Add prefixed insn support for stack_protect_setdi & stack_protect_testdi
[official-gcc.git] / gcc / gcse.c
blobaeb59c645e1705e00ebfdda1a4ed8f60efa34ec5
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "memmodel.h"
145 #include "tm_p.h"
146 #include "insn-config.h"
147 #include "print-rtl.h"
148 #include "regs.h"
149 #include "ira.h"
150 #include "recog.h"
151 #include "diagnostic-core.h"
152 #include "cfgrtl.h"
153 #include "cfganal.h"
154 #include "lcm.h"
155 #include "cfgcleanup.h"
156 #include "expr.h"
157 #include "params.h"
158 #include "intl.h"
159 #include "tree-pass.h"
160 #include "dbgcnt.h"
161 #include "gcse.h"
162 #include "gcse-common.h"
163 #include "function-abi.h"
165 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
166 are a superset of those done by classic GCSE.
168 Two passes of copy/constant propagation are done around PRE or hoisting
169 because the first one enables more GCSE and the second one helps to clean
170 up the copies that PRE and HOIST create. This is needed more for PRE than
171 for HOIST because code hoisting will try to use an existing register
172 containing the common subexpression rather than create a new one. This is
173 harder to do for PRE because of the code motion (which HOIST doesn't do).
175 Expressions we are interested in GCSE-ing are of the form
176 (set (pseudo-reg) (expression)).
177 Function want_to_gcse_p says what these are.
179 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
180 This allows PRE to hoist expressions that are expressed in multiple insns,
181 such as complex address calculations (e.g. for PIC code, or loads with a
182 high part and a low part).
184 PRE handles moving invariant expressions out of loops (by treating them as
185 partially redundant).
187 **********************
189 We used to support multiple passes but there are diminishing returns in
190 doing so. The first pass usually makes 90% of the changes that are doable.
191 A second pass can make a few more changes made possible by the first pass.
192 Experiments show any further passes don't make enough changes to justify
193 the expense.
195 A study of spec92 using an unlimited number of passes:
196 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
197 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
198 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
200 It was found doing copy propagation between each pass enables further
201 substitutions.
203 This study was done before expressions in REG_EQUAL notes were added as
204 candidate expressions for optimization, and before the GIMPLE optimizers
205 were added. Probably, multiple passes is even less efficient now than
206 at the time when the study was conducted.
208 PRE is quite expensive in complicated functions because the DFA can take
209 a while to converge. Hence we only perform one pass.
211 **********************
213 The steps for PRE are:
215 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
217 2) Perform the data flow analysis for PRE.
219 3) Delete the redundant instructions
221 4) Insert the required copies [if any] that make the partially
222 redundant instructions fully redundant.
224 5) For other reaching expressions, insert an instruction to copy the value
225 to a newly created pseudo that will reach the redundant instruction.
227 The deletion is done first so that when we do insertions we
228 know which pseudo reg to use.
230 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
231 argue it is not. The number of iterations for the algorithm to converge
232 is typically 2-4 so I don't view it as that expensive (relatively speaking).
234 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
235 we create. To make an expression reach the place where it's redundant,
236 the result of the expression is copied to a new register, and the redundant
237 expression is deleted by replacing it with this new register. Classic GCSE
238 doesn't have this problem as much as it computes the reaching defs of
239 each register in each block and thus can try to use an existing
240 register. */
242 /* GCSE global vars. */
244 struct target_gcse default_target_gcse;
245 #if SWITCHABLE_TARGET
246 struct target_gcse *this_target_gcse = &default_target_gcse;
247 #endif
249 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
250 int flag_rerun_cse_after_global_opts;
252 /* An obstack for our working variables. */
253 static struct obstack gcse_obstack;
255 /* Hash table of expressions. */
257 struct gcse_expr
259 /* The expression. */
260 rtx expr;
261 /* Index in the available expression bitmaps. */
262 int bitmap_index;
263 /* Next entry with the same hash. */
264 struct gcse_expr *next_same_hash;
265 /* List of anticipatable occurrences in basic blocks in the function.
266 An "anticipatable occurrence" is one that is the first occurrence in the
267 basic block, the operands are not modified in the basic block prior
268 to the occurrence and the output is not used between the start of
269 the block and the occurrence. */
270 struct gcse_occr *antic_occr;
271 /* List of available occurrence in basic blocks in the function.
272 An "available occurrence" is one that is the last occurrence in the
273 basic block and the operands are not modified by following statements in
274 the basic block [including this insn]. */
275 struct gcse_occr *avail_occr;
276 /* Non-null if the computation is PRE redundant.
277 The value is the newly created pseudo-reg to record a copy of the
278 expression in all the places that reach the redundant copy. */
279 rtx reaching_reg;
280 /* Maximum distance in instructions this expression can travel.
281 We avoid moving simple expressions for more than a few instructions
282 to keep register pressure under control.
283 A value of "0" removes restrictions on how far the expression can
284 travel. */
285 HOST_WIDE_INT max_distance;
288 /* Occurrence of an expression.
289 There is one per basic block. If a pattern appears more than once the
290 last appearance is used [or first for anticipatable expressions]. */
292 struct gcse_occr
294 /* Next occurrence of this expression. */
295 struct gcse_occr *next;
296 /* The insn that computes the expression. */
297 rtx_insn *insn;
298 /* Nonzero if this [anticipatable] occurrence has been deleted. */
299 char deleted_p;
300 /* Nonzero if this [available] occurrence has been copied to
301 reaching_reg. */
302 /* ??? This is mutually exclusive with deleted_p, so they could share
303 the same byte. */
304 char copied_p;
307 typedef struct gcse_occr *occr_t;
309 /* Expression hash tables.
310 Each hash table is an array of buckets.
311 ??? It is known that if it were an array of entries, structure elements
312 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
313 not clear whether in the final analysis a sufficient amount of memory would
314 be saved as the size of the available expression bitmaps would be larger
315 [one could build a mapping table without holes afterwards though].
316 Someday I'll perform the computation and figure it out. */
318 struct gcse_hash_table_d
320 /* The table itself.
321 This is an array of `expr_hash_table_size' elements. */
322 struct gcse_expr **table;
324 /* Size of the hash table, in elements. */
325 unsigned int size;
327 /* Number of hash table elements. */
328 unsigned int n_elems;
331 /* Expression hash table. */
332 static struct gcse_hash_table_d expr_hash_table;
334 /* This is a list of expressions which are MEMs and will be used by load
335 or store motion.
336 Load motion tracks MEMs which aren't killed by anything except itself,
337 i.e. loads and stores to a single location.
338 We can then allow movement of these MEM refs with a little special
339 allowance. (all stores copy the same value to the reaching reg used
340 for the loads). This means all values used to store into memory must have
341 no side effects so we can re-issue the setter value. */
343 struct ls_expr
345 struct gcse_expr * expr; /* Gcse expression reference for LM. */
346 rtx pattern; /* Pattern of this mem. */
347 rtx pattern_regs; /* List of registers mentioned by the mem. */
348 vec<rtx_insn *> stores; /* INSN list of stores seen. */
349 struct ls_expr * next; /* Next in the list. */
350 int invalid; /* Invalid for some reason. */
351 int index; /* If it maps to a bitmap index. */
352 unsigned int hash_index; /* Index when in a hash table. */
353 rtx reaching_reg; /* Register to use when re-writing. */
356 /* Head of the list of load/store memory refs. */
357 static struct ls_expr * pre_ldst_mems = NULL;
359 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
361 typedef value_type compare_type;
362 static inline hashval_t hash (const ls_expr *);
363 static inline bool equal (const ls_expr *, const ls_expr *);
366 /* Hashtable helpers. */
367 inline hashval_t
368 pre_ldst_expr_hasher::hash (const ls_expr *x)
370 int do_not_record_p = 0;
371 return
372 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
375 static int expr_equiv_p (const_rtx, const_rtx);
377 inline bool
378 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
379 const ls_expr *ptr2)
381 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
384 /* Hashtable for the load/store memory refs. */
385 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
387 /* Bitmap containing one bit for each register in the program.
388 Used when performing GCSE to track which registers have been set since
389 the start of the basic block. */
390 static regset reg_set_bitmap;
392 /* Array, indexed by basic block number for a list of insns which modify
393 memory within that block. */
394 static vec<rtx_insn *> *modify_mem_list;
395 static bitmap modify_mem_list_set;
397 /* This array parallels modify_mem_list, except that it stores MEMs
398 being set and their canonicalized memory addresses. */
399 static vec<modify_pair> *canon_modify_mem_list;
401 /* Bitmap indexed by block numbers to record which blocks contain
402 function calls. */
403 static bitmap blocks_with_calls;
405 /* Various variables for statistics gathering. */
407 /* Memory used in a pass.
408 This isn't intended to be absolutely precise. Its intent is only
409 to keep an eye on memory usage. */
410 static int bytes_used;
412 /* GCSE substitutions made. */
413 static int gcse_subst_count;
414 /* Number of copy instructions created. */
415 static int gcse_create_count;
417 /* Doing code hoisting. */
418 static bool doing_code_hoisting_p = false;
420 /* For available exprs */
421 static sbitmap *ae_kill;
423 /* Data stored for each basic block. */
424 struct bb_data
426 /* Maximal register pressure inside basic block for given register class
427 (defined only for the pressure classes). */
428 int max_reg_pressure[N_REG_CLASSES];
429 /* Recorded register pressure of basic block before trying to hoist
430 an expression. Will be used to restore the register pressure
431 if the expression should not be hoisted. */
432 int old_pressure;
433 /* Recorded register live_in info of basic block during code hoisting
434 process. BACKUP is used to record live_in info before trying to
435 hoist an expression, and will be used to restore LIVE_IN if the
436 expression should not be hoisted. */
437 bitmap live_in, backup;
440 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
442 static basic_block curr_bb;
444 /* Current register pressure for each pressure class. */
445 static int curr_reg_pressure[N_REG_CLASSES];
448 static void compute_can_copy (void);
449 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
450 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
451 static void *gcse_alloc (unsigned long);
452 static void alloc_gcse_mem (void);
453 static void free_gcse_mem (void);
454 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
457 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
458 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
459 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
460 static int oprs_available_p (const_rtx, const rtx_insn *);
461 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
462 HOST_WIDE_INT, struct gcse_hash_table_d *);
463 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
464 static void record_last_reg_set_info (rtx_insn *, int);
465 static void record_last_mem_set_info (rtx_insn *);
466 static void record_last_set_info (rtx, const_rtx, void *);
467 static void compute_hash_table (struct gcse_hash_table_d *);
468 static void alloc_hash_table (struct gcse_hash_table_d *);
469 static void free_hash_table (struct gcse_hash_table_d *);
470 static void compute_hash_table_work (struct gcse_hash_table_d *);
471 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
472 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
473 struct gcse_hash_table_d *);
474 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
475 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
476 static void alloc_pre_mem (int, int);
477 static void free_pre_mem (void);
478 static struct edge_list *compute_pre_data (void);
479 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
480 basic_block);
481 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
482 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
483 static void pre_insert_copies (void);
484 static int pre_delete (void);
485 static int pre_gcse (struct edge_list *);
486 static int one_pre_gcse_pass (void);
487 static void add_label_notes (rtx, rtx_insn *);
488 static void alloc_code_hoist_mem (int, int);
489 static void free_code_hoist_mem (void);
490 static void compute_code_hoist_vbeinout (void);
491 static void compute_code_hoist_data (void);
492 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
493 basic_block,
494 sbitmap, HOST_WIDE_INT, int *,
495 enum reg_class,
496 int *, bitmap, rtx_insn *);
497 static int hoist_code (void);
498 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
499 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
500 static int one_code_hoisting_pass (void);
501 static rtx_insn *process_insert_insn (struct gcse_expr *);
502 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
503 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
504 basic_block, char *);
505 static struct ls_expr * ldst_entry (rtx);
506 static void free_ldst_entry (struct ls_expr *);
507 static void free_ld_motion_mems (void);
508 static void print_ldst_list (FILE *);
509 static struct ls_expr * find_rtx_in_ldst (rtx);
510 static int simple_mem (const_rtx);
511 static void invalidate_any_buried_refs (rtx);
512 static void compute_ld_motion_mems (void);
513 static void trim_ld_motion_mems (void);
514 static void update_ld_motion_stores (struct gcse_expr *);
515 static void clear_modify_mem_tables (void);
516 static void free_modify_mem_tables (void);
518 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
519 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
521 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
522 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
524 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
525 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
527 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
528 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
530 /* Misc. utilities. */
532 #define can_copy \
533 (this_target_gcse->x_can_copy)
534 #define can_copy_init_p \
535 (this_target_gcse->x_can_copy_init_p)
537 /* Compute which modes support reg/reg copy operations. */
539 static void
540 compute_can_copy (void)
542 int i;
543 #ifndef AVOID_CCMODE_COPIES
544 rtx reg;
545 rtx_insn *insn;
546 #endif
547 memset (can_copy, 0, NUM_MACHINE_MODES);
549 start_sequence ();
550 for (i = 0; i < NUM_MACHINE_MODES; i++)
551 if (GET_MODE_CLASS (i) == MODE_CC)
553 #ifdef AVOID_CCMODE_COPIES
554 can_copy[i] = 0;
555 #else
556 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
557 insn = emit_insn (gen_rtx_SET (reg, reg));
558 if (recog (PATTERN (insn), insn, NULL) >= 0)
559 can_copy[i] = 1;
560 #endif
562 else
563 can_copy[i] = 1;
565 end_sequence ();
568 /* Returns whether the mode supports reg/reg copy operations. */
570 bool
571 can_copy_p (machine_mode mode)
573 if (! can_copy_init_p)
575 compute_can_copy ();
576 can_copy_init_p = true;
579 return can_copy[mode] != 0;
582 /* Cover function to xmalloc to record bytes allocated. */
584 static void *
585 gmalloc (size_t size)
587 bytes_used += size;
588 return xmalloc (size);
591 /* Cover function to xcalloc to record bytes allocated. */
593 static void *
594 gcalloc (size_t nelem, size_t elsize)
596 bytes_used += nelem * elsize;
597 return xcalloc (nelem, elsize);
600 /* Cover function to obstack_alloc. */
602 static void *
603 gcse_alloc (unsigned long size)
605 bytes_used += size;
606 return obstack_alloc (&gcse_obstack, size);
609 /* Allocate memory for the reg/memory set tracking tables.
610 This is called at the start of each pass. */
612 static void
613 alloc_gcse_mem (void)
615 /* Allocate vars to track sets of regs. */
616 reg_set_bitmap = ALLOC_REG_SET (NULL);
618 /* Allocate array to keep a list of insns which modify memory in each
619 basic block. The two typedefs are needed to work around the
620 pre-processor limitation with template types in macro arguments. */
621 typedef vec<rtx_insn *> vec_rtx_heap;
622 typedef vec<modify_pair> vec_modify_pair_heap;
623 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
624 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
625 last_basic_block_for_fn (cfun));
626 modify_mem_list_set = BITMAP_ALLOC (NULL);
627 blocks_with_calls = BITMAP_ALLOC (NULL);
630 /* Free memory allocated by alloc_gcse_mem. */
632 static void
633 free_gcse_mem (void)
635 FREE_REG_SET (reg_set_bitmap);
637 free_modify_mem_tables ();
638 BITMAP_FREE (modify_mem_list_set);
639 BITMAP_FREE (blocks_with_calls);
642 /* Compute the local properties of each recorded expression.
644 Local properties are those that are defined by the block, irrespective of
645 other blocks.
647 An expression is transparent in a block if its operands are not modified
648 in the block.
650 An expression is computed (locally available) in a block if it is computed
651 at least once and expression would contain the same value if the
652 computation was moved to the end of the block.
654 An expression is locally anticipatable in a block if it is computed at
655 least once and expression would contain the same value if the computation
656 was moved to the beginning of the block.
658 We call this routine for pre and code hoisting. They all compute
659 basically the same information and thus can easily share this code.
661 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
662 properties. If NULL, then it is not necessary to compute or record that
663 particular property.
665 TABLE controls which hash table to look at. */
667 static void
668 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
669 struct gcse_hash_table_d *table)
671 unsigned int i;
673 /* Initialize any bitmaps that were passed in. */
674 if (transp)
676 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
679 if (comp)
680 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
681 if (antloc)
682 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
684 for (i = 0; i < table->size; i++)
686 struct gcse_expr *expr;
688 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
690 int indx = expr->bitmap_index;
691 struct gcse_occr *occr;
693 /* The expression is transparent in this block if it is not killed.
694 We start by assuming all are transparent [none are killed], and
695 then reset the bits for those that are. */
696 if (transp)
697 compute_transp (expr->expr, indx, transp,
698 blocks_with_calls,
699 modify_mem_list_set,
700 canon_modify_mem_list);
702 /* The occurrences recorded in antic_occr are exactly those that
703 we want to set to nonzero in ANTLOC. */
704 if (antloc)
705 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
707 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
709 /* While we're scanning the table, this is a good place to
710 initialize this. */
711 occr->deleted_p = 0;
714 /* The occurrences recorded in avail_occr are exactly those that
715 we want to set to nonzero in COMP. */
716 if (comp)
717 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
719 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
721 /* While we're scanning the table, this is a good place to
722 initialize this. */
723 occr->copied_p = 0;
726 /* While we're scanning the table, this is a good place to
727 initialize this. */
728 expr->reaching_reg = 0;
733 /* Hash table support. */
735 struct reg_avail_info
737 basic_block last_bb;
738 int first_set;
739 int last_set;
742 static struct reg_avail_info *reg_avail_info;
743 static basic_block current_bb;
745 /* See whether X, the source of a set, is something we want to consider for
746 GCSE. */
748 static int
749 want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
751 #ifdef STACK_REGS
752 /* On register stack architectures, don't GCSE constants from the
753 constant pool, as the benefits are often swamped by the overhead
754 of shuffling the register stack between basic blocks. */
755 if (IS_STACK_MODE (GET_MODE (x)))
756 x = avoid_constant_pool_reference (x);
757 #endif
759 /* GCSE'ing constants:
761 We do not specifically distinguish between constant and non-constant
762 expressions in PRE and Hoist. We use set_src_cost below to limit
763 the maximum distance simple expressions can travel.
765 Nevertheless, constants are much easier to GCSE, and, hence,
766 it is easy to overdo the optimizations. Usually, excessive PRE and
767 Hoisting of constant leads to increased register pressure.
769 RA can deal with this by rematerialing some of the constants.
770 Therefore, it is important that the back-end generates sets of constants
771 in a way that allows reload rematerialize them under high register
772 pressure, i.e., a pseudo register with REG_EQUAL to constant
773 is set only once. Failing to do so will result in IRA/reload
774 spilling such constants under high register pressure instead of
775 rematerializing them. */
777 switch (GET_CODE (x))
779 case REG:
780 case SUBREG:
781 case CALL:
782 return 0;
784 CASE_CONST_ANY:
785 if (!doing_code_hoisting_p)
786 /* Do not PRE constants. */
787 return 0;
789 /* FALLTHRU */
791 default:
792 if (doing_code_hoisting_p)
793 /* PRE doesn't implement max_distance restriction. */
795 int cost;
796 HOST_WIDE_INT max_distance;
798 gcc_assert (!optimize_function_for_speed_p (cfun)
799 && optimize_function_for_size_p (cfun));
800 cost = set_src_cost (x, mode, 0);
802 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
804 max_distance
805 = ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
806 if (max_distance == 0)
807 return 0;
809 gcc_assert (max_distance > 0);
811 else
812 max_distance = 0;
814 if (max_distance_ptr)
815 *max_distance_ptr = max_distance;
818 return can_assign_to_reg_without_clobbers_p (x, mode);
822 /* Used internally by can_assign_to_reg_without_clobbers_p. */
824 static GTY(()) rtx_insn *test_insn;
826 /* Return true if we can assign X to a pseudo register of mode MODE
827 such that the resulting insn does not result in clobbering a hard
828 register as a side-effect.
830 Additionally, if the target requires it, check that the resulting insn
831 can be copied. If it cannot, this means that X is special and probably
832 has hidden side-effects we don't want to mess with.
834 This function is typically used by code motion passes, to verify
835 that it is safe to insert an insn without worrying about clobbering
836 maybe live hard regs. */
838 bool
839 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
841 int num_clobbers = 0;
842 int icode;
843 bool can_assign = false;
845 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
846 if (general_operand (x, mode))
847 return 1;
848 else if (GET_MODE (x) == VOIDmode)
849 return 0;
851 /* Otherwise, check if we can make a valid insn from it. First initialize
852 our test insn if we haven't already. */
853 if (test_insn == 0)
855 test_insn
856 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
857 FIRST_PSEUDO_REGISTER * 2),
858 const0_rtx));
859 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
860 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
863 /* Now make an insn like the one we would make when GCSE'ing and see if
864 valid. */
865 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
866 SET_SRC (PATTERN (test_insn)) = x;
868 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
870 /* If the test insn is valid and doesn't need clobbers, and the target also
871 has no objections, we're good. */
872 if (icode >= 0
873 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
874 && ! (targetm.cannot_copy_insn_p
875 && targetm.cannot_copy_insn_p (test_insn)))
876 can_assign = true;
878 /* Make sure test_insn doesn't have any pointers into GC space. */
879 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
881 return can_assign;
884 /* Return nonzero if the operands of expression X are unchanged from the
885 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
886 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
888 static int
889 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
891 int i, j;
892 enum rtx_code code;
893 const char *fmt;
895 if (x == 0)
896 return 1;
898 code = GET_CODE (x);
899 switch (code)
901 case REG:
903 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
905 if (info->last_bb != current_bb)
906 return 1;
907 if (avail_p)
908 return info->last_set < DF_INSN_LUID (insn);
909 else
910 return info->first_set >= DF_INSN_LUID (insn);
913 case MEM:
914 if (! flag_gcse_lm
915 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
916 x, avail_p))
917 return 0;
918 else
919 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
921 case PRE_DEC:
922 case PRE_INC:
923 case POST_DEC:
924 case POST_INC:
925 case PRE_MODIFY:
926 case POST_MODIFY:
927 return 0;
929 case PC:
930 case CC0: /*FIXME*/
931 case CONST:
932 CASE_CONST_ANY:
933 case SYMBOL_REF:
934 case LABEL_REF:
935 case ADDR_VEC:
936 case ADDR_DIFF_VEC:
937 return 1;
939 default:
940 break;
943 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
945 if (fmt[i] == 'e')
947 /* If we are about to do the last recursive call needed at this
948 level, change it into iteration. This function is called enough
949 to be worth it. */
950 if (i == 0)
951 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
953 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
954 return 0;
956 else if (fmt[i] == 'E')
957 for (j = 0; j < XVECLEN (x, i); j++)
958 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
959 return 0;
962 return 1;
965 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
967 struct mem_conflict_info
969 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
970 see if a memory store conflicts with this memory load. */
971 const_rtx mem;
973 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
974 references. */
975 bool conflict;
978 /* DEST is the output of an instruction. If it is a memory reference and
979 possibly conflicts with the load found in DATA, then communicate this
980 information back through DATA. */
982 static void
983 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
984 void *data)
986 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
988 while (GET_CODE (dest) == SUBREG
989 || GET_CODE (dest) == ZERO_EXTRACT
990 || GET_CODE (dest) == STRICT_LOW_PART)
991 dest = XEXP (dest, 0);
993 /* If DEST is not a MEM, then it will not conflict with the load. Note
994 that function calls are assumed to clobber memory, but are handled
995 elsewhere. */
996 if (! MEM_P (dest))
997 return;
999 /* If we are setting a MEM in our list of specially recognized MEMs,
1000 don't mark as killed this time. */
1001 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1003 if (!find_rtx_in_ldst (dest))
1004 mci->conflict = true;
1005 return;
1008 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1009 mci->conflict = true;
1012 /* Return nonzero if the expression in X (a memory reference) is killed
1013 in block BB before or after the insn with the LUID in UID_LIMIT.
1014 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1015 before UID_LIMIT.
1017 To check the entire block, set UID_LIMIT to max_uid + 1 and
1018 AVAIL_P to 0. */
1020 static int
1021 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1022 int avail_p)
1024 vec<rtx_insn *> list = modify_mem_list[bb->index];
1025 rtx_insn *setter;
1026 unsigned ix;
1028 /* If this is a readonly then we aren't going to be changing it. */
1029 if (MEM_READONLY_P (x))
1030 return 0;
1032 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1034 struct mem_conflict_info mci;
1036 /* Ignore entries in the list that do not apply. */
1037 if ((avail_p
1038 && DF_INSN_LUID (setter) < uid_limit)
1039 || (! avail_p
1040 && DF_INSN_LUID (setter) > uid_limit))
1041 continue;
1043 /* If SETTER is a call everything is clobbered. Note that calls
1044 to pure functions are never put on the list, so we need not
1045 worry about them. */
1046 if (CALL_P (setter))
1047 return 1;
1049 /* SETTER must be an INSN of some kind that sets memory. Call
1050 note_stores to examine each hunk of memory that is modified. */
1051 mci.mem = x;
1052 mci.conflict = false;
1053 note_stores (setter, mems_conflict_for_gcse_p, &mci);
1054 if (mci.conflict)
1055 return 1;
1057 return 0;
1060 /* Return nonzero if the operands of expression X are unchanged from
1061 the start of INSN's basic block up to but not including INSN. */
1063 static int
1064 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1066 return oprs_unchanged_p (x, insn, 0);
1069 /* Return nonzero if the operands of expression X are unchanged from
1070 INSN to the end of INSN's basic block. */
1072 static int
1073 oprs_available_p (const_rtx x, const rtx_insn *insn)
1075 return oprs_unchanged_p (x, insn, 1);
1078 /* Hash expression X.
1080 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1081 indicating if a volatile operand is found or if the expression contains
1082 something we don't want to insert in the table. HASH_TABLE_SIZE is
1083 the current size of the hash table to be probed. */
1085 static unsigned int
1086 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1087 int hash_table_size)
1089 unsigned int hash;
1091 *do_not_record_p = 0;
1093 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1094 return hash % hash_table_size;
1097 /* Return nonzero if exp1 is equivalent to exp2. */
1099 static int
1100 expr_equiv_p (const_rtx x, const_rtx y)
1102 return exp_equiv_p (x, y, 0, true);
1105 /* Insert expression X in INSN in the hash TABLE.
1106 If it is already present, record it as the last occurrence in INSN's
1107 basic block.
1109 MODE is the mode of the value X is being stored into.
1110 It is only used if X is a CONST_INT.
1112 ANTIC_P is nonzero if X is an anticipatable expression.
1113 AVAIL_P is nonzero if X is an available expression.
1115 MAX_DISTANCE is the maximum distance in instructions this expression can
1116 be moved. */
1118 static void
1119 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1120 int antic_p,
1121 int avail_p, HOST_WIDE_INT max_distance,
1122 struct gcse_hash_table_d *table)
1124 int found, do_not_record_p;
1125 unsigned int hash;
1126 struct gcse_expr *cur_expr, *last_expr = NULL;
1127 struct gcse_occr *antic_occr, *avail_occr;
1129 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1131 /* Do not insert expression in table if it contains volatile operands,
1132 or if hash_expr determines the expression is something we don't want
1133 to or can't handle. */
1134 if (do_not_record_p)
1135 return;
1137 cur_expr = table->table[hash];
1138 found = 0;
1140 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
1142 /* If the expression isn't found, save a pointer to the end of
1143 the list. */
1144 last_expr = cur_expr;
1145 cur_expr = cur_expr->next_same_hash;
1148 if (! found)
1150 cur_expr = GOBNEW (struct gcse_expr);
1151 bytes_used += sizeof (struct gcse_expr);
1152 if (table->table[hash] == NULL)
1153 /* This is the first pattern that hashed to this index. */
1154 table->table[hash] = cur_expr;
1155 else
1156 /* Add EXPR to end of this hash chain. */
1157 last_expr->next_same_hash = cur_expr;
1159 /* Set the fields of the expr element. */
1160 cur_expr->expr = x;
1161 cur_expr->bitmap_index = table->n_elems++;
1162 cur_expr->next_same_hash = NULL;
1163 cur_expr->antic_occr = NULL;
1164 cur_expr->avail_occr = NULL;
1165 gcc_assert (max_distance >= 0);
1166 cur_expr->max_distance = max_distance;
1168 else
1169 gcc_assert (cur_expr->max_distance == max_distance);
1171 /* Now record the occurrence(s). */
1172 if (antic_p)
1174 antic_occr = cur_expr->antic_occr;
1176 if (antic_occr
1177 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1178 antic_occr = NULL;
1180 if (antic_occr)
1181 /* Found another instance of the expression in the same basic block.
1182 Prefer the currently recorded one. We want the first one in the
1183 block and the block is scanned from start to end. */
1184 ; /* nothing to do */
1185 else
1187 /* First occurrence of this expression in this basic block. */
1188 antic_occr = GOBNEW (struct gcse_occr);
1189 bytes_used += sizeof (struct gcse_occr);
1190 antic_occr->insn = insn;
1191 antic_occr->next = cur_expr->antic_occr;
1192 antic_occr->deleted_p = 0;
1193 cur_expr->antic_occr = antic_occr;
1197 if (avail_p)
1199 avail_occr = cur_expr->avail_occr;
1201 if (avail_occr
1202 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1204 /* Found another instance of the expression in the same basic block.
1205 Prefer this occurrence to the currently recorded one. We want
1206 the last one in the block and the block is scanned from start
1207 to end. */
1208 avail_occr->insn = insn;
1210 else
1212 /* First occurrence of this expression in this basic block. */
1213 avail_occr = GOBNEW (struct gcse_occr);
1214 bytes_used += sizeof (struct gcse_occr);
1215 avail_occr->insn = insn;
1216 avail_occr->next = cur_expr->avail_occr;
1217 avail_occr->deleted_p = 0;
1218 cur_expr->avail_occr = avail_occr;
1223 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1225 static void
1226 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1228 rtx src = SET_SRC (set);
1229 rtx dest = SET_DEST (set);
1230 rtx note;
1232 if (GET_CODE (src) == CALL)
1233 hash_scan_call (src, insn, table);
1235 else if (REG_P (dest))
1237 unsigned int regno = REGNO (dest);
1238 HOST_WIDE_INT max_distance = 0;
1240 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1242 This allows us to do a single GCSE pass and still eliminate
1243 redundant constants, addresses or other expressions that are
1244 constructed with multiple instructions.
1246 However, keep the original SRC if INSN is a simple reg-reg move.
1247 In this case, there will almost always be a REG_EQUAL note on the
1248 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1249 for INSN, we miss copy propagation opportunities and we perform the
1250 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1251 do more than one PRE GCSE pass.
1253 Note that this does not impede profitable constant propagations. We
1254 "look through" reg-reg sets in lookup_avail_set. */
1255 note = find_reg_equal_equiv_note (insn);
1256 if (note != 0
1257 && REG_NOTE_KIND (note) == REG_EQUAL
1258 && !REG_P (src)
1259 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1260 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1262 /* Only record sets of pseudo-regs in the hash table. */
1263 if (regno >= FIRST_PSEUDO_REGISTER
1264 /* Don't GCSE something if we can't do a reg/reg copy. */
1265 && can_copy_p (GET_MODE (dest))
1266 /* GCSE commonly inserts instruction after the insn. We can't
1267 do that easily for EH edges so disable GCSE on these for now. */
1268 /* ??? We can now easily create new EH landing pads at the
1269 gimple level, for splitting edges; there's no reason we
1270 can't do the same thing at the rtl level. */
1271 && !can_throw_internal (insn)
1272 /* Is SET_SRC something we want to gcse? */
1273 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1274 /* Don't CSE a nop. */
1275 && ! set_noop_p (set)
1276 /* Don't GCSE if it has attached REG_EQUIV note.
1277 At this point this only function parameters should have
1278 REG_EQUIV notes and if the argument slot is used somewhere
1279 explicitly, it means address of parameter has been taken,
1280 so we should not extend the lifetime of the pseudo. */
1281 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1283 /* An expression is not anticipatable if its operands are
1284 modified before this insn or if this is not the only SET in
1285 this insn. The latter condition does not have to mean that
1286 SRC itself is not anticipatable, but we just will not be
1287 able to handle code motion of insns with multiple sets. */
1288 int antic_p = oprs_anticipatable_p (src, insn)
1289 && !multiple_sets (insn);
1290 /* An expression is not available if its operands are
1291 subsequently modified, including this insn. It's also not
1292 available if this is a branch, because we can't insert
1293 a set after the branch. */
1294 int avail_p = (oprs_available_p (src, insn)
1295 && ! JUMP_P (insn));
1297 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1298 max_distance, table);
1301 /* In case of store we want to consider the memory value as available in
1302 the REG stored in that memory. This makes it possible to remove
1303 redundant loads from due to stores to the same location. */
1304 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1306 unsigned int regno = REGNO (src);
1307 HOST_WIDE_INT max_distance = 0;
1309 /* Only record sets of pseudo-regs in the hash table. */
1310 if (regno >= FIRST_PSEUDO_REGISTER
1311 /* Don't GCSE something if we can't do a reg/reg copy. */
1312 && can_copy_p (GET_MODE (src))
1313 /* GCSE commonly inserts instruction after the insn. We can't
1314 do that easily for EH edges so disable GCSE on these for now. */
1315 && !can_throw_internal (insn)
1316 /* Is SET_DEST something we want to gcse? */
1317 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1318 /* Don't CSE a nop. */
1319 && ! set_noop_p (set)
1320 /* Don't GCSE if it has attached REG_EQUIV note.
1321 At this point this only function parameters should have
1322 REG_EQUIV notes and if the argument slot is used somewhere
1323 explicitly, it means address of parameter has been taken,
1324 so we should not extend the lifetime of the pseudo. */
1325 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1326 || ! MEM_P (XEXP (note, 0))))
1328 /* Stores are never anticipatable. */
1329 int antic_p = 0;
1330 /* An expression is not available if its operands are
1331 subsequently modified, including this insn. It's also not
1332 available if this is a branch, because we can't insert
1333 a set after the branch. */
1334 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1336 /* Record the memory expression (DEST) in the hash table. */
1337 insert_expr_in_table (dest, GET_MODE (dest), insn,
1338 antic_p, avail_p, max_distance, table);
1343 static void
1344 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1345 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1347 /* Currently nothing to do. */
1350 static void
1351 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1352 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1354 /* Currently nothing to do. */
1357 /* Process INSN and add hash table entries as appropriate. */
1359 static void
1360 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1362 rtx pat = PATTERN (insn);
1363 int i;
1365 /* Pick out the sets of INSN and for other forms of instructions record
1366 what's been modified. */
1368 if (GET_CODE (pat) == SET)
1369 hash_scan_set (pat, insn, table);
1371 else if (GET_CODE (pat) == CLOBBER)
1372 hash_scan_clobber (pat, insn, table);
1374 else if (GET_CODE (pat) == CALL)
1375 hash_scan_call (pat, insn, table);
1377 else if (GET_CODE (pat) == PARALLEL)
1378 for (i = 0; i < XVECLEN (pat, 0); i++)
1380 rtx x = XVECEXP (pat, 0, i);
1382 if (GET_CODE (x) == SET)
1383 hash_scan_set (x, insn, table);
1384 else if (GET_CODE (x) == CLOBBER)
1385 hash_scan_clobber (x, insn, table);
1386 else if (GET_CODE (x) == CALL)
1387 hash_scan_call (x, insn, table);
1391 /* Dump the hash table TABLE to file FILE under the name NAME. */
1393 static void
1394 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1396 int i;
1397 /* Flattened out table, so it's printed in proper order. */
1398 struct gcse_expr **flat_table;
1399 unsigned int *hash_val;
1400 struct gcse_expr *expr;
1402 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1403 hash_val = XNEWVEC (unsigned int, table->n_elems);
1405 for (i = 0; i < (int) table->size; i++)
1406 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1408 flat_table[expr->bitmap_index] = expr;
1409 hash_val[expr->bitmap_index] = i;
1412 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1413 name, table->size, table->n_elems);
1415 for (i = 0; i < (int) table->n_elems; i++)
1416 if (flat_table[i] != 0)
1418 expr = flat_table[i];
1419 fprintf (file, "Index %d (hash value %d; max distance "
1420 HOST_WIDE_INT_PRINT_DEC ")\n ",
1421 expr->bitmap_index, hash_val[i], expr->max_distance);
1422 print_rtl (file, expr->expr);
1423 fprintf (file, "\n");
1426 fprintf (file, "\n");
1428 free (flat_table);
1429 free (hash_val);
1432 /* Record register first/last/block set information for REGNO in INSN.
1434 first_set records the first place in the block where the register
1435 is set and is used to compute "anticipatability".
1437 last_set records the last place in the block where the register
1438 is set and is used to compute "availability".
1440 last_bb records the block for which first_set and last_set are
1441 valid, as a quick test to invalidate them. */
1443 static void
1444 record_last_reg_set_info (rtx_insn *insn, int regno)
1446 struct reg_avail_info *info = &reg_avail_info[regno];
1447 int luid = DF_INSN_LUID (insn);
1449 info->last_set = luid;
1450 if (info->last_bb != current_bb)
1452 info->last_bb = current_bb;
1453 info->first_set = luid;
1457 /* Record memory modification information for INSN. We do not actually care
1458 about the memory location(s) that are set, or even how they are set (consider
1459 a CALL_INSN). We merely need to record which insns modify memory. */
1461 static void
1462 record_last_mem_set_info (rtx_insn *insn)
1464 if (! flag_gcse_lm)
1465 return;
1467 record_last_mem_set_info_common (insn, modify_mem_list,
1468 canon_modify_mem_list,
1469 modify_mem_list_set,
1470 blocks_with_calls);
1473 /* Called from compute_hash_table via note_stores to handle one
1474 SET or CLOBBER in an insn. DATA is really the instruction in which
1475 the SET is taking place. */
1477 static void
1478 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1480 rtx_insn *last_set_insn = (rtx_insn *) data;
1482 if (GET_CODE (dest) == SUBREG)
1483 dest = SUBREG_REG (dest);
1485 if (REG_P (dest))
1486 record_last_reg_set_info (last_set_insn, REGNO (dest));
1487 else if (MEM_P (dest)
1488 /* Ignore pushes, they clobber nothing. */
1489 && ! push_operand (dest, GET_MODE (dest)))
1490 record_last_mem_set_info (last_set_insn);
1493 /* Top level function to create an expression hash table.
1495 Expression entries are placed in the hash table if
1496 - they are of the form (set (pseudo-reg) src),
1497 - src is something we want to perform GCSE on,
1498 - none of the operands are subsequently modified in the block
1500 Currently src must be a pseudo-reg or a const_int.
1502 TABLE is the table computed. */
1504 static void
1505 compute_hash_table_work (struct gcse_hash_table_d *table)
1507 int i;
1509 /* re-Cache any INSN_LIST nodes we have allocated. */
1510 clear_modify_mem_tables ();
1511 /* Some working arrays used to track first and last set in each block. */
1512 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1514 for (i = 0; i < max_reg_num (); ++i)
1515 reg_avail_info[i].last_bb = NULL;
1517 FOR_EACH_BB_FN (current_bb, cfun)
1519 rtx_insn *insn;
1520 unsigned int regno;
1522 /* First pass over the instructions records information used to
1523 determine when registers and memory are first and last set. */
1524 FOR_BB_INSNS (current_bb, insn)
1526 if (!NONDEBUG_INSN_P (insn))
1527 continue;
1529 if (CALL_P (insn))
1531 hard_reg_set_iterator hrsi;
1533 /* We don't track modes of hard registers, so we need
1534 to be conservative and assume that partial kills
1535 are full kills. */
1536 HARD_REG_SET callee_clobbers
1537 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
1538 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
1539 record_last_reg_set_info (insn, regno);
1541 if (! RTL_CONST_OR_PURE_CALL_P (insn)
1542 || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
1543 record_last_mem_set_info (insn);
1546 note_stores (insn, record_last_set_info, insn);
1549 /* The next pass builds the hash table. */
1550 FOR_BB_INSNS (current_bb, insn)
1551 if (NONDEBUG_INSN_P (insn))
1552 hash_scan_insn (insn, table);
1555 free (reg_avail_info);
1556 reg_avail_info = NULL;
1559 /* Allocate space for the set/expr hash TABLE.
1560 It is used to determine the number of buckets to use. */
1562 static void
1563 alloc_hash_table (struct gcse_hash_table_d *table)
1565 int n;
1567 n = get_max_insn_count ();
1569 table->size = n / 4;
1570 if (table->size < 11)
1571 table->size = 11;
1573 /* Attempt to maintain efficient use of hash table.
1574 Making it an odd number is simplest for now.
1575 ??? Later take some measurements. */
1576 table->size |= 1;
1577 n = table->size * sizeof (struct gcse_expr *);
1578 table->table = GNEWVAR (struct gcse_expr *, n);
1581 /* Free things allocated by alloc_hash_table. */
1583 static void
1584 free_hash_table (struct gcse_hash_table_d *table)
1586 free (table->table);
1589 /* Compute the expression hash table TABLE. */
1591 static void
1592 compute_hash_table (struct gcse_hash_table_d *table)
1594 /* Initialize count of number of entries in hash table. */
1595 table->n_elems = 0;
1596 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1598 compute_hash_table_work (table);
1601 /* Expression tracking support. */
1603 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1604 static void
1605 clear_modify_mem_tables (void)
1607 unsigned i;
1608 bitmap_iterator bi;
1610 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1612 modify_mem_list[i].release ();
1613 canon_modify_mem_list[i].release ();
1615 bitmap_clear (modify_mem_list_set);
1616 bitmap_clear (blocks_with_calls);
1619 /* Release memory used by modify_mem_list_set. */
1621 static void
1622 free_modify_mem_tables (void)
1624 clear_modify_mem_tables ();
1625 free (modify_mem_list);
1626 free (canon_modify_mem_list);
1627 modify_mem_list = 0;
1628 canon_modify_mem_list = 0;
1631 /* Compute PRE+LCM working variables. */
1633 /* Local properties of expressions. */
1635 /* Nonzero for expressions that are transparent in the block. */
1636 static sbitmap *transp;
1638 /* Nonzero for expressions that are computed (available) in the block. */
1639 static sbitmap *comp;
1641 /* Nonzero for expressions that are locally anticipatable in the block. */
1642 static sbitmap *antloc;
1644 /* Nonzero for expressions where this block is an optimal computation
1645 point. */
1646 static sbitmap *pre_optimal;
1648 /* Nonzero for expressions which are redundant in a particular block. */
1649 static sbitmap *pre_redundant;
1651 /* Nonzero for expressions which should be inserted on a specific edge. */
1652 static sbitmap *pre_insert_map;
1654 /* Nonzero for expressions which should be deleted in a specific block. */
1655 static sbitmap *pre_delete_map;
1657 /* Allocate vars used for PRE analysis. */
1659 static void
1660 alloc_pre_mem (int n_blocks, int n_exprs)
1662 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1663 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1664 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1666 pre_optimal = NULL;
1667 pre_redundant = NULL;
1668 pre_insert_map = NULL;
1669 pre_delete_map = NULL;
1670 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1672 /* pre_insert and pre_delete are allocated later. */
1675 /* Free vars used for PRE analysis. */
1677 static void
1678 free_pre_mem (void)
1680 sbitmap_vector_free (transp);
1681 sbitmap_vector_free (comp);
1683 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1685 if (pre_optimal)
1686 sbitmap_vector_free (pre_optimal);
1687 if (pre_redundant)
1688 sbitmap_vector_free (pre_redundant);
1689 if (pre_insert_map)
1690 sbitmap_vector_free (pre_insert_map);
1691 if (pre_delete_map)
1692 sbitmap_vector_free (pre_delete_map);
1694 transp = comp = NULL;
1695 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1698 /* Remove certain expressions from anticipatable and transparent
1699 sets of basic blocks that have incoming abnormal edge.
1700 For PRE remove potentially trapping expressions to avoid placing
1701 them on abnormal edges. For hoisting remove memory references that
1702 can be clobbered by calls. */
1704 static void
1705 prune_expressions (bool pre_p)
1707 struct gcse_expr *expr;
1708 unsigned int ui;
1709 basic_block bb;
1711 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
1712 bitmap_clear (prune_exprs);
1713 for (ui = 0; ui < expr_hash_table.size; ui++)
1715 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1717 /* Note potentially trapping expressions. */
1718 if (may_trap_p (expr->expr))
1720 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1721 continue;
1724 if (!pre_p && contains_mem_rtx_p (expr->expr))
1725 /* Note memory references that can be clobbered by a call.
1726 We do not split abnormal edges in hoisting, so would
1727 a memory reference get hoisted along an abnormal edge,
1728 it would be placed /before/ the call. Therefore, only
1729 constant memory references can be hoisted along abnormal
1730 edges. */
1732 rtx x = expr->expr;
1734 /* Common cases where we might find the MEM which may allow us
1735 to avoid pruning the expression. */
1736 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1737 x = XEXP (x, 0);
1739 /* If we found the MEM, go ahead and look at it to see if it has
1740 properties that allow us to avoid pruning its expression out
1741 of the tables. */
1742 if (MEM_P (x))
1744 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1745 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1746 continue;
1748 if (MEM_READONLY_P (x)
1749 && !MEM_VOLATILE_P (x)
1750 && MEM_NOTRAP_P (x))
1751 /* Constant memory reference, e.g., a PIC address. */
1752 continue;
1755 /* ??? Optimally, we would use interprocedural alias
1756 analysis to determine if this mem is actually killed
1757 by this call. */
1759 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1764 FOR_EACH_BB_FN (bb, cfun)
1766 edge e;
1767 edge_iterator ei;
1769 /* If the current block is the destination of an abnormal edge, we
1770 kill all trapping (for PRE) and memory (for hoist) expressions
1771 because we won't be able to properly place the instruction on
1772 the edge. So make them neither anticipatable nor transparent.
1773 This is fairly conservative.
1775 ??? For hoisting it may be necessary to check for set-and-jump
1776 instructions here, not just for abnormal edges. The general problem
1777 is that when an expression cannot not be placed right at the end of
1778 a basic block we should account for any side-effects of a subsequent
1779 jump instructions that could clobber the expression. It would
1780 be best to implement this check along the lines of
1781 should_hoist_expr_to_dom where the target block is already known
1782 and, hence, there's no need to conservatively prune expressions on
1783 "intermediate" set-and-jump instructions. */
1784 FOR_EACH_EDGE (e, ei, bb->preds)
1785 if ((e->flags & EDGE_ABNORMAL)
1786 && (pre_p || CALL_P (BB_END (e->src))))
1788 bitmap_and_compl (antloc[bb->index],
1789 antloc[bb->index], prune_exprs);
1790 bitmap_and_compl (transp[bb->index],
1791 transp[bb->index], prune_exprs);
1792 break;
1797 /* It may be necessary to insert a large number of insns on edges to
1798 make the existing occurrences of expressions fully redundant. This
1799 routine examines the set of insertions and deletions and if the ratio
1800 of insertions to deletions is too high for a particular expression, then
1801 the expression is removed from the insertion/deletion sets.
1803 N_ELEMS is the number of elements in the hash table. */
1805 static void
1806 prune_insertions_deletions (int n_elems)
1808 sbitmap_iterator sbi;
1810 /* We always use I to iterate over blocks/edges and J to iterate over
1811 expressions. */
1812 unsigned int i, j;
1814 /* Counts for the number of times an expression needs to be inserted and
1815 number of times an expression can be removed as a result. */
1816 int *insertions = GCNEWVEC (int, n_elems);
1817 int *deletions = GCNEWVEC (int, n_elems);
1819 /* Set of expressions which require too many insertions relative to
1820 the number of deletions achieved. We will prune these out of the
1821 insertion/deletion sets. */
1822 auto_sbitmap prune_exprs (n_elems);
1823 bitmap_clear (prune_exprs);
1825 /* Iterate over the edges counting the number of times each expression
1826 needs to be inserted. */
1827 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1829 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1830 insertions[j]++;
1833 /* Similarly for deletions, but those occur in blocks rather than on
1834 edges. */
1835 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1837 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1838 deletions[j]++;
1841 /* Now that we have accurate counts, iterate over the elements in the
1842 hash table and see if any need too many insertions relative to the
1843 number of evaluations that can be removed. If so, mark them in
1844 PRUNE_EXPRS. */
1845 for (j = 0; j < (unsigned) n_elems; j++)
1846 if (deletions[j]
1847 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1848 bitmap_set_bit (prune_exprs, j);
1850 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1851 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1853 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1854 bitmap_clear_bit (pre_insert_map[i], j);
1856 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1857 bitmap_clear_bit (pre_delete_map[i], j);
1860 free (insertions);
1861 free (deletions);
1864 /* Top level routine to do the dataflow analysis needed by PRE. */
1866 static struct edge_list *
1867 compute_pre_data (void)
1869 struct edge_list *edge_list;
1870 basic_block bb;
1872 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1873 prune_expressions (true);
1874 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1876 /* Compute ae_kill for each basic block using:
1878 ~(TRANSP | COMP)
1881 FOR_EACH_BB_FN (bb, cfun)
1883 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1884 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1887 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1888 ae_kill, &pre_insert_map, &pre_delete_map);
1889 sbitmap_vector_free (antloc);
1890 antloc = NULL;
1891 sbitmap_vector_free (ae_kill);
1892 ae_kill = NULL;
1894 prune_insertions_deletions (expr_hash_table.n_elems);
1896 return edge_list;
1899 /* PRE utilities */
1901 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1902 block BB.
1904 VISITED is a pointer to a working buffer for tracking which BB's have
1905 been visited. It is NULL for the top-level call.
1907 We treat reaching expressions that go through blocks containing the same
1908 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1909 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1910 2 as not reaching. The intent is to improve the probability of finding
1911 only one reaching expression and to reduce register lifetimes by picking
1912 the closest such expression. */
1914 static int
1915 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1916 basic_block bb, char *visited)
1918 edge pred;
1919 edge_iterator ei;
1921 FOR_EACH_EDGE (pred, ei, bb->preds)
1923 basic_block pred_bb = pred->src;
1925 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1926 /* Has predecessor has already been visited? */
1927 || visited[pred_bb->index])
1928 ;/* Nothing to do. */
1930 /* Does this predecessor generate this expression? */
1931 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1933 /* Is this the occurrence we're looking for?
1934 Note that there's only one generating occurrence per block
1935 so we just need to check the block number. */
1936 if (occr_bb == pred_bb)
1937 return 1;
1939 visited[pred_bb->index] = 1;
1941 /* Ignore this predecessor if it kills the expression. */
1942 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1943 visited[pred_bb->index] = 1;
1945 /* Neither gen nor kill. */
1946 else
1948 visited[pred_bb->index] = 1;
1949 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1950 return 1;
1954 /* All paths have been checked. */
1955 return 0;
1958 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1959 memory allocated for that function is returned. */
1961 static int
1962 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1964 int rval;
1965 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1967 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1969 free (visited);
1970 return rval;
1973 /* Generate RTL to copy an EXP to REG and return it. */
1975 rtx_insn *
1976 prepare_copy_insn (rtx reg, rtx exp)
1978 rtx_insn *pat;
1980 start_sequence ();
1982 /* If the expression is something that's an operand, like a constant,
1983 just copy it to a register. */
1984 if (general_operand (exp, GET_MODE (reg)))
1985 emit_move_insn (reg, exp);
1987 /* Otherwise, make a new insn to compute this expression and make sure the
1988 insn will be recognized (this also adds any needed CLOBBERs). */
1989 else
1991 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1993 if (insn_invalid_p (insn, false))
1994 gcc_unreachable ();
1997 pat = get_insns ();
1998 end_sequence ();
2000 return pat;
2003 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2005 static rtx_insn *
2006 process_insert_insn (struct gcse_expr *expr)
2008 rtx reg = expr->reaching_reg;
2009 /* Copy the expression to make sure we don't have any sharing issues. */
2010 rtx exp = copy_rtx (expr->expr);
2012 return prepare_copy_insn (reg, exp);
2015 /* Add EXPR to the end of basic block BB.
2017 This is used by both the PRE and code hoisting. */
2019 static void
2020 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2022 rtx_insn *insn = BB_END (bb);
2023 rtx_insn *new_insn;
2024 rtx reg = expr->reaching_reg;
2025 int regno = REGNO (reg);
2026 rtx_insn *pat, *pat_end;
2028 pat = process_insert_insn (expr);
2029 gcc_assert (pat && INSN_P (pat));
2031 pat_end = pat;
2032 while (NEXT_INSN (pat_end) != NULL_RTX)
2033 pat_end = NEXT_INSN (pat_end);
2035 /* If the last insn is a jump, insert EXPR in front [taking care to
2036 handle cc0, etc. properly]. Similarly we need to care trapping
2037 instructions in presence of non-call exceptions. */
2039 if (JUMP_P (insn)
2040 || (NONJUMP_INSN_P (insn)
2041 && (!single_succ_p (bb)
2042 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2044 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2045 if cc0 isn't set. */
2046 if (HAVE_cc0)
2048 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2049 if (note)
2050 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2051 else
2053 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2054 if (maybe_cc0_setter
2055 && INSN_P (maybe_cc0_setter)
2056 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2057 insn = maybe_cc0_setter;
2061 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2062 new_insn = emit_insn_before_noloc (pat, insn, bb);
2065 /* Likewise if the last insn is a call, as will happen in the presence
2066 of exception handling. */
2067 else if (CALL_P (insn)
2068 && (!single_succ_p (bb)
2069 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2071 /* Keeping in mind targets with small register classes and parameters
2072 in registers, we search backward and place the instructions before
2073 the first parameter is loaded. Do this for everyone for consistency
2074 and a presumption that we'll get better code elsewhere as well. */
2076 /* Since different machines initialize their parameter registers
2077 in different orders, assume nothing. Collect the set of all
2078 parameter registers. */
2079 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2081 /* If we found all the parameter loads, then we want to insert
2082 before the first parameter load.
2084 If we did not find all the parameter loads, then we might have
2085 stopped on the head of the block, which could be a CODE_LABEL.
2086 If we inserted before the CODE_LABEL, then we would be putting
2087 the insn in the wrong basic block. In that case, put the insn
2088 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2089 while (LABEL_P (insn)
2090 || NOTE_INSN_BASIC_BLOCK_P (insn))
2091 insn = NEXT_INSN (insn);
2093 new_insn = emit_insn_before_noloc (pat, insn, bb);
2095 else
2096 new_insn = emit_insn_after_noloc (pat, insn, bb);
2098 while (1)
2100 if (INSN_P (pat))
2101 add_label_notes (PATTERN (pat), new_insn);
2102 if (pat == pat_end)
2103 break;
2104 pat = NEXT_INSN (pat);
2107 gcse_create_count++;
2109 if (dump_file)
2111 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2112 bb->index, INSN_UID (new_insn));
2113 fprintf (dump_file, "copying expression %d to reg %d\n",
2114 expr->bitmap_index, regno);
2118 /* Insert partially redundant expressions on edges in the CFG to make
2119 the expressions fully redundant. */
2121 static int
2122 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2124 int e, i, j, num_edges, set_size, did_insert = 0;
2125 sbitmap *inserted;
2127 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2128 if it reaches any of the deleted expressions. */
2130 set_size = pre_insert_map[0]->size;
2131 num_edges = NUM_EDGES (edge_list);
2132 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2133 bitmap_vector_clear (inserted, num_edges);
2135 for (e = 0; e < num_edges; e++)
2137 int indx;
2138 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2140 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2142 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2144 for (j = indx;
2145 insert && j < (int) expr_hash_table.n_elems;
2146 j++, insert >>= 1)
2147 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2149 struct gcse_expr *expr = index_map[j];
2150 struct gcse_occr *occr;
2152 /* Now look at each deleted occurrence of this expression. */
2153 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2155 if (! occr->deleted_p)
2156 continue;
2158 /* Insert this expression on this edge if it would
2159 reach the deleted occurrence in BB. */
2160 if (!bitmap_bit_p (inserted[e], j))
2162 rtx_insn *insn;
2163 edge eg = INDEX_EDGE (edge_list, e);
2165 /* We can't insert anything on an abnormal and
2166 critical edge, so we insert the insn at the end of
2167 the previous block. There are several alternatives
2168 detailed in Morgans book P277 (sec 10.5) for
2169 handling this situation. This one is easiest for
2170 now. */
2172 if (eg->flags & EDGE_ABNORMAL)
2173 insert_insn_end_basic_block (index_map[j], bb);
2174 else
2176 insn = process_insert_insn (index_map[j]);
2177 insert_insn_on_edge (insn, eg);
2180 if (dump_file)
2182 fprintf (dump_file, "PRE: edge (%d,%d), ",
2183 bb->index,
2184 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2185 fprintf (dump_file, "copy expression %d\n",
2186 expr->bitmap_index);
2189 update_ld_motion_stores (expr);
2190 bitmap_set_bit (inserted[e], j);
2191 did_insert = 1;
2192 gcse_create_count++;
2199 sbitmap_vector_free (inserted);
2200 return did_insert;
2203 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2204 Given "old_reg <- expr" (INSN), instead of adding after it
2205 reaching_reg <- old_reg
2206 it's better to do the following:
2207 reaching_reg <- expr
2208 old_reg <- reaching_reg
2209 because this way copy propagation can discover additional PRE
2210 opportunities. But if this fails, we try the old way.
2211 When "expr" is a store, i.e.
2212 given "MEM <- old_reg", instead of adding after it
2213 reaching_reg <- old_reg
2214 it's better to add it before as follows:
2215 reaching_reg <- old_reg
2216 MEM <- reaching_reg. */
2218 static void
2219 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2221 rtx reg = expr->reaching_reg;
2222 int regno = REGNO (reg);
2223 int indx = expr->bitmap_index;
2224 rtx pat = PATTERN (insn);
2225 rtx set, first_set;
2226 rtx_insn *new_insn;
2227 rtx old_reg;
2228 int i;
2230 /* This block matches the logic in hash_scan_insn. */
2231 switch (GET_CODE (pat))
2233 case SET:
2234 set = pat;
2235 break;
2237 case PARALLEL:
2238 /* Search through the parallel looking for the set whose
2239 source was the expression that we're interested in. */
2240 first_set = NULL_RTX;
2241 set = NULL_RTX;
2242 for (i = 0; i < XVECLEN (pat, 0); i++)
2244 rtx x = XVECEXP (pat, 0, i);
2245 if (GET_CODE (x) == SET)
2247 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2248 may not find an equivalent expression, but in this
2249 case the PARALLEL will have a single set. */
2250 if (first_set == NULL_RTX)
2251 first_set = x;
2252 if (expr_equiv_p (SET_SRC (x), expr->expr))
2254 set = x;
2255 break;
2260 gcc_assert (first_set);
2261 if (set == NULL_RTX)
2262 set = first_set;
2263 break;
2265 default:
2266 gcc_unreachable ();
2269 if (REG_P (SET_DEST (set)))
2271 old_reg = SET_DEST (set);
2272 /* Check if we can modify the set destination in the original insn. */
2273 if (validate_change (insn, &SET_DEST (set), reg, 0))
2275 new_insn = gen_move_insn (old_reg, reg);
2276 new_insn = emit_insn_after (new_insn, insn);
2278 else
2280 new_insn = gen_move_insn (reg, old_reg);
2281 new_insn = emit_insn_after (new_insn, insn);
2284 else /* This is possible only in case of a store to memory. */
2286 old_reg = SET_SRC (set);
2287 new_insn = gen_move_insn (reg, old_reg);
2289 /* Check if we can modify the set source in the original insn. */
2290 if (validate_change (insn, &SET_SRC (set), reg, 0))
2291 new_insn = emit_insn_before (new_insn, insn);
2292 else
2293 new_insn = emit_insn_after (new_insn, insn);
2296 gcse_create_count++;
2298 if (dump_file)
2299 fprintf (dump_file,
2300 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2301 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2302 INSN_UID (insn), regno);
2305 /* Copy available expressions that reach the redundant expression
2306 to `reaching_reg'. */
2308 static void
2309 pre_insert_copies (void)
2311 unsigned int i, added_copy;
2312 struct gcse_expr *expr;
2313 struct gcse_occr *occr;
2314 struct gcse_occr *avail;
2316 /* For each available expression in the table, copy the result to
2317 `reaching_reg' if the expression reaches a deleted one.
2319 ??? The current algorithm is rather brute force.
2320 Need to do some profiling. */
2322 for (i = 0; i < expr_hash_table.size; i++)
2323 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2325 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2326 we don't want to insert a copy here because the expression may not
2327 really be redundant. So only insert an insn if the expression was
2328 deleted. This test also avoids further processing if the
2329 expression wasn't deleted anywhere. */
2330 if (expr->reaching_reg == NULL)
2331 continue;
2333 /* Set when we add a copy for that expression. */
2334 added_copy = 0;
2336 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2338 if (! occr->deleted_p)
2339 continue;
2341 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2343 rtx_insn *insn = avail->insn;
2345 /* No need to handle this one if handled already. */
2346 if (avail->copied_p)
2347 continue;
2349 /* Don't handle this one if it's a redundant one. */
2350 if (insn->deleted ())
2351 continue;
2353 /* Or if the expression doesn't reach the deleted one. */
2354 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2355 expr,
2356 BLOCK_FOR_INSN (occr->insn)))
2357 continue;
2359 added_copy = 1;
2361 /* Copy the result of avail to reaching_reg. */
2362 pre_insert_copy_insn (expr, insn);
2363 avail->copied_p = 1;
2367 if (added_copy)
2368 update_ld_motion_stores (expr);
2372 struct set_data
2374 rtx_insn *insn;
2375 const_rtx set;
2376 int nsets;
2379 /* Increment number of sets and record set in DATA. */
2381 static void
2382 record_set_data (rtx dest, const_rtx set, void *data)
2384 struct set_data *s = (struct set_data *)data;
2386 if (GET_CODE (set) == SET)
2388 /* We allow insns having multiple sets, where all but one are
2389 dead as single set insns. In the common case only a single
2390 set is present, so we want to avoid checking for REG_UNUSED
2391 notes unless necessary. */
2392 if (s->nsets == 1
2393 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2394 && !side_effects_p (s->set))
2395 s->nsets = 0;
2397 if (!s->nsets)
2399 /* Record this set. */
2400 s->nsets += 1;
2401 s->set = set;
2403 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2404 || side_effects_p (set))
2405 s->nsets += 1;
2409 static const_rtx
2410 single_set_gcse (rtx_insn *insn)
2412 struct set_data s;
2413 rtx pattern;
2415 gcc_assert (INSN_P (insn));
2417 /* Optimize common case. */
2418 pattern = PATTERN (insn);
2419 if (GET_CODE (pattern) == SET)
2420 return pattern;
2422 s.insn = insn;
2423 s.nsets = 0;
2424 note_pattern_stores (pattern, record_set_data, &s);
2426 /* Considered invariant insns have exactly one set. */
2427 gcc_assert (s.nsets == 1);
2428 return s.set;
2431 /* Emit move from SRC to DEST noting the equivalence with expression computed
2432 in INSN. */
2434 static rtx_insn *
2435 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2437 rtx_insn *new_rtx;
2438 const_rtx set = single_set_gcse (insn);
2439 rtx set2;
2440 rtx note;
2441 rtx eqv = NULL_RTX;
2443 /* This should never fail since we're creating a reg->reg copy
2444 we've verified to be valid. */
2446 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2448 /* Note the equivalence for local CSE pass. Take the note from the old
2449 set if there was one. Otherwise record the SET_SRC from the old set
2450 unless DEST is also an operand of the SET_SRC. */
2451 set2 = single_set (new_rtx);
2452 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2453 return new_rtx;
2454 if ((note = find_reg_equal_equiv_note (insn)))
2455 eqv = XEXP (note, 0);
2456 else if (! REG_P (dest)
2457 || ! reg_mentioned_p (dest, SET_SRC (set)))
2458 eqv = SET_SRC (set);
2460 if (eqv != NULL_RTX)
2461 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2463 return new_rtx;
2466 /* Delete redundant computations.
2467 Deletion is done by changing the insn to copy the `reaching_reg' of
2468 the expression into the result of the SET. It is left to later passes
2469 to propagate the copy or eliminate it.
2471 Return nonzero if a change is made. */
2473 static int
2474 pre_delete (void)
2476 unsigned int i;
2477 int changed;
2478 struct gcse_expr *expr;
2479 struct gcse_occr *occr;
2481 changed = 0;
2482 for (i = 0; i < expr_hash_table.size; i++)
2483 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2485 int indx = expr->bitmap_index;
2487 /* We only need to search antic_occr since we require ANTLOC != 0. */
2488 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2490 rtx_insn *insn = occr->insn;
2491 rtx set;
2492 basic_block bb = BLOCK_FOR_INSN (insn);
2494 /* We only delete insns that have a single_set. */
2495 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2496 && (set = single_set (insn)) != 0
2497 && dbg_cnt (pre_insn))
2499 /* Create a pseudo-reg to store the result of reaching
2500 expressions into. Get the mode for the new pseudo from
2501 the mode of the original destination pseudo. */
2502 if (expr->reaching_reg == NULL)
2503 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2505 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2506 delete_insn (insn);
2507 occr->deleted_p = 1;
2508 changed = 1;
2509 gcse_subst_count++;
2511 if (dump_file)
2513 fprintf (dump_file,
2514 "PRE: redundant insn %d (expression %d) in ",
2515 INSN_UID (insn), indx);
2516 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2517 bb->index, REGNO (expr->reaching_reg));
2523 return changed;
2526 /* Perform GCSE optimizations using PRE.
2527 This is called by one_pre_gcse_pass after all the dataflow analysis
2528 has been done.
2530 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2531 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2532 Compiler Design and Implementation.
2534 ??? A new pseudo reg is created to hold the reaching expression. The nice
2535 thing about the classical approach is that it would try to use an existing
2536 reg. If the register can't be adequately optimized [i.e. we introduce
2537 reload problems], one could add a pass here to propagate the new register
2538 through the block.
2540 ??? We don't handle single sets in PARALLELs because we're [currently] not
2541 able to copy the rest of the parallel when we insert copies to create full
2542 redundancies from partial redundancies. However, there's no reason why we
2543 can't handle PARALLELs in the cases where there are no partial
2544 redundancies. */
2546 static int
2547 pre_gcse (struct edge_list *edge_list)
2549 unsigned int i;
2550 int did_insert, changed;
2551 struct gcse_expr **index_map;
2552 struct gcse_expr *expr;
2554 /* Compute a mapping from expression number (`bitmap_index') to
2555 hash table entry. */
2557 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2558 for (i = 0; i < expr_hash_table.size; i++)
2559 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2560 index_map[expr->bitmap_index] = expr;
2562 /* Delete the redundant insns first so that
2563 - we know what register to use for the new insns and for the other
2564 ones with reaching expressions
2565 - we know which insns are redundant when we go to create copies */
2567 changed = pre_delete ();
2568 did_insert = pre_edge_insert (edge_list, index_map);
2570 /* In other places with reaching expressions, copy the expression to the
2571 specially allocated pseudo-reg that reaches the redundant expr. */
2572 pre_insert_copies ();
2573 if (did_insert)
2575 commit_edge_insertions ();
2576 changed = 1;
2579 free (index_map);
2580 return changed;
2583 /* Top level routine to perform one PRE GCSE pass.
2585 Return nonzero if a change was made. */
2587 static int
2588 one_pre_gcse_pass (void)
2590 int changed = 0;
2592 gcse_subst_count = 0;
2593 gcse_create_count = 0;
2595 /* Return if there's nothing to do, or it is too expensive. */
2596 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2597 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2598 return 0;
2600 /* We need alias. */
2601 init_alias_analysis ();
2603 bytes_used = 0;
2604 gcc_obstack_init (&gcse_obstack);
2605 alloc_gcse_mem ();
2607 alloc_hash_table (&expr_hash_table);
2608 add_noreturn_fake_exit_edges ();
2609 if (flag_gcse_lm)
2610 compute_ld_motion_mems ();
2612 compute_hash_table (&expr_hash_table);
2613 if (flag_gcse_lm)
2614 trim_ld_motion_mems ();
2615 if (dump_file)
2616 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2618 if (expr_hash_table.n_elems > 0)
2620 struct edge_list *edge_list;
2621 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2622 edge_list = compute_pre_data ();
2623 changed |= pre_gcse (edge_list);
2624 free_edge_list (edge_list);
2625 free_pre_mem ();
2628 if (flag_gcse_lm)
2629 free_ld_motion_mems ();
2630 remove_fake_exit_edges ();
2631 free_hash_table (&expr_hash_table);
2633 free_gcse_mem ();
2634 obstack_free (&gcse_obstack, NULL);
2636 /* We are finished with alias. */
2637 end_alias_analysis ();
2639 if (dump_file)
2641 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2642 current_function_name (), n_basic_blocks_for_fn (cfun),
2643 bytes_used);
2644 fprintf (dump_file, "%d substs, %d insns created\n",
2645 gcse_subst_count, gcse_create_count);
2648 return changed;
2651 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2652 to INSN. If such notes are added to an insn which references a
2653 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2654 that note, because the following loop optimization pass requires
2655 them. */
2657 /* ??? If there was a jump optimization pass after gcse and before loop,
2658 then we would not need to do this here, because jump would add the
2659 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2661 static void
2662 add_label_notes (rtx x, rtx_insn *insn)
2664 enum rtx_code code = GET_CODE (x);
2665 int i, j;
2666 const char *fmt;
2668 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2670 /* This code used to ignore labels that referred to dispatch tables to
2671 avoid flow generating (slightly) worse code.
2673 We no longer ignore such label references (see LABEL_REF handling in
2674 mark_jump_label for additional information). */
2676 /* There's no reason for current users to emit jump-insns with
2677 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2678 notes. */
2679 gcc_assert (!JUMP_P (insn));
2680 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
2682 if (LABEL_P (label_ref_label (x)))
2683 LABEL_NUSES (label_ref_label (x))++;
2685 return;
2688 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2690 if (fmt[i] == 'e')
2691 add_label_notes (XEXP (x, i), insn);
2692 else if (fmt[i] == 'E')
2693 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2694 add_label_notes (XVECEXP (x, i, j), insn);
2698 /* Code Hoisting variables and subroutines. */
2700 /* Very busy expressions. */
2701 static sbitmap *hoist_vbein;
2702 static sbitmap *hoist_vbeout;
2704 /* ??? We could compute post dominators and run this algorithm in
2705 reverse to perform tail merging, doing so would probably be
2706 more effective than the tail merging code in jump.c.
2708 It's unclear if tail merging could be run in parallel with
2709 code hoisting. It would be nice. */
2711 /* Allocate vars used for code hoisting analysis. */
2713 static void
2714 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2716 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2717 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2718 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2720 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2721 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2724 /* Free vars used for code hoisting analysis. */
2726 static void
2727 free_code_hoist_mem (void)
2729 sbitmap_vector_free (antloc);
2730 sbitmap_vector_free (transp);
2731 sbitmap_vector_free (comp);
2733 sbitmap_vector_free (hoist_vbein);
2734 sbitmap_vector_free (hoist_vbeout);
2736 free_dominance_info (CDI_DOMINATORS);
2739 /* Compute the very busy expressions at entry/exit from each block.
2741 An expression is very busy if all paths from a given point
2742 compute the expression. */
2744 static void
2745 compute_code_hoist_vbeinout (void)
2747 int changed, passes;
2748 basic_block bb;
2750 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2751 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2753 passes = 0;
2754 changed = 1;
2756 while (changed)
2758 changed = 0;
2760 /* We scan the blocks in the reverse order to speed up
2761 the convergence. */
2762 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2764 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2766 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2767 hoist_vbein, bb);
2769 /* Include expressions in VBEout that are calculated
2770 in BB and available at its end. */
2771 bitmap_ior (hoist_vbeout[bb->index],
2772 hoist_vbeout[bb->index], comp[bb->index]);
2775 changed |= bitmap_or_and (hoist_vbein[bb->index],
2776 antloc[bb->index],
2777 hoist_vbeout[bb->index],
2778 transp[bb->index]);
2781 passes++;
2784 if (dump_file)
2786 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2788 FOR_EACH_BB_FN (bb, cfun)
2790 fprintf (dump_file, "vbein (%d): ", bb->index);
2791 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2792 fprintf (dump_file, "vbeout(%d): ", bb->index);
2793 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2798 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2800 static void
2801 compute_code_hoist_data (void)
2803 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2804 prune_expressions (false);
2805 compute_code_hoist_vbeinout ();
2806 calculate_dominance_info (CDI_DOMINATORS);
2807 if (dump_file)
2808 fprintf (dump_file, "\n");
2811 /* Update register pressure for BB when hoisting an expression from
2812 instruction FROM, if live ranges of inputs are shrunk. Also
2813 maintain live_in information if live range of register referred
2814 in FROM is shrunk.
2816 Return 0 if register pressure doesn't change, otherwise return
2817 the number by which register pressure is decreased.
2819 NOTE: Register pressure won't be increased in this function. */
2821 static int
2822 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2824 rtx dreg;
2825 rtx_insn *insn;
2826 basic_block succ_bb;
2827 df_ref use, op_ref;
2828 edge succ;
2829 edge_iterator ei;
2830 int decreased_pressure = 0;
2831 int nregs;
2832 enum reg_class pressure_class;
2834 FOR_EACH_INSN_USE (use, from)
2836 dreg = DF_REF_REAL_REG (use);
2837 /* The live range of register is shrunk only if it isn't:
2838 1. referred on any path from the end of this block to EXIT, or
2839 2. referred by insns other than FROM in this block. */
2840 FOR_EACH_EDGE (succ, ei, bb->succs)
2842 succ_bb = succ->dest;
2843 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2844 continue;
2846 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2847 break;
2849 if (succ != NULL)
2850 continue;
2852 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2853 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2855 if (!DF_REF_INSN_INFO (op_ref))
2856 continue;
2858 insn = DF_REF_INSN (op_ref);
2859 if (BLOCK_FOR_INSN (insn) == bb
2860 && NONDEBUG_INSN_P (insn) && insn != from)
2861 break;
2864 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2865 /* Decrease register pressure and update live_in information for
2866 this block. */
2867 if (!op_ref && pressure_class != NO_REGS)
2869 decreased_pressure += nregs;
2870 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2871 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2874 return decreased_pressure;
2877 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2878 flow graph, if it can reach BB unimpared. Stop the search if the
2879 expression would need to be moved more than DISTANCE instructions.
2881 DISTANCE is the number of instructions through which EXPR can be
2882 hoisted up in flow graph.
2884 BB_SIZE points to an array which contains the number of instructions
2885 for each basic block.
2887 PRESSURE_CLASS and NREGS are register class and number of hard registers
2888 for storing EXPR.
2890 HOISTED_BBS points to a bitmap indicating basic blocks through which
2891 EXPR is hoisted.
2893 FROM is the instruction from which EXPR is hoisted.
2895 It's unclear exactly what Muchnick meant by "unimpared". It seems
2896 to me that the expression must either be computed or transparent in
2897 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2898 would allow the expression to be hoisted out of loops, even if
2899 the expression wasn't a loop invariant.
2901 Contrast this to reachability for PRE where an expression is
2902 considered reachable if *any* path reaches instead of *all*
2903 paths. */
2905 static int
2906 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2907 basic_block bb, sbitmap visited,
2908 HOST_WIDE_INT distance,
2909 int *bb_size, enum reg_class pressure_class,
2910 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2912 unsigned int i;
2913 edge pred;
2914 edge_iterator ei;
2915 sbitmap_iterator sbi;
2916 int visited_allocated_locally = 0;
2917 int decreased_pressure = 0;
2919 if (flag_ira_hoist_pressure)
2921 /* Record old information of basic block BB when it is visited
2922 at the first time. */
2923 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2925 struct bb_data *data = BB_DATA (bb);
2926 bitmap_copy (data->backup, data->live_in);
2927 data->old_pressure = data->max_reg_pressure[pressure_class];
2929 decreased_pressure = update_bb_reg_pressure (bb, from);
2931 /* Terminate the search if distance, for which EXPR is allowed to move,
2932 is exhausted. */
2933 if (distance > 0)
2935 if (flag_ira_hoist_pressure)
2937 /* Prefer to hoist EXPR if register pressure is decreased. */
2938 if (decreased_pressure > *nregs)
2939 distance += bb_size[bb->index];
2940 /* Let EXPR be hoisted through basic block at no cost if one
2941 of following conditions is satisfied:
2943 1. The basic block has low register pressure.
2944 2. Register pressure won't be increases after hoisting EXPR.
2946 Constant expressions is handled conservatively, because
2947 hoisting constant expression aggressively results in worse
2948 code. This decision is made by the observation of CSiBE
2949 on ARM target, while it has no obvious effect on other
2950 targets like x86, x86_64, mips and powerpc. */
2951 else if (CONST_INT_P (expr->expr)
2952 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2953 >= ira_class_hard_regs_num[pressure_class]
2954 && decreased_pressure < *nregs))
2955 distance -= bb_size[bb->index];
2957 else
2958 distance -= bb_size[bb->index];
2960 if (distance <= 0)
2961 return 0;
2963 else
2964 gcc_assert (distance == 0);
2966 if (visited == NULL)
2968 visited_allocated_locally = 1;
2969 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2970 bitmap_clear (visited);
2973 FOR_EACH_EDGE (pred, ei, bb->preds)
2975 basic_block pred_bb = pred->src;
2977 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2978 break;
2979 else if (pred_bb == expr_bb)
2980 continue;
2981 else if (bitmap_bit_p (visited, pred_bb->index))
2982 continue;
2983 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2984 break;
2985 /* Not killed. */
2986 else
2988 bitmap_set_bit (visited, pred_bb->index);
2989 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2990 visited, distance, bb_size,
2991 pressure_class, nregs,
2992 hoisted_bbs, from))
2993 break;
2996 if (visited_allocated_locally)
2998 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2999 which EXPR is hoisted in hoisted_bbs. */
3000 if (flag_ira_hoist_pressure && !pred)
3002 /* Record the basic block from which EXPR is hoisted. */
3003 bitmap_set_bit (visited, bb->index);
3004 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3005 bitmap_set_bit (hoisted_bbs, i);
3007 sbitmap_free (visited);
3010 return (pred == NULL);
3013 /* Find occurrence in BB. */
3015 static struct gcse_occr *
3016 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3018 /* Find the right occurrence of this expression. */
3019 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3020 occr = occr->next;
3022 return occr;
3025 /* Actually perform code hoisting.
3027 The code hoisting pass can hoist multiple computations of the same
3028 expression along dominated path to a dominating basic block, like
3029 from b2/b3 to b1 as depicted below:
3031 b1 ------
3032 /\ |
3033 / \ |
3034 bx by distance
3035 / \ |
3036 / \ |
3037 b2 b3 ------
3039 Unfortunately code hoisting generally extends the live range of an
3040 output pseudo register, which increases register pressure and hurts
3041 register allocation. To address this issue, an attribute MAX_DISTANCE
3042 is computed and attached to each expression. The attribute is computed
3043 from rtx cost of the corresponding expression and it's used to control
3044 how long the expression can be hoisted up in flow graph. As the
3045 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3046 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3047 register pressure if live ranges of inputs are shrunk.
3049 Option "-fira-hoist-pressure" implements register pressure directed
3050 hoist based on upper method. The rationale is:
3051 1. Calculate register pressure for each basic block by reusing IRA
3052 facility.
3053 2. When expression is hoisted through one basic block, GCC checks
3054 the change of live ranges for inputs/output. The basic block's
3055 register pressure will be increased because of extended live
3056 range of output. However, register pressure will be decreased
3057 if the live ranges of inputs are shrunk.
3058 3. After knowing how hoisting affects register pressure, GCC prefers
3059 to hoist the expression if it can decrease register pressure, by
3060 increasing DISTANCE of the corresponding expression.
3061 4. If hoisting the expression increases register pressure, GCC checks
3062 register pressure of the basic block and decrease DISTANCE only if
3063 the register pressure is high. In other words, expression will be
3064 hoisted through at no cost if the basic block has low register
3065 pressure.
3066 5. Update register pressure information for basic blocks through
3067 which expression is hoisted. */
3069 static int
3070 hoist_code (void)
3072 basic_block bb, dominated;
3073 vec<basic_block> dom_tree_walk;
3074 unsigned int dom_tree_walk_index;
3075 vec<basic_block> domby;
3076 unsigned int i, j, k;
3077 struct gcse_expr **index_map;
3078 struct gcse_expr *expr;
3079 int *to_bb_head;
3080 int *bb_size;
3081 int changed = 0;
3082 struct bb_data *data;
3083 /* Basic blocks that have occurrences reachable from BB. */
3084 bitmap from_bbs;
3085 /* Basic blocks through which expr is hoisted. */
3086 bitmap hoisted_bbs = NULL;
3087 bitmap_iterator bi;
3089 /* Compute a mapping from expression number (`bitmap_index') to
3090 hash table entry. */
3092 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3093 for (i = 0; i < expr_hash_table.size; i++)
3094 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3095 index_map[expr->bitmap_index] = expr;
3097 /* Calculate sizes of basic blocks and note how far
3098 each instruction is from the start of its block. We then use this
3099 data to restrict distance an expression can travel. */
3101 to_bb_head = XCNEWVEC (int, get_max_uid ());
3102 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3104 FOR_EACH_BB_FN (bb, cfun)
3106 rtx_insn *insn;
3107 int to_head;
3109 to_head = 0;
3110 FOR_BB_INSNS (bb, insn)
3112 /* Don't count debug instructions to avoid them affecting
3113 decision choices. */
3114 if (NONDEBUG_INSN_P (insn))
3115 to_bb_head[INSN_UID (insn)] = to_head++;
3118 bb_size[bb->index] = to_head;
3121 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3122 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3123 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3125 from_bbs = BITMAP_ALLOC (NULL);
3126 if (flag_ira_hoist_pressure)
3127 hoisted_bbs = BITMAP_ALLOC (NULL);
3129 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3130 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3132 /* Walk over each basic block looking for potentially hoistable
3133 expressions, nothing gets hoisted from the entry block. */
3134 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3136 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3138 if (domby.length () == 0)
3139 continue;
3141 /* Examine each expression that is very busy at the exit of this
3142 block. These are the potentially hoistable expressions. */
3143 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3145 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3147 int nregs = 0;
3148 enum reg_class pressure_class = NO_REGS;
3149 /* Current expression. */
3150 struct gcse_expr *expr = index_map[i];
3151 /* Number of occurrences of EXPR that can be hoisted to BB. */
3152 int hoistable = 0;
3153 /* Occurrences reachable from BB. */
3154 vec<occr_t> occrs_to_hoist = vNULL;
3155 /* We want to insert the expression into BB only once, so
3156 note when we've inserted it. */
3157 int insn_inserted_p;
3158 occr_t occr;
3160 /* If an expression is computed in BB and is available at end of
3161 BB, hoist all occurrences dominated by BB to BB. */
3162 if (bitmap_bit_p (comp[bb->index], i))
3164 occr = find_occr_in_bb (expr->antic_occr, bb);
3166 if (occr)
3168 /* An occurrence might've been already deleted
3169 while processing a dominator of BB. */
3170 if (!occr->deleted_p)
3172 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3173 hoistable++;
3176 else
3177 hoistable++;
3180 /* We've found a potentially hoistable expression, now
3181 we look at every block BB dominates to see if it
3182 computes the expression. */
3183 FOR_EACH_VEC_ELT (domby, j, dominated)
3185 HOST_WIDE_INT max_distance;
3187 /* Ignore self dominance. */
3188 if (bb == dominated)
3189 continue;
3190 /* We've found a dominated block, now see if it computes
3191 the busy expression and whether or not moving that
3192 expression to the "beginning" of that block is safe. */
3193 if (!bitmap_bit_p (antloc[dominated->index], i))
3194 continue;
3196 occr = find_occr_in_bb (expr->antic_occr, dominated);
3197 gcc_assert (occr);
3199 /* An occurrence might've been already deleted
3200 while processing a dominator of BB. */
3201 if (occr->deleted_p)
3202 continue;
3203 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3205 max_distance = expr->max_distance;
3206 if (max_distance > 0)
3207 /* Adjust MAX_DISTANCE to account for the fact that
3208 OCCR won't have to travel all of DOMINATED, but
3209 only part of it. */
3210 max_distance += (bb_size[dominated->index]
3211 - to_bb_head[INSN_UID (occr->insn)]);
3213 pressure_class = get_pressure_class_and_nregs (occr->insn,
3214 &nregs);
3216 /* Note if the expression should be hoisted from the dominated
3217 block to BB if it can reach DOMINATED unimpared.
3219 Keep track of how many times this expression is hoistable
3220 from a dominated block into BB. */
3221 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3222 max_distance, bb_size,
3223 pressure_class, &nregs,
3224 hoisted_bbs, occr->insn))
3226 hoistable++;
3227 occrs_to_hoist.safe_push (occr);
3228 bitmap_set_bit (from_bbs, dominated->index);
3232 /* If we found more than one hoistable occurrence of this
3233 expression, then note it in the vector of expressions to
3234 hoist. It makes no sense to hoist things which are computed
3235 in only one BB, and doing so tends to pessimize register
3236 allocation. One could increase this value to try harder
3237 to avoid any possible code expansion due to register
3238 allocation issues; however experiments have shown that
3239 the vast majority of hoistable expressions are only movable
3240 from two successors, so raising this threshold is likely
3241 to nullify any benefit we get from code hoisting. */
3242 if (hoistable > 1 && dbg_cnt (hoist_insn))
3244 /* If (hoistable != vec::length), then there is
3245 an occurrence of EXPR in BB itself. Don't waste
3246 time looking for LCA in this case. */
3247 if ((unsigned) hoistable == occrs_to_hoist.length ())
3249 basic_block lca;
3251 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3252 from_bbs);
3253 if (lca != bb)
3254 /* Punt, it's better to hoist these occurrences to
3255 LCA. */
3256 occrs_to_hoist.release ();
3259 else
3260 /* Punt, no point hoisting a single occurrence. */
3261 occrs_to_hoist.release ();
3263 if (flag_ira_hoist_pressure
3264 && !occrs_to_hoist.is_empty ())
3266 /* Increase register pressure of basic blocks to which
3267 expr is hoisted because of extended live range of
3268 output. */
3269 data = BB_DATA (bb);
3270 data->max_reg_pressure[pressure_class] += nregs;
3271 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3273 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3274 data->max_reg_pressure[pressure_class] += nregs;
3277 else if (flag_ira_hoist_pressure)
3279 /* Restore register pressure and live_in info for basic
3280 blocks recorded in hoisted_bbs when expr will not be
3281 hoisted. */
3282 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3284 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3285 bitmap_copy (data->live_in, data->backup);
3286 data->max_reg_pressure[pressure_class]
3287 = data->old_pressure;
3291 if (flag_ira_hoist_pressure)
3292 bitmap_clear (hoisted_bbs);
3294 insn_inserted_p = 0;
3296 /* Walk through occurrences of I'th expressions we want
3297 to hoist to BB and make the transformations. */
3298 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3300 rtx_insn *insn;
3301 const_rtx set;
3303 gcc_assert (!occr->deleted_p);
3305 insn = occr->insn;
3306 set = single_set_gcse (insn);
3308 /* Create a pseudo-reg to store the result of reaching
3309 expressions into. Get the mode for the new pseudo
3310 from the mode of the original destination pseudo.
3312 It is important to use new pseudos whenever we
3313 emit a set. This will allow reload to use
3314 rematerialization for such registers. */
3315 if (!insn_inserted_p)
3316 expr->reaching_reg
3317 = gen_reg_rtx_and_attrs (SET_DEST (set));
3319 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3320 insn);
3321 delete_insn (insn);
3322 occr->deleted_p = 1;
3323 changed = 1;
3324 gcse_subst_count++;
3326 if (!insn_inserted_p)
3328 insert_insn_end_basic_block (expr, bb);
3329 insn_inserted_p = 1;
3333 occrs_to_hoist.release ();
3334 bitmap_clear (from_bbs);
3337 domby.release ();
3340 dom_tree_walk.release ();
3341 BITMAP_FREE (from_bbs);
3342 if (flag_ira_hoist_pressure)
3343 BITMAP_FREE (hoisted_bbs);
3345 free (bb_size);
3346 free (to_bb_head);
3347 free (index_map);
3349 return changed;
3352 /* Return pressure class and number of needed hard registers (through
3353 *NREGS) of register REGNO. */
3354 static enum reg_class
3355 get_regno_pressure_class (int regno, int *nregs)
3357 if (regno >= FIRST_PSEUDO_REGISTER)
3359 enum reg_class pressure_class;
3361 pressure_class = reg_allocno_class (regno);
3362 pressure_class = ira_pressure_class_translate[pressure_class];
3363 *nregs
3364 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3365 return pressure_class;
3367 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3368 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3370 *nregs = 1;
3371 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3373 else
3375 *nregs = 0;
3376 return NO_REGS;
3380 /* Return pressure class and number of hard registers (through *NREGS)
3381 for destination of INSN. */
3382 static enum reg_class
3383 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3385 rtx reg;
3386 enum reg_class pressure_class;
3387 const_rtx set = single_set_gcse (insn);
3389 reg = SET_DEST (set);
3390 if (GET_CODE (reg) == SUBREG)
3391 reg = SUBREG_REG (reg);
3392 if (MEM_P (reg))
3394 *nregs = 0;
3395 pressure_class = NO_REGS;
3397 else
3399 gcc_assert (REG_P (reg));
3400 pressure_class = reg_allocno_class (REGNO (reg));
3401 pressure_class = ira_pressure_class_translate[pressure_class];
3402 *nregs
3403 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3405 return pressure_class;
3408 /* Increase (if INCR_P) or decrease current register pressure for
3409 register REGNO. */
3410 static void
3411 change_pressure (int regno, bool incr_p)
3413 int nregs;
3414 enum reg_class pressure_class;
3416 pressure_class = get_regno_pressure_class (regno, &nregs);
3417 if (! incr_p)
3418 curr_reg_pressure[pressure_class] -= nregs;
3419 else
3421 curr_reg_pressure[pressure_class] += nregs;
3422 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3423 < curr_reg_pressure[pressure_class])
3424 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3425 = curr_reg_pressure[pressure_class];
3429 /* Calculate register pressure for each basic block by walking insns
3430 from last to first. */
3431 static void
3432 calculate_bb_reg_pressure (void)
3434 int i;
3435 unsigned int j;
3436 rtx_insn *insn;
3437 basic_block bb;
3438 bitmap curr_regs_live;
3439 bitmap_iterator bi;
3442 ira_setup_eliminable_regset ();
3443 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3444 FOR_EACH_BB_FN (bb, cfun)
3446 curr_bb = bb;
3447 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3448 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3449 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3450 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3451 for (i = 0; i < ira_pressure_classes_num; i++)
3452 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3453 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3454 change_pressure (j, true);
3456 FOR_BB_INSNS_REVERSE (bb, insn)
3458 rtx dreg;
3459 int regno;
3460 df_ref def, use;
3462 if (! NONDEBUG_INSN_P (insn))
3463 continue;
3465 FOR_EACH_INSN_DEF (def, insn)
3467 dreg = DF_REF_REAL_REG (def);
3468 gcc_assert (REG_P (dreg));
3469 regno = REGNO (dreg);
3470 if (!(DF_REF_FLAGS (def)
3471 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3473 if (bitmap_clear_bit (curr_regs_live, regno))
3474 change_pressure (regno, false);
3478 FOR_EACH_INSN_USE (use, insn)
3480 dreg = DF_REF_REAL_REG (use);
3481 gcc_assert (REG_P (dreg));
3482 regno = REGNO (dreg);
3483 if (bitmap_set_bit (curr_regs_live, regno))
3484 change_pressure (regno, true);
3488 BITMAP_FREE (curr_regs_live);
3490 if (dump_file == NULL)
3491 return;
3493 fprintf (dump_file, "\nRegister Pressure: \n");
3494 FOR_EACH_BB_FN (bb, cfun)
3496 fprintf (dump_file, " Basic block %d: \n", bb->index);
3497 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3499 enum reg_class pressure_class;
3501 pressure_class = ira_pressure_classes[i];
3502 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3503 continue;
3505 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3506 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3509 fprintf (dump_file, "\n");
3512 /* Top level routine to perform one code hoisting (aka unification) pass
3514 Return nonzero if a change was made. */
3516 static int
3517 one_code_hoisting_pass (void)
3519 int changed = 0;
3521 gcse_subst_count = 0;
3522 gcse_create_count = 0;
3524 /* Return if there's nothing to do, or it is too expensive. */
3525 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3526 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3527 return 0;
3529 doing_code_hoisting_p = true;
3531 /* Calculate register pressure for each basic block. */
3532 if (flag_ira_hoist_pressure)
3534 regstat_init_n_sets_and_refs ();
3535 ira_set_pseudo_classes (false, dump_file);
3536 alloc_aux_for_blocks (sizeof (struct bb_data));
3537 calculate_bb_reg_pressure ();
3538 regstat_free_n_sets_and_refs ();
3541 /* We need alias. */
3542 init_alias_analysis ();
3544 bytes_used = 0;
3545 gcc_obstack_init (&gcse_obstack);
3546 alloc_gcse_mem ();
3548 alloc_hash_table (&expr_hash_table);
3549 compute_hash_table (&expr_hash_table);
3550 if (dump_file)
3551 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3553 if (expr_hash_table.n_elems > 0)
3555 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3556 expr_hash_table.n_elems);
3557 compute_code_hoist_data ();
3558 changed = hoist_code ();
3559 free_code_hoist_mem ();
3562 if (flag_ira_hoist_pressure)
3564 free_aux_for_blocks ();
3565 free_reg_info ();
3567 free_hash_table (&expr_hash_table);
3568 free_gcse_mem ();
3569 obstack_free (&gcse_obstack, NULL);
3571 /* We are finished with alias. */
3572 end_alias_analysis ();
3574 if (dump_file)
3576 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3577 current_function_name (), n_basic_blocks_for_fn (cfun),
3578 bytes_used);
3579 fprintf (dump_file, "%d substs, %d insns created\n",
3580 gcse_subst_count, gcse_create_count);
3583 doing_code_hoisting_p = false;
3585 return changed;
3588 /* Here we provide the things required to do store motion towards the exit.
3589 In order for this to be effective, gcse also needed to be taught how to
3590 move a load when it is killed only by a store to itself.
3592 int i;
3593 float a[10];
3595 void foo(float scale)
3597 for (i=0; i<10; i++)
3598 a[i] *= scale;
3601 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3602 the load out since its live around the loop, and stored at the bottom
3603 of the loop.
3605 The 'Load Motion' referred to and implemented in this file is
3606 an enhancement to gcse which when using edge based LCM, recognizes
3607 this situation and allows gcse to move the load out of the loop.
3609 Once gcse has hoisted the load, store motion can then push this
3610 load towards the exit, and we end up with no loads or stores of 'i'
3611 in the loop. */
3613 /* This will search the ldst list for a matching expression. If it
3614 doesn't find one, we create one and initialize it. */
3616 static struct ls_expr *
3617 ldst_entry (rtx x)
3619 int do_not_record_p = 0;
3620 struct ls_expr * ptr;
3621 unsigned int hash;
3622 ls_expr **slot;
3623 struct ls_expr e;
3625 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3626 NULL, /*have_reg_qty=*/false);
3628 e.pattern = x;
3629 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3630 if (*slot)
3631 return *slot;
3633 ptr = XNEW (struct ls_expr);
3635 ptr->next = pre_ldst_mems;
3636 ptr->expr = NULL;
3637 ptr->pattern = x;
3638 ptr->pattern_regs = NULL_RTX;
3639 ptr->stores.create (0);
3640 ptr->reaching_reg = NULL_RTX;
3641 ptr->invalid = 0;
3642 ptr->index = 0;
3643 ptr->hash_index = hash;
3644 pre_ldst_mems = ptr;
3645 *slot = ptr;
3647 return ptr;
3650 /* Free up an individual ldst entry. */
3652 static void
3653 free_ldst_entry (struct ls_expr * ptr)
3655 ptr->stores.release ();
3657 free (ptr);
3660 /* Free up all memory associated with the ldst list. */
3662 static void
3663 free_ld_motion_mems (void)
3665 delete pre_ldst_table;
3666 pre_ldst_table = NULL;
3668 while (pre_ldst_mems)
3670 struct ls_expr * tmp = pre_ldst_mems;
3672 pre_ldst_mems = pre_ldst_mems->next;
3674 free_ldst_entry (tmp);
3677 pre_ldst_mems = NULL;
3680 /* Dump debugging info about the ldst list. */
3682 static void
3683 print_ldst_list (FILE * file)
3685 struct ls_expr * ptr;
3687 fprintf (file, "LDST list: \n");
3689 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3691 fprintf (file, " Pattern (%3d): ", ptr->index);
3693 print_rtl (file, ptr->pattern);
3695 fprintf (file, "\n Stores : ");
3696 print_rtx_insn_vec (file, ptr->stores);
3698 fprintf (file, "\n\n");
3701 fprintf (file, "\n");
3704 /* Returns 1 if X is in the list of ldst only expressions. */
3706 static struct ls_expr *
3707 find_rtx_in_ldst (rtx x)
3709 struct ls_expr e;
3710 ls_expr **slot;
3711 if (!pre_ldst_table)
3712 return NULL;
3713 e.pattern = x;
3714 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3715 if (!slot || (*slot)->invalid)
3716 return NULL;
3717 return *slot;
3720 /* Load Motion for loads which only kill themselves. */
3722 /* Return true if x, a MEM, is a simple access with no side effects.
3723 These are the types of loads we consider for the ld_motion list,
3724 otherwise we let the usual aliasing take care of it. */
3726 static int
3727 simple_mem (const_rtx x)
3729 if (MEM_VOLATILE_P (x))
3730 return 0;
3732 if (GET_MODE (x) == BLKmode)
3733 return 0;
3735 /* If we are handling exceptions, we must be careful with memory references
3736 that may trap. If we are not, the behavior is undefined, so we may just
3737 continue. */
3738 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3739 return 0;
3741 if (side_effects_p (x))
3742 return 0;
3744 /* Do not consider function arguments passed on stack. */
3745 if (reg_mentioned_p (stack_pointer_rtx, x))
3746 return 0;
3748 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3749 return 0;
3751 return 1;
3754 /* Make sure there isn't a buried reference in this pattern anywhere.
3755 If there is, invalidate the entry for it since we're not capable
3756 of fixing it up just yet.. We have to be sure we know about ALL
3757 loads since the aliasing code will allow all entries in the
3758 ld_motion list to not-alias itself. If we miss a load, we will get
3759 the wrong value since gcse might common it and we won't know to
3760 fix it up. */
3762 static void
3763 invalidate_any_buried_refs (rtx x)
3765 const char * fmt;
3766 int i, j;
3767 struct ls_expr * ptr;
3769 /* Invalidate it in the list. */
3770 if (MEM_P (x) && simple_mem (x))
3772 ptr = ldst_entry (x);
3773 ptr->invalid = 1;
3776 /* Recursively process the insn. */
3777 fmt = GET_RTX_FORMAT (GET_CODE (x));
3779 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3781 if (fmt[i] == 'e')
3782 invalidate_any_buried_refs (XEXP (x, i));
3783 else if (fmt[i] == 'E')
3784 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3785 invalidate_any_buried_refs (XVECEXP (x, i, j));
3789 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3790 being defined as MEM loads and stores to symbols, with no side effects
3791 and no registers in the expression. For a MEM destination, we also
3792 check that the insn is still valid if we replace the destination with a
3793 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3794 which don't match this criteria, they are invalidated and trimmed out
3795 later. */
3797 static void
3798 compute_ld_motion_mems (void)
3800 struct ls_expr * ptr;
3801 basic_block bb;
3802 rtx_insn *insn;
3804 pre_ldst_mems = NULL;
3805 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3807 FOR_EACH_BB_FN (bb, cfun)
3809 FOR_BB_INSNS (bb, insn)
3811 if (NONDEBUG_INSN_P (insn))
3813 if (GET_CODE (PATTERN (insn)) == SET)
3815 rtx src = SET_SRC (PATTERN (insn));
3816 rtx dest = SET_DEST (PATTERN (insn));
3818 /* Check for a simple load. */
3819 if (MEM_P (src) && simple_mem (src))
3821 ptr = ldst_entry (src);
3822 if (!REG_P (dest))
3823 ptr->invalid = 1;
3825 else
3827 /* Make sure there isn't a buried load somewhere. */
3828 invalidate_any_buried_refs (src);
3831 /* Check for a simple load through a REG_EQUAL note. */
3832 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3833 if (note
3834 && REG_NOTE_KIND (note) == REG_EQUAL
3835 && (src_eq = XEXP (note, 0))
3836 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3837 invalidate_any_buried_refs (src_eq);
3839 /* Check for stores. Don't worry about aliased ones, they
3840 will block any movement we might do later. We only care
3841 about this exact pattern since those are the only
3842 circumstance that we will ignore the aliasing info. */
3843 if (MEM_P (dest) && simple_mem (dest))
3845 ptr = ldst_entry (dest);
3846 machine_mode src_mode = GET_MODE (src);
3847 if (! MEM_P (src)
3848 && GET_CODE (src) != ASM_OPERANDS
3849 /* Check for REG manually since want_to_gcse_p
3850 returns 0 for all REGs. */
3851 && can_assign_to_reg_without_clobbers_p (src,
3852 src_mode))
3853 ptr->stores.safe_push (insn);
3854 else
3855 ptr->invalid = 1;
3858 else
3860 /* Invalidate all MEMs in the pattern and... */
3861 invalidate_any_buried_refs (PATTERN (insn));
3863 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3864 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3865 if (note
3866 && REG_NOTE_KIND (note) == REG_EQUAL
3867 && (src_eq = XEXP (note, 0)))
3868 invalidate_any_buried_refs (src_eq);
3875 /* Remove any references that have been either invalidated or are not in the
3876 expression list for pre gcse. */
3878 static void
3879 trim_ld_motion_mems (void)
3881 struct ls_expr * * last = & pre_ldst_mems;
3882 struct ls_expr * ptr = pre_ldst_mems;
3884 while (ptr != NULL)
3886 struct gcse_expr * expr;
3888 /* Delete if entry has been made invalid. */
3889 if (! ptr->invalid)
3891 /* Delete if we cannot find this mem in the expression list. */
3892 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3894 for (expr = expr_hash_table.table[hash];
3895 expr != NULL;
3896 expr = expr->next_same_hash)
3897 if (expr_equiv_p (expr->expr, ptr->pattern))
3898 break;
3900 else
3901 expr = (struct gcse_expr *) 0;
3903 if (expr)
3905 /* Set the expression field if we are keeping it. */
3906 ptr->expr = expr;
3907 last = & ptr->next;
3908 ptr = ptr->next;
3910 else
3912 *last = ptr->next;
3913 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3914 free_ldst_entry (ptr);
3915 ptr = * last;
3919 /* Show the world what we've found. */
3920 if (dump_file && pre_ldst_mems != NULL)
3921 print_ldst_list (dump_file);
3924 /* This routine will take an expression which we are replacing with
3925 a reaching register, and update any stores that are needed if
3926 that expression is in the ld_motion list. Stores are updated by
3927 copying their SRC to the reaching register, and then storing
3928 the reaching register into the store location. These keeps the
3929 correct value in the reaching register for the loads. */
3931 static void
3932 update_ld_motion_stores (struct gcse_expr * expr)
3934 struct ls_expr * mem_ptr;
3936 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3938 /* We can try to find just the REACHED stores, but is shouldn't
3939 matter to set the reaching reg everywhere... some might be
3940 dead and should be eliminated later. */
3942 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3943 where reg is the reaching reg used in the load. We checked in
3944 compute_ld_motion_mems that we can replace (set mem expr) with
3945 (set reg expr) in that insn. */
3946 rtx_insn *insn;
3947 unsigned int i;
3948 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
3950 rtx pat = PATTERN (insn);
3951 rtx src = SET_SRC (pat);
3952 rtx reg = expr->reaching_reg;
3954 /* If we've already copied it, continue. */
3955 if (expr->reaching_reg == src)
3956 continue;
3958 if (dump_file)
3960 fprintf (dump_file, "PRE: store updated with reaching reg ");
3961 print_rtl (dump_file, reg);
3962 fprintf (dump_file, ":\n ");
3963 print_inline_rtx (dump_file, insn, 8);
3964 fprintf (dump_file, "\n");
3967 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3968 emit_insn_before (copy, insn);
3969 SET_SRC (pat) = reg;
3970 df_insn_rescan (insn);
3972 /* un-recognize this pattern since it's probably different now. */
3973 INSN_CODE (insn) = -1;
3974 gcse_create_count++;
3979 /* Return true if the graph is too expensive to optimize. PASS is the
3980 optimization about to be performed. */
3982 bool
3983 gcse_or_cprop_is_too_expensive (const char *pass)
3985 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3986 * SBITMAP_SET_SIZE (max_reg_num ())
3987 * sizeof (SBITMAP_ELT_TYPE));
3989 /* Trying to perform global optimizations on flow graphs which have
3990 a high connectivity will take a long time and is unlikely to be
3991 particularly useful.
3993 In normal circumstances a cfg should have about twice as many
3994 edges as blocks. But we do not want to punish small functions
3995 which have a couple switch statements. Rather than simply
3996 threshold the number of blocks, uses something with a more
3997 graceful degradation. */
3998 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4000 warning (OPT_Wdisabled_optimization,
4001 "%s: %d basic blocks and %d edges/basic block",
4002 pass, n_basic_blocks_for_fn (cfun),
4003 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4005 return true;
4008 /* If allocating memory for the dataflow bitmaps would take up too much
4009 storage it's better just to disable the optimization. */
4010 if (memory_request > MAX_GCSE_MEMORY)
4012 warning (OPT_Wdisabled_optimization,
4013 "%s: %d basic blocks and %d registers; "
4014 "increase %<--param max-gcse-memory%> above %d",
4015 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4016 memory_request);
4018 return true;
4021 return false;
4024 static unsigned int
4025 execute_rtl_pre (void)
4027 int changed;
4028 delete_unreachable_blocks ();
4029 df_analyze ();
4030 changed = one_pre_gcse_pass ();
4031 flag_rerun_cse_after_global_opts |= changed;
4032 if (changed)
4033 cleanup_cfg (0);
4034 return 0;
4037 static unsigned int
4038 execute_rtl_hoist (void)
4040 int changed;
4041 delete_unreachable_blocks ();
4042 df_analyze ();
4043 changed = one_code_hoisting_pass ();
4044 flag_rerun_cse_after_global_opts |= changed;
4045 if (changed)
4046 cleanup_cfg (0);
4047 return 0;
4050 namespace {
4052 const pass_data pass_data_rtl_pre =
4054 RTL_PASS, /* type */
4055 "rtl pre", /* name */
4056 OPTGROUP_NONE, /* optinfo_flags */
4057 TV_PRE, /* tv_id */
4058 PROP_cfglayout, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
4062 TODO_df_finish, /* todo_flags_finish */
4065 class pass_rtl_pre : public rtl_opt_pass
4067 public:
4068 pass_rtl_pre (gcc::context *ctxt)
4069 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4072 /* opt_pass methods: */
4073 virtual bool gate (function *);
4074 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4076 }; // class pass_rtl_pre
4078 /* We do not construct an accurate cfg in functions which call
4079 setjmp, so none of these passes runs if the function calls
4080 setjmp.
4081 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4083 bool
4084 pass_rtl_pre::gate (function *fun)
4086 return optimize > 0 && flag_gcse
4087 && !fun->calls_setjmp
4088 && optimize_function_for_speed_p (fun)
4089 && dbg_cnt (pre);
4092 } // anon namespace
4094 rtl_opt_pass *
4095 make_pass_rtl_pre (gcc::context *ctxt)
4097 return new pass_rtl_pre (ctxt);
4100 namespace {
4102 const pass_data pass_data_rtl_hoist =
4104 RTL_PASS, /* type */
4105 "hoist", /* name */
4106 OPTGROUP_NONE, /* optinfo_flags */
4107 TV_HOIST, /* tv_id */
4108 PROP_cfglayout, /* properties_required */
4109 0, /* properties_provided */
4110 0, /* properties_destroyed */
4111 0, /* todo_flags_start */
4112 TODO_df_finish, /* todo_flags_finish */
4115 class pass_rtl_hoist : public rtl_opt_pass
4117 public:
4118 pass_rtl_hoist (gcc::context *ctxt)
4119 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4122 /* opt_pass methods: */
4123 virtual bool gate (function *);
4124 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4126 }; // class pass_rtl_hoist
4128 bool
4129 pass_rtl_hoist::gate (function *)
4131 return optimize > 0 && flag_gcse
4132 && !cfun->calls_setjmp
4133 /* It does not make sense to run code hoisting unless we are optimizing
4134 for code size -- it rarely makes programs faster, and can make then
4135 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4136 && optimize_function_for_size_p (cfun)
4137 && dbg_cnt (hoist);
4140 } // anon namespace
4142 rtl_opt_pass *
4143 make_pass_rtl_hoist (gcc::context *ctxt)
4145 return new pass_rtl_hoist (ctxt);
4148 /* Reset all state within gcse.c so that we can rerun the compiler
4149 within the same process. For use by toplev::finalize. */
4151 void
4152 gcse_c_finalize (void)
4154 test_insn = NULL;
4157 #include "gt-gcse.h"