* pa64-hpux.h (LIB_SPEC): Fix library specification used with GNU ld.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blobc43aee8cf0a2297d39637633bc6a61b68265ccd2
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Util; use Exp_Util;
33 with Freeze; use Freeze;
34 with Lib.Xref; use Lib.Xref;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Case; use Sem_Case;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Type; use Sem_Type;
46 with Sem_Util; use Sem_Util;
47 with Sem_Warn; use Sem_Warn;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Targparm; use Targparm;
51 with Tbuild; use Tbuild;
52 with Uintp; use Uintp;
54 package body Sem_Ch5 is
56 Unblocked_Exit_Count : Nat := 0;
57 -- This variable is used when processing if statements or case
58 -- statements, it counts the number of branches of the conditional
59 -- that are not blocked by unconditional transfer instructions. At
60 -- the end of processing, if the count is zero, it means that control
61 -- cannot fall through the conditional statement. This is used for
62 -- the generation of warning messages. This variable is recursively
63 -- saved on entry to processing an if or case, and restored on exit.
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
69 procedure Analyze_Iteration_Scheme (N : Node_Id);
71 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id);
72 -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
73 -- (the latter when a WHILE condition is present). This call checks
74 -- if Condition (Cnode) is of the form ([NOT] var op val), where var
75 -- is a simple object, val is known at compile time, and op is one
76 -- of the six relational operators. If this is the case, and the
77 -- Current_Value field of "var" is not set, then it is set to Cnode.
78 -- See Exp_Util.Set_Current_Value_Condition for further details.
80 ------------------------
81 -- Analyze_Assignment --
82 ------------------------
84 procedure Analyze_Assignment (N : Node_Id) is
85 Lhs : constant Node_Id := Name (N);
86 Rhs : constant Node_Id := Expression (N);
87 T1 : Entity_Id;
88 T2 : Entity_Id;
89 Decl : Node_Id;
90 Ent : Entity_Id;
92 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
93 -- N is the node for the left hand side of an assignment, and it
94 -- is not a variable. This routine issues an appropriate diagnostic.
96 procedure Set_Assignment_Type
97 (Opnd : Node_Id;
98 Opnd_Type : in out Entity_Id);
99 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
100 -- is the nominal subtype. This procedure is used to deal with cases
101 -- where the nominal subtype must be replaced by the actual subtype.
103 -------------------------------
104 -- Diagnose_Non_Variable_Lhs --
105 -------------------------------
107 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
108 begin
109 -- Not worth posting another error if left hand side already
110 -- flagged as being illegal in some respect
112 if Error_Posted (N) then
113 return;
115 -- Some special bad cases of entity names
117 elsif Is_Entity_Name (N) then
118 if Ekind (Entity (N)) = E_In_Parameter then
119 Error_Msg_N
120 ("assignment to IN mode parameter not allowed", N);
122 -- Private declarations in a protected object are turned into
123 -- constants when compiling a protected function.
125 elsif Present (Scope (Entity (N)))
126 and then Is_Protected_Type (Scope (Entity (N)))
127 and then
128 (Ekind (Current_Scope) = E_Function
129 or else
130 Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
131 then
132 Error_Msg_N
133 ("protected function cannot modify protected object", N);
135 elsif Ekind (Entity (N)) = E_Loop_Parameter then
136 Error_Msg_N
137 ("assignment to loop parameter not allowed", N);
139 else
140 Error_Msg_N
141 ("left hand side of assignment must be a variable", N);
142 end if;
144 -- For indexed components or selected components, test prefix
146 elsif Nkind (N) = N_Indexed_Component then
147 Diagnose_Non_Variable_Lhs (Prefix (N));
149 -- Another special case for assignment to discriminant.
151 elsif Nkind (N) = N_Selected_Component then
152 if Present (Entity (Selector_Name (N)))
153 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
154 then
155 Error_Msg_N
156 ("assignment to discriminant not allowed", N);
157 else
158 Diagnose_Non_Variable_Lhs (Prefix (N));
159 end if;
161 else
162 -- If we fall through, we have no special message to issue!
164 Error_Msg_N ("left hand side of assignment must be a variable", N);
165 end if;
166 end Diagnose_Non_Variable_Lhs;
168 -------------------------
169 -- Set_Assignment_Type --
170 -------------------------
172 procedure Set_Assignment_Type
173 (Opnd : Node_Id;
174 Opnd_Type : in out Entity_Id)
176 begin
177 Require_Entity (Opnd);
179 -- If the assignment operand is an in-out or out parameter, then we
180 -- get the actual subtype (needed for the unconstrained case).
181 -- If the operand is the actual in an entry declaration, then within
182 -- the accept statement it is replaced with a local renaming, which
183 -- may also have an actual subtype.
185 if Is_Entity_Name (Opnd)
186 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
187 or else Ekind (Entity (Opnd)) =
188 E_In_Out_Parameter
189 or else Ekind (Entity (Opnd)) =
190 E_Generic_In_Out_Parameter
191 or else
192 (Ekind (Entity (Opnd)) = E_Variable
193 and then Nkind (Parent (Entity (Opnd))) =
194 N_Object_Renaming_Declaration
195 and then Nkind (Parent (Parent (Entity (Opnd)))) =
196 N_Accept_Statement))
197 then
198 Opnd_Type := Get_Actual_Subtype (Opnd);
200 -- If assignment operand is a component reference, then we get the
201 -- actual subtype of the component for the unconstrained case.
203 elsif
204 (Nkind (Opnd) = N_Selected_Component
205 or else Nkind (Opnd) = N_Explicit_Dereference)
206 and then not Is_Unchecked_Union (Opnd_Type)
207 then
208 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
210 if Present (Decl) then
211 Insert_Action (N, Decl);
212 Mark_Rewrite_Insertion (Decl);
213 Analyze (Decl);
214 Opnd_Type := Defining_Identifier (Decl);
215 Set_Etype (Opnd, Opnd_Type);
216 Freeze_Itype (Opnd_Type, N);
218 elsif Is_Constrained (Etype (Opnd)) then
219 Opnd_Type := Etype (Opnd);
220 end if;
222 -- For slice, use the constrained subtype created for the slice
224 elsif Nkind (Opnd) = N_Slice then
225 Opnd_Type := Etype (Opnd);
226 end if;
227 end Set_Assignment_Type;
229 -- Start of processing for Analyze_Assignment
231 begin
232 Analyze (Rhs);
233 Analyze (Lhs);
234 T1 := Etype (Lhs);
236 -- In the most general case, both Lhs and Rhs can be overloaded, and we
237 -- must compute the intersection of the possible types on each side.
239 if Is_Overloaded (Lhs) then
240 declare
241 I : Interp_Index;
242 It : Interp;
244 begin
245 T1 := Any_Type;
246 Get_First_Interp (Lhs, I, It);
248 while Present (It.Typ) loop
249 if Has_Compatible_Type (Rhs, It.Typ) then
250 if T1 /= Any_Type then
252 -- An explicit dereference is overloaded if the prefix
253 -- is. Try to remove the ambiguity on the prefix, the
254 -- error will be posted there if the ambiguity is real.
256 if Nkind (Lhs) = N_Explicit_Dereference then
257 declare
258 PI : Interp_Index;
259 PI1 : Interp_Index := 0;
260 PIt : Interp;
261 Found : Boolean;
263 begin
264 Found := False;
265 Get_First_Interp (Prefix (Lhs), PI, PIt);
267 while Present (PIt.Typ) loop
268 if Is_Access_Type (PIt.Typ)
269 and then Has_Compatible_Type
270 (Rhs, Designated_Type (PIt.Typ))
271 then
272 if Found then
273 PIt :=
274 Disambiguate (Prefix (Lhs),
275 PI1, PI, Any_Type);
277 if PIt = No_Interp then
278 Error_Msg_N
279 ("ambiguous left-hand side"
280 & " in assignment", Lhs);
281 exit;
282 else
283 Resolve (Prefix (Lhs), PIt.Typ);
284 end if;
286 exit;
287 else
288 Found := True;
289 PI1 := PI;
290 end if;
291 end if;
293 Get_Next_Interp (PI, PIt);
294 end loop;
295 end;
297 else
298 Error_Msg_N
299 ("ambiguous left-hand side in assignment", Lhs);
300 exit;
301 end if;
302 else
303 T1 := It.Typ;
304 end if;
305 end if;
307 Get_Next_Interp (I, It);
308 end loop;
309 end;
311 if T1 = Any_Type then
312 Error_Msg_N
313 ("no valid types for left-hand side for assignment", Lhs);
314 return;
315 end if;
316 end if;
318 Resolve (Lhs, T1);
320 if not Is_Variable (Lhs) then
321 Diagnose_Non_Variable_Lhs (Lhs);
322 return;
324 elsif Is_Limited_Type (T1)
325 and then not Assignment_OK (Lhs)
326 and then not Assignment_OK (Original_Node (Lhs))
327 then
328 Error_Msg_N
329 ("left hand of assignment must not be limited type", Lhs);
330 Explain_Limited_Type (T1, Lhs);
331 return;
332 end if;
334 -- Resolution may have updated the subtype, in case the left-hand
335 -- side is a private protected component. Use the correct subtype
336 -- to avoid scoping issues in the back-end.
338 T1 := Etype (Lhs);
339 Set_Assignment_Type (Lhs, T1);
341 Resolve (Rhs, T1);
342 Check_Unset_Reference (Rhs);
344 -- Remaining steps are skipped if Rhs was syntactically in error
346 if Rhs = Error then
347 return;
348 end if;
350 T2 := Etype (Rhs);
352 if Covers (T1, T2) then
353 null;
354 else
355 Wrong_Type (Rhs, Etype (Lhs));
356 return;
357 end if;
359 Set_Assignment_Type (Rhs, T2);
361 if Total_Errors_Detected /= 0 then
362 if No (T1) then
363 T1 := Any_Type;
364 end if;
366 if No (T2) then
367 T2 := Any_Type;
368 end if;
369 end if;
371 if T1 = Any_Type or else T2 = Any_Type then
372 return;
373 end if;
375 if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
376 and then not Is_Class_Wide_Type (T1)
377 then
378 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
380 elsif Is_Class_Wide_Type (T1)
381 and then not Is_Class_Wide_Type (T2)
382 and then not Is_Tag_Indeterminate (Rhs)
383 and then not Is_Dynamically_Tagged (Rhs)
384 then
385 Error_Msg_N ("dynamically tagged expression required!", Rhs);
386 end if;
388 -- Tag propagation is done only in semantics mode only. If expansion
389 -- is on, the rhs tag indeterminate function call has been expanded
390 -- and tag propagation would have happened too late, so the
391 -- propagation take place in expand_call instead.
393 if not Expander_Active
394 and then Is_Class_Wide_Type (T1)
395 and then Is_Tag_Indeterminate (Rhs)
396 then
397 Propagate_Tag (Lhs, Rhs);
398 end if;
400 -- Ada 0Y (AI-231)
402 if Extensions_Allowed
403 and then Nkind (Rhs) = N_Null
404 and then Is_Access_Type (T1)
405 and then not Assignment_OK (Lhs)
406 and then ((Is_Entity_Name (Lhs)
407 and then Can_Never_Be_Null (Entity (Lhs)))
408 or else Can_Never_Be_Null (Etype (Lhs)))
409 then
410 Error_Msg_N
411 ("(Ada 0Y) NULL not allowed in null-excluding objects", Lhs);
412 end if;
414 if Is_Scalar_Type (T1) then
415 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
417 elsif Is_Array_Type (T1)
418 and then
419 (Nkind (Rhs) /= N_Type_Conversion
420 or else Is_Constrained (Etype (Rhs)))
421 then
422 -- Assignment verifies that the length of the Lsh and Rhs are equal,
423 -- but of course the indices do not have to match. If the right-hand
424 -- side is a type conversion to an unconstrained type, a length check
425 -- is performed on the expression itself during expansion. In rare
426 -- cases, the redundant length check is computed on an index type
427 -- with a different representation, triggering incorrect code in
428 -- the back end.
430 Apply_Length_Check (Rhs, Etype (Lhs));
432 else
433 -- Discriminant checks are applied in the course of expansion
435 null;
436 end if;
438 -- Note: modifications of the Lhs may only be recorded after
439 -- checks have been applied.
441 Note_Possible_Modification (Lhs);
443 -- ??? a real accessibility check is needed when ???
445 -- Post warning for useless assignment
447 if Warn_On_Redundant_Constructs
449 -- We only warn for source constructs
451 and then Comes_From_Source (N)
453 -- Where the entity is the same on both sides
455 and then Is_Entity_Name (Lhs)
456 and then Is_Entity_Name (Original_Node (Rhs))
457 and then Entity (Lhs) = Entity (Original_Node (Rhs))
459 -- But exclude the case where the right side was an operation
460 -- that got rewritten (e.g. JUNK + K, where K was known to be
461 -- zero). We don't want to warn in such a case, since it is
462 -- reasonable to write such expressions especially when K is
463 -- defined symbolically in some other package.
465 and then Nkind (Original_Node (Rhs)) not in N_Op
466 then
467 Error_Msg_NE
468 ("?useless assignment of & to itself", N, Entity (Lhs));
469 end if;
471 -- Check for non-allowed composite assignment
473 if not Support_Composite_Assign_On_Target
474 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
475 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
476 then
477 Error_Msg_CRT ("composite assignment", N);
478 end if;
480 -- One more step. Let's see if we have a simple assignment of a
481 -- known at compile time value to a simple variable. If so, we
482 -- can record the value as the current value providing that:
484 -- We still have a simple assignment statement (no expansion
485 -- activity has modified it in some peculiar manner)
487 -- The type is a discrete type
489 -- The assignment is to a named entity
491 -- The value is known at compile time
493 if Nkind (N) /= N_Assignment_Statement
494 or else not Is_Discrete_Type (T1)
495 or else not Is_Entity_Name (Lhs)
496 or else not Compile_Time_Known_Value (Rhs)
497 then
498 return;
499 end if;
501 Ent := Entity (Lhs);
503 -- Capture value if save to do so
505 if Safe_To_Capture_Value (N, Ent) then
506 Set_Current_Value (Ent, Rhs);
507 end if;
508 end Analyze_Assignment;
510 -----------------------------
511 -- Analyze_Block_Statement --
512 -----------------------------
514 procedure Analyze_Block_Statement (N : Node_Id) is
515 Decls : constant List_Id := Declarations (N);
516 Id : constant Node_Id := Identifier (N);
517 Ent : Entity_Id := Empty;
519 begin
520 -- If a label is present analyze it and mark it as referenced
522 if Present (Id) then
523 Analyze (Id);
524 Ent := Entity (Id);
526 -- An error defense. If we have an identifier, but no entity, then
527 -- something is wrong. If we have previous errors, then just remove
528 -- the identifier and continue, otherwise raise an exception.
530 if No (Ent) then
531 if Total_Errors_Detected /= 0 then
532 Set_Identifier (N, Empty);
533 else
534 raise Program_Error;
535 end if;
537 else
538 Set_Ekind (Ent, E_Block);
539 Generate_Reference (Ent, N, ' ');
540 Generate_Definition (Ent);
542 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
543 Set_Label_Construct (Parent (Ent), N);
544 end if;
545 end if;
546 end if;
548 -- If no entity set, create a label entity
550 if No (Ent) then
551 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
552 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
553 Set_Parent (Ent, N);
554 end if;
556 Set_Etype (Ent, Standard_Void_Type);
557 Set_Block_Node (Ent, Identifier (N));
558 New_Scope (Ent);
560 if Present (Decls) then
561 Analyze_Declarations (Decls);
562 Check_Completion;
563 end if;
565 Analyze (Handled_Statement_Sequence (N));
566 Process_End_Label (Handled_Statement_Sequence (N), 'e', Ent);
568 -- Analyze exception handlers if present. Note that the test for
569 -- HSS being present is an error defence against previous errors.
571 if Present (Handled_Statement_Sequence (N))
572 and then Present (Exception_Handlers (Handled_Statement_Sequence (N)))
573 then
574 declare
575 S : Entity_Id := Scope (Ent);
577 begin
578 -- Indicate that enclosing scopes contain a block with handlers.
579 -- Only non-generic scopes need to be marked.
581 loop
582 Set_Has_Nested_Block_With_Handler (S);
583 exit when Is_Overloadable (S)
584 or else Ekind (S) = E_Package
585 or else Is_Generic_Unit (S);
586 S := Scope (S);
587 end loop;
588 end;
589 end if;
591 Check_References (Ent);
592 End_Scope;
593 end Analyze_Block_Statement;
595 ----------------------------
596 -- Analyze_Case_Statement --
597 ----------------------------
599 procedure Analyze_Case_Statement (N : Node_Id) is
601 Statements_Analyzed : Boolean := False;
602 -- Set True if at least some statement sequences get analyzed.
603 -- If False on exit, means we had a serious error that prevented
604 -- full analysis of the case statement, and as a result it is not
605 -- a good idea to output warning messages about unreachable code.
607 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
608 -- Recursively save value of this global, will be restored on exit
610 procedure Non_Static_Choice_Error (Choice : Node_Id);
611 -- Error routine invoked by the generic instantiation below when
612 -- the case statment has a non static choice.
614 procedure Process_Statements (Alternative : Node_Id);
615 -- Analyzes all the statements associated to a case alternative.
616 -- Needed by the generic instantiation below.
618 package Case_Choices_Processing is new
619 Generic_Choices_Processing
620 (Get_Alternatives => Alternatives,
621 Get_Choices => Discrete_Choices,
622 Process_Empty_Choice => No_OP,
623 Process_Non_Static_Choice => Non_Static_Choice_Error,
624 Process_Associated_Node => Process_Statements);
625 use Case_Choices_Processing;
626 -- Instantiation of the generic choice processing package
628 -----------------------------
629 -- Non_Static_Choice_Error --
630 -----------------------------
632 procedure Non_Static_Choice_Error (Choice : Node_Id) is
633 begin
634 Flag_Non_Static_Expr
635 ("choice given in case statement is not static!", Choice);
636 end Non_Static_Choice_Error;
638 ------------------------
639 -- Process_Statements --
640 ------------------------
642 procedure Process_Statements (Alternative : Node_Id) is
643 begin
644 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
645 Statements_Analyzed := True;
646 Analyze_Statements (Statements (Alternative));
647 end Process_Statements;
649 -- Variables local to Analyze_Case_Statement.
651 Exp : Node_Id;
652 Exp_Type : Entity_Id;
653 Exp_Btype : Entity_Id;
655 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
656 Last_Choice : Nat;
657 Dont_Care : Boolean;
658 Others_Present : Boolean;
660 -- Start of processing for Analyze_Case_Statement
662 begin
663 Unblocked_Exit_Count := 0;
664 Exp := Expression (N);
665 Analyze_And_Resolve (Exp, Any_Discrete);
666 Check_Unset_Reference (Exp);
667 Exp_Type := Etype (Exp);
668 Exp_Btype := Base_Type (Exp_Type);
670 -- The expression must be of a discrete type which must be determinable
671 -- independently of the context in which the expression occurs, but
672 -- using the fact that the expression must be of a discrete type.
673 -- Moreover, the type this expression must not be a character literal
674 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
676 -- If error already reported by Resolve, nothing more to do
678 if Exp_Btype = Any_Discrete
679 or else Exp_Btype = Any_Type
680 then
681 return;
683 elsif Exp_Btype = Any_Character then
684 Error_Msg_N
685 ("character literal as case expression is ambiguous", Exp);
686 return;
688 elsif Ada_83
689 and then (Is_Generic_Type (Exp_Btype)
690 or else Is_Generic_Type (Root_Type (Exp_Btype)))
691 then
692 Error_Msg_N
693 ("(Ada 83) case expression cannot be of a generic type", Exp);
694 return;
695 end if;
697 -- If the case expression is a formal object of mode in out, then
698 -- treat it as having a nonstatic subtype by forcing use of the base
699 -- type (which has to get passed to Check_Case_Choices below). Also
700 -- use base type when the case expression is parenthesized.
702 if Paren_Count (Exp) > 0
703 or else (Is_Entity_Name (Exp)
704 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
705 then
706 Exp_Type := Exp_Btype;
707 end if;
709 -- Call instantiated Analyze_Choices which does the rest of the work
711 Analyze_Choices
712 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
714 if Exp_Type = Universal_Integer and then not Others_Present then
715 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
716 end if;
718 -- If all our exits were blocked by unconditional transfers of control,
719 -- then the entire CASE statement acts as an unconditional transfer of
720 -- control, so treat it like one, and check unreachable code. Skip this
721 -- test if we had serious errors preventing any statement analysis.
723 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
724 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
725 Check_Unreachable_Code (N);
726 else
727 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
728 end if;
730 if not Expander_Active
731 and then Compile_Time_Known_Value (Expression (N))
732 and then Serious_Errors_Detected = 0
733 then
734 declare
735 Chosen : constant Node_Id := Find_Static_Alternative (N);
736 Alt : Node_Id;
738 begin
739 Alt := First (Alternatives (N));
741 while Present (Alt) loop
742 if Alt /= Chosen then
743 Remove_Warning_Messages (Statements (Alt));
744 end if;
746 Next (Alt);
747 end loop;
748 end;
749 end if;
750 end Analyze_Case_Statement;
752 ----------------------------
753 -- Analyze_Exit_Statement --
754 ----------------------------
756 -- If the exit includes a name, it must be the name of a currently open
757 -- loop. Otherwise there must be an innermost open loop on the stack,
758 -- to which the statement implicitly refers.
760 procedure Analyze_Exit_Statement (N : Node_Id) is
761 Target : constant Node_Id := Name (N);
762 Cond : constant Node_Id := Condition (N);
763 Scope_Id : Entity_Id;
764 U_Name : Entity_Id;
765 Kind : Entity_Kind;
767 begin
768 if No (Cond) then
769 Check_Unreachable_Code (N);
770 end if;
772 if Present (Target) then
773 Analyze (Target);
774 U_Name := Entity (Target);
776 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
777 Error_Msg_N ("invalid loop name in exit statement", N);
778 return;
779 else
780 Set_Has_Exit (U_Name);
781 end if;
783 else
784 U_Name := Empty;
785 end if;
787 for J in reverse 0 .. Scope_Stack.Last loop
788 Scope_Id := Scope_Stack.Table (J).Entity;
789 Kind := Ekind (Scope_Id);
791 if Kind = E_Loop
792 and then (No (Target) or else Scope_Id = U_Name) then
793 Set_Has_Exit (Scope_Id);
794 exit;
796 elsif Kind = E_Block or else Kind = E_Loop then
797 null;
799 else
800 Error_Msg_N
801 ("cannot exit from program unit or accept statement", N);
802 exit;
803 end if;
804 end loop;
806 -- Verify that if present the condition is a Boolean expression
808 if Present (Cond) then
809 Analyze_And_Resolve (Cond, Any_Boolean);
810 Check_Unset_Reference (Cond);
811 end if;
812 end Analyze_Exit_Statement;
814 ----------------------------
815 -- Analyze_Goto_Statement --
816 ----------------------------
818 procedure Analyze_Goto_Statement (N : Node_Id) is
819 Label : constant Node_Id := Name (N);
820 Scope_Id : Entity_Id;
821 Label_Scope : Entity_Id;
823 begin
824 Check_Unreachable_Code (N);
826 Analyze (Label);
828 if Entity (Label) = Any_Id then
829 return;
831 elsif Ekind (Entity (Label)) /= E_Label then
832 Error_Msg_N ("target of goto statement must be a label", Label);
833 return;
835 elsif not Reachable (Entity (Label)) then
836 Error_Msg_N ("target of goto statement is not reachable", Label);
837 return;
838 end if;
840 Label_Scope := Enclosing_Scope (Entity (Label));
842 for J in reverse 0 .. Scope_Stack.Last loop
843 Scope_Id := Scope_Stack.Table (J).Entity;
845 if Label_Scope = Scope_Id
846 or else (Ekind (Scope_Id) /= E_Block
847 and then Ekind (Scope_Id) /= E_Loop)
848 then
849 if Scope_Id /= Label_Scope then
850 Error_Msg_N
851 ("cannot exit from program unit or accept statement", N);
852 end if;
854 return;
855 end if;
856 end loop;
858 raise Program_Error;
859 end Analyze_Goto_Statement;
861 --------------------------
862 -- Analyze_If_Statement --
863 --------------------------
865 -- A special complication arises in the analysis of if statements.
867 -- The expander has circuitry to completely delete code that it
868 -- can tell will not be executed (as a result of compile time known
869 -- conditions). In the analyzer, we ensure that code that will be
870 -- deleted in this manner is analyzed but not expanded. This is
871 -- obviously more efficient, but more significantly, difficulties
872 -- arise if code is expanded and then eliminated (e.g. exception
873 -- table entries disappear). Similarly, itypes generated in deleted
874 -- code must be frozen from start, because the nodes on which they
875 -- depend will not be available at the freeze point.
877 procedure Analyze_If_Statement (N : Node_Id) is
878 E : Node_Id;
880 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
881 -- Recursively save value of this global, will be restored on exit
883 Save_In_Deleted_Code : Boolean;
885 Del : Boolean := False;
886 -- This flag gets set True if a True condition has been found,
887 -- which means that remaining ELSE/ELSIF parts are deleted.
889 procedure Analyze_Cond_Then (Cnode : Node_Id);
890 -- This is applied to either the N_If_Statement node itself or
891 -- to an N_Elsif_Part node. It deals with analyzing the condition
892 -- and the THEN statements associated with it.
894 -----------------------
895 -- Analyze_Cond_Then --
896 -----------------------
898 procedure Analyze_Cond_Then (Cnode : Node_Id) is
899 Cond : constant Node_Id := Condition (Cnode);
900 Tstm : constant List_Id := Then_Statements (Cnode);
902 begin
903 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
904 Analyze_And_Resolve (Cond, Any_Boolean);
905 Check_Unset_Reference (Cond);
906 Check_Possible_Current_Value_Condition (Cnode);
908 -- If already deleting, then just analyze then statements
910 if Del then
911 Analyze_Statements (Tstm);
913 -- Compile time known value, not deleting yet
915 elsif Compile_Time_Known_Value (Cond) then
916 Save_In_Deleted_Code := In_Deleted_Code;
918 -- If condition is True, then analyze the THEN statements
919 -- and set no expansion for ELSE and ELSIF parts.
921 if Is_True (Expr_Value (Cond)) then
922 Analyze_Statements (Tstm);
923 Del := True;
924 Expander_Mode_Save_And_Set (False);
925 In_Deleted_Code := True;
927 -- If condition is False, analyze THEN with expansion off
929 else -- Is_False (Expr_Value (Cond))
930 Expander_Mode_Save_And_Set (False);
931 In_Deleted_Code := True;
932 Analyze_Statements (Tstm);
933 Expander_Mode_Restore;
934 In_Deleted_Code := Save_In_Deleted_Code;
935 end if;
937 -- Not known at compile time, not deleting, normal analysis
939 else
940 Analyze_Statements (Tstm);
941 end if;
942 end Analyze_Cond_Then;
944 -- Start of Analyze_If_Statement
946 begin
947 -- Initialize exit count for else statements. If there is no else
948 -- part, this count will stay non-zero reflecting the fact that the
949 -- uncovered else case is an unblocked exit.
951 Unblocked_Exit_Count := 1;
952 Analyze_Cond_Then (N);
954 -- Now to analyze the elsif parts if any are present
956 if Present (Elsif_Parts (N)) then
957 E := First (Elsif_Parts (N));
958 while Present (E) loop
959 Analyze_Cond_Then (E);
960 Next (E);
961 end loop;
962 end if;
964 if Present (Else_Statements (N)) then
965 Analyze_Statements (Else_Statements (N));
966 end if;
968 -- If all our exits were blocked by unconditional transfers of control,
969 -- then the entire IF statement acts as an unconditional transfer of
970 -- control, so treat it like one, and check unreachable code.
972 if Unblocked_Exit_Count = 0 then
973 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
974 Check_Unreachable_Code (N);
975 else
976 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
977 end if;
979 if Del then
980 Expander_Mode_Restore;
981 In_Deleted_Code := Save_In_Deleted_Code;
982 end if;
984 if not Expander_Active
985 and then Compile_Time_Known_Value (Condition (N))
986 and then Serious_Errors_Detected = 0
987 then
988 if Is_True (Expr_Value (Condition (N))) then
989 Remove_Warning_Messages (Else_Statements (N));
991 if Present (Elsif_Parts (N)) then
992 E := First (Elsif_Parts (N));
994 while Present (E) loop
995 Remove_Warning_Messages (Then_Statements (E));
996 Next (E);
997 end loop;
998 end if;
1000 else
1001 Remove_Warning_Messages (Then_Statements (N));
1002 end if;
1003 end if;
1004 end Analyze_If_Statement;
1006 ----------------------------------------
1007 -- Analyze_Implicit_Label_Declaration --
1008 ----------------------------------------
1010 -- An implicit label declaration is generated in the innermost
1011 -- enclosing declarative part. This is done for labels as well as
1012 -- block and loop names.
1014 -- Note: any changes in this routine may need to be reflected in
1015 -- Analyze_Label_Entity.
1017 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1018 Id : constant Node_Id := Defining_Identifier (N);
1019 begin
1020 Enter_Name (Id);
1021 Set_Ekind (Id, E_Label);
1022 Set_Etype (Id, Standard_Void_Type);
1023 Set_Enclosing_Scope (Id, Current_Scope);
1024 end Analyze_Implicit_Label_Declaration;
1026 ------------------------------
1027 -- Analyze_Iteration_Scheme --
1028 ------------------------------
1030 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1031 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1032 -- If the bounds are given by a 'Range reference on a function call
1033 -- that returns a controlled array, introduce an explicit declaration
1034 -- to capture the bounds, so that the function result can be finalized
1035 -- in timely fashion.
1037 --------------------------------------
1038 -- Check_Controlled_Array_Attribute --
1039 --------------------------------------
1041 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1042 begin
1043 if Nkind (DS) = N_Attribute_Reference
1044 and then Is_Entity_Name (Prefix (DS))
1045 and then Ekind (Entity (Prefix (DS))) = E_Function
1046 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1047 and then
1048 Is_Controlled (
1049 Component_Type (Etype (Entity (Prefix (DS)))))
1050 and then Expander_Active
1051 then
1052 declare
1053 Loc : constant Source_Ptr := Sloc (N);
1054 Arr : constant Entity_Id :=
1055 Etype (Entity (Prefix (DS)));
1056 Indx : constant Entity_Id :=
1057 Base_Type (Etype (First_Index (Arr)));
1058 Subt : constant Entity_Id :=
1059 Make_Defining_Identifier
1060 (Loc, New_Internal_Name ('S'));
1061 Decl : Node_Id;
1063 begin
1064 Decl :=
1065 Make_Subtype_Declaration (Loc,
1066 Defining_Identifier => Subt,
1067 Subtype_Indication =>
1068 Make_Subtype_Indication (Loc,
1069 Subtype_Mark => New_Reference_To (Indx, Loc),
1070 Constraint =>
1071 Make_Range_Constraint (Loc,
1072 Relocate_Node (DS))));
1073 Insert_Before (Parent (N), Decl);
1074 Analyze (Decl);
1076 Rewrite (DS,
1077 Make_Attribute_Reference (Loc,
1078 Prefix => New_Reference_To (Subt, Loc),
1079 Attribute_Name => Attribute_Name (DS)));
1080 Analyze (DS);
1081 end;
1082 end if;
1083 end Check_Controlled_Array_Attribute;
1085 -- Start of processing for Analyze_Iteration_Scheme
1087 begin
1088 -- For an infinite loop, there is no iteration scheme
1090 if No (N) then
1091 return;
1093 else
1094 declare
1095 Cond : constant Node_Id := Condition (N);
1097 begin
1098 -- For WHILE loop, verify that the condition is a Boolean
1099 -- expression and resolve and check it.
1101 if Present (Cond) then
1102 Analyze_And_Resolve (Cond, Any_Boolean);
1103 Check_Unset_Reference (Cond);
1105 -- Else we have a FOR loop
1107 else
1108 declare
1109 LP : constant Node_Id := Loop_Parameter_Specification (N);
1110 Id : constant Entity_Id := Defining_Identifier (LP);
1111 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1113 begin
1114 Enter_Name (Id);
1116 -- We always consider the loop variable to be referenced,
1117 -- since the loop may be used just for counting purposes.
1119 Generate_Reference (Id, N, ' ');
1121 -- Check for case of loop variable hiding a local
1122 -- variable (used later on to give a nice warning
1123 -- if the hidden variable is never assigned).
1125 declare
1126 H : constant Entity_Id := Homonym (Id);
1127 begin
1128 if Present (H)
1129 and then Enclosing_Dynamic_Scope (H) =
1130 Enclosing_Dynamic_Scope (Id)
1131 and then Ekind (H) = E_Variable
1132 and then Is_Discrete_Type (Etype (H))
1133 then
1134 Set_Hiding_Loop_Variable (H, Id);
1135 end if;
1136 end;
1138 -- Now analyze the subtype definition
1140 Analyze (DS);
1142 if DS = Error then
1143 return;
1144 end if;
1146 -- The subtype indication may denote the completion
1147 -- of an incomplete type declaration.
1149 if Is_Entity_Name (DS)
1150 and then Present (Entity (DS))
1151 and then Is_Type (Entity (DS))
1152 and then Ekind (Entity (DS)) = E_Incomplete_Type
1153 then
1154 Set_Entity (DS, Get_Full_View (Entity (DS)));
1155 Set_Etype (DS, Entity (DS));
1156 end if;
1158 if not Is_Discrete_Type (Etype (DS)) then
1159 Wrong_Type (DS, Any_Discrete);
1160 Set_Etype (DS, Any_Type);
1161 end if;
1163 Check_Controlled_Array_Attribute (DS);
1164 Make_Index (DS, LP);
1166 Set_Ekind (Id, E_Loop_Parameter);
1167 Set_Etype (Id, Etype (DS));
1168 Set_Is_Known_Valid (Id, True);
1170 -- The loop is not a declarative part, so the only entity
1171 -- declared "within" must be frozen explicitly.
1173 declare
1174 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1175 begin
1176 if Is_Non_Empty_List (Flist) then
1177 Insert_Actions (N, Flist);
1178 end if;
1179 end;
1181 -- Check for null or possibly null range and issue warning.
1182 -- We suppress such messages in generic templates and
1183 -- instances, because in practice they tend to be dubious
1184 -- in these cases.
1186 if Nkind (DS) = N_Range
1187 and then Comes_From_Source (N)
1188 then
1189 declare
1190 L : constant Node_Id := Low_Bound (DS);
1191 H : constant Node_Id := High_Bound (DS);
1193 Llo : Uint;
1194 Lhi : Uint;
1195 LOK : Boolean;
1196 Hlo : Uint;
1197 Hhi : Uint;
1198 HOK : Boolean;
1200 begin
1201 Determine_Range (L, LOK, Llo, Lhi);
1202 Determine_Range (H, HOK, Hlo, Hhi);
1204 -- If range of loop is null, issue warning
1206 if (LOK and HOK) and then Llo > Hhi then
1208 -- Suppress the warning if inside a generic
1209 -- template or instance, since in practice
1210 -- they tend to be dubious in these cases since
1211 -- they can result from intended parametrization.
1213 if not Inside_A_Generic
1214 and then not In_Instance
1215 then
1216 Error_Msg_N
1217 ("?loop range is null, loop will not execute",
1218 DS);
1219 end if;
1221 -- Since we know the range of the loop is null,
1222 -- set the appropriate flag to suppress any
1223 -- warnings that would otherwise be issued in
1224 -- the body of the loop that will not execute.
1225 -- We do this even in the generic case, since
1226 -- if it is dubious to warn on the null loop
1227 -- itself, it is certainly dubious to warn for
1228 -- conditions that occur inside it!
1230 Set_Is_Null_Loop (Parent (N));
1232 -- The other case for a warning is a reverse loop
1233 -- where the upper bound is the integer literal
1234 -- zero or one, and the lower bound can be positive.
1236 -- For example, we have
1238 -- for J in reverse N .. 1 loop
1240 -- In practice, this is very likely to be a case
1241 -- of reversing the bounds incorrectly in the range.
1243 elsif Reverse_Present (LP)
1244 and then Nkind (H) = N_Integer_Literal
1245 and then (Intval (H) = Uint_0
1246 or else
1247 Intval (H) = Uint_1)
1248 and then Lhi > Hhi
1249 then
1250 Error_Msg_N ("?loop range may be null", DS);
1251 end if;
1252 end;
1253 end if;
1254 end;
1255 end if;
1256 end;
1257 end if;
1258 end Analyze_Iteration_Scheme;
1260 -------------------
1261 -- Analyze_Label --
1262 -------------------
1264 -- Note: the semantic work required for analyzing labels (setting them as
1265 -- reachable) was done in a prepass through the statements in the block,
1266 -- so that forward gotos would be properly handled. See Analyze_Statements
1267 -- for further details. The only processing required here is to deal with
1268 -- optimizations that depend on an assumption of sequential control flow,
1269 -- since of course the occurrence of a label breaks this assumption.
1271 procedure Analyze_Label (N : Node_Id) is
1272 pragma Warnings (Off, N);
1273 begin
1274 Kill_Current_Values;
1275 end Analyze_Label;
1277 --------------------------
1278 -- Analyze_Label_Entity --
1279 --------------------------
1281 procedure Analyze_Label_Entity (E : Entity_Id) is
1282 begin
1283 Set_Ekind (E, E_Label);
1284 Set_Etype (E, Standard_Void_Type);
1285 Set_Enclosing_Scope (E, Current_Scope);
1286 Set_Reachable (E, True);
1287 end Analyze_Label_Entity;
1289 ----------------------------
1290 -- Analyze_Loop_Statement --
1291 ----------------------------
1293 procedure Analyze_Loop_Statement (N : Node_Id) is
1294 Id : constant Node_Id := Identifier (N);
1295 Ent : Entity_Id;
1297 begin
1298 if Present (Id) then
1300 -- Make name visible, e.g. for use in exit statements. Loop
1301 -- labels are always considered to be referenced.
1303 Analyze (Id);
1304 Ent := Entity (Id);
1305 Generate_Reference (Ent, N, ' ');
1306 Generate_Definition (Ent);
1308 -- If we found a label, mark its type. If not, ignore it, since it
1309 -- means we have a conflicting declaration, which would already have
1310 -- been diagnosed at declaration time. Set Label_Construct of the
1311 -- implicit label declaration, which is not created by the parser
1312 -- for generic units.
1314 if Ekind (Ent) = E_Label then
1315 Set_Ekind (Ent, E_Loop);
1317 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1318 Set_Label_Construct (Parent (Ent), N);
1319 end if;
1320 end if;
1322 -- Case of no identifier present
1324 else
1325 Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
1326 Set_Etype (Ent, Standard_Void_Type);
1327 Set_Parent (Ent, N);
1328 end if;
1330 -- Kill current values on entry to loop, since statements in body
1331 -- of loop may have been executed before the loop is entered.
1332 -- Similarly we kill values after the loop, since we do not know
1333 -- that the body of the loop was executed.
1335 Kill_Current_Values;
1336 New_Scope (Ent);
1337 Analyze_Iteration_Scheme (Iteration_Scheme (N));
1338 Analyze_Statements (Statements (N));
1339 Process_End_Label (N, 'e', Ent);
1340 End_Scope;
1341 Kill_Current_Values;
1342 end Analyze_Loop_Statement;
1344 ----------------------------
1345 -- Analyze_Null_Statement --
1346 ----------------------------
1348 -- Note: the semantics of the null statement is implemented by a single
1349 -- null statement, too bad everything isn't as simple as this!
1351 procedure Analyze_Null_Statement (N : Node_Id) is
1352 pragma Warnings (Off, N);
1353 begin
1354 null;
1355 end Analyze_Null_Statement;
1357 ------------------------
1358 -- Analyze_Statements --
1359 ------------------------
1361 procedure Analyze_Statements (L : List_Id) is
1362 S : Node_Id;
1363 Lab : Entity_Id;
1365 begin
1366 -- The labels declared in the statement list are reachable from
1367 -- statements in the list. We do this as a prepass so that any
1368 -- goto statement will be properly flagged if its target is not
1369 -- reachable. This is not required, but is nice behavior!
1371 S := First (L);
1372 while Present (S) loop
1373 if Nkind (S) = N_Label then
1374 Analyze (Identifier (S));
1375 Lab := Entity (Identifier (S));
1377 -- If we found a label mark it as reachable.
1379 if Ekind (Lab) = E_Label then
1380 Generate_Definition (Lab);
1381 Set_Reachable (Lab);
1383 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
1384 Set_Label_Construct (Parent (Lab), S);
1385 end if;
1387 -- If we failed to find a label, it means the implicit declaration
1388 -- of the label was hidden. A for-loop parameter can do this to
1389 -- a label with the same name inside the loop, since the implicit
1390 -- label declaration is in the innermost enclosing body or block
1391 -- statement.
1393 else
1394 Error_Msg_Sloc := Sloc (Lab);
1395 Error_Msg_N
1396 ("implicit label declaration for & is hidden#",
1397 Identifier (S));
1398 end if;
1399 end if;
1401 Next (S);
1402 end loop;
1404 -- Perform semantic analysis on all statements
1406 Conditional_Statements_Begin;
1408 S := First (L);
1409 while Present (S) loop
1410 Analyze (S);
1411 Next (S);
1412 end loop;
1414 Conditional_Statements_End;
1416 -- Make labels unreachable. Visibility is not sufficient, because
1417 -- labels in one if-branch for example are not reachable from the
1418 -- other branch, even though their declarations are in the enclosing
1419 -- declarative part.
1421 S := First (L);
1422 while Present (S) loop
1423 if Nkind (S) = N_Label then
1424 Set_Reachable (Entity (Identifier (S)), False);
1425 end if;
1427 Next (S);
1428 end loop;
1429 end Analyze_Statements;
1431 --------------------------------------------
1432 -- Check_Possible_Current_Value_Condition --
1433 --------------------------------------------
1435 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
1436 Cond : Node_Id;
1438 begin
1439 -- Loop to deal with (ignore for now) any NOT operators present
1441 Cond := Condition (Cnode);
1442 while Nkind (Cond) = N_Op_Not loop
1443 Cond := Right_Opnd (Cond);
1444 end loop;
1446 -- Check possible relational operator
1448 if Nkind (Cond) = N_Op_Eq
1449 or else
1450 Nkind (Cond) = N_Op_Ne
1451 or else
1452 Nkind (Cond) = N_Op_Ge
1453 or else
1454 Nkind (Cond) = N_Op_Le
1455 or else
1456 Nkind (Cond) = N_Op_Gt
1457 or else
1458 Nkind (Cond) = N_Op_Lt
1459 then
1460 if Compile_Time_Known_Value (Right_Opnd (Cond))
1461 and then Nkind (Left_Opnd (Cond)) = N_Identifier
1462 then
1463 declare
1464 Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
1466 begin
1467 if Ekind (Ent) = E_Variable
1468 or else
1469 Ekind (Ent) = E_Constant
1470 or else
1471 Is_Formal (Ent)
1472 or else
1473 Ekind (Ent) = E_Loop_Parameter
1474 then
1475 -- Here we have a case where the Current_Value field
1476 -- may need to be set. We set it if it is not already
1477 -- set to a compile time expression value.
1479 -- Note that this represents a decision that one
1480 -- condition blots out another previous one. That's
1481 -- certainly right if they occur at the same level.
1482 -- If the second one is nested, then the decision is
1483 -- neither right nor wrong (it would be equally OK
1484 -- to leave the outer one in place, or take the new
1485 -- inner one. Really we should record both, but our
1486 -- data structures are not that elaborate.
1488 if Nkind (Current_Value (Ent)) not in N_Subexpr then
1489 Set_Current_Value (Ent, Cnode);
1490 end if;
1491 end if;
1492 end;
1493 end if;
1494 end if;
1495 end Check_Possible_Current_Value_Condition;
1497 ----------------------------
1498 -- Check_Unreachable_Code --
1499 ----------------------------
1501 procedure Check_Unreachable_Code (N : Node_Id) is
1502 Error_Loc : Source_Ptr;
1503 P : Node_Id;
1505 begin
1506 if Is_List_Member (N)
1507 and then Comes_From_Source (N)
1508 then
1509 declare
1510 Nxt : Node_Id;
1512 begin
1513 Nxt := Original_Node (Next (N));
1515 if Present (Nxt)
1516 and then Comes_From_Source (Nxt)
1517 and then Is_Statement (Nxt)
1518 then
1519 -- Special very annoying exception. If we have a return that
1520 -- follows a raise, then we allow it without a warning, since
1521 -- the Ada RM annoyingly requires a useless return here!
1523 if Nkind (Original_Node (N)) /= N_Raise_Statement
1524 or else Nkind (Nxt) /= N_Return_Statement
1525 then
1526 -- The rather strange shenanigans with the warning message
1527 -- here reflects the fact that Kill_Dead_Code is very good
1528 -- at removing warnings in deleted code, and this is one
1529 -- warning we would prefer NOT to have removed :-)
1531 Error_Loc := Sloc (Nxt);
1533 -- If we have unreachable code, analyze and remove the
1534 -- unreachable code, since it is useless and we don't
1535 -- want to generate junk warnings.
1537 -- We skip this step if we are not in code generation mode.
1538 -- This is the one case where we remove dead code in the
1539 -- semantics as opposed to the expander, and we do not want
1540 -- to remove code if we are not in code generation mode,
1541 -- since this messes up the ASIS trees.
1543 -- Note that one might react by moving the whole circuit to
1544 -- exp_ch5, but then we lose the warning in -gnatc mode.
1546 if Operating_Mode = Generate_Code then
1547 loop
1548 Nxt := Next (N);
1550 -- Quit deleting when we have nothing more to delete
1551 -- or if we hit a label (since someone could transfer
1552 -- control to a label, so we should not delete it).
1554 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
1556 -- Statement/declaration is to be deleted
1558 Analyze (Nxt);
1559 Remove (Nxt);
1560 Kill_Dead_Code (Nxt);
1561 end loop;
1562 end if;
1564 -- Now issue the warning
1566 Error_Msg ("?unreachable code", Error_Loc);
1567 end if;
1569 -- If the unconditional transfer of control instruction is
1570 -- the last statement of a sequence, then see if our parent
1571 -- is an IF statement, and if so adjust the unblocked exit
1572 -- count of the if statement to reflect the fact that this
1573 -- branch of the if is indeed blocked by a transfer of control.
1575 else
1576 P := Parent (N);
1578 if Nkind (P) = N_If_Statement then
1579 null;
1581 elsif Nkind (P) = N_Elsif_Part then
1582 P := Parent (P);
1583 pragma Assert (Nkind (P) = N_If_Statement);
1585 elsif Nkind (P) = N_Case_Statement_Alternative then
1586 P := Parent (P);
1587 pragma Assert (Nkind (P) = N_Case_Statement);
1589 else
1590 return;
1591 end if;
1593 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
1594 end if;
1595 end;
1596 end if;
1597 end Check_Unreachable_Code;
1599 end Sem_Ch5;