1 ------------------------------------------------------------------------------
3 -- GNAT RUNTIME COMPONENTS --
5 -- S Y S T E M . I M G _ D E C --
9 -- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 with System
.Img_Int
; use System
.Img_Int
;
36 package body System
.Img_Dec
is
42 function Image_Decimal
51 Set_Image_Decimal
(V
, S
, P
, Scale
, 1, Integer'Max (1, Scale
), 0);
53 -- Mess around to make sure we have the objectionable space at the
54 -- start for positive numbers in accordance with the annoying rules!
56 if S
(1) /= ' ' and then S
(1) /= '-' then
57 S
(2 .. P
+ 1) := S
(1 .. P
);
59 return S
(1 .. P
+ 1);
65 ------------------------
66 -- Set_Decimal_Digits --
67 ------------------------
69 procedure Set_Decimal_Digits
70 (Digs
: in out String;
79 Minus
: constant Boolean := (Digs
(1) = '-');
80 -- Set True if input is negative
82 Zero
: Boolean := (Digs
(2) = '0');
83 -- Set True if input is exactly zero (only case when a leading zero
84 -- is permitted in the input string given to this procedure). This
85 -- flag can get set later if rounding causes the value to become zero.
88 -- First digit position of digits remaining to be processed
90 LD
: Natural := NDigs
;
91 -- Last digit position of digits remaining to be processed
93 ND
: Natural := NDigs
- 1;
94 -- Number of digits remaining to be processed (LD - FD + 1)
96 Digits_Before_Point
: Integer := ND
- Scale
;
97 -- Number of digits before decimal point in the input value. This
98 -- value can be negative if the input value is less than 0.1, so
99 -- it is an indication of the current exponent. Digits_Before_Point
100 -- is adjusted if the rounding step generates an extra digit.
102 Digits_After_Point
: constant Natural := Integer'Max (1, Aft
);
103 -- Digit positions after decimal point in result string
106 -- Integer value of exponent
108 procedure Round
(N
: Natural);
109 -- Round the number in Digs. N is the position of the last digit to be
110 -- retained in the rounded position (rounding is based on Digs (N + 1)
111 -- FD, LD, ND are reset as necessary if required. Note that if the
112 -- result value rounds up (e.g. 9.99 => 10.0), an extra digit can be
113 -- placed in the sign position as a result of the rounding, this is
114 -- the case in which FD is adjusted.
116 procedure Set
(C
: Character);
118 -- Sets character C in output buffer
120 procedure Set_Blanks_And_Sign
(N
: Integer);
121 -- Sets leading blanks and minus sign if needed. N is the number of
122 -- positions to be filled (a minus sign is output even if N is zero
123 -- or negative, For a positive value, if N is non-positive, then
124 -- a leading blank is filled.
126 procedure Set_Digits
(S
, E
: Natural);
127 pragma Inline
(Set_Digits
);
128 -- Set digits S through E from Digs, no effect if S > E
130 procedure Set_Zeroes
(N
: Integer);
131 pragma Inline
(Set_Zeroes
);
132 -- Set N zeroes, no effect if N is negative
134 procedure Round
(N
: Natural) is
138 -- Nothing to do if rounding at or past last digit
143 -- Cases of rounding before the initial digit
147 -- The result is zero, unless we are rounding just before
148 -- the first digit, and the first digit is five or more.
150 if N
= 1 and then Digs
(2) >= '5' then
157 Digits_Before_Point
:= Digits_Before_Point
+ 1;
162 -- Normal case of rounding an existing digit
168 if Digs
(N
+ 1) >= '5' then
169 for J
in reverse 2 .. N
loop
170 D
:= Character'Succ (Digs
(J
));
180 -- Here the rounding overflows into the sign position. That's
181 -- OK, because we already captured the value of the sign and
182 -- we are in any case destroying the value in the Digs buffer
187 Digits_Before_Point
:= Digits_Before_Point
+ 1;
192 procedure Set
(C
: Character) is
198 procedure Set_Blanks_And_Sign
(N
: Integer) is
216 end Set_Blanks_And_Sign
;
218 procedure Set_Digits
(S
, E
: Natural) is
225 procedure Set_Zeroes
(N
: Integer) is
232 -- Start of processing for Set_Decimal_Digits
235 -- Case of exponent given
238 Set_Blanks_And_Sign
(Fore
- 1);
245 if ND
>= Digits_After_Point
then
246 Set_Digits
(FD
, FD
+ Digits_After_Point
- 1);
250 Set_Zeroes
(Digits_After_Point
- ND
);
253 -- Calculate exponent. The number of digits before the decimal point
254 -- in the input is Digits_Before_Point, and the number of digits
255 -- before the decimal point in the output is 1, so we can get the
256 -- exponent as the difference between these two values. The one
257 -- exception is for the value zero, which by convention has an
263 Expon
:= Digits_Before_Point
- 1;
271 Set_Image_Integer
(Expon
, Digs
, ND
);
274 Set_Image_Integer
(-Expon
, Digs
, ND
);
277 Set_Zeroes
(Exp
- ND
- 1);
281 -- Case of no exponent given. To make these cases clear, we use
282 -- examples. For all the examples, we assume Fore = 2, Aft = 3.
283 -- A P in the example input string is an implied zero position,
284 -- not included in the input string.
287 -- Round at correct position
288 -- Input: 4PP => unchanged
289 -- Input: 400.03 => unchanged
290 -- Input 3.4567 => 3.457
291 -- Input: 9.9999 => 10.000
292 -- Input: 0.PPP5 => 0.001
293 -- Input: 0.PPP4 => 0
294 -- Input: 0.00003 => 0
296 Round
(LD
- (Scale
- Digits_After_Point
));
298 -- No digits before point in input
299 -- Input: .123 Output: 0.123
300 -- Input: .PP3 Output: 0.003
302 if Digits_Before_Point
<= 0 then
303 Set_Blanks_And_Sign
(Fore
- 1);
307 Set_Zeroes
(Digits_After_Point
- ND
);
310 -- At least one digit before point in input
313 Set_Blanks_And_Sign
(Fore
- Digits_Before_Point
);
315 -- Less digits in input than are needed before point
316 -- Input: 1PP Output: 100.000
318 if ND
< Digits_Before_Point
then
320 Set_Zeroes
(Digits_Before_Point
- ND
);
322 Set_Zeroes
(Digits_After_Point
);
324 -- Input has full amount of digits before decimal point
327 Set_Digits
(FD
, FD
+ Digits_Before_Point
- 1);
329 Set_Digits
(FD
+ Digits_Before_Point
, LD
);
330 Set_Zeroes
(Digits_After_Point
- (ND
- Digits_Before_Point
));
335 end Set_Decimal_Digits
;
337 -----------------------
338 -- Set_Image_Decimal --
339 -----------------------
341 procedure Set_Image_Decimal
350 Digs
: String := Image_Integer
(V
);
351 -- Sign and digits of decimal value
354 Set_Decimal_Digits
(Digs
, Digs
'Length, S
, P
, Scale
, Fore
, Aft
, Exp
);
355 end Set_Image_Decimal
;