Imported GNU Classpath 0.90
[official-gcc.git] / gcc / ada / s-taprop-hpux-dce.adb
blob838f54e76f95a50f61ae414c43a1b056da3b6f97
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a HP-UX DCE threads (HPUX 10) version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 pragma Polling (Off);
40 -- Turn off polling, we do not want ATC polling to take place during
41 -- tasking operations. It causes infinite loops and other problems.
43 with System.Tasking.Debug;
44 -- used for Known_Tasks
46 with System.Interrupt_Management;
47 -- used for Keep_Unmasked
48 -- Abort_Task_Interrupt
49 -- Interrupt_ID
51 pragma Warnings (Off);
52 with System.Interrupt_Management.Operations;
53 -- used for Set_Interrupt_Mask
54 -- All_Tasks_Mask
55 pragma Elaborate_All (System.Interrupt_Management.Operations);
57 pragma Warnings (On);
59 with System.OS_Primitives;
60 -- used for Delay_Modes
62 with Interfaces.C;
63 -- used for int
64 -- size_t
66 with System.Parameters;
67 -- used for Size_Type
69 with System.Task_Primitives.Interrupt_Operations;
70 -- used for Get_Interrupt_ID
72 with System.Soft_Links;
73 -- used for Defer/Undefer_Abort
75 -- We use System.Soft_Links instead of System.Tasking.Initialization
76 -- because the later is a higher level package that we shouldn't depend on.
77 -- For example when using the restricted run time, it is replaced by
78 -- System.Tasking.Restricted.Stages.
80 with Unchecked_Conversion;
81 with Unchecked_Deallocation;
83 package body System.Task_Primitives.Operations is
85 package SSL renames System.Soft_Links;
87 use System.Tasking.Debug;
88 use System.Tasking;
89 use Interfaces.C;
90 use System.OS_Interface;
91 use System.Parameters;
92 use System.OS_Primitives;
94 package PIO renames System.Task_Primitives.Interrupt_Operations;
96 ----------------
97 -- Local Data --
98 ----------------
100 -- The followings are logically constants, but need to be initialized
101 -- at run time.
103 Single_RTS_Lock : aliased RTS_Lock;
104 -- This is a lock to allow only one thread of control in the RTS at
105 -- a time; it is used to execute in mutual exclusion from all other tasks.
106 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
108 ATCB_Key : aliased pthread_key_t;
109 -- Key used to find the Ada Task_Id associated with a thread
111 Environment_Task_Id : Task_Id;
112 -- A variable to hold Task_Id for the environment task
114 Unblocked_Signal_Mask : aliased sigset_t;
115 -- The set of signals that should unblocked in all tasks
117 Time_Slice_Val : Integer;
118 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
120 Dispatching_Policy : Character;
121 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
123 -- Note: the reason that Locking_Policy is not needed is that this
124 -- is not implemented for DCE threads. The HPUX 10 port is at this
125 -- stage considered dead, and no further work is planned on it.
127 Foreign_Task_Elaborated : aliased Boolean := True;
128 -- Used to identified fake tasks (i.e., non-Ada Threads)
130 --------------------
131 -- Local Packages --
132 --------------------
134 package Specific is
136 procedure Initialize (Environment_Task : Task_Id);
137 pragma Inline (Initialize);
138 -- Initialize various data needed by this package
140 function Is_Valid_Task return Boolean;
141 pragma Inline (Is_Valid_Task);
142 -- Does the executing thread have a TCB?
144 procedure Set (Self_Id : Task_Id);
145 pragma Inline (Set);
146 -- Set the self id for the current task
148 function Self return Task_Id;
149 pragma Inline (Self);
150 -- Return a pointer to the Ada Task Control Block of the calling task
152 end Specific;
154 package body Specific is separate;
155 -- The body of this package is target specific
157 ---------------------------------
158 -- Support for foreign threads --
159 ---------------------------------
161 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
162 -- Allocate and Initialize a new ATCB for the current Thread
164 function Register_Foreign_Thread
165 (Thread : Thread_Id) return Task_Id is separate;
167 -----------------------
168 -- Local Subprograms --
169 -----------------------
171 procedure Abort_Handler (Sig : Signal);
173 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
175 -------------------
176 -- Abort_Handler --
177 -------------------
179 procedure Abort_Handler (Sig : Signal) is
180 pragma Unreferenced (Sig);
182 Self_Id : constant Task_Id := Self;
183 Result : Interfaces.C.int;
184 Old_Set : aliased sigset_t;
186 begin
187 if Self_Id.Deferral_Level = 0
188 and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level and then
189 not Self_Id.Aborting
190 then
191 Self_Id.Aborting := True;
193 -- Make sure signals used for RTS internal purpose are unmasked
195 Result := pthread_sigmask (SIG_UNBLOCK,
196 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
197 pragma Assert (Result = 0);
199 raise Standard'Abort_Signal;
200 end if;
201 end Abort_Handler;
203 -----------------
204 -- Stack_Guard --
205 -----------------
207 -- The underlying thread system sets a guard page at the
208 -- bottom of a thread stack, so nothing is needed.
209 -- ??? Check the comment above
211 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
212 pragma Unreferenced (T, On);
213 begin
214 null;
215 end Stack_Guard;
217 -------------------
218 -- Get_Thread_Id --
219 -------------------
221 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
222 begin
223 return T.Common.LL.Thread;
224 end Get_Thread_Id;
226 ----------
227 -- Self --
228 ----------
230 function Self return Task_Id renames Specific.Self;
232 ---------------------
233 -- Initialize_Lock --
234 ---------------------
236 -- Note: mutexes and cond_variables needed per-task basis are
237 -- initialized in Initialize_TCB and the Storage_Error is
238 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
239 -- used in RTS is initialized before any status change of RTS.
240 -- Therefore rasing Storage_Error in the following routines
241 -- should be able to be handled safely.
243 procedure Initialize_Lock
244 (Prio : System.Any_Priority;
245 L : access Lock)
247 Attributes : aliased pthread_mutexattr_t;
248 Result : Interfaces.C.int;
250 begin
251 Result := pthread_mutexattr_init (Attributes'Access);
252 pragma Assert (Result = 0 or else Result = ENOMEM);
254 if Result = ENOMEM then
255 raise Storage_Error;
256 end if;
258 L.Priority := Prio;
260 Result := pthread_mutex_init (L.L'Access, Attributes'Access);
261 pragma Assert (Result = 0 or else Result = ENOMEM);
263 if Result = ENOMEM then
264 raise Storage_Error;
265 end if;
267 Result := pthread_mutexattr_destroy (Attributes'Access);
268 pragma Assert (Result = 0);
269 end Initialize_Lock;
271 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
272 pragma Unreferenced (Level);
274 Attributes : aliased pthread_mutexattr_t;
275 Result : Interfaces.C.int;
277 begin
278 Result := pthread_mutexattr_init (Attributes'Access);
279 pragma Assert (Result = 0 or else Result = ENOMEM);
281 if Result = ENOMEM then
282 raise Storage_Error;
283 end if;
285 Result := pthread_mutex_init (L, Attributes'Access);
287 pragma Assert (Result = 0 or else Result = ENOMEM);
289 if Result = ENOMEM then
290 raise Storage_Error;
291 end if;
293 Result := pthread_mutexattr_destroy (Attributes'Access);
294 pragma Assert (Result = 0);
295 end Initialize_Lock;
297 -------------------
298 -- Finalize_Lock --
299 -------------------
301 procedure Finalize_Lock (L : access Lock) is
302 Result : Interfaces.C.int;
303 begin
304 Result := pthread_mutex_destroy (L.L'Access);
305 pragma Assert (Result = 0);
306 end Finalize_Lock;
308 procedure Finalize_Lock (L : access RTS_Lock) is
309 Result : Interfaces.C.int;
310 begin
311 Result := pthread_mutex_destroy (L);
312 pragma Assert (Result = 0);
313 end Finalize_Lock;
315 ----------------
316 -- Write_Lock --
317 ----------------
319 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
320 Result : Interfaces.C.int;
322 begin
323 L.Owner_Priority := Get_Priority (Self);
325 if L.Priority < L.Owner_Priority then
326 Ceiling_Violation := True;
327 return;
328 end if;
330 Result := pthread_mutex_lock (L.L'Access);
331 pragma Assert (Result = 0);
332 Ceiling_Violation := False;
333 end Write_Lock;
335 procedure Write_Lock
336 (L : access RTS_Lock; Global_Lock : Boolean := False)
338 Result : Interfaces.C.int;
339 begin
340 if not Single_Lock or else Global_Lock then
341 Result := pthread_mutex_lock (L);
342 pragma Assert (Result = 0);
343 end if;
344 end Write_Lock;
346 procedure Write_Lock (T : Task_Id) is
347 Result : Interfaces.C.int;
348 begin
349 if not Single_Lock then
350 Result := pthread_mutex_lock (T.Common.LL.L'Access);
351 pragma Assert (Result = 0);
352 end if;
353 end Write_Lock;
355 ---------------
356 -- Read_Lock --
357 ---------------
359 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
360 begin
361 Write_Lock (L, Ceiling_Violation);
362 end Read_Lock;
364 ------------
365 -- Unlock --
366 ------------
368 procedure Unlock (L : access Lock) is
369 Result : Interfaces.C.int;
370 begin
371 Result := pthread_mutex_unlock (L.L'Access);
372 pragma Assert (Result = 0);
373 end Unlock;
375 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
376 Result : Interfaces.C.int;
377 begin
378 if not Single_Lock or else Global_Lock then
379 Result := pthread_mutex_unlock (L);
380 pragma Assert (Result = 0);
381 end if;
382 end Unlock;
384 procedure Unlock (T : Task_Id) is
385 Result : Interfaces.C.int;
386 begin
387 if not Single_Lock then
388 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
389 pragma Assert (Result = 0);
390 end if;
391 end Unlock;
393 -----------
394 -- Sleep --
395 -----------
397 procedure Sleep
398 (Self_ID : Task_Id;
399 Reason : System.Tasking.Task_States)
401 pragma Unreferenced (Reason);
403 Result : Interfaces.C.int;
404 begin
405 if Single_Lock then
406 Result := pthread_cond_wait
407 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
408 else
409 Result := pthread_cond_wait
410 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
411 end if;
413 -- EINTR is not considered a failure
415 pragma Assert (Result = 0 or else Result = EINTR);
416 end Sleep;
418 -----------------
419 -- Timed_Sleep --
420 -----------------
422 procedure Timed_Sleep
423 (Self_ID : Task_Id;
424 Time : Duration;
425 Mode : ST.Delay_Modes;
426 Reason : System.Tasking.Task_States;
427 Timedout : out Boolean;
428 Yielded : out Boolean)
430 pragma Unreferenced (Reason);
432 Check_Time : constant Duration := Monotonic_Clock;
433 Abs_Time : Duration;
434 Request : aliased timespec;
435 Result : Interfaces.C.int;
437 begin
438 Timedout := True;
439 Yielded := False;
441 if Mode = Relative then
442 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
443 else
444 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
445 end if;
447 if Abs_Time > Check_Time then
448 Request := To_Timespec (Abs_Time);
450 loop
451 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
452 or else Self_ID.Pending_Priority_Change;
454 if Single_Lock then
455 Result := pthread_cond_timedwait
456 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
457 Request'Access);
459 else
460 Result := pthread_cond_timedwait
461 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
462 Request'Access);
463 end if;
465 exit when Abs_Time <= Monotonic_Clock;
467 if Result = 0 or Result = EINTR then
469 -- Somebody may have called Wakeup for us
471 Timedout := False;
472 exit;
473 end if;
475 pragma Assert (Result = ETIMEDOUT);
476 end loop;
477 end if;
478 end Timed_Sleep;
480 -----------------
481 -- Timed_Delay --
482 -----------------
484 procedure Timed_Delay
485 (Self_ID : Task_Id;
486 Time : Duration;
487 Mode : ST.Delay_Modes)
489 Check_Time : constant Duration := Monotonic_Clock;
490 Abs_Time : Duration;
491 Request : aliased timespec;
492 Result : Interfaces.C.int;
494 begin
495 if Single_Lock then
496 Lock_RTS;
497 end if;
499 Write_Lock (Self_ID);
501 if Mode = Relative then
502 Abs_Time := Time + Check_Time;
503 else
504 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
505 end if;
507 if Abs_Time > Check_Time then
508 Request := To_Timespec (Abs_Time);
509 Self_ID.Common.State := Delay_Sleep;
511 loop
512 if Self_ID.Pending_Priority_Change then
513 Self_ID.Pending_Priority_Change := False;
514 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
515 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
516 end if;
518 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
520 if Single_Lock then
521 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
522 Single_RTS_Lock'Access, Request'Access);
523 else
524 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
525 Self_ID.Common.LL.L'Access, Request'Access);
526 end if;
528 exit when Abs_Time <= Monotonic_Clock;
530 pragma Assert (Result = 0 or else
531 Result = ETIMEDOUT or else
532 Result = EINTR);
533 end loop;
535 Self_ID.Common.State := Runnable;
536 end if;
538 Unlock (Self_ID);
540 if Single_Lock then
541 Unlock_RTS;
542 end if;
544 Result := sched_yield;
545 end Timed_Delay;
547 ---------------------
548 -- Monotonic_Clock --
549 ---------------------
551 function Monotonic_Clock return Duration is
552 TS : aliased timespec;
553 Result : Interfaces.C.int;
554 begin
555 Result := Clock_Gettime (CLOCK_REALTIME, TS'Unchecked_Access);
556 pragma Assert (Result = 0);
557 return To_Duration (TS);
558 end Monotonic_Clock;
560 -------------------
561 -- RT_Resolution --
562 -------------------
564 function RT_Resolution return Duration is
565 begin
566 return 10#1.0#E-6;
567 end RT_Resolution;
569 ------------
570 -- Wakeup --
571 ------------
573 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
574 pragma Unreferenced (Reason);
576 Result : Interfaces.C.int;
578 begin
579 Result := pthread_cond_signal (T.Common.LL.CV'Access);
580 pragma Assert (Result = 0);
581 end Wakeup;
583 -----------
584 -- Yield --
585 -----------
587 procedure Yield (Do_Yield : Boolean := True) is
588 Result : Interfaces.C.int;
589 pragma Unreferenced (Result);
590 begin
591 if Do_Yield then
592 Result := sched_yield;
593 end if;
594 end Yield;
596 ------------------
597 -- Set_Priority --
598 ------------------
600 type Prio_Array_Type is array (System.Any_Priority) of Integer;
601 pragma Atomic_Components (Prio_Array_Type);
603 Prio_Array : Prio_Array_Type;
604 -- Global array containing the id of the currently running task for
605 -- each priority.
607 -- Note: we assume that we are on a single processor with run-til-blocked
608 -- scheduling.
610 procedure Set_Priority
611 (T : Task_Id;
612 Prio : System.Any_Priority;
613 Loss_Of_Inheritance : Boolean := False)
615 Result : Interfaces.C.int;
616 Array_Item : Integer;
617 Param : aliased struct_sched_param;
619 begin
620 Param.sched_priority := Interfaces.C.int (Underlying_Priorities (Prio));
622 if Time_Slice_Val > 0 then
623 Result := pthread_setschedparam
624 (T.Common.LL.Thread, SCHED_RR, Param'Access);
626 elsif Dispatching_Policy = 'F' or else Time_Slice_Val = 0 then
627 Result := pthread_setschedparam
628 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
630 else
631 Result := pthread_setschedparam
632 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
633 end if;
635 pragma Assert (Result = 0);
637 if Dispatching_Policy = 'F' then
639 -- Annex D requirement [RM D.2.2 par. 9]:
640 -- If the task drops its priority due to the loss of inherited
641 -- priority, it is added at the head of the ready queue for its
642 -- new active priority.
644 if Loss_Of_Inheritance
645 and then Prio < T.Common.Current_Priority
646 then
647 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
648 Prio_Array (T.Common.Base_Priority) := Array_Item;
650 loop
651 -- Let some processes a chance to arrive
653 Yield;
655 -- Then wait for our turn to proceed
657 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
658 or else Prio_Array (T.Common.Base_Priority) = 1;
659 end loop;
661 Prio_Array (T.Common.Base_Priority) :=
662 Prio_Array (T.Common.Base_Priority) - 1;
663 end if;
664 end if;
666 T.Common.Current_Priority := Prio;
667 end Set_Priority;
669 ------------------
670 -- Get_Priority --
671 ------------------
673 function Get_Priority (T : Task_Id) return System.Any_Priority is
674 begin
675 return T.Common.Current_Priority;
676 end Get_Priority;
678 ----------------
679 -- Enter_Task --
680 ----------------
682 procedure Enter_Task (Self_ID : Task_Id) is
683 begin
684 Self_ID.Common.LL.Thread := pthread_self;
685 Specific.Set (Self_ID);
687 Lock_RTS;
689 for J in Known_Tasks'Range loop
690 if Known_Tasks (J) = null then
691 Known_Tasks (J) := Self_ID;
692 Self_ID.Known_Tasks_Index := J;
693 exit;
694 end if;
695 end loop;
697 Unlock_RTS;
698 end Enter_Task;
700 --------------
701 -- New_ATCB --
702 --------------
704 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
705 begin
706 return new Ada_Task_Control_Block (Entry_Num);
707 end New_ATCB;
709 -------------------
710 -- Is_Valid_Task --
711 -------------------
713 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
715 -----------------------------
716 -- Register_Foreign_Thread --
717 -----------------------------
719 function Register_Foreign_Thread return Task_Id is
720 begin
721 if Is_Valid_Task then
722 return Self;
723 else
724 return Register_Foreign_Thread (pthread_self);
725 end if;
726 end Register_Foreign_Thread;
728 --------------------
729 -- Initialize_TCB --
730 --------------------
732 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
733 Mutex_Attr : aliased pthread_mutexattr_t;
734 Result : Interfaces.C.int;
735 Cond_Attr : aliased pthread_condattr_t;
737 begin
738 if not Single_Lock then
739 Result := pthread_mutexattr_init (Mutex_Attr'Access);
740 pragma Assert (Result = 0 or else Result = ENOMEM);
742 if Result = 0 then
743 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
744 Mutex_Attr'Access);
745 pragma Assert (Result = 0 or else Result = ENOMEM);
746 end if;
748 if Result /= 0 then
749 Succeeded := False;
750 return;
751 end if;
753 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
754 pragma Assert (Result = 0);
755 end if;
757 Result := pthread_condattr_init (Cond_Attr'Access);
758 pragma Assert (Result = 0 or else Result = ENOMEM);
760 if Result = 0 then
761 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
762 Cond_Attr'Access);
763 pragma Assert (Result = 0 or else Result = ENOMEM);
764 end if;
766 if Result = 0 then
767 Succeeded := True;
768 else
769 if not Single_Lock then
770 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
771 pragma Assert (Result = 0);
772 end if;
774 Succeeded := False;
775 end if;
777 Result := pthread_condattr_destroy (Cond_Attr'Access);
778 pragma Assert (Result = 0);
779 end Initialize_TCB;
781 -----------------
782 -- Create_Task --
783 -----------------
785 procedure Create_Task
786 (T : Task_Id;
787 Wrapper : System.Address;
788 Stack_Size : System.Parameters.Size_Type;
789 Priority : System.Any_Priority;
790 Succeeded : out Boolean)
792 Attributes : aliased pthread_attr_t;
793 Result : Interfaces.C.int;
795 function Thread_Body_Access is new
796 Unchecked_Conversion (System.Address, Thread_Body);
798 begin
799 Result := pthread_attr_init (Attributes'Access);
800 pragma Assert (Result = 0 or else Result = ENOMEM);
802 if Result /= 0 then
803 Succeeded := False;
804 return;
805 end if;
807 Result := pthread_attr_setstacksize
808 (Attributes'Access, Interfaces.C.size_t (Stack_Size));
809 pragma Assert (Result = 0);
811 -- Since the initial signal mask of a thread is inherited from the
812 -- creator, and the Environment task has all its signals masked, we
813 -- do not need to manipulate caller's signal mask at this point.
814 -- All tasks in RTS will have All_Tasks_Mask initially.
816 Result := pthread_create
817 (T.Common.LL.Thread'Access,
818 Attributes'Access,
819 Thread_Body_Access (Wrapper),
820 To_Address (T));
821 pragma Assert (Result = 0 or else Result = EAGAIN);
823 Succeeded := Result = 0;
825 pthread_detach (T.Common.LL.Thread'Access);
826 -- Detach the thread using pthread_detach, sinc DCE threads do not have
827 -- pthread_attr_set_detachstate.
829 Result := pthread_attr_destroy (Attributes'Access);
830 pragma Assert (Result = 0);
832 Set_Priority (T, Priority);
833 end Create_Task;
835 ------------------
836 -- Finalize_TCB --
837 ------------------
839 procedure Finalize_TCB (T : Task_Id) is
840 Result : Interfaces.C.int;
841 Tmp : Task_Id := T;
842 Is_Self : constant Boolean := T = Self;
844 procedure Free is new
845 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
847 begin
848 if not Single_Lock then
849 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
850 pragma Assert (Result = 0);
851 end if;
853 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
854 pragma Assert (Result = 0);
856 if T.Known_Tasks_Index /= -1 then
857 Known_Tasks (T.Known_Tasks_Index) := null;
858 end if;
860 Free (Tmp);
862 if Is_Self then
863 Specific.Set (null);
864 end if;
865 end Finalize_TCB;
867 ---------------
868 -- Exit_Task --
869 ---------------
871 procedure Exit_Task is
872 begin
873 Specific.Set (null);
874 end Exit_Task;
876 ----------------
877 -- Abort_Task --
878 ----------------
880 procedure Abort_Task (T : Task_Id) is
881 begin
883 -- Interrupt Server_Tasks may be waiting on an "event" flag (signal)
885 if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
886 System.Interrupt_Management.Operations.Interrupt_Self_Process
887 (System.Interrupt_Management.Interrupt_ID
888 (PIO.Get_Interrupt_ID (T)));
889 end if;
890 end Abort_Task;
892 ----------------
893 -- Initialize --
894 ----------------
896 procedure Initialize (S : in out Suspension_Object) is
897 Mutex_Attr : aliased pthread_mutexattr_t;
898 Cond_Attr : aliased pthread_condattr_t;
899 Result : Interfaces.C.int;
900 begin
901 -- Initialize internal state. It is always initialized to False (ARM
902 -- D.10 par. 6).
904 S.State := False;
905 S.Waiting := False;
907 -- Initialize internal mutex
909 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
910 pragma Assert (Result = 0 or else Result = ENOMEM);
912 if Result = ENOMEM then
913 raise Storage_Error;
914 end if;
916 -- Initialize internal condition variable
918 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
919 pragma Assert (Result = 0 or else Result = ENOMEM);
921 if Result /= 0 then
922 Result := pthread_mutex_destroy (S.L'Access);
923 pragma Assert (Result = 0);
925 if Result = ENOMEM then
926 raise Storage_Error;
927 end if;
928 end if;
929 end Initialize;
931 --------------
932 -- Finalize --
933 --------------
935 procedure Finalize (S : in out Suspension_Object) is
936 Result : Interfaces.C.int;
937 begin
938 -- Destroy internal mutex
940 Result := pthread_mutex_destroy (S.L'Access);
941 pragma Assert (Result = 0);
943 -- Destroy internal condition variable
945 Result := pthread_cond_destroy (S.CV'Access);
946 pragma Assert (Result = 0);
947 end Finalize;
949 -------------------
950 -- Current_State --
951 -------------------
953 function Current_State (S : Suspension_Object) return Boolean is
954 begin
955 -- We do not want to use lock on this read operation. State is marked
956 -- as Atomic so that we ensure that the value retrieved is correct.
958 return S.State;
959 end Current_State;
961 ---------------
962 -- Set_False --
963 ---------------
965 procedure Set_False (S : in out Suspension_Object) is
966 Result : Interfaces.C.int;
967 begin
968 SSL.Abort_Defer.all;
970 Result := pthread_mutex_lock (S.L'Access);
971 pragma Assert (Result = 0);
973 S.State := False;
975 Result := pthread_mutex_unlock (S.L'Access);
976 pragma Assert (Result = 0);
978 SSL.Abort_Undefer.all;
979 end Set_False;
981 --------------
982 -- Set_True --
983 --------------
985 procedure Set_True (S : in out Suspension_Object) is
986 Result : Interfaces.C.int;
987 begin
988 SSL.Abort_Defer.all;
990 Result := pthread_mutex_lock (S.L'Access);
991 pragma Assert (Result = 0);
993 -- If there is already a task waiting on this suspension object then
994 -- we resume it, leaving the state of the suspension object to False,
995 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
996 -- the state to True.
998 if S.Waiting then
999 S.Waiting := False;
1000 S.State := False;
1002 Result := pthread_cond_signal (S.CV'Access);
1003 pragma Assert (Result = 0);
1004 else
1005 S.State := True;
1006 end if;
1008 Result := pthread_mutex_unlock (S.L'Access);
1009 pragma Assert (Result = 0);
1011 SSL.Abort_Undefer.all;
1012 end Set_True;
1014 ------------------------
1015 -- Suspend_Until_True --
1016 ------------------------
1018 procedure Suspend_Until_True (S : in out Suspension_Object) is
1019 Result : Interfaces.C.int;
1020 begin
1021 SSL.Abort_Defer.all;
1023 Result := pthread_mutex_lock (S.L'Access);
1024 pragma Assert (Result = 0);
1026 if S.Waiting then
1027 -- Program_Error must be raised upon calling Suspend_Until_True
1028 -- if another task is already waiting on that suspension object
1029 -- (ARM D.10 par. 10).
1031 Result := pthread_mutex_unlock (S.L'Access);
1032 pragma Assert (Result = 0);
1034 SSL.Abort_Undefer.all;
1036 raise Program_Error;
1037 else
1038 -- Suspend the task if the state is False. Otherwise, the task
1039 -- continues its execution, and the state of the suspension object
1040 -- is set to False (ARM D.10 par. 9).
1042 if S.State then
1043 S.State := False;
1044 else
1045 S.Waiting := True;
1046 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1047 end if;
1049 Result := pthread_mutex_unlock (S.L'Access);
1050 pragma Assert (Result = 0);
1052 SSL.Abort_Undefer.all;
1053 end if;
1054 end Suspend_Until_True;
1056 ----------------
1057 -- Check_Exit --
1058 ----------------
1060 -- Dummy version
1062 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1063 pragma Unreferenced (Self_ID);
1064 begin
1065 return True;
1066 end Check_Exit;
1068 --------------------
1069 -- Check_No_Locks --
1070 --------------------
1072 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1073 pragma Unreferenced (Self_ID);
1074 begin
1075 return True;
1076 end Check_No_Locks;
1078 ----------------------
1079 -- Environment_Task --
1080 ----------------------
1082 function Environment_Task return Task_Id is
1083 begin
1084 return Environment_Task_Id;
1085 end Environment_Task;
1087 --------------
1088 -- Lock_RTS --
1089 --------------
1091 procedure Lock_RTS is
1092 begin
1093 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1094 end Lock_RTS;
1096 ----------------
1097 -- Unlock_RTS --
1098 ----------------
1100 procedure Unlock_RTS is
1101 begin
1102 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1103 end Unlock_RTS;
1105 ------------------
1106 -- Suspend_Task --
1107 ------------------
1109 function Suspend_Task
1110 (T : ST.Task_Id;
1111 Thread_Self : Thread_Id) return Boolean
1113 pragma Unreferenced (T);
1114 pragma Unreferenced (Thread_Self);
1115 begin
1116 return False;
1117 end Suspend_Task;
1119 -----------------
1120 -- Resume_Task --
1121 -----------------
1123 function Resume_Task
1124 (T : ST.Task_Id;
1125 Thread_Self : Thread_Id) return Boolean
1127 pragma Unreferenced (T);
1128 pragma Unreferenced (Thread_Self);
1129 begin
1130 return False;
1131 end Resume_Task;
1133 ----------------
1134 -- Initialize --
1135 ----------------
1137 procedure Initialize (Environment_Task : Task_Id) is
1138 act : aliased struct_sigaction;
1139 old_act : aliased struct_sigaction;
1140 Tmp_Set : aliased sigset_t;
1141 Result : Interfaces.C.int;
1143 function State
1144 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1145 pragma Import (C, State, "__gnat_get_interrupt_state");
1146 -- Get interrupt state. Defined in a-init.c. The input argument is
1147 -- the interrupt number, and the result is one of the following:
1149 Default : constant Character := 's';
1150 -- 'n' this interrupt not set by any Interrupt_State pragma
1151 -- 'u' Interrupt_State pragma set state to User
1152 -- 'r' Interrupt_State pragma set state to Runtime
1153 -- 's' Interrupt_State pragma set state to System (use "default"
1154 -- system handler)
1156 begin
1157 Environment_Task_Id := Environment_Task;
1159 Interrupt_Management.Initialize;
1161 -- Initialize the lock used to synchronize chain of all ATCBs
1163 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1165 Specific.Initialize (Environment_Task);
1167 Enter_Task (Environment_Task);
1169 -- Install the abort-signal handler
1171 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1172 /= Default
1173 then
1174 act.sa_flags := 0;
1175 act.sa_handler := Abort_Handler'Address;
1177 Result := sigemptyset (Tmp_Set'Access);
1178 pragma Assert (Result = 0);
1179 act.sa_mask := Tmp_Set;
1181 Result :=
1182 sigaction (
1183 Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1184 act'Unchecked_Access,
1185 old_act'Unchecked_Access);
1186 pragma Assert (Result = 0);
1187 end if;
1188 end Initialize;
1190 -- NOTE: Unlike other pthread implementations, we do *not* mask all
1191 -- signals here since we handle signals using the process-wide primitive
1192 -- signal, rather than using sigthreadmask and sigwait. The reason of
1193 -- this difference is that sigwait doesn't work when some critical
1194 -- signals (SIGABRT, SIGPIPE) are masked.
1196 end System.Task_Primitives.Operations;