rtvec orig_asm_constraints_vector
;
5423 static rtvec copy_asm_constraints_vector
;
5425 /* Recursively create a new copy of an rtx for copy_insn.
5426 This function differs from copy_rtx in that it handles SCRATCHes and
5427 ASM_OPERANDs properly.
5428 Normally, this function is not used directly; use copy_insn as front end.
5429 However, you could first copy an insn pattern with copy_insn and then use
5430 this function afterwards to properly copy any REG_NOTEs containing
5434 copy_insn_1 (rtx orig
)
5439 const char *format_ptr
;
5444 code
= GET_CODE (orig
);
5459 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5464 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5465 if (copy_insn_scratch_in
[i
] == orig
)
5466 return copy_insn_scratch_out
[i
];
5470 if (shared_const_p (orig
))
5474 /* A MEM with a constant address is not sharable. The problem is that
5475 the constant address may need to be reloaded. If the mem is shared,
5476 then reloading one copy of this mem will cause all copies to appear
5477 to have been reloaded. */
5483 /* Copy the various flags, fields, and other information. We assume
5484 that all fields need copying, and then clear the fields that should
5485 not be copied. That is the sensible default behavior, and forces
5486 us to explicitly document why we are *not* copying a flag. */
5487 copy
= shallow_copy_rtx (orig
);
5489 /* We do not copy the USED flag, which is used as a mark bit during
5490 walks over the RTL. */
5491 RTX_FLAG (copy
, used
) = 0;
5493 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5496 RTX_FLAG (copy
, jump
) = 0;
5497 RTX_FLAG (copy
, call
) = 0;
5498 RTX_FLAG (copy
, frame_related
) = 0;
5501 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5503 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5504 switch (*format_ptr
++)
5507 if (XEXP (orig
, i
) != NULL
)
5508 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5513 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5514 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5515 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5516 XVEC (copy
, i
) = copy_asm_operands_vector
;
5517 else if (XVEC (orig
, i
) != NULL
)
5519 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5520 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5521 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5532 /* These are left unchanged. */
5539 if (code
== SCRATCH
)
5541 i
= copy_insn_n_scratches
++;
5542 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5543 copy_insn_scratch_in
[i
] = orig
;
5544 copy_insn_scratch_out
[i
] = copy
;
5546 else if (code
== ASM_OPERANDS
)
5548 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5549 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5550 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5551 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5557 /* Create a new copy of an rtx.
5558 This function differs from copy_rtx in that it handles SCRATCHes and
5559 ASM_OPERANDs properly.
5560 INSN doesn't really have to be a full INSN; it could be just the
5563 copy_insn (rtx insn
)
5565 copy_insn_n_scratches
= 0;
5566 orig_asm_operands_vector
= 0;
5567 orig_asm_constraints_vector
= 0;
5568 copy_asm_operands_vector
= 0;
5569 copy_asm_constraints_vector
= 0;
5570 return copy_insn_1 (insn
);
5573 /* Initialize data structures and variables in this file
5574 before generating rtl for each function. */
5581 if (MIN_NONDEBUG_INSN_UID
)
5582 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5585 cur_debug_insn_uid
= 1;
5586 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5587 last_location
= UNKNOWN_LOCATION
;
5588 first_label_num
= label_num
;
5591 /* Init the tables that describe all the pseudo regs. */
5593 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5595 crtl
->emit
.regno_pointer_align
5596 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5599 = GGC_NEWVEC (rtx
, crtl
->emit
.regno_pointer_align_length
);
5601 /* Put copies of all the hard registers into regno_reg_rtx. */
5602 memcpy (regno_reg_rtx
,
5603 static_regno_reg_rtx
,
5604 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5606 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5607 init_virtual_regs ();
5609 /* Indicate that the virtual registers and stack locations are
5611 REG_POINTER (stack_pointer_rtx
) = 1;
5612 REG_POINTER (frame_pointer_rtx
) = 1;
5613 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5614 REG_POINTER (arg_pointer_rtx
) = 1;
5616 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5617 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5618 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5619 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5620 REG_POINTER (virtual_cfa_rtx
) = 1;
5622 #ifdef STACK_BOUNDARY
5623 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5624 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5625 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5626 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5628 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5629 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5630 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5631 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5632 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5635 #ifdef INIT_EXPANDERS
5640 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5643 gen_const_vector (enum machine_mode mode
, int constant
)
5648 enum machine_mode inner
;
5650 units
= GET_MODE_NUNITS (mode
);
5651 inner
= GET_MODE_INNER (mode
);
5653 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5655 v
= rtvec_alloc (units
);
5657 /* We need to call this function after we set the scalar const_tiny_rtx
5659 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5661 for (i
= 0; i
< units
; ++i
)
5662 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5664 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5668 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5669 all elements are zero, and the one vector when all elements are one. */
5671 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5673 enum machine_mode inner
= GET_MODE_INNER (mode
);
5674 int nunits
= GET_MODE_NUNITS (mode
);
5678 /* Check to see if all of the elements have the same value. */
5679 x
= RTVEC_ELT (v
, nunits
- 1);
5680 for (i
= nunits
- 2; i
>= 0; i
--)
5681 if (RTVEC_ELT (v
, i
) != x
)
5684 /* If the values are all the same, check to see if we can use one of the
5685 standard constant vectors. */
5688 if (x
== CONST0_RTX (inner
))
5689 return CONST0_RTX (mode
);
5690 else if (x
== CONST1_RTX (inner
))
5691 return CONST1_RTX (mode
);
5694 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5697 /* Initialise global register information required by all functions. */
5700 init_emit_regs (void)
5704 /* Reset register attributes */
5705 htab_empty (reg_attrs_htab
);
5707 /* We need reg_raw_mode, so initialize the modes now. */
5708 init_reg_modes_target ();
5710 /* Assign register numbers to the globally defined register rtx. */
5711 pc_rtx
= gen_rtx_PC (VOIDmode
);
5712 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5713 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5714 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5715 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5716 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5717 virtual_incoming_args_rtx
=
5718 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5719 virtual_stack_vars_rtx
=
5720 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5721 virtual_stack_dynamic_rtx
=
5722 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5723 virtual_outgoing_args_rtx
=
5724 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5725 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5727 /* Initialize RTL for commonly used hard registers. These are
5728 copied into regno_reg_rtx as we begin to compile each function. */
5729 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5730 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5732 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5733 return_address_pointer_rtx
5734 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5737 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5738 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5740 pic_offset_table_rtx
= NULL_RTX
;
5743 /* Create some permanent unique rtl objects shared between all functions. */
5746 init_emit_once (void)
5749 enum machine_mode mode
;
5750 enum machine_mode double_mode
;
5752 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5754 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5755 const_int_htab_eq
, NULL
);
5757 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5758 const_double_htab_eq
, NULL
);
5760 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5761 const_fixed_htab_eq
, NULL
);
5763 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5764 mem_attrs_htab_eq
, NULL
);
5765 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5766 reg_attrs_htab_eq
, NULL
);
5768 /* Compute the word and byte modes. */
5770 byte_mode
= VOIDmode
;
5771 word_mode
= VOIDmode
;
5772 double_mode
= VOIDmode
;
5774 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5776 mode
= GET_MODE_WIDER_MODE (mode
))
5778 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5779 && byte_mode
== VOIDmode
)
5782 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5783 && word_mode
== VOIDmode
)
5787 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5789 mode
= GET_MODE_WIDER_MODE (mode
))
5791 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5792 && double_mode
== VOIDmode
)
5796 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5798 #ifdef INIT_EXPANDERS
5799 /* This is to initialize {init|mark|free}_machine_status before the first
5800 call to push_function_context_to. This is needed by the Chill front
5801 end which calls push_function_context_to before the first call to
5802 init_function_start. */
5806 /* Create the unique rtx's for certain rtx codes and operand values. */
5808 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5809 tries to use these variables. */
5810 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5811 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5812 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5814 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5815 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5816 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5818 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5820 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5821 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5822 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5827 dconsthalf
= dconst1
;
5828 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5830 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5832 const REAL_VALUE_TYPE
*const r
=
5833 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5835 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5837 mode
= GET_MODE_WIDER_MODE (mode
))
5838 const_tiny_rtx
[i
][(int) mode
] =
5839 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5841 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5843 mode
= GET_MODE_WIDER_MODE (mode
))
5844 const_tiny_rtx
[i
][(int) mode
] =
5845 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5847 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5849 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5851 mode
= GET_MODE_WIDER_MODE (mode
))
5852 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5854 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5856 mode
= GET_MODE_WIDER_MODE (mode
))
5857 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5860 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5862 mode
= GET_MODE_WIDER_MODE (mode
))
5864 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5865 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5868 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5870 mode
= GET_MODE_WIDER_MODE (mode
))
5872 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5873 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5876 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5878 mode
= GET_MODE_WIDER_MODE (mode
))
5880 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5881 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5884 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5886 mode
= GET_MODE_WIDER_MODE (mode
))
5888 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5889 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5892 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5894 mode
= GET_MODE_WIDER_MODE (mode
))
5896 FCONST0(mode
).data
.high
= 0;
5897 FCONST0(mode
).data
.low
= 0;
5898 FCONST0(mode
).mode
= mode
;
5899 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5900 FCONST0 (mode
), mode
);
5903 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5905 mode
= GET_MODE_WIDER_MODE (mode
))
5907 FCONST0(mode
).data
.high
= 0;
5908 FCONST0(mode
).data
.low
= 0;
5909 FCONST0(mode
).mode
= mode
;
5910 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5911 FCONST0 (mode
), mode
);
5914 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5916 mode
= GET_MODE_WIDER_MODE (mode
))
5918 FCONST0(mode
).data
.high
= 0;
5919 FCONST0(mode
).data
.low
= 0;
5920 FCONST0(mode
).mode
= mode
;
5921 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5922 FCONST0 (mode
), mode
);
5924 /* We store the value 1. */
5925 FCONST1(mode
).data
.high
= 0;
5926 FCONST1(mode
).data
.low
= 0;
5927 FCONST1(mode
).mode
= mode
;
5928 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5929 2 * HOST_BITS_PER_WIDE_INT
,
5930 &FCONST1(mode
).data
.low
,
5931 &FCONST1(mode
).data
.high
,
5932 SIGNED_FIXED_POINT_MODE_P (mode
));
5933 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5934 FCONST1 (mode
), mode
);
5937 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5939 mode
= GET_MODE_WIDER_MODE (mode
))
5941 FCONST0(mode
).data
.high
= 0;
5942 FCONST0(mode
).data
.low
= 0;
5943 FCONST0(mode
).mode
= mode
;
5944 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5945 FCONST0 (mode
), mode
);
5947 /* We store the value 1. */
5948 FCONST1(mode
).data
.high
= 0;
5949 FCONST1(mode
).data
.low
= 0;
5950 FCONST1(mode
).mode
= mode
;
5951 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5952 2 * HOST_BITS_PER_WIDE_INT
,
5953 &FCONST1(mode
).data
.low
,
5954 &FCONST1(mode
).data
.high
,
5955 SIGNED_FIXED_POINT_MODE_P (mode
));
5956 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5957 FCONST1 (mode
), mode
);
5960 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5962 mode
= GET_MODE_WIDER_MODE (mode
))
5964 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5967 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5969 mode
= GET_MODE_WIDER_MODE (mode
))
5971 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5974 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5976 mode
= GET_MODE_WIDER_MODE (mode
))
5978 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5979 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5982 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5984 mode
= GET_MODE_WIDER_MODE (mode
))
5986 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5987 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5990 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5991 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5992 const_tiny_rtx
[0][i
] = const0_rtx
;
5994 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5995 if (STORE_FLAG_VALUE
== 1)
5996 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5999 /* Produce exact duplicate of insn INSN after AFTER.
6000 Care updating of libcall regions if present. */
6003 emit_copy_of_insn_after (rtx insn
, rtx after
)
6007 switch (GET_CODE (insn
))
6010 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6014 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6018 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6022 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6023 if (CALL_INSN_FUNCTION_USAGE (insn
))
6024 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6025 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6026 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6027 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6028 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6029 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6030 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6037 /* Update LABEL_NUSES. */
6038 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6040 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
6042 /* If the old insn is frame related, then so is the new one. This is
6043 primarily needed for IA-64 unwind info which marks epilogue insns,
6044 which may be duplicated by the basic block reordering code. */
6045 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6047 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6048 will make them. REG_LABEL_TARGETs are created there too, but are
6049 supposed to be sticky, so we copy them. */
6050 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6051 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6053 if (GET_CODE (link
) == EXPR_LIST
)
6054 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
6055 copy_insn_1 (XEXP (link
, 0)));
6057 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
6060 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6064 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6066 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
6068 if (hard_reg_clobbers
[mode
][regno
])
6069 return hard_reg_clobbers
[mode
][regno
];
6071 return (hard_reg_clobbers
[mode
][regno
] =
6072 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6075 #include "gt-emit-rtl.h"