* config/avr/avr-arch.h
[official-gcc.git] / libgo / go / strconv / extfloat.go
blobb7eaaa61bf4d92016c62a3fe4c4cd3bf6bb7da79
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package strconv
7 // An extFloat represents an extended floating-point number, with more
8 // precision than a float64. It does not try to save bits: the
9 // number represented by the structure is mant*(2^exp), with a negative
10 // sign if neg is true.
11 type extFloat struct {
12 mant uint64
13 exp int
14 neg bool
17 // Powers of ten taken from double-conversion library.
18 // http://code.google.com/p/double-conversion/
19 const (
20 firstPowerOfTen = -348
21 stepPowerOfTen = 8
24 var smallPowersOfTen = [...]extFloat{
25 {1 << 63, -63, false}, // 1
26 {0xa << 60, -60, false}, // 1e1
27 {0x64 << 57, -57, false}, // 1e2
28 {0x3e8 << 54, -54, false}, // 1e3
29 {0x2710 << 50, -50, false}, // 1e4
30 {0x186a0 << 47, -47, false}, // 1e5
31 {0xf4240 << 44, -44, false}, // 1e6
32 {0x989680 << 40, -40, false}, // 1e7
35 var powersOfTen = [...]extFloat{
36 {0xfa8fd5a0081c0288, -1220, false}, // 10^-348
37 {0xbaaee17fa23ebf76, -1193, false}, // 10^-340
38 {0x8b16fb203055ac76, -1166, false}, // 10^-332
39 {0xcf42894a5dce35ea, -1140, false}, // 10^-324
40 {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
41 {0xe61acf033d1a45df, -1087, false}, // 10^-308
42 {0xab70fe17c79ac6ca, -1060, false}, // 10^-300
43 {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
44 {0xbe5691ef416bd60c, -1007, false}, // 10^-284
45 {0x8dd01fad907ffc3c, -980, false}, // 10^-276
46 {0xd3515c2831559a83, -954, false}, // 10^-268
47 {0x9d71ac8fada6c9b5, -927, false}, // 10^-260
48 {0xea9c227723ee8bcb, -901, false}, // 10^-252
49 {0xaecc49914078536d, -874, false}, // 10^-244
50 {0x823c12795db6ce57, -847, false}, // 10^-236
51 {0xc21094364dfb5637, -821, false}, // 10^-228
52 {0x9096ea6f3848984f, -794, false}, // 10^-220
53 {0xd77485cb25823ac7, -768, false}, // 10^-212
54 {0xa086cfcd97bf97f4, -741, false}, // 10^-204
55 {0xef340a98172aace5, -715, false}, // 10^-196
56 {0xb23867fb2a35b28e, -688, false}, // 10^-188
57 {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
58 {0xc5dd44271ad3cdba, -635, false}, // 10^-172
59 {0x936b9fcebb25c996, -608, false}, // 10^-164
60 {0xdbac6c247d62a584, -582, false}, // 10^-156
61 {0xa3ab66580d5fdaf6, -555, false}, // 10^-148
62 {0xf3e2f893dec3f126, -529, false}, // 10^-140
63 {0xb5b5ada8aaff80b8, -502, false}, // 10^-132
64 {0x87625f056c7c4a8b, -475, false}, // 10^-124
65 {0xc9bcff6034c13053, -449, false}, // 10^-116
66 {0x964e858c91ba2655, -422, false}, // 10^-108
67 {0xdff9772470297ebd, -396, false}, // 10^-100
68 {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
69 {0xf8a95fcf88747d94, -343, false}, // 10^-84
70 {0xb94470938fa89bcf, -316, false}, // 10^-76
71 {0x8a08f0f8bf0f156b, -289, false}, // 10^-68
72 {0xcdb02555653131b6, -263, false}, // 10^-60
73 {0x993fe2c6d07b7fac, -236, false}, // 10^-52
74 {0xe45c10c42a2b3b06, -210, false}, // 10^-44
75 {0xaa242499697392d3, -183, false}, // 10^-36
76 {0xfd87b5f28300ca0e, -157, false}, // 10^-28
77 {0xbce5086492111aeb, -130, false}, // 10^-20
78 {0x8cbccc096f5088cc, -103, false}, // 10^-12
79 {0xd1b71758e219652c, -77, false}, // 10^-4
80 {0x9c40000000000000, -50, false}, // 10^4
81 {0xe8d4a51000000000, -24, false}, // 10^12
82 {0xad78ebc5ac620000, 3, false}, // 10^20
83 {0x813f3978f8940984, 30, false}, // 10^28
84 {0xc097ce7bc90715b3, 56, false}, // 10^36
85 {0x8f7e32ce7bea5c70, 83, false}, // 10^44
86 {0xd5d238a4abe98068, 109, false}, // 10^52
87 {0x9f4f2726179a2245, 136, false}, // 10^60
88 {0xed63a231d4c4fb27, 162, false}, // 10^68
89 {0xb0de65388cc8ada8, 189, false}, // 10^76
90 {0x83c7088e1aab65db, 216, false}, // 10^84
91 {0xc45d1df942711d9a, 242, false}, // 10^92
92 {0x924d692ca61be758, 269, false}, // 10^100
93 {0xda01ee641a708dea, 295, false}, // 10^108
94 {0xa26da3999aef774a, 322, false}, // 10^116
95 {0xf209787bb47d6b85, 348, false}, // 10^124
96 {0xb454e4a179dd1877, 375, false}, // 10^132
97 {0x865b86925b9bc5c2, 402, false}, // 10^140
98 {0xc83553c5c8965d3d, 428, false}, // 10^148
99 {0x952ab45cfa97a0b3, 455, false}, // 10^156
100 {0xde469fbd99a05fe3, 481, false}, // 10^164
101 {0xa59bc234db398c25, 508, false}, // 10^172
102 {0xf6c69a72a3989f5c, 534, false}, // 10^180
103 {0xb7dcbf5354e9bece, 561, false}, // 10^188
104 {0x88fcf317f22241e2, 588, false}, // 10^196
105 {0xcc20ce9bd35c78a5, 614, false}, // 10^204
106 {0x98165af37b2153df, 641, false}, // 10^212
107 {0xe2a0b5dc971f303a, 667, false}, // 10^220
108 {0xa8d9d1535ce3b396, 694, false}, // 10^228
109 {0xfb9b7cd9a4a7443c, 720, false}, // 10^236
110 {0xbb764c4ca7a44410, 747, false}, // 10^244
111 {0x8bab8eefb6409c1a, 774, false}, // 10^252
112 {0xd01fef10a657842c, 800, false}, // 10^260
113 {0x9b10a4e5e9913129, 827, false}, // 10^268
114 {0xe7109bfba19c0c9d, 853, false}, // 10^276
115 {0xac2820d9623bf429, 880, false}, // 10^284
116 {0x80444b5e7aa7cf85, 907, false}, // 10^292
117 {0xbf21e44003acdd2d, 933, false}, // 10^300
118 {0x8e679c2f5e44ff8f, 960, false}, // 10^308
119 {0xd433179d9c8cb841, 986, false}, // 10^316
120 {0x9e19db92b4e31ba9, 1013, false}, // 10^324
121 {0xeb96bf6ebadf77d9, 1039, false}, // 10^332
122 {0xaf87023b9bf0ee6b, 1066, false}, // 10^340
125 // floatBits returns the bits of the float64 that best approximates
126 // the extFloat passed as receiver. Overflow is set to true if
127 // the resulting float64 is ±Inf.
128 func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
129 f.Normalize()
131 exp := f.exp + 63
133 // Exponent too small.
134 if exp < flt.bias+1 {
135 n := flt.bias + 1 - exp
136 f.mant >>= uint(n)
137 exp += n
140 // Extract 1+flt.mantbits bits from the 64-bit mantissa.
141 mant := f.mant >> (63 - flt.mantbits)
142 if f.mant&(1<<(62-flt.mantbits)) != 0 {
143 // Round up.
144 mant += 1
147 // Rounding might have added a bit; shift down.
148 if mant == 2<<flt.mantbits {
149 mant >>= 1
150 exp++
153 // Infinities.
154 if exp-flt.bias >= 1<<flt.expbits-1 {
155 // ±Inf
156 mant = 0
157 exp = 1<<flt.expbits - 1 + flt.bias
158 overflow = true
159 } else if mant&(1<<flt.mantbits) == 0 {
160 // Denormalized?
161 exp = flt.bias
163 // Assemble bits.
164 bits = mant & (uint64(1)<<flt.mantbits - 1)
165 bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
166 if f.neg {
167 bits |= 1 << (flt.mantbits + flt.expbits)
169 return
172 // AssignComputeBounds sets f to the floating point value
173 // defined by mant, exp and precision given by flt. It returns
174 // lower, upper such that any number in the closed interval
175 // [lower, upper] is converted back to the same floating point number.
176 func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
177 f.mant = mant
178 f.exp = exp - int(flt.mantbits)
179 f.neg = neg
180 if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
181 // An exact integer
182 f.mant >>= uint(-f.exp)
183 f.exp = 0
184 return *f, *f
186 expBiased := exp - flt.bias
188 upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
189 if mant != 1<<flt.mantbits || expBiased == 1 {
190 lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
191 } else {
192 lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
194 return
197 // Normalize normalizes f so that the highest bit of the mantissa is
198 // set, and returns the number by which the mantissa was left-shifted.
199 func (f *extFloat) Normalize() (shift uint) {
200 mant, exp := f.mant, f.exp
201 if mant == 0 {
202 return 0
204 if mant>>(64-32) == 0 {
205 mant <<= 32
206 exp -= 32
208 if mant>>(64-16) == 0 {
209 mant <<= 16
210 exp -= 16
212 if mant>>(64-8) == 0 {
213 mant <<= 8
214 exp -= 8
216 if mant>>(64-4) == 0 {
217 mant <<= 4
218 exp -= 4
220 if mant>>(64-2) == 0 {
221 mant <<= 2
222 exp -= 2
224 if mant>>(64-1) == 0 {
225 mant <<= 1
226 exp -= 1
228 shift = uint(f.exp - exp)
229 f.mant, f.exp = mant, exp
230 return
233 // Multiply sets f to the product f*g: the result is correctly rounded,
234 // but not normalized.
235 func (f *extFloat) Multiply(g extFloat) {
236 fhi, flo := f.mant>>32, uint64(uint32(f.mant))
237 ghi, glo := g.mant>>32, uint64(uint32(g.mant))
239 // Cross products.
240 cross1 := fhi * glo
241 cross2 := flo * ghi
243 // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
244 f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
245 rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
246 // Round up.
247 rem += (1 << 31)
249 f.mant += (rem >> 32)
250 f.exp = f.exp + g.exp + 64
253 var uint64pow10 = [...]uint64{
254 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
255 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
258 // AssignDecimal sets f to an approximate value mantissa*10^exp. It
259 // returns true if the value represented by f is guaranteed to be the
260 // best approximation of d after being rounded to a float64 or
261 // float32 depending on flt.
262 func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
263 const uint64digits = 19
264 const errorscale = 8
265 errors := 0 // An upper bound for error, computed in errorscale*ulp.
266 if trunc {
267 // the decimal number was truncated.
268 errors += errorscale / 2
271 f.mant = mantissa
272 f.exp = 0
273 f.neg = neg
275 // Multiply by powers of ten.
276 i := (exp10 - firstPowerOfTen) / stepPowerOfTen
277 if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
278 return false
280 adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
282 // We multiply by exp%step
283 if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
284 // We can multiply the mantissa exactly.
285 f.mant *= uint64pow10[adjExp]
286 f.Normalize()
287 } else {
288 f.Normalize()
289 f.Multiply(smallPowersOfTen[adjExp])
290 errors += errorscale / 2
293 // We multiply by 10 to the exp - exp%step.
294 f.Multiply(powersOfTen[i])
295 if errors > 0 {
296 errors += 1
298 errors += errorscale / 2
300 // Normalize
301 shift := f.Normalize()
302 errors <<= shift
304 // Now f is a good approximation of the decimal.
305 // Check whether the error is too large: that is, if the mantissa
306 // is perturbated by the error, the resulting float64 will change.
307 // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
309 // In many cases the approximation will be good enough.
310 denormalExp := flt.bias - 63
311 var extrabits uint
312 if f.exp <= denormalExp {
313 // f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
314 extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
315 } else {
316 extrabits = uint(63 - flt.mantbits)
319 halfway := uint64(1) << (extrabits - 1)
320 mant_extra := f.mant & (1<<extrabits - 1)
322 // Do a signed comparison here! If the error estimate could make
323 // the mantissa round differently for the conversion to double,
324 // then we can't give a definite answer.
325 if int64(halfway)-int64(errors) < int64(mant_extra) &&
326 int64(mant_extra) < int64(halfway)+int64(errors) {
327 return false
329 return true
332 // Frexp10 is an analogue of math.Frexp for decimal powers. It scales
333 // f by an approximate power of ten 10^-exp, and returns exp10, so
334 // that f*10^exp10 has the same value as the old f, up to an ulp,
335 // as well as the index of 10^-exp in the powersOfTen table.
336 func (f *extFloat) frexp10() (exp10, index int) {
337 // The constants expMin and expMax constrain the final value of the
338 // binary exponent of f. We want a small integral part in the result
339 // because finding digits of an integer requires divisions, whereas
340 // digits of the fractional part can be found by repeatedly multiplying
341 // by 10.
342 const expMin = -60
343 const expMax = -32
344 // Find power of ten such that x * 10^n has a binary exponent
345 // between expMin and expMax.
346 approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
347 i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
348 Loop:
349 for {
350 exp := f.exp + powersOfTen[i].exp + 64
351 switch {
352 case exp < expMin:
354 case exp > expMax:
356 default:
357 break Loop
360 // Apply the desired decimal shift on f. It will have exponent
361 // in the desired range. This is multiplication by 10^-exp10.
362 f.Multiply(powersOfTen[i])
364 return -(firstPowerOfTen + i*stepPowerOfTen), i
367 // frexp10Many applies a common shift by a power of ten to a, b, c.
368 func frexp10Many(a, b, c *extFloat) (exp10 int) {
369 exp10, i := c.frexp10()
370 a.Multiply(powersOfTen[i])
371 b.Multiply(powersOfTen[i])
372 return
375 // FixedDecimal stores in d the first n significant digits
376 // of the decimal representation of f. It returns false
377 // if it cannot be sure of the answer.
378 func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
379 if f.mant == 0 {
380 d.nd = 0
381 d.dp = 0
382 d.neg = f.neg
383 return true
385 if n == 0 {
386 panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
388 // Multiply by an appropriate power of ten to have a reasonable
389 // number to process.
390 f.Normalize()
391 exp10, _ := f.frexp10()
393 shift := uint(-f.exp)
394 integer := uint32(f.mant >> shift)
395 fraction := f.mant - (uint64(integer) << shift)
396 ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
398 // Write exactly n digits to d.
399 needed := n // how many digits are left to write.
400 integerDigits := 0 // the number of decimal digits of integer.
401 pow10 := uint64(1) // the power of ten by which f was scaled.
402 for i, pow := 0, uint64(1); i < 20; i++ {
403 if pow > uint64(integer) {
404 integerDigits = i
405 break
407 pow *= 10
409 rest := integer
410 if integerDigits > needed {
411 // the integral part is already large, trim the last digits.
412 pow10 = uint64pow10[integerDigits-needed]
413 integer /= uint32(pow10)
414 rest -= integer * uint32(pow10)
415 } else {
416 rest = 0
419 // Write the digits of integer: the digits of rest are omitted.
420 var buf [32]byte
421 pos := len(buf)
422 for v := integer; v > 0; {
423 v1 := v / 10
424 v -= 10 * v1
425 pos--
426 buf[pos] = byte(v + '0')
427 v = v1
429 for i := pos; i < len(buf); i++ {
430 d.d[i-pos] = buf[i]
432 nd := len(buf) - pos
433 d.nd = nd
434 d.dp = integerDigits + exp10
435 needed -= nd
437 if needed > 0 {
438 if rest != 0 || pow10 != 1 {
439 panic("strconv: internal error, rest != 0 but needed > 0")
441 // Emit digits for the fractional part. Each time, 10*fraction
442 // fits in a uint64 without overflow.
443 for needed > 0 {
444 fraction *= 10
445 ε *= 10 // the uncertainty scales as we multiply by ten.
446 if 2*ε > 1<<shift {
447 // the error is so large it could modify which digit to write, abort.
448 return false
450 digit := fraction >> shift
451 d.d[nd] = byte(digit + '0')
452 fraction -= digit << shift
453 nd++
454 needed--
456 d.nd = nd
459 // We have written a truncation of f (a numerator / 10^d.dp). The remaining part
460 // can be interpreted as a small number (< 1) to be added to the last digit of the
461 // numerator.
463 // If rest > 0, the amount is:
464 // (rest<<shift | fraction) / (pow10 << shift)
465 // fraction being known with a ±ε uncertainty.
466 // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
468 // If rest = 0, pow10 == 1 and the amount is
469 // fraction / (1 << shift)
470 // fraction being known with a ±ε uncertainty.
472 // We pass this information to the rounding routine for adjustment.
474 ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
475 if !ok {
476 return false
478 // Trim trailing zeros.
479 for i := d.nd - 1; i >= 0; i-- {
480 if d.d[i] != '0' {
481 d.nd = i + 1
482 break
485 return true
488 // adjustLastDigitFixed assumes d contains the representation of the integral part
489 // of some number, whose fractional part is num / (den << shift). The numerator
490 // num is only known up to an uncertainty of size ε, assumed to be less than
491 // (den << shift)/2.
493 // It will increase the last digit by one to account for correct rounding, typically
494 // when the fractional part is greater than 1/2, and will return false if ε is such
495 // that no correct answer can be given.
496 func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
497 if num > den<<shift {
498 panic("strconv: num > den<<shift in adjustLastDigitFixed")
500 if 2*ε > den<<shift {
501 panic("strconv: ε > (den<<shift)/2")
503 if 2*(num+ε) < den<<shift {
504 return true
506 if 2*(num-ε) > den<<shift {
507 // increment d by 1.
508 i := d.nd - 1
509 for ; i >= 0; i-- {
510 if d.d[i] == '9' {
511 d.nd--
512 } else {
513 break
516 if i < 0 {
517 d.d[0] = '1'
518 d.nd = 1
519 d.dp++
520 } else {
521 d.d[i]++
523 return true
525 return false
528 // ShortestDecimal stores in d the shortest decimal representation of f
529 // which belongs to the open interval (lower, upper), where f is supposed
530 // to lie. It returns false whenever the result is unsure. The implementation
531 // uses the Grisu3 algorithm.
532 func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
533 if f.mant == 0 {
534 d.nd = 0
535 d.dp = 0
536 d.neg = f.neg
537 return true
539 if f.exp == 0 && *lower == *f && *lower == *upper {
540 // an exact integer.
541 var buf [24]byte
542 n := len(buf) - 1
543 for v := f.mant; v > 0; {
544 v1 := v / 10
545 v -= 10 * v1
546 buf[n] = byte(v + '0')
548 v = v1
550 nd := len(buf) - n - 1
551 for i := 0; i < nd; i++ {
552 d.d[i] = buf[n+1+i]
554 d.nd, d.dp = nd, nd
555 for d.nd > 0 && d.d[d.nd-1] == '0' {
556 d.nd--
558 if d.nd == 0 {
559 d.dp = 0
561 d.neg = f.neg
562 return true
564 upper.Normalize()
565 // Uniformize exponents.
566 if f.exp > upper.exp {
567 f.mant <<= uint(f.exp - upper.exp)
568 f.exp = upper.exp
570 if lower.exp > upper.exp {
571 lower.mant <<= uint(lower.exp - upper.exp)
572 lower.exp = upper.exp
575 exp10 := frexp10Many(lower, f, upper)
576 // Take a safety margin due to rounding in frexp10Many, but we lose precision.
577 upper.mant++
578 lower.mant--
580 // The shortest representation of f is either rounded up or down, but
581 // in any case, it is a truncation of upper.
582 shift := uint(-upper.exp)
583 integer := uint32(upper.mant >> shift)
584 fraction := upper.mant - (uint64(integer) << shift)
586 // How far we can go down from upper until the result is wrong.
587 allowance := upper.mant - lower.mant
588 // How far we should go to get a very precise result.
589 targetDiff := upper.mant - f.mant
591 // Count integral digits: there are at most 10.
592 var integerDigits int
593 for i, pow := 0, uint64(1); i < 20; i++ {
594 if pow > uint64(integer) {
595 integerDigits = i
596 break
598 pow *= 10
600 for i := 0; i < integerDigits; i++ {
601 pow := uint64pow10[integerDigits-i-1]
602 digit := integer / uint32(pow)
603 d.d[i] = byte(digit + '0')
604 integer -= digit * uint32(pow)
605 // evaluate whether we should stop.
606 if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
607 d.nd = i + 1
608 d.dp = integerDigits + exp10
609 d.neg = f.neg
610 // Sometimes allowance is so large the last digit might need to be
611 // decremented to get closer to f.
612 return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
615 d.nd = integerDigits
616 d.dp = d.nd + exp10
617 d.neg = f.neg
619 // Compute digits of the fractional part. At each step fraction does not
620 // overflow. The choice of minExp implies that fraction is less than 2^60.
621 var digit int
622 multiplier := uint64(1)
623 for {
624 fraction *= 10
625 multiplier *= 10
626 digit = int(fraction >> shift)
627 d.d[d.nd] = byte(digit + '0')
628 d.nd++
629 fraction -= uint64(digit) << shift
630 if fraction < allowance*multiplier {
631 // We are in the admissible range. Note that if allowance is about to
632 // overflow, that is, allowance > 2^64/10, the condition is automatically
633 // true due to the limited range of fraction.
634 return adjustLastDigit(d,
635 fraction, targetDiff*multiplier, allowance*multiplier,
636 1<<shift, multiplier*2)
639 return false
642 // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
643 // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
644 // It assumes that a decimal digit is worth ulpDecimal*ε, and that
645 // all data is known with a error estimate of ulpBinary*ε.
646 func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
647 if ulpDecimal < 2*ulpBinary {
648 // Approximation is too wide.
649 return false
651 for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
652 d.d[d.nd-1]--
653 currentDiff += ulpDecimal
655 if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
656 // we have two choices, and don't know what to do.
657 return false
659 if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
660 // we went too far
661 return false
663 if d.nd == 1 && d.d[0] == '0' {
664 // the number has actually reached zero.
665 d.nd = 0
666 d.dp = 0
668 return true