Imported GNU Classpath 0.90
[official-gcc.git] / gcc / tree-ssa-live.c
blob5b9ead1f9278f55696e084918a498b194a83ecd4
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "diagnostic.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "tree-gimple.h"
34 #include "tree-inline.h"
35 #include "varray.h"
36 #include "timevar.h"
37 #include "hashtab.h"
38 #include "tree-dump.h"
39 #include "tree-ssa-live.h"
40 #include "toplev.h"
42 static void live_worklist (tree_live_info_p, int *, int);
43 static tree_live_info_p new_tree_live_info (var_map);
44 static inline void set_if_valid (var_map, bitmap, tree);
45 static inline void add_livein_if_notdef (tree_live_info_p, bitmap,
46 tree, basic_block);
47 static inline void register_ssa_partition (var_map, tree, bool);
48 static inline void add_conflicts_if_valid (tpa_p, conflict_graph,
49 var_map, bitmap, tree);
50 static partition_pair_p find_partition_pair (coalesce_list_p, int, int, bool);
52 /* This is where the mapping from SSA version number to real storage variable
53 is tracked.
55 All SSA versions of the same variable may not ultimately be mapped back to
56 the same real variable. In that instance, we need to detect the live
57 range overlap, and give one of the variable new storage. The vector
58 'partition_to_var' tracks which partition maps to which variable.
60 Given a VAR, it is sometimes desirable to know which partition that VAR
61 represents. There is an additional field in the variable annotation to
62 track that information. */
64 /* Create a variable partition map of SIZE, initialize and return it. */
66 var_map
67 init_var_map (int size)
69 var_map map;
71 map = (var_map) xmalloc (sizeof (struct _var_map));
72 map->var_partition = partition_new (size);
73 map->partition_to_var
74 = (tree *)xmalloc (size * sizeof (tree));
75 memset (map->partition_to_var, 0, size * sizeof (tree));
77 map->partition_to_compact = NULL;
78 map->compact_to_partition = NULL;
79 map->num_partitions = size;
80 map->partition_size = size;
81 map->ref_count = NULL;
82 return map;
86 /* Free memory associated with MAP. */
88 void
89 delete_var_map (var_map map)
91 free (map->partition_to_var);
92 partition_delete (map->var_partition);
93 if (map->partition_to_compact)
94 free (map->partition_to_compact);
95 if (map->compact_to_partition)
96 free (map->compact_to_partition);
97 if (map->ref_count)
98 free (map->ref_count);
99 free (map);
103 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
104 Returns the partition which represents the new partition. If the two
105 partitions cannot be combined, NO_PARTITION is returned. */
108 var_union (var_map map, tree var1, tree var2)
110 int p1, p2, p3;
111 tree root_var = NULL_TREE;
112 tree other_var = NULL_TREE;
114 /* This is independent of partition_to_compact. If partition_to_compact is
115 on, then whichever one of these partitions is absorbed will never have a
116 dereference into the partition_to_compact array any more. */
118 if (TREE_CODE (var1) == SSA_NAME)
119 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
120 else
122 p1 = var_to_partition (map, var1);
123 if (map->compact_to_partition)
124 p1 = map->compact_to_partition[p1];
125 root_var = var1;
128 if (TREE_CODE (var2) == SSA_NAME)
129 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
130 else
132 p2 = var_to_partition (map, var2);
133 if (map->compact_to_partition)
134 p2 = map->compact_to_partition[p2];
136 /* If there is no root_var set, or it's not a user variable, set the
137 root_var to this one. */
138 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
140 other_var = root_var;
141 root_var = var2;
143 else
144 other_var = var2;
147 gcc_assert (p1 != NO_PARTITION);
148 gcc_assert (p2 != NO_PARTITION);
150 if (p1 == p2)
151 p3 = p1;
152 else
153 p3 = partition_union (map->var_partition, p1, p2);
155 if (map->partition_to_compact)
156 p3 = map->partition_to_compact[p3];
158 if (root_var)
159 change_partition_var (map, root_var, p3);
160 if (other_var)
161 change_partition_var (map, other_var, p3);
163 return p3;
167 /* Compress the partition numbers in MAP such that they fall in the range
168 0..(num_partitions-1) instead of wherever they turned out during
169 the partitioning exercise. This removes any references to unused
170 partitions, thereby allowing bitmaps and other vectors to be much
171 denser. Compression type is controlled by FLAGS.
173 This is implemented such that compaction doesn't affect partitioning.
174 Ie., once partitions are created and possibly merged, running one
175 or more different kind of compaction will not affect the partitions
176 themselves. Their index might change, but all the same variables will
177 still be members of the same partition group. This allows work on reduced
178 sets, and no loss of information when a larger set is later desired.
180 In particular, coalescing can work on partitions which have 2 or more
181 definitions, and then 'recompact' later to include all the single
182 definitions for assignment to program variables. */
184 void
185 compact_var_map (var_map map, int flags)
187 sbitmap used;
188 int tmp, root, root_i;
189 unsigned int x, limit, count;
190 tree var;
191 root_var_p rv = NULL;
193 limit = map->partition_size;
194 used = sbitmap_alloc (limit);
195 sbitmap_zero (used);
197 /* Already compressed? Abandon the old one. */
198 if (map->partition_to_compact)
200 free (map->partition_to_compact);
201 map->partition_to_compact = NULL;
203 if (map->compact_to_partition)
205 free (map->compact_to_partition);
206 map->compact_to_partition = NULL;
209 map->num_partitions = map->partition_size;
211 if (flags & VARMAP_NO_SINGLE_DEFS)
212 rv = root_var_init (map);
214 map->partition_to_compact = (int *)xmalloc (limit * sizeof (int));
215 memset (map->partition_to_compact, 0xff, (limit * sizeof (int)));
217 /* Find out which partitions are actually referenced. */
218 count = 0;
219 for (x = 0; x < limit; x++)
221 tmp = partition_find (map->var_partition, x);
222 if (!TEST_BIT (used, tmp) && map->partition_to_var[tmp] != NULL_TREE)
224 /* It is referenced, check to see if there is more than one version
225 in the root_var table, if one is available. */
226 if (rv)
228 root = root_var_find (rv, tmp);
229 root_i = root_var_first_partition (rv, root);
230 /* If there is only one, don't include this in the compaction. */
231 if (root_var_next_partition (rv, root_i) == ROOT_VAR_NONE)
232 continue;
234 SET_BIT (used, tmp);
235 count++;
239 /* Build a compacted partitioning. */
240 if (count != limit)
242 sbitmap_iterator sbi;
244 map->compact_to_partition = (int *)xmalloc (count * sizeof (int));
245 count = 0;
246 /* SSA renaming begins at 1, so skip 0 when compacting. */
247 EXECUTE_IF_SET_IN_SBITMAP (used, 1, x, sbi)
249 map->partition_to_compact[x] = count;
250 map->compact_to_partition[count] = x;
251 var = map->partition_to_var[x];
252 if (TREE_CODE (var) != SSA_NAME)
253 change_partition_var (map, var, count);
254 count++;
257 else
259 free (map->partition_to_compact);
260 map->partition_to_compact = NULL;
263 map->num_partitions = count;
265 if (rv)
266 root_var_delete (rv);
267 sbitmap_free (used);
271 /* This function is used to change the representative variable in MAP for VAR's
272 partition from an SSA_NAME variable to a regular variable. This allows
273 partitions to be mapped back to real variables. */
275 void
276 change_partition_var (var_map map, tree var, int part)
278 var_ann_t ann;
280 gcc_assert (TREE_CODE (var) != SSA_NAME);
282 ann = var_ann (var);
283 ann->out_of_ssa_tag = 1;
284 VAR_ANN_PARTITION (ann) = part;
285 if (map->compact_to_partition)
286 map->partition_to_var[map->compact_to_partition[part]] = var;
289 static inline void mark_all_vars_used (tree *);
291 /* Helper function for mark_all_vars_used, called via walk_tree. */
293 static tree
294 mark_all_vars_used_1 (tree *tp, int *walk_subtrees,
295 void *data ATTRIBUTE_UNUSED)
297 tree t = *tp;
299 if (TREE_CODE (t) == SSA_NAME)
300 t = SSA_NAME_VAR (t);
302 /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
303 fields that do not contain vars. */
304 if (TREE_CODE (t) == TARGET_MEM_REF)
306 mark_all_vars_used (&TMR_SYMBOL (t));
307 mark_all_vars_used (&TMR_BASE (t));
308 mark_all_vars_used (&TMR_INDEX (t));
309 *walk_subtrees = 0;
310 return NULL;
313 /* Only need to mark VAR_DECLS; parameters and return results are not
314 eliminated as unused. */
315 if (TREE_CODE (t) == VAR_DECL)
316 set_is_used (t);
318 if (IS_TYPE_OR_DECL_P (t))
319 *walk_subtrees = 0;
321 return NULL;
324 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
325 eliminated during the tree->rtl conversion process. */
327 static inline void
328 mark_all_vars_used (tree *expr_p)
330 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
334 /* Remove local variables that are not referenced in the IL. */
336 void
337 remove_unused_locals (void)
339 basic_block bb;
340 tree t, *cell;
342 /* Assume all locals are unused. */
343 for (t = cfun->unexpanded_var_list; t; t = TREE_CHAIN (t))
345 tree var = TREE_VALUE (t);
346 if (TREE_CODE (var) != FUNCTION_DECL
347 && var_ann (var))
348 var_ann (var)->used = false;
351 /* Walk the CFG marking all referenced symbols. */
352 FOR_EACH_BB (bb)
354 block_stmt_iterator bsi;
355 tree phi, def;
357 /* Walk the statements. */
358 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
359 mark_all_vars_used (bsi_stmt_ptr (bsi));
361 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
363 use_operand_p arg_p;
364 ssa_op_iter i;
366 /* No point processing globals. */
367 if (is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
368 continue;
370 def = PHI_RESULT (phi);
371 mark_all_vars_used (&def);
373 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
375 tree arg = USE_FROM_PTR (arg_p);
376 mark_all_vars_used (&arg);
381 /* Remove unmarked vars and clear used flag. */
382 for (cell = &cfun->unexpanded_var_list; *cell; )
384 tree var = TREE_VALUE (*cell);
385 var_ann_t ann;
387 if (TREE_CODE (var) != FUNCTION_DECL
388 && (!(ann = var_ann (var))
389 || !ann->used))
391 *cell = TREE_CHAIN (*cell);
392 continue;
395 cell = &TREE_CHAIN (*cell);
399 /* This function looks through the program and uses FLAGS to determine what
400 SSA versioned variables are given entries in a new partition table. This
401 new partition map is returned. */
403 var_map
404 create_ssa_var_map (int flags)
406 block_stmt_iterator bsi;
407 basic_block bb;
408 tree dest, use;
409 tree stmt;
410 var_map map;
411 ssa_op_iter iter;
412 #ifdef ENABLE_CHECKING
413 bitmap used_in_real_ops;
414 bitmap used_in_virtual_ops;
415 #endif
417 map = init_var_map (num_ssa_names + 1);
419 #ifdef ENABLE_CHECKING
420 used_in_real_ops = BITMAP_ALLOC (NULL);
421 used_in_virtual_ops = BITMAP_ALLOC (NULL);
422 #endif
424 if (flags & SSA_VAR_MAP_REF_COUNT)
426 map->ref_count
427 = (int *)xmalloc (((num_ssa_names + 1) * sizeof (int)));
428 memset (map->ref_count, 0, (num_ssa_names + 1) * sizeof (int));
431 FOR_EACH_BB (bb)
433 tree phi, arg;
435 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
437 int i;
438 register_ssa_partition (map, PHI_RESULT (phi), false);
439 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
441 arg = PHI_ARG_DEF (phi, i);
442 if (TREE_CODE (arg) == SSA_NAME)
443 register_ssa_partition (map, arg, true);
445 mark_all_vars_used (&PHI_ARG_DEF_TREE (phi, i));
449 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
451 stmt = bsi_stmt (bsi);
453 /* Register USE and DEF operands in each statement. */
454 FOR_EACH_SSA_TREE_OPERAND (use , stmt, iter, SSA_OP_USE)
456 register_ssa_partition (map, use, true);
458 #ifdef ENABLE_CHECKING
459 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (use)));
460 #endif
463 FOR_EACH_SSA_TREE_OPERAND (dest, stmt, iter, SSA_OP_DEF)
465 register_ssa_partition (map, dest, false);
467 #ifdef ENABLE_CHECKING
468 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (dest)));
469 #endif
472 #ifdef ENABLE_CHECKING
473 /* Validate that virtual ops don't get used in funny ways. */
474 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter,
475 SSA_OP_VIRTUAL_USES | SSA_OP_VMUSTDEF)
477 bitmap_set_bit (used_in_virtual_ops,
478 DECL_UID (SSA_NAME_VAR (use)));
481 #endif /* ENABLE_CHECKING */
483 mark_all_vars_used (bsi_stmt_ptr (bsi));
487 #if defined ENABLE_CHECKING
489 unsigned i;
490 bitmap both = BITMAP_ALLOC (NULL);
491 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
492 if (!bitmap_empty_p (both))
494 bitmap_iterator bi;
496 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
497 fprintf (stderr, "Variable %s used in real and virtual operands\n",
498 get_name (referenced_var (i)));
499 internal_error ("SSA corruption");
502 BITMAP_FREE (used_in_real_ops);
503 BITMAP_FREE (used_in_virtual_ops);
504 BITMAP_FREE (both);
506 #endif
508 return map;
512 /* Allocate and return a new live range information object base on MAP. */
514 static tree_live_info_p
515 new_tree_live_info (var_map map)
517 tree_live_info_p live;
518 unsigned x;
520 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
521 live->map = map;
522 live->num_blocks = last_basic_block;
524 live->global = BITMAP_ALLOC (NULL);
526 live->livein = (bitmap *)xmalloc (num_var_partitions (map) * sizeof (bitmap));
527 for (x = 0; x < num_var_partitions (map); x++)
528 live->livein[x] = BITMAP_ALLOC (NULL);
530 /* liveout is deferred until it is actually requested. */
531 live->liveout = NULL;
532 return live;
536 /* Free storage for live range info object LIVE. */
538 void
539 delete_tree_live_info (tree_live_info_p live)
541 int x;
542 if (live->liveout)
544 for (x = live->num_blocks - 1; x >= 0; x--)
545 BITMAP_FREE (live->liveout[x]);
546 free (live->liveout);
548 if (live->livein)
550 for (x = num_var_partitions (live->map) - 1; x >= 0; x--)
551 BITMAP_FREE (live->livein[x]);
552 free (live->livein);
554 if (live->global)
555 BITMAP_FREE (live->global);
557 free (live);
561 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
562 for partition I. STACK is a varray used for temporary memory which is
563 passed in rather than being allocated on every call. */
565 static void
566 live_worklist (tree_live_info_p live, int *stack, int i)
568 unsigned b;
569 tree var;
570 basic_block def_bb = NULL;
571 edge e;
572 var_map map = live->map;
573 edge_iterator ei;
574 bitmap_iterator bi;
575 int *tos = stack;
577 var = partition_to_var (map, i);
578 if (SSA_NAME_DEF_STMT (var))
579 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
581 EXECUTE_IF_SET_IN_BITMAP (live->livein[i], 0, b, bi)
583 *tos++ = b;
586 while (tos != stack)
588 b = *--tos;
590 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (b)->preds)
591 if (e->src != ENTRY_BLOCK_PTR)
593 /* Its not live on entry to the block its defined in. */
594 if (e->src == def_bb)
595 continue;
596 if (!bitmap_bit_p (live->livein[i], e->src->index))
598 bitmap_set_bit (live->livein[i], e->src->index);
599 *tos++ = e->src->index;
606 /* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
608 static inline void
609 set_if_valid (var_map map, bitmap vec, tree var)
611 int p = var_to_partition (map, var);
612 if (p != NO_PARTITION)
613 bitmap_set_bit (vec, p);
617 /* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
618 global bit for it in the LIVE object. BB is the block being processed. */
620 static inline void
621 add_livein_if_notdef (tree_live_info_p live, bitmap def_vec,
622 tree var, basic_block bb)
624 int p = var_to_partition (live->map, var);
625 if (p == NO_PARTITION || bb == ENTRY_BLOCK_PTR)
626 return;
627 if (!bitmap_bit_p (def_vec, p))
629 bitmap_set_bit (live->livein[p], bb->index);
630 bitmap_set_bit (live->global, p);
635 /* Given partition map MAP, calculate all the live on entry bitmaps for
636 each basic block. Return a live info object. */
638 tree_live_info_p
639 calculate_live_on_entry (var_map map)
641 tree_live_info_p live;
642 unsigned i;
643 basic_block bb;
644 bitmap saw_def;
645 tree phi, var, stmt;
646 tree op;
647 edge e;
648 int *stack;
649 block_stmt_iterator bsi;
650 ssa_op_iter iter;
651 bitmap_iterator bi;
652 #ifdef ENABLE_CHECKING
653 int num;
654 edge_iterator ei;
655 #endif
657 saw_def = BITMAP_ALLOC (NULL);
659 live = new_tree_live_info (map);
661 FOR_EACH_BB (bb)
663 bitmap_clear (saw_def);
665 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
667 for (i = 0; i < (unsigned)PHI_NUM_ARGS (phi); i++)
669 var = PHI_ARG_DEF (phi, i);
670 if (!phi_ssa_name_p (var))
671 continue;
672 stmt = SSA_NAME_DEF_STMT (var);
673 e = EDGE_PRED (bb, i);
675 /* Any uses in PHIs which either don't have def's or are not
676 defined in the block from which the def comes, will be live
677 on entry to that block. */
678 if (!stmt || e->src != bb_for_stmt (stmt))
679 add_livein_if_notdef (live, saw_def, var, e->src);
683 /* Don't mark PHI results as defined until all the PHI nodes have
684 been processed. If the PHI sequence is:
685 a_3 = PHI <a_1, a_2>
686 b_3 = PHI <b_1, a_3>
687 The a_3 referred to in b_3's PHI node is the one incoming on the
688 edge, *not* the PHI node just seen. */
690 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
692 var = PHI_RESULT (phi);
693 set_if_valid (map, saw_def, var);
696 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
698 stmt = bsi_stmt (bsi);
700 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
702 add_livein_if_notdef (live, saw_def, op, bb);
705 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
707 set_if_valid (map, saw_def, op);
712 stack = XNEWVEC (int, last_basic_block);
713 EXECUTE_IF_SET_IN_BITMAP (live->global, 0, i, bi)
715 live_worklist (live, stack, i);
717 free (stack);
719 #ifdef ENABLE_CHECKING
720 /* Check for live on entry partitions and report those with a DEF in
721 the program. This will typically mean an optimization has done
722 something wrong. */
724 bb = ENTRY_BLOCK_PTR;
725 num = 0;
726 FOR_EACH_EDGE (e, ei, bb->succs)
728 int entry_block = e->dest->index;
729 if (e->dest == EXIT_BLOCK_PTR)
730 continue;
731 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
733 basic_block tmp;
734 tree d;
735 var = partition_to_var (map, i);
736 stmt = SSA_NAME_DEF_STMT (var);
737 tmp = bb_for_stmt (stmt);
738 d = default_def (SSA_NAME_VAR (var));
740 if (bitmap_bit_p (live_entry_blocks (live, i), entry_block))
742 if (!IS_EMPTY_STMT (stmt))
744 num++;
745 print_generic_expr (stderr, var, TDF_SLIM);
746 fprintf (stderr, " is defined ");
747 if (tmp)
748 fprintf (stderr, " in BB%d, ", tmp->index);
749 fprintf (stderr, "by:\n");
750 print_generic_expr (stderr, stmt, TDF_SLIM);
751 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
752 entry_block);
753 fprintf (stderr, " So it appears to have multiple defs.\n");
755 else
757 if (d != var)
759 num++;
760 print_generic_expr (stderr, var, TDF_SLIM);
761 fprintf (stderr, " is live-on-entry to BB%d ",entry_block);
762 if (d)
764 fprintf (stderr, " but is not the default def of ");
765 print_generic_expr (stderr, d, TDF_SLIM);
766 fprintf (stderr, "\n");
768 else
769 fprintf (stderr, " and there is no default def.\n");
773 else
774 if (d == var)
776 /* The only way this var shouldn't be marked live on entry is
777 if it occurs in a PHI argument of the block. */
778 int z, ok = 0;
779 for (phi = phi_nodes (e->dest);
780 phi && !ok;
781 phi = PHI_CHAIN (phi))
783 for (z = 0; z < PHI_NUM_ARGS (phi); z++)
784 if (var == PHI_ARG_DEF (phi, z))
786 ok = 1;
787 break;
790 if (ok)
791 continue;
792 num++;
793 print_generic_expr (stderr, var, TDF_SLIM);
794 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
795 entry_block);
796 fprintf (stderr, "but it is a default def so it should be.\n");
800 gcc_assert (num <= 0);
801 #endif
803 BITMAP_FREE (saw_def);
805 return live;
809 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
811 void
812 calculate_live_on_exit (tree_live_info_p liveinfo)
814 unsigned b;
815 unsigned i, x;
816 bitmap *on_exit;
817 basic_block bb;
818 edge e;
819 tree t, phi;
820 bitmap on_entry;
821 var_map map = liveinfo->map;
823 on_exit = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
824 for (x = 0; x < (unsigned)last_basic_block; x++)
825 on_exit[x] = BITMAP_ALLOC (NULL);
827 /* Set all the live-on-exit bits for uses in PHIs. */
828 FOR_EACH_BB (bb)
830 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
831 for (i = 0; i < (unsigned)PHI_NUM_ARGS (phi); i++)
833 t = PHI_ARG_DEF (phi, i);
834 e = PHI_ARG_EDGE (phi, i);
835 if (!phi_ssa_name_p (t) || e->src == ENTRY_BLOCK_PTR)
836 continue;
837 set_if_valid (map, on_exit[e->src->index], t);
841 /* Set live on exit for all predecessors of live on entry's. */
842 for (i = 0; i < num_var_partitions (map); i++)
844 bitmap_iterator bi;
846 on_entry = live_entry_blocks (liveinfo, i);
847 EXECUTE_IF_SET_IN_BITMAP (on_entry, 0, b, bi)
849 edge_iterator ei;
850 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (b)->preds)
851 if (e->src != ENTRY_BLOCK_PTR)
852 bitmap_set_bit (on_exit[e->src->index], i);
856 liveinfo->liveout = on_exit;
860 /* Initialize a tree_partition_associator object using MAP. */
862 static tpa_p
863 tpa_init (var_map map)
865 tpa_p tpa;
866 int num_partitions = num_var_partitions (map);
867 int x;
869 if (num_partitions == 0)
870 return NULL;
872 tpa = (tpa_p) xmalloc (sizeof (struct tree_partition_associator_d));
873 tpa->num_trees = 0;
874 tpa->uncompressed_num = -1;
875 tpa->map = map;
876 tpa->next_partition = (int *)xmalloc (num_partitions * sizeof (int));
877 memset (tpa->next_partition, TPA_NONE, num_partitions * sizeof (int));
879 tpa->partition_to_tree_map = (int *)xmalloc (num_partitions * sizeof (int));
880 memset (tpa->partition_to_tree_map, TPA_NONE, num_partitions * sizeof (int));
882 x = MAX (40, (num_partitions / 20));
883 tpa->trees = VEC_alloc (tree, heap, x);
884 VARRAY_INT_INIT (tpa->first_partition, x, "first_partition");
886 return tpa;
891 /* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
893 void
894 tpa_remove_partition (tpa_p tpa, int tree_index, int partition_index)
896 int i;
898 i = tpa_first_partition (tpa, tree_index);
899 if (i == partition_index)
901 VARRAY_INT (tpa->first_partition, tree_index) = tpa->next_partition[i];
903 else
905 for ( ; i != TPA_NONE; i = tpa_next_partition (tpa, i))
907 if (tpa->next_partition[i] == partition_index)
909 tpa->next_partition[i] = tpa->next_partition[partition_index];
910 break;
917 /* Free the memory used by tree_partition_associator object TPA. */
919 void
920 tpa_delete (tpa_p tpa)
922 if (!tpa)
923 return;
925 VEC_free (tree, heap, tpa->trees);
926 free (tpa->partition_to_tree_map);
927 free (tpa->next_partition);
928 free (tpa);
932 /* This function will remove any tree entries from TPA which have only a single
933 element. This will help keep the size of the conflict graph down. The
934 function returns the number of remaining tree lists. */
936 int
937 tpa_compact (tpa_p tpa)
939 int last, x, y, first, swap_i;
940 tree swap_t;
942 /* Find the last list which has more than 1 partition. */
943 for (last = tpa->num_trees - 1; last > 0; last--)
945 first = tpa_first_partition (tpa, last);
946 if (tpa_next_partition (tpa, first) != NO_PARTITION)
947 break;
950 x = 0;
951 while (x < last)
953 first = tpa_first_partition (tpa, x);
955 /* If there is not more than one partition, swap with the current end
956 of the tree list. */
957 if (tpa_next_partition (tpa, first) == NO_PARTITION)
959 swap_t = VEC_index (tree, tpa->trees, last);
960 swap_i = VARRAY_INT (tpa->first_partition, last);
962 /* Update the last entry. Since it is known to only have one
963 partition, there is nothing else to update. */
964 VEC_replace (tree, tpa->trees, last,
965 VEC_index (tree, tpa->trees, x));
966 VARRAY_INT (tpa->first_partition, last)
967 = VARRAY_INT (tpa->first_partition, x);
968 tpa->partition_to_tree_map[tpa_first_partition (tpa, last)] = last;
970 /* Since this list is known to have more than one partition, update
971 the list owner entries. */
972 VEC_replace (tree, tpa->trees, x, swap_t);
973 VARRAY_INT (tpa->first_partition, x) = swap_i;
974 for (y = tpa_first_partition (tpa, x);
975 y != NO_PARTITION;
976 y = tpa_next_partition (tpa, y))
977 tpa->partition_to_tree_map[y] = x;
979 /* Ensure last is a list with more than one partition. */
980 last--;
981 for (; last > x; last--)
983 first = tpa_first_partition (tpa, last);
984 if (tpa_next_partition (tpa, first) != NO_PARTITION)
985 break;
988 x++;
991 first = tpa_first_partition (tpa, x);
992 if (tpa_next_partition (tpa, first) != NO_PARTITION)
993 x++;
994 tpa->uncompressed_num = tpa->num_trees;
995 tpa->num_trees = x;
996 return last;
1000 /* Initialize a root_var object with SSA partitions from MAP which are based
1001 on each root variable. */
1003 root_var_p
1004 root_var_init (var_map map)
1006 root_var_p rv;
1007 int num_partitions = num_var_partitions (map);
1008 int x, p;
1009 tree t;
1010 var_ann_t ann;
1011 sbitmap seen;
1013 rv = tpa_init (map);
1014 if (!rv)
1015 return NULL;
1017 seen = sbitmap_alloc (num_partitions);
1018 sbitmap_zero (seen);
1020 /* Start at the end and work towards the front. This will provide a list
1021 that is ordered from smallest to largest. */
1022 for (x = num_partitions - 1; x >= 0; x--)
1024 t = partition_to_var (map, x);
1026 /* The var map may not be compacted yet, so check for NULL. */
1027 if (!t)
1028 continue;
1030 p = var_to_partition (map, t);
1032 gcc_assert (p != NO_PARTITION);
1034 /* Make sure we only put coalesced partitions into the list once. */
1035 if (TEST_BIT (seen, p))
1036 continue;
1037 SET_BIT (seen, p);
1038 if (TREE_CODE (t) == SSA_NAME)
1039 t = SSA_NAME_VAR (t);
1040 ann = var_ann (t);
1041 if (ann->root_var_processed)
1043 rv->next_partition[p] = VARRAY_INT (rv->first_partition,
1044 VAR_ANN_ROOT_INDEX (ann));
1045 VARRAY_INT (rv->first_partition, VAR_ANN_ROOT_INDEX (ann)) = p;
1047 else
1049 ann->root_var_processed = 1;
1050 VAR_ANN_ROOT_INDEX (ann) = rv->num_trees++;
1051 VEC_safe_push (tree, heap, rv->trees, t);
1052 VARRAY_PUSH_INT (rv->first_partition, p);
1054 rv->partition_to_tree_map[p] = VAR_ANN_ROOT_INDEX (ann);
1057 /* Reset the out_of_ssa_tag flag on each variable for later use. */
1058 for (x = 0; x < rv->num_trees; x++)
1060 t = VEC_index (tree, rv->trees, x);
1061 var_ann (t)->root_var_processed = 0;
1064 sbitmap_free (seen);
1065 return rv;
1069 /* Initialize a type_var structure which associates all the partitions in MAP
1070 of the same type to the type node's index. Volatiles are ignored. */
1072 type_var_p
1073 type_var_init (var_map map)
1075 type_var_p tv;
1076 int x, y, p;
1077 int num_partitions = num_var_partitions (map);
1078 tree t;
1079 sbitmap seen;
1081 tv = tpa_init (map);
1082 if (!tv)
1083 return NULL;
1085 seen = sbitmap_alloc (num_partitions);
1086 sbitmap_zero (seen);
1088 for (x = num_partitions - 1; x >= 0; x--)
1090 t = partition_to_var (map, x);
1092 /* Disallow coalescing of these types of variables. */
1093 if (!t
1094 || TREE_THIS_VOLATILE (t)
1095 || TREE_CODE (t) == RESULT_DECL
1096 || TREE_CODE (t) == PARM_DECL
1097 || (DECL_P (t)
1098 && (DECL_REGISTER (t)
1099 || !DECL_IGNORED_P (t)
1100 || DECL_RTL_SET_P (t))))
1101 continue;
1103 p = var_to_partition (map, t);
1105 gcc_assert (p != NO_PARTITION);
1107 /* If partitions have been coalesced, only add the representative
1108 for the partition to the list once. */
1109 if (TEST_BIT (seen, p))
1110 continue;
1111 SET_BIT (seen, p);
1112 t = TREE_TYPE (t);
1114 /* Find the list for this type. */
1115 for (y = 0; y < tv->num_trees; y++)
1116 if (t == VEC_index (tree, tv->trees, y))
1117 break;
1118 if (y == tv->num_trees)
1120 tv->num_trees++;
1121 VEC_safe_push (tree, heap, tv->trees, t);
1122 VARRAY_PUSH_INT (tv->first_partition, p);
1124 else
1126 tv->next_partition[p] = VARRAY_INT (tv->first_partition, y);
1127 VARRAY_INT (tv->first_partition, y) = p;
1129 tv->partition_to_tree_map[p] = y;
1131 sbitmap_free (seen);
1132 return tv;
1136 /* Create a new coalesce list object from MAP and return it. */
1138 coalesce_list_p
1139 create_coalesce_list (var_map map)
1141 coalesce_list_p list;
1143 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
1145 list->map = map;
1146 list->add_mode = true;
1147 list->list = (partition_pair_p *) xcalloc (num_var_partitions (map),
1148 sizeof (struct partition_pair_d));
1149 return list;
1153 /* Delete coalesce list CL. */
1155 void
1156 delete_coalesce_list (coalesce_list_p cl)
1158 free (cl->list);
1159 free (cl);
1163 /* Find a matching coalesce pair object in CL for partitions P1 and P2. If
1164 one isn't found, return NULL if CREATE is false, otherwise create a new
1165 coalesce pair object and return it. */
1167 static partition_pair_p
1168 find_partition_pair (coalesce_list_p cl, int p1, int p2, bool create)
1170 partition_pair_p node, tmp;
1171 int s;
1173 /* Normalize so that p1 is the smaller value. */
1174 if (p2 < p1)
1176 s = p1;
1177 p1 = p2;
1178 p2 = s;
1181 tmp = NULL;
1183 /* The list is sorted such that if we find a value greater than p2,
1184 p2 is not in the list. */
1185 for (node = cl->list[p1]; node; node = node->next)
1187 if (node->second_partition == p2)
1188 return node;
1189 else
1190 if (node->second_partition > p2)
1191 break;
1192 tmp = node;
1195 if (!create)
1196 return NULL;
1198 node = (partition_pair_p) xmalloc (sizeof (struct partition_pair_d));
1199 node->first_partition = p1;
1200 node->second_partition = p2;
1201 node->cost = 0;
1203 if (tmp != NULL)
1205 node->next = tmp->next;
1206 tmp->next = node;
1208 else
1210 /* This is now the first node in the list. */
1211 node->next = cl->list[p1];
1212 cl->list[p1] = node;
1215 return node;
1218 /* Return cost of execution of copy instruction with FREQUENCY
1219 possibly on CRITICAL edge and in HOT basic block. */
1221 coalesce_cost (int frequency, bool hot, bool critical)
1223 /* Base costs on BB frequencies bounded by 1. */
1224 int cost = frequency;
1226 if (!cost)
1227 cost = 1;
1228 if (optimize_size || hot)
1229 cost = 1;
1230 /* Inserting copy on critical edge costs more
1231 than inserting it elsewhere. */
1232 if (critical)
1233 cost *= 2;
1234 return cost;
1237 /* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
1239 void
1240 add_coalesce (coalesce_list_p cl, int p1, int p2,
1241 int value)
1243 partition_pair_p node;
1245 gcc_assert (cl->add_mode);
1247 if (p1 == p2)
1248 return;
1250 node = find_partition_pair (cl, p1, p2, true);
1252 node->cost += value;
1256 /* Comparison function to allow qsort to sort P1 and P2 in descending order. */
1258 static
1259 int compare_pairs (const void *p1, const void *p2)
1261 return (*(partition_pair_p *)p2)->cost - (*(partition_pair_p *)p1)->cost;
1265 /* Prepare CL for removal of preferred pairs. When finished, list element
1266 0 has all the coalesce pairs, sorted in order from most important coalesce
1267 to least important. */
1269 void
1270 sort_coalesce_list (coalesce_list_p cl)
1272 unsigned x, num, count;
1273 partition_pair_p chain, p;
1274 partition_pair_p *list;
1276 gcc_assert (cl->add_mode);
1278 cl->add_mode = false;
1280 /* Compact the array of lists to a single list, and count the elements. */
1281 num = 0;
1282 chain = NULL;
1283 for (x = 0; x < num_var_partitions (cl->map); x++)
1284 if (cl->list[x] != NULL)
1286 for (p = cl->list[x]; p->next != NULL; p = p->next)
1287 num++;
1288 num++;
1289 p->next = chain;
1290 chain = cl->list[x];
1291 cl->list[x] = NULL;
1294 /* Only call qsort if there are more than 2 items. */
1295 if (num > 2)
1297 list = XNEWVEC (partition_pair_p, num);
1298 count = 0;
1299 for (p = chain; p != NULL; p = p->next)
1300 list[count++] = p;
1302 gcc_assert (count == num);
1304 qsort (list, count, sizeof (partition_pair_p), compare_pairs);
1306 p = list[0];
1307 for (x = 1; x < num; x++)
1309 p->next = list[x];
1310 p = list[x];
1312 p->next = NULL;
1313 cl->list[0] = list[0];
1314 free (list);
1316 else
1318 cl->list[0] = chain;
1319 if (num == 2)
1321 /* Simply swap the two elements if they are in the wrong order. */
1322 if (chain->cost < chain->next->cost)
1324 cl->list[0] = chain->next;
1325 cl->list[0]->next = chain;
1326 chain->next = NULL;
1333 /* Retrieve the best remaining pair to coalesce from CL. Returns the 2
1334 partitions via P1 and P2. Their calculated cost is returned by the function.
1335 NO_BEST_COALESCE is returned if the coalesce list is empty. */
1337 static int
1338 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
1340 partition_pair_p node;
1341 int ret;
1343 gcc_assert (!cl->add_mode);
1345 node = cl->list[0];
1346 if (!node)
1347 return NO_BEST_COALESCE;
1349 cl->list[0] = node->next;
1351 *p1 = node->first_partition;
1352 *p2 = node->second_partition;
1353 ret = node->cost;
1354 free (node);
1356 return ret;
1360 /* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
1361 VAR and any other live partitions in VEC which are associated via TPA.
1362 Reset the live bit in VEC. */
1364 static inline void
1365 add_conflicts_if_valid (tpa_p tpa, conflict_graph graph,
1366 var_map map, bitmap vec, tree var)
1368 int p, y, first;
1369 p = var_to_partition (map, var);
1370 if (p != NO_PARTITION)
1372 bitmap_clear_bit (vec, p);
1373 first = tpa_find_tree (tpa, p);
1374 /* If find returns nothing, this object isn't interesting. */
1375 if (first == TPA_NONE)
1376 return;
1377 /* Only add interferences between objects in the same list. */
1378 for (y = tpa_first_partition (tpa, first);
1379 y != TPA_NONE;
1380 y = tpa_next_partition (tpa, y))
1382 if (bitmap_bit_p (vec, y))
1383 conflict_graph_add (graph, p, y);
1388 DEF_VEC_I(int);
1389 DEF_VEC_ALLOC_I(int,heap);
1391 /* Return a conflict graph for the information contained in LIVE_INFO. Only
1392 conflicts between items in the same TPA list are added. If optional
1393 coalesce list CL is passed in, any copies encountered are added. */
1395 conflict_graph
1396 build_tree_conflict_graph (tree_live_info_p liveinfo, tpa_p tpa,
1397 coalesce_list_p cl)
1399 conflict_graph graph;
1400 var_map map;
1401 bitmap live;
1402 unsigned x, y, i;
1403 basic_block bb;
1404 int *partition_link, *tpa_nodes;
1405 VEC(int,heap) *tpa_to_clear;
1406 unsigned l;
1407 ssa_op_iter iter;
1408 bitmap_iterator bi;
1410 map = live_var_map (liveinfo);
1411 graph = conflict_graph_new (num_var_partitions (map));
1413 if (tpa_num_trees (tpa) == 0)
1414 return graph;
1416 live = BITMAP_ALLOC (NULL);
1418 partition_link = XCNEWVEC (int, num_var_partitions (map) + 1);
1419 tpa_nodes = XCNEWVEC (int, tpa_num_trees (tpa));
1420 tpa_to_clear = VEC_alloc (int, heap, 50);
1422 FOR_EACH_BB (bb)
1424 block_stmt_iterator bsi;
1425 tree phi;
1426 int idx;
1428 /* Start with live on exit temporaries. */
1429 bitmap_copy (live, live_on_exit (liveinfo, bb));
1431 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
1433 bool is_a_copy = false;
1434 tree stmt = bsi_stmt (bsi);
1436 /* A copy between 2 partitions does not introduce an interference
1437 by itself. If they did, you would never be able to coalesce
1438 two things which are copied. If the two variables really do
1439 conflict, they will conflict elsewhere in the program.
1441 This is handled specially here since we may also be interested
1442 in copies between real variables and SSA_NAME variables. We may
1443 be interested in trying to coalesce SSA_NAME variables with
1444 root variables in some cases. */
1446 if (TREE_CODE (stmt) == MODIFY_EXPR)
1448 tree lhs = TREE_OPERAND (stmt, 0);
1449 tree rhs = TREE_OPERAND (stmt, 1);
1450 int p1, p2;
1451 int bit;
1453 if (DECL_P (lhs) || TREE_CODE (lhs) == SSA_NAME)
1454 p1 = var_to_partition (map, lhs);
1455 else
1456 p1 = NO_PARTITION;
1458 if (DECL_P (rhs) || TREE_CODE (rhs) == SSA_NAME)
1459 p2 = var_to_partition (map, rhs);
1460 else
1461 p2 = NO_PARTITION;
1463 if (p1 != NO_PARTITION && p2 != NO_PARTITION)
1465 is_a_copy = true;
1466 bit = bitmap_bit_p (live, p2);
1467 /* If the RHS is live, make it not live while we add
1468 the conflicts, then make it live again. */
1469 if (bit)
1470 bitmap_clear_bit (live, p2);
1471 add_conflicts_if_valid (tpa, graph, map, live, lhs);
1472 if (bit)
1473 bitmap_set_bit (live, p2);
1474 if (cl)
1475 add_coalesce (cl, p1, p2,
1476 coalesce_cost (bb->frequency,
1477 maybe_hot_bb_p (bb), false));
1478 set_if_valid (map, live, rhs);
1482 if (!is_a_copy)
1484 tree var;
1485 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
1487 add_conflicts_if_valid (tpa, graph, map, live, var);
1490 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1492 set_if_valid (map, live, var);
1497 /* If result of a PHI is unused, then the loops over the statements
1498 will not record any conflicts. However, since the PHI node is
1499 going to be translated out of SSA form we must record a conflict
1500 between the result of the PHI and any variables with are live.
1501 Otherwise the out-of-ssa translation may create incorrect code. */
1502 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1504 tree result = PHI_RESULT (phi);
1505 int p = var_to_partition (map, result);
1507 if (p != NO_PARTITION && ! bitmap_bit_p (live, p))
1508 add_conflicts_if_valid (tpa, graph, map, live, result);
1511 /* Anything which is still live at this point interferes.
1512 In order to implement this efficiently, only conflicts between
1513 partitions which have the same TPA root need be added.
1514 TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
1515 entry points to an index into 'partition_link', which then indexes
1516 into itself forming a linked list of partitions sharing a tpa root
1517 which have been seen as live up to this point. Since partitions start
1518 at index zero, all entries in partition_link are (partition + 1).
1520 Conflicts are added between the current partition and any already seen.
1521 tpa_clear contains all the tpa_roots processed, and these are the only
1522 entries which need to be zero'd out for a clean restart. */
1524 EXECUTE_IF_SET_IN_BITMAP (live, 0, x, bi)
1526 i = tpa_find_tree (tpa, x);
1527 if (i != (unsigned)TPA_NONE)
1529 int start = tpa_nodes[i];
1530 /* If start is 0, a new root reference list is being started.
1531 Register it to be cleared. */
1532 if (!start)
1533 VEC_safe_push (int, heap, tpa_to_clear, i);
1535 /* Add interferences to other tpa members seen. */
1536 for (y = start; y != 0; y = partition_link[y])
1537 conflict_graph_add (graph, x, y - 1);
1538 tpa_nodes[i] = x + 1;
1539 partition_link[x + 1] = start;
1543 /* Now clear the used tpa root references. */
1544 for (l = 0; VEC_iterate (int, tpa_to_clear, l, idx); l++)
1545 tpa_nodes[idx] = 0;
1546 VEC_truncate (int, tpa_to_clear, 0);
1549 free (tpa_nodes);
1550 free (partition_link);
1551 VEC_free (int, heap, tpa_to_clear);
1552 BITMAP_FREE (live);
1553 return graph;
1557 /* This routine will attempt to coalesce the elements in TPA subject to the
1558 conflicts found in GRAPH. If optional coalesce_list CL is provided,
1559 only coalesces specified within the coalesce list are attempted. Otherwise
1560 an attempt is made to coalesce as many partitions within each TPA grouping
1561 as possible. If DEBUG is provided, debug output will be sent there. */
1563 void
1564 coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
1565 coalesce_list_p cl, FILE *debug)
1567 int x, y, z, w;
1568 tree var, tmp;
1570 /* Attempt to coalesce any items in a coalesce list. */
1571 if (cl)
1573 while (pop_best_coalesce (cl, &x, &y) != NO_BEST_COALESCE)
1575 if (debug)
1577 fprintf (debug, "Coalesce list: (%d)", x);
1578 print_generic_expr (debug, partition_to_var (map, x), TDF_SLIM);
1579 fprintf (debug, " & (%d)", y);
1580 print_generic_expr (debug, partition_to_var (map, y), TDF_SLIM);
1583 w = tpa_find_tree (tpa, x);
1584 z = tpa_find_tree (tpa, y);
1585 if (w != z || w == TPA_NONE || z == TPA_NONE)
1587 if (debug)
1589 if (w != z)
1590 fprintf (debug, ": Fail, Non-matching TPA's\n");
1591 if (w == TPA_NONE)
1592 fprintf (debug, ": Fail %d non TPA.\n", x);
1593 else
1594 fprintf (debug, ": Fail %d non TPA.\n", y);
1596 continue;
1598 var = partition_to_var (map, x);
1599 tmp = partition_to_var (map, y);
1600 x = var_to_partition (map, var);
1601 y = var_to_partition (map, tmp);
1602 if (debug)
1603 fprintf (debug, " [map: %d, %d] ", x, y);
1604 if (x == y)
1606 if (debug)
1607 fprintf (debug, ": Already Coalesced.\n");
1608 continue;
1610 if (!conflict_graph_conflict_p (graph, x, y))
1612 z = var_union (map, var, tmp);
1613 if (z == NO_PARTITION)
1615 if (debug)
1616 fprintf (debug, ": Unable to perform partition union.\n");
1617 continue;
1620 /* z is the new combined partition. We need to remove the other
1621 partition from the list. Set x to be that other partition. */
1622 if (z == x)
1624 conflict_graph_merge_regs (graph, x, y);
1625 w = tpa_find_tree (tpa, y);
1626 tpa_remove_partition (tpa, w, y);
1628 else
1630 conflict_graph_merge_regs (graph, y, x);
1631 w = tpa_find_tree (tpa, x);
1632 tpa_remove_partition (tpa, w, x);
1635 if (debug)
1636 fprintf (debug, ": Success -> %d\n", z);
1638 else
1639 if (debug)
1640 fprintf (debug, ": Fail due to conflict\n");
1642 /* If using a coalesce list, don't try to coalesce anything else. */
1643 return;
1646 for (x = 0; x < tpa_num_trees (tpa); x++)
1648 while (tpa_first_partition (tpa, x) != TPA_NONE)
1650 int p1, p2;
1651 /* Coalesce first partition with anything that doesn't conflict. */
1652 y = tpa_first_partition (tpa, x);
1653 tpa_remove_partition (tpa, x, y);
1655 var = partition_to_var (map, y);
1656 /* p1 is the partition representative to which y belongs. */
1657 p1 = var_to_partition (map, var);
1659 for (z = tpa_next_partition (tpa, y);
1660 z != TPA_NONE;
1661 z = tpa_next_partition (tpa, z))
1663 tmp = partition_to_var (map, z);
1664 /* p2 is the partition representative to which z belongs. */
1665 p2 = var_to_partition (map, tmp);
1666 if (debug)
1668 fprintf (debug, "Coalesce : ");
1669 print_generic_expr (debug, var, TDF_SLIM);
1670 fprintf (debug, " &");
1671 print_generic_expr (debug, tmp, TDF_SLIM);
1672 fprintf (debug, " (%d ,%d)", p1, p2);
1675 /* If partitions are already merged, don't check for conflict. */
1676 if (tmp == var)
1678 tpa_remove_partition (tpa, x, z);
1679 if (debug)
1680 fprintf (debug, ": Already coalesced\n");
1682 else
1683 if (!conflict_graph_conflict_p (graph, p1, p2))
1685 int v;
1686 if (tpa_find_tree (tpa, y) == TPA_NONE
1687 || tpa_find_tree (tpa, z) == TPA_NONE)
1689 if (debug)
1690 fprintf (debug, ": Fail non-TPA member\n");
1691 continue;
1693 if ((v = var_union (map, var, tmp)) == NO_PARTITION)
1695 if (debug)
1696 fprintf (debug, ": Fail cannot combine partitions\n");
1697 continue;
1700 tpa_remove_partition (tpa, x, z);
1701 if (v == p1)
1702 conflict_graph_merge_regs (graph, v, z);
1703 else
1705 /* Update the first partition's representative. */
1706 conflict_graph_merge_regs (graph, v, y);
1707 p1 = v;
1710 /* The root variable of the partition may be changed
1711 now. */
1712 var = partition_to_var (map, p1);
1714 if (debug)
1715 fprintf (debug, ": Success -> %d\n", v);
1717 else
1718 if (debug)
1719 fprintf (debug, ": Fail, Conflict\n");
1726 /* Send debug info for coalesce list CL to file F. */
1728 void
1729 dump_coalesce_list (FILE *f, coalesce_list_p cl)
1731 partition_pair_p node;
1732 int x, num;
1733 tree var;
1735 if (cl->add_mode)
1737 fprintf (f, "Coalesce List:\n");
1738 num = num_var_partitions (cl->map);
1739 for (x = 0; x < num; x++)
1741 node = cl->list[x];
1742 if (node)
1744 fprintf (f, "[");
1745 print_generic_expr (f, partition_to_var (cl->map, x), TDF_SLIM);
1746 fprintf (f, "] - ");
1747 for ( ; node; node = node->next)
1749 var = partition_to_var (cl->map, node->second_partition);
1750 print_generic_expr (f, var, TDF_SLIM);
1751 fprintf (f, "(%1d), ", node->cost);
1753 fprintf (f, "\n");
1757 else
1759 fprintf (f, "Sorted Coalesce list:\n");
1760 for (node = cl->list[0]; node; node = node->next)
1762 fprintf (f, "(%d) ", node->cost);
1763 var = partition_to_var (cl->map, node->first_partition);
1764 print_generic_expr (f, var, TDF_SLIM);
1765 fprintf (f, " : ");
1766 var = partition_to_var (cl->map, node->second_partition);
1767 print_generic_expr (f, var, TDF_SLIM);
1768 fprintf (f, "\n");
1774 /* Output tree_partition_associator object TPA to file F.. */
1776 void
1777 tpa_dump (FILE *f, tpa_p tpa)
1779 int x, i;
1781 if (!tpa)
1782 return;
1784 for (x = 0; x < tpa_num_trees (tpa); x++)
1786 print_generic_expr (f, tpa_tree (tpa, x), TDF_SLIM);
1787 fprintf (f, " : (");
1788 for (i = tpa_first_partition (tpa, x);
1789 i != TPA_NONE;
1790 i = tpa_next_partition (tpa, i))
1792 fprintf (f, "(%d)",i);
1793 print_generic_expr (f, partition_to_var (tpa->map, i), TDF_SLIM);
1794 fprintf (f, " ");
1796 #ifdef ENABLE_CHECKING
1797 if (tpa_find_tree (tpa, i) != x)
1798 fprintf (f, "**find tree incorrectly set** ");
1799 #endif
1802 fprintf (f, ")\n");
1804 fflush (f);
1808 /* Output partition map MAP to file F. */
1810 void
1811 dump_var_map (FILE *f, var_map map)
1813 int t;
1814 unsigned x, y;
1815 int p;
1817 fprintf (f, "\nPartition map \n\n");
1819 for (x = 0; x < map->num_partitions; x++)
1821 if (map->compact_to_partition != NULL)
1822 p = map->compact_to_partition[x];
1823 else
1824 p = x;
1826 if (map->partition_to_var[p] == NULL_TREE)
1827 continue;
1829 t = 0;
1830 for (y = 1; y < num_ssa_names; y++)
1832 p = partition_find (map->var_partition, y);
1833 if (map->partition_to_compact)
1834 p = map->partition_to_compact[p];
1835 if (p == (int)x)
1837 if (t++ == 0)
1839 fprintf(f, "Partition %d (", x);
1840 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1841 fprintf (f, " - ");
1843 fprintf (f, "%d ", y);
1846 if (t != 0)
1847 fprintf (f, ")\n");
1849 fprintf (f, "\n");
1853 /* Output live range info LIVE to file F, controlled by FLAG. */
1855 void
1856 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1858 basic_block bb;
1859 unsigned i;
1860 var_map map = live->map;
1861 bitmap_iterator bi;
1863 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1865 FOR_EACH_BB (bb)
1867 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1868 for (i = 0; i < num_var_partitions (map); i++)
1870 if (bitmap_bit_p (live_entry_blocks (live, i), bb->index))
1872 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1873 fprintf (f, " ");
1876 fprintf (f, "\n");
1880 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1882 FOR_EACH_BB (bb)
1884 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1885 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1887 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1888 fprintf (f, " ");
1890 fprintf (f, "\n");
1895 #ifdef ENABLE_CHECKING
1896 void
1897 register_ssa_partition_check (tree ssa_var)
1899 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1900 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1902 fprintf (stderr, "Illegally registering a virtual SSA name :");
1903 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1904 fprintf (stderr, " in the SSA->Normal phase.\n");
1905 internal_error ("SSA corruption");
1908 #endif