1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 -- This package contains various utility procedures to assist in building
27 -- specific types of tree nodes.
29 with Namet
; use Namet
;
30 with Sinfo
; use Sinfo
;
31 with Types
; use Types
;
32 with Uintp
; use Uintp
;
36 function Checks_Off
(N
: Node_Id
) return Node_Id
;
37 pragma Inline
(Checks_Off
);
38 -- Returns an N_Unchecked_Expression node whose expression is the given
39 -- argument. The results is a subexpression identical to the argument,
40 -- except that it will be analyzed and resolved with checks off.
42 function Convert_To
(Typ
: Entity_Id
; Expr
: Node_Id
) return Node_Id
;
43 -- Returns an expression that represents the result of a checked convert
44 -- of expression Exp to type T. If the base type of Exp is T, then no
45 -- conversion is required, and Exp is returned unchanged. Otherwise an
46 -- N_Type_Conversion node is constructed to convert the expression.
47 -- If an N_Type_Conversion node is required, Relocate_Node is used on
48 -- Exp. This means that it is safe to replace a node by a Convert_To
49 -- of itself to some other type.
51 procedure Discard_Node
(N
: Node_Or_Entity_Id
);
52 pragma Inline
(Discard_Node
);
53 -- This is a dummy procedure that simply returns and does nothing. It is
54 -- used when a function returning a Node_Id value is called for its side
55 -- effect (e.g. a call to Make to construct a node) but the Node_Id value
58 procedure Discard_List
(L
: List_Id
);
59 pragma Inline
(Discard_List
);
60 -- This is a dummy procedure that simply returns and does nothing. It is
61 -- used when a function returning a Node_Id value is called for its side
62 -- effect (e.g. a call to the parser to parse a list of compilation
63 -- units), but the List_Id value is not required.
65 function Make_Byte_Aligned_Attribute_Reference
68 Attribute_Name
: Name_Id
) return Node_Id
;
69 pragma Inline
(Make_Byte_Aligned_Attribute_Reference
);
70 -- Like the standard Make_Attribute_Reference but the special flag
71 -- Must_Be_Byte_Aligned is set in the attribute reference node. The
72 -- Attribute_Name must be Name_Address or Name_Unrestricted_Access.
74 function Make_DT_Access
75 (Loc
: Source_Ptr
; Rec
: Node_Id
; Typ
: Entity_Id
) return Node_Id
;
76 -- Create an access to the Dispatch Table by using the Tag field of a
77 -- tagged record : Acc_Dt (Rec.tag).all
79 function Make_Float_Literal
83 Exponent
: Uint
) return Node_Id
;
84 -- Create a real literal for the floating point expression value
85 -- Significand * Radix ** Exponent. Radix must be greater than 1.
87 function Make_Implicit_Exception_Handler
89 Choice_Parameter
: Node_Id
:= Empty
;
90 Exception_Choices
: List_Id
;
91 Statements
: List_Id
) return Node_Id
;
92 pragma Inline
(Make_Implicit_Exception_Handler
);
93 -- This is just like Make_Exception_Handler, except that it also sets the
94 -- Local_Raise_Statements field to No_Elist, ensuring that it is properly
95 -- initialized. This should always be used when creating implicit exception
96 -- handlers during expansion (i.e. handlers that do not correspond to user
97 -- source program exception handlers).
99 function Make_Implicit_If_Statement
102 Then_Statements
: List_Id
;
103 Elsif_Parts
: List_Id
:= No_List
;
104 Else_Statements
: List_Id
:= No_List
) return Node_Id
;
105 pragma Inline
(Make_Implicit_If_Statement
);
106 -- This function makes an N_If_Statement node whose fields are filled
107 -- in with the indicated values (see Sinfo), and whose Sloc field is
108 -- is set to Sloc (Node). The effect is identical to calling function
109 -- Nmake.Make_If_Statement except that there is a check for restriction
110 -- No_Implicit_Conditionals, and if this restriction is being violated,
111 -- an error message is posted on Node.
113 function Make_Implicit_Label_Declaration
115 Defining_Identifier
: Node_Id
;
116 Label_Construct
: Node_Id
) return Node_Id
;
117 -- Used to construct an implicit label declaration node, including setting
118 -- the proper Label_Construct field (since Label_Construct is a semantic
119 -- field, the normal call to Make_Implicit_Label_Declaration does not
122 function Make_Implicit_Loop_Statement
124 Statements
: List_Id
;
125 Identifier
: Node_Id
:= Empty
;
126 Iteration_Scheme
: Node_Id
:= Empty
;
127 Has_Created_Identifier
: Boolean := False;
128 End_Label
: Node_Id
:= Empty
) return Node_Id
;
129 -- This function makes an N_Loop_Statement node whose fields are filled
130 -- in with the indicated values (see Sinfo), and whose Sloc field is
131 -- is set to Sloc (Node). The effect is identical to calling function
132 -- Nmake.Make_Loop_Statement except that there is a check for restrictions
133 -- No_Implicit_Loops and No_Implicit_Conditionals (the first applying in
134 -- all cases, and the second only for while loops), and if one of these
135 -- restrictions is being violated, an error message is posted on Node.
137 function Make_Integer_Literal
139 Intval
: Int
) return Node_Id
;
140 pragma Inline
(Make_Integer_Literal
);
141 -- A convenient form of Make_Integer_Literal taking Int instead of Uint
143 function Make_Linker_Section_Pragma
146 Sec
: String) return Node_Id
;
147 -- Construct a Linker_Section pragma for entity Ent, using string Sec as
148 -- the section name. Loc is the Sloc value to use in building the pragma.
153 Pragma_Argument_Associations
: List_Id
:= No_List
) return Node_Id
;
154 -- A convenient form of Make_Pragma not requiring a Pragma_Identifier
155 -- argument (this argument is built from the value given for Chars).
157 function Make_Raise_Constraint_Error
159 Condition
: Node_Id
:= Empty
;
160 Reason
: RT_Exception_Code
) return Node_Id
;
161 pragma Inline
(Make_Raise_Constraint_Error
);
162 -- A convenient form of Make_Raise_Constraint_Error where the Reason
163 -- is given simply as an enumeration value, rather than a Uint code.
165 function Make_Raise_Program_Error
167 Condition
: Node_Id
:= Empty
;
168 Reason
: RT_Exception_Code
) return Node_Id
;
169 pragma Inline
(Make_Raise_Program_Error
);
170 -- A convenient form of Make_Raise_Program_Error where the Reason
171 -- is given simply as an enumeration value, rather than a Uint code.
173 function Make_Raise_Storage_Error
175 Condition
: Node_Id
:= Empty
;
176 Reason
: RT_Exception_Code
) return Node_Id
;
177 pragma Inline
(Make_Raise_Storage_Error
);
178 -- A convenient form of Make_Raise_Storage_Error where the Reason is given
179 -- simply as an enumeration value, rather than a Uint code.
181 function Make_String_Literal
183 Strval
: String) return Node_Id
;
184 -- A convenient form of Make_String_Literal, where the string value is
185 -- given as a normal string instead of a String_Id value.
187 function Make_Temporary
190 Related_Node
: Node_Id
:= Empty
) return Entity_Id
;
191 -- This function should be used for all cases where a defining identifier
192 -- is to be built with a name to be obtained by New_Internal_Name (here Id
193 -- is the character passed as the argument to New_Internal_Name). Loc is
194 -- the location for the Sloc value of the resulting Entity. Note that this
195 -- can be used for all kinds of temporary defining identifiers used in
196 -- expansion (objects, subtypes, functions etc).
198 -- Related_Node is used when the defining identifier is for an object that
199 -- captures the value of an expression (e.g. an aggregate). It should be
200 -- set whenever possible to point to the expression that is being captured.
201 -- This is provided to get better error messages, e.g. from CodePeer.
203 -- Make_Temp_Id would probably be a better name for this function???
205 function Make_Unsuppress_Block
208 Stmts
: List_Id
) return Node_Id
;
209 -- Build a block with a pragma Suppress on 'Check'. Stmts is the statements
210 -- list that needs protection against the check
212 function New_Constraint_Error
(Loc
: Source_Ptr
) return Node_Id
;
213 -- This function builds a tree corresponding to the Ada statement
214 -- "raise Constraint_Error" and returns the root of this tree,
215 -- the N_Raise_Statement node.
218 (New_Node_Kind
: Node_Kind
;
219 New_Sloc
: Source_Ptr
) return Node_Id
;
220 -- Create node using New_Node and, if its kind is in N_Op, set its Chars
221 -- field accordingly.
223 function New_External_Name
224 (Related_Id
: Name_Id
;
225 Suffix
: Character := ' ';
226 Suffix_Index
: Int
:= 0;
227 Prefix
: Character := ' ') return Name_Id
;
228 function New_External_Name
229 (Related_Id
: Name_Id
;
231 Suffix_Index
: Int
:= 0;
232 Prefix
: Character := ' ') return Name_Id
;
233 -- Builds a new entry in the names table of the form:
235 -- [Prefix &] Related_Id [& Suffix] [& Suffix_Index]
237 -- Prefix is prepended only if Prefix is non-blank (in which case it
238 -- must be an upper case letter other than O,Q,U,W (which are used for
239 -- identifier encoding, see Namet), or an underscore, and T is reserved for
240 -- use by implicit types, and X is reserved for use by debug type encoding
241 -- (see package Exp_Dbug). Note: the reason that Prefix is last is that it
242 -- is almost always omitted. The notable case of Prefix being non-null is
243 -- when it is 'T' for an implicit type.
245 -- Suffix_Index'Image is appended only if the value of Suffix_Index is
246 -- positive, or if Suffix_Index is negative 1, then a unique serialized
247 -- suffix is added. If Suffix_Index is zero, then no index is appended.
249 -- Suffix is also a single upper case letter other than O,Q,U,W,X and is a
250 -- required parameter (T is permitted). The constructed name is stored
251 -- using Name_Find so that it can be located using a subsequent Name_Find
252 -- operation (i.e. it is properly hashed into the names table). The upper
253 -- case letter given as the Suffix argument ensures that the name does
254 -- not clash with any Ada identifier name. These generated names are
255 -- permitted, but not required, to be made public by setting the flag
256 -- Is_Public in the associated entity.
258 function New_External_Name
260 Suffix_Index
: Nat
) return Name_Id
;
261 -- Builds a new entry in the names table of the form
262 -- Suffix & Suffix_Index'Image
263 -- where Suffix is a single upper case letter other than O,Q,U,W,X and is
264 -- a required parameter (T is permitted). The constructed name is stored
265 -- using Name_Find so that it can be located using a subsequent Name_Find
266 -- operation (i.e. it is properly hashed into the names table). The upper
267 -- case letter given as the Suffix argument ensures that the name does
268 -- not clash with any Ada identifier name. These generated names are
269 -- permitted, but not required, to be made public by setting the flag
270 -- Is_Public in the associated entity.
272 function New_Internal_Name
(Id_Char
: Character) return Name_Id
;
273 -- Id_Char is an upper case letter other than O,Q,U,W (which are reserved
274 -- for identifier encoding (see Namet package for details) and X which is
275 -- used for debug encoding (see Exp_Dbug). The letter T is permitted, but
276 -- is reserved by convention for the case of internally generated types.
277 -- The result of the call is a new generated unique name of the form XyyyU
278 -- where X is Id_Char, yyy is a unique serial number, and U is either a
279 -- lower case s or b indicating if the current unit is a spec or a body.
281 -- The name is entered into the names table using Name_Enter rather than
282 -- Name_Find, because there can never be a need to locate the entry using
283 -- the Name_Find procedure later on. Names created by New_Internal_Name
284 -- are guaranteed to be consistent from one compilation to another (i.e.
285 -- if the identical unit is compiled with a semantically consistent set
286 -- of sources, the numbers will be consistent. This means that it is fine
287 -- to use these as public symbols.
289 -- Note: Nearly all uses of this function are via calls to Make_Temporary,
290 -- but there are just a few cases where it is called directly.
292 function New_Occurrence_Of
294 Loc
: Source_Ptr
) return Node_Id
;
295 -- New_Occurrence_Of creates an N_Identifier node which is an occurrence
296 -- of the defining identifier which is passed as its argument. The Entity
297 -- and Etype of the result are set from the given defining identifier as
298 -- follows: Entity is simply a copy of Def_Id. Etype is a copy of Def_Id
299 -- for types, and a copy of the Etype of Def_Id for other entities.
301 function New_Reference_To
303 Loc
: Source_Ptr
) return Node_Id
;
304 -- This is like New_Occurrence_Of, but it does not set the Etype field. It
305 -- is used from the expander, where Etype fields are generally not set,
306 -- since they are set when the expanded tree is reanalyzed.
308 function New_Suffixed_Name
309 (Related_Id
: Name_Id
;
310 Suffix
: String) return Name_Id
;
311 -- This function is used to create special suffixed names used by the
312 -- debugger. Suffix is a string of upper case letters, used to construct
313 -- the required name. For instance, the special type used to record the
314 -- fixed-point small is called typ_SMALL where typ is the name of the
315 -- fixed-point type (as passed in Related_Id), and Suffix is "SMALL".
317 function OK_Convert_To
(Typ
: Entity_Id
; Expr
: Node_Id
) return Node_Id
;
318 -- Like Convert_To, except that a conversion node is always generated, and
319 -- the Conversion_OK flag is set on this conversion node.
321 function Unchecked_Convert_To
323 Expr
: Node_Id
) return Node_Id
;
324 -- Like Convert_To, but if a conversion is actually needed, constructs an
325 -- N_Unchecked_Type_Conversion node to do the required conversion.