1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 @c Free Software Foundation, Inc.
4 @c This is part of the GCC manual.
5 @c For copying conditions, see the file gcc.texi.
9 @chapter Machine Descriptions
10 @cindex machine descriptions
12 A machine description has two parts: a file of instruction patterns
13 (@file{.md} file) and a C header file of macro definitions.
15 The @file{.md} file for a target machine contains a pattern for each
16 instruction that the target machine supports (or at least each instruction
17 that is worth telling the compiler about). It may also contain comments.
18 A semicolon causes the rest of the line to be a comment, unless the semicolon
19 is inside a quoted string.
21 See the next chapter for information on the C header file.
24 * Overview:: How the machine description is used.
25 * Patterns:: How to write instruction patterns.
26 * Example:: An explained example of a @code{define_insn} pattern.
27 * RTL Template:: The RTL template defines what insns match a pattern.
28 * Output Template:: The output template says how to make assembler code
30 * Output Statement:: For more generality, write C code to output
32 * Predicates:: Controlling what kinds of operands can be used
34 * Constraints:: Fine-tuning operand selection.
35 * Standard Names:: Names mark patterns to use for code generation.
36 * Pattern Ordering:: When the order of patterns makes a difference.
37 * Dependent Patterns:: Having one pattern may make you need another.
38 * Jump Patterns:: Special considerations for patterns for jump insns.
39 * Looping Patterns:: How to define patterns for special looping insns.
40 * Insn Canonicalizations::Canonicalization of Instructions
41 * Expander Definitions::Generating a sequence of several RTL insns
42 for a standard operation.
43 * Insn Splitting:: Splitting Instructions into Multiple Instructions.
44 * Including Patterns:: Including Patterns in Machine Descriptions.
45 * Peephole Definitions::Defining machine-specific peephole optimizations.
46 * Insn Attributes:: Specifying the value of attributes for generated insns.
47 * Conditional Execution::Generating @code{define_insn} patterns for
49 * Constant Definitions::Defining symbolic constants that can be used in the
51 * Iterators:: Using iterators to generate patterns from a template.
55 @section Overview of How the Machine Description is Used
57 There are three main conversions that happen in the compiler:
62 The front end reads the source code and builds a parse tree.
65 The parse tree is used to generate an RTL insn list based on named
69 The insn list is matched against the RTL templates to produce assembler
74 For the generate pass, only the names of the insns matter, from either a
75 named @code{define_insn} or a @code{define_expand}. The compiler will
76 choose the pattern with the right name and apply the operands according
77 to the documentation later in this chapter, without regard for the RTL
78 template or operand constraints. Note that the names the compiler looks
79 for are hard-coded in the compiler---it will ignore unnamed patterns and
80 patterns with names it doesn't know about, but if you don't provide a
81 named pattern it needs, it will abort.
83 If a @code{define_insn} is used, the template given is inserted into the
84 insn list. If a @code{define_expand} is used, one of three things
85 happens, based on the condition logic. The condition logic may manually
86 create new insns for the insn list, say via @code{emit_insn()}, and
87 invoke @code{DONE}. For certain named patterns, it may invoke @code{FAIL} to tell the
88 compiler to use an alternate way of performing that task. If it invokes
89 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
90 is inserted, as if the @code{define_expand} were a @code{define_insn}.
92 Once the insn list is generated, various optimization passes convert,
93 replace, and rearrange the insns in the insn list. This is where the
94 @code{define_split} and @code{define_peephole} patterns get used, for
97 Finally, the insn list's RTL is matched up with the RTL templates in the
98 @code{define_insn} patterns, and those patterns are used to emit the
99 final assembly code. For this purpose, each named @code{define_insn}
100 acts like it's unnamed, since the names are ignored.
103 @section Everything about Instruction Patterns
105 @cindex instruction patterns
108 Each instruction pattern contains an incomplete RTL expression, with pieces
109 to be filled in later, operand constraints that restrict how the pieces can
110 be filled in, and an output pattern or C code to generate the assembler
111 output, all wrapped up in a @code{define_insn} expression.
113 A @code{define_insn} is an RTL expression containing four or five operands:
117 An optional name. The presence of a name indicate that this instruction
118 pattern can perform a certain standard job for the RTL-generation
119 pass of the compiler. This pass knows certain names and will use
120 the instruction patterns with those names, if the names are defined
121 in the machine description.
123 The absence of a name is indicated by writing an empty string
124 where the name should go. Nameless instruction patterns are never
125 used for generating RTL code, but they may permit several simpler insns
126 to be combined later on.
128 Names that are not thus known and used in RTL-generation have no
129 effect; they are equivalent to no name at all.
131 For the purpose of debugging the compiler, you may also specify a
132 name beginning with the @samp{*} character. Such a name is used only
133 for identifying the instruction in RTL dumps; it is entirely equivalent
134 to having a nameless pattern for all other purposes.
137 The @dfn{RTL template} (@pxref{RTL Template}) is a vector of incomplete
138 RTL expressions which show what the instruction should look like. It is
139 incomplete because it may contain @code{match_operand},
140 @code{match_operator}, and @code{match_dup} expressions that stand for
141 operands of the instruction.
143 If the vector has only one element, that element is the template for the
144 instruction pattern. If the vector has multiple elements, then the
145 instruction pattern is a @code{parallel} expression containing the
149 @cindex pattern conditions
150 @cindex conditions, in patterns
151 A condition. This is a string which contains a C expression that is
152 the final test to decide whether an insn body matches this pattern.
154 @cindex named patterns and conditions
155 For a named pattern, the condition (if present) may not depend on
156 the data in the insn being matched, but only the target-machine-type
157 flags. The compiler needs to test these conditions during
158 initialization in order to learn exactly which named instructions are
159 available in a particular run.
162 For nameless patterns, the condition is applied only when matching an
163 individual insn, and only after the insn has matched the pattern's
164 recognition template. The insn's operands may be found in the vector
165 @code{operands}. For an insn where the condition has once matched, it
166 can't be used to control register allocation, for example by excluding
167 certain hard registers or hard register combinations.
170 The @dfn{output template}: a string that says how to output matching
171 insns as assembler code. @samp{%} in this string specifies where
172 to substitute the value of an operand. @xref{Output Template}.
174 When simple substitution isn't general enough, you can specify a piece
175 of C code to compute the output. @xref{Output Statement}.
178 Optionally, a vector containing the values of attributes for insns matching
179 this pattern. @xref{Insn Attributes}.
183 @section Example of @code{define_insn}
184 @cindex @code{define_insn} example
186 Here is an actual example of an instruction pattern, for the 68000/68020.
191 (match_operand:SI 0 "general_operand" "rm"))]
195 if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
197 return \"cmpl #0,%0\";
202 This can also be written using braced strings:
207 (match_operand:SI 0 "general_operand" "rm"))]
210 if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
216 This is an instruction that sets the condition codes based on the value of
217 a general operand. It has no condition, so any insn whose RTL description
218 has the form shown may be handled according to this pattern. The name
219 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL generation
220 pass that, when it is necessary to test such a value, an insn to do so
221 can be constructed using this pattern.
223 The output control string is a piece of C code which chooses which
224 output template to return based on the kind of operand and the specific
225 type of CPU for which code is being generated.
227 @samp{"rm"} is an operand constraint. Its meaning is explained below.
230 @section RTL Template
231 @cindex RTL insn template
232 @cindex generating insns
233 @cindex insns, generating
234 @cindex recognizing insns
235 @cindex insns, recognizing
237 The RTL template is used to define which insns match the particular pattern
238 and how to find their operands. For named patterns, the RTL template also
239 says how to construct an insn from specified operands.
241 Construction involves substituting specified operands into a copy of the
242 template. Matching involves determining the values that serve as the
243 operands in the insn being matched. Both of these activities are
244 controlled by special expression types that direct matching and
245 substitution of the operands.
248 @findex match_operand
249 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
250 This expression is a placeholder for operand number @var{n} of
251 the insn. When constructing an insn, operand number @var{n}
252 will be substituted at this point. When matching an insn, whatever
253 appears at this position in the insn will be taken as operand
254 number @var{n}; but it must satisfy @var{predicate} or this instruction
255 pattern will not match at all.
257 Operand numbers must be chosen consecutively counting from zero in
258 each instruction pattern. There may be only one @code{match_operand}
259 expression in the pattern for each operand number. Usually operands
260 are numbered in the order of appearance in @code{match_operand}
261 expressions. In the case of a @code{define_expand}, any operand numbers
262 used only in @code{match_dup} expressions have higher values than all
263 other operand numbers.
265 @var{predicate} is a string that is the name of a function that
266 accepts two arguments, an expression and a machine mode.
267 @xref{Predicates}. During matching, the function will be called with
268 the putative operand as the expression and @var{m} as the mode
269 argument (if @var{m} is not specified, @code{VOIDmode} will be used,
270 which normally causes @var{predicate} to accept any mode). If it
271 returns zero, this instruction pattern fails to match.
272 @var{predicate} may be an empty string; then it means no test is to be
273 done on the operand, so anything which occurs in this position is
276 Most of the time, @var{predicate} will reject modes other than @var{m}---but
277 not always. For example, the predicate @code{address_operand} uses
278 @var{m} as the mode of memory ref that the address should be valid for.
279 Many predicates accept @code{const_int} nodes even though their mode is
282 @var{constraint} controls reloading and the choice of the best register
283 class to use for a value, as explained later (@pxref{Constraints}).
284 If the constraint would be an empty string, it can be omitted.
286 People are often unclear on the difference between the constraint and the
287 predicate. The predicate helps decide whether a given insn matches the
288 pattern. The constraint plays no role in this decision; instead, it
289 controls various decisions in the case of an insn which does match.
291 @findex match_scratch
292 @item (match_scratch:@var{m} @var{n} @var{constraint})
293 This expression is also a placeholder for operand number @var{n}
294 and indicates that operand must be a @code{scratch} or @code{reg}
297 When matching patterns, this is equivalent to
300 (match_operand:@var{m} @var{n} "scratch_operand" @var{pred})
303 but, when generating RTL, it produces a (@code{scratch}:@var{m})
306 If the last few expressions in a @code{parallel} are @code{clobber}
307 expressions whose operands are either a hard register or
308 @code{match_scratch}, the combiner can add or delete them when
309 necessary. @xref{Side Effects}.
312 @item (match_dup @var{n})
313 This expression is also a placeholder for operand number @var{n}.
314 It is used when the operand needs to appear more than once in the
317 In construction, @code{match_dup} acts just like @code{match_operand}:
318 the operand is substituted into the insn being constructed. But in
319 matching, @code{match_dup} behaves differently. It assumes that operand
320 number @var{n} has already been determined by a @code{match_operand}
321 appearing earlier in the recognition template, and it matches only an
322 identical-looking expression.
324 Note that @code{match_dup} should not be used to tell the compiler that
325 a particular register is being used for two operands (example:
326 @code{add} that adds one register to another; the second register is
327 both an input operand and the output operand). Use a matching
328 constraint (@pxref{Simple Constraints}) for those. @code{match_dup} is for the cases where one
329 operand is used in two places in the template, such as an instruction
330 that computes both a quotient and a remainder, where the opcode takes
331 two input operands but the RTL template has to refer to each of those
332 twice; once for the quotient pattern and once for the remainder pattern.
334 @findex match_operator
335 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
336 This pattern is a kind of placeholder for a variable RTL expression
339 When constructing an insn, it stands for an RTL expression whose
340 expression code is taken from that of operand @var{n}, and whose
341 operands are constructed from the patterns @var{operands}.
343 When matching an expression, it matches an expression if the function
344 @var{predicate} returns nonzero on that expression @emph{and} the
345 patterns @var{operands} match the operands of the expression.
347 Suppose that the function @code{commutative_operator} is defined as
348 follows, to match any expression whose operator is one of the
349 commutative arithmetic operators of RTL and whose mode is @var{mode}:
353 commutative_integer_operator (x, mode)
355 enum machine_mode mode;
357 enum rtx_code code = GET_CODE (x);
358 if (GET_MODE (x) != mode)
360 return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
361 || code == EQ || code == NE);
365 Then the following pattern will match any RTL expression consisting
366 of a commutative operator applied to two general operands:
369 (match_operator:SI 3 "commutative_operator"
370 [(match_operand:SI 1 "general_operand" "g")
371 (match_operand:SI 2 "general_operand" "g")])
374 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
375 because the expressions to be matched all contain two operands.
377 When this pattern does match, the two operands of the commutative
378 operator are recorded as operands 1 and 2 of the insn. (This is done
379 by the two instances of @code{match_operand}.) Operand 3 of the insn
380 will be the entire commutative expression: use @code{GET_CODE
381 (operands[3])} to see which commutative operator was used.
383 The machine mode @var{m} of @code{match_operator} works like that of
384 @code{match_operand}: it is passed as the second argument to the
385 predicate function, and that function is solely responsible for
386 deciding whether the expression to be matched ``has'' that mode.
388 When constructing an insn, argument 3 of the gen-function will specify
389 the operation (i.e.@: the expression code) for the expression to be
390 made. It should be an RTL expression, whose expression code is copied
391 into a new expression whose operands are arguments 1 and 2 of the
392 gen-function. The subexpressions of argument 3 are not used;
393 only its expression code matters.
395 When @code{match_operator} is used in a pattern for matching an insn,
396 it usually best if the operand number of the @code{match_operator}
397 is higher than that of the actual operands of the insn. This improves
398 register allocation because the register allocator often looks at
399 operands 1 and 2 of insns to see if it can do register tying.
401 There is no way to specify constraints in @code{match_operator}. The
402 operand of the insn which corresponds to the @code{match_operator}
403 never has any constraints because it is never reloaded as a whole.
404 However, if parts of its @var{operands} are matched by
405 @code{match_operand} patterns, those parts may have constraints of
409 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
410 Like @code{match_dup}, except that it applies to operators instead of
411 operands. When constructing an insn, operand number @var{n} will be
412 substituted at this point. But in matching, @code{match_op_dup} behaves
413 differently. It assumes that operand number @var{n} has already been
414 determined by a @code{match_operator} appearing earlier in the
415 recognition template, and it matches only an identical-looking
418 @findex match_parallel
419 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
420 This pattern is a placeholder for an insn that consists of a
421 @code{parallel} expression with a variable number of elements. This
422 expression should only appear at the top level of an insn pattern.
424 When constructing an insn, operand number @var{n} will be substituted at
425 this point. When matching an insn, it matches if the body of the insn
426 is a @code{parallel} expression with at least as many elements as the
427 vector of @var{subpat} expressions in the @code{match_parallel}, if each
428 @var{subpat} matches the corresponding element of the @code{parallel},
429 @emph{and} the function @var{predicate} returns nonzero on the
430 @code{parallel} that is the body of the insn. It is the responsibility
431 of the predicate to validate elements of the @code{parallel} beyond
432 those listed in the @code{match_parallel}.
434 A typical use of @code{match_parallel} is to match load and store
435 multiple expressions, which can contain a variable number of elements
436 in a @code{parallel}. For example,
440 [(match_parallel 0 "load_multiple_operation"
441 [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
442 (match_operand:SI 2 "memory_operand" "m"))
444 (clobber (reg:SI 179))])]
449 This example comes from @file{a29k.md}. The function
450 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
451 that subsequent elements in the @code{parallel} are the same as the
452 @code{set} in the pattern, except that they are referencing subsequent
453 registers and memory locations.
455 An insn that matches this pattern might look like:
459 [(set (reg:SI 20) (mem:SI (reg:SI 100)))
461 (clobber (reg:SI 179))
463 (mem:SI (plus:SI (reg:SI 100)
466 (mem:SI (plus:SI (reg:SI 100)
470 @findex match_par_dup
471 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
472 Like @code{match_op_dup}, but for @code{match_parallel} instead of
473 @code{match_operator}.
477 @node Output Template
478 @section Output Templates and Operand Substitution
479 @cindex output templates
480 @cindex operand substitution
482 @cindex @samp{%} in template
484 The @dfn{output template} is a string which specifies how to output the
485 assembler code for an instruction pattern. Most of the template is a
486 fixed string which is output literally. The character @samp{%} is used
487 to specify where to substitute an operand; it can also be used to
488 identify places where different variants of the assembler require
491 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
492 operand @var{n} at that point in the string.
494 @samp{%} followed by a letter and a digit says to output an operand in an
495 alternate fashion. Four letters have standard, built-in meanings described
496 below. The machine description macro @code{PRINT_OPERAND} can define
497 additional letters with nonstandard meanings.
499 @samp{%c@var{digit}} can be used to substitute an operand that is a
500 constant value without the syntax that normally indicates an immediate
503 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
504 the constant is negated before printing.
506 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
507 memory reference, with the actual operand treated as the address. This may
508 be useful when outputting a ``load address'' instruction, because often the
509 assembler syntax for such an instruction requires you to write the operand
510 as if it were a memory reference.
512 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
515 @samp{%=} outputs a number which is unique to each instruction in the
516 entire compilation. This is useful for making local labels to be
517 referred to more than once in a single template that generates multiple
518 assembler instructions.
520 @samp{%} followed by a punctuation character specifies a substitution that
521 does not use an operand. Only one case is standard: @samp{%%} outputs a
522 @samp{%} into the assembler code. Other nonstandard cases can be
523 defined in the @code{PRINT_OPERAND} macro. You must also define
524 which punctuation characters are valid with the
525 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
529 The template may generate multiple assembler instructions. Write the text
530 for the instructions, with @samp{\;} between them.
532 @cindex matching operands
533 When the RTL contains two operands which are required by constraint to match
534 each other, the output template must refer only to the lower-numbered operand.
535 Matching operands are not always identical, and the rest of the compiler
536 arranges to put the proper RTL expression for printing into the lower-numbered
539 One use of nonstandard letters or punctuation following @samp{%} is to
540 distinguish between different assembler languages for the same machine; for
541 example, Motorola syntax versus MIT syntax for the 68000. Motorola syntax
542 requires periods in most opcode names, while MIT syntax does not. For
543 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
544 syntax. The same file of patterns is used for both kinds of output syntax,
545 but the character sequence @samp{%.} is used in each place where Motorola
546 syntax wants a period. The @code{PRINT_OPERAND} macro for Motorola syntax
547 defines the sequence to output a period; the macro for MIT syntax defines
550 @cindex @code{#} in template
551 As a special case, a template consisting of the single character @code{#}
552 instructs the compiler to first split the insn, and then output the
553 resulting instructions separately. This helps eliminate redundancy in the
554 output templates. If you have a @code{define_insn} that needs to emit
555 multiple assembler instructions, and there is a matching @code{define_split}
556 already defined, then you can simply use @code{#} as the output template
557 instead of writing an output template that emits the multiple assembler
560 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
561 of the form @samp{@{option0|option1|option2@}} in the templates. These
562 describe multiple variants of assembler language syntax.
563 @xref{Instruction Output}.
565 @node Output Statement
566 @section C Statements for Assembler Output
567 @cindex output statements
568 @cindex C statements for assembler output
569 @cindex generating assembler output
571 Often a single fixed template string cannot produce correct and efficient
572 assembler code for all the cases that are recognized by a single
573 instruction pattern. For example, the opcodes may depend on the kinds of
574 operands; or some unfortunate combinations of operands may require extra
575 machine instructions.
577 If the output control string starts with a @samp{@@}, then it is actually
578 a series of templates, each on a separate line. (Blank lines and
579 leading spaces and tabs are ignored.) The templates correspond to the
580 pattern's constraint alternatives (@pxref{Multi-Alternative}). For example,
581 if a target machine has a two-address add instruction @samp{addr} to add
582 into a register and another @samp{addm} to add a register to memory, you
583 might write this pattern:
586 (define_insn "addsi3"
587 [(set (match_operand:SI 0 "general_operand" "=r,m")
588 (plus:SI (match_operand:SI 1 "general_operand" "0,0")
589 (match_operand:SI 2 "general_operand" "g,r")))]
596 @cindex @code{*} in template
597 @cindex asterisk in template
598 If the output control string starts with a @samp{*}, then it is not an
599 output template but rather a piece of C program that should compute a
600 template. It should execute a @code{return} statement to return the
601 template-string you want. Most such templates use C string literals, which
602 require doublequote characters to delimit them. To include these
603 doublequote characters in the string, prefix each one with @samp{\}.
605 If the output control string is written as a brace block instead of a
606 double-quoted string, it is automatically assumed to be C code. In that
607 case, it is not necessary to put in a leading asterisk, or to escape the
608 doublequotes surrounding C string literals.
610 The operands may be found in the array @code{operands}, whose C data type
613 It is very common to select different ways of generating assembler code
614 based on whether an immediate operand is within a certain range. Be
615 careful when doing this, because the result of @code{INTVAL} is an
616 integer on the host machine. If the host machine has more bits in an
617 @code{int} than the target machine has in the mode in which the constant
618 will be used, then some of the bits you get from @code{INTVAL} will be
619 superfluous. For proper results, you must carefully disregard the
620 values of those bits.
622 @findex output_asm_insn
623 It is possible to output an assembler instruction and then go on to output
624 or compute more of them, using the subroutine @code{output_asm_insn}. This
625 receives two arguments: a template-string and a vector of operands. The
626 vector may be @code{operands}, or it may be another array of @code{rtx}
627 that you declare locally and initialize yourself.
629 @findex which_alternative
630 When an insn pattern has multiple alternatives in its constraints, often
631 the appearance of the assembler code is determined mostly by which alternative
632 was matched. When this is so, the C code can test the variable
633 @code{which_alternative}, which is the ordinal number of the alternative
634 that was actually satisfied (0 for the first, 1 for the second alternative,
637 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
638 for registers and @samp{clrmem} for memory locations. Here is how
639 a pattern could use @code{which_alternative} to choose between them:
643 [(set (match_operand:SI 0 "general_operand" "=r,m")
647 return (which_alternative == 0
648 ? "clrreg %0" : "clrmem %0");
652 The example above, where the assembler code to generate was
653 @emph{solely} determined by the alternative, could also have been specified
654 as follows, having the output control string start with a @samp{@@}:
659 [(set (match_operand:SI 0 "general_operand" "=r,m")
671 @cindex operand predicates
672 @cindex operator predicates
674 A predicate determines whether a @code{match_operand} or
675 @code{match_operator} expression matches, and therefore whether the
676 surrounding instruction pattern will be used for that combination of
677 operands. GCC has a number of machine-independent predicates, and you
678 can define machine-specific predicates as needed. By convention,
679 predicates used with @code{match_operand} have names that end in
680 @samp{_operand}, and those used with @code{match_operator} have names
681 that end in @samp{_operator}.
683 All predicates are Boolean functions (in the mathematical sense) of
684 two arguments: the RTL expression that is being considered at that
685 position in the instruction pattern, and the machine mode that the
686 @code{match_operand} or @code{match_operator} specifies. In this
687 section, the first argument is called @var{op} and the second argument
688 @var{mode}. Predicates can be called from C as ordinary two-argument
689 functions; this can be useful in output templates or other
690 machine-specific code.
692 Operand predicates can allow operands that are not actually acceptable
693 to the hardware, as long as the constraints give reload the ability to
694 fix them up (@pxref{Constraints}). However, GCC will usually generate
695 better code if the predicates specify the requirements of the machine
696 instructions as closely as possible. Reload cannot fix up operands
697 that must be constants (``immediate operands''); you must use a
698 predicate that allows only constants, or else enforce the requirement
699 in the extra condition.
701 @cindex predicates and machine modes
702 @cindex normal predicates
703 @cindex special predicates
704 Most predicates handle their @var{mode} argument in a uniform manner.
705 If @var{mode} is @code{VOIDmode} (unspecified), then @var{op} can have
706 any mode. If @var{mode} is anything else, then @var{op} must have the
707 same mode, unless @var{op} is a @code{CONST_INT} or integer
708 @code{CONST_DOUBLE}. These RTL expressions always have
709 @code{VOIDmode}, so it would be counterproductive to check that their
710 mode matches. Instead, predicates that accept @code{CONST_INT} and/or
711 integer @code{CONST_DOUBLE} check that the value stored in the
712 constant will fit in the requested mode.
714 Predicates with this behavior are called @dfn{normal}.
715 @command{genrecog} can optimize the instruction recognizer based on
716 knowledge of how normal predicates treat modes. It can also diagnose
717 certain kinds of common errors in the use of normal predicates; for
718 instance, it is almost always an error to use a normal predicate
719 without specifying a mode.
721 Predicates that do something different with their @var{mode} argument
722 are called @dfn{special}. The generic predicates
723 @code{address_operand} and @code{pmode_register_operand} are special
724 predicates. @command{genrecog} does not do any optimizations or
725 diagnosis when special predicates are used.
728 * Machine-Independent Predicates:: Predicates available to all back ends.
729 * Defining Predicates:: How to write machine-specific predicate
733 @node Machine-Independent Predicates
734 @subsection Machine-Independent Predicates
735 @cindex machine-independent predicates
736 @cindex generic predicates
738 These are the generic predicates available to all back ends. They are
739 defined in @file{recog.c}. The first category of predicates allow
740 only constant, or @dfn{immediate}, operands.
742 @defun immediate_operand
743 This predicate allows any sort of constant that fits in @var{mode}.
744 It is an appropriate choice for instructions that take operands that
748 @defun const_int_operand
749 This predicate allows any @code{CONST_INT} expression that fits in
750 @var{mode}. It is an appropriate choice for an immediate operand that
751 does not allow a symbol or label.
754 @defun const_double_operand
755 This predicate accepts any @code{CONST_DOUBLE} expression that has
756 exactly @var{mode}. If @var{mode} is @code{VOIDmode}, it will also
757 accept @code{CONST_INT}. It is intended for immediate floating point
762 The second category of predicates allow only some kind of machine
765 @defun register_operand
766 This predicate allows any @code{REG} or @code{SUBREG} expression that
767 is valid for @var{mode}. It is often suitable for arithmetic
768 instruction operands on a RISC machine.
771 @defun pmode_register_operand
772 This is a slight variant on @code{register_operand} which works around
773 a limitation in the machine-description reader.
776 (match_operand @var{n} "pmode_register_operand" @var{constraint})
783 (match_operand:P @var{n} "register_operand" @var{constraint})
787 would mean, if the machine-description reader accepted @samp{:P}
788 mode suffixes. Unfortunately, it cannot, because @code{Pmode} is an
789 alias for some other mode, and might vary with machine-specific
790 options. @xref{Misc}.
793 @defun scratch_operand
794 This predicate allows hard registers and @code{SCRATCH} expressions,
795 but not pseudo-registers. It is used internally by @code{match_scratch};
796 it should not be used directly.
800 The third category of predicates allow only some kind of memory reference.
802 @defun memory_operand
803 This predicate allows any valid reference to a quantity of mode
804 @var{mode} in memory, as determined by the weak form of
805 @code{GO_IF_LEGITIMATE_ADDRESS} (@pxref{Addressing Modes}).
808 @defun address_operand
809 This predicate is a little unusual; it allows any operand that is a
810 valid expression for the @emph{address} of a quantity of mode
811 @var{mode}, again determined by the weak form of
812 @code{GO_IF_LEGITIMATE_ADDRESS}. To first order, if
813 @samp{@w{(mem:@var{mode} (@var{exp}))}} is acceptable to
814 @code{memory_operand}, then @var{exp} is acceptable to
815 @code{address_operand}. Note that @var{exp} does not necessarily have
819 @defun indirect_operand
820 This is a stricter form of @code{memory_operand} which allows only
821 memory references with a @code{general_operand} as the address
822 expression. New uses of this predicate are discouraged, because
823 @code{general_operand} is very permissive, so it's hard to tell what
824 an @code{indirect_operand} does or does not allow. If a target has
825 different requirements for memory operands for different instructions,
826 it is better to define target-specific predicates which enforce the
827 hardware's requirements explicitly.
831 This predicate allows a memory reference suitable for pushing a value
832 onto the stack. This will be a @code{MEM} which refers to
833 @code{stack_pointer_rtx}, with a side-effect in its address expression
834 (@pxref{Incdec}); which one is determined by the
835 @code{STACK_PUSH_CODE} macro (@pxref{Frame Layout}).
839 This predicate allows a memory reference suitable for popping a value
840 off the stack. Again, this will be a @code{MEM} referring to
841 @code{stack_pointer_rtx}, with a side-effect in its address
842 expression. However, this time @code{STACK_POP_CODE} is expected.
846 The fourth category of predicates allow some combination of the above
849 @defun nonmemory_operand
850 This predicate allows any immediate or register operand valid for @var{mode}.
853 @defun nonimmediate_operand
854 This predicate allows any register or memory operand valid for @var{mode}.
857 @defun general_operand
858 This predicate allows any immediate, register, or memory operand
859 valid for @var{mode}.
863 Finally, there are two generic operator predicates.
865 @defun comparison_operator
866 This predicate matches any expression which performs an arithmetic
867 comparison in @var{mode}; that is, @code{COMPARISON_P} is true for the
871 @defun ordered_comparison_operator
872 This predicate matches any expression which performs an arithmetic
873 comparison in @var{mode} and whose expression code is valid for integer
874 modes; that is, the expression code will be one of @code{eq}, @code{ne},
875 @code{lt}, @code{ltu}, @code{le}, @code{leu}, @code{gt}, @code{gtu},
876 @code{ge}, @code{geu}.
879 @node Defining Predicates
880 @subsection Defining Machine-Specific Predicates
881 @cindex defining predicates
882 @findex define_predicate
883 @findex define_special_predicate
885 Many machines have requirements for their operands that cannot be
886 expressed precisely using the generic predicates. You can define
887 additional predicates using @code{define_predicate} and
888 @code{define_special_predicate} expressions. These expressions have
893 The name of the predicate, as it will be referred to in
894 @code{match_operand} or @code{match_operator} expressions.
897 An RTL expression which evaluates to true if the predicate allows the
898 operand @var{op}, false if it does not. This expression can only use
899 the following RTL codes:
903 When written inside a predicate expression, a @code{MATCH_OPERAND}
904 expression evaluates to true if the predicate it names would allow
905 @var{op}. The operand number and constraint are ignored. Due to
906 limitations in @command{genrecog}, you can only refer to generic
907 predicates and predicates that have already been defined.
910 This expression evaluates to true if @var{op} or a specified
911 subexpression of @var{op} has one of a given list of RTX codes.
913 The first operand of this expression is a string constant containing a
914 comma-separated list of RTX code names (in lower case). These are the
915 codes for which the @code{MATCH_CODE} will be true.
917 The second operand is a string constant which indicates what
918 subexpression of @var{op} to examine. If it is absent or the empty
919 string, @var{op} itself is examined. Otherwise, the string constant
920 must be a sequence of digits and/or lowercase letters. Each character
921 indicates a subexpression to extract from the current expression; for
922 the first character this is @var{op}, for the second and subsequent
923 characters it is the result of the previous character. A digit
924 @var{n} extracts @samp{@w{XEXP (@var{e}, @var{n})}}; a letter @var{l}
925 extracts @samp{@w{XVECEXP (@var{e}, 0, @var{n})}} where @var{n} is the
926 alphabetic ordinal of @var{l} (0 for `a', 1 for 'b', and so on). The
927 @code{MATCH_CODE} then examines the RTX code of the subexpression
928 extracted by the complete string. It is not possible to extract
929 components of an @code{rtvec} that is not at position 0 within its RTX
933 This expression has one operand, a string constant containing a C
934 expression. The predicate's arguments, @var{op} and @var{mode}, are
935 available with those names in the C expression. The @code{MATCH_TEST}
936 evaluates to true if the C expression evaluates to a nonzero value.
937 @code{MATCH_TEST} expressions must not have side effects.
943 The basic @samp{MATCH_} expressions can be combined using these
944 logical operators, which have the semantics of the C operators
945 @samp{&&}, @samp{||}, @samp{!}, and @samp{@w{? :}} respectively. As
946 in Common Lisp, you may give an @code{AND} or @code{IOR} expression an
947 arbitrary number of arguments; this has exactly the same effect as
948 writing a chain of two-argument @code{AND} or @code{IOR} expressions.
952 An optional block of C code, which should execute
953 @samp{@w{return true}} if the predicate is found to match and
954 @samp{@w{return false}} if it does not. It must not have any side
955 effects. The predicate arguments, @var{op} and @var{mode}, are
956 available with those names.
958 If a code block is present in a predicate definition, then the RTL
959 expression must evaluate to true @emph{and} the code block must
960 execute @samp{@w{return true}} for the predicate to allow the operand.
961 The RTL expression is evaluated first; do not re-check anything in the
962 code block that was checked in the RTL expression.
965 The program @command{genrecog} scans @code{define_predicate} and
966 @code{define_special_predicate} expressions to determine which RTX
967 codes are possibly allowed. You should always make this explicit in
968 the RTL predicate expression, using @code{MATCH_OPERAND} and
971 Here is an example of a simple predicate definition, from the IA64
976 ;; @r{True if @var{op} is a @code{SYMBOL_REF} which refers to the sdata section.}
977 (define_predicate "small_addr_symbolic_operand"
978 (and (match_code "symbol_ref")
979 (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
984 And here is another, showing the use of the C block.
988 ;; @r{True if @var{op} is a register operand that is (or could be) a GR reg.}
989 (define_predicate "gr_register_operand"
990 (match_operand 0 "register_operand")
993 if (GET_CODE (op) == SUBREG)
994 op = SUBREG_REG (op);
997 return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
1002 Predicates written with @code{define_predicate} automatically include
1003 a test that @var{mode} is @code{VOIDmode}, or @var{op} has the same
1004 mode as @var{mode}, or @var{op} is a @code{CONST_INT} or
1005 @code{CONST_DOUBLE}. They do @emph{not} check specifically for
1006 integer @code{CONST_DOUBLE}, nor do they test that the value of either
1007 kind of constant fits in the requested mode. This is because
1008 target-specific predicates that take constants usually have to do more
1009 stringent value checks anyway. If you need the exact same treatment
1010 of @code{CONST_INT} or @code{CONST_DOUBLE} that the generic predicates
1011 provide, use a @code{MATCH_OPERAND} subexpression to call
1012 @code{const_int_operand}, @code{const_double_operand}, or
1013 @code{immediate_operand}.
1015 Predicates written with @code{define_special_predicate} do not get any
1016 automatic mode checks, and are treated as having special mode handling
1017 by @command{genrecog}.
1019 The program @command{genpreds} is responsible for generating code to
1020 test predicates. It also writes a header file containing function
1021 declarations for all machine-specific predicates. It is not necessary
1022 to declare these predicates in @file{@var{cpu}-protos.h}.
1025 @c Most of this node appears by itself (in a different place) even
1026 @c when the INTERNALS flag is clear. Passages that require the internals
1027 @c manual's context are conditionalized to appear only in the internals manual.
1030 @section Operand Constraints
1031 @cindex operand constraints
1034 Each @code{match_operand} in an instruction pattern can specify
1035 constraints for the operands allowed. The constraints allow you to
1036 fine-tune matching within the set of operands allowed by the
1042 @section Constraints for @code{asm} Operands
1043 @cindex operand constraints, @code{asm}
1044 @cindex constraints, @code{asm}
1045 @cindex @code{asm} constraints
1047 Here are specific details on what constraint letters you can use with
1048 @code{asm} operands.
1050 Constraints can say whether
1051 an operand may be in a register, and which kinds of register; whether the
1052 operand can be a memory reference, and which kinds of address; whether the
1053 operand may be an immediate constant, and which possible values it may
1054 have. Constraints can also require two operands to match.
1058 * Simple Constraints:: Basic use of constraints.
1059 * Multi-Alternative:: When an insn has two alternative constraint-patterns.
1060 * Class Preferences:: Constraints guide which hard register to put things in.
1061 * Modifiers:: More precise control over effects of constraints.
1062 * Disable Insn Alternatives:: Disable insn alternatives using the @code{enabled} attribute.
1063 * Machine Constraints:: Existing constraints for some particular machines.
1064 * Define Constraints:: How to define machine-specific constraints.
1065 * C Constraint Interface:: How to test constraints from C code.
1071 * Simple Constraints:: Basic use of constraints.
1072 * Multi-Alternative:: When an insn has two alternative constraint-patterns.
1073 * Modifiers:: More precise control over effects of constraints.
1074 * Machine Constraints:: Special constraints for some particular machines.
1078 @node Simple Constraints
1079 @subsection Simple Constraints
1080 @cindex simple constraints
1082 The simplest kind of constraint is a string full of letters, each of
1083 which describes one kind of operand that is permitted. Here are
1084 the letters that are allowed:
1088 Whitespace characters are ignored and can be inserted at any position
1089 except the first. This enables each alternative for different operands to
1090 be visually aligned in the machine description even if they have different
1091 number of constraints and modifiers.
1093 @cindex @samp{m} in constraint
1094 @cindex memory references in constraints
1096 A memory operand is allowed, with any kind of address that the machine
1097 supports in general.
1098 Note that the letter used for the general memory constraint can be
1099 re-defined by a back end using the @code{TARGET_MEM_CONSTRAINT} macro.
1101 @cindex offsettable address
1102 @cindex @samp{o} in constraint
1104 A memory operand is allowed, but only if the address is
1105 @dfn{offsettable}. This means that adding a small integer (actually,
1106 the width in bytes of the operand, as determined by its machine mode)
1107 may be added to the address and the result is also a valid memory
1110 @cindex autoincrement/decrement addressing
1111 For example, an address which is constant is offsettable; so is an
1112 address that is the sum of a register and a constant (as long as a
1113 slightly larger constant is also within the range of address-offsets
1114 supported by the machine); but an autoincrement or autodecrement
1115 address is not offsettable. More complicated indirect/indexed
1116 addresses may or may not be offsettable depending on the other
1117 addressing modes that the machine supports.
1119 Note that in an output operand which can be matched by another
1120 operand, the constraint letter @samp{o} is valid only when accompanied
1121 by both @samp{<} (if the target machine has predecrement addressing)
1122 and @samp{>} (if the target machine has preincrement addressing).
1124 @cindex @samp{V} in constraint
1126 A memory operand that is not offsettable. In other words, anything that
1127 would fit the @samp{m} constraint but not the @samp{o} constraint.
1129 @cindex @samp{<} in constraint
1131 A memory operand with autodecrement addressing (either predecrement or
1132 postdecrement) is allowed.
1134 @cindex @samp{>} in constraint
1136 A memory operand with autoincrement addressing (either preincrement or
1137 postincrement) is allowed.
1139 @cindex @samp{r} in constraint
1140 @cindex registers in constraints
1142 A register operand is allowed provided that it is in a general
1145 @cindex constants in constraints
1146 @cindex @samp{i} in constraint
1148 An immediate integer operand (one with constant value) is allowed.
1149 This includes symbolic constants whose values will be known only at
1150 assembly time or later.
1152 @cindex @samp{n} in constraint
1154 An immediate integer operand with a known numeric value is allowed.
1155 Many systems cannot support assembly-time constants for operands less
1156 than a word wide. Constraints for these operands should use @samp{n}
1157 rather than @samp{i}.
1159 @cindex @samp{I} in constraint
1160 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
1161 Other letters in the range @samp{I} through @samp{P} may be defined in
1162 a machine-dependent fashion to permit immediate integer operands with
1163 explicit integer values in specified ranges. For example, on the
1164 68000, @samp{I} is defined to stand for the range of values 1 to 8.
1165 This is the range permitted as a shift count in the shift
1168 @cindex @samp{E} in constraint
1170 An immediate floating operand (expression code @code{const_double}) is
1171 allowed, but only if the target floating point format is the same as
1172 that of the host machine (on which the compiler is running).
1174 @cindex @samp{F} in constraint
1176 An immediate floating operand (expression code @code{const_double} or
1177 @code{const_vector}) is allowed.
1179 @cindex @samp{G} in constraint
1180 @cindex @samp{H} in constraint
1181 @item @samp{G}, @samp{H}
1182 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
1183 permit immediate floating operands in particular ranges of values.
1185 @cindex @samp{s} in constraint
1187 An immediate integer operand whose value is not an explicit integer is
1190 This might appear strange; if an insn allows a constant operand with a
1191 value not known at compile time, it certainly must allow any known
1192 value. So why use @samp{s} instead of @samp{i}? Sometimes it allows
1193 better code to be generated.
1195 For example, on the 68000 in a fullword instruction it is possible to
1196 use an immediate operand; but if the immediate value is between @minus{}128
1197 and 127, better code results from loading the value into a register and
1198 using the register. This is because the load into the register can be
1199 done with a @samp{moveq} instruction. We arrange for this to happen
1200 by defining the letter @samp{K} to mean ``any integer outside the
1201 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
1204 @cindex @samp{g} in constraint
1206 Any register, memory or immediate integer operand is allowed, except for
1207 registers that are not general registers.
1209 @cindex @samp{X} in constraint
1212 Any operand whatsoever is allowed, even if it does not satisfy
1213 @code{general_operand}. This is normally used in the constraint of
1214 a @code{match_scratch} when certain alternatives will not actually
1215 require a scratch register.
1218 Any operand whatsoever is allowed.
1221 @cindex @samp{0} in constraint
1222 @cindex digits in constraint
1223 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
1224 An operand that matches the specified operand number is allowed. If a
1225 digit is used together with letters within the same alternative, the
1226 digit should come last.
1228 This number is allowed to be more than a single digit. If multiple
1229 digits are encountered consecutively, they are interpreted as a single
1230 decimal integer. There is scant chance for ambiguity, since to-date
1231 it has never been desirable that @samp{10} be interpreted as matching
1232 either operand 1 @emph{or} operand 0. Should this be desired, one
1233 can use multiple alternatives instead.
1235 @cindex matching constraint
1236 @cindex constraint, matching
1237 This is called a @dfn{matching constraint} and what it really means is
1238 that the assembler has only a single operand that fills two roles
1240 considered separate in the RTL insn. For example, an add insn has two
1241 input operands and one output operand in the RTL, but on most CISC
1244 which @code{asm} distinguishes. For example, an add instruction uses
1245 two input operands and an output operand, but on most CISC
1247 machines an add instruction really has only two operands, one of them an
1248 input-output operand:
1254 Matching constraints are used in these circumstances.
1255 More precisely, the two operands that match must include one input-only
1256 operand and one output-only operand. Moreover, the digit must be a
1257 smaller number than the number of the operand that uses it in the
1261 For operands to match in a particular case usually means that they
1262 are identical-looking RTL expressions. But in a few special cases
1263 specific kinds of dissimilarity are allowed. For example, @code{*x}
1264 as an input operand will match @code{*x++} as an output operand.
1265 For proper results in such cases, the output template should always
1266 use the output-operand's number when printing the operand.
1269 @cindex load address instruction
1270 @cindex push address instruction
1271 @cindex address constraints
1272 @cindex @samp{p} in constraint
1274 An operand that is a valid memory address is allowed. This is
1275 for ``load address'' and ``push address'' instructions.
1277 @findex address_operand
1278 @samp{p} in the constraint must be accompanied by @code{address_operand}
1279 as the predicate in the @code{match_operand}. This predicate interprets
1280 the mode specified in the @code{match_operand} as the mode of the memory
1281 reference for which the address would be valid.
1283 @cindex other register constraints
1284 @cindex extensible constraints
1285 @item @var{other-letters}
1286 Other letters can be defined in machine-dependent fashion to stand for
1287 particular classes of registers or other arbitrary operand types.
1288 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
1289 for data, address and floating point registers.
1293 In order to have valid assembler code, each operand must satisfy
1294 its constraint. But a failure to do so does not prevent the pattern
1295 from applying to an insn. Instead, it directs the compiler to modify
1296 the code so that the constraint will be satisfied. Usually this is
1297 done by copying an operand into a register.
1299 Contrast, therefore, the two instruction patterns that follow:
1303 [(set (match_operand:SI 0 "general_operand" "=r")
1304 (plus:SI (match_dup 0)
1305 (match_operand:SI 1 "general_operand" "r")))]
1311 which has two operands, one of which must appear in two places, and
1315 [(set (match_operand:SI 0 "general_operand" "=r")
1316 (plus:SI (match_operand:SI 1 "general_operand" "0")
1317 (match_operand:SI 2 "general_operand" "r")))]
1323 which has three operands, two of which are required by a constraint to be
1324 identical. If we are considering an insn of the form
1327 (insn @var{n} @var{prev} @var{next}
1329 (plus:SI (reg:SI 6) (reg:SI 109)))
1334 the first pattern would not apply at all, because this insn does not
1335 contain two identical subexpressions in the right place. The pattern would
1336 say, ``That does not look like an add instruction; try other patterns''.
1337 The second pattern would say, ``Yes, that's an add instruction, but there
1338 is something wrong with it''. It would direct the reload pass of the
1339 compiler to generate additional insns to make the constraint true. The
1340 results might look like this:
1343 (insn @var{n2} @var{prev} @var{n}
1344 (set (reg:SI 3) (reg:SI 6))
1347 (insn @var{n} @var{n2} @var{next}
1349 (plus:SI (reg:SI 3) (reg:SI 109)))
1353 It is up to you to make sure that each operand, in each pattern, has
1354 constraints that can handle any RTL expression that could be present for
1355 that operand. (When multiple alternatives are in use, each pattern must,
1356 for each possible combination of operand expressions, have at least one
1357 alternative which can handle that combination of operands.) The
1358 constraints don't need to @emph{allow} any possible operand---when this is
1359 the case, they do not constrain---but they must at least point the way to
1360 reloading any possible operand so that it will fit.
1364 If the constraint accepts whatever operands the predicate permits,
1365 there is no problem: reloading is never necessary for this operand.
1367 For example, an operand whose constraints permit everything except
1368 registers is safe provided its predicate rejects registers.
1370 An operand whose predicate accepts only constant values is safe
1371 provided its constraints include the letter @samp{i}. If any possible
1372 constant value is accepted, then nothing less than @samp{i} will do;
1373 if the predicate is more selective, then the constraints may also be
1377 Any operand expression can be reloaded by copying it into a register.
1378 So if an operand's constraints allow some kind of register, it is
1379 certain to be safe. It need not permit all classes of registers; the
1380 compiler knows how to copy a register into another register of the
1381 proper class in order to make an instruction valid.
1383 @cindex nonoffsettable memory reference
1384 @cindex memory reference, nonoffsettable
1386 A nonoffsettable memory reference can be reloaded by copying the
1387 address into a register. So if the constraint uses the letter
1388 @samp{o}, all memory references are taken care of.
1391 A constant operand can be reloaded by allocating space in memory to
1392 hold it as preinitialized data. Then the memory reference can be used
1393 in place of the constant. So if the constraint uses the letters
1394 @samp{o} or @samp{m}, constant operands are not a problem.
1397 If the constraint permits a constant and a pseudo register used in an insn
1398 was not allocated to a hard register and is equivalent to a constant,
1399 the register will be replaced with the constant. If the predicate does
1400 not permit a constant and the insn is re-recognized for some reason, the
1401 compiler will crash. Thus the predicate must always recognize any
1402 objects allowed by the constraint.
1405 If the operand's predicate can recognize registers, but the constraint does
1406 not permit them, it can make the compiler crash. When this operand happens
1407 to be a register, the reload pass will be stymied, because it does not know
1408 how to copy a register temporarily into memory.
1410 If the predicate accepts a unary operator, the constraint applies to the
1411 operand. For example, the MIPS processor at ISA level 3 supports an
1412 instruction which adds two registers in @code{SImode} to produce a
1413 @code{DImode} result, but only if the registers are correctly sign
1414 extended. This predicate for the input operands accepts a
1415 @code{sign_extend} of an @code{SImode} register. Write the constraint
1416 to indicate the type of register that is required for the operand of the
1420 @node Multi-Alternative
1421 @subsection Multiple Alternative Constraints
1422 @cindex multiple alternative constraints
1424 Sometimes a single instruction has multiple alternative sets of possible
1425 operands. For example, on the 68000, a logical-or instruction can combine
1426 register or an immediate value into memory, or it can combine any kind of
1427 operand into a register; but it cannot combine one memory location into
1430 These constraints are represented as multiple alternatives. An alternative
1431 can be described by a series of letters for each operand. The overall
1432 constraint for an operand is made from the letters for this operand
1433 from the first alternative, a comma, the letters for this operand from
1434 the second alternative, a comma, and so on until the last alternative.
1436 Here is how it is done for fullword logical-or on the 68000:
1439 (define_insn "iorsi3"
1440 [(set (match_operand:SI 0 "general_operand" "=m,d")
1441 (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1442 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1446 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1447 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1448 2. The second alternative has @samp{d} (data register) for operand 0,
1449 @samp{0} for operand 1, and @samp{dmKs} for operand 2. The @samp{=} and
1450 @samp{%} in the constraints apply to all the alternatives; their
1451 meaning is explained in the next section (@pxref{Class Preferences}).
1454 @c FIXME Is this ? and ! stuff of use in asm()? If not, hide unless INTERNAL
1455 If all the operands fit any one alternative, the instruction is valid.
1456 Otherwise, for each alternative, the compiler counts how many instructions
1457 must be added to copy the operands so that that alternative applies.
1458 The alternative requiring the least copying is chosen. If two alternatives
1459 need the same amount of copying, the one that comes first is chosen.
1460 These choices can be altered with the @samp{?} and @samp{!} characters:
1463 @cindex @samp{?} in constraint
1464 @cindex question mark
1466 Disparage slightly the alternative that the @samp{?} appears in,
1467 as a choice when no alternative applies exactly. The compiler regards
1468 this alternative as one unit more costly for each @samp{?} that appears
1471 @cindex @samp{!} in constraint
1472 @cindex exclamation point
1474 Disparage severely the alternative that the @samp{!} appears in.
1475 This alternative can still be used if it fits without reloading,
1476 but if reloading is needed, some other alternative will be used.
1480 When an insn pattern has multiple alternatives in its constraints, often
1481 the appearance of the assembler code is determined mostly by which
1482 alternative was matched. When this is so, the C code for writing the
1483 assembler code can use the variable @code{which_alternative}, which is
1484 the ordinal number of the alternative that was actually satisfied (0 for
1485 the first, 1 for the second alternative, etc.). @xref{Output Statement}.
1489 @node Class Preferences
1490 @subsection Register Class Preferences
1491 @cindex class preference constraints
1492 @cindex register class preference constraints
1494 @cindex voting between constraint alternatives
1495 The operand constraints have another function: they enable the compiler
1496 to decide which kind of hardware register a pseudo register is best
1497 allocated to. The compiler examines the constraints that apply to the
1498 insns that use the pseudo register, looking for the machine-dependent
1499 letters such as @samp{d} and @samp{a} that specify classes of registers.
1500 The pseudo register is put in whichever class gets the most ``votes''.
1501 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1502 favor of a general register. The machine description says which registers
1503 are considered general.
1505 Of course, on some machines all registers are equivalent, and no register
1506 classes are defined. Then none of this complexity is relevant.
1510 @subsection Constraint Modifier Characters
1511 @cindex modifiers in constraints
1512 @cindex constraint modifier characters
1514 @c prevent bad page break with this line
1515 Here are constraint modifier characters.
1518 @cindex @samp{=} in constraint
1520 Means that this operand is write-only for this instruction: the previous
1521 value is discarded and replaced by output data.
1523 @cindex @samp{+} in constraint
1525 Means that this operand is both read and written by the instruction.
1527 When the compiler fixes up the operands to satisfy the constraints,
1528 it needs to know which operands are inputs to the instruction and
1529 which are outputs from it. @samp{=} identifies an output; @samp{+}
1530 identifies an operand that is both input and output; all other operands
1531 are assumed to be input only.
1533 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1534 first character of the constraint string.
1536 @cindex @samp{&} in constraint
1537 @cindex earlyclobber operand
1539 Means (in a particular alternative) that this operand is an
1540 @dfn{earlyclobber} operand, which is modified before the instruction is
1541 finished using the input operands. Therefore, this operand may not lie
1542 in a register that is used as an input operand or as part of any memory
1545 @samp{&} applies only to the alternative in which it is written. In
1546 constraints with multiple alternatives, sometimes one alternative
1547 requires @samp{&} while others do not. See, for example, the
1548 @samp{movdf} insn of the 68000.
1550 An input operand can be tied to an earlyclobber operand if its only
1551 use as an input occurs before the early result is written. Adding
1552 alternatives of this form often allows GCC to produce better code
1553 when only some of the inputs can be affected by the earlyclobber.
1554 See, for example, the @samp{mulsi3} insn of the ARM@.
1556 @samp{&} does not obviate the need to write @samp{=}.
1558 @cindex @samp{%} in constraint
1560 Declares the instruction to be commutative for this operand and the
1561 following operand. This means that the compiler may interchange the
1562 two operands if that is the cheapest way to make all operands fit the
1565 This is often used in patterns for addition instructions
1566 that really have only two operands: the result must go in one of the
1567 arguments. Here for example, is how the 68000 halfword-add
1568 instruction is defined:
1571 (define_insn "addhi3"
1572 [(set (match_operand:HI 0 "general_operand" "=m,r")
1573 (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1574 (match_operand:HI 2 "general_operand" "di,g")))]
1578 GCC can only handle one commutative pair in an asm; if you use more,
1579 the compiler may fail. Note that you need not use the modifier if
1580 the two alternatives are strictly identical; this would only waste
1581 time in the reload pass. The modifier is not operational after
1582 register allocation, so the result of @code{define_peephole2}
1583 and @code{define_split}s performed after reload cannot rely on
1584 @samp{%} to make the intended insn match.
1586 @cindex @samp{#} in constraint
1588 Says that all following characters, up to the next comma, are to be
1589 ignored as a constraint. They are significant only for choosing
1590 register preferences.
1592 @cindex @samp{*} in constraint
1594 Says that the following character should be ignored when choosing
1595 register preferences. @samp{*} has no effect on the meaning of the
1596 constraint as a constraint, and no effect on reloading.
1599 Here is an example: the 68000 has an instruction to sign-extend a
1600 halfword in a data register, and can also sign-extend a value by
1601 copying it into an address register. While either kind of register is
1602 acceptable, the constraints on an address-register destination are
1603 less strict, so it is best if register allocation makes an address
1604 register its goal. Therefore, @samp{*} is used so that the @samp{d}
1605 constraint letter (for data register) is ignored when computing
1606 register preferences.
1609 (define_insn "extendhisi2"
1610 [(set (match_operand:SI 0 "general_operand" "=*d,a")
1612 (match_operand:HI 1 "general_operand" "0,g")))]
1618 @node Machine Constraints
1619 @subsection Constraints for Particular Machines
1620 @cindex machine specific constraints
1621 @cindex constraints, machine specific
1623 Whenever possible, you should use the general-purpose constraint letters
1624 in @code{asm} arguments, since they will convey meaning more readily to
1625 people reading your code. Failing that, use the constraint letters
1626 that usually have very similar meanings across architectures. The most
1627 commonly used constraints are @samp{m} and @samp{r} (for memory and
1628 general-purpose registers respectively; @pxref{Simple Constraints}), and
1629 @samp{I}, usually the letter indicating the most common
1630 immediate-constant format.
1632 Each architecture defines additional constraints. These constraints
1633 are used by the compiler itself for instruction generation, as well as
1634 for @code{asm} statements; therefore, some of the constraints are not
1635 particularly useful for @code{asm}. Here is a summary of some of the
1636 machine-dependent constraints available on some particular machines;
1637 it includes both constraints that are useful for @code{asm} and
1638 constraints that aren't. The compiler source file mentioned in the
1639 table heading for each architecture is the definitive reference for
1640 the meanings of that architecture's constraints.
1643 @item ARM family---@file{config/arm/arm.h}
1646 Floating-point register
1649 VFP floating-point register
1652 One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
1656 Floating-point constant that would satisfy the constraint @samp{F} if it
1660 Integer that is valid as an immediate operand in a data processing
1661 instruction. That is, an integer in the range 0 to 255 rotated by a
1665 Integer in the range @minus{}4095 to 4095
1668 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1671 Integer that satisfies constraint @samp{I} when negated (twos complement)
1674 Integer in the range 0 to 32
1677 A memory reference where the exact address is in a single register
1678 (`@samp{m}' is preferable for @code{asm} statements)
1681 An item in the constant pool
1684 A symbol in the text segment of the current file
1687 A memory reference suitable for VFP load/store insns (reg+constant offset)
1690 A memory reference suitable for iWMMXt load/store instructions.
1693 A memory reference suitable for the ARMv4 ldrsb instruction.
1696 @item AVR family---@file{config/avr/constraints.md}
1699 Registers from r0 to r15
1702 Registers from r16 to r23
1705 Registers from r16 to r31
1708 Registers from r24 to r31. These registers can be used in @samp{adiw} command
1711 Pointer register (r26--r31)
1714 Base pointer register (r28--r31)
1717 Stack pointer register (SPH:SPL)
1720 Temporary register r0
1723 Register pair X (r27:r26)
1726 Register pair Y (r29:r28)
1729 Register pair Z (r31:r30)
1732 Constant greater than @minus{}1, less than 64
1735 Constant greater than @minus{}64, less than 1
1744 Constant that fits in 8 bits
1747 Constant integer @minus{}1
1750 Constant integer 8, 16, or 24
1756 A floating point constant 0.0
1759 Integer constant in the range @minus{}6 @dots{} 5.
1762 A memory address based on Y or Z pointer with displacement.
1765 @item CRX Architecture---@file{config/crx/crx.h}
1769 Registers from r0 to r14 (registers without stack pointer)
1772 Register r16 (64-bit accumulator lo register)
1775 Register r17 (64-bit accumulator hi register)
1778 Register pair r16-r17. (64-bit accumulator lo-hi pair)
1781 Constant that fits in 3 bits
1784 Constant that fits in 4 bits
1787 Constant that fits in 5 bits
1790 Constant that is one of @minus{}1, 4, @minus{}4, 7, 8, 12, 16, 20, 32, 48
1793 Floating point constant that is legal for store immediate
1796 @item Hewlett-Packard PA-RISC---@file{config/pa/pa.h}
1802 Floating point register
1805 Shift amount register
1808 Floating point register (deprecated)
1811 Upper floating point register (32-bit), floating point register (64-bit)
1817 Signed 11-bit integer constant
1820 Signed 14-bit integer constant
1823 Integer constant that can be deposited with a @code{zdepi} instruction
1826 Signed 5-bit integer constant
1832 Integer constant that can be loaded with a @code{ldil} instruction
1835 Integer constant whose value plus one is a power of 2
1838 Integer constant that can be used for @code{and} operations in @code{depi}
1839 and @code{extru} instructions
1848 Floating-point constant 0.0
1851 A @code{lo_sum} data-linkage-table memory operand
1854 A memory operand that can be used as the destination operand of an
1855 integer store instruction
1858 A scaled or unscaled indexed memory operand
1861 A memory operand for floating-point loads and stores
1864 A register indirect memory operand
1867 @item picoChip family---@file{picochip.h}
1873 Pointer register. A register which can be used to access memory without
1874 supplying an offset. Any other register can be used to access memory,
1875 but will need a constant offset. In the case of the offset being zero,
1876 it is more efficient to use a pointer register, since this reduces code
1880 A twin register. A register which may be paired with an adjacent
1881 register to create a 32-bit register.
1884 Any absolute memory address (e.g., symbolic constant, symbolic
1888 4-bit signed integer.
1891 4-bit unsigned integer.
1894 8-bit signed integer.
1897 Any constant whose absolute value is no greater than 4-bits.
1900 10-bit signed integer
1903 16-bit signed integer.
1907 @item PowerPC and IBM RS6000---@file{config/rs6000/rs6000.h}
1910 Address base register
1913 Floating point register (containing 64-bit value)
1916 Floating point register (containing 32-bit value)
1919 Altivec vector register
1922 VSX vector register to hold vector double data
1925 VSX vector register to hold vector float data
1928 VSX vector register to hold scalar float data
1934 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
1943 @samp{LINK} register
1946 @samp{CR} register (condition register) number 0
1949 @samp{CR} register (condition register)
1952 @samp{XER[CA]} carry bit (part of the XER register)
1955 Signed 16-bit constant
1958 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
1959 @code{SImode} constants)
1962 Unsigned 16-bit constant
1965 Signed 16-bit constant shifted left 16 bits
1968 Constant larger than 31
1977 Constant whose negation is a signed 16-bit constant
1980 Floating point constant that can be loaded into a register with one
1981 instruction per word
1984 Integer/Floating point constant that can be loaded into a register using
1988 Memory operand. Note that on PowerPC targets, @code{m} can include
1989 addresses that update the base register. It is therefore only safe
1990 to use @samp{m} in an @code{asm} statement if that @code{asm} statement
1991 accesses the operand exactly once. The @code{asm} statement must also
1992 use @samp{%U@var{<opno>}} as a placeholder for the ``update'' flag in the
1993 corresponding load or store instruction. For example:
1996 asm ("st%U0 %1,%0" : "=m" (mem) : "r" (val));
2002 asm ("st %1,%0" : "=m" (mem) : "r" (val));
2005 is not. Use @code{es} rather than @code{m} if you don't want the
2006 base register to be updated.
2009 A ``stable'' memory operand; that is, one which does not include any
2010 automodification of the base register. Unlike @samp{m}, this constraint
2011 can be used in @code{asm} statements that might access the operand
2012 several times, or that might not access it at all.
2015 Memory operand that is an offset from a register (it is usually better
2016 to use @samp{m} or @samp{es} in @code{asm} statements)
2019 Memory operand that is an indexed or indirect from a register (it is
2020 usually better to use @samp{m} or @samp{es} in @code{asm} statements)
2026 Address operand that is an indexed or indirect from a register (@samp{p} is
2027 preferable for @code{asm} statements)
2030 Constant suitable as a 64-bit mask operand
2033 Constant suitable as a 32-bit mask operand
2036 System V Release 4 small data area reference
2039 AND masks that can be performed by two rldic@{l, r@} instructions
2042 Vector constant that does not require memory
2045 Vector constant that is all zeros.
2049 @item Intel 386---@file{config/i386/constraints.md}
2052 Legacy register---the eight integer registers available on all
2053 i386 processors (@code{a}, @code{b}, @code{c}, @code{d},
2054 @code{si}, @code{di}, @code{bp}, @code{sp}).
2057 Any register accessible as @code{@var{r}l}. In 32-bit mode, @code{a},
2058 @code{b}, @code{c}, and @code{d}; in 64-bit mode, any integer register.
2061 Any register accessible as @code{@var{r}h}: @code{a}, @code{b},
2062 @code{c}, and @code{d}.
2066 Any register that can be used as the index in a base+index memory
2067 access: that is, any general register except the stack pointer.
2071 The @code{a} register.
2074 The @code{b} register.
2077 The @code{c} register.
2080 The @code{d} register.
2083 The @code{si} register.
2086 The @code{di} register.
2089 The @code{a} and @code{d} registers, as a pair (for instructions that
2090 return half the result in one and half in the other).
2093 Any 80387 floating-point (stack) register.
2096 Top of 80387 floating-point stack (@code{%st(0)}).
2099 Second from top of 80387 floating-point stack (@code{%st(1)}).
2108 First SSE register (@code{%xmm0}).
2112 Any SSE register, when SSE2 is enabled.
2115 Any SSE register, when SSE2 and inter-unit moves are enabled.
2118 Any MMX register, when inter-unit moves are enabled.
2122 Integer constant in the range 0 @dots{} 31, for 32-bit shifts.
2125 Integer constant in the range 0 @dots{} 63, for 64-bit shifts.
2128 Signed 8-bit integer constant.
2131 @code{0xFF} or @code{0xFFFF}, for andsi as a zero-extending move.
2134 0, 1, 2, or 3 (shifts for the @code{lea} instruction).
2137 Unsigned 8-bit integer constant (for @code{in} and @code{out}
2142 Integer constant in the range 0 @dots{} 127, for 128-bit shifts.
2146 Standard 80387 floating point constant.
2149 Standard SSE floating point constant.
2152 32-bit signed integer constant, or a symbolic reference known
2153 to fit that range (for immediate operands in sign-extending x86-64
2157 32-bit unsigned integer constant, or a symbolic reference known
2158 to fit that range (for immediate operands in zero-extending x86-64
2163 @item Intel IA-64---@file{config/ia64/ia64.h}
2166 General register @code{r0} to @code{r3} for @code{addl} instruction
2172 Predicate register (@samp{c} as in ``conditional'')
2175 Application register residing in M-unit
2178 Application register residing in I-unit
2181 Floating-point register
2185 Remember that @samp{m} allows postincrement and postdecrement which
2186 require printing with @samp{%Pn} on IA-64.
2187 Use @samp{S} to disallow postincrement and postdecrement.
2190 Floating-point constant 0.0 or 1.0
2193 14-bit signed integer constant
2196 22-bit signed integer constant
2199 8-bit signed integer constant for logical instructions
2202 8-bit adjusted signed integer constant for compare pseudo-ops
2205 6-bit unsigned integer constant for shift counts
2208 9-bit signed integer constant for load and store postincrements
2214 0 or @minus{}1 for @code{dep} instruction
2217 Non-volatile memory for floating-point loads and stores
2220 Integer constant in the range 1 to 4 for @code{shladd} instruction
2223 Memory operand except postincrement and postdecrement
2226 @item FRV---@file{config/frv/frv.h}
2229 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
2232 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
2235 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
2236 @code{icc0} to @code{icc3}).
2239 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
2242 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
2243 Odd registers are excluded not in the class but through the use of a machine
2244 mode larger than 4 bytes.
2247 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
2250 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
2251 Odd registers are excluded not in the class but through the use of a machine
2252 mode larger than 4 bytes.
2255 Register in the class @code{LR_REG} (the @code{lr} register).
2258 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
2259 Register numbers not divisible by 4 are excluded not in the class but through
2260 the use of a machine mode larger than 8 bytes.
2263 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
2266 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
2269 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
2272 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
2275 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
2276 Register numbers not divisible by 4 are excluded not in the class but through
2277 the use of a machine mode larger than 8 bytes.
2280 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
2283 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
2286 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
2289 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
2292 Floating point constant zero
2295 6-bit signed integer constant
2298 10-bit signed integer constant
2301 16-bit signed integer constant
2304 16-bit unsigned integer constant
2307 12-bit signed integer constant that is negative---i.e.@: in the
2308 range of @minus{}2048 to @minus{}1
2314 12-bit signed integer constant that is greater than zero---i.e.@: in the
2319 @item Blackfin family---@file{config/bfin/constraints.md}
2328 A call clobbered P register.
2331 A single register. If @var{n} is in the range 0 to 7, the corresponding D
2332 register. If it is @code{A}, then the register P0.
2335 Even-numbered D register
2338 Odd-numbered D register
2341 Accumulator register.
2344 Even-numbered accumulator register.
2347 Odd-numbered accumulator register.
2359 Registers used for circular buffering, i.e. I, B, or L registers.
2374 Any D, P, B, M, I or L register.
2377 Additional registers typically used only in prologues and epilogues: RETS,
2378 RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
2381 Any register except accumulators or CC.
2384 Signed 16 bit integer (in the range @minus{}32768 to 32767)
2387 Unsigned 16 bit integer (in the range 0 to 65535)
2390 Signed 7 bit integer (in the range @minus{}64 to 63)
2393 Unsigned 7 bit integer (in the range 0 to 127)
2396 Unsigned 5 bit integer (in the range 0 to 31)
2399 Signed 4 bit integer (in the range @minus{}8 to 7)
2402 Signed 3 bit integer (in the range @minus{}3 to 4)
2405 Unsigned 3 bit integer (in the range 0 to 7)
2408 Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
2411 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2412 use with either accumulator.
2415 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2416 use only with accumulator A1.
2425 An integer constant with exactly a single bit set.
2428 An integer constant with all bits set except exactly one.
2436 @item M32C---@file{config/m32c/m32c.c}
2441 @samp{$sp}, @samp{$fb}, @samp{$sb}.
2444 Any control register, when they're 16 bits wide (nothing if control
2445 registers are 24 bits wide)
2448 Any control register, when they're 24 bits wide.
2457 $r0 or $r2, or $r2r0 for 32 bit values.
2460 $r1 or $r3, or $r3r1 for 32 bit values.
2463 A register that can hold a 64 bit value.
2466 $r0 or $r1 (registers with addressable high/low bytes)
2475 Address registers when they're 16 bits wide.
2478 Address registers when they're 24 bits wide.
2481 Registers that can hold QI values.
2484 Registers that can be used with displacements ($a0, $a1, $sb).
2487 Registers that can hold 32 bit values.
2490 Registers that can hold 16 bit values.
2493 Registers chat can hold 16 bit values, including all control
2497 $r0 through R1, plus $a0 and $a1.
2503 The memory-based pseudo-registers $mem0 through $mem15.
2506 Registers that can hold pointers (16 bit registers for r8c, m16c; 24
2507 bit registers for m32cm, m32c).
2510 Matches multiple registers in a PARALLEL to form a larger register.
2511 Used to match function return values.
2517 @minus{}128 @dots{} 127
2520 @minus{}32768 @dots{} 32767
2526 @minus{}8 @dots{} @minus{}1 or 1 @dots{} 8
2529 @minus{}16 @dots{} @minus{}1 or 1 @dots{} 16
2532 @minus{}32 @dots{} @minus{}1 or 1 @dots{} 32
2535 @minus{}65536 @dots{} @minus{}1
2538 An 8 bit value with exactly one bit set.
2541 A 16 bit value with exactly one bit set.
2544 The common src/dest memory addressing modes.
2547 Memory addressed using $a0 or $a1.
2550 Memory addressed with immediate addresses.
2553 Memory addressed using the stack pointer ($sp).
2556 Memory addressed using the frame base register ($fb).
2559 Memory addressed using the small base register ($sb).
2565 @item MeP---@file{config/mep/constraints.md}
2575 Any control register.
2578 Either the $hi or the $lo register.
2581 Coprocessor registers that can be directly loaded ($c0-$c15).
2584 Coprocessor registers that can be moved to each other.
2587 Coprocessor registers that can be moved to core registers.
2599 Registers which can be used in $tp-relative addressing.
2605 The coprocessor registers.
2608 The coprocessor control registers.
2614 User-defined register set A.
2617 User-defined register set B.
2620 User-defined register set C.
2623 User-defined register set D.
2626 Offsets for $gp-rel addressing.
2629 Constants that can be used directly with boolean insns.
2632 Constants that can be moved directly to registers.
2635 Small constants that can be added to registers.
2641 Small constants that can be compared to registers.
2644 Constants that can be loaded into the top half of registers.
2647 Signed 8-bit immediates.
2650 Symbols encoded for $tp-rel or $gp-rel addressing.
2653 Non-constant addresses for loading/saving coprocessor registers.
2656 The top half of a symbol's value.
2659 A register indirect address without offset.
2662 Symbolic references to the control bus.
2668 @item MIPS---@file{config/mips/constraints.md}
2671 An address register. This is equivalent to @code{r} unless
2672 generating MIPS16 code.
2675 A floating-point register (if available).
2678 Formerly the @code{hi} register. This constraint is no longer supported.
2681 The @code{lo} register. Use this register to store values that are
2682 no bigger than a word.
2685 The concatenated @code{hi} and @code{lo} registers. Use this register
2686 to store doubleword values.
2689 A register suitable for use in an indirect jump. This will always be
2690 @code{$25} for @option{-mabicalls}.
2693 Register @code{$3}. Do not use this constraint in new code;
2694 it is retained only for compatibility with glibc.
2697 Equivalent to @code{r}; retained for backwards compatibility.
2700 A floating-point condition code register.
2703 A signed 16-bit constant (for arithmetic instructions).
2709 An unsigned 16-bit constant (for logic instructions).
2712 A signed 32-bit constant in which the lower 16 bits are zero.
2713 Such constants can be loaded using @code{lui}.
2716 A constant that cannot be loaded using @code{lui}, @code{addiu}
2720 A constant in the range @minus{}65535 to @minus{}1 (inclusive).
2723 A signed 15-bit constant.
2726 A constant in the range 1 to 65535 (inclusive).
2729 Floating-point zero.
2732 An address that can be used in a non-macro load or store.
2735 @item Motorola 680x0---@file{config/m68k/constraints.md}
2744 68881 floating-point register, if available
2747 Integer in the range 1 to 8
2750 16-bit signed number
2753 Signed number whose magnitude is greater than 0x80
2756 Integer in the range @minus{}8 to @minus{}1
2759 Signed number whose magnitude is greater than 0x100
2762 Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
2765 16 (for rotate using swap)
2768 Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
2771 Numbers that mov3q can handle
2774 Floating point constant that is not a 68881 constant
2777 Operands that satisfy 'm' when -mpcrel is in effect
2780 Operands that satisfy 's' when -mpcrel is not in effect
2783 Address register indirect addressing mode
2786 Register offset addressing
2801 Range of signed numbers that don't fit in 16 bits
2804 Integers valid for mvq
2807 Integers valid for a moveq followed by a swap
2810 Integers valid for mvz
2813 Integers valid for mvs
2819 Non-register operands allowed in clr
2823 @item Motorola 68HC11 & 68HC12 families---@file{config/m68hc11/m68hc11.h}
2838 Temporary soft register _.tmp
2841 A soft register _.d1 to _.d31
2844 Stack pointer register
2853 Pseudo register `z' (replaced by `x' or `y' at the end)
2856 An address register: x, y or z
2859 An address register: x or y
2862 Register pair (x:d) to form a 32-bit value
2865 Constants in the range @minus{}65536 to 65535
2868 Constants whose 16-bit low part is zero
2871 Constant integer 1 or @minus{}1
2877 Constants in the range @minus{}8 to 2
2881 @item Moxie---@file{config/moxie/constraints.md}
2890 A register indirect memory operand
2893 A constant in the range of 0 to 255.
2896 A constant in the range of 0 to @minus{}255.
2900 @item RX---@file{config/rx/constraints.md}
2903 An address which does not involve register indirect addressing or
2904 pre/post increment/decrement addressing.
2910 A constant in the range @minus{}256 to 255, inclusive.
2913 A constant in the range @minus{}128 to 127, inclusive.
2916 A constant in the range @minus{}32768 to 32767, inclusive.
2919 A constant in the range @minus{}8388608 to 8388607, inclusive.
2922 A constant in the range 0 to 15, inclusive.
2927 @item SPARC---@file{config/sparc/sparc.h}
2930 Floating-point register on the SPARC-V8 architecture and
2931 lower floating-point register on the SPARC-V9 architecture.
2934 Floating-point register. It is equivalent to @samp{f} on the
2935 SPARC-V8 architecture and contains both lower and upper
2936 floating-point registers on the SPARC-V9 architecture.
2939 Floating-point condition code register.
2942 Lower floating-point register. It is only valid on the SPARC-V9
2943 architecture when the Visual Instruction Set is available.
2946 Floating-point register. It is only valid on the SPARC-V9 architecture
2947 when the Visual Instruction Set is available.
2950 64-bit global or out register for the SPARC-V8+ architecture.
2956 Signed 13-bit constant
2962 32-bit constant with the low 12 bits clear (a constant that can be
2963 loaded with the @code{sethi} instruction)
2966 A constant in the range supported by @code{movcc} instructions
2969 A constant in the range supported by @code{movrcc} instructions
2972 Same as @samp{K}, except that it verifies that bits that are not in the
2973 lower 32-bit range are all zero. Must be used instead of @samp{K} for
2974 modes wider than @code{SImode}
2983 Signed 13-bit constant, sign-extended to 32 or 64 bits
2986 Floating-point constant whose integral representation can
2987 be moved into an integer register using a single sethi
2991 Floating-point constant whose integral representation can
2992 be moved into an integer register using a single mov
2996 Floating-point constant whose integral representation can
2997 be moved into an integer register using a high/lo_sum
2998 instruction sequence
3001 Memory address aligned to an 8-byte boundary
3007 Memory address for @samp{e} constraint registers
3014 @item SPU---@file{config/spu/spu.h}
3017 An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value.
3020 An immediate for and/xor/or instructions. const_int is treated as a 64 bit value.
3023 An immediate for the @code{iohl} instruction. const_int is treated as a 64 bit value.
3026 An immediate which can be loaded with @code{fsmbi}.
3029 An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value.
3032 An immediate for most arithmetic instructions. const_int is treated as a 32 bit value.
3035 An immediate for and/xor/or instructions. const_int is treated as a 32 bit value.
3038 An immediate for the @code{iohl} instruction. const_int is treated as a 32 bit value.
3041 A constant in the range [@minus{}64, 63] for shift/rotate instructions.
3044 An unsigned 7-bit constant for conversion/nop/channel instructions.
3047 A signed 10-bit constant for most arithmetic instructions.
3050 A signed 16 bit immediate for @code{stop}.
3053 An unsigned 16-bit constant for @code{iohl} and @code{fsmbi}.
3056 An unsigned 7-bit constant whose 3 least significant bits are 0.
3059 An unsigned 3-bit constant for 16-byte rotates and shifts
3062 Call operand, reg, for indirect calls
3065 Call operand, symbol, for relative calls.
3068 Call operand, const_int, for absolute calls.
3071 An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit.
3074 An immediate for shift and rotate instructions. const_int is treated as a 32 bit value.
3077 An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit.
3080 An immediate for the @code{iohl} instruction. const_int is sign extended to 128 bit.
3084 @item S/390 and zSeries---@file{config/s390/s390.h}
3087 Address register (general purpose register except r0)
3090 Condition code register
3093 Data register (arbitrary general purpose register)
3096 Floating-point register
3099 Unsigned 8-bit constant (0--255)
3102 Unsigned 12-bit constant (0--4095)
3105 Signed 16-bit constant (@minus{}32768--32767)
3108 Value appropriate as displacement.
3111 for short displacement
3112 @item (@minus{}524288..524287)
3113 for long displacement
3117 Constant integer with a value of 0x7fffffff.
3120 Multiple letter constraint followed by 4 parameter letters.
3123 number of the part counting from most to least significant
3127 mode of the containing operand
3129 value of the other parts (F---all bits set)
3131 The constraint matches if the specified part of a constant
3132 has a value different from its other parts.
3135 Memory reference without index register and with short displacement.
3138 Memory reference with index register and short displacement.
3141 Memory reference without index register but with long displacement.
3144 Memory reference with index register and long displacement.
3147 Pointer with short displacement.
3150 Pointer with long displacement.
3153 Shift count operand.
3157 @item Score family---@file{config/score/score.h}
3160 Registers from r0 to r32.
3163 Registers from r0 to r16.
3166 r8---r11 or r22---r27 registers.
3187 cnt + lcb + scb register.
3190 cr0---cr15 register.
3202 cp1 + cp2 + cp3 registers.
3205 High 16-bit constant (32-bit constant with 16 LSBs zero).
3208 Unsigned 5 bit integer (in the range 0 to 31).
3211 Unsigned 16 bit integer (in the range 0 to 65535).
3214 Signed 16 bit integer (in the range @minus{}32768 to 32767).
3217 Unsigned 14 bit integer (in the range 0 to 16383).
3220 Signed 14 bit integer (in the range @minus{}8192 to 8191).
3226 @item Xstormy16---@file{config/stormy16/stormy16.h}
3241 Registers r0 through r7.
3244 Registers r0 and r1.
3250 Registers r8 and r9.
3253 A constant between 0 and 3 inclusive.
3256 A constant that has exactly one bit set.
3259 A constant that has exactly one bit clear.
3262 A constant between 0 and 255 inclusive.
3265 A constant between @minus{}255 and 0 inclusive.
3268 A constant between @minus{}3 and 0 inclusive.
3271 A constant between 1 and 4 inclusive.
3274 A constant between @minus{}4 and @minus{}1 inclusive.
3277 A memory reference that is a stack push.
3280 A memory reference that is a stack pop.
3283 A memory reference that refers to a constant address of known value.
3286 The register indicated by Rx (not implemented yet).
3289 A constant that is not between 2 and 15 inclusive.
3296 @item Xtensa---@file{config/xtensa/constraints.md}
3299 General-purpose 32-bit register
3302 One-bit boolean register
3305 MAC16 40-bit accumulator register
3308 Signed 12-bit integer constant, for use in MOVI instructions
3311 Signed 8-bit integer constant, for use in ADDI instructions
3314 Integer constant valid for BccI instructions
3317 Unsigned constant valid for BccUI instructions
3324 @node Disable Insn Alternatives
3325 @subsection Disable insn alternatives using the @code{enabled} attribute
3328 The @code{enabled} insn attribute may be used to disable certain insn
3329 alternatives for machine-specific reasons. This is useful when adding
3330 new instructions to an existing pattern which are only available for
3331 certain cpu architecture levels as specified with the @code{-march=}
3334 If an insn alternative is disabled, then it will never be used. The
3335 compiler treats the constraints for the disabled alternative as
3338 In order to make use of the @code{enabled} attribute a back end has to add
3339 in the machine description files:
3343 A definition of the @code{enabled} insn attribute. The attribute is
3344 defined as usual using the @code{define_attr} command. This
3345 definition should be based on other insn attributes and/or target flags.
3346 The @code{enabled} attribute is a numeric attribute and should evaluate to
3347 @code{(const_int 1)} for an enabled alternative and to
3348 @code{(const_int 0)} otherwise.
3350 A definition of another insn attribute used to describe for what
3351 reason an insn alternative might be available or
3352 not. E.g. @code{cpu_facility} as in the example below.
3354 An assignment for the second attribute to each insn definition
3355 combining instructions which are not all available under the same
3356 circumstances. (Note: It obviously only makes sense for definitions
3357 with more than one alternative. Otherwise the insn pattern should be
3358 disabled or enabled using the insn condition.)
3361 E.g. the following two patterns could easily be merged using the @code{enabled}
3366 (define_insn "*movdi_old"
3367 [(set (match_operand:DI 0 "register_operand" "=d")
3368 (match_operand:DI 1 "register_operand" " d"))]
3372 (define_insn "*movdi_new"
3373 [(set (match_operand:DI 0 "register_operand" "=d,f,d")
3374 (match_operand:DI 1 "register_operand" " d,d,f"))]
3387 (define_insn "*movdi_combined"
3388 [(set (match_operand:DI 0 "register_operand" "=d,f,d")
3389 (match_operand:DI 1 "register_operand" " d,d,f"))]
3395 [(set_attr "cpu_facility" "*,new,new")])
3399 with the @code{enabled} attribute defined like this:
3403 (define_attr "cpu_facility" "standard,new" (const_string "standard"))
3405 (define_attr "enabled" ""
3406 (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
3407 (and (eq_attr "cpu_facility" "new")
3408 (ne (symbol_ref "TARGET_NEW") (const_int 0)))
3417 @node Define Constraints
3418 @subsection Defining Machine-Specific Constraints
3419 @cindex defining constraints
3420 @cindex constraints, defining
3422 Machine-specific constraints fall into two categories: register and
3423 non-register constraints. Within the latter category, constraints
3424 which allow subsets of all possible memory or address operands should
3425 be specially marked, to give @code{reload} more information.
3427 Machine-specific constraints can be given names of arbitrary length,
3428 but they must be entirely composed of letters, digits, underscores
3429 (@samp{_}), and angle brackets (@samp{< >}). Like C identifiers, they
3430 must begin with a letter or underscore.
3432 In order to avoid ambiguity in operand constraint strings, no
3433 constraint can have a name that begins with any other constraint's
3434 name. For example, if @code{x} is defined as a constraint name,
3435 @code{xy} may not be, and vice versa. As a consequence of this rule,
3436 no constraint may begin with one of the generic constraint letters:
3437 @samp{E F V X g i m n o p r s}.
3439 Register constraints correspond directly to register classes.
3440 @xref{Register Classes}. There is thus not much flexibility in their
3443 @deffn {MD Expression} define_register_constraint name regclass docstring
3444 All three arguments are string constants.
3445 @var{name} is the name of the constraint, as it will appear in
3446 @code{match_operand} expressions. If @var{name} is a multi-letter
3447 constraint its length shall be the same for all constraints starting
3448 with the same letter. @var{regclass} can be either the
3449 name of the corresponding register class (@pxref{Register Classes}),
3450 or a C expression which evaluates to the appropriate register class.
3451 If it is an expression, it must have no side effects, and it cannot
3452 look at the operand. The usual use of expressions is to map some
3453 register constraints to @code{NO_REGS} when the register class
3454 is not available on a given subarchitecture.
3456 @var{docstring} is a sentence documenting the meaning of the
3457 constraint. Docstrings are explained further below.
3460 Non-register constraints are more like predicates: the constraint
3461 definition gives a Boolean expression which indicates whether the
3464 @deffn {MD Expression} define_constraint name docstring exp
3465 The @var{name} and @var{docstring} arguments are the same as for
3466 @code{define_register_constraint}, but note that the docstring comes
3467 immediately after the name for these expressions. @var{exp} is an RTL
3468 expression, obeying the same rules as the RTL expressions in predicate
3469 definitions. @xref{Defining Predicates}, for details. If it
3470 evaluates true, the constraint matches; if it evaluates false, it
3471 doesn't. Constraint expressions should indicate which RTL codes they
3472 might match, just like predicate expressions.
3474 @code{match_test} C expressions have access to the
3475 following variables:
3479 The RTL object defining the operand.
3481 The machine mode of @var{op}.
3483 @samp{INTVAL (@var{op})}, if @var{op} is a @code{const_int}.
3485 @samp{CONST_DOUBLE_HIGH (@var{op})}, if @var{op} is an integer
3486 @code{const_double}.
3488 @samp{CONST_DOUBLE_LOW (@var{op})}, if @var{op} is an integer
3489 @code{const_double}.
3491 @samp{CONST_DOUBLE_REAL_VALUE (@var{op})}, if @var{op} is a floating-point
3492 @code{const_double}.
3495 The @var{*val} variables should only be used once another piece of the
3496 expression has verified that @var{op} is the appropriate kind of RTL
3500 Most non-register constraints should be defined with
3501 @code{define_constraint}. The remaining two definition expressions
3502 are only appropriate for constraints that should be handled specially
3503 by @code{reload} if they fail to match.
3505 @deffn {MD Expression} define_memory_constraint name docstring exp
3506 Use this expression for constraints that match a subset of all memory
3507 operands: that is, @code{reload} can make them match by converting the
3508 operand to the form @samp{@w{(mem (reg @var{X}))}}, where @var{X} is a
3509 base register (from the register class specified by
3510 @code{BASE_REG_CLASS}, @pxref{Register Classes}).
3512 For example, on the S/390, some instructions do not accept arbitrary
3513 memory references, but only those that do not make use of an index
3514 register. The constraint letter @samp{Q} is defined to represent a
3515 memory address of this type. If @samp{Q} is defined with
3516 @code{define_memory_constraint}, a @samp{Q} constraint can handle any
3517 memory operand, because @code{reload} knows it can simply copy the
3518 memory address into a base register if required. This is analogous to
3519 the way an @samp{o} constraint can handle any memory operand.
3521 The syntax and semantics are otherwise identical to
3522 @code{define_constraint}.
3525 @deffn {MD Expression} define_address_constraint name docstring exp
3526 Use this expression for constraints that match a subset of all address
3527 operands: that is, @code{reload} can make the constraint match by
3528 converting the operand to the form @samp{@w{(reg @var{X})}}, again
3529 with @var{X} a base register.
3531 Constraints defined with @code{define_address_constraint} can only be
3532 used with the @code{address_operand} predicate, or machine-specific
3533 predicates that work the same way. They are treated analogously to
3534 the generic @samp{p} constraint.
3536 The syntax and semantics are otherwise identical to
3537 @code{define_constraint}.
3540 For historical reasons, names beginning with the letters @samp{G H}
3541 are reserved for constraints that match only @code{const_double}s, and
3542 names beginning with the letters @samp{I J K L M N O P} are reserved
3543 for constraints that match only @code{const_int}s. This may change in
3544 the future. For the time being, constraints with these names must be
3545 written in a stylized form, so that @code{genpreds} can tell you did
3550 (define_constraint "[@var{GHIJKLMNOP}]@dots{}"
3552 (and (match_code "const_int") ; @r{@code{const_double} for G/H}
3553 @var{condition}@dots{})) ; @r{usually a @code{match_test}}
3556 @c the semicolons line up in the formatted manual
3558 It is fine to use names beginning with other letters for constraints
3559 that match @code{const_double}s or @code{const_int}s.
3561 Each docstring in a constraint definition should be one or more complete
3562 sentences, marked up in Texinfo format. @emph{They are currently unused.}
3563 In the future they will be copied into the GCC manual, in @ref{Machine
3564 Constraints}, replacing the hand-maintained tables currently found in
3565 that section. Also, in the future the compiler may use this to give
3566 more helpful diagnostics when poor choice of @code{asm} constraints
3567 causes a reload failure.
3569 If you put the pseudo-Texinfo directive @samp{@@internal} at the
3570 beginning of a docstring, then (in the future) it will appear only in
3571 the internals manual's version of the machine-specific constraint tables.
3572 Use this for constraints that should not appear in @code{asm} statements.
3574 @node C Constraint Interface
3575 @subsection Testing constraints from C
3576 @cindex testing constraints
3577 @cindex constraints, testing
3579 It is occasionally useful to test a constraint from C code rather than
3580 implicitly via the constraint string in a @code{match_operand}. The
3581 generated file @file{tm_p.h} declares a few interfaces for working
3582 with machine-specific constraints. None of these interfaces work with
3583 the generic constraints described in @ref{Simple Constraints}. This
3584 may change in the future.
3586 @strong{Warning:} @file{tm_p.h} may declare other functions that
3587 operate on constraints, besides the ones documented here. Do not use
3588 those functions from machine-dependent code. They exist to implement
3589 the old constraint interface that machine-independent components of
3590 the compiler still expect. They will change or disappear in the
3593 Some valid constraint names are not valid C identifiers, so there is a
3594 mangling scheme for referring to them from C@. Constraint names that
3595 do not contain angle brackets or underscores are left unchanged.
3596 Underscores are doubled, each @samp{<} is replaced with @samp{_l}, and
3597 each @samp{>} with @samp{_g}. Here are some examples:
3599 @c the @c's prevent double blank lines in the printed manual.
3601 @multitable {Original} {Mangled}
3602 @item @strong{Original} @tab @strong{Mangled} @c
3603 @item @code{x} @tab @code{x} @c
3604 @item @code{P42x} @tab @code{P42x} @c
3605 @item @code{P4_x} @tab @code{P4__x} @c
3606 @item @code{P4>x} @tab @code{P4_gx} @c
3607 @item @code{P4>>} @tab @code{P4_g_g} @c
3608 @item @code{P4_g>} @tab @code{P4__g_g} @c
3612 Throughout this section, the variable @var{c} is either a constraint
3613 in the abstract sense, or a constant from @code{enum constraint_num};
3614 the variable @var{m} is a mangled constraint name (usually as part of
3615 a larger identifier).
3617 @deftp Enum constraint_num
3618 For each machine-specific constraint, there is a corresponding
3619 enumeration constant: @samp{CONSTRAINT_} plus the mangled name of the
3620 constraint. Functions that take an @code{enum constraint_num} as an
3621 argument expect one of these constants.
3623 Machine-independent constraints do not have associated constants.
3624 This may change in the future.
3627 @deftypefun {inline bool} satisfies_constraint_@var{m} (rtx @var{exp})
3628 For each machine-specific, non-register constraint @var{m}, there is
3629 one of these functions; it returns @code{true} if @var{exp} satisfies the
3630 constraint. These functions are only visible if @file{rtl.h} was included
3631 before @file{tm_p.h}.
3634 @deftypefun bool constraint_satisfied_p (rtx @var{exp}, enum constraint_num @var{c})
3635 Like the @code{satisfies_constraint_@var{m}} functions, but the
3636 constraint to test is given as an argument, @var{c}. If @var{c}
3637 specifies a register constraint, this function will always return
3641 @deftypefun {enum reg_class} regclass_for_constraint (enum constraint_num @var{c})
3642 Returns the register class associated with @var{c}. If @var{c} is not
3643 a register constraint, or those registers are not available for the
3644 currently selected subtarget, returns @code{NO_REGS}.
3647 Here is an example use of @code{satisfies_constraint_@var{m}}. In
3648 peephole optimizations (@pxref{Peephole Definitions}), operand
3649 constraint strings are ignored, so if there are relevant constraints,
3650 they must be tested in the C condition. In the example, the
3651 optimization is applied if operand 2 does @emph{not} satisfy the
3652 @samp{K} constraint. (This is a simplified version of a peephole
3653 definition from the i386 machine description.)
3657 [(match_scratch:SI 3 "r")
3658 (set (match_operand:SI 0 "register_operand" "")
3659 (mult:SI (match_operand:SI 1 "memory_operand" "")
3660 (match_operand:SI 2 "immediate_operand" "")))]
3662 "!satisfies_constraint_K (operands[2])"
3664 [(set (match_dup 3) (match_dup 1))
3665 (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
3670 @node Standard Names
3671 @section Standard Pattern Names For Generation
3672 @cindex standard pattern names
3673 @cindex pattern names
3674 @cindex names, pattern
3676 Here is a table of the instruction names that are meaningful in the RTL
3677 generation pass of the compiler. Giving one of these names to an
3678 instruction pattern tells the RTL generation pass that it can use the
3679 pattern to accomplish a certain task.
3682 @cindex @code{mov@var{m}} instruction pattern
3683 @item @samp{mov@var{m}}
3684 Here @var{m} stands for a two-letter machine mode name, in lowercase.
3685 This instruction pattern moves data with that machine mode from operand
3686 1 to operand 0. For example, @samp{movsi} moves full-word data.
3688 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
3689 own mode is wider than @var{m}, the effect of this instruction is
3690 to store the specified value in the part of the register that corresponds
3691 to mode @var{m}. Bits outside of @var{m}, but which are within the
3692 same target word as the @code{subreg} are undefined. Bits which are
3693 outside the target word are left unchanged.
3695 This class of patterns is special in several ways. First of all, each
3696 of these names up to and including full word size @emph{must} be defined,
3697 because there is no other way to copy a datum from one place to another.
3698 If there are patterns accepting operands in larger modes,
3699 @samp{mov@var{m}} must be defined for integer modes of those sizes.
3701 Second, these patterns are not used solely in the RTL generation pass.
3702 Even the reload pass can generate move insns to copy values from stack
3703 slots into temporary registers. When it does so, one of the operands is
3704 a hard register and the other is an operand that can need to be reloaded
3708 Therefore, when given such a pair of operands, the pattern must generate
3709 RTL which needs no reloading and needs no temporary registers---no
3710 registers other than the operands. For example, if you support the
3711 pattern with a @code{define_expand}, then in such a case the
3712 @code{define_expand} mustn't call @code{force_reg} or any other such
3713 function which might generate new pseudo registers.
3715 This requirement exists even for subword modes on a RISC machine where
3716 fetching those modes from memory normally requires several insns and
3717 some temporary registers.
3719 @findex change_address
3720 During reload a memory reference with an invalid address may be passed
3721 as an operand. Such an address will be replaced with a valid address
3722 later in the reload pass. In this case, nothing may be done with the
3723 address except to use it as it stands. If it is copied, it will not be
3724 replaced with a valid address. No attempt should be made to make such
3725 an address into a valid address and no routine (such as
3726 @code{change_address}) that will do so may be called. Note that
3727 @code{general_operand} will fail when applied to such an address.
3729 @findex reload_in_progress
3730 The global variable @code{reload_in_progress} (which must be explicitly
3731 declared if required) can be used to determine whether such special
3732 handling is required.
3734 The variety of operands that have reloads depends on the rest of the
3735 machine description, but typically on a RISC machine these can only be
3736 pseudo registers that did not get hard registers, while on other
3737 machines explicit memory references will get optional reloads.
3739 If a scratch register is required to move an object to or from memory,
3740 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
3742 If there are cases which need scratch registers during or after reload,
3743 you must provide an appropriate secondary_reload target hook.
3745 @findex can_create_pseudo_p
3746 The macro @code{can_create_pseudo_p} can be used to determine if it
3747 is unsafe to create new pseudo registers. If this variable is nonzero, then
3748 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
3750 The constraints on a @samp{mov@var{m}} must permit moving any hard
3751 register to any other hard register provided that
3752 @code{HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
3753 @code{REGISTER_MOVE_COST} applied to their classes returns a value of 2.
3755 It is obligatory to support floating point @samp{mov@var{m}}
3756 instructions into and out of any registers that can hold fixed point
3757 values, because unions and structures (which have modes @code{SImode} or
3758 @code{DImode}) can be in those registers and they may have floating
3761 There may also be a need to support fixed point @samp{mov@var{m}}
3762 instructions in and out of floating point registers. Unfortunately, I
3763 have forgotten why this was so, and I don't know whether it is still
3764 true. If @code{HARD_REGNO_MODE_OK} rejects fixed point values in
3765 floating point registers, then the constraints of the fixed point
3766 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
3767 reload into a floating point register.
3769 @cindex @code{reload_in} instruction pattern
3770 @cindex @code{reload_out} instruction pattern
3771 @item @samp{reload_in@var{m}}
3772 @itemx @samp{reload_out@var{m}}
3773 These named patterns have been obsoleted by the target hook
3774 @code{secondary_reload}.
3776 Like @samp{mov@var{m}}, but used when a scratch register is required to
3777 move between operand 0 and operand 1. Operand 2 describes the scratch
3778 register. See the discussion of the @code{SECONDARY_RELOAD_CLASS}
3779 macro in @pxref{Register Classes}.
3781 There are special restrictions on the form of the @code{match_operand}s
3782 used in these patterns. First, only the predicate for the reload
3783 operand is examined, i.e., @code{reload_in} examines operand 1, but not
3784 the predicates for operand 0 or 2. Second, there may be only one
3785 alternative in the constraints. Third, only a single register class
3786 letter may be used for the constraint; subsequent constraint letters
3787 are ignored. As a special exception, an empty constraint string
3788 matches the @code{ALL_REGS} register class. This may relieve ports
3789 of the burden of defining an @code{ALL_REGS} constraint letter just
3792 @cindex @code{movstrict@var{m}} instruction pattern
3793 @item @samp{movstrict@var{m}}
3794 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
3795 with mode @var{m} of a register whose natural mode is wider,
3796 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
3797 any of the register except the part which belongs to mode @var{m}.
3799 @cindex @code{movmisalign@var{m}} instruction pattern
3800 @item @samp{movmisalign@var{m}}
3801 This variant of a move pattern is designed to load or store a value
3802 from a memory address that is not naturally aligned for its mode.
3803 For a store, the memory will be in operand 0; for a load, the memory
3804 will be in operand 1. The other operand is guaranteed not to be a
3805 memory, so that it's easy to tell whether this is a load or store.
3807 This pattern is used by the autovectorizer, and when expanding a
3808 @code{MISALIGNED_INDIRECT_REF} expression.
3810 @cindex @code{load_multiple} instruction pattern
3811 @item @samp{load_multiple}
3812 Load several consecutive memory locations into consecutive registers.
3813 Operand 0 is the first of the consecutive registers, operand 1
3814 is the first memory location, and operand 2 is a constant: the
3815 number of consecutive registers.
3817 Define this only if the target machine really has such an instruction;
3818 do not define this if the most efficient way of loading consecutive
3819 registers from memory is to do them one at a time.
3821 On some machines, there are restrictions as to which consecutive
3822 registers can be stored into memory, such as particular starting or
3823 ending register numbers or only a range of valid counts. For those
3824 machines, use a @code{define_expand} (@pxref{Expander Definitions})
3825 and make the pattern fail if the restrictions are not met.
3827 Write the generated insn as a @code{parallel} with elements being a
3828 @code{set} of one register from the appropriate memory location (you may
3829 also need @code{use} or @code{clobber} elements). Use a
3830 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn. See
3831 @file{rs6000.md} for examples of the use of this insn pattern.
3833 @cindex @samp{store_multiple} instruction pattern
3834 @item @samp{store_multiple}
3835 Similar to @samp{load_multiple}, but store several consecutive registers
3836 into consecutive memory locations. Operand 0 is the first of the
3837 consecutive memory locations, operand 1 is the first register, and
3838 operand 2 is a constant: the number of consecutive registers.
3840 @cindex @code{vec_set@var{m}} instruction pattern
3841 @item @samp{vec_set@var{m}}
3842 Set given field in the vector value. Operand 0 is the vector to modify,
3843 operand 1 is new value of field and operand 2 specify the field index.
3845 @cindex @code{vec_extract@var{m}} instruction pattern
3846 @item @samp{vec_extract@var{m}}
3847 Extract given field from the vector value. Operand 1 is the vector, operand 2
3848 specify field index and operand 0 place to store value into.
3850 @cindex @code{vec_extract_even@var{m}} instruction pattern
3851 @item @samp{vec_extract_even@var{m}}
3852 Extract even elements from the input vectors (operand 1 and operand 2).
3853 The even elements of operand 2 are concatenated to the even elements of operand
3854 1 in their original order. The result is stored in operand 0.
3855 The output and input vectors should have the same modes.
3857 @cindex @code{vec_extract_odd@var{m}} instruction pattern
3858 @item @samp{vec_extract_odd@var{m}}
3859 Extract odd elements from the input vectors (operand 1 and operand 2).
3860 The odd elements of operand 2 are concatenated to the odd elements of operand
3861 1 in their original order. The result is stored in operand 0.
3862 The output and input vectors should have the same modes.
3864 @cindex @code{vec_interleave_high@var{m}} instruction pattern
3865 @item @samp{vec_interleave_high@var{m}}
3866 Merge high elements of the two input vectors into the output vector. The output
3867 and input vectors should have the same modes (@code{N} elements). The high
3868 @code{N/2} elements of the first input vector are interleaved with the high
3869 @code{N/2} elements of the second input vector.
3871 @cindex @code{vec_interleave_low@var{m}} instruction pattern
3872 @item @samp{vec_interleave_low@var{m}}
3873 Merge low elements of the two input vectors into the output vector. The output
3874 and input vectors should have the same modes (@code{N} elements). The low
3875 @code{N/2} elements of the first input vector are interleaved with the low
3876 @code{N/2} elements of the second input vector.
3878 @cindex @code{vec_init@var{m}} instruction pattern
3879 @item @samp{vec_init@var{m}}
3880 Initialize the vector to given values. Operand 0 is the vector to initialize
3881 and operand 1 is parallel containing values for individual fields.
3883 @cindex @code{push@var{m}1} instruction pattern
3884 @item @samp{push@var{m}1}
3885 Output a push instruction. Operand 0 is value to push. Used only when
3886 @code{PUSH_ROUNDING} is defined. For historical reason, this pattern may be
3887 missing and in such case an @code{mov} expander is used instead, with a
3888 @code{MEM} expression forming the push operation. The @code{mov} expander
3889 method is deprecated.
3891 @cindex @code{add@var{m}3} instruction pattern
3892 @item @samp{add@var{m}3}
3893 Add operand 2 and operand 1, storing the result in operand 0. All operands
3894 must have mode @var{m}. This can be used even on two-address machines, by
3895 means of constraints requiring operands 1 and 0 to be the same location.
3897 @cindex @code{ssadd@var{m}3} instruction pattern
3898 @cindex @code{usadd@var{m}3} instruction pattern
3899 @cindex @code{sub@var{m}3} instruction pattern
3900 @cindex @code{sssub@var{m}3} instruction pattern
3901 @cindex @code{ussub@var{m}3} instruction pattern
3902 @cindex @code{mul@var{m}3} instruction pattern
3903 @cindex @code{ssmul@var{m}3} instruction pattern
3904 @cindex @code{usmul@var{m}3} instruction pattern
3905 @cindex @code{div@var{m}3} instruction pattern
3906 @cindex @code{ssdiv@var{m}3} instruction pattern
3907 @cindex @code{udiv@var{m}3} instruction pattern
3908 @cindex @code{usdiv@var{m}3} instruction pattern
3909 @cindex @code{mod@var{m}3} instruction pattern
3910 @cindex @code{umod@var{m}3} instruction pattern
3911 @cindex @code{umin@var{m}3} instruction pattern
3912 @cindex @code{umax@var{m}3} instruction pattern
3913 @cindex @code{and@var{m}3} instruction pattern
3914 @cindex @code{ior@var{m}3} instruction pattern
3915 @cindex @code{xor@var{m}3} instruction pattern
3916 @item @samp{ssadd@var{m}3}, @samp{usadd@var{m}3}
3917 @item @samp{sub@var{m}3}, @samp{sssub@var{m}3}, @samp{ussub@var{m}3}
3918 @item @samp{mul@var{m}3}, @samp{ssmul@var{m}3}, @samp{usmul@var{m}3}
3919 @itemx @samp{div@var{m}3}, @samp{ssdiv@var{m}3}
3920 @itemx @samp{udiv@var{m}3}, @samp{usdiv@var{m}3}
3921 @itemx @samp{mod@var{m}3}, @samp{umod@var{m}3}
3922 @itemx @samp{umin@var{m}3}, @samp{umax@var{m}3}
3923 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
3924 Similar, for other arithmetic operations.
3926 @cindex @code{min@var{m}3} instruction pattern
3927 @cindex @code{max@var{m}3} instruction pattern
3928 @item @samp{smin@var{m}3}, @samp{smax@var{m}3}
3929 Signed minimum and maximum operations. When used with floating point,
3930 if both operands are zeros, or if either operand is @code{NaN}, then
3931 it is unspecified which of the two operands is returned as the result.
3933 @cindex @code{reduc_smin_@var{m}} instruction pattern
3934 @cindex @code{reduc_smax_@var{m}} instruction pattern
3935 @item @samp{reduc_smin_@var{m}}, @samp{reduc_smax_@var{m}}
3936 Find the signed minimum/maximum of the elements of a vector. The vector is
3937 operand 1, and the scalar result is stored in the least significant bits of
3938 operand 0 (also a vector). The output and input vector should have the same
3941 @cindex @code{reduc_umin_@var{m}} instruction pattern
3942 @cindex @code{reduc_umax_@var{m}} instruction pattern
3943 @item @samp{reduc_umin_@var{m}}, @samp{reduc_umax_@var{m}}
3944 Find the unsigned minimum/maximum of the elements of a vector. The vector is
3945 operand 1, and the scalar result is stored in the least significant bits of
3946 operand 0 (also a vector). The output and input vector should have the same
3949 @cindex @code{reduc_splus_@var{m}} instruction pattern
3950 @item @samp{reduc_splus_@var{m}}
3951 Compute the sum of the signed elements of a vector. The vector is operand 1,
3952 and the scalar result is stored in the least significant bits of operand 0
3953 (also a vector). The output and input vector should have the same modes.
3955 @cindex @code{reduc_uplus_@var{m}} instruction pattern
3956 @item @samp{reduc_uplus_@var{m}}
3957 Compute the sum of the unsigned elements of a vector. The vector is operand 1,
3958 and the scalar result is stored in the least significant bits of operand 0
3959 (also a vector). The output and input vector should have the same modes.
3961 @cindex @code{sdot_prod@var{m}} instruction pattern
3962 @item @samp{sdot_prod@var{m}}
3963 @cindex @code{udot_prod@var{m}} instruction pattern
3964 @item @samp{udot_prod@var{m}}
3965 Compute the sum of the products of two signed/unsigned elements.
3966 Operand 1 and operand 2 are of the same mode. Their product, which is of a
3967 wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or
3968 wider than the mode of the product. The result is placed in operand 0, which
3969 is of the same mode as operand 3.
3971 @cindex @code{ssum_widen@var{m3}} instruction pattern
3972 @item @samp{ssum_widen@var{m3}}
3973 @cindex @code{usum_widen@var{m3}} instruction pattern
3974 @item @samp{usum_widen@var{m3}}
3975 Operands 0 and 2 are of the same mode, which is wider than the mode of
3976 operand 1. Add operand 1 to operand 2 and place the widened result in
3977 operand 0. (This is used express accumulation of elements into an accumulator
3980 @cindex @code{vec_shl_@var{m}} instruction pattern
3981 @cindex @code{vec_shr_@var{m}} instruction pattern
3982 @item @samp{vec_shl_@var{m}}, @samp{vec_shr_@var{m}}
3983 Whole vector left/right shift in bits.
3984 Operand 1 is a vector to be shifted.
3985 Operand 2 is an integer shift amount in bits.
3986 Operand 0 is where the resulting shifted vector is stored.
3987 The output and input vectors should have the same modes.
3989 @cindex @code{vec_pack_trunc_@var{m}} instruction pattern
3990 @item @samp{vec_pack_trunc_@var{m}}
3991 Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
3992 are vectors of the same mode having N integral or floating point elements
3993 of size S@. Operand 0 is the resulting vector in which 2*N elements of
3994 size N/2 are concatenated after narrowing them down using truncation.
3996 @cindex @code{vec_pack_ssat_@var{m}} instruction pattern
3997 @cindex @code{vec_pack_usat_@var{m}} instruction pattern
3998 @item @samp{vec_pack_ssat_@var{m}}, @samp{vec_pack_usat_@var{m}}
3999 Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
4000 are vectors of the same mode having N integral elements of size S.
4001 Operand 0 is the resulting vector in which the elements of the two input
4002 vectors are concatenated after narrowing them down using signed/unsigned
4003 saturating arithmetic.
4005 @cindex @code{vec_pack_sfix_trunc_@var{m}} instruction pattern
4006 @cindex @code{vec_pack_ufix_trunc_@var{m}} instruction pattern
4007 @item @samp{vec_pack_sfix_trunc_@var{m}}, @samp{vec_pack_ufix_trunc_@var{m}}
4008 Narrow, convert to signed/unsigned integral type and merge the elements
4009 of two vectors. Operands 1 and 2 are vectors of the same mode having N
4010 floating point elements of size S@. Operand 0 is the resulting vector
4011 in which 2*N elements of size N/2 are concatenated.
4013 @cindex @code{vec_unpacks_hi_@var{m}} instruction pattern
4014 @cindex @code{vec_unpacks_lo_@var{m}} instruction pattern
4015 @item @samp{vec_unpacks_hi_@var{m}}, @samp{vec_unpacks_lo_@var{m}}
4016 Extract and widen (promote) the high/low part of a vector of signed
4017 integral or floating point elements. The input vector (operand 1) has N
4018 elements of size S@. Widen (promote) the high/low elements of the vector
4019 using signed or floating point extension and place the resulting N/2
4020 values of size 2*S in the output vector (operand 0).
4022 @cindex @code{vec_unpacku_hi_@var{m}} instruction pattern
4023 @cindex @code{vec_unpacku_lo_@var{m}} instruction pattern
4024 @item @samp{vec_unpacku_hi_@var{m}}, @samp{vec_unpacku_lo_@var{m}}
4025 Extract and widen (promote) the high/low part of a vector of unsigned
4026 integral elements. The input vector (operand 1) has N elements of size S.
4027 Widen (promote) the high/low elements of the vector using zero extension and
4028 place the resulting N/2 values of size 2*S in the output vector (operand 0).
4030 @cindex @code{vec_unpacks_float_hi_@var{m}} instruction pattern
4031 @cindex @code{vec_unpacks_float_lo_@var{m}} instruction pattern
4032 @cindex @code{vec_unpacku_float_hi_@var{m}} instruction pattern
4033 @cindex @code{vec_unpacku_float_lo_@var{m}} instruction pattern
4034 @item @samp{vec_unpacks_float_hi_@var{m}}, @samp{vec_unpacks_float_lo_@var{m}}
4035 @itemx @samp{vec_unpacku_float_hi_@var{m}}, @samp{vec_unpacku_float_lo_@var{m}}
4036 Extract, convert to floating point type and widen the high/low part of a
4037 vector of signed/unsigned integral elements. The input vector (operand 1)
4038 has N elements of size S@. Convert the high/low elements of the vector using
4039 floating point conversion and place the resulting N/2 values of size 2*S in
4040 the output vector (operand 0).
4042 @cindex @code{vec_widen_umult_hi_@var{m}} instruction pattern
4043 @cindex @code{vec_widen_umult_lo__@var{m}} instruction pattern
4044 @cindex @code{vec_widen_smult_hi_@var{m}} instruction pattern
4045 @cindex @code{vec_widen_smult_lo_@var{m}} instruction pattern
4046 @item @samp{vec_widen_umult_hi_@var{m}}, @samp{vec_widen_umult_lo_@var{m}}
4047 @itemx @samp{vec_widen_smult_hi_@var{m}}, @samp{vec_widen_smult_lo_@var{m}}
4048 Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2)
4049 are vectors with N signed/unsigned elements of size S@. Multiply the high/low
4050 elements of the two vectors, and put the N/2 products of size 2*S in the
4051 output vector (operand 0).
4053 @cindex @code{mulhisi3} instruction pattern
4054 @item @samp{mulhisi3}
4055 Multiply operands 1 and 2, which have mode @code{HImode}, and store
4056 a @code{SImode} product in operand 0.
4058 @cindex @code{mulqihi3} instruction pattern
4059 @cindex @code{mulsidi3} instruction pattern
4060 @item @samp{mulqihi3}, @samp{mulsidi3}
4061 Similar widening-multiplication instructions of other widths.
4063 @cindex @code{umulqihi3} instruction pattern
4064 @cindex @code{umulhisi3} instruction pattern
4065 @cindex @code{umulsidi3} instruction pattern
4066 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
4067 Similar widening-multiplication instructions that do unsigned
4070 @cindex @code{usmulqihi3} instruction pattern
4071 @cindex @code{usmulhisi3} instruction pattern
4072 @cindex @code{usmulsidi3} instruction pattern
4073 @item @samp{usmulqihi3}, @samp{usmulhisi3}, @samp{usmulsidi3}
4074 Similar widening-multiplication instructions that interpret the first
4075 operand as unsigned and the second operand as signed, then do a signed
4078 @cindex @code{smul@var{m}3_highpart} instruction pattern
4079 @item @samp{smul@var{m}3_highpart}
4080 Perform a signed multiplication of operands 1 and 2, which have mode
4081 @var{m}, and store the most significant half of the product in operand 0.
4082 The least significant half of the product is discarded.
4084 @cindex @code{umul@var{m}3_highpart} instruction pattern
4085 @item @samp{umul@var{m}3_highpart}
4086 Similar, but the multiplication is unsigned.
4088 @cindex @code{madd@var{m}@var{n}4} instruction pattern
4089 @item @samp{madd@var{m}@var{n}4}
4090 Multiply operands 1 and 2, sign-extend them to mode @var{n}, add
4091 operand 3, and store the result in operand 0. Operands 1 and 2
4092 have mode @var{m} and operands 0 and 3 have mode @var{n}.
4093 Both modes must be integer or fixed-point modes and @var{n} must be twice
4094 the size of @var{m}.
4096 In other words, @code{madd@var{m}@var{n}4} is like
4097 @code{mul@var{m}@var{n}3} except that it also adds operand 3.
4099 These instructions are not allowed to @code{FAIL}.
4101 @cindex @code{umadd@var{m}@var{n}4} instruction pattern
4102 @item @samp{umadd@var{m}@var{n}4}
4103 Like @code{madd@var{m}@var{n}4}, but zero-extend the multiplication
4104 operands instead of sign-extending them.
4106 @cindex @code{ssmadd@var{m}@var{n}4} instruction pattern
4107 @item @samp{ssmadd@var{m}@var{n}4}
4108 Like @code{madd@var{m}@var{n}4}, but all involved operations must be
4111 @cindex @code{usmadd@var{m}@var{n}4} instruction pattern
4112 @item @samp{usmadd@var{m}@var{n}4}
4113 Like @code{umadd@var{m}@var{n}4}, but all involved operations must be
4114 unsigned-saturating.
4116 @cindex @code{msub@var{m}@var{n}4} instruction pattern
4117 @item @samp{msub@var{m}@var{n}4}
4118 Multiply operands 1 and 2, sign-extend them to mode @var{n}, subtract the
4119 result from operand 3, and store the result in operand 0. Operands 1 and 2
4120 have mode @var{m} and operands 0 and 3 have mode @var{n}.
4121 Both modes must be integer or fixed-point modes and @var{n} must be twice
4122 the size of @var{m}.
4124 In other words, @code{msub@var{m}@var{n}4} is like
4125 @code{mul@var{m}@var{n}3} except that it also subtracts the result
4128 These instructions are not allowed to @code{FAIL}.
4130 @cindex @code{umsub@var{m}@var{n}4} instruction pattern
4131 @item @samp{umsub@var{m}@var{n}4}
4132 Like @code{msub@var{m}@var{n}4}, but zero-extend the multiplication
4133 operands instead of sign-extending them.
4135 @cindex @code{ssmsub@var{m}@var{n}4} instruction pattern
4136 @item @samp{ssmsub@var{m}@var{n}4}
4137 Like @code{msub@var{m}@var{n}4}, but all involved operations must be
4140 @cindex @code{usmsub@var{m}@var{n}4} instruction pattern
4141 @item @samp{usmsub@var{m}@var{n}4}
4142 Like @code{umsub@var{m}@var{n}4}, but all involved operations must be
4143 unsigned-saturating.
4145 @cindex @code{divmod@var{m}4} instruction pattern
4146 @item @samp{divmod@var{m}4}
4147 Signed division that produces both a quotient and a remainder.
4148 Operand 1 is divided by operand 2 to produce a quotient stored
4149 in operand 0 and a remainder stored in operand 3.
4151 For machines with an instruction that produces both a quotient and a
4152 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
4153 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}. This
4154 allows optimization in the relatively common case when both the quotient
4155 and remainder are computed.
4157 If an instruction that just produces a quotient or just a remainder
4158 exists and is more efficient than the instruction that produces both,
4159 write the output routine of @samp{divmod@var{m}4} to call
4160 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
4161 quotient or remainder and generate the appropriate instruction.
4163 @cindex @code{udivmod@var{m}4} instruction pattern
4164 @item @samp{udivmod@var{m}4}
4165 Similar, but does unsigned division.
4167 @anchor{shift patterns}
4168 @cindex @code{ashl@var{m}3} instruction pattern
4169 @cindex @code{ssashl@var{m}3} instruction pattern
4170 @cindex @code{usashl@var{m}3} instruction pattern
4171 @item @samp{ashl@var{m}3}, @samp{ssashl@var{m}3}, @samp{usashl@var{m}3}
4172 Arithmetic-shift operand 1 left by a number of bits specified by operand
4173 2, and store the result in operand 0. Here @var{m} is the mode of
4174 operand 0 and operand 1; operand 2's mode is specified by the
4175 instruction pattern, and the compiler will convert the operand to that
4176 mode before generating the instruction. The meaning of out-of-range shift
4177 counts can optionally be specified by @code{TARGET_SHIFT_TRUNCATION_MASK}.
4178 @xref{TARGET_SHIFT_TRUNCATION_MASK}. Operand 2 is always a scalar type.
4180 @cindex @code{ashr@var{m}3} instruction pattern
4181 @cindex @code{lshr@var{m}3} instruction pattern
4182 @cindex @code{rotl@var{m}3} instruction pattern
4183 @cindex @code{rotr@var{m}3} instruction pattern
4184 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
4185 Other shift and rotate instructions, analogous to the
4186 @code{ashl@var{m}3} instructions. Operand 2 is always a scalar type.
4188 @cindex @code{vashl@var{m}3} instruction pattern
4189 @cindex @code{vashr@var{m}3} instruction pattern
4190 @cindex @code{vlshr@var{m}3} instruction pattern
4191 @cindex @code{vrotl@var{m}3} instruction pattern
4192 @cindex @code{vrotr@var{m}3} instruction pattern
4193 @item @samp{vashl@var{m}3}, @samp{vashr@var{m}3}, @samp{vlshr@var{m}3}, @samp{vrotl@var{m}3}, @samp{vrotr@var{m}3}
4194 Vector shift and rotate instructions that take vectors as operand 2
4195 instead of a scalar type.
4197 @cindex @code{neg@var{m}2} instruction pattern
4198 @cindex @code{ssneg@var{m}2} instruction pattern
4199 @cindex @code{usneg@var{m}2} instruction pattern
4200 @item @samp{neg@var{m}2}, @samp{ssneg@var{m}2}, @samp{usneg@var{m}2}
4201 Negate operand 1 and store the result in operand 0.
4203 @cindex @code{abs@var{m}2} instruction pattern
4204 @item @samp{abs@var{m}2}
4205 Store the absolute value of operand 1 into operand 0.
4207 @cindex @code{sqrt@var{m}2} instruction pattern
4208 @item @samp{sqrt@var{m}2}
4209 Store the square root of operand 1 into operand 0.
4211 The @code{sqrt} built-in function of C always uses the mode which
4212 corresponds to the C data type @code{double} and the @code{sqrtf}
4213 built-in function uses the mode which corresponds to the C data
4216 @cindex @code{fmod@var{m}3} instruction pattern
4217 @item @samp{fmod@var{m}3}
4218 Store the remainder of dividing operand 1 by operand 2 into
4219 operand 0, rounded towards zero to an integer.
4221 The @code{fmod} built-in function of C always uses the mode which
4222 corresponds to the C data type @code{double} and the @code{fmodf}
4223 built-in function uses the mode which corresponds to the C data
4226 @cindex @code{remainder@var{m}3} instruction pattern
4227 @item @samp{remainder@var{m}3}
4228 Store the remainder of dividing operand 1 by operand 2 into
4229 operand 0, rounded to the nearest integer.
4231 The @code{remainder} built-in function of C always uses the mode
4232 which corresponds to the C data type @code{double} and the
4233 @code{remainderf} built-in function uses the mode which corresponds
4234 to the C data type @code{float}.
4236 @cindex @code{cos@var{m}2} instruction pattern
4237 @item @samp{cos@var{m}2}
4238 Store the cosine of operand 1 into operand 0.
4240 The @code{cos} built-in function of C always uses the mode which
4241 corresponds to the C data type @code{double} and the @code{cosf}
4242 built-in function uses the mode which corresponds to the C data
4245 @cindex @code{sin@var{m}2} instruction pattern
4246 @item @samp{sin@var{m}2}
4247 Store the sine of operand 1 into operand 0.
4249 The @code{sin} built-in function of C always uses the mode which
4250 corresponds to the C data type @code{double} and the @code{sinf}
4251 built-in function uses the mode which corresponds to the C data
4254 @cindex @code{exp@var{m}2} instruction pattern
4255 @item @samp{exp@var{m}2}
4256 Store the exponential of operand 1 into operand 0.
4258 The @code{exp} built-in function of C always uses the mode which
4259 corresponds to the C data type @code{double} and the @code{expf}
4260 built-in function uses the mode which corresponds to the C data
4263 @cindex @code{log@var{m}2} instruction pattern
4264 @item @samp{log@var{m}2}
4265 Store the natural logarithm of operand 1 into operand 0.
4267 The @code{log} built-in function of C always uses the mode which
4268 corresponds to the C data type @code{double} and the @code{logf}
4269 built-in function uses the mode which corresponds to the C data
4272 @cindex @code{pow@var{m}3} instruction pattern
4273 @item @samp{pow@var{m}3}
4274 Store the value of operand 1 raised to the exponent operand 2
4277 The @code{pow} built-in function of C always uses the mode which
4278 corresponds to the C data type @code{double} and the @code{powf}
4279 built-in function uses the mode which corresponds to the C data
4282 @cindex @code{atan2@var{m}3} instruction pattern
4283 @item @samp{atan2@var{m}3}
4284 Store the arc tangent (inverse tangent) of operand 1 divided by
4285 operand 2 into operand 0, using the signs of both arguments to
4286 determine the quadrant of the result.
4288 The @code{atan2} built-in function of C always uses the mode which
4289 corresponds to the C data type @code{double} and the @code{atan2f}
4290 built-in function uses the mode which corresponds to the C data
4293 @cindex @code{floor@var{m}2} instruction pattern
4294 @item @samp{floor@var{m}2}
4295 Store the largest integral value not greater than argument.
4297 The @code{floor} built-in function of C always uses the mode which
4298 corresponds to the C data type @code{double} and the @code{floorf}
4299 built-in function uses the mode which corresponds to the C data
4302 @cindex @code{btrunc@var{m}2} instruction pattern
4303 @item @samp{btrunc@var{m}2}
4304 Store the argument rounded to integer towards zero.
4306 The @code{trunc} built-in function of C always uses the mode which
4307 corresponds to the C data type @code{double} and the @code{truncf}
4308 built-in function uses the mode which corresponds to the C data
4311 @cindex @code{round@var{m}2} instruction pattern
4312 @item @samp{round@var{m}2}
4313 Store the argument rounded to integer away from zero.
4315 The @code{round} built-in function of C always uses the mode which
4316 corresponds to the C data type @code{double} and the @code{roundf}
4317 built-in function uses the mode which corresponds to the C data
4320 @cindex @code{ceil@var{m}2} instruction pattern
4321 @item @samp{ceil@var{m}2}
4322 Store the argument rounded to integer away from zero.
4324 The @code{ceil} built-in function of C always uses the mode which
4325 corresponds to the C data type @code{double} and the @code{ceilf}
4326 built-in function uses the mode which corresponds to the C data
4329 @cindex @code{nearbyint@var{m}2} instruction pattern
4330 @item @samp{nearbyint@var{m}2}
4331 Store the argument rounded according to the default rounding mode
4333 The @code{nearbyint} built-in function of C always uses the mode which
4334 corresponds to the C data type @code{double} and the @code{nearbyintf}
4335 built-in function uses the mode which corresponds to the C data
4338 @cindex @code{rint@var{m}2} instruction pattern
4339 @item @samp{rint@var{m}2}
4340 Store the argument rounded according to the default rounding mode and
4341 raise the inexact exception when the result differs in value from
4344 The @code{rint} built-in function of C always uses the mode which
4345 corresponds to the C data type @code{double} and the @code{rintf}
4346 built-in function uses the mode which corresponds to the C data
4349 @cindex @code{lrint@var{m}@var{n}2}
4350 @item @samp{lrint@var{m}@var{n}2}
4351 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4352 point mode @var{n} as a signed number according to the current
4353 rounding mode and store in operand 0 (which has mode @var{n}).
4355 @cindex @code{lround@var{m}@var{n}2}
4356 @item @samp{lround@var{m}2}
4357 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4358 point mode @var{n} as a signed number rounding to nearest and away
4359 from zero and store in operand 0 (which has mode @var{n}).
4361 @cindex @code{lfloor@var{m}@var{n}2}
4362 @item @samp{lfloor@var{m}2}
4363 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4364 point mode @var{n} as a signed number rounding down and store in
4365 operand 0 (which has mode @var{n}).
4367 @cindex @code{lceil@var{m}@var{n}2}
4368 @item @samp{lceil@var{m}2}
4369 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4370 point mode @var{n} as a signed number rounding up and store in
4371 operand 0 (which has mode @var{n}).
4373 @cindex @code{copysign@var{m}3} instruction pattern
4374 @item @samp{copysign@var{m}3}
4375 Store a value with the magnitude of operand 1 and the sign of operand
4378 The @code{copysign} built-in function of C always uses the mode which
4379 corresponds to the C data type @code{double} and the @code{copysignf}
4380 built-in function uses the mode which corresponds to the C data
4383 @cindex @code{ffs@var{m}2} instruction pattern
4384 @item @samp{ffs@var{m}2}
4385 Store into operand 0 one plus the index of the least significant 1-bit
4386 of operand 1. If operand 1 is zero, store zero. @var{m} is the mode
4387 of operand 0; operand 1's mode is specified by the instruction
4388 pattern, and the compiler will convert the operand to that mode before
4389 generating the instruction.
4391 The @code{ffs} built-in function of C always uses the mode which
4392 corresponds to the C data type @code{int}.
4394 @cindex @code{clz@var{m}2} instruction pattern
4395 @item @samp{clz@var{m}2}
4396 Store into operand 0 the number of leading 0-bits in @var{x}, starting
4397 at the most significant bit position. If @var{x} is 0, the
4398 @code{CLZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
4399 the result is undefined or has a useful value.
4400 @var{m} is the mode of operand 0; operand 1's mode is
4401 specified by the instruction pattern, and the compiler will convert the
4402 operand to that mode before generating the instruction.
4404 @cindex @code{ctz@var{m}2} instruction pattern
4405 @item @samp{ctz@var{m}2}
4406 Store into operand 0 the number of trailing 0-bits in @var{x}, starting
4407 at the least significant bit position. If @var{x} is 0, the
4408 @code{CTZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
4409 the result is undefined or has a useful value.
4410 @var{m} is the mode of operand 0; operand 1's mode is
4411 specified by the instruction pattern, and the compiler will convert the
4412 operand to that mode before generating the instruction.
4414 @cindex @code{popcount@var{m}2} instruction pattern
4415 @item @samp{popcount@var{m}2}
4416 Store into operand 0 the number of 1-bits in @var{x}. @var{m} is the
4417 mode of operand 0; operand 1's mode is specified by the instruction
4418 pattern, and the compiler will convert the operand to that mode before
4419 generating the instruction.
4421 @cindex @code{parity@var{m}2} instruction pattern
4422 @item @samp{parity@var{m}2}
4423 Store into operand 0 the parity of @var{x}, i.e.@: the number of 1-bits
4424 in @var{x} modulo 2. @var{m} is the mode of operand 0; operand 1's mode
4425 is specified by the instruction pattern, and the compiler will convert
4426 the operand to that mode before generating the instruction.
4428 @cindex @code{one_cmpl@var{m}2} instruction pattern
4429 @item @samp{one_cmpl@var{m}2}
4430 Store the bitwise-complement of operand 1 into operand 0.
4432 @cindex @code{movmem@var{m}} instruction pattern
4433 @item @samp{movmem@var{m}}
4434 Block move instruction. The destination and source blocks of memory
4435 are the first two operands, and both are @code{mem:BLK}s with an
4436 address in mode @code{Pmode}.
4438 The number of bytes to move is the third operand, in mode @var{m}.
4439 Usually, you specify @code{word_mode} for @var{m}. However, if you can
4440 generate better code knowing the range of valid lengths is smaller than
4441 those representable in a full word, you should provide a pattern with a
4442 mode corresponding to the range of values you can handle efficiently
4443 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
4444 that appear negative) and also a pattern with @code{word_mode}.
4446 The fourth operand is the known shared alignment of the source and
4447 destination, in the form of a @code{const_int} rtx. Thus, if the
4448 compiler knows that both source and destination are word-aligned,
4449 it may provide the value 4 for this operand.
4451 Optional operands 5 and 6 specify expected alignment and size of block
4452 respectively. The expected alignment differs from alignment in operand 4
4453 in a way that the blocks are not required to be aligned according to it in
4454 all cases. This expected alignment is also in bytes, just like operand 4.
4455 Expected size, when unknown, is set to @code{(const_int -1)}.
4457 Descriptions of multiple @code{movmem@var{m}} patterns can only be
4458 beneficial if the patterns for smaller modes have fewer restrictions
4459 on their first, second and fourth operands. Note that the mode @var{m}
4460 in @code{movmem@var{m}} does not impose any restriction on the mode of
4461 individually moved data units in the block.
4463 These patterns need not give special consideration to the possibility
4464 that the source and destination strings might overlap.
4466 @cindex @code{movstr} instruction pattern
4468 String copy instruction, with @code{stpcpy} semantics. Operand 0 is
4469 an output operand in mode @code{Pmode}. The addresses of the
4470 destination and source strings are operands 1 and 2, and both are
4471 @code{mem:BLK}s with addresses in mode @code{Pmode}. The execution of
4472 the expansion of this pattern should store in operand 0 the address in
4473 which the @code{NUL} terminator was stored in the destination string.
4475 @cindex @code{setmem@var{m}} instruction pattern
4476 @item @samp{setmem@var{m}}
4477 Block set instruction. The destination string is the first operand,
4478 given as a @code{mem:BLK} whose address is in mode @code{Pmode}. The
4479 number of bytes to set is the second operand, in mode @var{m}. The value to
4480 initialize the memory with is the third operand. Targets that only support the
4481 clearing of memory should reject any value that is not the constant 0. See
4482 @samp{movmem@var{m}} for a discussion of the choice of mode.
4484 The fourth operand is the known alignment of the destination, in the form
4485 of a @code{const_int} rtx. Thus, if the compiler knows that the
4486 destination is word-aligned, it may provide the value 4 for this
4489 Optional operands 5 and 6 specify expected alignment and size of block
4490 respectively. The expected alignment differs from alignment in operand 4
4491 in a way that the blocks are not required to be aligned according to it in
4492 all cases. This expected alignment is also in bytes, just like operand 4.
4493 Expected size, when unknown, is set to @code{(const_int -1)}.
4495 The use for multiple @code{setmem@var{m}} is as for @code{movmem@var{m}}.
4497 @cindex @code{cmpstrn@var{m}} instruction pattern
4498 @item @samp{cmpstrn@var{m}}
4499 String compare instruction, with five operands. Operand 0 is the output;
4500 it has mode @var{m}. The remaining four operands are like the operands
4501 of @samp{movmem@var{m}}. The two memory blocks specified are compared
4502 byte by byte in lexicographic order starting at the beginning of each
4503 string. The instruction is not allowed to prefetch more than one byte
4504 at a time since either string may end in the first byte and reading past
4505 that may access an invalid page or segment and cause a fault. The
4506 effect of the instruction is to store a value in operand 0 whose sign
4507 indicates the result of the comparison.
4509 @cindex @code{cmpstr@var{m}} instruction pattern
4510 @item @samp{cmpstr@var{m}}
4511 String compare instruction, without known maximum length. Operand 0 is the
4512 output; it has mode @var{m}. The second and third operand are the blocks of
4513 memory to be compared; both are @code{mem:BLK} with an address in mode
4516 The fourth operand is the known shared alignment of the source and
4517 destination, in the form of a @code{const_int} rtx. Thus, if the
4518 compiler knows that both source and destination are word-aligned,
4519 it may provide the value 4 for this operand.
4521 The two memory blocks specified are compared byte by byte in lexicographic
4522 order starting at the beginning of each string. The instruction is not allowed
4523 to prefetch more than one byte at a time since either string may end in the
4524 first byte and reading past that may access an invalid page or segment and
4525 cause a fault. The effect of the instruction is to store a value in operand 0
4526 whose sign indicates the result of the comparison.
4528 @cindex @code{cmpmem@var{m}} instruction pattern
4529 @item @samp{cmpmem@var{m}}
4530 Block compare instruction, with five operands like the operands
4531 of @samp{cmpstr@var{m}}. The two memory blocks specified are compared
4532 byte by byte in lexicographic order starting at the beginning of each
4533 block. Unlike @samp{cmpstr@var{m}} the instruction can prefetch
4534 any bytes in the two memory blocks. The effect of the instruction is
4535 to store a value in operand 0 whose sign indicates the result of the
4538 @cindex @code{strlen@var{m}} instruction pattern
4539 @item @samp{strlen@var{m}}
4540 Compute the length of a string, with three operands.
4541 Operand 0 is the result (of mode @var{m}), operand 1 is
4542 a @code{mem} referring to the first character of the string,
4543 operand 2 is the character to search for (normally zero),
4544 and operand 3 is a constant describing the known alignment
4545 of the beginning of the string.
4547 @cindex @code{float@var{mn}2} instruction pattern
4548 @item @samp{float@var{m}@var{n}2}
4549 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
4550 floating point mode @var{n} and store in operand 0 (which has mode
4553 @cindex @code{floatuns@var{mn}2} instruction pattern
4554 @item @samp{floatuns@var{m}@var{n}2}
4555 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
4556 to floating point mode @var{n} and store in operand 0 (which has mode
4559 @cindex @code{fix@var{mn}2} instruction pattern
4560 @item @samp{fix@var{m}@var{n}2}
4561 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4562 point mode @var{n} as a signed number and store in operand 0 (which
4563 has mode @var{n}). This instruction's result is defined only when
4564 the value of operand 1 is an integer.
4566 If the machine description defines this pattern, it also needs to
4567 define the @code{ftrunc} pattern.
4569 @cindex @code{fixuns@var{mn}2} instruction pattern
4570 @item @samp{fixuns@var{m}@var{n}2}
4571 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4572 point mode @var{n} as an unsigned number and store in operand 0 (which
4573 has mode @var{n}). This instruction's result is defined only when the
4574 value of operand 1 is an integer.
4576 @cindex @code{ftrunc@var{m}2} instruction pattern
4577 @item @samp{ftrunc@var{m}2}
4578 Convert operand 1 (valid for floating point mode @var{m}) to an
4579 integer value, still represented in floating point mode @var{m}, and
4580 store it in operand 0 (valid for floating point mode @var{m}).
4582 @cindex @code{fix_trunc@var{mn}2} instruction pattern
4583 @item @samp{fix_trunc@var{m}@var{n}2}
4584 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
4585 of mode @var{m} by converting the value to an integer.
4587 @cindex @code{fixuns_trunc@var{mn}2} instruction pattern
4588 @item @samp{fixuns_trunc@var{m}@var{n}2}
4589 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
4590 value of mode @var{m} by converting the value to an integer.
4592 @cindex @code{trunc@var{mn}2} instruction pattern
4593 @item @samp{trunc@var{m}@var{n}2}
4594 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
4595 store in operand 0 (which has mode @var{n}). Both modes must be fixed
4596 point or both floating point.
4598 @cindex @code{extend@var{mn}2} instruction pattern
4599 @item @samp{extend@var{m}@var{n}2}
4600 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
4601 store in operand 0 (which has mode @var{n}). Both modes must be fixed
4602 point or both floating point.
4604 @cindex @code{zero_extend@var{mn}2} instruction pattern
4605 @item @samp{zero_extend@var{m}@var{n}2}
4606 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
4607 store in operand 0 (which has mode @var{n}). Both modes must be fixed
4610 @cindex @code{fract@var{mn}2} instruction pattern
4611 @item @samp{fract@var{m}@var{n}2}
4612 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4613 operand 0 (which has mode @var{n}). Mode @var{m} and mode @var{n}
4614 could be fixed-point to fixed-point, signed integer to fixed-point,
4615 fixed-point to signed integer, floating-point to fixed-point,
4616 or fixed-point to floating-point.
4617 When overflows or underflows happen, the results are undefined.
4619 @cindex @code{satfract@var{mn}2} instruction pattern
4620 @item @samp{satfract@var{m}@var{n}2}
4621 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4622 operand 0 (which has mode @var{n}). Mode @var{m} and mode @var{n}
4623 could be fixed-point to fixed-point, signed integer to fixed-point,
4624 or floating-point to fixed-point.
4625 When overflows or underflows happen, the instruction saturates the
4626 results to the maximum or the minimum.
4628 @cindex @code{fractuns@var{mn}2} instruction pattern
4629 @item @samp{fractuns@var{m}@var{n}2}
4630 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4631 operand 0 (which has mode @var{n}). Mode @var{m} and mode @var{n}
4632 could be unsigned integer to fixed-point, or
4633 fixed-point to unsigned integer.
4634 When overflows or underflows happen, the results are undefined.
4636 @cindex @code{satfractuns@var{mn}2} instruction pattern
4637 @item @samp{satfractuns@var{m}@var{n}2}
4638 Convert unsigned integer operand 1 of mode @var{m} to fixed-point mode
4639 @var{n} and store in operand 0 (which has mode @var{n}).
4640 When overflows or underflows happen, the instruction saturates the
4641 results to the maximum or the minimum.
4643 @cindex @code{extv} instruction pattern
4645 Extract a bit-field from operand 1 (a register or memory operand), where
4646 operand 2 specifies the width in bits and operand 3 the starting bit,
4647 and store it in operand 0. Operand 0 must have mode @code{word_mode}.
4648 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
4649 @code{word_mode} is allowed only for registers. Operands 2 and 3 must
4650 be valid for @code{word_mode}.
4652 The RTL generation pass generates this instruction only with constants
4653 for operands 2 and 3 and the constant is never zero for operand 2.
4655 The bit-field value is sign-extended to a full word integer
4656 before it is stored in operand 0.
4658 @cindex @code{extzv} instruction pattern
4660 Like @samp{extv} except that the bit-field value is zero-extended.
4662 @cindex @code{insv} instruction pattern
4664 Store operand 3 (which must be valid for @code{word_mode}) into a
4665 bit-field in operand 0, where operand 1 specifies the width in bits and
4666 operand 2 the starting bit. Operand 0 may have mode @code{byte_mode} or
4667 @code{word_mode}; often @code{word_mode} is allowed only for registers.
4668 Operands 1 and 2 must be valid for @code{word_mode}.
4670 The RTL generation pass generates this instruction only with constants
4671 for operands 1 and 2 and the constant is never zero for operand 1.
4673 @cindex @code{mov@var{mode}cc} instruction pattern
4674 @item @samp{mov@var{mode}cc}
4675 Conditionally move operand 2 or operand 3 into operand 0 according to the
4676 comparison in operand 1. If the comparison is true, operand 2 is moved
4677 into operand 0, otherwise operand 3 is moved.
4679 The mode of the operands being compared need not be the same as the operands
4680 being moved. Some machines, sparc64 for example, have instructions that
4681 conditionally move an integer value based on the floating point condition
4682 codes and vice versa.
4684 If the machine does not have conditional move instructions, do not
4685 define these patterns.
4687 @cindex @code{add@var{mode}cc} instruction pattern
4688 @item @samp{add@var{mode}cc}
4689 Similar to @samp{mov@var{mode}cc} but for conditional addition. Conditionally
4690 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
4691 comparison in operand 1. If the comparison is true, operand 2 is moved into
4692 operand 0, otherwise (operand 2 + operand 3) is moved.
4694 @cindex @code{cstore@var{mode}4} instruction pattern
4695 @item @samp{cstore@var{mode}4}
4696 Store zero or nonzero in operand 0 according to whether a comparison
4697 is true. Operand 1 is a comparison operator. Operand 2 and operand 3
4698 are the first and second operand of the comparison, respectively.
4699 You specify the mode that operand 0 must have when you write the
4700 @code{match_operand} expression. The compiler automatically sees which
4701 mode you have used and supplies an operand of that mode.
4703 The value stored for a true condition must have 1 as its low bit, or
4704 else must be negative. Otherwise the instruction is not suitable and
4705 you should omit it from the machine description. You describe to the
4706 compiler exactly which value is stored by defining the macro
4707 @code{STORE_FLAG_VALUE} (@pxref{Misc}). If a description cannot be
4708 found that can be used for all the possible comparison operators, you
4709 should pick one and use a @code{define_expand} to map all results
4710 onto the one you chose.
4712 These operations may @code{FAIL}, but should do so only in relatively
4713 uncommon cases; if they would @code{FAIL} for common cases involving
4714 integer comparisons, it is best to restrict the predicates to not
4715 allow these operands. Likewise if a given comparison operator will
4716 always fail, independent of the operands (for floating-point modes, the
4717 @code{ordered_comparison_operator} predicate is often useful in this case).
4719 If this pattern is omitted, the compiler will generate a conditional
4720 branch---for example, it may copy a constant one to the target and branching
4721 around an assignment of zero to the target---or a libcall. If the predicate
4722 for operand 1 only rejects some operators, it will also try reordering the
4723 operands and/or inverting the result value (e.g.@: by an exclusive OR).
4724 These possibilities could be cheaper or equivalent to the instructions
4725 used for the @samp{cstore@var{mode}4} pattern followed by those required
4726 to convert a positive result from @code{STORE_FLAG_VALUE} to 1; in this
4727 case, you can and should make operand 1's predicate reject some operators
4728 in the @samp{cstore@var{mode}4} pattern, or remove the pattern altogether
4729 from the machine description.
4731 @cindex @code{cbranch@var{mode}4} instruction pattern
4732 @item @samp{cbranch@var{mode}4}
4733 Conditional branch instruction combined with a compare instruction.
4734 Operand 0 is a comparison operator. Operand 1 and operand 2 are the
4735 first and second operands of the comparison, respectively. Operand 3
4736 is a @code{label_ref} that refers to the label to jump to.
4738 @cindex @code{jump} instruction pattern
4740 A jump inside a function; an unconditional branch. Operand 0 is the
4741 @code{label_ref} of the label to jump to. This pattern name is mandatory
4744 @cindex @code{call} instruction pattern
4746 Subroutine call instruction returning no value. Operand 0 is the
4747 function to call; operand 1 is the number of bytes of arguments pushed
4748 as a @code{const_int}; operand 2 is the number of registers used as
4751 On most machines, operand 2 is not actually stored into the RTL
4752 pattern. It is supplied for the sake of some RISC machines which need
4753 to put this information into the assembler code; they can put it in
4754 the RTL instead of operand 1.
4756 Operand 0 should be a @code{mem} RTX whose address is the address of the
4757 function. Note, however, that this address can be a @code{symbol_ref}
4758 expression even if it would not be a legitimate memory address on the
4759 target machine. If it is also not a valid argument for a call
4760 instruction, the pattern for this operation should be a
4761 @code{define_expand} (@pxref{Expander Definitions}) that places the
4762 address into a register and uses that register in the call instruction.
4764 @cindex @code{call_value} instruction pattern
4765 @item @samp{call_value}
4766 Subroutine call instruction returning a value. Operand 0 is the hard
4767 register in which the value is returned. There are three more
4768 operands, the same as the three operands of the @samp{call}
4769 instruction (but with numbers increased by one).
4771 Subroutines that return @code{BLKmode} objects use the @samp{call}
4774 @cindex @code{call_pop} instruction pattern
4775 @cindex @code{call_value_pop} instruction pattern
4776 @item @samp{call_pop}, @samp{call_value_pop}
4777 Similar to @samp{call} and @samp{call_value}, except used if defined and
4778 if @code{RETURN_POPS_ARGS} is nonzero. They should emit a @code{parallel}
4779 that contains both the function call and a @code{set} to indicate the
4780 adjustment made to the frame pointer.
4782 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
4783 patterns increases the number of functions for which the frame pointer
4784 can be eliminated, if desired.
4786 @cindex @code{untyped_call} instruction pattern
4787 @item @samp{untyped_call}
4788 Subroutine call instruction returning a value of any type. Operand 0 is
4789 the function to call; operand 1 is a memory location where the result of
4790 calling the function is to be stored; operand 2 is a @code{parallel}
4791 expression where each element is a @code{set} expression that indicates
4792 the saving of a function return value into the result block.
4794 This instruction pattern should be defined to support
4795 @code{__builtin_apply} on machines where special instructions are needed
4796 to call a subroutine with arbitrary arguments or to save the value
4797 returned. This instruction pattern is required on machines that have
4798 multiple registers that can hold a return value
4799 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
4801 @cindex @code{return} instruction pattern
4803 Subroutine return instruction. This instruction pattern name should be
4804 defined only if a single instruction can do all the work of returning
4807 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
4808 RTL generation phase. In this case it is to support machines where
4809 multiple instructions are usually needed to return from a function, but
4810 some class of functions only requires one instruction to implement a
4811 return. Normally, the applicable functions are those which do not need
4812 to save any registers or allocate stack space.
4814 @findex reload_completed
4815 @findex leaf_function_p
4816 For such machines, the condition specified in this pattern should only
4817 be true when @code{reload_completed} is nonzero and the function's
4818 epilogue would only be a single instruction. For machines with register
4819 windows, the routine @code{leaf_function_p} may be used to determine if
4820 a register window push is required.
4822 Machines that have conditional return instructions should define patterns
4828 (if_then_else (match_operator
4829 0 "comparison_operator"
4830 [(cc0) (const_int 0)])
4837 where @var{condition} would normally be the same condition specified on the
4838 named @samp{return} pattern.
4840 @cindex @code{untyped_return} instruction pattern
4841 @item @samp{untyped_return}
4842 Untyped subroutine return instruction. This instruction pattern should
4843 be defined to support @code{__builtin_return} on machines where special
4844 instructions are needed to return a value of any type.
4846 Operand 0 is a memory location where the result of calling a function
4847 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
4848 expression where each element is a @code{set} expression that indicates
4849 the restoring of a function return value from the result block.
4851 @cindex @code{nop} instruction pattern
4853 No-op instruction. This instruction pattern name should always be defined
4854 to output a no-op in assembler code. @code{(const_int 0)} will do as an
4857 @cindex @code{indirect_jump} instruction pattern
4858 @item @samp{indirect_jump}
4859 An instruction to jump to an address which is operand zero.
4860 This pattern name is mandatory on all machines.
4862 @cindex @code{casesi} instruction pattern
4864 Instruction to jump through a dispatch table, including bounds checking.
4865 This instruction takes five operands:
4869 The index to dispatch on, which has mode @code{SImode}.
4872 The lower bound for indices in the table, an integer constant.
4875 The total range of indices in the table---the largest index
4876 minus the smallest one (both inclusive).
4879 A label that precedes the table itself.
4882 A label to jump to if the index has a value outside the bounds.
4885 The table is an @code{addr_vec} or @code{addr_diff_vec} inside of a
4886 @code{jump_insn}. The number of elements in the table is one plus the
4887 difference between the upper bound and the lower bound.
4889 @cindex @code{tablejump} instruction pattern
4890 @item @samp{tablejump}
4891 Instruction to jump to a variable address. This is a low-level
4892 capability which can be used to implement a dispatch table when there
4893 is no @samp{casesi} pattern.
4895 This pattern requires two operands: the address or offset, and a label
4896 which should immediately precede the jump table. If the macro
4897 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
4898 operand is an offset which counts from the address of the table; otherwise,
4899 it is an absolute address to jump to. In either case, the first operand has
4902 The @samp{tablejump} insn is always the last insn before the jump
4903 table it uses. Its assembler code normally has no need to use the
4904 second operand, but you should incorporate it in the RTL pattern so
4905 that the jump optimizer will not delete the table as unreachable code.
4908 @cindex @code{decrement_and_branch_until_zero} instruction pattern
4909 @item @samp{decrement_and_branch_until_zero}
4910 Conditional branch instruction that decrements a register and
4911 jumps if the register is nonzero. Operand 0 is the register to
4912 decrement and test; operand 1 is the label to jump to if the
4913 register is nonzero. @xref{Looping Patterns}.
4915 This optional instruction pattern is only used by the combiner,
4916 typically for loops reversed by the loop optimizer when strength
4917 reduction is enabled.
4919 @cindex @code{doloop_end} instruction pattern
4920 @item @samp{doloop_end}
4921 Conditional branch instruction that decrements a register and jumps if
4922 the register is nonzero. This instruction takes five operands: Operand
4923 0 is the register to decrement and test; operand 1 is the number of loop
4924 iterations as a @code{const_int} or @code{const0_rtx} if this cannot be
4925 determined until run-time; operand 2 is the actual or estimated maximum
4926 number of iterations as a @code{const_int}; operand 3 is the number of
4927 enclosed loops as a @code{const_int} (an innermost loop has a value of
4928 1); operand 4 is the label to jump to if the register is nonzero.
4929 @xref{Looping Patterns}.
4931 This optional instruction pattern should be defined for machines with
4932 low-overhead looping instructions as the loop optimizer will try to
4933 modify suitable loops to utilize it. If nested low-overhead looping is
4934 not supported, use a @code{define_expand} (@pxref{Expander Definitions})
4935 and make the pattern fail if operand 3 is not @code{const1_rtx}.
4936 Similarly, if the actual or estimated maximum number of iterations is
4937 too large for this instruction, make it fail.
4939 @cindex @code{doloop_begin} instruction pattern
4940 @item @samp{doloop_begin}
4941 Companion instruction to @code{doloop_end} required for machines that
4942 need to perform some initialization, such as loading special registers
4943 used by a low-overhead looping instruction. If initialization insns do
4944 not always need to be emitted, use a @code{define_expand}
4945 (@pxref{Expander Definitions}) and make it fail.
4948 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
4949 @item @samp{canonicalize_funcptr_for_compare}
4950 Canonicalize the function pointer in operand 1 and store the result
4953 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
4954 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
4955 and also has mode @code{Pmode}.
4957 Canonicalization of a function pointer usually involves computing
4958 the address of the function which would be called if the function
4959 pointer were used in an indirect call.
4961 Only define this pattern if function pointers on the target machine
4962 can have different values but still call the same function when
4963 used in an indirect call.
4965 @cindex @code{save_stack_block} instruction pattern
4966 @cindex @code{save_stack_function} instruction pattern
4967 @cindex @code{save_stack_nonlocal} instruction pattern
4968 @cindex @code{restore_stack_block} instruction pattern
4969 @cindex @code{restore_stack_function} instruction pattern
4970 @cindex @code{restore_stack_nonlocal} instruction pattern
4971 @item @samp{save_stack_block}
4972 @itemx @samp{save_stack_function}
4973 @itemx @samp{save_stack_nonlocal}
4974 @itemx @samp{restore_stack_block}
4975 @itemx @samp{restore_stack_function}
4976 @itemx @samp{restore_stack_nonlocal}
4977 Most machines save and restore the stack pointer by copying it to or
4978 from an object of mode @code{Pmode}. Do not define these patterns on
4981 Some machines require special handling for stack pointer saves and
4982 restores. On those machines, define the patterns corresponding to the
4983 non-standard cases by using a @code{define_expand} (@pxref{Expander
4984 Definitions}) that produces the required insns. The three types of
4985 saves and restores are:
4989 @samp{save_stack_block} saves the stack pointer at the start of a block
4990 that allocates a variable-sized object, and @samp{restore_stack_block}
4991 restores the stack pointer when the block is exited.
4994 @samp{save_stack_function} and @samp{restore_stack_function} do a
4995 similar job for the outermost block of a function and are used when the
4996 function allocates variable-sized objects or calls @code{alloca}. Only
4997 the epilogue uses the restored stack pointer, allowing a simpler save or
4998 restore sequence on some machines.
5001 @samp{save_stack_nonlocal} is used in functions that contain labels
5002 branched to by nested functions. It saves the stack pointer in such a
5003 way that the inner function can use @samp{restore_stack_nonlocal} to
5004 restore the stack pointer. The compiler generates code to restore the
5005 frame and argument pointer registers, but some machines require saving
5006 and restoring additional data such as register window information or
5007 stack backchains. Place insns in these patterns to save and restore any
5011 When saving the stack pointer, operand 0 is the save area and operand 1
5012 is the stack pointer. The mode used to allocate the save area defaults
5013 to @code{Pmode} but you can override that choice by defining the
5014 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}). You must
5015 specify an integral mode, or @code{VOIDmode} if no save area is needed
5016 for a particular type of save (either because no save is needed or
5017 because a machine-specific save area can be used). Operand 0 is the
5018 stack pointer and operand 1 is the save area for restore operations. If
5019 @samp{save_stack_block} is defined, operand 0 must not be
5020 @code{VOIDmode} since these saves can be arbitrarily nested.
5022 A save area is a @code{mem} that is at a constant offset from
5023 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
5024 nonlocal gotos and a @code{reg} in the other two cases.
5026 @cindex @code{allocate_stack} instruction pattern
5027 @item @samp{allocate_stack}
5028 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
5029 the stack pointer to create space for dynamically allocated data.
5031 Store the resultant pointer to this space into operand 0. If you
5032 are allocating space from the main stack, do this by emitting a
5033 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
5034 If you are allocating the space elsewhere, generate code to copy the
5035 location of the space to operand 0. In the latter case, you must
5036 ensure this space gets freed when the corresponding space on the main
5039 Do not define this pattern if all that must be done is the subtraction.
5040 Some machines require other operations such as stack probes or
5041 maintaining the back chain. Define this pattern to emit those
5042 operations in addition to updating the stack pointer.
5044 @cindex @code{check_stack} instruction pattern
5045 @item @samp{check_stack}
5046 If stack checking (@pxref{Stack Checking}) cannot be done on your system by
5047 probing the stack, define this pattern to perform the needed check and signal
5048 an error if the stack has overflowed. The single operand is the address in
5049 the stack farthest from the current stack pointer that you need to validate.
5050 Normally, on platforms where this pattern is needed, you would obtain the
5051 stack limit from a global or thread-specific variable or register.
5053 @cindex @code{probe_stack} instruction pattern
5054 @item @samp{probe_stack}
5055 If stack checking (@pxref{Stack Checking}) can be done on your system by
5056 probing the stack but doing it with a ``store zero'' instruction is not valid
5057 or optimal, define this pattern to do the probing differently and signal an
5058 error if the stack has overflowed. The single operand is the memory reference
5059 in the stack that needs to be probed.
5061 @cindex @code{nonlocal_goto} instruction pattern
5062 @item @samp{nonlocal_goto}
5063 Emit code to generate a non-local goto, e.g., a jump from one function
5064 to a label in an outer function. This pattern has four arguments,
5065 each representing a value to be used in the jump. The first
5066 argument is to be loaded into the frame pointer, the second is
5067 the address to branch to (code to dispatch to the actual label),
5068 the third is the address of a location where the stack is saved,
5069 and the last is the address of the label, to be placed in the
5070 location for the incoming static chain.
5072 On most machines you need not define this pattern, since GCC will
5073 already generate the correct code, which is to load the frame pointer
5074 and static chain, restore the stack (using the
5075 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
5076 to the dispatcher. You need only define this pattern if this code will
5077 not work on your machine.
5079 @cindex @code{nonlocal_goto_receiver} instruction pattern
5080 @item @samp{nonlocal_goto_receiver}
5081 This pattern, if defined, contains code needed at the target of a
5082 nonlocal goto after the code already generated by GCC@. You will not
5083 normally need to define this pattern. A typical reason why you might
5084 need this pattern is if some value, such as a pointer to a global table,
5085 must be restored when the frame pointer is restored. Note that a nonlocal
5086 goto only occurs within a unit-of-translation, so a global table pointer
5087 that is shared by all functions of a given module need not be restored.
5088 There are no arguments.
5090 @cindex @code{exception_receiver} instruction pattern
5091 @item @samp{exception_receiver}
5092 This pattern, if defined, contains code needed at the site of an
5093 exception handler that isn't needed at the site of a nonlocal goto. You
5094 will not normally need to define this pattern. A typical reason why you
5095 might need this pattern is if some value, such as a pointer to a global
5096 table, must be restored after control flow is branched to the handler of
5097 an exception. There are no arguments.
5099 @cindex @code{builtin_setjmp_setup} instruction pattern
5100 @item @samp{builtin_setjmp_setup}
5101 This pattern, if defined, contains additional code needed to initialize
5102 the @code{jmp_buf}. You will not normally need to define this pattern.
5103 A typical reason why you might need this pattern is if some value, such
5104 as a pointer to a global table, must be restored. Though it is
5105 preferred that the pointer value be recalculated if possible (given the
5106 address of a label for instance). The single argument is a pointer to
5107 the @code{jmp_buf}. Note that the buffer is five words long and that
5108 the first three are normally used by the generic mechanism.
5110 @cindex @code{builtin_setjmp_receiver} instruction pattern
5111 @item @samp{builtin_setjmp_receiver}
5112 This pattern, if defined, contains code needed at the site of a
5113 built-in setjmp that isn't needed at the site of a nonlocal goto. You
5114 will not normally need to define this pattern. A typical reason why you
5115 might need this pattern is if some value, such as a pointer to a global
5116 table, must be restored. It takes one argument, which is the label
5117 to which builtin_longjmp transfered control; this pattern may be emitted
5118 at a small offset from that label.
5120 @cindex @code{builtin_longjmp} instruction pattern
5121 @item @samp{builtin_longjmp}
5122 This pattern, if defined, performs the entire action of the longjmp.
5123 You will not normally need to define this pattern unless you also define
5124 @code{builtin_setjmp_setup}. The single argument is a pointer to the
5127 @cindex @code{eh_return} instruction pattern
5128 @item @samp{eh_return}
5129 This pattern, if defined, affects the way @code{__builtin_eh_return},
5130 and thence the call frame exception handling library routines, are
5131 built. It is intended to handle non-trivial actions needed along
5132 the abnormal return path.
5134 The address of the exception handler to which the function should return
5135 is passed as operand to this pattern. It will normally need to copied by
5136 the pattern to some special register or memory location.
5137 If the pattern needs to determine the location of the target call
5138 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
5139 if defined; it will have already been assigned.
5141 If this pattern is not defined, the default action will be to simply
5142 copy the return address to @code{EH_RETURN_HANDLER_RTX}. Either
5143 that macro or this pattern needs to be defined if call frame exception
5144 handling is to be used.
5146 @cindex @code{prologue} instruction pattern
5147 @anchor{prologue instruction pattern}
5148 @item @samp{prologue}
5149 This pattern, if defined, emits RTL for entry to a function. The function
5150 entry is responsible for setting up the stack frame, initializing the frame
5151 pointer register, saving callee saved registers, etc.
5153 Using a prologue pattern is generally preferred over defining
5154 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
5156 The @code{prologue} pattern is particularly useful for targets which perform
5157 instruction scheduling.
5159 @cindex @code{epilogue} instruction pattern
5160 @anchor{epilogue instruction pattern}
5161 @item @samp{epilogue}
5162 This pattern emits RTL for exit from a function. The function
5163 exit is responsible for deallocating the stack frame, restoring callee saved
5164 registers and emitting the return instruction.
5166 Using an epilogue pattern is generally preferred over defining
5167 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
5169 The @code{epilogue} pattern is particularly useful for targets which perform
5170 instruction scheduling or which have delay slots for their return instruction.
5172 @cindex @code{sibcall_epilogue} instruction pattern
5173 @item @samp{sibcall_epilogue}
5174 This pattern, if defined, emits RTL for exit from a function without the final
5175 branch back to the calling function. This pattern will be emitted before any
5176 sibling call (aka tail call) sites.
5178 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
5179 parameter passing or any stack slots for arguments passed to the current
5182 @cindex @code{trap} instruction pattern
5184 This pattern, if defined, signals an error, typically by causing some
5185 kind of signal to be raised. Among other places, it is used by the Java
5186 front end to signal `invalid array index' exceptions.
5188 @cindex @code{ctrap@var{MM}4} instruction pattern
5189 @item @samp{ctrap@var{MM}4}
5190 Conditional trap instruction. Operand 0 is a piece of RTL which
5191 performs a comparison, and operands 1 and 2 are the arms of the
5192 comparison. Operand 3 is the trap code, an integer.
5194 A typical @code{ctrap} pattern looks like
5197 (define_insn "ctrapsi4"
5198 [(trap_if (match_operator 0 "trap_operator"
5199 [(match_operand 1 "register_operand")
5200 (match_operand 2 "immediate_operand")])
5201 (match_operand 3 "const_int_operand" "i"))]
5206 @cindex @code{prefetch} instruction pattern
5207 @item @samp{prefetch}
5209 This pattern, if defined, emits code for a non-faulting data prefetch
5210 instruction. Operand 0 is the address of the memory to prefetch. Operand 1
5211 is a constant 1 if the prefetch is preparing for a write to the memory
5212 address, or a constant 0 otherwise. Operand 2 is the expected degree of
5213 temporal locality of the data and is a value between 0 and 3, inclusive; 0
5214 means that the data has no temporal locality, so it need not be left in the
5215 cache after the access; 3 means that the data has a high degree of temporal
5216 locality and should be left in all levels of cache possible; 1 and 2 mean,
5217 respectively, a low or moderate degree of temporal locality.
5219 Targets that do not support write prefetches or locality hints can ignore
5220 the values of operands 1 and 2.
5222 @cindex @code{blockage} instruction pattern
5223 @item @samp{blockage}
5225 This pattern defines a pseudo insn that prevents the instruction
5226 scheduler from moving instructions across the boundary defined by the
5227 blockage insn. Normally an UNSPEC_VOLATILE pattern.
5229 @cindex @code{memory_barrier} instruction pattern
5230 @item @samp{memory_barrier}
5232 If the target memory model is not fully synchronous, then this pattern
5233 should be defined to an instruction that orders both loads and stores
5234 before the instruction with respect to loads and stores after the instruction.
5235 This pattern has no operands.
5237 @cindex @code{sync_compare_and_swap@var{mode}} instruction pattern
5238 @item @samp{sync_compare_and_swap@var{mode}}
5240 This pattern, if defined, emits code for an atomic compare-and-swap
5241 operation. Operand 1 is the memory on which the atomic operation is
5242 performed. Operand 2 is the ``old'' value to be compared against the
5243 current contents of the memory location. Operand 3 is the ``new'' value
5244 to store in the memory if the compare succeeds. Operand 0 is the result
5245 of the operation; it should contain the contents of the memory
5246 before the operation. If the compare succeeds, this should obviously be
5247 a copy of operand 2.
5249 This pattern must show that both operand 0 and operand 1 are modified.
5251 This pattern must issue any memory barrier instructions such that all
5252 memory operations before the atomic operation occur before the atomic
5253 operation and all memory operations after the atomic operation occur
5254 after the atomic operation.
5256 For targets where the success or failure of the compare-and-swap
5257 operation is available via the status flags, it is possible to
5258 avoid a separate compare operation and issue the subsequent
5259 branch or store-flag operation immediately after the compare-and-swap.
5260 To this end, GCC will look for a @code{MODE_CC} set in the
5261 output of @code{sync_compare_and_swap@var{mode}}; if the machine
5262 description includes such a set, the target should also define special
5263 @code{cbranchcc4} and/or @code{cstorecc4} instructions. GCC will then
5264 be able to take the destination of the @code{MODE_CC} set and pass it
5265 to the @code{cbranchcc4} or @code{cstorecc4} pattern as the first
5266 operand of the comparison (the second will be @code{(const_int 0)}).
5268 @cindex @code{sync_add@var{mode}} instruction pattern
5269 @cindex @code{sync_sub@var{mode}} instruction pattern
5270 @cindex @code{sync_ior@var{mode}} instruction pattern
5271 @cindex @code{sync_and@var{mode}} instruction pattern
5272 @cindex @code{sync_xor@var{mode}} instruction pattern
5273 @cindex @code{sync_nand@var{mode}} instruction pattern
5274 @item @samp{sync_add@var{mode}}, @samp{sync_sub@var{mode}}
5275 @itemx @samp{sync_ior@var{mode}}, @samp{sync_and@var{mode}}
5276 @itemx @samp{sync_xor@var{mode}}, @samp{sync_nand@var{mode}}
5278 These patterns emit code for an atomic operation on memory.
5279 Operand 0 is the memory on which the atomic operation is performed.
5280 Operand 1 is the second operand to the binary operator.
5282 This pattern must issue any memory barrier instructions such that all
5283 memory operations before the atomic operation occur before the atomic
5284 operation and all memory operations after the atomic operation occur
5285 after the atomic operation.
5287 If these patterns are not defined, the operation will be constructed
5288 from a compare-and-swap operation, if defined.
5290 @cindex @code{sync_old_add@var{mode}} instruction pattern
5291 @cindex @code{sync_old_sub@var{mode}} instruction pattern
5292 @cindex @code{sync_old_ior@var{mode}} instruction pattern
5293 @cindex @code{sync_old_and@var{mode}} instruction pattern
5294 @cindex @code{sync_old_xor@var{mode}} instruction pattern
5295 @cindex @code{sync_old_nand@var{mode}} instruction pattern
5296 @item @samp{sync_old_add@var{mode}}, @samp{sync_old_sub@var{mode}}
5297 @itemx @samp{sync_old_ior@var{mode}}, @samp{sync_old_and@var{mode}}
5298 @itemx @samp{sync_old_xor@var{mode}}, @samp{sync_old_nand@var{mode}}
5300 These patterns are emit code for an atomic operation on memory,
5301 and return the value that the memory contained before the operation.
5302 Operand 0 is the result value, operand 1 is the memory on which the
5303 atomic operation is performed, and operand 2 is the second operand
5304 to the binary operator.
5306 This pattern must issue any memory barrier instructions such that all
5307 memory operations before the atomic operation occur before the atomic
5308 operation and all memory operations after the atomic operation occur
5309 after the atomic operation.
5311 If these patterns are not defined, the operation will be constructed
5312 from a compare-and-swap operation, if defined.
5314 @cindex @code{sync_new_add@var{mode}} instruction pattern
5315 @cindex @code{sync_new_sub@var{mode}} instruction pattern
5316 @cindex @code{sync_new_ior@var{mode}} instruction pattern
5317 @cindex @code{sync_new_and@var{mode}} instruction pattern
5318 @cindex @code{sync_new_xor@var{mode}} instruction pattern
5319 @cindex @code{sync_new_nand@var{mode}} instruction pattern
5320 @item @samp{sync_new_add@var{mode}}, @samp{sync_new_sub@var{mode}}
5321 @itemx @samp{sync_new_ior@var{mode}}, @samp{sync_new_and@var{mode}}
5322 @itemx @samp{sync_new_xor@var{mode}}, @samp{sync_new_nand@var{mode}}
5324 These patterns are like their @code{sync_old_@var{op}} counterparts,
5325 except that they return the value that exists in the memory location
5326 after the operation, rather than before the operation.
5328 @cindex @code{sync_lock_test_and_set@var{mode}} instruction pattern
5329 @item @samp{sync_lock_test_and_set@var{mode}}
5331 This pattern takes two forms, based on the capabilities of the target.
5332 In either case, operand 0 is the result of the operand, operand 1 is
5333 the memory on which the atomic operation is performed, and operand 2
5334 is the value to set in the lock.
5336 In the ideal case, this operation is an atomic exchange operation, in
5337 which the previous value in memory operand is copied into the result
5338 operand, and the value operand is stored in the memory operand.
5340 For less capable targets, any value operand that is not the constant 1
5341 should be rejected with @code{FAIL}. In this case the target may use
5342 an atomic test-and-set bit operation. The result operand should contain
5343 1 if the bit was previously set and 0 if the bit was previously clear.
5344 The true contents of the memory operand are implementation defined.
5346 This pattern must issue any memory barrier instructions such that the
5347 pattern as a whole acts as an acquire barrier, that is all memory
5348 operations after the pattern do not occur until the lock is acquired.
5350 If this pattern is not defined, the operation will be constructed from
5351 a compare-and-swap operation, if defined.
5353 @cindex @code{sync_lock_release@var{mode}} instruction pattern
5354 @item @samp{sync_lock_release@var{mode}}
5356 This pattern, if defined, releases a lock set by
5357 @code{sync_lock_test_and_set@var{mode}}. Operand 0 is the memory
5358 that contains the lock; operand 1 is the value to store in the lock.
5360 If the target doesn't implement full semantics for
5361 @code{sync_lock_test_and_set@var{mode}}, any value operand which is not
5362 the constant 0 should be rejected with @code{FAIL}, and the true contents
5363 of the memory operand are implementation defined.
5365 This pattern must issue any memory barrier instructions such that the
5366 pattern as a whole acts as a release barrier, that is the lock is
5367 released only after all previous memory operations have completed.
5369 If this pattern is not defined, then a @code{memory_barrier} pattern
5370 will be emitted, followed by a store of the value to the memory operand.
5372 @cindex @code{stack_protect_set} instruction pattern
5373 @item @samp{stack_protect_set}
5375 This pattern, if defined, moves a @code{Pmode} value from the memory
5376 in operand 1 to the memory in operand 0 without leaving the value in
5377 a register afterward. This is to avoid leaking the value some place
5378 that an attacker might use to rewrite the stack guard slot after
5379 having clobbered it.
5381 If this pattern is not defined, then a plain move pattern is generated.
5383 @cindex @code{stack_protect_test} instruction pattern
5384 @item @samp{stack_protect_test}
5386 This pattern, if defined, compares a @code{Pmode} value from the
5387 memory in operand 1 with the memory in operand 0 without leaving the
5388 value in a register afterward and branches to operand 2 if the values
5391 If this pattern is not defined, then a plain compare pattern and
5392 conditional branch pattern is used.
5394 @cindex @code{clear_cache} instruction pattern
5395 @item @samp{clear_cache}
5397 This pattern, if defined, flushes the instruction cache for a region of
5398 memory. The region is bounded to by the Pmode pointers in operand 0
5399 inclusive and operand 1 exclusive.
5401 If this pattern is not defined, a call to the library function
5402 @code{__clear_cache} is used.
5407 @c Each of the following nodes are wrapped in separate
5408 @c "@ifset INTERNALS" to work around memory limits for the default
5409 @c configuration in older tetex distributions. Known to not work:
5410 @c tetex-1.0.7, known to work: tetex-2.0.2.
5412 @node Pattern Ordering
5413 @section When the Order of Patterns Matters
5414 @cindex Pattern Ordering
5415 @cindex Ordering of Patterns
5417 Sometimes an insn can match more than one instruction pattern. Then the
5418 pattern that appears first in the machine description is the one used.
5419 Therefore, more specific patterns (patterns that will match fewer things)
5420 and faster instructions (those that will produce better code when they
5421 do match) should usually go first in the description.
5423 In some cases the effect of ordering the patterns can be used to hide
5424 a pattern when it is not valid. For example, the 68000 has an
5425 instruction for converting a fullword to floating point and another
5426 for converting a byte to floating point. An instruction converting
5427 an integer to floating point could match either one. We put the
5428 pattern to convert the fullword first to make sure that one will
5429 be used rather than the other. (Otherwise a large integer might
5430 be generated as a single-byte immediate quantity, which would not work.)
5431 Instead of using this pattern ordering it would be possible to make the
5432 pattern for convert-a-byte smart enough to deal properly with any
5437 @node Dependent Patterns
5438 @section Interdependence of Patterns
5439 @cindex Dependent Patterns
5440 @cindex Interdependence of Patterns
5442 In some cases machines support instructions identical except for the
5443 machine mode of one or more operands. For example, there may be
5444 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
5448 (set (match_operand:SI 0 @dots{})
5449 (extend:SI (match_operand:HI 1 @dots{})))
5451 (set (match_operand:SI 0 @dots{})
5452 (extend:SI (match_operand:QI 1 @dots{})))
5456 Constant integers do not specify a machine mode, so an instruction to
5457 extend a constant value could match either pattern. The pattern it
5458 actually will match is the one that appears first in the file. For correct
5459 results, this must be the one for the widest possible mode (@code{HImode},
5460 here). If the pattern matches the @code{QImode} instruction, the results
5461 will be incorrect if the constant value does not actually fit that mode.
5463 Such instructions to extend constants are rarely generated because they are
5464 optimized away, but they do occasionally happen in nonoptimized
5467 If a constraint in a pattern allows a constant, the reload pass may
5468 replace a register with a constant permitted by the constraint in some
5469 cases. Similarly for memory references. Because of this substitution,
5470 you should not provide separate patterns for increment and decrement
5471 instructions. Instead, they should be generated from the same pattern
5472 that supports register-register add insns by examining the operands and
5473 generating the appropriate machine instruction.
5478 @section Defining Jump Instruction Patterns
5479 @cindex jump instruction patterns
5480 @cindex defining jump instruction patterns
5482 GCC does not assume anything about how the machine realizes jumps.
5483 The machine description should define a single pattern, usually
5484 a @code{define_expand}, which expands to all the required insns.
5486 Usually, this would be a comparison insn to set the condition code
5487 and a separate branch insn testing the condition code and branching
5488 or not according to its value. For many machines, however,
5489 separating compares and branches is limiting, which is why the
5490 more flexible approach with one @code{define_expand} is used in GCC.
5491 The machine description becomes clearer for architectures that
5492 have compare-and-branch instructions but no condition code. It also
5493 works better when different sets of comparison operators are supported
5494 by different kinds of conditional branches (e.g. integer vs. floating-point),
5495 or by conditional branches with respect to conditional stores.
5497 Two separate insns are always used if the machine description represents
5498 a condition code register using the legacy RTL expression @code{(cc0)},
5499 and on most machines that use a separate condition code register
5500 (@pxref{Condition Code}). For machines that use @code{(cc0)}, in
5501 fact, the set and use of the condition code must be separate and
5502 adjacent@footnote{@code{note} insns can separate them, though.}, thus
5503 allowing flags in @code{cc_status} to be used (@pxref{Condition Code}) and
5504 so that the comparison and branch insns could be located from each other
5505 by using the functions @code{prev_cc0_setter} and @code{next_cc0_user}.
5507 Even in this case having a single entry point for conditional branches
5508 is advantageous, because it handles equally well the case where a single
5509 comparison instruction records the results of both signed and unsigned
5510 comparison of the given operands (with the branch insns coming in distinct
5511 signed and unsigned flavors) as in the x86 or SPARC, and the case where
5512 there are distinct signed and unsigned compare instructions and only
5513 one set of conditional branch instructions as in the PowerPC.
5517 @node Looping Patterns
5518 @section Defining Looping Instruction Patterns
5519 @cindex looping instruction patterns
5520 @cindex defining looping instruction patterns
5522 Some machines have special jump instructions that can be utilized to
5523 make loops more efficient. A common example is the 68000 @samp{dbra}
5524 instruction which performs a decrement of a register and a branch if the
5525 result was greater than zero. Other machines, in particular digital
5526 signal processors (DSPs), have special block repeat instructions to
5527 provide low-overhead loop support. For example, the TI TMS320C3x/C4x
5528 DSPs have a block repeat instruction that loads special registers to
5529 mark the top and end of a loop and to count the number of loop
5530 iterations. This avoids the need for fetching and executing a
5531 @samp{dbra}-like instruction and avoids pipeline stalls associated with
5534 GCC has three special named patterns to support low overhead looping.
5535 They are @samp{decrement_and_branch_until_zero}, @samp{doloop_begin},
5536 and @samp{doloop_end}. The first pattern,
5537 @samp{decrement_and_branch_until_zero}, is not emitted during RTL
5538 generation but may be emitted during the instruction combination phase.
5539 This requires the assistance of the loop optimizer, using information
5540 collected during strength reduction, to reverse a loop to count down to
5541 zero. Some targets also require the loop optimizer to add a
5542 @code{REG_NONNEG} note to indicate that the iteration count is always
5543 positive. This is needed if the target performs a signed loop
5544 termination test. For example, the 68000 uses a pattern similar to the
5545 following for its @code{dbra} instruction:
5549 (define_insn "decrement_and_branch_until_zero"
5552 (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
5555 (label_ref (match_operand 1 "" ""))
5558 (plus:SI (match_dup 0)
5560 "find_reg_note (insn, REG_NONNEG, 0)"
5565 Note that since the insn is both a jump insn and has an output, it must
5566 deal with its own reloads, hence the `m' constraints. Also note that
5567 since this insn is generated by the instruction combination phase
5568 combining two sequential insns together into an implicit parallel insn,
5569 the iteration counter needs to be biased by the same amount as the
5570 decrement operation, in this case @minus{}1. Note that the following similar
5571 pattern will not be matched by the combiner.
5575 (define_insn "decrement_and_branch_until_zero"
5578 (ge (match_operand:SI 0 "general_operand" "+d*am")
5580 (label_ref (match_operand 1 "" ""))
5583 (plus:SI (match_dup 0)
5585 "find_reg_note (insn, REG_NONNEG, 0)"
5590 The other two special looping patterns, @samp{doloop_begin} and
5591 @samp{doloop_end}, are emitted by the loop optimizer for certain
5592 well-behaved loops with a finite number of loop iterations using
5593 information collected during strength reduction.
5595 The @samp{doloop_end} pattern describes the actual looping instruction
5596 (or the implicit looping operation) and the @samp{doloop_begin} pattern
5597 is an optional companion pattern that can be used for initialization
5598 needed for some low-overhead looping instructions.
5600 Note that some machines require the actual looping instruction to be
5601 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting
5602 the true RTL for a looping instruction at the top of the loop can cause
5603 problems with flow analysis. So instead, a dummy @code{doloop} insn is
5604 emitted at the end of the loop. The machine dependent reorg pass checks
5605 for the presence of this @code{doloop} insn and then searches back to
5606 the top of the loop, where it inserts the true looping insn (provided
5607 there are no instructions in the loop which would cause problems). Any
5608 additional labels can be emitted at this point. In addition, if the
5609 desired special iteration counter register was not allocated, this
5610 machine dependent reorg pass could emit a traditional compare and jump
5613 The essential difference between the
5614 @samp{decrement_and_branch_until_zero} and the @samp{doloop_end}
5615 patterns is that the loop optimizer allocates an additional pseudo
5616 register for the latter as an iteration counter. This pseudo register
5617 cannot be used within the loop (i.e., general induction variables cannot
5618 be derived from it), however, in many cases the loop induction variable
5619 may become redundant and removed by the flow pass.
5624 @node Insn Canonicalizations
5625 @section Canonicalization of Instructions
5626 @cindex canonicalization of instructions
5627 @cindex insn canonicalization
5629 There are often cases where multiple RTL expressions could represent an
5630 operation performed by a single machine instruction. This situation is
5631 most commonly encountered with logical, branch, and multiply-accumulate
5632 instructions. In such cases, the compiler attempts to convert these
5633 multiple RTL expressions into a single canonical form to reduce the
5634 number of insn patterns required.
5636 In addition to algebraic simplifications, following canonicalizations
5641 For commutative and comparison operators, a constant is always made the
5642 second operand. If a machine only supports a constant as the second
5643 operand, only patterns that match a constant in the second operand need
5647 For associative operators, a sequence of operators will always chain
5648 to the left; for instance, only the left operand of an integer @code{plus}
5649 can itself be a @code{plus}. @code{and}, @code{ior}, @code{xor},
5650 @code{plus}, @code{mult}, @code{smin}, @code{smax}, @code{umin}, and
5651 @code{umax} are associative when applied to integers, and sometimes to
5655 @cindex @code{neg}, canonicalization of
5656 @cindex @code{not}, canonicalization of
5657 @cindex @code{mult}, canonicalization of
5658 @cindex @code{plus}, canonicalization of
5659 @cindex @code{minus}, canonicalization of
5660 For these operators, if only one operand is a @code{neg}, @code{not},
5661 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
5665 In combinations of @code{neg}, @code{mult}, @code{plus}, and
5666 @code{minus}, the @code{neg} operations (if any) will be moved inside
5667 the operations as far as possible. For instance,
5668 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
5669 @code{(plus (mult (neg B) C) A)} is canonicalized as
5670 @code{(minus A (mult B C))}.
5672 @cindex @code{compare}, canonicalization of
5674 For the @code{compare} operator, a constant is always the second operand
5675 if the first argument is a condition code register or @code{(cc0)}.
5678 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
5679 @code{minus} is made the first operand under the same conditions as
5683 @code{(ltu (plus @var{a} @var{b}) @var{b})} is converted to
5684 @code{(ltu (plus @var{a} @var{b}) @var{a})}. Likewise with @code{geu} instead
5688 @code{(minus @var{x} (const_int @var{n}))} is converted to
5689 @code{(plus @var{x} (const_int @var{-n}))}.
5692 Within address computations (i.e., inside @code{mem}), a left shift is
5693 converted into the appropriate multiplication by a power of two.
5695 @cindex @code{ior}, canonicalization of
5696 @cindex @code{and}, canonicalization of
5697 @cindex De Morgan's law
5699 De Morgan's Law is used to move bitwise negation inside a bitwise
5700 logical-and or logical-or operation. If this results in only one
5701 operand being a @code{not} expression, it will be the first one.
5703 A machine that has an instruction that performs a bitwise logical-and of one
5704 operand with the bitwise negation of the other should specify the pattern
5705 for that instruction as
5709 [(set (match_operand:@var{m} 0 @dots{})
5710 (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
5711 (match_operand:@var{m} 2 @dots{})))]
5717 Similarly, a pattern for a ``NAND'' instruction should be written
5721 [(set (match_operand:@var{m} 0 @dots{})
5722 (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
5723 (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
5728 In both cases, it is not necessary to include patterns for the many
5729 logically equivalent RTL expressions.
5731 @cindex @code{xor}, canonicalization of
5733 The only possible RTL expressions involving both bitwise exclusive-or
5734 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
5735 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
5738 The sum of three items, one of which is a constant, will only appear in
5742 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
5745 @cindex @code{zero_extract}, canonicalization of
5746 @cindex @code{sign_extract}, canonicalization of
5748 Equality comparisons of a group of bits (usually a single bit) with zero
5749 will be written using @code{zero_extract} rather than the equivalent
5750 @code{and} or @code{sign_extract} operations.
5754 Further canonicalization rules are defined in the function
5755 @code{commutative_operand_precedence} in @file{gcc/rtlanal.c}.
5759 @node Expander Definitions
5760 @section Defining RTL Sequences for Code Generation
5761 @cindex expander definitions
5762 @cindex code generation RTL sequences
5763 @cindex defining RTL sequences for code generation
5765 On some target machines, some standard pattern names for RTL generation
5766 cannot be handled with single insn, but a sequence of RTL insns can
5767 represent them. For these target machines, you can write a
5768 @code{define_expand} to specify how to generate the sequence of RTL@.
5770 @findex define_expand
5771 A @code{define_expand} is an RTL expression that looks almost like a
5772 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
5773 only for RTL generation and it can produce more than one RTL insn.
5775 A @code{define_expand} RTX has four operands:
5779 The name. Each @code{define_expand} must have a name, since the only
5780 use for it is to refer to it by name.
5783 The RTL template. This is a vector of RTL expressions representing
5784 a sequence of separate instructions. Unlike @code{define_insn}, there
5785 is no implicit surrounding @code{PARALLEL}.
5788 The condition, a string containing a C expression. This expression is
5789 used to express how the availability of this pattern depends on
5790 subclasses of target machine, selected by command-line options when GCC
5791 is run. This is just like the condition of a @code{define_insn} that
5792 has a standard name. Therefore, the condition (if present) may not
5793 depend on the data in the insn being matched, but only the
5794 target-machine-type flags. The compiler needs to test these conditions
5795 during initialization in order to learn exactly which named instructions
5796 are available in a particular run.
5799 The preparation statements, a string containing zero or more C
5800 statements which are to be executed before RTL code is generated from
5803 Usually these statements prepare temporary registers for use as
5804 internal operands in the RTL template, but they can also generate RTL
5805 insns directly by calling routines such as @code{emit_insn}, etc.
5806 Any such insns precede the ones that come from the RTL template.
5809 Every RTL insn emitted by a @code{define_expand} must match some
5810 @code{define_insn} in the machine description. Otherwise, the compiler
5811 will crash when trying to generate code for the insn or trying to optimize
5814 The RTL template, in addition to controlling generation of RTL insns,
5815 also describes the operands that need to be specified when this pattern
5816 is used. In particular, it gives a predicate for each operand.
5818 A true operand, which needs to be specified in order to generate RTL from
5819 the pattern, should be described with a @code{match_operand} in its first
5820 occurrence in the RTL template. This enters information on the operand's
5821 predicate into the tables that record such things. GCC uses the
5822 information to preload the operand into a register if that is required for
5823 valid RTL code. If the operand is referred to more than once, subsequent
5824 references should use @code{match_dup}.
5826 The RTL template may also refer to internal ``operands'' which are
5827 temporary registers or labels used only within the sequence made by the
5828 @code{define_expand}. Internal operands are substituted into the RTL
5829 template with @code{match_dup}, never with @code{match_operand}. The
5830 values of the internal operands are not passed in as arguments by the
5831 compiler when it requests use of this pattern. Instead, they are computed
5832 within the pattern, in the preparation statements. These statements
5833 compute the values and store them into the appropriate elements of
5834 @code{operands} so that @code{match_dup} can find them.
5836 There are two special macros defined for use in the preparation statements:
5837 @code{DONE} and @code{FAIL}. Use them with a following semicolon,
5844 Use the @code{DONE} macro to end RTL generation for the pattern. The
5845 only RTL insns resulting from the pattern on this occasion will be
5846 those already emitted by explicit calls to @code{emit_insn} within the
5847 preparation statements; the RTL template will not be generated.
5851 Make the pattern fail on this occasion. When a pattern fails, it means
5852 that the pattern was not truly available. The calling routines in the
5853 compiler will try other strategies for code generation using other patterns.
5855 Failure is currently supported only for binary (addition, multiplication,
5856 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
5860 If the preparation falls through (invokes neither @code{DONE} nor
5861 @code{FAIL}), then the @code{define_expand} acts like a
5862 @code{define_insn} in that the RTL template is used to generate the
5865 The RTL template is not used for matching, only for generating the
5866 initial insn list. If the preparation statement always invokes
5867 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
5868 list of operands, such as this example:
5872 (define_expand "addsi3"
5873 [(match_operand:SI 0 "register_operand" "")
5874 (match_operand:SI 1 "register_operand" "")
5875 (match_operand:SI 2 "register_operand" "")]
5881 handle_add (operands[0], operands[1], operands[2]);
5887 Here is an example, the definition of left-shift for the SPUR chip:
5891 (define_expand "ashlsi3"
5892 [(set (match_operand:SI 0 "register_operand" "")
5896 (match_operand:SI 1 "register_operand" "")
5897 (match_operand:SI 2 "nonmemory_operand" "")))]
5906 if (GET_CODE (operands[2]) != CONST_INT
5907 || (unsigned) INTVAL (operands[2]) > 3)
5914 This example uses @code{define_expand} so that it can generate an RTL insn
5915 for shifting when the shift-count is in the supported range of 0 to 3 but
5916 fail in other cases where machine insns aren't available. When it fails,
5917 the compiler tries another strategy using different patterns (such as, a
5920 If the compiler were able to handle nontrivial condition-strings in
5921 patterns with names, then it would be possible to use a
5922 @code{define_insn} in that case. Here is another case (zero-extension
5923 on the 68000) which makes more use of the power of @code{define_expand}:
5926 (define_expand "zero_extendhisi2"
5927 [(set (match_operand:SI 0 "general_operand" "")
5929 (set (strict_low_part
5933 (match_operand:HI 1 "general_operand" ""))]
5935 "operands[1] = make_safe_from (operands[1], operands[0]);")
5939 @findex make_safe_from
5940 Here two RTL insns are generated, one to clear the entire output operand
5941 and the other to copy the input operand into its low half. This sequence
5942 is incorrect if the input operand refers to [the old value of] the output
5943 operand, so the preparation statement makes sure this isn't so. The
5944 function @code{make_safe_from} copies the @code{operands[1]} into a
5945 temporary register if it refers to @code{operands[0]}. It does this
5946 by emitting another RTL insn.
5948 Finally, a third example shows the use of an internal operand.
5949 Zero-extension on the SPUR chip is done by @code{and}-ing the result
5950 against a halfword mask. But this mask cannot be represented by a
5951 @code{const_int} because the constant value is too large to be legitimate
5952 on this machine. So it must be copied into a register with
5953 @code{force_reg} and then the register used in the @code{and}.
5956 (define_expand "zero_extendhisi2"
5957 [(set (match_operand:SI 0 "register_operand" "")
5959 (match_operand:HI 1 "register_operand" "")
5964 = force_reg (SImode, GEN_INT (65535)); ")
5967 @emph{Note:} If the @code{define_expand} is used to serve a
5968 standard binary or unary arithmetic operation or a bit-field operation,
5969 then the last insn it generates must not be a @code{code_label},
5970 @code{barrier} or @code{note}. It must be an @code{insn},
5971 @code{jump_insn} or @code{call_insn}. If you don't need a real insn
5972 at the end, emit an insn to copy the result of the operation into
5973 itself. Such an insn will generate no code, but it can avoid problems
5978 @node Insn Splitting
5979 @section Defining How to Split Instructions
5980 @cindex insn splitting
5981 @cindex instruction splitting
5982 @cindex splitting instructions
5984 There are two cases where you should specify how to split a pattern
5985 into multiple insns. On machines that have instructions requiring
5986 delay slots (@pxref{Delay Slots}) or that have instructions whose
5987 output is not available for multiple cycles (@pxref{Processor pipeline
5988 description}), the compiler phases that optimize these cases need to
5989 be able to move insns into one-instruction delay slots. However, some
5990 insns may generate more than one machine instruction. These insns
5991 cannot be placed into a delay slot.
5993 Often you can rewrite the single insn as a list of individual insns,
5994 each corresponding to one machine instruction. The disadvantage of
5995 doing so is that it will cause the compilation to be slower and require
5996 more space. If the resulting insns are too complex, it may also
5997 suppress some optimizations. The compiler splits the insn if there is a
5998 reason to believe that it might improve instruction or delay slot
6001 The insn combiner phase also splits putative insns. If three insns are
6002 merged into one insn with a complex expression that cannot be matched by
6003 some @code{define_insn} pattern, the combiner phase attempts to split
6004 the complex pattern into two insns that are recognized. Usually it can
6005 break the complex pattern into two patterns by splitting out some
6006 subexpression. However, in some other cases, such as performing an
6007 addition of a large constant in two insns on a RISC machine, the way to
6008 split the addition into two insns is machine-dependent.
6010 @findex define_split
6011 The @code{define_split} definition tells the compiler how to split a
6012 complex insn into several simpler insns. It looks like this:
6016 [@var{insn-pattern}]
6018 [@var{new-insn-pattern-1}
6019 @var{new-insn-pattern-2}
6021 "@var{preparation-statements}")
6024 @var{insn-pattern} is a pattern that needs to be split and
6025 @var{condition} is the final condition to be tested, as in a
6026 @code{define_insn}. When an insn matching @var{insn-pattern} and
6027 satisfying @var{condition} is found, it is replaced in the insn list
6028 with the insns given by @var{new-insn-pattern-1},
6029 @var{new-insn-pattern-2}, etc.
6031 The @var{preparation-statements} are similar to those statements that
6032 are specified for @code{define_expand} (@pxref{Expander Definitions})
6033 and are executed before the new RTL is generated to prepare for the
6034 generated code or emit some insns whose pattern is not fixed. Unlike
6035 those in @code{define_expand}, however, these statements must not
6036 generate any new pseudo-registers. Once reload has completed, they also
6037 must not allocate any space in the stack frame.
6039 Patterns are matched against @var{insn-pattern} in two different
6040 circumstances. If an insn needs to be split for delay slot scheduling
6041 or insn scheduling, the insn is already known to be valid, which means
6042 that it must have been matched by some @code{define_insn} and, if
6043 @code{reload_completed} is nonzero, is known to satisfy the constraints
6044 of that @code{define_insn}. In that case, the new insn patterns must
6045 also be insns that are matched by some @code{define_insn} and, if
6046 @code{reload_completed} is nonzero, must also satisfy the constraints
6047 of those definitions.
6049 As an example of this usage of @code{define_split}, consider the following
6050 example from @file{a29k.md}, which splits a @code{sign_extend} from
6051 @code{HImode} to @code{SImode} into a pair of shift insns:
6055 [(set (match_operand:SI 0 "gen_reg_operand" "")
6056 (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
6059 (ashift:SI (match_dup 1)
6062 (ashiftrt:SI (match_dup 0)
6065 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
6068 When the combiner phase tries to split an insn pattern, it is always the
6069 case that the pattern is @emph{not} matched by any @code{define_insn}.
6070 The combiner pass first tries to split a single @code{set} expression
6071 and then the same @code{set} expression inside a @code{parallel}, but
6072 followed by a @code{clobber} of a pseudo-reg to use as a scratch
6073 register. In these cases, the combiner expects exactly two new insn
6074 patterns to be generated. It will verify that these patterns match some
6075 @code{define_insn} definitions, so you need not do this test in the
6076 @code{define_split} (of course, there is no point in writing a
6077 @code{define_split} that will never produce insns that match).
6079 Here is an example of this use of @code{define_split}, taken from
6084 [(set (match_operand:SI 0 "gen_reg_operand" "")
6085 (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
6086 (match_operand:SI 2 "non_add_cint_operand" "")))]
6088 [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
6089 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
6092 int low = INTVAL (operands[2]) & 0xffff;
6093 int high = (unsigned) INTVAL (operands[2]) >> 16;
6096 high++, low |= 0xffff0000;
6098 operands[3] = GEN_INT (high << 16);
6099 operands[4] = GEN_INT (low);
6103 Here the predicate @code{non_add_cint_operand} matches any
6104 @code{const_int} that is @emph{not} a valid operand of a single add
6105 insn. The add with the smaller displacement is written so that it
6106 can be substituted into the address of a subsequent operation.
6108 An example that uses a scratch register, from the same file, generates
6109 an equality comparison of a register and a large constant:
6113 [(set (match_operand:CC 0 "cc_reg_operand" "")
6114 (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
6115 (match_operand:SI 2 "non_short_cint_operand" "")))
6116 (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
6117 "find_single_use (operands[0], insn, 0)
6118 && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
6119 || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
6120 [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
6121 (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
6124 /* @r{Get the constant we are comparing against, C, and see what it
6125 looks like sign-extended to 16 bits. Then see what constant
6126 could be XOR'ed with C to get the sign-extended value.} */
6128 int c = INTVAL (operands[2]);
6129 int sextc = (c << 16) >> 16;
6130 int xorv = c ^ sextc;
6132 operands[4] = GEN_INT (xorv);
6133 operands[5] = GEN_INT (sextc);
6137 To avoid confusion, don't write a single @code{define_split} that
6138 accepts some insns that match some @code{define_insn} as well as some
6139 insns that don't. Instead, write two separate @code{define_split}
6140 definitions, one for the insns that are valid and one for the insns that
6143 The splitter is allowed to split jump instructions into sequence of
6144 jumps or create new jumps in while splitting non-jump instructions. As
6145 the central flowgraph and branch prediction information needs to be updated,
6146 several restriction apply.
6148 Splitting of jump instruction into sequence that over by another jump
6149 instruction is always valid, as compiler expect identical behavior of new
6150 jump. When new sequence contains multiple jump instructions or new labels,
6151 more assistance is needed. Splitter is required to create only unconditional
6152 jumps, or simple conditional jump instructions. Additionally it must attach a
6153 @code{REG_BR_PROB} note to each conditional jump. A global variable
6154 @code{split_branch_probability} holds the probability of the original branch in case
6155 it was a simple conditional jump, @minus{}1 otherwise. To simplify
6156 recomputing of edge frequencies, the new sequence is required to have only
6157 forward jumps to the newly created labels.
6159 @findex define_insn_and_split
6160 For the common case where the pattern of a define_split exactly matches the
6161 pattern of a define_insn, use @code{define_insn_and_split}. It looks like
6165 (define_insn_and_split
6166 [@var{insn-pattern}]
6168 "@var{output-template}"
6169 "@var{split-condition}"
6170 [@var{new-insn-pattern-1}
6171 @var{new-insn-pattern-2}
6173 "@var{preparation-statements}"
6174 [@var{insn-attributes}])
6178 @var{insn-pattern}, @var{condition}, @var{output-template}, and
6179 @var{insn-attributes} are used as in @code{define_insn}. The
6180 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
6181 in a @code{define_split}. The @var{split-condition} is also used as in
6182 @code{define_split}, with the additional behavior that if the condition starts
6183 with @samp{&&}, the condition used for the split will be the constructed as a
6184 logical ``and'' of the split condition with the insn condition. For example,
6188 (define_insn_and_split "zero_extendhisi2_and"
6189 [(set (match_operand:SI 0 "register_operand" "=r")
6190 (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
6191 (clobber (reg:CC 17))]
6192 "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
6194 "&& reload_completed"
6195 [(parallel [(set (match_dup 0)
6196 (and:SI (match_dup 0) (const_int 65535)))
6197 (clobber (reg:CC 17))])]
6199 [(set_attr "type" "alu1")])
6203 In this case, the actual split condition will be
6204 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
6206 The @code{define_insn_and_split} construction provides exactly the same
6207 functionality as two separate @code{define_insn} and @code{define_split}
6208 patterns. It exists for compactness, and as a maintenance tool to prevent
6209 having to ensure the two patterns' templates match.
6213 @node Including Patterns
6214 @section Including Patterns in Machine Descriptions.
6215 @cindex insn includes
6218 The @code{include} pattern tells the compiler tools where to
6219 look for patterns that are in files other than in the file
6220 @file{.md}. This is used only at build time and there is no preprocessing allowed.
6234 (include "filestuff")
6238 Where @var{pathname} is a string that specifies the location of the file,
6239 specifies the include file to be in @file{gcc/config/target/filestuff}. The
6240 directory @file{gcc/config/target} is regarded as the default directory.
6243 Machine descriptions may be split up into smaller more manageable subsections
6244 and placed into subdirectories.
6250 (include "BOGUS/filestuff")
6254 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
6256 Specifying an absolute path for the include file such as;
6259 (include "/u2/BOGUS/filestuff")
6262 is permitted but is not encouraged.
6264 @subsection RTL Generation Tool Options for Directory Search
6265 @cindex directory options .md
6266 @cindex options, directory search
6267 @cindex search options
6269 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
6274 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
6279 Add the directory @var{dir} to the head of the list of directories to be
6280 searched for header files. This can be used to override a system machine definition
6281 file, substituting your own version, since these directories are
6282 searched before the default machine description file directories. If you use more than
6283 one @option{-I} option, the directories are scanned in left-to-right
6284 order; the standard default directory come after.
6289 @node Peephole Definitions
6290 @section Machine-Specific Peephole Optimizers
6291 @cindex peephole optimizer definitions
6292 @cindex defining peephole optimizers
6294 In addition to instruction patterns the @file{md} file may contain
6295 definitions of machine-specific peephole optimizations.
6297 The combiner does not notice certain peephole optimizations when the data
6298 flow in the program does not suggest that it should try them. For example,
6299 sometimes two consecutive insns related in purpose can be combined even
6300 though the second one does not appear to use a register computed in the
6301 first one. A machine-specific peephole optimizer can detect such
6304 There are two forms of peephole definitions that may be used. The
6305 original @code{define_peephole} is run at assembly output time to
6306 match insns and substitute assembly text. Use of @code{define_peephole}
6309 A newer @code{define_peephole2} matches insns and substitutes new
6310 insns. The @code{peephole2} pass is run after register allocation
6311 but before scheduling, which may result in much better code for
6312 targets that do scheduling.
6315 * define_peephole:: RTL to Text Peephole Optimizers
6316 * define_peephole2:: RTL to RTL Peephole Optimizers
6321 @node define_peephole
6322 @subsection RTL to Text Peephole Optimizers
6323 @findex define_peephole
6326 A definition looks like this:
6330 [@var{insn-pattern-1}
6331 @var{insn-pattern-2}
6335 "@var{optional-insn-attributes}")
6339 The last string operand may be omitted if you are not using any
6340 machine-specific information in this machine description. If present,
6341 it must obey the same rules as in a @code{define_insn}.
6343 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
6344 consecutive insns. The optimization applies to a sequence of insns when
6345 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
6346 the next, and so on.
6348 Each of the insns matched by a peephole must also match a
6349 @code{define_insn}. Peepholes are checked only at the last stage just
6350 before code generation, and only optionally. Therefore, any insn which
6351 would match a peephole but no @code{define_insn} will cause a crash in code
6352 generation in an unoptimized compilation, or at various optimization
6355 The operands of the insns are matched with @code{match_operands},
6356 @code{match_operator}, and @code{match_dup}, as usual. What is not
6357 usual is that the operand numbers apply to all the insn patterns in the
6358 definition. So, you can check for identical operands in two insns by
6359 using @code{match_operand} in one insn and @code{match_dup} in the
6362 The operand constraints used in @code{match_operand} patterns do not have
6363 any direct effect on the applicability of the peephole, but they will
6364 be validated afterward, so make sure your constraints are general enough
6365 to apply whenever the peephole matches. If the peephole matches
6366 but the constraints are not satisfied, the compiler will crash.
6368 It is safe to omit constraints in all the operands of the peephole; or
6369 you can write constraints which serve as a double-check on the criteria
6372 Once a sequence of insns matches the patterns, the @var{condition} is
6373 checked. This is a C expression which makes the final decision whether to
6374 perform the optimization (we do so if the expression is nonzero). If
6375 @var{condition} is omitted (in other words, the string is empty) then the
6376 optimization is applied to every sequence of insns that matches the
6379 The defined peephole optimizations are applied after register allocation
6380 is complete. Therefore, the peephole definition can check which
6381 operands have ended up in which kinds of registers, just by looking at
6384 @findex prev_active_insn
6385 The way to refer to the operands in @var{condition} is to write
6386 @code{operands[@var{i}]} for operand number @var{i} (as matched by
6387 @code{(match_operand @var{i} @dots{})}). Use the variable @code{insn}
6388 to refer to the last of the insns being matched; use
6389 @code{prev_active_insn} to find the preceding insns.
6391 @findex dead_or_set_p
6392 When optimizing computations with intermediate results, you can use
6393 @var{condition} to match only when the intermediate results are not used
6394 elsewhere. Use the C expression @code{dead_or_set_p (@var{insn},
6395 @var{op})}, where @var{insn} is the insn in which you expect the value
6396 to be used for the last time (from the value of @code{insn}, together
6397 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
6398 value (from @code{operands[@var{i}]}).
6400 Applying the optimization means replacing the sequence of insns with one
6401 new insn. The @var{template} controls ultimate output of assembler code
6402 for this combined insn. It works exactly like the template of a
6403 @code{define_insn}. Operand numbers in this template are the same ones
6404 used in matching the original sequence of insns.
6406 The result of a defined peephole optimizer does not need to match any of
6407 the insn patterns in the machine description; it does not even have an
6408 opportunity to match them. The peephole optimizer definition itself serves
6409 as the insn pattern to control how the insn is output.
6411 Defined peephole optimizers are run as assembler code is being output,
6412 so the insns they produce are never combined or rearranged in any way.
6414 Here is an example, taken from the 68000 machine description:
6418 [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
6419 (set (match_operand:DF 0 "register_operand" "=f")
6420 (match_operand:DF 1 "register_operand" "ad"))]
6421 "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
6424 xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
6426 output_asm_insn ("move.l %1,(sp)", xoperands);
6427 output_asm_insn ("move.l %1,-(sp)", operands);
6428 return "fmove.d (sp)+,%0";
6430 output_asm_insn ("movel %1,sp@@", xoperands);
6431 output_asm_insn ("movel %1,sp@@-", operands);
6432 return "fmoved sp@@+,%0";
6438 The effect of this optimization is to change
6464 If a peephole matches a sequence including one or more jump insns, you must
6465 take account of the flags such as @code{CC_REVERSED} which specify that the
6466 condition codes are represented in an unusual manner. The compiler
6467 automatically alters any ordinary conditional jumps which occur in such
6468 situations, but the compiler cannot alter jumps which have been replaced by
6469 peephole optimizations. So it is up to you to alter the assembler code
6470 that the peephole produces. Supply C code to write the assembler output,
6471 and in this C code check the condition code status flags and change the
6472 assembler code as appropriate.
6475 @var{insn-pattern-1} and so on look @emph{almost} like the second
6476 operand of @code{define_insn}. There is one important difference: the
6477 second operand of @code{define_insn} consists of one or more RTX's
6478 enclosed in square brackets. Usually, there is only one: then the same
6479 action can be written as an element of a @code{define_peephole}. But
6480 when there are multiple actions in a @code{define_insn}, they are
6481 implicitly enclosed in a @code{parallel}. Then you must explicitly
6482 write the @code{parallel}, and the square brackets within it, in the
6483 @code{define_peephole}. Thus, if an insn pattern looks like this,
6486 (define_insn "divmodsi4"
6487 [(set (match_operand:SI 0 "general_operand" "=d")
6488 (div:SI (match_operand:SI 1 "general_operand" "0")
6489 (match_operand:SI 2 "general_operand" "dmsK")))
6490 (set (match_operand:SI 3 "general_operand" "=d")
6491 (mod:SI (match_dup 1) (match_dup 2)))]
6493 "divsl%.l %2,%3:%0")
6497 then the way to mention this insn in a peephole is as follows:
6503 [(set (match_operand:SI 0 "general_operand" "=d")
6504 (div:SI (match_operand:SI 1 "general_operand" "0")
6505 (match_operand:SI 2 "general_operand" "dmsK")))
6506 (set (match_operand:SI 3 "general_operand" "=d")
6507 (mod:SI (match_dup 1) (match_dup 2)))])
6514 @node define_peephole2
6515 @subsection RTL to RTL Peephole Optimizers
6516 @findex define_peephole2
6518 The @code{define_peephole2} definition tells the compiler how to
6519 substitute one sequence of instructions for another sequence,
6520 what additional scratch registers may be needed and what their
6525 [@var{insn-pattern-1}
6526 @var{insn-pattern-2}
6529 [@var{new-insn-pattern-1}
6530 @var{new-insn-pattern-2}
6532 "@var{preparation-statements}")
6535 The definition is almost identical to @code{define_split}
6536 (@pxref{Insn Splitting}) except that the pattern to match is not a
6537 single instruction, but a sequence of instructions.
6539 It is possible to request additional scratch registers for use in the
6540 output template. If appropriate registers are not free, the pattern
6541 will simply not match.
6543 @findex match_scratch
6545 Scratch registers are requested with a @code{match_scratch} pattern at
6546 the top level of the input pattern. The allocated register (initially) will
6547 be dead at the point requested within the original sequence. If the scratch
6548 is used at more than a single point, a @code{match_dup} pattern at the
6549 top level of the input pattern marks the last position in the input sequence
6550 at which the register must be available.
6552 Here is an example from the IA-32 machine description:
6556 [(match_scratch:SI 2 "r")
6557 (parallel [(set (match_operand:SI 0 "register_operand" "")
6558 (match_operator:SI 3 "arith_or_logical_operator"
6560 (match_operand:SI 1 "memory_operand" "")]))
6561 (clobber (reg:CC 17))])]
6562 "! optimize_size && ! TARGET_READ_MODIFY"
6563 [(set (match_dup 2) (match_dup 1))
6564 (parallel [(set (match_dup 0)
6565 (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
6566 (clobber (reg:CC 17))])]
6571 This pattern tries to split a load from its use in the hopes that we'll be
6572 able to schedule around the memory load latency. It allocates a single
6573 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
6574 to be live only at the point just before the arithmetic.
6576 A real example requiring extended scratch lifetimes is harder to come by,
6577 so here's a silly made-up example:
6581 [(match_scratch:SI 4 "r")
6582 (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
6583 (set (match_operand:SI 2 "" "") (match_dup 1))
6585 (set (match_operand:SI 3 "" "") (match_dup 1))]
6586 "/* @r{determine 1 does not overlap 0 and 2} */"
6587 [(set (match_dup 4) (match_dup 1))
6588 (set (match_dup 0) (match_dup 4))
6589 (set (match_dup 2) (match_dup 4))]
6590 (set (match_dup 3) (match_dup 4))]
6595 If we had not added the @code{(match_dup 4)} in the middle of the input
6596 sequence, it might have been the case that the register we chose at the
6597 beginning of the sequence is killed by the first or second @code{set}.
6601 @node Insn Attributes
6602 @section Instruction Attributes
6603 @cindex insn attributes
6604 @cindex instruction attributes
6606 In addition to describing the instruction supported by the target machine,
6607 the @file{md} file also defines a group of @dfn{attributes} and a set of
6608 values for each. Every generated insn is assigned a value for each attribute.
6609 One possible attribute would be the effect that the insn has on the machine's
6610 condition code. This attribute can then be used by @code{NOTICE_UPDATE_CC}
6611 to track the condition codes.
6614 * Defining Attributes:: Specifying attributes and their values.
6615 * Expressions:: Valid expressions for attribute values.
6616 * Tagging Insns:: Assigning attribute values to insns.
6617 * Attr Example:: An example of assigning attributes.
6618 * Insn Lengths:: Computing the length of insns.
6619 * Constant Attributes:: Defining attributes that are constant.
6620 * Delay Slots:: Defining delay slots required for a machine.
6621 * Processor pipeline description:: Specifying information for insn scheduling.
6626 @node Defining Attributes
6627 @subsection Defining Attributes and their Values
6628 @cindex defining attributes and their values
6629 @cindex attributes, defining
6632 The @code{define_attr} expression is used to define each attribute required
6633 by the target machine. It looks like:
6636 (define_attr @var{name} @var{list-of-values} @var{default})
6639 @var{name} is a string specifying the name of the attribute being defined.
6641 @var{list-of-values} is either a string that specifies a comma-separated
6642 list of values that can be assigned to the attribute, or a null string to
6643 indicate that the attribute takes numeric values.
6645 @var{default} is an attribute expression that gives the value of this
6646 attribute for insns that match patterns whose definition does not include
6647 an explicit value for this attribute. @xref{Attr Example}, for more
6648 information on the handling of defaults. @xref{Constant Attributes},
6649 for information on attributes that do not depend on any particular insn.
6652 For each defined attribute, a number of definitions are written to the
6653 @file{insn-attr.h} file. For cases where an explicit set of values is
6654 specified for an attribute, the following are defined:
6658 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
6661 An enumerated class is defined for @samp{attr_@var{name}} with
6662 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
6663 the attribute name and value are first converted to uppercase.
6666 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
6667 returns the attribute value for that insn.
6670 For example, if the following is present in the @file{md} file:
6673 (define_attr "type" "branch,fp,load,store,arith" @dots{})
6677 the following lines will be written to the file @file{insn-attr.h}.
6680 #define HAVE_ATTR_type
6681 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
6682 TYPE_STORE, TYPE_ARITH@};
6683 extern enum attr_type get_attr_type ();
6686 If the attribute takes numeric values, no @code{enum} type will be
6687 defined and the function to obtain the attribute's value will return
6690 There are attributes which are tied to a specific meaning. These
6691 attributes are not free to use for other purposes:
6695 The @code{length} attribute is used to calculate the length of emitted
6696 code chunks. This is especially important when verifying branch
6697 distances. @xref{Insn Lengths}.
6700 The @code{enabled} attribute can be defined to prevent certain
6701 alternatives of an insn definition from being used during code
6702 generation. @xref{Disable Insn Alternatives}.
6709 @subsection Attribute Expressions
6710 @cindex attribute expressions
6712 RTL expressions used to define attributes use the codes described above
6713 plus a few specific to attribute definitions, to be discussed below.
6714 Attribute value expressions must have one of the following forms:
6717 @cindex @code{const_int} and attributes
6718 @item (const_int @var{i})
6719 The integer @var{i} specifies the value of a numeric attribute. @var{i}
6720 must be non-negative.
6722 The value of a numeric attribute can be specified either with a
6723 @code{const_int}, or as an integer represented as a string in
6724 @code{const_string}, @code{eq_attr} (see below), @code{attr},
6725 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
6726 overrides on specific instructions (@pxref{Tagging Insns}).
6728 @cindex @code{const_string} and attributes
6729 @item (const_string @var{value})
6730 The string @var{value} specifies a constant attribute value.
6731 If @var{value} is specified as @samp{"*"}, it means that the default value of
6732 the attribute is to be used for the insn containing this expression.
6733 @samp{"*"} obviously cannot be used in the @var{default} expression
6734 of a @code{define_attr}.
6736 If the attribute whose value is being specified is numeric, @var{value}
6737 must be a string containing a non-negative integer (normally
6738 @code{const_int} would be used in this case). Otherwise, it must
6739 contain one of the valid values for the attribute.
6741 @cindex @code{if_then_else} and attributes
6742 @item (if_then_else @var{test} @var{true-value} @var{false-value})
6743 @var{test} specifies an attribute test, whose format is defined below.
6744 The value of this expression is @var{true-value} if @var{test} is true,
6745 otherwise it is @var{false-value}.
6747 @cindex @code{cond} and attributes
6748 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
6749 The first operand of this expression is a vector containing an even
6750 number of expressions and consisting of pairs of @var{test} and @var{value}
6751 expressions. The value of the @code{cond} expression is that of the
6752 @var{value} corresponding to the first true @var{test} expression. If
6753 none of the @var{test} expressions are true, the value of the @code{cond}
6754 expression is that of the @var{default} expression.
6757 @var{test} expressions can have one of the following forms:
6760 @cindex @code{const_int} and attribute tests
6761 @item (const_int @var{i})
6762 This test is true if @var{i} is nonzero and false otherwise.
6764 @cindex @code{not} and attributes
6765 @cindex @code{ior} and attributes
6766 @cindex @code{and} and attributes
6767 @item (not @var{test})
6768 @itemx (ior @var{test1} @var{test2})
6769 @itemx (and @var{test1} @var{test2})
6770 These tests are true if the indicated logical function is true.
6772 @cindex @code{match_operand} and attributes
6773 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
6774 This test is true if operand @var{n} of the insn whose attribute value
6775 is being determined has mode @var{m} (this part of the test is ignored
6776 if @var{m} is @code{VOIDmode}) and the function specified by the string
6777 @var{pred} returns a nonzero value when passed operand @var{n} and mode
6778 @var{m} (this part of the test is ignored if @var{pred} is the null
6781 The @var{constraints} operand is ignored and should be the null string.
6783 @cindex @code{le} and attributes
6784 @cindex @code{leu} and attributes
6785 @cindex @code{lt} and attributes
6786 @cindex @code{gt} and attributes
6787 @cindex @code{gtu} and attributes
6788 @cindex @code{ge} and attributes
6789 @cindex @code{geu} and attributes
6790 @cindex @code{ne} and attributes
6791 @cindex @code{eq} and attributes
6792 @cindex @code{plus} and attributes
6793 @cindex @code{minus} and attributes
6794 @cindex @code{mult} and attributes
6795 @cindex @code{div} and attributes
6796 @cindex @code{mod} and attributes
6797 @cindex @code{abs} and attributes
6798 @cindex @code{neg} and attributes
6799 @cindex @code{ashift} and attributes
6800 @cindex @code{lshiftrt} and attributes
6801 @cindex @code{ashiftrt} and attributes
6802 @item (le @var{arith1} @var{arith2})
6803 @itemx (leu @var{arith1} @var{arith2})
6804 @itemx (lt @var{arith1} @var{arith2})
6805 @itemx (ltu @var{arith1} @var{arith2})
6806 @itemx (gt @var{arith1} @var{arith2})
6807 @itemx (gtu @var{arith1} @var{arith2})
6808 @itemx (ge @var{arith1} @var{arith2})
6809 @itemx (geu @var{arith1} @var{arith2})
6810 @itemx (ne @var{arith1} @var{arith2})
6811 @itemx (eq @var{arith1} @var{arith2})
6812 These tests are true if the indicated comparison of the two arithmetic
6813 expressions is true. Arithmetic expressions are formed with
6814 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
6815 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
6816 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
6819 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
6820 Lengths},for additional forms). @code{symbol_ref} is a string
6821 denoting a C expression that yields an @code{int} when evaluated by the
6822 @samp{get_attr_@dots{}} routine. It should normally be a global
6826 @item (eq_attr @var{name} @var{value})
6827 @var{name} is a string specifying the name of an attribute.
6829 @var{value} is a string that is either a valid value for attribute
6830 @var{name}, a comma-separated list of values, or @samp{!} followed by a
6831 value or list. If @var{value} does not begin with a @samp{!}, this
6832 test is true if the value of the @var{name} attribute of the current
6833 insn is in the list specified by @var{value}. If @var{value} begins
6834 with a @samp{!}, this test is true if the attribute's value is
6835 @emph{not} in the specified list.
6840 (eq_attr "type" "load,store")
6847 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
6850 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
6851 value of the compiler variable @code{which_alternative}
6852 (@pxref{Output Statement}) and the values must be small integers. For
6856 (eq_attr "alternative" "2,3")
6863 (ior (eq (symbol_ref "which_alternative") (const_int 2))
6864 (eq (symbol_ref "which_alternative") (const_int 3)))
6867 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
6868 where the value of the attribute being tested is known for all insns matching
6869 a particular pattern. This is by far the most common case.
6872 @item (attr_flag @var{name})
6873 The value of an @code{attr_flag} expression is true if the flag
6874 specified by @var{name} is true for the @code{insn} currently being
6877 @var{name} is a string specifying one of a fixed set of flags to test.
6878 Test the flags @code{forward} and @code{backward} to determine the
6879 direction of a conditional branch. Test the flags @code{very_likely},
6880 @code{likely}, @code{very_unlikely}, and @code{unlikely} to determine
6881 if a conditional branch is expected to be taken.
6883 If the @code{very_likely} flag is true, then the @code{likely} flag is also
6884 true. Likewise for the @code{very_unlikely} and @code{unlikely} flags.
6886 This example describes a conditional branch delay slot which
6887 can be nullified for forward branches that are taken (annul-true) or
6888 for backward branches which are not taken (annul-false).
6891 (define_delay (eq_attr "type" "cbranch")
6892 [(eq_attr "in_branch_delay" "true")
6893 (and (eq_attr "in_branch_delay" "true")
6894 (attr_flag "forward"))
6895 (and (eq_attr "in_branch_delay" "true")
6896 (attr_flag "backward"))])
6899 The @code{forward} and @code{backward} flags are false if the current
6900 @code{insn} being scheduled is not a conditional branch.
6902 The @code{very_likely} and @code{likely} flags are true if the
6903 @code{insn} being scheduled is not a conditional branch.
6904 The @code{very_unlikely} and @code{unlikely} flags are false if the
6905 @code{insn} being scheduled is not a conditional branch.
6907 @code{attr_flag} is only used during delay slot scheduling and has no
6908 meaning to other passes of the compiler.
6911 @item (attr @var{name})
6912 The value of another attribute is returned. This is most useful
6913 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
6914 produce more efficient code for non-numeric attributes.
6920 @subsection Assigning Attribute Values to Insns
6921 @cindex tagging insns
6922 @cindex assigning attribute values to insns
6924 The value assigned to an attribute of an insn is primarily determined by
6925 which pattern is matched by that insn (or which @code{define_peephole}
6926 generated it). Every @code{define_insn} and @code{define_peephole} can
6927 have an optional last argument to specify the values of attributes for
6928 matching insns. The value of any attribute not specified in a particular
6929 insn is set to the default value for that attribute, as specified in its
6930 @code{define_attr}. Extensive use of default values for attributes
6931 permits the specification of the values for only one or two attributes
6932 in the definition of most insn patterns, as seen in the example in the
6935 The optional last argument of @code{define_insn} and
6936 @code{define_peephole} is a vector of expressions, each of which defines
6937 the value for a single attribute. The most general way of assigning an
6938 attribute's value is to use a @code{set} expression whose first operand is an
6939 @code{attr} expression giving the name of the attribute being set. The
6940 second operand of the @code{set} is an attribute expression
6941 (@pxref{Expressions}) giving the value of the attribute.
6943 When the attribute value depends on the @samp{alternative} attribute
6944 (i.e., which is the applicable alternative in the constraint of the
6945 insn), the @code{set_attr_alternative} expression can be used. It
6946 allows the specification of a vector of attribute expressions, one for
6950 When the generality of arbitrary attribute expressions is not required,
6951 the simpler @code{set_attr} expression can be used, which allows
6952 specifying a string giving either a single attribute value or a list
6953 of attribute values, one for each alternative.
6955 The form of each of the above specifications is shown below. In each case,
6956 @var{name} is a string specifying the attribute to be set.
6959 @item (set_attr @var{name} @var{value-string})
6960 @var{value-string} is either a string giving the desired attribute value,
6961 or a string containing a comma-separated list giving the values for
6962 succeeding alternatives. The number of elements must match the number
6963 of alternatives in the constraint of the insn pattern.
6965 Note that it may be useful to specify @samp{*} for some alternative, in
6966 which case the attribute will assume its default value for insns matching
6969 @findex set_attr_alternative
6970 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
6971 Depending on the alternative of the insn, the value will be one of the
6972 specified values. This is a shorthand for using a @code{cond} with
6973 tests on the @samp{alternative} attribute.
6976 @item (set (attr @var{name}) @var{value})
6977 The first operand of this @code{set} must be the special RTL expression
6978 @code{attr}, whose sole operand is a string giving the name of the
6979 attribute being set. @var{value} is the value of the attribute.
6982 The following shows three different ways of representing the same
6983 attribute value specification:
6986 (set_attr "type" "load,store,arith")
6988 (set_attr_alternative "type"
6989 [(const_string "load") (const_string "store")
6990 (const_string "arith")])
6993 (cond [(eq_attr "alternative" "1") (const_string "load")
6994 (eq_attr "alternative" "2") (const_string "store")]
6995 (const_string "arith")))
6999 @findex define_asm_attributes
7000 The @code{define_asm_attributes} expression provides a mechanism to
7001 specify the attributes assigned to insns produced from an @code{asm}
7002 statement. It has the form:
7005 (define_asm_attributes [@var{attr-sets}])
7009 where @var{attr-sets} is specified the same as for both the
7010 @code{define_insn} and the @code{define_peephole} expressions.
7012 These values will typically be the ``worst case'' attribute values. For
7013 example, they might indicate that the condition code will be clobbered.
7015 A specification for a @code{length} attribute is handled specially. The
7016 way to compute the length of an @code{asm} insn is to multiply the
7017 length specified in the expression @code{define_asm_attributes} by the
7018 number of machine instructions specified in the @code{asm} statement,
7019 determined by counting the number of semicolons and newlines in the
7020 string. Therefore, the value of the @code{length} attribute specified
7021 in a @code{define_asm_attributes} should be the maximum possible length
7022 of a single machine instruction.
7027 @subsection Example of Attribute Specifications
7028 @cindex attribute specifications example
7029 @cindex attribute specifications
7031 The judicious use of defaulting is important in the efficient use of
7032 insn attributes. Typically, insns are divided into @dfn{types} and an
7033 attribute, customarily called @code{type}, is used to represent this
7034 value. This attribute is normally used only to define the default value
7035 for other attributes. An example will clarify this usage.
7037 Assume we have a RISC machine with a condition code and in which only
7038 full-word operations are performed in registers. Let us assume that we
7039 can divide all insns into loads, stores, (integer) arithmetic
7040 operations, floating point operations, and branches.
7042 Here we will concern ourselves with determining the effect of an insn on
7043 the condition code and will limit ourselves to the following possible
7044 effects: The condition code can be set unpredictably (clobbered), not
7045 be changed, be set to agree with the results of the operation, or only
7046 changed if the item previously set into the condition code has been
7049 Here is part of a sample @file{md} file for such a machine:
7052 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
7054 (define_attr "cc" "clobber,unchanged,set,change0"
7055 (cond [(eq_attr "type" "load")
7056 (const_string "change0")
7057 (eq_attr "type" "store,branch")
7058 (const_string "unchanged")
7059 (eq_attr "type" "arith")
7060 (if_then_else (match_operand:SI 0 "" "")
7061 (const_string "set")
7062 (const_string "clobber"))]
7063 (const_string "clobber")))
7066 [(set (match_operand:SI 0 "general_operand" "=r,r,m")
7067 (match_operand:SI 1 "general_operand" "r,m,r"))]
7073 [(set_attr "type" "arith,load,store")])
7076 Note that we assume in the above example that arithmetic operations
7077 performed on quantities smaller than a machine word clobber the condition
7078 code since they will set the condition code to a value corresponding to the
7084 @subsection Computing the Length of an Insn
7085 @cindex insn lengths, computing
7086 @cindex computing the length of an insn
7088 For many machines, multiple types of branch instructions are provided, each
7089 for different length branch displacements. In most cases, the assembler
7090 will choose the correct instruction to use. However, when the assembler
7091 cannot do so, GCC can when a special attribute, the @code{length}
7092 attribute, is defined. This attribute must be defined to have numeric
7093 values by specifying a null string in its @code{define_attr}.
7095 In the case of the @code{length} attribute, two additional forms of
7096 arithmetic terms are allowed in test expressions:
7099 @cindex @code{match_dup} and attributes
7100 @item (match_dup @var{n})
7101 This refers to the address of operand @var{n} of the current insn, which
7102 must be a @code{label_ref}.
7104 @cindex @code{pc} and attributes
7106 This refers to the address of the @emph{current} insn. It might have
7107 been more consistent with other usage to make this the address of the
7108 @emph{next} insn but this would be confusing because the length of the
7109 current insn is to be computed.
7112 @cindex @code{addr_vec}, length of
7113 @cindex @code{addr_diff_vec}, length of
7114 For normal insns, the length will be determined by value of the
7115 @code{length} attribute. In the case of @code{addr_vec} and
7116 @code{addr_diff_vec} insn patterns, the length is computed as
7117 the number of vectors multiplied by the size of each vector.
7119 Lengths are measured in addressable storage units (bytes).
7121 The following macros can be used to refine the length computation:
7124 @findex ADJUST_INSN_LENGTH
7125 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
7126 If defined, modifies the length assigned to instruction @var{insn} as a
7127 function of the context in which it is used. @var{length} is an lvalue
7128 that contains the initially computed length of the insn and should be
7129 updated with the correct length of the insn.
7131 This macro will normally not be required. A case in which it is
7132 required is the ROMP@. On this machine, the size of an @code{addr_vec}
7133 insn must be increased by two to compensate for the fact that alignment
7137 @findex get_attr_length
7138 The routine that returns @code{get_attr_length} (the value of the
7139 @code{length} attribute) can be used by the output routine to
7140 determine the form of the branch instruction to be written, as the
7141 example below illustrates.
7143 As an example of the specification of variable-length branches, consider
7144 the IBM 360. If we adopt the convention that a register will be set to
7145 the starting address of a function, we can jump to labels within 4k of
7146 the start using a four-byte instruction. Otherwise, we need a six-byte
7147 sequence to load the address from memory and then branch to it.
7149 On such a machine, a pattern for a branch instruction might be specified
7155 (label_ref (match_operand 0 "" "")))]
7158 return (get_attr_length (insn) == 4
7159 ? "b %l0" : "l r15,=a(%l0); br r15");
7161 [(set (attr "length")
7162 (if_then_else (lt (match_dup 0) (const_int 4096))
7169 @node Constant Attributes
7170 @subsection Constant Attributes
7171 @cindex constant attributes
7173 A special form of @code{define_attr}, where the expression for the
7174 default value is a @code{const} expression, indicates an attribute that
7175 is constant for a given run of the compiler. Constant attributes may be
7176 used to specify which variety of processor is used. For example,
7179 (define_attr "cpu" "m88100,m88110,m88000"
7181 (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
7182 (symbol_ref "TARGET_88110") (const_string "m88110")]
7183 (const_string "m88000"))))
7185 (define_attr "memory" "fast,slow"
7187 (if_then_else (symbol_ref "TARGET_FAST_MEM")
7188 (const_string "fast")
7189 (const_string "slow"))))
7192 The routine generated for constant attributes has no parameters as it
7193 does not depend on any particular insn. RTL expressions used to define
7194 the value of a constant attribute may use the @code{symbol_ref} form,
7195 but may not use either the @code{match_operand} form or @code{eq_attr}
7196 forms involving insn attributes.
7201 @subsection Delay Slot Scheduling
7202 @cindex delay slots, defining
7204 The insn attribute mechanism can be used to specify the requirements for
7205 delay slots, if any, on a target machine. An instruction is said to
7206 require a @dfn{delay slot} if some instructions that are physically
7207 after the instruction are executed as if they were located before it.
7208 Classic examples are branch and call instructions, which often execute
7209 the following instruction before the branch or call is performed.
7211 On some machines, conditional branch instructions can optionally
7212 @dfn{annul} instructions in the delay slot. This means that the
7213 instruction will not be executed for certain branch outcomes. Both
7214 instructions that annul if the branch is true and instructions that
7215 annul if the branch is false are supported.
7217 Delay slot scheduling differs from instruction scheduling in that
7218 determining whether an instruction needs a delay slot is dependent only
7219 on the type of instruction being generated, not on data flow between the
7220 instructions. See the next section for a discussion of data-dependent
7221 instruction scheduling.
7223 @findex define_delay
7224 The requirement of an insn needing one or more delay slots is indicated
7225 via the @code{define_delay} expression. It has the following form:
7228 (define_delay @var{test}
7229 [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
7230 @var{delay-2} @var{annul-true-2} @var{annul-false-2}
7234 @var{test} is an attribute test that indicates whether this
7235 @code{define_delay} applies to a particular insn. If so, the number of
7236 required delay slots is determined by the length of the vector specified
7237 as the second argument. An insn placed in delay slot @var{n} must
7238 satisfy attribute test @var{delay-n}. @var{annul-true-n} is an
7239 attribute test that specifies which insns may be annulled if the branch
7240 is true. Similarly, @var{annul-false-n} specifies which insns in the
7241 delay slot may be annulled if the branch is false. If annulling is not
7242 supported for that delay slot, @code{(nil)} should be coded.
7244 For example, in the common case where branch and call insns require
7245 a single delay slot, which may contain any insn other than a branch or
7246 call, the following would be placed in the @file{md} file:
7249 (define_delay (eq_attr "type" "branch,call")
7250 [(eq_attr "type" "!branch,call") (nil) (nil)])
7253 Multiple @code{define_delay} expressions may be specified. In this
7254 case, each such expression specifies different delay slot requirements
7255 and there must be no insn for which tests in two @code{define_delay}
7256 expressions are both true.
7258 For example, if we have a machine that requires one delay slot for branches
7259 but two for calls, no delay slot can contain a branch or call insn,
7260 and any valid insn in the delay slot for the branch can be annulled if the
7261 branch is true, we might represent this as follows:
7264 (define_delay (eq_attr "type" "branch")
7265 [(eq_attr "type" "!branch,call")
7266 (eq_attr "type" "!branch,call")
7269 (define_delay (eq_attr "type" "call")
7270 [(eq_attr "type" "!branch,call") (nil) (nil)
7271 (eq_attr "type" "!branch,call") (nil) (nil)])
7273 @c the above is *still* too long. --mew 4feb93
7277 @node Processor pipeline description
7278 @subsection Specifying processor pipeline description
7279 @cindex processor pipeline description
7280 @cindex processor functional units
7281 @cindex instruction latency time
7282 @cindex interlock delays
7283 @cindex data dependence delays
7284 @cindex reservation delays
7285 @cindex pipeline hazard recognizer
7286 @cindex automaton based pipeline description
7287 @cindex regular expressions
7288 @cindex deterministic finite state automaton
7289 @cindex automaton based scheduler
7293 To achieve better performance, most modern processors
7294 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
7295 processors) have many @dfn{functional units} on which several
7296 instructions can be executed simultaneously. An instruction starts
7297 execution if its issue conditions are satisfied. If not, the
7298 instruction is stalled until its conditions are satisfied. Such
7299 @dfn{interlock (pipeline) delay} causes interruption of the fetching
7300 of successor instructions (or demands nop instructions, e.g.@: for some
7303 There are two major kinds of interlock delays in modern processors.
7304 The first one is a data dependence delay determining @dfn{instruction
7305 latency time}. The instruction execution is not started until all
7306 source data have been evaluated by prior instructions (there are more
7307 complex cases when the instruction execution starts even when the data
7308 are not available but will be ready in given time after the
7309 instruction execution start). Taking the data dependence delays into
7310 account is simple. The data dependence (true, output, and
7311 anti-dependence) delay between two instructions is given by a
7312 constant. In most cases this approach is adequate. The second kind
7313 of interlock delays is a reservation delay. The reservation delay
7314 means that two instructions under execution will be in need of shared
7315 processors resources, i.e.@: buses, internal registers, and/or
7316 functional units, which are reserved for some time. Taking this kind
7317 of delay into account is complex especially for modern @acronym{RISC}
7320 The task of exploiting more processor parallelism is solved by an
7321 instruction scheduler. For a better solution to this problem, the
7322 instruction scheduler has to have an adequate description of the
7323 processor parallelism (or @dfn{pipeline description}). GCC
7324 machine descriptions describe processor parallelism and functional
7325 unit reservations for groups of instructions with the aid of
7326 @dfn{regular expressions}.
7328 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
7329 figure out the possibility of the instruction issue by the processor
7330 on a given simulated processor cycle. The pipeline hazard recognizer is
7331 automatically generated from the processor pipeline description. The
7332 pipeline hazard recognizer generated from the machine description
7333 is based on a deterministic finite state automaton (@acronym{DFA}):
7334 the instruction issue is possible if there is a transition from one
7335 automaton state to another one. This algorithm is very fast, and
7336 furthermore, its speed is not dependent on processor
7337 complexity@footnote{However, the size of the automaton depends on
7338 processor complexity. To limit this effect, machine descriptions
7339 can split orthogonal parts of the machine description among several
7340 automata: but then, since each of these must be stepped independently,
7341 this does cause a small decrease in the algorithm's performance.}.
7343 @cindex automaton based pipeline description
7344 The rest of this section describes the directives that constitute
7345 an automaton-based processor pipeline description. The order of
7346 these constructions within the machine description file is not
7349 @findex define_automaton
7350 @cindex pipeline hazard recognizer
7351 The following optional construction describes names of automata
7352 generated and used for the pipeline hazards recognition. Sometimes
7353 the generated finite state automaton used by the pipeline hazard
7354 recognizer is large. If we use more than one automaton and bind functional
7355 units to the automata, the total size of the automata is usually
7356 less than the size of the single automaton. If there is no one such
7357 construction, only one finite state automaton is generated.
7360 (define_automaton @var{automata-names})
7363 @var{automata-names} is a string giving names of the automata. The
7364 names are separated by commas. All the automata should have unique names.
7365 The automaton name is used in the constructions @code{define_cpu_unit} and
7366 @code{define_query_cpu_unit}.
7368 @findex define_cpu_unit
7369 @cindex processor functional units
7370 Each processor functional unit used in the description of instruction
7371 reservations should be described by the following construction.
7374 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
7377 @var{unit-names} is a string giving the names of the functional units
7378 separated by commas. Don't use name @samp{nothing}, it is reserved
7381 @var{automaton-name} is a string giving the name of the automaton with
7382 which the unit is bound. The automaton should be described in
7383 construction @code{define_automaton}. You should give
7384 @dfn{automaton-name}, if there is a defined automaton.
7386 The assignment of units to automata are constrained by the uses of the
7387 units in insn reservations. The most important constraint is: if a
7388 unit reservation is present on a particular cycle of an alternative
7389 for an insn reservation, then some unit from the same automaton must
7390 be present on the same cycle for the other alternatives of the insn
7391 reservation. The rest of the constraints are mentioned in the
7392 description of the subsequent constructions.
7394 @findex define_query_cpu_unit
7395 @cindex querying function unit reservations
7396 The following construction describes CPU functional units analogously
7397 to @code{define_cpu_unit}. The reservation of such units can be
7398 queried for an automaton state. The instruction scheduler never
7399 queries reservation of functional units for given automaton state. So
7400 as a rule, you don't need this construction. This construction could
7401 be used for future code generation goals (e.g.@: to generate
7402 @acronym{VLIW} insn templates).
7405 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
7408 @var{unit-names} is a string giving names of the functional units
7409 separated by commas.
7411 @var{automaton-name} is a string giving the name of the automaton with
7412 which the unit is bound.
7414 @findex define_insn_reservation
7415 @cindex instruction latency time
7416 @cindex regular expressions
7418 The following construction is the major one to describe pipeline
7419 characteristics of an instruction.
7422 (define_insn_reservation @var{insn-name} @var{default_latency}
7423 @var{condition} @var{regexp})
7426 @var{default_latency} is a number giving latency time of the
7427 instruction. There is an important difference between the old
7428 description and the automaton based pipeline description. The latency
7429 time is used for all dependencies when we use the old description. In
7430 the automaton based pipeline description, the given latency time is only
7431 used for true dependencies. The cost of anti-dependencies is always
7432 zero and the cost of output dependencies is the difference between
7433 latency times of the producing and consuming insns (if the difference
7434 is negative, the cost is considered to be zero). You can always
7435 change the default costs for any description by using the target hook
7436 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
7438 @var{insn-name} is a string giving the internal name of the insn. The
7439 internal names are used in constructions @code{define_bypass} and in
7440 the automaton description file generated for debugging. The internal
7441 name has nothing in common with the names in @code{define_insn}. It is a
7442 good practice to use insn classes described in the processor manual.
7444 @var{condition} defines what RTL insns are described by this
7445 construction. You should remember that you will be in trouble if
7446 @var{condition} for two or more different
7447 @code{define_insn_reservation} constructions is TRUE for an insn. In
7448 this case what reservation will be used for the insn is not defined.
7449 Such cases are not checked during generation of the pipeline hazards
7450 recognizer because in general recognizing that two conditions may have
7451 the same value is quite difficult (especially if the conditions
7452 contain @code{symbol_ref}). It is also not checked during the
7453 pipeline hazard recognizer work because it would slow down the
7454 recognizer considerably.
7456 @var{regexp} is a string describing the reservation of the cpu's functional
7457 units by the instruction. The reservations are described by a regular
7458 expression according to the following syntax:
7461 regexp = regexp "," oneof
7464 oneof = oneof "|" allof
7467 allof = allof "+" repeat
7470 repeat = element "*" number
7473 element = cpu_function_unit_name
7482 @samp{,} is used for describing the start of the next cycle in
7486 @samp{|} is used for describing a reservation described by the first
7487 regular expression @strong{or} a reservation described by the second
7488 regular expression @strong{or} etc.
7491 @samp{+} is used for describing a reservation described by the first
7492 regular expression @strong{and} a reservation described by the
7493 second regular expression @strong{and} etc.
7496 @samp{*} is used for convenience and simply means a sequence in which
7497 the regular expression are repeated @var{number} times with cycle
7498 advancing (see @samp{,}).
7501 @samp{cpu_function_unit_name} denotes reservation of the named
7505 @samp{reservation_name} --- see description of construction
7506 @samp{define_reservation}.
7509 @samp{nothing} denotes no unit reservations.
7512 @findex define_reservation
7513 Sometimes unit reservations for different insns contain common parts.
7514 In such case, you can simplify the pipeline description by describing
7515 the common part by the following construction
7518 (define_reservation @var{reservation-name} @var{regexp})
7521 @var{reservation-name} is a string giving name of @var{regexp}.
7522 Functional unit names and reservation names are in the same name
7523 space. So the reservation names should be different from the
7524 functional unit names and can not be the reserved name @samp{nothing}.
7526 @findex define_bypass
7527 @cindex instruction latency time
7529 The following construction is used to describe exceptions in the
7530 latency time for given instruction pair. This is so called bypasses.
7533 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
7537 @var{number} defines when the result generated by the instructions
7538 given in string @var{out_insn_names} will be ready for the
7539 instructions given in string @var{in_insn_names}. The instructions in
7540 the string are separated by commas.
7542 @var{guard} is an optional string giving the name of a C function which
7543 defines an additional guard for the bypass. The function will get the
7544 two insns as parameters. If the function returns zero the bypass will
7545 be ignored for this case. The additional guard is necessary to
7546 recognize complicated bypasses, e.g.@: when the consumer is only an address
7547 of insn @samp{store} (not a stored value).
7549 If there are more one bypass with the same output and input insns, the
7550 chosen bypass is the first bypass with a guard in description whose
7551 guard function returns nonzero. If there is no such bypass, then
7552 bypass without the guard function is chosen.
7554 @findex exclusion_set
7555 @findex presence_set
7556 @findex final_presence_set
7558 @findex final_absence_set
7561 The following five constructions are usually used to describe
7562 @acronym{VLIW} processors, or more precisely, to describe a placement
7563 of small instructions into @acronym{VLIW} instruction slots. They
7564 can be used for @acronym{RISC} processors, too.
7567 (exclusion_set @var{unit-names} @var{unit-names})
7568 (presence_set @var{unit-names} @var{patterns})
7569 (final_presence_set @var{unit-names} @var{patterns})
7570 (absence_set @var{unit-names} @var{patterns})
7571 (final_absence_set @var{unit-names} @var{patterns})
7574 @var{unit-names} is a string giving names of functional units
7575 separated by commas.
7577 @var{patterns} is a string giving patterns of functional units
7578 separated by comma. Currently pattern is one unit or units
7579 separated by white-spaces.
7581 The first construction (@samp{exclusion_set}) means that each
7582 functional unit in the first string can not be reserved simultaneously
7583 with a unit whose name is in the second string and vice versa. For
7584 example, the construction is useful for describing processors
7585 (e.g.@: some SPARC processors) with a fully pipelined floating point
7586 functional unit which can execute simultaneously only single floating
7587 point insns or only double floating point insns.
7589 The second construction (@samp{presence_set}) means that each
7590 functional unit in the first string can not be reserved unless at
7591 least one of pattern of units whose names are in the second string is
7592 reserved. This is an asymmetric relation. For example, it is useful
7593 for description that @acronym{VLIW} @samp{slot1} is reserved after
7594 @samp{slot0} reservation. We could describe it by the following
7598 (presence_set "slot1" "slot0")
7601 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
7602 reservation. In this case we could write
7605 (presence_set "slot1" "slot0 b0")
7608 The third construction (@samp{final_presence_set}) is analogous to
7609 @samp{presence_set}. The difference between them is when checking is
7610 done. When an instruction is issued in given automaton state
7611 reflecting all current and planned unit reservations, the automaton
7612 state is changed. The first state is a source state, the second one
7613 is a result state. Checking for @samp{presence_set} is done on the
7614 source state reservation, checking for @samp{final_presence_set} is
7615 done on the result reservation. This construction is useful to
7616 describe a reservation which is actually two subsequent reservations.
7617 For example, if we use
7620 (presence_set "slot1" "slot0")
7623 the following insn will be never issued (because @samp{slot1} requires
7624 @samp{slot0} which is absent in the source state).
7627 (define_reservation "insn_and_nop" "slot0 + slot1")
7630 but it can be issued if we use analogous @samp{final_presence_set}.
7632 The forth construction (@samp{absence_set}) means that each functional
7633 unit in the first string can be reserved only if each pattern of units
7634 whose names are in the second string is not reserved. This is an
7635 asymmetric relation (actually @samp{exclusion_set} is analogous to
7636 this one but it is symmetric). For example it might be useful in a
7637 @acronym{VLIW} description to say that @samp{slot0} cannot be reserved
7638 after either @samp{slot1} or @samp{slot2} have been reserved. This
7639 can be described as:
7642 (absence_set "slot0" "slot1, slot2")
7645 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
7646 are reserved or @samp{slot1} and unit @samp{b1} are reserved. In
7647 this case we could write
7650 (absence_set "slot2" "slot0 b0, slot1 b1")
7653 All functional units mentioned in a set should belong to the same
7656 The last construction (@samp{final_absence_set}) is analogous to
7657 @samp{absence_set} but checking is done on the result (state)
7658 reservation. See comments for @samp{final_presence_set}.
7660 @findex automata_option
7661 @cindex deterministic finite state automaton
7662 @cindex nondeterministic finite state automaton
7663 @cindex finite state automaton minimization
7664 You can control the generator of the pipeline hazard recognizer with
7665 the following construction.
7668 (automata_option @var{options})
7671 @var{options} is a string giving options which affect the generated
7672 code. Currently there are the following options:
7676 @dfn{no-minimization} makes no minimization of the automaton. This is
7677 only worth to do when we are debugging the description and need to
7678 look more accurately at reservations of states.
7681 @dfn{time} means printing time statistics about the generation of
7685 @dfn{stats} means printing statistics about the generated automata
7686 such as the number of DFA states, NDFA states and arcs.
7689 @dfn{v} means a generation of the file describing the result automata.
7690 The file has suffix @samp{.dfa} and can be used for the description
7691 verification and debugging.
7694 @dfn{w} means a generation of warning instead of error for
7695 non-critical errors.
7698 @dfn{ndfa} makes nondeterministic finite state automata. This affects
7699 the treatment of operator @samp{|} in the regular expressions. The
7700 usual treatment of the operator is to try the first alternative and,
7701 if the reservation is not possible, the second alternative. The
7702 nondeterministic treatment means trying all alternatives, some of them
7703 may be rejected by reservations in the subsequent insns.
7706 @dfn{progress} means output of a progress bar showing how many states
7707 were generated so far for automaton being processed. This is useful
7708 during debugging a @acronym{DFA} description. If you see too many
7709 generated states, you could interrupt the generator of the pipeline
7710 hazard recognizer and try to figure out a reason for generation of the
7714 As an example, consider a superscalar @acronym{RISC} machine which can
7715 issue three insns (two integer insns and one floating point insn) on
7716 the cycle but can finish only two insns. To describe this, we define
7717 the following functional units.
7720 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
7721 (define_cpu_unit "port0, port1")
7724 All simple integer insns can be executed in any integer pipeline and
7725 their result is ready in two cycles. The simple integer insns are
7726 issued into the first pipeline unless it is reserved, otherwise they
7727 are issued into the second pipeline. Integer division and
7728 multiplication insns can be executed only in the second integer
7729 pipeline and their results are ready correspondingly in 8 and 4
7730 cycles. The integer division is not pipelined, i.e.@: the subsequent
7731 integer division insn can not be issued until the current division
7732 insn finished. Floating point insns are fully pipelined and their
7733 results are ready in 3 cycles. Where the result of a floating point
7734 insn is used by an integer insn, an additional delay of one cycle is
7735 incurred. To describe all of this we could specify
7738 (define_cpu_unit "div")
7740 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
7741 "(i0_pipeline | i1_pipeline), (port0 | port1)")
7743 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
7744 "i1_pipeline, nothing*2, (port0 | port1)")
7746 (define_insn_reservation "div" 8 (eq_attr "type" "div")
7747 "i1_pipeline, div*7, div + (port0 | port1)")
7749 (define_insn_reservation "float" 3 (eq_attr "type" "float")
7750 "f_pipeline, nothing, (port0 | port1))
7752 (define_bypass 4 "float" "simple,mult,div")
7755 To simplify the description we could describe the following reservation
7758 (define_reservation "finish" "port0|port1")
7761 and use it in all @code{define_insn_reservation} as in the following
7765 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
7766 "(i0_pipeline | i1_pipeline), finish")
7772 @node Conditional Execution
7773 @section Conditional Execution
7774 @cindex conditional execution
7777 A number of architectures provide for some form of conditional
7778 execution, or predication. The hallmark of this feature is the
7779 ability to nullify most of the instructions in the instruction set.
7780 When the instruction set is large and not entirely symmetric, it
7781 can be quite tedious to describe these forms directly in the
7782 @file{.md} file. An alternative is the @code{define_cond_exec} template.
7784 @findex define_cond_exec
7787 [@var{predicate-pattern}]
7789 "@var{output-template}")
7792 @var{predicate-pattern} is the condition that must be true for the
7793 insn to be executed at runtime and should match a relational operator.
7794 One can use @code{match_operator} to match several relational operators
7795 at once. Any @code{match_operand} operands must have no more than one
7798 @var{condition} is a C expression that must be true for the generated
7801 @findex current_insn_predicate
7802 @var{output-template} is a string similar to the @code{define_insn}
7803 output template (@pxref{Output Template}), except that the @samp{*}
7804 and @samp{@@} special cases do not apply. This is only useful if the
7805 assembly text for the predicate is a simple prefix to the main insn.
7806 In order to handle the general case, there is a global variable
7807 @code{current_insn_predicate} that will contain the entire predicate
7808 if the current insn is predicated, and will otherwise be @code{NULL}.
7810 When @code{define_cond_exec} is used, an implicit reference to
7811 the @code{predicable} instruction attribute is made.
7812 @xref{Insn Attributes}. This attribute must be boolean (i.e.@: have
7813 exactly two elements in its @var{list-of-values}). Further, it must
7814 not be used with complex expressions. That is, the default and all
7815 uses in the insns must be a simple constant, not dependent on the
7816 alternative or anything else.
7818 For each @code{define_insn} for which the @code{predicable}
7819 attribute is true, a new @code{define_insn} pattern will be
7820 generated that matches a predicated version of the instruction.
7824 (define_insn "addsi"
7825 [(set (match_operand:SI 0 "register_operand" "r")
7826 (plus:SI (match_operand:SI 1 "register_operand" "r")
7827 (match_operand:SI 2 "register_operand" "r")))]
7832 [(ne (match_operand:CC 0 "register_operand" "c")
7839 generates a new pattern
7844 (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
7845 (set (match_operand:SI 0 "register_operand" "r")
7846 (plus:SI (match_operand:SI 1 "register_operand" "r")
7847 (match_operand:SI 2 "register_operand" "r"))))]
7848 "(@var{test2}) && (@var{test1})"
7849 "(%3) add %2,%1,%0")
7854 @node Constant Definitions
7855 @section Constant Definitions
7856 @cindex constant definitions
7857 @findex define_constants
7859 Using literal constants inside instruction patterns reduces legibility and
7860 can be a maintenance problem.
7862 To overcome this problem, you may use the @code{define_constants}
7863 expression. It contains a vector of name-value pairs. From that
7864 point on, wherever any of the names appears in the MD file, it is as
7865 if the corresponding value had been written instead. You may use
7866 @code{define_constants} multiple times; each appearance adds more
7867 constants to the table. It is an error to redefine a constant with
7870 To come back to the a29k load multiple example, instead of
7874 [(match_parallel 0 "load_multiple_operation"
7875 [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
7876 (match_operand:SI 2 "memory_operand" "m"))
7878 (clobber (reg:SI 179))])]
7894 [(match_parallel 0 "load_multiple_operation"
7895 [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
7896 (match_operand:SI 2 "memory_operand" "m"))
7898 (clobber (reg:SI R_CR))])]
7903 The constants that are defined with a define_constant are also output
7904 in the insn-codes.h header file as #defines.
7909 @cindex iterators in @file{.md} files
7911 Ports often need to define similar patterns for more than one machine
7912 mode or for more than one rtx code. GCC provides some simple iterator
7913 facilities to make this process easier.
7916 * Mode Iterators:: Generating variations of patterns for different modes.
7917 * Code Iterators:: Doing the same for codes.
7920 @node Mode Iterators
7921 @subsection Mode Iterators
7922 @cindex mode iterators in @file{.md} files
7924 Ports often need to define similar patterns for two or more different modes.
7929 If a processor has hardware support for both single and double
7930 floating-point arithmetic, the @code{SFmode} patterns tend to be
7931 very similar to the @code{DFmode} ones.
7934 If a port uses @code{SImode} pointers in one configuration and
7935 @code{DImode} pointers in another, it will usually have very similar
7936 @code{SImode} and @code{DImode} patterns for manipulating pointers.
7939 Mode iterators allow several patterns to be instantiated from one
7940 @file{.md} file template. They can be used with any type of
7941 rtx-based construct, such as a @code{define_insn},
7942 @code{define_split}, or @code{define_peephole2}.
7945 * Defining Mode Iterators:: Defining a new mode iterator.
7946 * Substitutions:: Combining mode iterators with substitutions
7947 * Examples:: Examples
7950 @node Defining Mode Iterators
7951 @subsubsection Defining Mode Iterators
7952 @findex define_mode_iterator
7954 The syntax for defining a mode iterator is:
7957 (define_mode_iterator @var{name} [(@var{mode1} "@var{cond1}") @dots{} (@var{moden} "@var{condn}")])
7960 This allows subsequent @file{.md} file constructs to use the mode suffix
7961 @code{:@var{name}}. Every construct that does so will be expanded
7962 @var{n} times, once with every use of @code{:@var{name}} replaced by
7963 @code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
7964 and so on. In the expansion for a particular @var{modei}, every
7965 C condition will also require that @var{condi} be true.
7970 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
7973 defines a new mode suffix @code{:P}. Every construct that uses
7974 @code{:P} will be expanded twice, once with every @code{:P} replaced
7975 by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
7976 The @code{:SI} version will only apply if @code{Pmode == SImode} and
7977 the @code{:DI} version will only apply if @code{Pmode == DImode}.
7979 As with other @file{.md} conditions, an empty string is treated
7980 as ``always true''. @code{(@var{mode} "")} can also be abbreviated
7981 to @code{@var{mode}}. For example:
7984 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
7987 means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
7988 but that the @code{:SI} expansion has no such constraint.
7990 Iterators are applied in the order they are defined. This can be
7991 significant if two iterators are used in a construct that requires
7992 substitutions. @xref{Substitutions}.
7995 @subsubsection Substitution in Mode Iterators
7996 @findex define_mode_attr
7998 If an @file{.md} file construct uses mode iterators, each version of the
7999 construct will often need slightly different strings or modes. For
8004 When a @code{define_expand} defines several @code{add@var{m}3} patterns
8005 (@pxref{Standard Names}), each expander will need to use the
8006 appropriate mode name for @var{m}.
8009 When a @code{define_insn} defines several instruction patterns,
8010 each instruction will often use a different assembler mnemonic.
8013 When a @code{define_insn} requires operands with different modes,
8014 using an iterator for one of the operand modes usually requires a specific
8015 mode for the other operand(s).
8018 GCC supports such variations through a system of ``mode attributes''.
8019 There are two standard attributes: @code{mode}, which is the name of
8020 the mode in lower case, and @code{MODE}, which is the same thing in
8021 upper case. You can define other attributes using:
8024 (define_mode_attr @var{name} [(@var{mode1} "@var{value1}") @dots{} (@var{moden} "@var{valuen}")])
8027 where @var{name} is the name of the attribute and @var{valuei}
8028 is the value associated with @var{modei}.
8030 When GCC replaces some @var{:iterator} with @var{:mode}, it will scan
8031 each string and mode in the pattern for sequences of the form
8032 @code{<@var{iterator}:@var{attr}>}, where @var{attr} is the name of a
8033 mode attribute. If the attribute is defined for @var{mode}, the whole
8034 @code{<@dots{}>} sequence will be replaced by the appropriate attribute
8037 For example, suppose an @file{.md} file has:
8040 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
8041 (define_mode_attr load [(SI "lw") (DI "ld")])
8044 If one of the patterns that uses @code{:P} contains the string
8045 @code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
8046 will use @code{"lw\t%0,%1"} and the @code{DI} version will use
8049 Here is an example of using an attribute for a mode:
8052 (define_mode_iterator LONG [SI DI])
8053 (define_mode_attr SHORT [(SI "HI") (DI "SI")])
8054 (define_insn @dots{}
8055 (sign_extend:LONG (match_operand:<LONG:SHORT> @dots{})) @dots{})
8058 The @code{@var{iterator}:} prefix may be omitted, in which case the
8059 substitution will be attempted for every iterator expansion.
8062 @subsubsection Mode Iterator Examples
8064 Here is an example from the MIPS port. It defines the following
8065 modes and attributes (among others):
8068 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
8069 (define_mode_attr d [(SI "") (DI "d")])
8072 and uses the following template to define both @code{subsi3}
8076 (define_insn "sub<mode>3"
8077 [(set (match_operand:GPR 0 "register_operand" "=d")
8078 (minus:GPR (match_operand:GPR 1 "register_operand" "d")
8079 (match_operand:GPR 2 "register_operand" "d")))]
8082 [(set_attr "type" "arith")
8083 (set_attr "mode" "<MODE>")])
8086 This is exactly equivalent to:
8089 (define_insn "subsi3"
8090 [(set (match_operand:SI 0 "register_operand" "=d")
8091 (minus:SI (match_operand:SI 1 "register_operand" "d")
8092 (match_operand:SI 2 "register_operand" "d")))]
8095 [(set_attr "type" "arith")
8096 (set_attr "mode" "SI")])
8098 (define_insn "subdi3"
8099 [(set (match_operand:DI 0 "register_operand" "=d")
8100 (minus:DI (match_operand:DI 1 "register_operand" "d")
8101 (match_operand:DI 2 "register_operand" "d")))]
8104 [(set_attr "type" "arith")
8105 (set_attr "mode" "DI")])
8108 @node Code Iterators
8109 @subsection Code Iterators
8110 @cindex code iterators in @file{.md} files
8111 @findex define_code_iterator
8112 @findex define_code_attr
8114 Code iterators operate in a similar way to mode iterators. @xref{Mode Iterators}.
8119 (define_code_iterator @var{name} [(@var{code1} "@var{cond1}") @dots{} (@var{coden} "@var{condn}")])
8122 defines a pseudo rtx code @var{name} that can be instantiated as
8123 @var{codei} if condition @var{condi} is true. Each @var{codei}
8124 must have the same rtx format. @xref{RTL Classes}.
8126 As with mode iterators, each pattern that uses @var{name} will be
8127 expanded @var{n} times, once with all uses of @var{name} replaced by
8128 @var{code1}, once with all uses replaced by @var{code2}, and so on.
8129 @xref{Defining Mode Iterators}.
8131 It is possible to define attributes for codes as well as for modes.
8132 There are two standard code attributes: @code{code}, the name of the
8133 code in lower case, and @code{CODE}, the name of the code in upper case.
8134 Other attributes are defined using:
8137 (define_code_attr @var{name} [(@var{code1} "@var{value1}") @dots{} (@var{coden} "@var{valuen}")])
8140 Here's an example of code iterators in action, taken from the MIPS port:
8143 (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
8144 eq ne gt ge lt le gtu geu ltu leu])
8146 (define_expand "b<code>"
8148 (if_then_else (any_cond:CC (cc0)
8150 (label_ref (match_operand 0 ""))
8154 gen_conditional_branch (operands, <CODE>);
8159 This is equivalent to:
8162 (define_expand "bunordered"
8164 (if_then_else (unordered:CC (cc0)
8166 (label_ref (match_operand 0 ""))
8170 gen_conditional_branch (operands, UNORDERED);
8174 (define_expand "bordered"
8176 (if_then_else (ordered:CC (cc0)
8178 (label_ref (match_operand 0 ""))
8182 gen_conditional_branch (operands, ORDERED);