1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Elists
; use Elists
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Eval_Fat
; use Eval_Fat
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch9
; use Exp_Ch9
;
35 with Exp_Disp
; use Exp_Disp
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Exp_Util
; use Exp_Util
;
39 with Fname
; use Fname
;
40 with Freeze
; use Freeze
;
41 with Itypes
; use Itypes
;
42 with Layout
; use Layout
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Namet
; use Namet
;
46 with Nmake
; use Nmake
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Case
; use Sem_Case
;
54 with Sem_Cat
; use Sem_Cat
;
55 with Sem_Ch6
; use Sem_Ch6
;
56 with Sem_Ch7
; use Sem_Ch7
;
57 with Sem_Ch8
; use Sem_Ch8
;
58 with Sem_Ch13
; use Sem_Ch13
;
59 with Sem_Dim
; use Sem_Dim
;
60 with Sem_Disp
; use Sem_Disp
;
61 with Sem_Dist
; use Sem_Dist
;
62 with Sem_Elim
; use Sem_Elim
;
63 with Sem_Eval
; use Sem_Eval
;
64 with Sem_Mech
; use Sem_Mech
;
65 with Sem_Prag
; use Sem_Prag
;
66 with Sem_Res
; use Sem_Res
;
67 with Sem_Smem
; use Sem_Smem
;
68 with Sem_Type
; use Sem_Type
;
69 with Sem_Util
; use Sem_Util
;
70 with Sem_Warn
; use Sem_Warn
;
71 with Stand
; use Stand
;
72 with Sinfo
; use Sinfo
;
73 with Sinput
; use Sinput
;
74 with Snames
; use Snames
;
75 with Targparm
; use Targparm
;
76 with Tbuild
; use Tbuild
;
77 with Ttypes
; use Ttypes
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
81 package body Sem_Ch3
is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
88 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
89 -- abstract interface types implemented by a record type or a derived
92 procedure Build_Derived_Type
94 Parent_Type
: Entity_Id
;
95 Derived_Type
: Entity_Id
;
96 Is_Completion
: Boolean;
97 Derive_Subps
: Boolean := True);
98 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
99 -- the N_Full_Type_Declaration node containing the derived type definition.
100 -- Parent_Type is the entity for the parent type in the derived type
101 -- definition and Derived_Type the actual derived type. Is_Completion must
102 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
103 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
104 -- completion of a private type declaration. If Is_Completion is set to
105 -- True, N is the completion of a private type declaration and Derived_Type
106 -- is different from the defining identifier inside N (i.e. Derived_Type /=
107 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
108 -- subprograms should be derived. The only case where this parameter is
109 -- False is when Build_Derived_Type is recursively called to process an
110 -- implicit derived full type for a type derived from a private type (in
111 -- that case the subprograms must only be derived for the private view of
114 -- ??? These flags need a bit of re-examination and re-documentation:
115 -- ??? are they both necessary (both seem related to the recursion)?
117 procedure Build_Derived_Access_Type
119 Parent_Type
: Entity_Id
;
120 Derived_Type
: Entity_Id
);
121 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
122 -- create an implicit base if the parent type is constrained or if the
123 -- subtype indication has a constraint.
125 procedure Build_Derived_Array_Type
127 Parent_Type
: Entity_Id
;
128 Derived_Type
: Entity_Id
);
129 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
130 -- create an implicit base if the parent type is constrained or if the
131 -- subtype indication has a constraint.
133 procedure Build_Derived_Concurrent_Type
135 Parent_Type
: Entity_Id
;
136 Derived_Type
: Entity_Id
);
137 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
138 -- protected type, inherit entries and protected subprograms, check
139 -- legality of discriminant constraints if any.
141 procedure Build_Derived_Enumeration_Type
143 Parent_Type
: Entity_Id
;
144 Derived_Type
: Entity_Id
);
145 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
146 -- type, we must create a new list of literals. Types derived from
147 -- Character and [Wide_]Wide_Character are special-cased.
149 procedure Build_Derived_Numeric_Type
151 Parent_Type
: Entity_Id
;
152 Derived_Type
: Entity_Id
);
153 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
154 -- an anonymous base type, and propagate constraint to subtype if needed.
156 procedure Build_Derived_Private_Type
158 Parent_Type
: Entity_Id
;
159 Derived_Type
: Entity_Id
;
160 Is_Completion
: Boolean;
161 Derive_Subps
: Boolean := True);
162 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
163 -- because the parent may or may not have a completion, and the derivation
164 -- may itself be a completion.
166 procedure Build_Derived_Record_Type
168 Parent_Type
: Entity_Id
;
169 Derived_Type
: Entity_Id
;
170 Derive_Subps
: Boolean := True);
171 -- Subsidiary procedure for Build_Derived_Type and
172 -- Analyze_Private_Extension_Declaration used for tagged and untagged
173 -- record types. All parameters are as in Build_Derived_Type except that
174 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
175 -- N_Private_Extension_Declaration node. See the definition of this routine
176 -- for much more info. Derive_Subps indicates whether subprograms should
177 -- be derived from the parent type. The only case where Derive_Subps is
178 -- False is for an implicit derived full type for a type derived from a
179 -- private type (see Build_Derived_Type).
181 procedure Build_Discriminal
(Discrim
: Entity_Id
);
182 -- Create the discriminal corresponding to discriminant Discrim, that is
183 -- the parameter corresponding to Discrim to be used in initialization
184 -- procedures for the type where Discrim is a discriminant. Discriminals
185 -- are not used during semantic analysis, and are not fully defined
186 -- entities until expansion. Thus they are not given a scope until
187 -- initialization procedures are built.
189 function Build_Discriminant_Constraints
192 Derived_Def
: Boolean := False) return Elist_Id
;
193 -- Validate discriminant constraints and return the list of the constraints
194 -- in order of discriminant declarations, where T is the discriminated
195 -- unconstrained type. Def is the N_Subtype_Indication node where the
196 -- discriminants constraints for T are specified. Derived_Def is True
197 -- when building the discriminant constraints in a derived type definition
198 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
199 -- type and Def is the constraint "(xxx)" on T and this routine sets the
200 -- Corresponding_Discriminant field of the discriminants in the derived
201 -- type D to point to the corresponding discriminants in the parent type T.
203 procedure Build_Discriminated_Subtype
207 Related_Nod
: Node_Id
;
208 For_Access
: Boolean := False);
209 -- Subsidiary procedure to Constrain_Discriminated_Type and to
210 -- Process_Incomplete_Dependents. Given
212 -- T (a possibly discriminated base type)
213 -- Def_Id (a very partially built subtype for T),
215 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 -- The Elist is the list of discriminant constraints if any (it is set
218 -- to No_Elist if T is not a discriminated type, and to an empty list if
219 -- T has discriminants but there are no discriminant constraints). The
220 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
221 -- The For_Access says whether or not this subtype is really constraining
222 -- an access type. That is its sole purpose is the designated type of an
223 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
224 -- is built to avoid freezing T when the access subtype is frozen.
226 function Build_Scalar_Bound
229 Der_T
: Entity_Id
) return Node_Id
;
230 -- The bounds of a derived scalar type are conversions of the bounds of
231 -- the parent type. Optimize the representation if the bounds are literals.
232 -- Needs a more complete spec--what are the parameters exactly, and what
233 -- exactly is the returned value, and how is Bound affected???
235 procedure Build_Underlying_Full_View
239 -- If the completion of a private type is itself derived from a private
240 -- type, or if the full view of a private subtype is itself private, the
241 -- back-end has no way to compute the actual size of this type. We build
242 -- an internal subtype declaration of the proper parent type to convey
243 -- this information. This extra mechanism is needed because a full
244 -- view cannot itself have a full view (it would get clobbered during
247 procedure Check_Access_Discriminant_Requires_Limited
250 -- Check the restriction that the type to which an access discriminant
251 -- belongs must be a concurrent type or a descendant of a type with
252 -- the reserved word 'limited' in its declaration.
254 procedure Check_Anonymous_Access_Components
258 Comp_List
: Node_Id
);
259 -- Ada 2005 AI-382: an access component in a record definition can refer to
260 -- the enclosing record, in which case it denotes the type itself, and not
261 -- the current instance of the type. We create an anonymous access type for
262 -- the component, and flag it as an access to a component, so accessibility
263 -- checks are properly performed on it. The declaration of the access type
264 -- is placed ahead of that of the record to prevent order-of-elaboration
265 -- circularity issues in Gigi. We create an incomplete type for the record
266 -- declaration, which is the designated type of the anonymous access.
268 procedure Check_Delta_Expression
(E
: Node_Id
);
269 -- Check that the expression represented by E is suitable for use as a
270 -- delta expression, i.e. it is of real type and is static.
272 procedure Check_Digits_Expression
(E
: Node_Id
);
273 -- Check that the expression represented by E is suitable for use as a
274 -- digits expression, i.e. it is of integer type, positive and static.
276 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
277 -- Validate the initialization of an object declaration. T is the required
278 -- type, and Exp is the initialization expression.
280 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
281 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283 procedure Check_Or_Process_Discriminants
286 Prev
: Entity_Id
:= Empty
);
287 -- If N is the full declaration of the completion T of an incomplete or
288 -- private type, check its discriminants (which are already known to be
289 -- conformant with those of the partial view, see Find_Type_Name),
290 -- otherwise process them. Prev is the entity of the partial declaration,
293 procedure Check_Real_Bound
(Bound
: Node_Id
);
294 -- Check given bound for being of real type and static. If not, post an
295 -- appropriate message, and rewrite the bound with the real literal zero.
297 procedure Constant_Redeclaration
301 -- Various checks on legality of full declaration of deferred constant.
302 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
303 -- node. The caller has not yet set any attributes of this entity.
305 function Contain_Interface
307 Ifaces
: Elist_Id
) return Boolean;
308 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310 procedure Convert_Scalar_Bounds
312 Parent_Type
: Entity_Id
;
313 Derived_Type
: Entity_Id
;
315 -- For derived scalar types, convert the bounds in the type definition to
316 -- the derived type, and complete their analysis. Given a constraint of the
317 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
318 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
319 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
320 -- subtype are conversions of those bounds to the derived_type, so that
321 -- their typing is consistent.
323 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
324 -- Copies attributes from array base type T2 to array base type T1. Copies
325 -- only attributes that apply to base types, but not subtypes.
327 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
328 -- Copies attributes from array subtype T2 to array subtype T1. Copies
329 -- attributes that apply to both subtypes and base types.
331 procedure Create_Constrained_Components
335 Constraints
: Elist_Id
);
336 -- Build the list of entities for a constrained discriminated record
337 -- subtype. If a component depends on a discriminant, replace its subtype
338 -- using the discriminant values in the discriminant constraint. Subt
339 -- is the defining identifier for the subtype whose list of constrained
340 -- entities we will create. Decl_Node is the type declaration node where
341 -- we will attach all the itypes created. Typ is the base discriminated
342 -- type for the subtype Subt. Constraints is the list of discriminant
343 -- constraints for Typ.
345 function Constrain_Component_Type
347 Constrained_Typ
: Entity_Id
;
348 Related_Node
: Node_Id
;
350 Constraints
: Elist_Id
) return Entity_Id
;
351 -- Given a discriminated base type Typ, a list of discriminant constraint
352 -- Constraints for Typ and a component of Typ, with type Compon_Type,
353 -- create and return the type corresponding to Compon_type where all
354 -- discriminant references are replaced with the corresponding constraint.
355 -- If no discriminant references occur in Compon_Typ then return it as is.
356 -- Constrained_Typ is the final constrained subtype to which the
357 -- constrained Compon_Type belongs. Related_Node is the node where we will
358 -- attach all the itypes created.
360 -- Above description is confused, what is Compon_Type???
362 procedure Constrain_Access
363 (Def_Id
: in out Entity_Id
;
365 Related_Nod
: Node_Id
);
366 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
367 -- an anonymous type created for a subtype indication. In that case it is
368 -- created in the procedure and attached to Related_Nod.
370 procedure Constrain_Array
371 (Def_Id
: in out Entity_Id
;
373 Related_Nod
: Node_Id
;
374 Related_Id
: Entity_Id
;
376 -- Apply a list of index constraints to an unconstrained array type. The
377 -- first parameter is the entity for the resulting subtype. A value of
378 -- Empty for Def_Id indicates that an implicit type must be created, but
379 -- creation is delayed (and must be done by this procedure) because other
380 -- subsidiary implicit types must be created first (which is why Def_Id
381 -- is an in/out parameter). The second parameter is a subtype indication
382 -- node for the constrained array to be created (e.g. something of the
383 -- form string (1 .. 10)). Related_Nod gives the place where this type
384 -- has to be inserted in the tree. The Related_Id and Suffix parameters
385 -- are used to build the associated Implicit type name.
387 procedure Constrain_Concurrent
388 (Def_Id
: in out Entity_Id
;
390 Related_Nod
: Node_Id
;
391 Related_Id
: Entity_Id
;
393 -- Apply list of discriminant constraints to an unconstrained concurrent
396 -- SI is the N_Subtype_Indication node containing the constraint and
397 -- the unconstrained type to constrain.
399 -- Def_Id is the entity for the resulting constrained subtype. A value
400 -- of Empty for Def_Id indicates that an implicit type must be created,
401 -- but creation is delayed (and must be done by this procedure) because
402 -- other subsidiary implicit types must be created first (which is why
403 -- Def_Id is an in/out parameter).
405 -- Related_Nod gives the place where this type has to be inserted
408 -- The last two arguments are used to create its external name if needed.
410 function Constrain_Corresponding_Record
411 (Prot_Subt
: Entity_Id
;
412 Corr_Rec
: Entity_Id
;
413 Related_Nod
: Node_Id
;
414 Related_Id
: Entity_Id
) return Entity_Id
;
415 -- When constraining a protected type or task type with discriminants,
416 -- constrain the corresponding record with the same discriminant values.
418 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
419 -- Constrain a decimal fixed point type with a digits constraint and/or a
420 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
422 procedure Constrain_Discriminated_Type
425 Related_Nod
: Node_Id
;
426 For_Access
: Boolean := False);
427 -- Process discriminant constraints of composite type. Verify that values
428 -- have been provided for all discriminants, that the original type is
429 -- unconstrained, and that the types of the supplied expressions match
430 -- the discriminant types. The first three parameters are like in routine
431 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
434 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
435 -- Constrain an enumeration type with a range constraint. This is identical
436 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
438 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
439 -- Constrain a floating point type with either a digits constraint
440 -- and/or a range constraint, building a E_Floating_Point_Subtype.
442 procedure Constrain_Index
445 Related_Nod
: Node_Id
;
446 Related_Id
: Entity_Id
;
449 -- Process an index constraint S in a constrained array declaration. The
450 -- constraint can be a subtype name, or a range with or without an explicit
451 -- subtype mark. The index is the corresponding index of the unconstrained
452 -- array. The Related_Id and Suffix parameters are used to build the
453 -- associated Implicit type name.
455 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
456 -- Build subtype of a signed or modular integer type
458 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
459 -- Constrain an ordinary fixed point type with a range constraint, and
460 -- build an E_Ordinary_Fixed_Point_Subtype entity.
462 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
463 -- Copy the Priv entity into the entity of its full declaration then swap
464 -- the two entities in such a manner that the former private type is now
465 -- seen as a full type.
467 procedure Decimal_Fixed_Point_Type_Declaration
470 -- Create a new decimal fixed point type, and apply the constraint to
471 -- obtain a subtype of this new type.
473 procedure Complete_Private_Subtype
476 Full_Base
: Entity_Id
;
477 Related_Nod
: Node_Id
);
478 -- Complete the implicit full view of a private subtype by setting the
479 -- appropriate semantic fields. If the full view of the parent is a record
480 -- type, build constrained components of subtype.
482 procedure Derive_Progenitor_Subprograms
483 (Parent_Type
: Entity_Id
;
484 Tagged_Type
: Entity_Id
);
485 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
486 -- operations of progenitors of Tagged_Type, and replace the subsidiary
487 -- subtypes with Tagged_Type, to build the specs of the inherited interface
488 -- primitives. The derived primitives are aliased to those of the
489 -- interface. This routine takes care also of transferring to the full view
490 -- subprograms associated with the partial view of Tagged_Type that cover
491 -- interface primitives.
493 procedure Derived_Standard_Character
495 Parent_Type
: Entity_Id
;
496 Derived_Type
: Entity_Id
);
497 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
498 -- derivations from types Standard.Character and Standard.Wide_Character.
500 procedure Derived_Type_Declaration
503 Is_Completion
: Boolean);
504 -- Process a derived type declaration. Build_Derived_Type is invoked
505 -- to process the actual derived type definition. Parameters N and
506 -- Is_Completion have the same meaning as in Build_Derived_Type.
507 -- T is the N_Defining_Identifier for the entity defined in the
508 -- N_Full_Type_Declaration node N, that is T is the derived type.
510 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
511 -- Insert each literal in symbol table, as an overloadable identifier. Each
512 -- enumeration type is mapped into a sequence of integers, and each literal
513 -- is defined as a constant with integer value. If any of the literals are
514 -- character literals, the type is a character type, which means that
515 -- strings are legal aggregates for arrays of components of the type.
517 function Expand_To_Stored_Constraint
519 Constraint
: Elist_Id
) return Elist_Id
;
520 -- Given a constraint (i.e. a list of expressions) on the discriminants of
521 -- Typ, expand it into a constraint on the stored discriminants and return
522 -- the new list of expressions constraining the stored discriminants.
524 function Find_Type_Of_Object
526 Related_Nod
: Node_Id
) return Entity_Id
;
527 -- Get type entity for object referenced by Obj_Def, attaching the
528 -- implicit types generated to Related_Nod
530 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
531 -- Create a new float and apply the constraint to obtain subtype of it
533 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
534 -- Given an N_Subtype_Indication node N, return True if a range constraint
535 -- is present, either directly, or as part of a digits or delta constraint.
536 -- In addition, a digits constraint in the decimal case returns True, since
537 -- it establishes a default range if no explicit range is present.
539 function Inherit_Components
541 Parent_Base
: Entity_Id
;
542 Derived_Base
: Entity_Id
;
544 Inherit_Discr
: Boolean;
545 Discs
: Elist_Id
) return Elist_Id
;
546 -- Called from Build_Derived_Record_Type to inherit the components of
547 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
548 -- For more information on derived types and component inheritance please
549 -- consult the comment above the body of Build_Derived_Record_Type.
551 -- N is the original derived type declaration
553 -- Is_Tagged is set if we are dealing with tagged types
555 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
556 -- Parent_Base, otherwise no discriminants are inherited.
558 -- Discs gives the list of constraints that apply to Parent_Base in the
559 -- derived type declaration. If Discs is set to No_Elist, then we have
560 -- the following situation:
562 -- type Parent (D1..Dn : ..) is [tagged] record ...;
563 -- type Derived is new Parent [with ...];
565 -- which gets treated as
567 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
569 -- For untagged types the returned value is an association list. The list
570 -- starts from the association (Parent_Base => Derived_Base), and then it
571 -- contains a sequence of the associations of the form
573 -- (Old_Component => New_Component),
575 -- where Old_Component is the Entity_Id of a component in Parent_Base and
576 -- New_Component is the Entity_Id of the corresponding component in
577 -- Derived_Base. For untagged records, this association list is needed when
578 -- copying the record declaration for the derived base. In the tagged case
579 -- the value returned is irrelevant.
581 function Is_Valid_Constraint_Kind
583 Constraint_Kind
: Node_Kind
) return Boolean;
584 -- Returns True if it is legal to apply the given kind of constraint to the
585 -- given kind of type (index constraint to an array type, for example).
587 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
588 -- Create new modular type. Verify that modulus is in bounds
590 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
591 -- Create an abbreviated declaration for an operator in order to
592 -- materialize concatenation on array types.
594 procedure Ordinary_Fixed_Point_Type_Declaration
597 -- Create a new ordinary fixed point type, and apply the constraint to
598 -- obtain subtype of it.
600 procedure Prepare_Private_Subtype_Completion
602 Related_Nod
: Node_Id
);
603 -- Id is a subtype of some private type. Creates the full declaration
604 -- associated with Id whenever possible, i.e. when the full declaration
605 -- of the base type is already known. Records each subtype into
606 -- Private_Dependents of the base type.
608 procedure Process_Incomplete_Dependents
612 -- Process all entities that depend on an incomplete type. There include
613 -- subtypes, subprogram types that mention the incomplete type in their
614 -- profiles, and subprogram with access parameters that designate the
617 -- Inc_T is the defining identifier of an incomplete type declaration, its
618 -- Ekind is E_Incomplete_Type.
620 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
622 -- Full_T is N's defining identifier.
624 -- Subtypes of incomplete types with discriminants are completed when the
625 -- parent type is. This is simpler than private subtypes, because they can
626 -- only appear in the same scope, and there is no need to exchange views.
627 -- Similarly, access_to_subprogram types may have a parameter or a return
628 -- type that is an incomplete type, and that must be replaced with the
631 -- If the full type is tagged, subprogram with access parameters that
632 -- designated the incomplete may be primitive operations of the full type,
633 -- and have to be processed accordingly.
635 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
636 -- Given the type definition for a real type, this procedure processes and
637 -- checks the real range specification of this type definition if one is
638 -- present. If errors are found, error messages are posted, and the
639 -- Real_Range_Specification of Def is reset to Empty.
641 procedure Record_Type_Declaration
645 -- Process a record type declaration (for both untagged and tagged
646 -- records). Parameters T and N are exactly like in procedure
647 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
648 -- for this routine. If this is the completion of an incomplete type
649 -- declaration, Prev is the entity of the incomplete declaration, used for
650 -- cross-referencing. Otherwise Prev = T.
652 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
653 -- This routine is used to process the actual record type definition (both
654 -- for untagged and tagged records). Def is a record type definition node.
655 -- This procedure analyzes the components in this record type definition.
656 -- Prev_T is the entity for the enclosing record type. It is provided so
657 -- that its Has_Task flag can be set if any of the component have Has_Task
658 -- set. If the declaration is the completion of an incomplete type
659 -- declaration, Prev_T is the original incomplete type, whose full view is
662 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
663 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
664 -- build a copy of the declaration tree of the parent, and we create
665 -- independently the list of components for the derived type. Semantic
666 -- information uses the component entities, but record representation
667 -- clauses are validated on the declaration tree. This procedure replaces
668 -- discriminants and components in the declaration with those that have
669 -- been created by Inherit_Components.
671 procedure Set_Fixed_Range
676 -- Build a range node with the given bounds and set it as the Scalar_Range
677 -- of the given fixed-point type entity. Loc is the source location used
678 -- for the constructed range. See body for further details.
680 procedure Set_Scalar_Range_For_Subtype
684 -- This routine is used to set the scalar range field for a subtype given
685 -- Def_Id, the entity for the subtype, and R, the range expression for the
686 -- scalar range. Subt provides the parent subtype to be used to analyze,
687 -- resolve, and check the given range.
689 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
690 -- Create a new signed integer entity, and apply the constraint to obtain
691 -- the required first named subtype of this type.
693 procedure Set_Stored_Constraint_From_Discriminant_Constraint
695 -- E is some record type. This routine computes E's Stored_Constraint
696 -- from its Discriminant_Constraint.
698 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
699 -- Check that an entity in a list of progenitors is an interface,
700 -- emit error otherwise.
702 -----------------------
703 -- Access_Definition --
704 -----------------------
706 function Access_Definition
707 (Related_Nod
: Node_Id
;
708 N
: Node_Id
) return Entity_Id
710 Anon_Type
: Entity_Id
;
711 Anon_Scope
: Entity_Id
;
712 Desig_Type
: Entity_Id
;
713 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
716 Check_SPARK_Restriction
("access type is not allowed", N
);
718 if Is_Entry
(Current_Scope
)
719 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
721 Error_Msg_N
("task entries cannot have access parameters", N
);
725 -- Ada 2005: for an object declaration the corresponding anonymous
726 -- type is declared in the current scope.
728 -- If the access definition is the return type of another access to
729 -- function, scope is the current one, because it is the one of the
730 -- current type declaration, except for the pathological case below.
732 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
733 N_Access_Function_Definition
)
735 Anon_Scope
:= Current_Scope
;
737 -- A pathological case: function returning access functions that
738 -- return access functions, etc. Each anonymous access type created
739 -- is in the enclosing scope of the outermost function.
746 while Nkind_In
(Par
, N_Access_Function_Definition
,
752 if Nkind
(Par
) = N_Function_Specification
then
753 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
757 -- For the anonymous function result case, retrieve the scope of the
758 -- function specification's associated entity rather than using the
759 -- current scope. The current scope will be the function itself if the
760 -- formal part is currently being analyzed, but will be the parent scope
761 -- in the case of a parameterless function, and we always want to use
762 -- the function's parent scope. Finally, if the function is a child
763 -- unit, we must traverse the tree to retrieve the proper entity.
765 elsif Nkind
(Related_Nod
) = N_Function_Specification
766 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
768 -- If the current scope is a protected type, the anonymous access
769 -- is associated with one of the protected operations, and must
770 -- be available in the scope that encloses the protected declaration.
771 -- Otherwise the type is in the scope enclosing the subprogram.
773 -- If the function has formals, The return type of a subprogram
774 -- declaration is analyzed in the scope of the subprogram (see
775 -- Process_Formals) and thus the protected type, if present, is
776 -- the scope of the current function scope.
778 if Ekind
(Current_Scope
) = E_Protected_Type
then
779 Enclosing_Prot_Type
:= Current_Scope
;
781 elsif Ekind
(Current_Scope
) = E_Function
782 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
784 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
787 if Present
(Enclosing_Prot_Type
) then
788 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
791 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
794 -- For an access type definition, if the current scope is a child
795 -- unit it is the scope of the type.
797 elsif Is_Compilation_Unit
(Current_Scope
) then
798 Anon_Scope
:= Current_Scope
;
800 -- For access formals, access components, and access discriminants, the
801 -- scope is that of the enclosing declaration,
804 Anon_Scope
:= Scope
(Current_Scope
);
809 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
812 and then Ada_Version
>= Ada_2005
814 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
817 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
818 -- the corresponding semantic routine
820 if Present
(Access_To_Subprogram_Definition
(N
)) then
822 -- Compiler runtime units are compiled in Ada 2005 mode when building
823 -- the runtime library but must also be compilable in Ada 95 mode
824 -- (when bootstrapping the compiler).
826 Check_Compiler_Unit
(N
);
828 Access_Subprogram_Declaration
829 (T_Name
=> Anon_Type
,
830 T_Def
=> Access_To_Subprogram_Definition
(N
));
832 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
834 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
837 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
840 Set_Can_Use_Internal_Rep
841 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
843 -- If the anonymous access is associated with a protected operation,
844 -- create a reference to it after the enclosing protected definition
845 -- because the itype will be used in the subsequent bodies.
847 if Ekind
(Current_Scope
) = E_Protected_Type
then
848 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
854 Find_Type
(Subtype_Mark
(N
));
855 Desig_Type
:= Entity
(Subtype_Mark
(N
));
857 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
858 Set_Etype
(Anon_Type
, Anon_Type
);
860 -- Make sure the anonymous access type has size and alignment fields
861 -- set, as required by gigi. This is necessary in the case of the
862 -- Task_Body_Procedure.
864 if not Has_Private_Component
(Desig_Type
) then
865 Layout_Type
(Anon_Type
);
868 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
869 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
870 -- the null value is allowed. In Ada 95 the null value is never allowed.
872 if Ada_Version
>= Ada_2005
then
873 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
875 Set_Can_Never_Be_Null
(Anon_Type
, True);
878 -- The anonymous access type is as public as the discriminated type or
879 -- subprogram that defines it. It is imported (for back-end purposes)
880 -- if the designated type is.
882 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
884 -- Ada 2005 (AI-231): Propagate the access-constant attribute
886 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
888 -- The context is either a subprogram declaration, object declaration,
889 -- or an access discriminant, in a private or a full type declaration.
890 -- In the case of a subprogram, if the designated type is incomplete,
891 -- the operation will be a primitive operation of the full type, to be
892 -- updated subsequently. If the type is imported through a limited_with
893 -- clause, the subprogram is not a primitive operation of the type
894 -- (which is declared elsewhere in some other scope).
896 if Ekind
(Desig_Type
) = E_Incomplete_Type
897 and then not From_With_Type
(Desig_Type
)
898 and then Is_Overloadable
(Current_Scope
)
900 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
901 Set_Has_Delayed_Freeze
(Current_Scope
);
904 -- Ada 2005: if the designated type is an interface that may contain
905 -- tasks, create a Master entity for the declaration. This must be done
906 -- before expansion of the full declaration, because the declaration may
907 -- include an expression that is an allocator, whose expansion needs the
908 -- proper Master for the created tasks.
910 if Nkind
(Related_Nod
) = N_Object_Declaration
911 and then Expander_Active
913 if Is_Interface
(Desig_Type
)
914 and then Is_Limited_Record
(Desig_Type
)
916 Build_Class_Wide_Master
(Anon_Type
);
918 -- Similarly, if the type is an anonymous access that designates
919 -- tasks, create a master entity for it in the current context.
921 elsif Has_Task
(Desig_Type
)
922 and then Comes_From_Source
(Related_Nod
)
924 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
925 Build_Master_Renaming
(Anon_Type
);
929 -- For a private component of a protected type, it is imperative that
930 -- the back-end elaborate the type immediately after the protected
931 -- declaration, because this type will be used in the declarations
932 -- created for the component within each protected body, so we must
933 -- create an itype reference for it now.
935 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
936 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
938 -- Similarly, if the access definition is the return result of a
939 -- function, create an itype reference for it because it will be used
940 -- within the function body. For a regular function that is not a
941 -- compilation unit, insert reference after the declaration. For a
942 -- protected operation, insert it after the enclosing protected type
943 -- declaration. In either case, do not create a reference for a type
944 -- obtained through a limited_with clause, because this would introduce
945 -- semantic dependencies.
947 -- Similarly, do not create a reference if the designated type is a
948 -- generic formal, because no use of it will reach the backend.
950 elsif Nkind
(Related_Nod
) = N_Function_Specification
951 and then not From_With_Type
(Desig_Type
)
952 and then not Is_Generic_Type
(Desig_Type
)
954 if Present
(Enclosing_Prot_Type
) then
955 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
957 elsif Is_List_Member
(Parent
(Related_Nod
))
958 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
960 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
963 -- Finally, create an itype reference for an object declaration of an
964 -- anonymous access type. This is strictly necessary only for deferred
965 -- constants, but in any case will avoid out-of-scope problems in the
968 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
969 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
973 end Access_Definition
;
975 -----------------------------------
976 -- Access_Subprogram_Declaration --
977 -----------------------------------
979 procedure Access_Subprogram_Declaration
984 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
985 -- Check that type T_Name is not used, directly or recursively, as a
986 -- parameter or a return type in Def. Def is either a subtype, an
987 -- access_definition, or an access_to_subprogram_definition.
989 -------------------------------
990 -- Check_For_Premature_Usage --
991 -------------------------------
993 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
997 -- Check for a subtype mark
999 if Nkind
(Def
) in N_Has_Etype
then
1000 if Etype
(Def
) = T_Name
then
1002 ("type& cannot be used before end of its declaration", Def
);
1005 -- If this is not a subtype, then this is an access_definition
1007 elsif Nkind
(Def
) = N_Access_Definition
then
1008 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1009 Check_For_Premature_Usage
1010 (Access_To_Subprogram_Definition
(Def
));
1012 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1015 -- The only cases left are N_Access_Function_Definition and
1016 -- N_Access_Procedure_Definition.
1019 if Present
(Parameter_Specifications
(Def
)) then
1020 Param
:= First
(Parameter_Specifications
(Def
));
1021 while Present
(Param
) loop
1022 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1023 Param
:= Next
(Param
);
1027 if Nkind
(Def
) = N_Access_Function_Definition
then
1028 Check_For_Premature_Usage
(Result_Definition
(Def
));
1031 end Check_For_Premature_Usage
;
1035 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1038 Desig_Type
: constant Entity_Id
:=
1039 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1041 -- Start of processing for Access_Subprogram_Declaration
1044 Check_SPARK_Restriction
("access type is not allowed", T_Def
);
1046 -- Associate the Itype node with the inner full-type declaration or
1047 -- subprogram spec or entry body. This is required to handle nested
1048 -- anonymous declarations. For example:
1051 -- (X : access procedure
1052 -- (Y : access procedure
1055 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1056 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1057 N_Private_Type_Declaration
,
1058 N_Private_Extension_Declaration
,
1059 N_Procedure_Specification
,
1060 N_Function_Specification
,
1064 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1065 N_Object_Renaming_Declaration
,
1066 N_Formal_Object_Declaration
,
1067 N_Formal_Type_Declaration
,
1068 N_Task_Type_Declaration
,
1069 N_Protected_Type_Declaration
))
1071 D_Ityp
:= Parent
(D_Ityp
);
1072 pragma Assert
(D_Ityp
/= Empty
);
1075 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1077 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1078 N_Function_Specification
)
1080 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1082 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1083 N_Object_Declaration
,
1084 N_Object_Renaming_Declaration
,
1085 N_Formal_Type_Declaration
)
1087 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1090 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1091 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1093 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1096 if Present
(Access_To_Subprogram_Definition
(Acc
))
1098 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1102 Replace_Anonymous_Access_To_Protected_Subprogram
1108 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1113 Analyze
(Result_Definition
(T_Def
));
1116 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1119 -- If a null exclusion is imposed on the result type, then
1120 -- create a null-excluding itype (an access subtype) and use
1121 -- it as the function's Etype.
1123 if Is_Access_Type
(Typ
)
1124 and then Null_Exclusion_In_Return_Present
(T_Def
)
1126 Set_Etype
(Desig_Type
,
1127 Create_Null_Excluding_Itype
1129 Related_Nod
=> T_Def
,
1130 Scope_Id
=> Current_Scope
));
1133 if From_With_Type
(Typ
) then
1135 -- AI05-151: Incomplete types are allowed in all basic
1136 -- declarations, including access to subprograms.
1138 if Ada_Version
>= Ada_2012
then
1143 ("illegal use of incomplete type&",
1144 Result_Definition
(T_Def
), Typ
);
1147 elsif Ekind
(Current_Scope
) = E_Package
1148 and then In_Private_Part
(Current_Scope
)
1150 if Ekind
(Typ
) = E_Incomplete_Type
then
1151 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1153 elsif Is_Class_Wide_Type
(Typ
)
1154 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1157 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1161 Set_Etype
(Desig_Type
, Typ
);
1166 if not (Is_Type
(Etype
(Desig_Type
))) then
1168 ("expect type in function specification",
1169 Result_Definition
(T_Def
));
1173 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1176 if Present
(Formals
) then
1177 Push_Scope
(Desig_Type
);
1179 -- A bit of a kludge here. These kludges will be removed when Itypes
1180 -- have proper parent pointers to their declarations???
1182 -- Kludge 1) Link defining_identifier of formals. Required by
1183 -- First_Formal to provide its functionality.
1189 F
:= First
(Formals
);
1191 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1192 -- when it is part of an unconstrained type and subtype expansion
1193 -- is disabled. To avoid back-end problems with shared profiles,
1194 -- use previous subprogram type as the designated type.
1197 and then Present
(Scope
(Defining_Identifier
(F
)))
1199 Set_Etype
(T_Name
, T_Name
);
1200 Init_Size_Align
(T_Name
);
1201 Set_Directly_Designated_Type
(T_Name
,
1202 Scope
(Defining_Identifier
(F
)));
1206 while Present
(F
) loop
1207 if No
(Parent
(Defining_Identifier
(F
))) then
1208 Set_Parent
(Defining_Identifier
(F
), F
);
1215 Process_Formals
(Formals
, Parent
(T_Def
));
1217 -- Kludge 2) End_Scope requires that the parent pointer be set to
1218 -- something reasonable, but Itypes don't have parent pointers. So
1219 -- we set it and then unset it ???
1221 Set_Parent
(Desig_Type
, T_Name
);
1223 Set_Parent
(Desig_Type
, Empty
);
1226 -- Check for premature usage of the type being defined
1228 Check_For_Premature_Usage
(T_Def
);
1230 -- The return type and/or any parameter type may be incomplete. Mark
1231 -- the subprogram_type as depending on the incomplete type, so that
1232 -- it can be updated when the full type declaration is seen. This
1233 -- only applies to incomplete types declared in some enclosing scope,
1234 -- not to limited views from other packages.
1236 if Present
(Formals
) then
1237 Formal
:= First_Formal
(Desig_Type
);
1238 while Present
(Formal
) loop
1239 if Ekind
(Formal
) /= E_In_Parameter
1240 and then Nkind
(T_Def
) = N_Access_Function_Definition
1242 Error_Msg_N
("functions can only have IN parameters", Formal
);
1245 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1246 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1248 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1249 Set_Has_Delayed_Freeze
(Desig_Type
);
1252 Next_Formal
(Formal
);
1256 -- If the return type is incomplete, this is legal as long as the
1257 -- type is declared in the current scope and will be completed in
1258 -- it (rather than being part of limited view).
1260 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1261 and then not Has_Delayed_Freeze
(Desig_Type
)
1262 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1264 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1265 Set_Has_Delayed_Freeze
(Desig_Type
);
1268 Check_Delayed_Subprogram
(Desig_Type
);
1270 if Protected_Present
(T_Def
) then
1271 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1272 Set_Convention
(Desig_Type
, Convention_Protected
);
1274 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1277 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1279 Set_Etype
(T_Name
, T_Name
);
1280 Init_Size_Align
(T_Name
);
1281 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1283 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1285 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1287 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1288 end Access_Subprogram_Declaration
;
1290 ----------------------------
1291 -- Access_Type_Declaration --
1292 ----------------------------
1294 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1295 P
: constant Node_Id
:= Parent
(Def
);
1296 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1298 Full_Desig
: Entity_Id
;
1301 Check_SPARK_Restriction
("access type is not allowed", Def
);
1303 -- Check for permissible use of incomplete type
1305 if Nkind
(S
) /= N_Subtype_Indication
then
1308 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1309 Set_Directly_Designated_Type
(T
, Entity
(S
));
1311 Set_Directly_Designated_Type
(T
,
1312 Process_Subtype
(S
, P
, T
, 'P'));
1316 Set_Directly_Designated_Type
(T
,
1317 Process_Subtype
(S
, P
, T
, 'P'));
1320 if All_Present
(Def
) or Constant_Present
(Def
) then
1321 Set_Ekind
(T
, E_General_Access_Type
);
1323 Set_Ekind
(T
, E_Access_Type
);
1326 Full_Desig
:= Designated_Type
(T
);
1328 if Base_Type
(Full_Desig
) = T
then
1329 Error_Msg_N
("access type cannot designate itself", S
);
1331 -- In Ada 2005, the type may have a limited view through some unit
1332 -- in its own context, allowing the following circularity that cannot
1333 -- be detected earlier
1335 elsif Is_Class_Wide_Type
(Full_Desig
)
1336 and then Etype
(Full_Desig
) = T
1339 ("access type cannot designate its own classwide type", S
);
1341 -- Clean up indication of tagged status to prevent cascaded errors
1343 Set_Is_Tagged_Type
(T
, False);
1348 -- If the type has appeared already in a with_type clause, it is
1349 -- frozen and the pointer size is already set. Else, initialize.
1351 if not From_With_Type
(T
) then
1352 Init_Size_Align
(T
);
1355 -- Note that Has_Task is always false, since the access type itself
1356 -- is not a task type. See Einfo for more description on this point.
1357 -- Exactly the same consideration applies to Has_Controlled_Component.
1359 Set_Has_Task
(T
, False);
1360 Set_Has_Controlled_Component
(T
, False);
1362 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1363 -- problems where an incomplete view of this entity has been previously
1364 -- established by a limited with and an overlaid version of this field
1365 -- (Stored_Constraint) was initialized for the incomplete view.
1367 -- This reset is performed in most cases except where the access type
1368 -- has been created for the purposes of allocating or deallocating a
1369 -- build-in-place object. Such access types have explicitly set pools
1370 -- and finalization masters.
1372 if No
(Associated_Storage_Pool
(T
)) then
1373 Set_Finalization_Master
(T
, Empty
);
1376 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1379 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1380 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1381 end Access_Type_Declaration
;
1383 ----------------------------------
1384 -- Add_Interface_Tag_Components --
1385 ----------------------------------
1387 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1388 Loc
: constant Source_Ptr
:= Sloc
(N
);
1392 procedure Add_Tag
(Iface
: Entity_Id
);
1393 -- Add tag for one of the progenitor interfaces
1399 procedure Add_Tag
(Iface
: Entity_Id
) is
1406 pragma Assert
(Is_Tagged_Type
(Iface
)
1407 and then Is_Interface
(Iface
));
1409 -- This is a reasonable place to propagate predicates
1411 if Has_Predicates
(Iface
) then
1412 Set_Has_Predicates
(Typ
);
1416 Make_Component_Definition
(Loc
,
1417 Aliased_Present
=> True,
1418 Subtype_Indication
=>
1419 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1421 Tag
:= Make_Temporary
(Loc
, 'V');
1424 Make_Component_Declaration
(Loc
,
1425 Defining_Identifier
=> Tag
,
1426 Component_Definition
=> Def
);
1428 Analyze_Component_Declaration
(Decl
);
1430 Set_Analyzed
(Decl
);
1431 Set_Ekind
(Tag
, E_Component
);
1433 Set_Is_Aliased
(Tag
);
1434 Set_Related_Type
(Tag
, Iface
);
1435 Init_Component_Location
(Tag
);
1437 pragma Assert
(Is_Frozen
(Iface
));
1439 Set_DT_Entry_Count
(Tag
,
1440 DT_Entry_Count
(First_Entity
(Iface
)));
1442 if No
(Last_Tag
) then
1445 Insert_After
(Last_Tag
, Decl
);
1450 -- If the ancestor has discriminants we need to give special support
1451 -- to store the offset_to_top value of the secondary dispatch tables.
1452 -- For this purpose we add a supplementary component just after the
1453 -- field that contains the tag associated with each secondary DT.
1455 if Typ
/= Etype
(Typ
)
1456 and then Has_Discriminants
(Etype
(Typ
))
1459 Make_Component_Definition
(Loc
,
1460 Subtype_Indication
=>
1461 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1463 Offset
:= Make_Temporary
(Loc
, 'V');
1466 Make_Component_Declaration
(Loc
,
1467 Defining_Identifier
=> Offset
,
1468 Component_Definition
=> Def
);
1470 Analyze_Component_Declaration
(Decl
);
1472 Set_Analyzed
(Decl
);
1473 Set_Ekind
(Offset
, E_Component
);
1474 Set_Is_Aliased
(Offset
);
1475 Set_Related_Type
(Offset
, Iface
);
1476 Init_Component_Location
(Offset
);
1477 Insert_After
(Last_Tag
, Decl
);
1488 -- Start of processing for Add_Interface_Tag_Components
1491 if not RTE_Available
(RE_Interface_Tag
) then
1493 ("(Ada 2005) interface types not supported by this run-time!",
1498 if Ekind
(Typ
) /= E_Record_Type
1499 or else (Is_Concurrent_Record_Type
(Typ
)
1500 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1501 or else (not Is_Concurrent_Record_Type
(Typ
)
1502 and then No
(Interfaces
(Typ
))
1503 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1508 -- Find the current last tag
1510 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1511 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1513 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1514 Ext
:= Type_Definition
(N
);
1519 if not (Present
(Component_List
(Ext
))) then
1520 Set_Null_Present
(Ext
, False);
1522 Set_Component_List
(Ext
,
1523 Make_Component_List
(Loc
,
1524 Component_Items
=> L
,
1525 Null_Present
=> False));
1527 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1528 L
:= Component_Items
1530 (Record_Extension_Part
1531 (Type_Definition
(N
))));
1533 L
:= Component_Items
1535 (Type_Definition
(N
)));
1538 -- Find the last tag component
1541 while Present
(Comp
) loop
1542 if Nkind
(Comp
) = N_Component_Declaration
1543 and then Is_Tag
(Defining_Identifier
(Comp
))
1552 -- At this point L references the list of components and Last_Tag
1553 -- references the current last tag (if any). Now we add the tag
1554 -- corresponding with all the interfaces that are not implemented
1557 if Present
(Interfaces
(Typ
)) then
1558 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1559 while Present
(Elmt
) loop
1560 Add_Tag
(Node
(Elmt
));
1564 end Add_Interface_Tag_Components
;
1566 -------------------------------------
1567 -- Add_Internal_Interface_Entities --
1568 -------------------------------------
1570 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1573 Iface_Elmt
: Elmt_Id
;
1574 Iface_Prim
: Entity_Id
;
1575 Ifaces_List
: Elist_Id
;
1576 New_Subp
: Entity_Id
:= Empty
;
1578 Restore_Scope
: Boolean := False;
1581 pragma Assert
(Ada_Version
>= Ada_2005
1582 and then Is_Record_Type
(Tagged_Type
)
1583 and then Is_Tagged_Type
(Tagged_Type
)
1584 and then Has_Interfaces
(Tagged_Type
)
1585 and then not Is_Interface
(Tagged_Type
));
1587 -- Ensure that the internal entities are added to the scope of the type
1589 if Scope
(Tagged_Type
) /= Current_Scope
then
1590 Push_Scope
(Scope
(Tagged_Type
));
1591 Restore_Scope
:= True;
1594 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1596 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1597 while Present
(Iface_Elmt
) loop
1598 Iface
:= Node
(Iface_Elmt
);
1600 -- Originally we excluded here from this processing interfaces that
1601 -- are parents of Tagged_Type because their primitives are located
1602 -- in the primary dispatch table (and hence no auxiliary internal
1603 -- entities are required to handle secondary dispatch tables in such
1604 -- case). However, these auxiliary entities are also required to
1605 -- handle derivations of interfaces in formals of generics (see
1606 -- Derive_Subprograms).
1608 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1609 while Present
(Elmt
) loop
1610 Iface_Prim
:= Node
(Elmt
);
1612 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1614 Find_Primitive_Covering_Interface
1615 (Tagged_Type
=> Tagged_Type
,
1616 Iface_Prim
=> Iface_Prim
);
1618 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1622 pragma Assert
(Present
(Prim
));
1624 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1625 -- differs from the name of the interface primitive then it is
1626 -- a private primitive inherited from a parent type. In such
1627 -- case, given that Tagged_Type covers the interface, the
1628 -- inherited private primitive becomes visible. For such
1629 -- purpose we add a new entity that renames the inherited
1630 -- private primitive.
1632 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1633 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1635 (New_Subp
=> New_Subp
,
1636 Parent_Subp
=> Iface_Prim
,
1637 Derived_Type
=> Tagged_Type
,
1638 Parent_Type
=> Iface
);
1639 Set_Alias
(New_Subp
, Prim
);
1640 Set_Is_Abstract_Subprogram
1641 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1645 (New_Subp
=> New_Subp
,
1646 Parent_Subp
=> Iface_Prim
,
1647 Derived_Type
=> Tagged_Type
,
1648 Parent_Type
=> Iface
);
1650 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1651 -- associated with interface types. These entities are
1652 -- only registered in the list of primitives of its
1653 -- corresponding tagged type because they are only used
1654 -- to fill the contents of the secondary dispatch tables.
1655 -- Therefore they are removed from the homonym chains.
1657 Set_Is_Hidden
(New_Subp
);
1658 Set_Is_Internal
(New_Subp
);
1659 Set_Alias
(New_Subp
, Prim
);
1660 Set_Is_Abstract_Subprogram
1661 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1662 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1664 -- Internal entities associated with interface types are
1665 -- only registered in the list of primitives of the tagged
1666 -- type. They are only used to fill the contents of the
1667 -- secondary dispatch tables. Therefore they are not needed
1668 -- in the homonym chains.
1670 Remove_Homonym
(New_Subp
);
1672 -- Hidden entities associated with interfaces must have set
1673 -- the Has_Delay_Freeze attribute to ensure that, in case of
1674 -- locally defined tagged types (or compiling with static
1675 -- dispatch tables generation disabled) the corresponding
1676 -- entry of the secondary dispatch table is filled when
1677 -- such an entity is frozen.
1679 Set_Has_Delayed_Freeze
(New_Subp
);
1686 Next_Elmt
(Iface_Elmt
);
1689 if Restore_Scope
then
1692 end Add_Internal_Interface_Entities
;
1694 -----------------------------------
1695 -- Analyze_Component_Declaration --
1696 -----------------------------------
1698 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1699 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1700 E
: constant Node_Id
:= Expression
(N
);
1701 Typ
: constant Node_Id
:=
1702 Subtype_Indication
(Component_Definition
(N
));
1706 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1707 -- Determines whether a constraint uses the discriminant of a record
1708 -- type thus becoming a per-object constraint (POC).
1710 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1711 -- Typ is the type of the current component, check whether this type is
1712 -- a limited type. Used to validate declaration against that of
1713 -- enclosing record.
1719 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1721 -- Prevent cascaded errors
1723 if Error_Posted
(Constr
) then
1727 case Nkind
(Constr
) is
1728 when N_Attribute_Reference
=>
1730 Attribute_Name
(Constr
) = Name_Access
1731 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1733 when N_Discriminant_Association
=>
1734 return Denotes_Discriminant
(Expression
(Constr
));
1736 when N_Identifier
=>
1737 return Denotes_Discriminant
(Constr
);
1739 when N_Index_Or_Discriminant_Constraint
=>
1744 IDC
:= First
(Constraints
(Constr
));
1745 while Present
(IDC
) loop
1747 -- One per-object constraint is sufficient
1749 if Contains_POC
(IDC
) then
1760 return Denotes_Discriminant
(Low_Bound
(Constr
))
1762 Denotes_Discriminant
(High_Bound
(Constr
));
1764 when N_Range_Constraint
=>
1765 return Denotes_Discriminant
(Range_Expression
(Constr
));
1773 ----------------------
1774 -- Is_Known_Limited --
1775 ----------------------
1777 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1778 P
: constant Entity_Id
:= Etype
(Typ
);
1779 R
: constant Entity_Id
:= Root_Type
(Typ
);
1782 if Is_Limited_Record
(Typ
) then
1785 -- If the root type is limited (and not a limited interface)
1786 -- so is the current type
1788 elsif Is_Limited_Record
(R
)
1790 (not Is_Interface
(R
)
1791 or else not Is_Limited_Interface
(R
))
1795 -- Else the type may have a limited interface progenitor, but a
1796 -- limited record parent.
1799 and then Is_Limited_Record
(P
)
1806 end Is_Known_Limited
;
1808 -- Start of processing for Analyze_Component_Declaration
1811 Generate_Definition
(Id
);
1814 if Present
(Typ
) then
1815 T
:= Find_Type_Of_Object
1816 (Subtype_Indication
(Component_Definition
(N
)), N
);
1818 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1819 Check_SPARK_Restriction
("subtype mark required", Typ
);
1822 -- Ada 2005 (AI-230): Access Definition case
1825 pragma Assert
(Present
1826 (Access_Definition
(Component_Definition
(N
))));
1828 T
:= Access_Definition
1830 N
=> Access_Definition
(Component_Definition
(N
)));
1831 Set_Is_Local_Anonymous_Access
(T
);
1833 -- Ada 2005 (AI-254)
1835 if Present
(Access_To_Subprogram_Definition
1836 (Access_Definition
(Component_Definition
(N
))))
1837 and then Protected_Present
(Access_To_Subprogram_Definition
1839 (Component_Definition
(N
))))
1841 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1845 -- If the subtype is a constrained subtype of the enclosing record,
1846 -- (which must have a partial view) the back-end does not properly
1847 -- handle the recursion. Rewrite the component declaration with an
1848 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1849 -- the tree directly because side effects have already been removed from
1850 -- discriminant constraints.
1852 if Ekind
(T
) = E_Access_Subtype
1853 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1854 and then Comes_From_Source
(T
)
1855 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1856 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1859 (Subtype_Indication
(Component_Definition
(N
)),
1860 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1861 T
:= Find_Type_Of_Object
1862 (Subtype_Indication
(Component_Definition
(N
)), N
);
1865 -- If the component declaration includes a default expression, then we
1866 -- check that the component is not of a limited type (RM 3.7(5)),
1867 -- and do the special preanalysis of the expression (see section on
1868 -- "Handling of Default and Per-Object Expressions" in the spec of
1872 Check_SPARK_Restriction
("default expression is not allowed", E
);
1873 Preanalyze_Spec_Expression
(E
, T
);
1874 Check_Initialization
(T
, E
);
1876 if Ada_Version
>= Ada_2005
1877 and then Ekind
(T
) = E_Anonymous_Access_Type
1878 and then Etype
(E
) /= Any_Type
1880 -- Check RM 3.9.2(9): "if the expected type for an expression is
1881 -- an anonymous access-to-specific tagged type, then the object
1882 -- designated by the expression shall not be dynamically tagged
1883 -- unless it is a controlling operand in a call on a dispatching
1886 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1888 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1890 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1894 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1897 -- (Ada 2005: AI-230): Accessibility check for anonymous
1900 if Type_Access_Level
(Etype
(E
)) >
1901 Deepest_Type_Access_Level
(T
)
1904 ("expression has deeper access level than component " &
1905 "(RM 3.10.2 (12.2))", E
);
1908 -- The initialization expression is a reference to an access
1909 -- discriminant. The type of the discriminant is always deeper
1910 -- than any access type.
1912 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1913 and then Is_Entity_Name
(E
)
1914 and then Ekind
(Entity
(E
)) = E_In_Parameter
1915 and then Present
(Discriminal_Link
(Entity
(E
)))
1918 ("discriminant has deeper accessibility level than target",
1924 -- The parent type may be a private view with unknown discriminants,
1925 -- and thus unconstrained. Regular components must be constrained.
1927 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1928 if Is_Class_Wide_Type
(T
) then
1930 ("class-wide subtype with unknown discriminants" &
1931 " in component declaration",
1932 Subtype_Indication
(Component_Definition
(N
)));
1935 ("unconstrained subtype in component declaration",
1936 Subtype_Indication
(Component_Definition
(N
)));
1939 -- Components cannot be abstract, except for the special case of
1940 -- the _Parent field (case of extending an abstract tagged type)
1942 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1943 Error_Msg_N
("type of a component cannot be abstract", N
);
1947 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1949 -- The component declaration may have a per-object constraint, set
1950 -- the appropriate flag in the defining identifier of the subtype.
1952 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1954 Sindic
: constant Node_Id
:=
1955 Subtype_Indication
(Component_Definition
(N
));
1957 if Nkind
(Sindic
) = N_Subtype_Indication
1958 and then Present
(Constraint
(Sindic
))
1959 and then Contains_POC
(Constraint
(Sindic
))
1961 Set_Has_Per_Object_Constraint
(Id
);
1966 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1967 -- out some static checks.
1969 if Ada_Version
>= Ada_2005
1970 and then Can_Never_Be_Null
(T
)
1972 Null_Exclusion_Static_Checks
(N
);
1975 -- If this component is private (or depends on a private type), flag the
1976 -- record type to indicate that some operations are not available.
1978 P
:= Private_Component
(T
);
1982 -- Check for circular definitions
1984 if P
= Any_Type
then
1985 Set_Etype
(Id
, Any_Type
);
1987 -- There is a gap in the visibility of operations only if the
1988 -- component type is not defined in the scope of the record type.
1990 elsif Scope
(P
) = Scope
(Current_Scope
) then
1993 elsif Is_Limited_Type
(P
) then
1994 Set_Is_Limited_Composite
(Current_Scope
);
1997 Set_Is_Private_Composite
(Current_Scope
);
2002 and then Is_Limited_Type
(T
)
2003 and then Chars
(Id
) /= Name_uParent
2004 and then Is_Tagged_Type
(Current_Scope
)
2006 if Is_Derived_Type
(Current_Scope
)
2007 and then not Is_Known_Limited
(Current_Scope
)
2010 ("extension of nonlimited type cannot have limited components",
2013 if Is_Interface
(Root_Type
(Current_Scope
)) then
2015 ("\limitedness is not inherited from limited interface", N
);
2016 Error_Msg_N
("\add LIMITED to type indication", N
);
2019 Explain_Limited_Type
(T
, N
);
2020 Set_Etype
(Id
, Any_Type
);
2021 Set_Is_Limited_Composite
(Current_Scope
, False);
2023 elsif not Is_Derived_Type
(Current_Scope
)
2024 and then not Is_Limited_Record
(Current_Scope
)
2025 and then not Is_Concurrent_Type
(Current_Scope
)
2028 ("nonlimited tagged type cannot have limited components", N
);
2029 Explain_Limited_Type
(T
, N
);
2030 Set_Etype
(Id
, Any_Type
);
2031 Set_Is_Limited_Composite
(Current_Scope
, False);
2035 Set_Original_Record_Component
(Id
, Id
);
2037 if Has_Aspects
(N
) then
2038 Analyze_Aspect_Specifications
(N
, Id
);
2041 Analyze_Dimension
(N
);
2042 end Analyze_Component_Declaration
;
2044 --------------------------
2045 -- Analyze_Declarations --
2046 --------------------------
2048 procedure Analyze_Declarations
(L
: List_Id
) is
2050 Freeze_From
: Entity_Id
:= Empty
;
2051 Next_Node
: Node_Id
;
2054 -- Adjust D not to include implicit label declarations, since these
2055 -- have strange Sloc values that result in elaboration check problems.
2056 -- (They have the sloc of the label as found in the source, and that
2057 -- is ahead of the current declarative part).
2063 procedure Adjust_D
is
2065 while Present
(Prev
(D
))
2066 and then Nkind
(D
) = N_Implicit_Label_Declaration
2072 -- Start of processing for Analyze_Declarations
2075 if Restriction_Check_Required
(SPARK
) then
2076 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2080 while Present
(D
) loop
2082 -- Package spec cannot contain a package declaration in SPARK
2084 if Nkind
(D
) = N_Package_Declaration
2085 and then Nkind
(Parent
(L
)) = N_Package_Specification
2087 Check_SPARK_Restriction
2088 ("package specification cannot contain a package declaration",
2092 -- Complete analysis of declaration
2095 Next_Node
:= Next
(D
);
2097 if No
(Freeze_From
) then
2098 Freeze_From
:= First_Entity
(Current_Scope
);
2101 -- At the end of a declarative part, freeze remaining entities
2102 -- declared in it. The end of the visible declarations of package
2103 -- specification is not the end of a declarative part if private
2104 -- declarations are present. The end of a package declaration is a
2105 -- freezing point only if it a library package. A task definition or
2106 -- protected type definition is not a freeze point either. Finally,
2107 -- we do not freeze entities in generic scopes, because there is no
2108 -- code generated for them and freeze nodes will be generated for
2111 -- The end of a package instantiation is not a freeze point, but
2112 -- for now we make it one, because the generic body is inserted
2113 -- (currently) immediately after. Generic instantiations will not
2114 -- be a freeze point once delayed freezing of bodies is implemented.
2115 -- (This is needed in any case for early instantiations ???).
2117 if No
(Next_Node
) then
2118 if Nkind_In
(Parent
(L
), N_Component_List
,
2120 N_Protected_Definition
)
2124 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2125 if Nkind
(Parent
(L
)) = N_Package_Body
then
2126 Freeze_From
:= First_Entity
(Current_Scope
);
2130 Freeze_All
(Freeze_From
, D
);
2131 Freeze_From
:= Last_Entity
(Current_Scope
);
2133 elsif Scope
(Current_Scope
) /= Standard_Standard
2134 and then not Is_Child_Unit
(Current_Scope
)
2135 and then No
(Generic_Parent
(Parent
(L
)))
2139 elsif L
/= Visible_Declarations
(Parent
(L
))
2140 or else No
(Private_Declarations
(Parent
(L
)))
2141 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2144 Freeze_All
(Freeze_From
, D
);
2145 Freeze_From
:= Last_Entity
(Current_Scope
);
2148 -- If next node is a body then freeze all types before the body.
2149 -- An exception occurs for some expander-generated bodies. If these
2150 -- are generated at places where in general language rules would not
2151 -- allow a freeze point, then we assume that the expander has
2152 -- explicitly checked that all required types are properly frozen,
2153 -- and we do not cause general freezing here. This special circuit
2154 -- is used when the encountered body is marked as having already
2157 -- In all other cases (bodies that come from source, and expander
2158 -- generated bodies that have not been analyzed yet), freeze all
2159 -- types now. Note that in the latter case, the expander must take
2160 -- care to attach the bodies at a proper place in the tree so as to
2161 -- not cause unwanted freezing at that point.
2163 elsif not Analyzed
(Next_Node
)
2164 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
2170 Nkind
(Next_Node
) in N_Body_Stub
)
2173 Freeze_All
(Freeze_From
, D
);
2174 Freeze_From
:= Last_Entity
(Current_Scope
);
2180 -- One more thing to do, we need to scan the declarations to check
2181 -- for any precondition/postcondition pragmas (Pre/Post aspects have
2182 -- by this stage been converted into corresponding pragmas). It is
2183 -- at this point that we analyze the expressions in such pragmas,
2184 -- to implement the delayed visibility requirement.
2194 while Present
(Decl
) loop
2195 if Nkind
(Original_Node
(Decl
)) = N_Subprogram_Declaration
then
2196 Spec
:= Specification
(Original_Node
(Decl
));
2197 Sent
:= Defining_Unit_Name
(Spec
);
2199 -- Analyze preconditions and postconditions
2201 Prag
:= Spec_PPC_List
(Contract
(Sent
));
2202 while Present
(Prag
) loop
2203 Analyze_PPC_In_Decl_Part
(Prag
, Sent
);
2204 Prag
:= Next_Pragma
(Prag
);
2207 -- Analyze contract-cases and test-cases
2209 Prag
:= Spec_CTC_List
(Contract
(Sent
));
2210 while Present
(Prag
) loop
2211 Analyze_CTC_In_Decl_Part
(Prag
, Sent
);
2212 Prag
:= Next_Pragma
(Prag
);
2215 -- At this point, entities have been attached to identifiers.
2216 -- This is required to be able to detect suspicious contracts.
2218 Check_Subprogram_Contract
(Sent
);
2224 end Analyze_Declarations
;
2226 -----------------------------------
2227 -- Analyze_Full_Type_Declaration --
2228 -----------------------------------
2230 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2231 Def
: constant Node_Id
:= Type_Definition
(N
);
2232 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2236 Is_Remote
: constant Boolean :=
2237 (Is_Remote_Types
(Current_Scope
)
2238 or else Is_Remote_Call_Interface
(Current_Scope
))
2239 and then not (In_Private_Part
(Current_Scope
)
2240 or else In_Package_Body
(Current_Scope
));
2242 procedure Check_Ops_From_Incomplete_Type
;
2243 -- If there is a tagged incomplete partial view of the type, traverse
2244 -- the primitives of the incomplete view and change the type of any
2245 -- controlling formals and result to indicate the full view. The
2246 -- primitives will be added to the full type's primitive operations
2247 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2248 -- is called from Process_Incomplete_Dependents).
2250 ------------------------------------
2251 -- Check_Ops_From_Incomplete_Type --
2252 ------------------------------------
2254 procedure Check_Ops_From_Incomplete_Type
is
2261 and then Ekind
(Prev
) = E_Incomplete_Type
2262 and then Is_Tagged_Type
(Prev
)
2263 and then Is_Tagged_Type
(T
)
2265 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2266 while Present
(Elmt
) loop
2269 Formal
:= First_Formal
(Op
);
2270 while Present
(Formal
) loop
2271 if Etype
(Formal
) = Prev
then
2272 Set_Etype
(Formal
, T
);
2275 Next_Formal
(Formal
);
2278 if Etype
(Op
) = Prev
then
2285 end Check_Ops_From_Incomplete_Type
;
2287 -- Start of processing for Analyze_Full_Type_Declaration
2290 Prev
:= Find_Type_Name
(N
);
2292 -- The full view, if present, now points to the current type
2294 -- Ada 2005 (AI-50217): If the type was previously decorated when
2295 -- imported through a LIMITED WITH clause, it appears as incomplete
2296 -- but has no full view.
2298 if Ekind
(Prev
) = E_Incomplete_Type
2299 and then Present
(Full_View
(Prev
))
2301 T
:= Full_View
(Prev
);
2306 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2308 -- We set the flag Is_First_Subtype here. It is needed to set the
2309 -- corresponding flag for the Implicit class-wide-type created
2310 -- during tagged types processing.
2312 Set_Is_First_Subtype
(T
, True);
2314 -- Only composite types other than array types are allowed to have
2319 -- For derived types, the rule will be checked once we've figured
2320 -- out the parent type.
2322 when N_Derived_Type_Definition
=>
2325 -- For record types, discriminants are allowed, unless we are in
2328 when N_Record_Definition
=>
2329 if Present
(Discriminant_Specifications
(N
)) then
2330 Check_SPARK_Restriction
2331 ("discriminant type is not allowed",
2333 (First
(Discriminant_Specifications
(N
))));
2337 if Present
(Discriminant_Specifications
(N
)) then
2339 ("elementary or array type cannot have discriminants",
2341 (First
(Discriminant_Specifications
(N
))));
2345 -- Elaborate the type definition according to kind, and generate
2346 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2347 -- already done (this happens during the reanalysis that follows a call
2348 -- to the high level optimizer).
2350 if not Analyzed
(T
) then
2355 when N_Access_To_Subprogram_Definition
=>
2356 Access_Subprogram_Declaration
(T
, Def
);
2358 -- If this is a remote access to subprogram, we must create the
2359 -- equivalent fat pointer type, and related subprograms.
2362 Process_Remote_AST_Declaration
(N
);
2365 -- Validate categorization rule against access type declaration
2366 -- usually a violation in Pure unit, Shared_Passive unit.
2368 Validate_Access_Type_Declaration
(T
, N
);
2370 when N_Access_To_Object_Definition
=>
2371 Access_Type_Declaration
(T
, Def
);
2373 -- Validate categorization rule against access type declaration
2374 -- usually a violation in Pure unit, Shared_Passive unit.
2376 Validate_Access_Type_Declaration
(T
, N
);
2378 -- If we are in a Remote_Call_Interface package and define a
2379 -- RACW, then calling stubs and specific stream attributes
2383 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2385 Add_RACW_Features
(Def_Id
);
2388 -- Set no strict aliasing flag if config pragma seen
2390 if Opt
.No_Strict_Aliasing
then
2391 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2394 when N_Array_Type_Definition
=>
2395 Array_Type_Declaration
(T
, Def
);
2397 when N_Derived_Type_Definition
=>
2398 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2400 when N_Enumeration_Type_Definition
=>
2401 Enumeration_Type_Declaration
(T
, Def
);
2403 when N_Floating_Point_Definition
=>
2404 Floating_Point_Type_Declaration
(T
, Def
);
2406 when N_Decimal_Fixed_Point_Definition
=>
2407 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2409 when N_Ordinary_Fixed_Point_Definition
=>
2410 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2412 when N_Signed_Integer_Type_Definition
=>
2413 Signed_Integer_Type_Declaration
(T
, Def
);
2415 when N_Modular_Type_Definition
=>
2416 Modular_Type_Declaration
(T
, Def
);
2418 when N_Record_Definition
=>
2419 Record_Type_Declaration
(T
, N
, Prev
);
2421 -- If declaration has a parse error, nothing to elaborate.
2427 raise Program_Error
;
2432 if Etype
(T
) = Any_Type
then
2436 -- Controlled type is not allowed in SPARK
2438 if Is_Visibly_Controlled
(T
) then
2439 Check_SPARK_Restriction
("controlled type is not allowed", N
);
2442 -- Some common processing for all types
2444 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2445 Check_Ops_From_Incomplete_Type
;
2447 -- Both the declared entity, and its anonymous base type if one
2448 -- was created, need freeze nodes allocated.
2451 B
: constant Entity_Id
:= Base_Type
(T
);
2454 -- In the case where the base type differs from the first subtype, we
2455 -- pre-allocate a freeze node, and set the proper link to the first
2456 -- subtype. Freeze_Entity will use this preallocated freeze node when
2457 -- it freezes the entity.
2459 -- This does not apply if the base type is a generic type, whose
2460 -- declaration is independent of the current derived definition.
2462 if B
/= T
and then not Is_Generic_Type
(B
) then
2463 Ensure_Freeze_Node
(B
);
2464 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2467 -- A type that is imported through a limited_with clause cannot
2468 -- generate any code, and thus need not be frozen. However, an access
2469 -- type with an imported designated type needs a finalization list,
2470 -- which may be referenced in some other package that has non-limited
2471 -- visibility on the designated type. Thus we must create the
2472 -- finalization list at the point the access type is frozen, to
2473 -- prevent unsatisfied references at link time.
2475 if not From_With_Type
(T
) or else Is_Access_Type
(T
) then
2476 Set_Has_Delayed_Freeze
(T
);
2480 -- Case where T is the full declaration of some private type which has
2481 -- been swapped in Defining_Identifier (N).
2483 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2484 Process_Full_View
(N
, T
, Def_Id
);
2486 -- Record the reference. The form of this is a little strange, since
2487 -- the full declaration has been swapped in. So the first parameter
2488 -- here represents the entity to which a reference is made which is
2489 -- the "real" entity, i.e. the one swapped in, and the second
2490 -- parameter provides the reference location.
2492 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2493 -- since we don't want a complaint about the full type being an
2494 -- unwanted reference to the private type
2497 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2499 Set_Has_Pragma_Unreferenced
(T
, False);
2500 Generate_Reference
(T
, T
, 'c');
2501 Set_Has_Pragma_Unreferenced
(T
, B
);
2504 Set_Completion_Referenced
(Def_Id
);
2506 -- For completion of incomplete type, process incomplete dependents
2507 -- and always mark the full type as referenced (it is the incomplete
2508 -- type that we get for any real reference).
2510 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2511 Process_Incomplete_Dependents
(N
, T
, Prev
);
2512 Generate_Reference
(Prev
, Def_Id
, 'c');
2513 Set_Completion_Referenced
(Def_Id
);
2515 -- If not private type or incomplete type completion, this is a real
2516 -- definition of a new entity, so record it.
2519 Generate_Definition
(Def_Id
);
2522 if Chars
(Scope
(Def_Id
)) = Name_System
2523 and then Chars
(Def_Id
) = Name_Address
2524 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2526 Set_Is_Descendent_Of_Address
(Def_Id
);
2527 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2528 Set_Is_Descendent_Of_Address
(Prev
);
2531 Set_Optimize_Alignment_Flags
(Def_Id
);
2532 Check_Eliminated
(Def_Id
);
2534 -- If the declaration is a completion and aspects are present, apply
2535 -- them to the entity for the type which is currently the partial
2536 -- view, but which is the one that will be frozen.
2538 if Has_Aspects
(N
) then
2539 if Prev
/= Def_Id
then
2540 Analyze_Aspect_Specifications
(N
, Prev
);
2542 Analyze_Aspect_Specifications
(N
, Def_Id
);
2545 end Analyze_Full_Type_Declaration
;
2547 ----------------------------------
2548 -- Analyze_Incomplete_Type_Decl --
2549 ----------------------------------
2551 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2552 F
: constant Boolean := Is_Pure
(Current_Scope
);
2556 Check_SPARK_Restriction
("incomplete type is not allowed", N
);
2558 Generate_Definition
(Defining_Identifier
(N
));
2560 -- Process an incomplete declaration. The identifier must not have been
2561 -- declared already in the scope. However, an incomplete declaration may
2562 -- appear in the private part of a package, for a private type that has
2563 -- already been declared.
2565 -- In this case, the discriminants (if any) must match
2567 T
:= Find_Type_Name
(N
);
2569 Set_Ekind
(T
, E_Incomplete_Type
);
2570 Init_Size_Align
(T
);
2571 Set_Is_First_Subtype
(T
, True);
2574 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2575 -- incomplete types.
2577 if Tagged_Present
(N
) then
2578 Set_Is_Tagged_Type
(T
);
2579 Make_Class_Wide_Type
(T
);
2580 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2585 Set_Stored_Constraint
(T
, No_Elist
);
2587 if Present
(Discriminant_Specifications
(N
)) then
2588 Process_Discriminants
(N
);
2593 -- If the type has discriminants, non-trivial subtypes may be
2594 -- declared before the full view of the type. The full views of those
2595 -- subtypes will be built after the full view of the type.
2597 Set_Private_Dependents
(T
, New_Elmt_List
);
2599 end Analyze_Incomplete_Type_Decl
;
2601 -----------------------------------
2602 -- Analyze_Interface_Declaration --
2603 -----------------------------------
2605 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2606 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2609 Set_Is_Tagged_Type
(T
);
2611 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2612 or else Task_Present
(Def
)
2613 or else Protected_Present
(Def
)
2614 or else Synchronized_Present
(Def
));
2616 -- Type is abstract if full declaration carries keyword, or if previous
2617 -- partial view did.
2619 Set_Is_Abstract_Type
(T
);
2620 Set_Is_Interface
(T
);
2622 -- Type is a limited interface if it includes the keyword limited, task,
2623 -- protected, or synchronized.
2625 Set_Is_Limited_Interface
2626 (T
, Limited_Present
(Def
)
2627 or else Protected_Present
(Def
)
2628 or else Synchronized_Present
(Def
)
2629 or else Task_Present
(Def
));
2631 Set_Interfaces
(T
, New_Elmt_List
);
2632 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2634 -- Complete the decoration of the class-wide entity if it was already
2635 -- built (i.e. during the creation of the limited view)
2637 if Present
(CW
) then
2638 Set_Is_Interface
(CW
);
2639 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2642 -- Check runtime support for synchronized interfaces
2644 if VM_Target
= No_VM
2645 and then (Is_Task_Interface
(T
)
2646 or else Is_Protected_Interface
(T
)
2647 or else Is_Synchronized_Interface
(T
))
2648 and then not RTE_Available
(RE_Select_Specific_Data
)
2650 Error_Msg_CRT
("synchronized interfaces", T
);
2652 end Analyze_Interface_Declaration
;
2654 -----------------------------
2655 -- Analyze_Itype_Reference --
2656 -----------------------------
2658 -- Nothing to do. This node is placed in the tree only for the benefit of
2659 -- back end processing, and has no effect on the semantic processing.
2661 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2663 pragma Assert
(Is_Itype
(Itype
(N
)));
2665 end Analyze_Itype_Reference
;
2667 --------------------------------
2668 -- Analyze_Number_Declaration --
2669 --------------------------------
2671 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2672 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2673 E
: constant Node_Id
:= Expression
(N
);
2675 Index
: Interp_Index
;
2679 Generate_Definition
(Id
);
2682 -- This is an optimization of a common case of an integer literal
2684 if Nkind
(E
) = N_Integer_Literal
then
2685 Set_Is_Static_Expression
(E
, True);
2686 Set_Etype
(E
, Universal_Integer
);
2688 Set_Etype
(Id
, Universal_Integer
);
2689 Set_Ekind
(Id
, E_Named_Integer
);
2690 Set_Is_Frozen
(Id
, True);
2694 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2696 -- Process expression, replacing error by integer zero, to avoid
2697 -- cascaded errors or aborts further along in the processing
2699 -- Replace Error by integer zero, which seems least likely to cause
2703 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2704 Set_Error_Posted
(E
);
2709 -- Verify that the expression is static and numeric. If
2710 -- the expression is overloaded, we apply the preference
2711 -- rule that favors root numeric types.
2713 if not Is_Overloaded
(E
) then
2719 Get_First_Interp
(E
, Index
, It
);
2720 while Present
(It
.Typ
) loop
2721 if (Is_Integer_Type
(It
.Typ
)
2722 or else Is_Real_Type
(It
.Typ
))
2723 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2725 if T
= Any_Type
then
2728 elsif It
.Typ
= Universal_Real
2729 or else It
.Typ
= Universal_Integer
2731 -- Choose universal interpretation over any other
2738 Get_Next_Interp
(Index
, It
);
2742 if Is_Integer_Type
(T
) then
2744 Set_Etype
(Id
, Universal_Integer
);
2745 Set_Ekind
(Id
, E_Named_Integer
);
2747 elsif Is_Real_Type
(T
) then
2749 -- Because the real value is converted to universal_real, this is a
2750 -- legal context for a universal fixed expression.
2752 if T
= Universal_Fixed
then
2754 Loc
: constant Source_Ptr
:= Sloc
(N
);
2755 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2757 New_Occurrence_Of
(Universal_Real
, Loc
),
2758 Expression
=> Relocate_Node
(E
));
2765 elsif T
= Any_Fixed
then
2766 Error_Msg_N
("illegal context for mixed mode operation", E
);
2768 -- Expression is of the form : universal_fixed * integer. Try to
2769 -- resolve as universal_real.
2771 T
:= Universal_Real
;
2776 Set_Etype
(Id
, Universal_Real
);
2777 Set_Ekind
(Id
, E_Named_Real
);
2780 Wrong_Type
(E
, Any_Numeric
);
2784 Set_Ekind
(Id
, E_Constant
);
2785 Set_Never_Set_In_Source
(Id
, True);
2786 Set_Is_True_Constant
(Id
, True);
2790 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2791 Set_Etype
(E
, Etype
(Id
));
2794 if not Is_OK_Static_Expression
(E
) then
2795 Flag_Non_Static_Expr
2796 ("non-static expression used in number declaration!", E
);
2797 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2798 Set_Etype
(E
, Any_Type
);
2800 end Analyze_Number_Declaration
;
2802 --------------------------------
2803 -- Analyze_Object_Declaration --
2804 --------------------------------
2806 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2807 Loc
: constant Source_Ptr
:= Sloc
(N
);
2808 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2812 E
: Node_Id
:= Expression
(N
);
2813 -- E is set to Expression (N) throughout this routine. When
2814 -- Expression (N) is modified, E is changed accordingly.
2816 Prev_Entity
: Entity_Id
:= Empty
;
2818 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2819 -- This function is called when a non-generic library level object of a
2820 -- task type is declared. Its function is to count the static number of
2821 -- tasks declared within the type (it is only called if Has_Tasks is set
2822 -- for T). As a side effect, if an array of tasks with non-static bounds
2823 -- or a variant record type is encountered, Check_Restrictions is called
2824 -- indicating the count is unknown.
2830 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2836 if Is_Task_Type
(T
) then
2839 elsif Is_Record_Type
(T
) then
2840 if Has_Discriminants
(T
) then
2841 Check_Restriction
(Max_Tasks
, N
);
2846 C
:= First_Component
(T
);
2847 while Present
(C
) loop
2848 V
:= V
+ Count_Tasks
(Etype
(C
));
2855 elsif Is_Array_Type
(T
) then
2856 X
:= First_Index
(T
);
2857 V
:= Count_Tasks
(Component_Type
(T
));
2858 while Present
(X
) loop
2861 if not Is_Static_Subtype
(C
) then
2862 Check_Restriction
(Max_Tasks
, N
);
2865 V
:= V
* (UI_Max
(Uint_0
,
2866 Expr_Value
(Type_High_Bound
(C
)) -
2867 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2880 -- Start of processing for Analyze_Object_Declaration
2883 -- There are three kinds of implicit types generated by an
2884 -- object declaration:
2886 -- 1. Those generated by the original Object Definition
2888 -- 2. Those generated by the Expression
2890 -- 3. Those used to constrain the Object Definition with the
2891 -- expression constraints when the definition is unconstrained.
2893 -- They must be generated in this order to avoid order of elaboration
2894 -- issues. Thus the first step (after entering the name) is to analyze
2895 -- the object definition.
2897 if Constant_Present
(N
) then
2898 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2900 if Present
(Prev_Entity
)
2903 -- If the homograph is an implicit subprogram, it is overridden
2904 -- by the current declaration.
2906 ((Is_Overloadable
(Prev_Entity
)
2907 and then Is_Inherited_Operation
(Prev_Entity
))
2909 -- The current object is a discriminal generated for an entry
2910 -- family index. Even though the index is a constant, in this
2911 -- particular context there is no true constant redeclaration.
2912 -- Enter_Name will handle the visibility.
2915 (Is_Discriminal
(Id
)
2916 and then Ekind
(Discriminal_Link
(Id
)) =
2917 E_Entry_Index_Parameter
)
2919 -- The current object is the renaming for a generic declared
2920 -- within the instance.
2923 (Ekind
(Prev_Entity
) = E_Package
2924 and then Nkind
(Parent
(Prev_Entity
)) =
2925 N_Package_Renaming_Declaration
2926 and then not Comes_From_Source
(Prev_Entity
)
2927 and then Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
2929 Prev_Entity
:= Empty
;
2933 if Present
(Prev_Entity
) then
2934 Constant_Redeclaration
(Id
, N
, T
);
2936 Generate_Reference
(Prev_Entity
, Id
, 'c');
2937 Set_Completion_Referenced
(Id
);
2939 if Error_Posted
(N
) then
2941 -- Type mismatch or illegal redeclaration, Do not analyze
2942 -- expression to avoid cascaded errors.
2944 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2946 Set_Ekind
(Id
, E_Variable
);
2950 -- In the normal case, enter identifier at the start to catch premature
2951 -- usage in the initialization expression.
2954 Generate_Definition
(Id
);
2957 Mark_Coextensions
(N
, Object_Definition
(N
));
2959 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2961 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2963 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2964 and then Protected_Present
2965 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2967 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2970 if Error_Posted
(Id
) then
2972 Set_Ekind
(Id
, E_Variable
);
2977 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2978 -- out some static checks
2980 if Ada_Version
>= Ada_2005
2981 and then Can_Never_Be_Null
(T
)
2983 -- In case of aggregates we must also take care of the correct
2984 -- initialization of nested aggregates bug this is done at the
2985 -- point of the analysis of the aggregate (see sem_aggr.adb)
2987 if Present
(Expression
(N
))
2988 and then Nkind
(Expression
(N
)) = N_Aggregate
2994 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2996 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2997 Null_Exclusion_Static_Checks
(N
);
2998 Set_Etype
(Id
, Save_Typ
);
3003 -- Object is marked pure if it is in a pure scope
3005 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3007 -- If deferred constant, make sure context is appropriate. We detect
3008 -- a deferred constant as a constant declaration with no expression.
3009 -- A deferred constant can appear in a package body if its completion
3010 -- is by means of an interface pragma.
3012 if Constant_Present
(N
)
3015 -- A deferred constant may appear in the declarative part of the
3016 -- following constructs:
3020 -- extended return statements
3023 -- subprogram bodies
3026 -- When declared inside a package spec, a deferred constant must be
3027 -- completed by a full constant declaration or pragma Import. In all
3028 -- other cases, the only proper completion is pragma Import. Extended
3029 -- return statements are flagged as invalid contexts because they do
3030 -- not have a declarative part and so cannot accommodate the pragma.
3032 if Ekind
(Current_Scope
) = E_Return_Statement
then
3034 ("invalid context for deferred constant declaration (RM 7.4)",
3037 ("\declaration requires an initialization expression",
3039 Set_Constant_Present
(N
, False);
3041 -- In Ada 83, deferred constant must be of private type
3043 elsif not Is_Private_Type
(T
) then
3044 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3046 ("(Ada 83) deferred constant must be private type", N
);
3050 -- If not a deferred constant, then object declaration freezes its type
3053 Check_Fully_Declared
(T
, N
);
3054 Freeze_Before
(N
, T
);
3057 -- If the object was created by a constrained array definition, then
3058 -- set the link in both the anonymous base type and anonymous subtype
3059 -- that are built to represent the array type to point to the object.
3061 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3062 N_Constrained_Array_Definition
3064 Set_Related_Array_Object
(T
, Id
);
3065 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3068 -- Special checks for protected objects not at library level
3070 if Is_Protected_Type
(T
)
3071 and then not Is_Library_Level_Entity
(Id
)
3073 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3075 -- Protected objects with interrupt handlers must be at library level
3077 -- Ada 2005: this test is not needed (and the corresponding clause
3078 -- in the RM is removed) because accessibility checks are sufficient
3079 -- to make handlers not at the library level illegal.
3081 if Has_Interrupt_Handler
(T
)
3082 and then Ada_Version
< Ada_2005
3085 ("interrupt object can only be declared at library level", Id
);
3089 -- The actual subtype of the object is the nominal subtype, unless
3090 -- the nominal one is unconstrained and obtained from the expression.
3094 -- These checks should be performed before the initialization expression
3095 -- is considered, so that the Object_Definition node is still the same
3096 -- as in source code.
3098 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3099 -- shall not be unconstrained. (The only exception to this is the
3100 -- admission of declarations of constants of type String.)
3103 Nkind_In
(Object_Definition
(N
), N_Identifier
, N_Expanded_Name
)
3105 Check_SPARK_Restriction
3106 ("subtype mark required", Object_Definition
(N
));
3108 elsif Is_Array_Type
(T
)
3109 and then not Is_Constrained
(T
)
3110 and then T
/= Standard_String
3112 Check_SPARK_Restriction
3113 ("subtype mark of constrained type expected",
3114 Object_Definition
(N
));
3117 -- There are no aliased objects in SPARK
3119 if Aliased_Present
(N
) then
3120 Check_SPARK_Restriction
("aliased object is not allowed", N
);
3123 -- Process initialization expression if present and not in error
3125 if Present
(E
) and then E
/= Error
then
3127 -- Generate an error in case of CPP class-wide object initialization.
3128 -- Required because otherwise the expansion of the class-wide
3129 -- assignment would try to use 'size to initialize the object
3130 -- (primitive that is not available in CPP tagged types).
3132 if Is_Class_Wide_Type
(Act_T
)
3134 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3136 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3138 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3141 ("predefined assignment not available for 'C'P'P tagged types",
3145 Mark_Coextensions
(N
, E
);
3148 -- In case of errors detected in the analysis of the expression,
3149 -- decorate it with the expected type to avoid cascaded errors
3151 if No
(Etype
(E
)) then
3155 -- If an initialization expression is present, then we set the
3156 -- Is_True_Constant flag. It will be reset if this is a variable
3157 -- and it is indeed modified.
3159 Set_Is_True_Constant
(Id
, True);
3161 -- If we are analyzing a constant declaration, set its completion
3162 -- flag after analyzing and resolving the expression.
3164 if Constant_Present
(N
) then
3165 Set_Has_Completion
(Id
);
3168 -- Set type and resolve (type may be overridden later on)
3173 -- No further action needed if E is a call to an inlined function
3174 -- which returns an unconstrained type and it has been expanded into
3175 -- a procedure call. In that case N has been replaced by an object
3176 -- declaration without initializing expression and it has been
3177 -- analyzed (see Expand_Inlined_Call).
3180 and then Expander_Active
3181 and then Nkind
(E
) = N_Function_Call
3182 and then Nkind
(Name
(E
)) in N_Has_Entity
3183 and then Is_Inlined
(Entity
(Name
(E
)))
3184 and then not Is_Constrained
(Etype
(E
))
3185 and then Analyzed
(N
)
3186 and then No
(Expression
(N
))
3191 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3192 -- node (which was marked already-analyzed), we need to set the type
3193 -- to something other than Any_Access in order to keep gigi happy.
3195 if Etype
(E
) = Any_Access
then
3199 -- If the object is an access to variable, the initialization
3200 -- expression cannot be an access to constant.
3202 if Is_Access_Type
(T
)
3203 and then not Is_Access_Constant
(T
)
3204 and then Is_Access_Type
(Etype
(E
))
3205 and then Is_Access_Constant
(Etype
(E
))
3208 ("access to variable cannot be initialized "
3209 & "with an access-to-constant expression", E
);
3212 if not Assignment_OK
(N
) then
3213 Check_Initialization
(T
, E
);
3216 Check_Unset_Reference
(E
);
3218 -- If this is a variable, then set current value. If this is a
3219 -- declared constant of a scalar type with a static expression,
3220 -- indicate that it is always valid.
3222 if not Constant_Present
(N
) then
3223 if Compile_Time_Known_Value
(E
) then
3224 Set_Current_Value
(Id
, E
);
3227 elsif Is_Scalar_Type
(T
)
3228 and then Is_OK_Static_Expression
(E
)
3230 Set_Is_Known_Valid
(Id
);
3233 -- Deal with setting of null flags
3235 if Is_Access_Type
(T
) then
3236 if Known_Non_Null
(E
) then
3237 Set_Is_Known_Non_Null
(Id
, True);
3238 elsif Known_Null
(E
)
3239 and then not Can_Never_Be_Null
(Id
)
3241 Set_Is_Known_Null
(Id
, True);
3245 -- Check incorrect use of dynamically tagged expressions.
3247 if Is_Tagged_Type
(T
) then
3248 Check_Dynamically_Tagged_Expression
3254 Apply_Scalar_Range_Check
(E
, T
);
3255 Apply_Static_Length_Check
(E
, T
);
3257 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3258 and then Comes_From_Source
(Original_Node
(N
))
3260 -- Only call test if needed
3262 and then Restriction_Check_Required
(SPARK
)
3263 and then not Is_SPARK_Initialization_Expr
(E
)
3265 Check_SPARK_Restriction
3266 ("initialization expression is not appropriate", E
);
3270 -- If the No_Streams restriction is set, check that the type of the
3271 -- object is not, and does not contain, any subtype derived from
3272 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3273 -- Has_Stream just for efficiency reasons. There is no point in
3274 -- spending time on a Has_Stream check if the restriction is not set.
3276 if Restriction_Check_Required
(No_Streams
) then
3277 if Has_Stream
(T
) then
3278 Check_Restriction
(No_Streams
, N
);
3282 -- Deal with predicate check before we start to do major rewriting.
3283 -- it is OK to initialize and then check the initialized value, since
3284 -- the object goes out of scope if we get a predicate failure. Note
3285 -- that we do this in the analyzer and not the expander because the
3286 -- analyzer does some substantial rewriting in some cases.
3288 -- We need a predicate check if the type has predicates, and if either
3289 -- there is an initializing expression, or for default initialization
3290 -- when we have at least one case of an explicit default initial value.
3292 if not Suppress_Assignment_Checks
(N
)
3293 and then Present
(Predicate_Function
(T
))
3297 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3300 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3303 -- Case of unconstrained type
3305 if Is_Indefinite_Subtype
(T
) then
3307 -- In SPARK, a declaration of unconstrained type is allowed
3308 -- only for constants of type string.
3310 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3311 Check_SPARK_Restriction
3312 ("declaration of object of unconstrained type not allowed",
3316 -- Nothing to do in deferred constant case
3318 if Constant_Present
(N
) and then No
(E
) then
3321 -- Case of no initialization present
3324 if No_Initialization
(N
) then
3327 elsif Is_Class_Wide_Type
(T
) then
3329 ("initialization required in class-wide declaration ", N
);
3333 ("unconstrained subtype not allowed (need initialization)",
3334 Object_Definition
(N
));
3336 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3338 ("\provide initial value or explicit discriminant values",
3339 Object_Definition
(N
));
3342 ("\or give default discriminant values for type&",
3343 Object_Definition
(N
), T
);
3345 elsif Is_Array_Type
(T
) then
3347 ("\provide initial value or explicit array bounds",
3348 Object_Definition
(N
));
3352 -- Case of initialization present but in error. Set initial
3353 -- expression as absent (but do not make above complaints)
3355 elsif E
= Error
then
3356 Set_Expression
(N
, Empty
);
3359 -- Case of initialization present
3362 -- Check restrictions in Ada 83
3364 if not Constant_Present
(N
) then
3366 -- Unconstrained variables not allowed in Ada 83 mode
3368 if Ada_Version
= Ada_83
3369 and then Comes_From_Source
(Object_Definition
(N
))
3372 ("(Ada 83) unconstrained variable not allowed",
3373 Object_Definition
(N
));
3377 -- Now we constrain the variable from the initializing expression
3379 -- If the expression is an aggregate, it has been expanded into
3380 -- individual assignments. Retrieve the actual type from the
3381 -- expanded construct.
3383 if Is_Array_Type
(T
)
3384 and then No_Initialization
(N
)
3385 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3389 -- In case of class-wide interface object declarations we delay
3390 -- the generation of the equivalent record type declarations until
3391 -- its expansion because there are cases in they are not required.
3393 elsif Is_Interface
(T
) then
3397 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3398 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3401 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3403 if Aliased_Present
(N
) then
3404 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3407 Freeze_Before
(N
, Act_T
);
3408 Freeze_Before
(N
, T
);
3411 elsif Is_Array_Type
(T
)
3412 and then No_Initialization
(N
)
3413 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3415 if not Is_Entity_Name
(Object_Definition
(N
)) then
3417 Check_Compile_Time_Size
(Act_T
);
3419 if Aliased_Present
(N
) then
3420 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3424 -- When the given object definition and the aggregate are specified
3425 -- independently, and their lengths might differ do a length check.
3426 -- This cannot happen if the aggregate is of the form (others =>...)
3428 if not Is_Constrained
(T
) then
3431 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3433 -- Aggregate is statically illegal. Place back in declaration
3435 Set_Expression
(N
, E
);
3436 Set_No_Initialization
(N
, False);
3438 elsif T
= Etype
(E
) then
3441 elsif Nkind
(E
) = N_Aggregate
3442 and then Present
(Component_Associations
(E
))
3443 and then Present
(Choices
(First
(Component_Associations
(E
))))
3444 and then Nkind
(First
3445 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
3450 Apply_Length_Check
(E
, T
);
3453 -- If the type is limited unconstrained with defaulted discriminants and
3454 -- there is no expression, then the object is constrained by the
3455 -- defaults, so it is worthwhile building the corresponding subtype.
3457 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
3458 and then not Is_Constrained
(T
)
3459 and then Has_Discriminants
(T
)
3462 Act_T
:= Build_Default_Subtype
(T
, N
);
3464 -- Ada 2005: a limited object may be initialized by means of an
3465 -- aggregate. If the type has default discriminants it has an
3466 -- unconstrained nominal type, Its actual subtype will be obtained
3467 -- from the aggregate, and not from the default discriminants.
3472 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
3474 elsif Present
(Underlying_Type
(T
))
3475 and then not Is_Constrained
(Underlying_Type
(T
))
3476 and then Has_Discriminants
(Underlying_Type
(T
))
3477 and then Nkind
(E
) = N_Function_Call
3478 and then Constant_Present
(N
)
3480 -- The back-end has problems with constants of a discriminated type
3481 -- with defaults, if the initial value is a function call. We
3482 -- generate an intermediate temporary for the result of the call.
3483 -- It is unclear why this should make it acceptable to gcc. ???
3485 Remove_Side_Effects
(E
);
3487 -- If this is a constant declaration of an unconstrained type and
3488 -- the initialization is an aggregate, we can use the subtype of the
3489 -- aggregate for the declared entity because it is immutable.
3491 elsif not Is_Constrained
(T
)
3492 and then Has_Discriminants
(T
)
3493 and then Constant_Present
(N
)
3494 and then not Has_Unchecked_Union
(T
)
3495 and then Nkind
(E
) = N_Aggregate
3500 -- Check No_Wide_Characters restriction
3502 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
3504 -- Indicate this is not set in source. Certainly true for constants, and
3505 -- true for variables so far (will be reset for a variable if and when
3506 -- we encounter a modification in the source).
3508 Set_Never_Set_In_Source
(Id
, True);
3510 -- Now establish the proper kind and type of the object
3512 if Constant_Present
(N
) then
3513 Set_Ekind
(Id
, E_Constant
);
3514 Set_Is_True_Constant
(Id
, True);
3517 Set_Ekind
(Id
, E_Variable
);
3519 -- A variable is set as shared passive if it appears in a shared
3520 -- passive package, and is at the outer level. This is not done for
3521 -- entities generated during expansion, because those are always
3522 -- manipulated locally.
3524 if Is_Shared_Passive
(Current_Scope
)
3525 and then Is_Library_Level_Entity
(Id
)
3526 and then Comes_From_Source
(Id
)
3528 Set_Is_Shared_Passive
(Id
);
3529 Check_Shared_Var
(Id
, T
, N
);
3532 -- Set Has_Initial_Value if initializing expression present. Note
3533 -- that if there is no initializing expression, we leave the state
3534 -- of this flag unchanged (usually it will be False, but notably in
3535 -- the case of exception choice variables, it will already be true).
3538 Set_Has_Initial_Value
(Id
, True);
3542 -- Initialize alignment and size and capture alignment setting
3544 Init_Alignment
(Id
);
3546 Set_Optimize_Alignment_Flags
(Id
);
3548 -- Deal with aliased case
3550 if Aliased_Present
(N
) then
3551 Set_Is_Aliased
(Id
);
3553 -- If the object is aliased and the type is unconstrained with
3554 -- defaulted discriminants and there is no expression, then the
3555 -- object is constrained by the defaults, so it is worthwhile
3556 -- building the corresponding subtype.
3558 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3559 -- unconstrained, then only establish an actual subtype if the
3560 -- nominal subtype is indefinite. In definite cases the object is
3561 -- unconstrained in Ada 2005.
3564 and then Is_Record_Type
(T
)
3565 and then not Is_Constrained
(T
)
3566 and then Has_Discriminants
(T
)
3567 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
3569 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
3573 -- Now we can set the type of the object
3575 Set_Etype
(Id
, Act_T
);
3577 -- Object is marked to be treated as volatile if type is volatile and
3578 -- we clear the Current_Value setting that may have been set above.
3580 if Treat_As_Volatile
(Etype
(Id
)) then
3581 Set_Treat_As_Volatile
(Id
);
3582 Set_Current_Value
(Id
, Empty
);
3585 -- Deal with controlled types
3587 if Has_Controlled_Component
(Etype
(Id
))
3588 or else Is_Controlled
(Etype
(Id
))
3590 if not Is_Library_Level_Entity
(Id
) then
3591 Check_Restriction
(No_Nested_Finalization
, N
);
3593 Validate_Controlled_Object
(Id
);
3597 if Has_Task
(Etype
(Id
)) then
3598 Check_Restriction
(No_Tasking
, N
);
3600 -- Deal with counting max tasks
3602 -- Nothing to do if inside a generic
3604 if Inside_A_Generic
then
3607 -- If library level entity, then count tasks
3609 elsif Is_Library_Level_Entity
(Id
) then
3610 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
3612 -- If not library level entity, then indicate we don't know max
3613 -- tasks and also check task hierarchy restriction and blocking
3614 -- operation (since starting a task is definitely blocking!)
3617 Check_Restriction
(Max_Tasks
, N
);
3618 Check_Restriction
(No_Task_Hierarchy
, N
);
3619 Check_Potentially_Blocking_Operation
(N
);
3622 -- A rather specialized test. If we see two tasks being declared
3623 -- of the same type in the same object declaration, and the task
3624 -- has an entry with an address clause, we know that program error
3625 -- will be raised at run time since we can't have two tasks with
3626 -- entries at the same address.
3628 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
3633 E
:= First_Entity
(Etype
(Id
));
3634 while Present
(E
) loop
3635 if Ekind
(E
) = E_Entry
3636 and then Present
(Get_Attribute_Definition_Clause
3637 (E
, Attribute_Address
))
3640 ("?more than one task with same entry address", N
);
3642 ("\?Program_Error will be raised at run time", N
);
3644 Make_Raise_Program_Error
(Loc
,
3645 Reason
=> PE_Duplicated_Entry_Address
));
3655 -- Some simple constant-propagation: if the expression is a constant
3656 -- string initialized with a literal, share the literal. This avoids
3660 and then Is_Entity_Name
(E
)
3661 and then Ekind
(Entity
(E
)) = E_Constant
3662 and then Base_Type
(Etype
(E
)) = Standard_String
3665 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3668 and then Nkind
(Val
) = N_String_Literal
3670 Rewrite
(E
, New_Copy
(Val
));
3675 -- Another optimization: if the nominal subtype is unconstrained and
3676 -- the expression is a function call that returns an unconstrained
3677 -- type, rewrite the declaration as a renaming of the result of the
3678 -- call. The exceptions below are cases where the copy is expected,
3679 -- either by the back end (Aliased case) or by the semantics, as for
3680 -- initializing controlled types or copying tags for classwide types.
3683 and then Nkind
(E
) = N_Explicit_Dereference
3684 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3685 and then not Is_Library_Level_Entity
(Id
)
3686 and then not Is_Constrained
(Underlying_Type
(T
))
3687 and then not Is_Aliased
(Id
)
3688 and then not Is_Class_Wide_Type
(T
)
3689 and then not Is_Controlled
(T
)
3690 and then not Has_Controlled_Component
(Base_Type
(T
))
3691 and then Expander_Active
3694 Make_Object_Renaming_Declaration
(Loc
,
3695 Defining_Identifier
=> Id
,
3696 Access_Definition
=> Empty
,
3697 Subtype_Mark
=> New_Occurrence_Of
3698 (Base_Type
(Etype
(Id
)), Loc
),
3701 Set_Renamed_Object
(Id
, E
);
3703 -- Force generation of debugging information for the constant and for
3704 -- the renamed function call.
3706 Set_Debug_Info_Needed
(Id
);
3707 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3710 if Present
(Prev_Entity
)
3711 and then Is_Frozen
(Prev_Entity
)
3712 and then not Error_Posted
(Id
)
3714 Error_Msg_N
("full constant declaration appears too late", N
);
3717 Check_Eliminated
(Id
);
3719 -- Deal with setting In_Private_Part flag if in private part
3721 if Ekind
(Scope
(Id
)) = E_Package
3722 and then In_Private_Part
(Scope
(Id
))
3724 Set_In_Private_Part
(Id
);
3727 -- Check for violation of No_Local_Timing_Events
3729 if Restriction_Check_Required
(No_Local_Timing_Events
)
3730 and then not Is_Library_Level_Entity
(Id
)
3731 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3733 Check_Restriction
(No_Local_Timing_Events
, N
);
3737 if Has_Aspects
(N
) then
3738 Analyze_Aspect_Specifications
(N
, Id
);
3741 Analyze_Dimension
(N
);
3742 end Analyze_Object_Declaration
;
3744 ---------------------------
3745 -- Analyze_Others_Choice --
3746 ---------------------------
3748 -- Nothing to do for the others choice node itself, the semantic analysis
3749 -- of the others choice will occur as part of the processing of the parent
3751 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3752 pragma Warnings
(Off
, N
);
3755 end Analyze_Others_Choice
;
3757 -------------------------------------------
3758 -- Analyze_Private_Extension_Declaration --
3759 -------------------------------------------
3761 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3762 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3763 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3764 Parent_Type
: Entity_Id
;
3765 Parent_Base
: Entity_Id
;
3768 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3770 if Is_Non_Empty_List
(Interface_List
(N
)) then
3776 Intf
:= First
(Interface_List
(N
));
3777 while Present
(Intf
) loop
3778 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3780 Diagnose_Interface
(Intf
, T
);
3786 Generate_Definition
(T
);
3788 -- For other than Ada 2012, just enter the name in the current scope
3790 if Ada_Version
< Ada_2012
then
3793 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3794 -- case of private type that completes an incomplete type.
3801 Prev
:= Find_Type_Name
(N
);
3803 pragma Assert
(Prev
= T
3804 or else (Ekind
(Prev
) = E_Incomplete_Type
3805 and then Present
(Full_View
(Prev
))
3806 and then Full_View
(Prev
) = T
));
3810 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3811 Parent_Base
:= Base_Type
(Parent_Type
);
3813 if Parent_Type
= Any_Type
3814 or else Etype
(Parent_Type
) = Any_Type
3816 Set_Ekind
(T
, Ekind
(Parent_Type
));
3817 Set_Etype
(T
, Any_Type
);
3820 elsif not Is_Tagged_Type
(Parent_Type
) then
3822 ("parent of type extension must be a tagged type ", Indic
);
3825 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
3826 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3829 elsif Is_Concurrent_Type
(Parent_Type
) then
3831 ("parent type of a private extension cannot be "
3832 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3834 Set_Etype
(T
, Any_Type
);
3835 Set_Ekind
(T
, E_Limited_Private_Type
);
3836 Set_Private_Dependents
(T
, New_Elmt_List
);
3837 Set_Error_Posted
(T
);
3841 -- Perhaps the parent type should be changed to the class-wide type's
3842 -- specific type in this case to prevent cascading errors ???
3844 if Is_Class_Wide_Type
(Parent_Type
) then
3846 ("parent of type extension must not be a class-wide type", Indic
);
3850 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3851 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3852 or else In_Private_Part
(Current_Scope
)
3855 Error_Msg_N
("invalid context for private extension", N
);
3858 -- Set common attributes
3860 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3861 Set_Scope
(T
, Current_Scope
);
3862 Set_Ekind
(T
, E_Record_Type_With_Private
);
3863 Init_Size_Align
(T
);
3865 Set_Etype
(T
, Parent_Base
);
3866 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3868 Set_Convention
(T
, Convention
(Parent_Type
));
3869 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3870 Set_Is_First_Subtype
(T
);
3871 Make_Class_Wide_Type
(T
);
3873 if Unknown_Discriminants_Present
(N
) then
3874 Set_Discriminant_Constraint
(T
, No_Elist
);
3877 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3879 -- Propagate inherited invariant information. The new type has
3880 -- invariants, if the parent type has inheritable invariants,
3881 -- and these invariants can in turn be inherited.
3883 if Has_Inheritable_Invariants
(Parent_Type
) then
3884 Set_Has_Inheritable_Invariants
(T
);
3885 Set_Has_Invariants
(T
);
3888 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3889 -- synchronized formal derived type.
3891 if Ada_Version
>= Ada_2005
3892 and then Synchronized_Present
(N
)
3894 Set_Is_Limited_Record
(T
);
3896 -- Formal derived type case
3898 if Is_Generic_Type
(T
) then
3900 -- The parent must be a tagged limited type or a synchronized
3903 if (not Is_Tagged_Type
(Parent_Type
)
3904 or else not Is_Limited_Type
(Parent_Type
))
3906 (not Is_Interface
(Parent_Type
)
3907 or else not Is_Synchronized_Interface
(Parent_Type
))
3909 Error_Msg_NE
("parent type of & must be tagged limited " &
3910 "or synchronized", N
, T
);
3913 -- The progenitors (if any) must be limited or synchronized
3916 if Present
(Interfaces
(T
)) then
3919 Iface_Elmt
: Elmt_Id
;
3922 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3923 while Present
(Iface_Elmt
) loop
3924 Iface
:= Node
(Iface_Elmt
);
3926 if not Is_Limited_Interface
(Iface
)
3927 and then not Is_Synchronized_Interface
(Iface
)
3929 Error_Msg_NE
("progenitor & must be limited " &
3930 "or synchronized", N
, Iface
);
3933 Next_Elmt
(Iface_Elmt
);
3938 -- Regular derived extension, the parent must be a limited or
3939 -- synchronized interface.
3942 if not Is_Interface
(Parent_Type
)
3943 or else (not Is_Limited_Interface
(Parent_Type
)
3945 not Is_Synchronized_Interface
(Parent_Type
))
3948 ("parent type of & must be limited interface", N
, T
);
3952 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3953 -- extension with a synchronized parent must be explicitly declared
3954 -- synchronized, because the full view will be a synchronized type.
3955 -- This must be checked before the check for limited types below,
3956 -- to ensure that types declared limited are not allowed to extend
3957 -- synchronized interfaces.
3959 elsif Is_Interface
(Parent_Type
)
3960 and then Is_Synchronized_Interface
(Parent_Type
)
3961 and then not Synchronized_Present
(N
)
3964 ("private extension of& must be explicitly synchronized",
3967 elsif Limited_Present
(N
) then
3968 Set_Is_Limited_Record
(T
);
3970 if not Is_Limited_Type
(Parent_Type
)
3972 (not Is_Interface
(Parent_Type
)
3973 or else not Is_Limited_Interface
(Parent_Type
))
3975 Error_Msg_NE
("parent type& of limited extension must be limited",
3981 if Has_Aspects
(N
) then
3982 Analyze_Aspect_Specifications
(N
, T
);
3984 end Analyze_Private_Extension_Declaration
;
3986 ---------------------------------
3987 -- Analyze_Subtype_Declaration --
3988 ---------------------------------
3990 procedure Analyze_Subtype_Declaration
3992 Skip
: Boolean := False)
3994 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3996 R_Checks
: Check_Result
;
3999 Generate_Definition
(Id
);
4000 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4001 Init_Size_Align
(Id
);
4003 -- The following guard condition on Enter_Name is to handle cases where
4004 -- the defining identifier has already been entered into the scope but
4005 -- the declaration as a whole needs to be analyzed.
4007 -- This case in particular happens for derived enumeration types. The
4008 -- derived enumeration type is processed as an inserted enumeration type
4009 -- declaration followed by a rewritten subtype declaration. The defining
4010 -- identifier, however, is entered into the name scope very early in the
4011 -- processing of the original type declaration and therefore needs to be
4012 -- avoided here, when the created subtype declaration is analyzed. (See
4013 -- Build_Derived_Types)
4015 -- This also happens when the full view of a private type is derived
4016 -- type with constraints. In this case the entity has been introduced
4017 -- in the private declaration.
4020 or else (Present
(Etype
(Id
))
4021 and then (Is_Private_Type
(Etype
(Id
))
4022 or else Is_Task_Type
(Etype
(Id
))
4023 or else Is_Rewrite_Substitution
(N
)))
4031 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4033 -- Class-wide equivalent types of records with unknown discriminants
4034 -- involve the generation of an itype which serves as the private view
4035 -- of a constrained record subtype. In such cases the base type of the
4036 -- current subtype we are processing is the private itype. Use the full
4037 -- of the private itype when decorating various attributes.
4040 and then Is_Private_Type
(T
)
4041 and then Present
(Full_View
(T
))
4046 -- Inherit common attributes
4048 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4049 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4050 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4051 Set_Is_Atomic
(Id
, Is_Atomic
(T
));
4052 Set_Is_Ada_2005_Only
(Id
, Is_Ada_2005_Only
(T
));
4053 Set_Is_Ada_2012_Only
(Id
, Is_Ada_2012_Only
(T
));
4054 Set_Convention
(Id
, Convention
(T
));
4056 -- If ancestor has predicates then so does the subtype, and in addition
4057 -- we must delay the freeze to properly arrange predicate inheritance.
4059 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4060 -- which T = ID, so the above tests and assignments do nothing???
4062 if Has_Predicates
(T
)
4063 or else (Present
(Ancestor_Subtype
(T
))
4064 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4066 Set_Has_Predicates
(Id
);
4067 Set_Has_Delayed_Freeze
(Id
);
4070 -- Subtype of Boolean cannot have a constraint in SPARK
4072 if Is_Boolean_Type
(T
)
4073 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4075 Check_SPARK_Restriction
4076 ("subtype of Boolean cannot have constraint", N
);
4079 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4081 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4087 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4088 One_Cstr
:= First
(Constraints
(Cstr
));
4089 while Present
(One_Cstr
) loop
4091 -- Index or discriminant constraint in SPARK must be a
4095 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4097 Check_SPARK_Restriction
4098 ("subtype mark required", One_Cstr
);
4100 -- String subtype must have a lower bound of 1 in SPARK.
4101 -- Note that we do not need to test for the non-static case
4102 -- here, since that was already taken care of in
4103 -- Process_Range_Expr_In_Decl.
4105 elsif Base_Type
(T
) = Standard_String
then
4106 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4108 if Is_OK_Static_Expression
(Low
)
4109 and then Expr_Value
(Low
) /= 1
4111 Check_SPARK_Restriction
4112 ("String subtype must have lower bound of 1", N
);
4122 -- In the case where there is no constraint given in the subtype
4123 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4124 -- semantic attributes must be established here.
4126 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4127 Set_Etype
(Id
, Base_Type
(T
));
4129 -- Subtype of unconstrained array without constraint is not allowed
4132 if Is_Array_Type
(T
)
4133 and then not Is_Constrained
(T
)
4135 Check_SPARK_Restriction
4136 ("subtype of unconstrained array must have constraint", N
);
4141 Set_Ekind
(Id
, E_Array_Subtype
);
4142 Copy_Array_Subtype_Attributes
(Id
, T
);
4144 when Decimal_Fixed_Point_Kind
=>
4145 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4146 Set_Digits_Value
(Id
, Digits_Value
(T
));
4147 Set_Delta_Value
(Id
, Delta_Value
(T
));
4148 Set_Scale_Value
(Id
, Scale_Value
(T
));
4149 Set_Small_Value
(Id
, Small_Value
(T
));
4150 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4151 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4152 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4153 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4154 Set_RM_Size
(Id
, RM_Size
(T
));
4156 when Enumeration_Kind
=>
4157 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4158 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4159 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4160 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4161 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4162 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4163 Set_RM_Size
(Id
, RM_Size
(T
));
4165 when Ordinary_Fixed_Point_Kind
=>
4166 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4167 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4168 Set_Small_Value
(Id
, Small_Value
(T
));
4169 Set_Delta_Value
(Id
, Delta_Value
(T
));
4170 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4171 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4172 Set_RM_Size
(Id
, RM_Size
(T
));
4175 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4176 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4177 Set_Digits_Value
(Id
, Digits_Value
(T
));
4178 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4180 when Signed_Integer_Kind
=>
4181 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4182 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4183 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4184 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4185 Set_RM_Size
(Id
, RM_Size
(T
));
4187 when Modular_Integer_Kind
=>
4188 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4189 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4190 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4191 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4192 Set_RM_Size
(Id
, RM_Size
(T
));
4194 when Class_Wide_Kind
=>
4195 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4196 Set_First_Entity
(Id
, First_Entity
(T
));
4197 Set_Last_Entity
(Id
, Last_Entity
(T
));
4198 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4199 Set_Cloned_Subtype
(Id
, T
);
4200 Set_Is_Tagged_Type
(Id
, True);
4201 Set_Has_Unknown_Discriminants
4204 if Ekind
(T
) = E_Class_Wide_Subtype
then
4205 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4208 when E_Record_Type | E_Record_Subtype
=>
4209 Set_Ekind
(Id
, E_Record_Subtype
);
4211 if Ekind
(T
) = E_Record_Subtype
4212 and then Present
(Cloned_Subtype
(T
))
4214 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4216 Set_Cloned_Subtype
(Id
, T
);
4219 Set_First_Entity
(Id
, First_Entity
(T
));
4220 Set_Last_Entity
(Id
, Last_Entity
(T
));
4221 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4222 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4223 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4224 Set_Has_Implicit_Dereference
4225 (Id
, Has_Implicit_Dereference
(T
));
4226 Set_Has_Unknown_Discriminants
4227 (Id
, Has_Unknown_Discriminants
(T
));
4229 if Has_Discriminants
(T
) then
4230 Set_Discriminant_Constraint
4231 (Id
, Discriminant_Constraint
(T
));
4232 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4234 elsif Has_Unknown_Discriminants
(Id
) then
4235 Set_Discriminant_Constraint
(Id
, No_Elist
);
4238 if Is_Tagged_Type
(T
) then
4239 Set_Is_Tagged_Type
(Id
);
4240 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4241 Set_Direct_Primitive_Operations
4242 (Id
, Direct_Primitive_Operations
(T
));
4243 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4245 if Is_Interface
(T
) then
4246 Set_Is_Interface
(Id
);
4247 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4251 when Private_Kind
=>
4252 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4253 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4254 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4255 Set_First_Entity
(Id
, First_Entity
(T
));
4256 Set_Last_Entity
(Id
, Last_Entity
(T
));
4257 Set_Private_Dependents
(Id
, New_Elmt_List
);
4258 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4259 Set_Has_Implicit_Dereference
4260 (Id
, Has_Implicit_Dereference
(T
));
4261 Set_Has_Unknown_Discriminants
4262 (Id
, Has_Unknown_Discriminants
(T
));
4263 Set_Known_To_Have_Preelab_Init
4264 (Id
, Known_To_Have_Preelab_Init
(T
));
4266 if Is_Tagged_Type
(T
) then
4267 Set_Is_Tagged_Type
(Id
);
4268 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4269 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4270 Set_Direct_Primitive_Operations
(Id
,
4271 Direct_Primitive_Operations
(T
));
4274 -- In general the attributes of the subtype of a private type
4275 -- are the attributes of the partial view of parent. However,
4276 -- the full view may be a discriminated type, and the subtype
4277 -- must share the discriminant constraint to generate correct
4278 -- calls to initialization procedures.
4280 if Has_Discriminants
(T
) then
4281 Set_Discriminant_Constraint
4282 (Id
, Discriminant_Constraint
(T
));
4283 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4285 elsif Present
(Full_View
(T
))
4286 and then Has_Discriminants
(Full_View
(T
))
4288 Set_Discriminant_Constraint
4289 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4290 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4292 -- This would seem semantically correct, but apparently
4293 -- confuses the back-end. To be explained and checked with
4294 -- current version ???
4296 -- Set_Has_Discriminants (Id);
4299 Prepare_Private_Subtype_Completion
(Id
, N
);
4302 Set_Ekind
(Id
, E_Access_Subtype
);
4303 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4304 Set_Is_Access_Constant
4305 (Id
, Is_Access_Constant
(T
));
4306 Set_Directly_Designated_Type
4307 (Id
, Designated_Type
(T
));
4308 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4310 -- A Pure library_item must not contain the declaration of a
4311 -- named access type, except within a subprogram, generic
4312 -- subprogram, task unit, or protected unit, or if it has
4313 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4315 if Comes_From_Source
(Id
)
4316 and then In_Pure_Unit
4317 and then not In_Subprogram_Task_Protected_Unit
4318 and then not No_Pool_Assigned
(Id
)
4321 ("named access types not allowed in pure unit", N
);
4324 when Concurrent_Kind
=>
4325 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4326 Set_Corresponding_Record_Type
(Id
,
4327 Corresponding_Record_Type
(T
));
4328 Set_First_Entity
(Id
, First_Entity
(T
));
4329 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4330 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4331 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4332 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4333 Set_Last_Entity
(Id
, Last_Entity
(T
));
4335 if Has_Discriminants
(T
) then
4336 Set_Discriminant_Constraint
(Id
,
4337 Discriminant_Constraint
(T
));
4338 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4341 when E_Incomplete_Type
=>
4342 if Ada_Version
>= Ada_2005
then
4344 -- In Ada 2005 an incomplete type can be explicitly tagged:
4345 -- propagate indication.
4347 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4348 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4349 Set_Private_Dependents
(Id
, New_Elmt_List
);
4351 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4352 -- incomplete type visible through a limited with clause.
4354 if From_With_Type
(T
)
4355 and then Present
(Non_Limited_View
(T
))
4357 Set_From_With_Type
(Id
);
4358 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4360 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4361 -- to the private dependents of the original incomplete
4362 -- type for future transformation.
4365 Append_Elmt
(Id
, Private_Dependents
(T
));
4368 -- If the subtype name denotes an incomplete type an error
4369 -- was already reported by Process_Subtype.
4372 Set_Etype
(Id
, Any_Type
);
4376 raise Program_Error
;
4380 if Etype
(Id
) = Any_Type
then
4384 -- Some common processing on all types
4386 Set_Size_Info
(Id
, T
);
4387 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
4391 Set_Is_Immediately_Visible
(Id
, True);
4392 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
4393 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
4395 if Is_Interface
(T
) then
4396 Set_Is_Interface
(Id
);
4399 if Present
(Generic_Parent_Type
(N
))
4402 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
4404 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
4405 /= N_Formal_Private_Type_Definition
)
4407 if Is_Tagged_Type
(Id
) then
4409 -- If this is a generic actual subtype for a synchronized type,
4410 -- the primitive operations are those of the corresponding record
4411 -- for which there is a separate subtype declaration.
4413 if Is_Concurrent_Type
(Id
) then
4415 elsif Is_Class_Wide_Type
(Id
) then
4416 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
4418 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
4421 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
4422 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
4426 if Is_Private_Type
(T
)
4427 and then Present
(Full_View
(T
))
4429 Conditional_Delay
(Id
, Full_View
(T
));
4431 -- The subtypes of components or subcomponents of protected types
4432 -- do not need freeze nodes, which would otherwise appear in the
4433 -- wrong scope (before the freeze node for the protected type). The
4434 -- proper subtypes are those of the subcomponents of the corresponding
4437 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
4438 and then Present
(Scope
(Scope
(Id
))) -- error defense!
4439 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
4441 Conditional_Delay
(Id
, T
);
4444 -- Check that Constraint_Error is raised for a scalar subtype indication
4445 -- when the lower or upper bound of a non-null range lies outside the
4446 -- range of the type mark.
4448 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4449 if Is_Scalar_Type
(Etype
(Id
))
4450 and then Scalar_Range
(Id
) /=
4451 Scalar_Range
(Etype
(Subtype_Mark
4452 (Subtype_Indication
(N
))))
4456 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
4458 -- In the array case, check compatibility for each index
4460 elsif Is_Array_Type
(Etype
(Id
))
4461 and then Present
(First_Index
(Id
))
4463 -- This really should be a subprogram that finds the indications
4467 Subt_Index
: Node_Id
:= First_Index
(Id
);
4468 Target_Index
: Node_Id
:=
4470 (Subtype_Mark
(Subtype_Indication
(N
))));
4471 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
4474 while Present
(Subt_Index
) loop
4475 if ((Nkind
(Subt_Index
) = N_Identifier
4476 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
4477 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
4479 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
4482 Target_Typ
: constant Entity_Id
:=
4483 Etype
(Target_Index
);
4487 (Scalar_Range
(Etype
(Subt_Index
)),
4490 Defining_Identifier
(N
));
4492 -- Reset Has_Dynamic_Range_Check on the subtype to
4493 -- prevent elision of the index check due to a dynamic
4494 -- check generated for a preceding index (needed since
4495 -- Insert_Range_Checks tries to avoid generating
4496 -- redundant checks on a given declaration).
4498 Set_Has_Dynamic_Range_Check
(N
, False);
4504 Sloc
(Defining_Identifier
(N
)));
4506 -- Record whether this index involved a dynamic check
4509 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
4513 Next_Index
(Subt_Index
);
4514 Next_Index
(Target_Index
);
4517 -- Finally, mark whether the subtype involves dynamic checks
4519 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
4524 -- Make sure that generic actual types are properly frozen. The subtype
4525 -- is marked as a generic actual type when the enclosing instance is
4526 -- analyzed, so here we identify the subtype from the tree structure.
4529 and then Is_Generic_Actual_Type
(Id
)
4530 and then In_Instance
4531 and then not Comes_From_Source
(N
)
4532 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
4533 and then Is_Frozen
(T
)
4535 Freeze_Before
(N
, Id
);
4538 Set_Optimize_Alignment_Flags
(Id
);
4539 Check_Eliminated
(Id
);
4542 if Has_Aspects
(N
) then
4543 Analyze_Aspect_Specifications
(N
, Id
);
4546 Analyze_Dimension
(N
);
4547 end Analyze_Subtype_Declaration
;
4549 --------------------------------
4550 -- Analyze_Subtype_Indication --
4551 --------------------------------
4553 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
4554 T
: constant Entity_Id
:= Subtype_Mark
(N
);
4555 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
4562 Set_Etype
(N
, Etype
(R
));
4563 Resolve
(R
, Entity
(T
));
4565 Set_Error_Posted
(R
);
4566 Set_Error_Posted
(T
);
4568 end Analyze_Subtype_Indication
;
4570 --------------------------
4571 -- Analyze_Variant_Part --
4572 --------------------------
4574 procedure Analyze_Variant_Part
(N
: Node_Id
) is
4576 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
4577 -- Error routine invoked by the generic instantiation below when the
4578 -- variant part has a non static choice.
4580 procedure Process_Declarations
(Variant
: Node_Id
);
4581 -- Analyzes all the declarations associated with a Variant. Needed by
4582 -- the generic instantiation below.
4584 package Variant_Choices_Processing
is new
4585 Generic_Choices_Processing
4586 (Get_Alternatives
=> Variants
,
4587 Get_Choices
=> Discrete_Choices
,
4588 Process_Empty_Choice
=> No_OP
,
4589 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4590 Process_Associated_Node
=> Process_Declarations
);
4591 use Variant_Choices_Processing
;
4592 -- Instantiation of the generic choice processing package
4594 -----------------------------
4595 -- Non_Static_Choice_Error --
4596 -----------------------------
4598 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4600 Flag_Non_Static_Expr
4601 ("choice given in variant part is not static!", Choice
);
4602 end Non_Static_Choice_Error
;
4604 --------------------------
4605 -- Process_Declarations --
4606 --------------------------
4608 procedure Process_Declarations
(Variant
: Node_Id
) is
4610 if not Null_Present
(Component_List
(Variant
)) then
4611 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4613 if Present
(Variant_Part
(Component_List
(Variant
))) then
4614 Analyze
(Variant_Part
(Component_List
(Variant
)));
4617 end Process_Declarations
;
4621 Discr_Name
: Node_Id
;
4622 Discr_Type
: Entity_Id
;
4624 Dont_Care
: Boolean;
4625 Others_Present
: Boolean := False;
4627 pragma Warnings
(Off
, Dont_Care
);
4628 pragma Warnings
(Off
, Others_Present
);
4629 -- We don't care about the assigned values of any of these
4631 -- Start of processing for Analyze_Variant_Part
4634 Discr_Name
:= Name
(N
);
4635 Analyze
(Discr_Name
);
4637 -- If Discr_Name bad, get out (prevent cascaded errors)
4639 if Etype
(Discr_Name
) = Any_Type
then
4643 -- Check invalid discriminant in variant part
4645 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4646 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4649 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4651 if not Is_Discrete_Type
(Discr_Type
) then
4653 ("discriminant in a variant part must be of a discrete type",
4658 -- Call the instantiated Analyze_Choices which does the rest of the work
4660 Analyze_Choices
(N
, Discr_Type
, Dont_Care
, Others_Present
);
4661 end Analyze_Variant_Part
;
4663 ----------------------------
4664 -- Array_Type_Declaration --
4665 ----------------------------
4667 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4668 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4669 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
4670 Element_Type
: Entity_Id
;
4671 Implicit_Base
: Entity_Id
;
4673 Related_Id
: Entity_Id
:= Empty
;
4675 P
: constant Node_Id
:= Parent
(Def
);
4679 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4680 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4682 Index
:= First
(Subtype_Marks
(Def
));
4685 -- Find proper names for the implicit types which may be public. In case
4686 -- of anonymous arrays we use the name of the first object of that type
4690 Related_Id
:= Defining_Identifier
(P
);
4696 while Present
(Index
) loop
4699 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
4700 Check_SPARK_Restriction
("subtype mark required", Index
);
4703 -- Add a subtype declaration for each index of private array type
4704 -- declaration whose etype is also private. For example:
4707 -- type Index is private;
4709 -- type Table is array (Index) of ...
4712 -- This is currently required by the expander for the internally
4713 -- generated equality subprogram of records with variant parts in
4714 -- which the etype of some component is such private type.
4716 if Ekind
(Current_Scope
) = E_Package
4717 and then In_Private_Part
(Current_Scope
)
4718 and then Has_Private_Declaration
(Etype
(Index
))
4721 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4726 New_E
:= Make_Temporary
(Loc
, 'T');
4727 Set_Is_Internal
(New_E
);
4730 Make_Subtype_Declaration
(Loc
,
4731 Defining_Identifier
=> New_E
,
4732 Subtype_Indication
=>
4733 New_Occurrence_Of
(Etype
(Index
), Loc
));
4735 Insert_Before
(Parent
(Def
), Decl
);
4737 Set_Etype
(Index
, New_E
);
4739 -- If the index is a range the Entity attribute is not
4740 -- available. Example:
4743 -- type T is private;
4745 -- type T is new Natural;
4746 -- Table : array (T(1) .. T(10)) of Boolean;
4749 if Nkind
(Index
) /= N_Range
then
4750 Set_Entity
(Index
, New_E
);
4755 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4757 -- Check error of subtype with predicate for index type
4759 Bad_Predicated_Subtype_Use
4760 ("subtype& has predicate, not allowed as index subtype",
4761 Index
, Etype
(Index
));
4763 -- Move to next index
4766 Nb_Index
:= Nb_Index
+ 1;
4769 -- Process subtype indication if one is present
4771 if Present
(Component_Typ
) then
4772 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
4774 Set_Etype
(Component_Typ
, Element_Type
);
4776 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
4777 Check_SPARK_Restriction
("subtype mark required", Component_Typ
);
4780 -- Ada 2005 (AI-230): Access Definition case
4782 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4784 -- Indicate that the anonymous access type is created by the
4785 -- array type declaration.
4787 Element_Type
:= Access_Definition
4789 N
=> Access_Definition
(Component_Def
));
4790 Set_Is_Local_Anonymous_Access
(Element_Type
);
4792 -- Propagate the parent. This field is needed if we have to generate
4793 -- the master_id associated with an anonymous access to task type
4794 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4796 Set_Parent
(Element_Type
, Parent
(T
));
4798 -- Ada 2005 (AI-230): In case of components that are anonymous access
4799 -- types the level of accessibility depends on the enclosing type
4802 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4804 -- Ada 2005 (AI-254)
4807 CD
: constant Node_Id
:=
4808 Access_To_Subprogram_Definition
4809 (Access_Definition
(Component_Def
));
4811 if Present
(CD
) and then Protected_Present
(CD
) then
4813 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4818 -- Constrained array case
4821 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4824 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4826 -- Establish Implicit_Base as unconstrained base type
4828 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4830 Set_Etype
(Implicit_Base
, Implicit_Base
);
4831 Set_Scope
(Implicit_Base
, Current_Scope
);
4832 Set_Has_Delayed_Freeze
(Implicit_Base
);
4834 -- The constrained array type is a subtype of the unconstrained one
4836 Set_Ekind
(T
, E_Array_Subtype
);
4837 Init_Size_Align
(T
);
4838 Set_Etype
(T
, Implicit_Base
);
4839 Set_Scope
(T
, Current_Scope
);
4840 Set_Is_Constrained
(T
, True);
4841 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4842 Set_Has_Delayed_Freeze
(T
);
4844 -- Complete setup of implicit base type
4846 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4847 Set_Component_Type
(Implicit_Base
, Element_Type
);
4848 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4849 Set_Component_Size
(Implicit_Base
, Uint_0
);
4850 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4851 Set_Has_Controlled_Component
4852 (Implicit_Base
, Has_Controlled_Component
4854 or else Is_Controlled
4856 Set_Finalize_Storage_Only
4857 (Implicit_Base
, Finalize_Storage_Only
4860 -- Unconstrained array case
4863 Set_Ekind
(T
, E_Array_Type
);
4864 Init_Size_Align
(T
);
4866 Set_Scope
(T
, Current_Scope
);
4867 Set_Component_Size
(T
, Uint_0
);
4868 Set_Is_Constrained
(T
, False);
4869 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4870 Set_Has_Delayed_Freeze
(T
, True);
4871 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4872 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4875 Is_Controlled
(Element_Type
));
4876 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4880 -- Common attributes for both cases
4882 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4883 Set_Packed_Array_Type
(T
, Empty
);
4885 if Aliased_Present
(Component_Definition
(Def
)) then
4886 Check_SPARK_Restriction
4887 ("aliased is not allowed", Component_Definition
(Def
));
4888 Set_Has_Aliased_Components
(Etype
(T
));
4891 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4892 -- array type to ensure that objects of this type are initialized.
4894 if Ada_Version
>= Ada_2005
4895 and then Can_Never_Be_Null
(Element_Type
)
4897 Set_Can_Never_Be_Null
(T
);
4899 if Null_Exclusion_Present
(Component_Definition
(Def
))
4901 -- No need to check itypes because in their case this check was
4902 -- done at their point of creation
4904 and then not Is_Itype
(Element_Type
)
4907 ("`NOT NULL` not allowed (null already excluded)",
4908 Subtype_Indication
(Component_Definition
(Def
)));
4912 Priv
:= Private_Component
(Element_Type
);
4914 if Present
(Priv
) then
4916 -- Check for circular definitions
4918 if Priv
= Any_Type
then
4919 Set_Component_Type
(Etype
(T
), Any_Type
);
4921 -- There is a gap in the visibility of operations on the composite
4922 -- type only if the component type is defined in a different scope.
4924 elsif Scope
(Priv
) = Current_Scope
then
4927 elsif Is_Limited_Type
(Priv
) then
4928 Set_Is_Limited_Composite
(Etype
(T
));
4929 Set_Is_Limited_Composite
(T
);
4931 Set_Is_Private_Composite
(Etype
(T
));
4932 Set_Is_Private_Composite
(T
);
4936 -- A syntax error in the declaration itself may lead to an empty index
4937 -- list, in which case do a minimal patch.
4939 if No
(First_Index
(T
)) then
4940 Error_Msg_N
("missing index definition in array type declaration", T
);
4943 Indexes
: constant List_Id
:=
4944 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
4946 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
4947 Set_First_Index
(T
, First
(Indexes
));
4952 -- Create a concatenation operator for the new type. Internal array
4953 -- types created for packed entities do not need such, they are
4954 -- compatible with the user-defined type.
4956 if Number_Dimensions
(T
) = 1
4957 and then not Is_Packed_Array_Type
(T
)
4959 New_Concatenation_Op
(T
);
4962 -- In the case of an unconstrained array the parser has already verified
4963 -- that all the indexes are unconstrained but we still need to make sure
4964 -- that the element type is constrained.
4966 if Is_Indefinite_Subtype
(Element_Type
) then
4968 ("unconstrained element type in array declaration",
4969 Subtype_Indication
(Component_Def
));
4971 elsif Is_Abstract_Type
(Element_Type
) then
4973 ("the type of a component cannot be abstract",
4974 Subtype_Indication
(Component_Def
));
4977 -- Ada 2012: if the element type has invariants we must create an
4978 -- invariant procedure for the array type as well.
4980 if Has_Invariants
(Element_Type
) then
4981 Set_Has_Invariants
(T
);
4983 end Array_Type_Declaration
;
4985 ------------------------------------------------------
4986 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4987 ------------------------------------------------------
4989 function Replace_Anonymous_Access_To_Protected_Subprogram
4990 (N
: Node_Id
) return Entity_Id
4992 Loc
: constant Source_Ptr
:= Sloc
(N
);
4994 Curr_Scope
: constant Scope_Stack_Entry
:=
4995 Scope_Stack
.Table
(Scope_Stack
.Last
);
4997 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5004 Set_Is_Internal
(Anon
);
5007 when N_Component_Declaration |
5008 N_Unconstrained_Array_Definition |
5009 N_Constrained_Array_Definition
=>
5010 Comp
:= Component_Definition
(N
);
5011 Acc
:= Access_Definition
(Comp
);
5013 when N_Discriminant_Specification
=>
5014 Comp
:= Discriminant_Type
(N
);
5017 when N_Parameter_Specification
=>
5018 Comp
:= Parameter_Type
(N
);
5021 when N_Access_Function_Definition
=>
5022 Comp
:= Result_Definition
(N
);
5025 when N_Object_Declaration
=>
5026 Comp
:= Object_Definition
(N
);
5029 when N_Function_Specification
=>
5030 Comp
:= Result_Definition
(N
);
5034 raise Program_Error
;
5037 Decl
:= Make_Full_Type_Declaration
(Loc
,
5038 Defining_Identifier
=> Anon
,
5040 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
5042 Mark_Rewrite_Insertion
(Decl
);
5044 -- Insert the new declaration in the nearest enclosing scope. If the
5045 -- node is a body and N is its return type, the declaration belongs in
5046 -- the enclosing scope.
5050 if Nkind
(P
) = N_Subprogram_Body
5051 and then Nkind
(N
) = N_Function_Specification
5056 while Present
(P
) and then not Has_Declarations
(P
) loop
5060 pragma Assert
(Present
(P
));
5062 if Nkind
(P
) = N_Package_Specification
then
5063 Prepend
(Decl
, Visible_Declarations
(P
));
5065 Prepend
(Decl
, Declarations
(P
));
5068 -- Replace the anonymous type with an occurrence of the new declaration.
5069 -- In all cases the rewritten node does not have the null-exclusion
5070 -- attribute because (if present) it was already inherited by the
5071 -- anonymous entity (Anon). Thus, in case of components we do not
5072 -- inherit this attribute.
5074 if Nkind
(N
) = N_Parameter_Specification
then
5075 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5076 Set_Etype
(Defining_Identifier
(N
), Anon
);
5077 Set_Null_Exclusion_Present
(N
, False);
5079 elsif Nkind
(N
) = N_Object_Declaration
then
5080 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5081 Set_Etype
(Defining_Identifier
(N
), Anon
);
5083 elsif Nkind
(N
) = N_Access_Function_Definition
then
5084 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5086 elsif Nkind
(N
) = N_Function_Specification
then
5087 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5088 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5092 Make_Component_Definition
(Loc
,
5093 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5096 Mark_Rewrite_Insertion
(Comp
);
5098 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5102 -- Temporarily remove the current scope (record or subprogram) from
5103 -- the stack to add the new declarations to the enclosing scope.
5105 Scope_Stack
.Decrement_Last
;
5107 Set_Is_Itype
(Anon
);
5108 Scope_Stack
.Append
(Curr_Scope
);
5111 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5112 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5114 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5116 -------------------------------
5117 -- Build_Derived_Access_Type --
5118 -------------------------------
5120 procedure Build_Derived_Access_Type
5122 Parent_Type
: Entity_Id
;
5123 Derived_Type
: Entity_Id
)
5125 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5127 Desig_Type
: Entity_Id
;
5129 Discr_Con_Elist
: Elist_Id
;
5130 Discr_Con_El
: Elmt_Id
;
5134 -- Set the designated type so it is available in case this is an access
5135 -- to a self-referential type, e.g. a standard list type with a next
5136 -- pointer. Will be reset after subtype is built.
5138 Set_Directly_Designated_Type
5139 (Derived_Type
, Designated_Type
(Parent_Type
));
5141 Subt
:= Process_Subtype
(S
, N
);
5143 if Nkind
(S
) /= N_Subtype_Indication
5144 and then Subt
/= Base_Type
(Subt
)
5146 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5149 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5151 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5152 Ibase
: constant Entity_Id
:=
5153 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5154 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5155 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5158 Copy_Node
(Pbase
, Ibase
);
5160 Set_Chars
(Ibase
, Svg_Chars
);
5161 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5162 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5163 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5164 Set_Freeze_Node
(Ibase
, Empty
);
5165 Set_Is_Frozen
(Ibase
, False);
5166 Set_Comes_From_Source
(Ibase
, False);
5167 Set_Is_First_Subtype
(Ibase
, False);
5169 Set_Etype
(Ibase
, Pbase
);
5170 Set_Etype
(Derived_Type
, Ibase
);
5174 Set_Directly_Designated_Type
5175 (Derived_Type
, Designated_Type
(Subt
));
5177 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5178 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5179 Set_Size_Info
(Derived_Type
, Parent_Type
);
5180 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5181 Set_Depends_On_Private
(Derived_Type
,
5182 Has_Private_Component
(Derived_Type
));
5183 Conditional_Delay
(Derived_Type
, Subt
);
5185 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5186 -- that it is not redundant.
5188 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5189 Set_Can_Never_Be_Null
(Derived_Type
);
5191 if Can_Never_Be_Null
(Parent_Type
)
5195 ("`NOT NULL` not allowed (& already excludes null)",
5199 elsif Can_Never_Be_Null
(Parent_Type
) then
5200 Set_Can_Never_Be_Null
(Derived_Type
);
5203 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5204 -- the root type for this information.
5206 -- Apply range checks to discriminants for derived record case
5207 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5209 Desig_Type
:= Designated_Type
(Derived_Type
);
5210 if Is_Composite_Type
(Desig_Type
)
5211 and then (not Is_Array_Type
(Desig_Type
))
5212 and then Has_Discriminants
(Desig_Type
)
5213 and then Base_Type
(Desig_Type
) /= Desig_Type
5215 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5216 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5218 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5219 while Present
(Discr_Con_El
) loop
5220 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5221 Next_Elmt
(Discr_Con_El
);
5222 Next_Discriminant
(Discr
);
5225 end Build_Derived_Access_Type
;
5227 ------------------------------
5228 -- Build_Derived_Array_Type --
5229 ------------------------------
5231 procedure Build_Derived_Array_Type
5233 Parent_Type
: Entity_Id
;
5234 Derived_Type
: Entity_Id
)
5236 Loc
: constant Source_Ptr
:= Sloc
(N
);
5237 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5238 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5239 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5240 Implicit_Base
: Entity_Id
;
5241 New_Indic
: Node_Id
;
5243 procedure Make_Implicit_Base
;
5244 -- If the parent subtype is constrained, the derived type is a subtype
5245 -- of an implicit base type derived from the parent base.
5247 ------------------------
5248 -- Make_Implicit_Base --
5249 ------------------------
5251 procedure Make_Implicit_Base
is
5254 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5256 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5257 Set_Etype
(Implicit_Base
, Parent_Base
);
5259 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5260 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5262 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5263 end Make_Implicit_Base
;
5265 -- Start of processing for Build_Derived_Array_Type
5268 if not Is_Constrained
(Parent_Type
) then
5269 if Nkind
(Indic
) /= N_Subtype_Indication
then
5270 Set_Ekind
(Derived_Type
, E_Array_Type
);
5272 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5273 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5275 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5279 Set_Etype
(Derived_Type
, Implicit_Base
);
5282 Make_Subtype_Declaration
(Loc
,
5283 Defining_Identifier
=> Derived_Type
,
5284 Subtype_Indication
=>
5285 Make_Subtype_Indication
(Loc
,
5286 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
5287 Constraint
=> Constraint
(Indic
)));
5289 Rewrite
(N
, New_Indic
);
5294 if Nkind
(Indic
) /= N_Subtype_Indication
then
5297 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5298 Set_Etype
(Derived_Type
, Implicit_Base
);
5299 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5302 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5306 -- If parent type is not a derived type itself, and is declared in
5307 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5308 -- the new type's concatenation operator since Derive_Subprograms
5309 -- will not inherit the parent's operator. If the parent type is
5310 -- unconstrained, the operator is of the unconstrained base type.
5312 if Number_Dimensions
(Parent_Type
) = 1
5313 and then not Is_Limited_Type
(Parent_Type
)
5314 and then not Is_Derived_Type
(Parent_Type
)
5315 and then not Is_Package_Or_Generic_Package
5316 (Scope
(Base_Type
(Parent_Type
)))
5318 if not Is_Constrained
(Parent_Type
)
5319 and then Is_Constrained
(Derived_Type
)
5321 New_Concatenation_Op
(Implicit_Base
);
5323 New_Concatenation_Op
(Derived_Type
);
5326 end Build_Derived_Array_Type
;
5328 -----------------------------------
5329 -- Build_Derived_Concurrent_Type --
5330 -----------------------------------
5332 procedure Build_Derived_Concurrent_Type
5334 Parent_Type
: Entity_Id
;
5335 Derived_Type
: Entity_Id
)
5337 Loc
: constant Source_Ptr
:= Sloc
(N
);
5339 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
5340 Corr_Decl
: Node_Id
;
5341 Corr_Decl_Needed
: Boolean;
5342 -- If the derived type has fewer discriminants than its parent, the
5343 -- corresponding record is also a derived type, in order to account for
5344 -- the bound discriminants. We create a full type declaration for it in
5347 Constraint_Present
: constant Boolean :=
5348 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5349 N_Subtype_Indication
;
5351 D_Constraint
: Node_Id
;
5352 New_Constraint
: Elist_Id
;
5353 Old_Disc
: Entity_Id
;
5354 New_Disc
: Entity_Id
;
5358 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5359 Corr_Decl_Needed
:= False;
5362 if Present
(Discriminant_Specifications
(N
))
5363 and then Constraint_Present
5365 Old_Disc
:= First_Discriminant
(Parent_Type
);
5366 New_Disc
:= First
(Discriminant_Specifications
(N
));
5367 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
5368 Next_Discriminant
(Old_Disc
);
5373 if Present
(Old_Disc
) and then Expander_Active
then
5375 -- The new type has fewer discriminants, so we need to create a new
5376 -- corresponding record, which is derived from the corresponding
5377 -- record of the parent, and has a stored constraint that captures
5378 -- the values of the discriminant constraints. The corresponding
5379 -- record is needed only if expander is active and code generation is
5382 -- The type declaration for the derived corresponding record has the
5383 -- same discriminant part and constraints as the current declaration.
5384 -- Copy the unanalyzed tree to build declaration.
5386 Corr_Decl_Needed
:= True;
5387 New_N
:= Copy_Separate_Tree
(N
);
5390 Make_Full_Type_Declaration
(Loc
,
5391 Defining_Identifier
=> Corr_Record
,
5392 Discriminant_Specifications
=>
5393 Discriminant_Specifications
(New_N
),
5395 Make_Derived_Type_Definition
(Loc
,
5396 Subtype_Indication
=>
5397 Make_Subtype_Indication
(Loc
,
5400 (Corresponding_Record_Type
(Parent_Type
), Loc
),
5403 (Subtype_Indication
(Type_Definition
(New_N
))))));
5406 -- Copy Storage_Size and Relative_Deadline variables if task case
5408 if Is_Task_Type
(Parent_Type
) then
5409 Set_Storage_Size_Variable
(Derived_Type
,
5410 Storage_Size_Variable
(Parent_Type
));
5411 Set_Relative_Deadline_Variable
(Derived_Type
,
5412 Relative_Deadline_Variable
(Parent_Type
));
5415 if Present
(Discriminant_Specifications
(N
)) then
5416 Push_Scope
(Derived_Type
);
5417 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5419 if Constraint_Present
then
5421 Expand_To_Stored_Constraint
5423 Build_Discriminant_Constraints
5425 Subtype_Indication
(Type_Definition
(N
)), True));
5430 elsif Constraint_Present
then
5432 -- Build constrained subtype and derive from it
5435 Loc
: constant Source_Ptr
:= Sloc
(N
);
5436 Anon
: constant Entity_Id
:=
5437 Make_Defining_Identifier
(Loc
,
5438 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
5443 Make_Subtype_Declaration
(Loc
,
5444 Defining_Identifier
=> Anon
,
5445 Subtype_Indication
=>
5446 Subtype_Indication
(Type_Definition
(N
)));
5447 Insert_Before
(N
, Decl
);
5450 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
5451 New_Occurrence_Of
(Anon
, Loc
));
5452 Set_Analyzed
(Derived_Type
, False);
5458 -- By default, operations and private data are inherited from parent.
5459 -- However, in the presence of bound discriminants, a new corresponding
5460 -- record will be created, see below.
5462 Set_Has_Discriminants
5463 (Derived_Type
, Has_Discriminants
(Parent_Type
));
5464 Set_Corresponding_Record_Type
5465 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
5467 -- Is_Constrained is set according the parent subtype, but is set to
5468 -- False if the derived type is declared with new discriminants.
5472 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5473 and then not Present
(Discriminant_Specifications
(N
)));
5475 if Constraint_Present
then
5476 if not Has_Discriminants
(Parent_Type
) then
5477 Error_Msg_N
("untagged parent must have discriminants", N
);
5479 elsif Present
(Discriminant_Specifications
(N
)) then
5481 -- Verify that new discriminants are used to constrain old ones
5486 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
5488 Old_Disc
:= First_Discriminant
(Parent_Type
);
5490 while Present
(D_Constraint
) loop
5491 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
5493 -- Positional constraint. If it is a reference to a new
5494 -- discriminant, it constrains the corresponding old one.
5496 if Nkind
(D_Constraint
) = N_Identifier
then
5497 New_Disc
:= First_Discriminant
(Derived_Type
);
5498 while Present
(New_Disc
) loop
5499 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
5500 Next_Discriminant
(New_Disc
);
5503 if Present
(New_Disc
) then
5504 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
5508 Next_Discriminant
(Old_Disc
);
5510 -- if this is a named constraint, search by name for the old
5511 -- discriminants constrained by the new one.
5513 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
5515 -- Find new discriminant with that name
5517 New_Disc
:= First_Discriminant
(Derived_Type
);
5518 while Present
(New_Disc
) loop
5520 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
5521 Next_Discriminant
(New_Disc
);
5524 if Present
(New_Disc
) then
5526 -- Verify that new discriminant renames some discriminant
5527 -- of the parent type, and associate the new discriminant
5528 -- with one or more old ones that it renames.
5534 Selector
:= First
(Selector_Names
(D_Constraint
));
5535 while Present
(Selector
) loop
5536 Old_Disc
:= First_Discriminant
(Parent_Type
);
5537 while Present
(Old_Disc
) loop
5538 exit when Chars
(Old_Disc
) = Chars
(Selector
);
5539 Next_Discriminant
(Old_Disc
);
5542 if Present
(Old_Disc
) then
5543 Set_Corresponding_Discriminant
5544 (New_Disc
, Old_Disc
);
5553 Next
(D_Constraint
);
5556 New_Disc
:= First_Discriminant
(Derived_Type
);
5557 while Present
(New_Disc
) loop
5558 if No
(Corresponding_Discriminant
(New_Disc
)) then
5560 ("new discriminant& must constrain old one", N
, New_Disc
);
5563 Subtypes_Statically_Compatible
5565 Etype
(Corresponding_Discriminant
(New_Disc
)))
5568 ("& not statically compatible with parent discriminant",
5572 Next_Discriminant
(New_Disc
);
5576 elsif Present
(Discriminant_Specifications
(N
)) then
5578 ("missing discriminant constraint in untagged derivation", N
);
5581 -- The entity chain of the derived type includes the new discriminants
5582 -- but shares operations with the parent.
5584 if Present
(Discriminant_Specifications
(N
)) then
5585 Old_Disc
:= First_Discriminant
(Parent_Type
);
5586 while Present
(Old_Disc
) loop
5587 if No
(Next_Entity
(Old_Disc
))
5588 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
5591 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
5595 Next_Discriminant
(Old_Disc
);
5599 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
5600 if Has_Discriminants
(Parent_Type
) then
5601 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5602 Set_Discriminant_Constraint
(
5603 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5607 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
5609 Set_Has_Completion
(Derived_Type
);
5611 if Corr_Decl_Needed
then
5612 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
5613 Insert_After
(N
, Corr_Decl
);
5614 Analyze
(Corr_Decl
);
5615 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
5617 end Build_Derived_Concurrent_Type
;
5619 ------------------------------------
5620 -- Build_Derived_Enumeration_Type --
5621 ------------------------------------
5623 procedure Build_Derived_Enumeration_Type
5625 Parent_Type
: Entity_Id
;
5626 Derived_Type
: Entity_Id
)
5628 Loc
: constant Source_Ptr
:= Sloc
(N
);
5629 Def
: constant Node_Id
:= Type_Definition
(N
);
5630 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
5631 Implicit_Base
: Entity_Id
;
5632 Literal
: Entity_Id
;
5633 New_Lit
: Entity_Id
;
5634 Literals_List
: List_Id
;
5635 Type_Decl
: Node_Id
;
5637 Rang_Expr
: Node_Id
;
5640 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5641 -- not have explicit literals lists we need to process types derived
5642 -- from them specially. This is handled by Derived_Standard_Character.
5643 -- If the parent type is a generic type, there are no literals either,
5644 -- and we construct the same skeletal representation as for the generic
5647 if Is_Standard_Character_Type
(Parent_Type
) then
5648 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
5650 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
5656 if Nkind
(Indic
) /= N_Subtype_Indication
then
5658 Make_Attribute_Reference
(Loc
,
5659 Attribute_Name
=> Name_First
,
5660 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5661 Set_Etype
(Lo
, Derived_Type
);
5664 Make_Attribute_Reference
(Loc
,
5665 Attribute_Name
=> Name_Last
,
5666 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5667 Set_Etype
(Hi
, Derived_Type
);
5669 Set_Scalar_Range
(Derived_Type
,
5675 -- Analyze subtype indication and verify compatibility
5676 -- with parent type.
5678 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
5679 Base_Type
(Parent_Type
)
5682 ("illegal constraint for formal discrete type", N
);
5688 -- If a constraint is present, analyze the bounds to catch
5689 -- premature usage of the derived literals.
5691 if Nkind
(Indic
) = N_Subtype_Indication
5692 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
5694 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
5695 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
5698 -- Introduce an implicit base type for the derived type even if there
5699 -- is no constraint attached to it, since this seems closer to the
5700 -- Ada semantics. Build a full type declaration tree for the derived
5701 -- type using the implicit base type as the defining identifier. The
5702 -- build a subtype declaration tree which applies the constraint (if
5703 -- any) have it replace the derived type declaration.
5705 Literal
:= First_Literal
(Parent_Type
);
5706 Literals_List
:= New_List
;
5707 while Present
(Literal
)
5708 and then Ekind
(Literal
) = E_Enumeration_Literal
5710 -- Literals of the derived type have the same representation as
5711 -- those of the parent type, but this representation can be
5712 -- overridden by an explicit representation clause. Indicate
5713 -- that there is no explicit representation given yet. These
5714 -- derived literals are implicit operations of the new type,
5715 -- and can be overridden by explicit ones.
5717 if Nkind
(Literal
) = N_Defining_Character_Literal
then
5719 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
5721 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
5724 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
5725 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
5726 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
5727 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
5728 Set_Alias
(New_Lit
, Literal
);
5729 Set_Is_Known_Valid
(New_Lit
, True);
5731 Append
(New_Lit
, Literals_List
);
5732 Next_Literal
(Literal
);
5736 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5737 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
5739 -- Indicate the proper nature of the derived type. This must be done
5740 -- before analysis of the literals, to recognize cases when a literal
5741 -- may be hidden by a previous explicit function definition (cf.
5744 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
5745 Set_Etype
(Derived_Type
, Implicit_Base
);
5748 Make_Full_Type_Declaration
(Loc
,
5749 Defining_Identifier
=> Implicit_Base
,
5750 Discriminant_Specifications
=> No_List
,
5752 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
5754 Mark_Rewrite_Insertion
(Type_Decl
);
5755 Insert_Before
(N
, Type_Decl
);
5756 Analyze
(Type_Decl
);
5758 -- After the implicit base is analyzed its Etype needs to be changed
5759 -- to reflect the fact that it is derived from the parent type which
5760 -- was ignored during analysis. We also set the size at this point.
5762 Set_Etype
(Implicit_Base
, Parent_Type
);
5764 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5765 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5766 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5768 -- Copy other flags from parent type
5770 Set_Has_Non_Standard_Rep
5771 (Implicit_Base
, Has_Non_Standard_Rep
5773 Set_Has_Pragma_Ordered
5774 (Implicit_Base
, Has_Pragma_Ordered
5776 Set_Has_Delayed_Freeze
(Implicit_Base
);
5778 -- Process the subtype indication including a validation check on the
5779 -- constraint, if any. If a constraint is given, its bounds must be
5780 -- implicitly converted to the new type.
5782 if Nkind
(Indic
) = N_Subtype_Indication
then
5784 R
: constant Node_Id
:=
5785 Range_Expression
(Constraint
(Indic
));
5788 if Nkind
(R
) = N_Range
then
5789 Hi
:= Build_Scalar_Bound
5790 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5791 Lo
:= Build_Scalar_Bound
5792 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5795 -- Constraint is a Range attribute. Replace with explicit
5796 -- mention of the bounds of the prefix, which must be a
5799 Analyze
(Prefix
(R
));
5801 Convert_To
(Implicit_Base
,
5802 Make_Attribute_Reference
(Loc
,
5803 Attribute_Name
=> Name_Last
,
5805 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5808 Convert_To
(Implicit_Base
,
5809 Make_Attribute_Reference
(Loc
,
5810 Attribute_Name
=> Name_First
,
5812 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5819 (Type_High_Bound
(Parent_Type
),
5820 Parent_Type
, Implicit_Base
);
5823 (Type_Low_Bound
(Parent_Type
),
5824 Parent_Type
, Implicit_Base
);
5832 -- If we constructed a default range for the case where no range
5833 -- was given, then the expressions in the range must not freeze
5834 -- since they do not correspond to expressions in the source.
5836 if Nkind
(Indic
) /= N_Subtype_Indication
then
5837 Set_Must_Not_Freeze
(Lo
);
5838 Set_Must_Not_Freeze
(Hi
);
5839 Set_Must_Not_Freeze
(Rang_Expr
);
5843 Make_Subtype_Declaration
(Loc
,
5844 Defining_Identifier
=> Derived_Type
,
5845 Subtype_Indication
=>
5846 Make_Subtype_Indication
(Loc
,
5847 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5849 Make_Range_Constraint
(Loc
,
5850 Range_Expression
=> Rang_Expr
))));
5854 -- If pragma Discard_Names applies on the first subtype of the parent
5855 -- type, then it must be applied on this subtype as well.
5857 if Einfo
.Discard_Names
(First_Subtype
(Parent_Type
)) then
5858 Set_Discard_Names
(Derived_Type
);
5861 -- Apply a range check. Since this range expression doesn't have an
5862 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5865 if Nkind
(Indic
) = N_Subtype_Indication
then
5866 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5868 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5871 end Build_Derived_Enumeration_Type
;
5873 --------------------------------
5874 -- Build_Derived_Numeric_Type --
5875 --------------------------------
5877 procedure Build_Derived_Numeric_Type
5879 Parent_Type
: Entity_Id
;
5880 Derived_Type
: Entity_Id
)
5882 Loc
: constant Source_Ptr
:= Sloc
(N
);
5883 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5884 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5885 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5886 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5887 N_Subtype_Indication
;
5888 Implicit_Base
: Entity_Id
;
5894 -- Process the subtype indication including a validation check on
5895 -- the constraint if any.
5897 Discard_Node
(Process_Subtype
(Indic
, N
));
5899 -- Introduce an implicit base type for the derived type even if there
5900 -- is no constraint attached to it, since this seems closer to the Ada
5904 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5906 Set_Etype
(Implicit_Base
, Parent_Base
);
5907 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5908 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5909 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5910 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5911 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5913 -- Set RM Size for discrete type or decimal fixed-point type
5914 -- Ordinary fixed-point is excluded, why???
5916 if Is_Discrete_Type
(Parent_Base
)
5917 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5919 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5922 Set_Has_Delayed_Freeze
(Implicit_Base
);
5924 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5925 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5927 Set_Scalar_Range
(Implicit_Base
,
5932 if Has_Infinities
(Parent_Base
) then
5933 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5936 -- The Derived_Type, which is the entity of the declaration, is a
5937 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5938 -- absence of an explicit constraint.
5940 Set_Etype
(Derived_Type
, Implicit_Base
);
5942 -- If we did not have a constraint, then the Ekind is set from the
5943 -- parent type (otherwise Process_Subtype has set the bounds)
5945 if No_Constraint
then
5946 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
5949 -- If we did not have a range constraint, then set the range from the
5950 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
5953 or else not Has_Range_Constraint
(Indic
)
5955 Set_Scalar_Range
(Derived_Type
,
5957 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
5958 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
5959 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5961 if Has_Infinities
(Parent_Type
) then
5962 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
5965 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
5968 Set_Is_Descendent_Of_Address
(Derived_Type
,
5969 Is_Descendent_Of_Address
(Parent_Type
));
5970 Set_Is_Descendent_Of_Address
(Implicit_Base
,
5971 Is_Descendent_Of_Address
(Parent_Type
));
5973 -- Set remaining type-specific fields, depending on numeric type
5975 if Is_Modular_Integer_Type
(Parent_Type
) then
5976 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
5978 Set_Non_Binary_Modulus
5979 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
5982 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5984 elsif Is_Floating_Point_Type
(Parent_Type
) then
5986 -- Digits of base type is always copied from the digits value of
5987 -- the parent base type, but the digits of the derived type will
5988 -- already have been set if there was a constraint present.
5990 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5991 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
5993 if No_Constraint
then
5994 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
5997 elsif Is_Fixed_Point_Type
(Parent_Type
) then
5999 -- Small of base type and derived type are always copied from the
6000 -- parent base type, since smalls never change. The delta of the
6001 -- base type is also copied from the parent base type. However the
6002 -- delta of the derived type will have been set already if a
6003 -- constraint was present.
6005 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6006 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6007 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6009 if No_Constraint
then
6010 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6013 -- The scale and machine radix in the decimal case are always
6014 -- copied from the parent base type.
6016 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6017 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6018 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6020 Set_Machine_Radix_10
6021 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6022 Set_Machine_Radix_10
6023 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6025 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6027 if No_Constraint
then
6028 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6031 -- the analysis of the subtype_indication sets the
6032 -- digits value of the derived type.
6039 -- The type of the bounds is that of the parent type, and they
6040 -- must be converted to the derived type.
6042 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6044 -- The implicit_base should be frozen when the derived type is frozen,
6045 -- but note that it is used in the conversions of the bounds. For fixed
6046 -- types we delay the determination of the bounds until the proper
6047 -- freezing point. For other numeric types this is rejected by GCC, for
6048 -- reasons that are currently unclear (???), so we choose to freeze the
6049 -- implicit base now. In the case of integers and floating point types
6050 -- this is harmless because subsequent representation clauses cannot
6051 -- affect anything, but it is still baffling that we cannot use the
6052 -- same mechanism for all derived numeric types.
6054 -- There is a further complication: actually *some* representation
6055 -- clauses can affect the implicit base type. Namely, attribute
6056 -- definition clauses for stream-oriented attributes need to set the
6057 -- corresponding TSS entries on the base type, and this normally cannot
6058 -- be done after the base type is frozen, so the circuitry in
6059 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
6060 -- not use Set_TSS in this case.
6062 if Is_Fixed_Point_Type
(Parent_Type
) then
6063 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6065 Freeze_Before
(N
, Implicit_Base
);
6067 end Build_Derived_Numeric_Type
;
6069 --------------------------------
6070 -- Build_Derived_Private_Type --
6071 --------------------------------
6073 procedure Build_Derived_Private_Type
6075 Parent_Type
: Entity_Id
;
6076 Derived_Type
: Entity_Id
;
6077 Is_Completion
: Boolean;
6078 Derive_Subps
: Boolean := True)
6080 Loc
: constant Source_Ptr
:= Sloc
(N
);
6081 Der_Base
: Entity_Id
;
6083 Full_Decl
: Node_Id
:= Empty
;
6084 Full_Der
: Entity_Id
;
6086 Last_Discr
: Entity_Id
;
6087 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
6088 Swapped
: Boolean := False;
6090 procedure Copy_And_Build
;
6091 -- Copy derived type declaration, replace parent with its full view,
6092 -- and analyze new declaration.
6094 --------------------
6095 -- Copy_And_Build --
6096 --------------------
6098 procedure Copy_And_Build
is
6102 if Ekind
(Parent_Type
) in Record_Kind
6104 (Ekind
(Parent_Type
) in Enumeration_Kind
6105 and then not Is_Standard_Character_Type
(Parent_Type
)
6106 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
6108 Full_N
:= New_Copy_Tree
(N
);
6109 Insert_After
(N
, Full_N
);
6110 Build_Derived_Type
(
6111 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6114 Build_Derived_Type
(
6115 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6119 -- Start of processing for Build_Derived_Private_Type
6122 if Is_Tagged_Type
(Parent_Type
) then
6123 Full_P
:= Full_View
(Parent_Type
);
6125 -- A type extension of a type with unknown discriminants is an
6126 -- indefinite type that the back-end cannot handle directly.
6127 -- We treat it as a private type, and build a completion that is
6128 -- derived from the full view of the parent, and hopefully has
6129 -- known discriminants.
6131 -- If the full view of the parent type has an underlying record view,
6132 -- use it to generate the underlying record view of this derived type
6133 -- (required for chains of derivations with unknown discriminants).
6135 -- Minor optimization: we avoid the generation of useless underlying
6136 -- record view entities if the private type declaration has unknown
6137 -- discriminants but its corresponding full view has no
6140 if Has_Unknown_Discriminants
(Parent_Type
)
6141 and then Present
(Full_P
)
6142 and then (Has_Discriminants
(Full_P
)
6143 or else Present
(Underlying_Record_View
(Full_P
)))
6144 and then not In_Open_Scopes
(Par_Scope
)
6145 and then Expander_Active
6148 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6149 New_Ext
: constant Node_Id
:=
6151 (Record_Extension_Part
(Type_Definition
(N
)));
6155 Build_Derived_Record_Type
6156 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6158 -- Build anonymous completion, as a derivation from the full
6159 -- view of the parent. This is not a completion in the usual
6160 -- sense, because the current type is not private.
6163 Make_Full_Type_Declaration
(Loc
,
6164 Defining_Identifier
=> Full_Der
,
6166 Make_Derived_Type_Definition
(Loc
,
6167 Subtype_Indication
=>
6169 (Subtype_Indication
(Type_Definition
(N
))),
6170 Record_Extension_Part
=> New_Ext
));
6172 -- If the parent type has an underlying record view, use it
6173 -- here to build the new underlying record view.
6175 if Present
(Underlying_Record_View
(Full_P
)) then
6177 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6179 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
6180 Underlying_Record_View
(Full_P
));
6183 Install_Private_Declarations
(Par_Scope
);
6184 Install_Visible_Declarations
(Par_Scope
);
6185 Insert_Before
(N
, Decl
);
6187 -- Mark entity as an underlying record view before analysis,
6188 -- to avoid generating the list of its primitive operations
6189 -- (which is not really required for this entity) and thus
6190 -- prevent spurious errors associated with missing overriding
6191 -- of abstract primitives (overridden only for Derived_Type).
6193 Set_Ekind
(Full_Der
, E_Record_Type
);
6194 Set_Is_Underlying_Record_View
(Full_Der
);
6198 pragma Assert
(Has_Discriminants
(Full_Der
)
6199 and then not Has_Unknown_Discriminants
(Full_Der
));
6201 Uninstall_Declarations
(Par_Scope
);
6203 -- Freeze the underlying record view, to prevent generation of
6204 -- useless dispatching information, which is simply shared with
6205 -- the real derived type.
6207 Set_Is_Frozen
(Full_Der
);
6209 -- Set up links between real entity and underlying record view
6211 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
6212 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
6215 -- If discriminants are known, build derived record
6218 Build_Derived_Record_Type
6219 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6224 elsif Has_Discriminants
(Parent_Type
) then
6225 if Present
(Full_View
(Parent_Type
)) then
6226 if not Is_Completion
then
6228 -- Copy declaration for subsequent analysis, to provide a
6229 -- completion for what is a private declaration. Indicate that
6230 -- the full type is internally generated.
6232 Full_Decl
:= New_Copy_Tree
(N
);
6233 Full_Der
:= New_Copy
(Derived_Type
);
6234 Set_Comes_From_Source
(Full_Decl
, False);
6235 Set_Comes_From_Source
(Full_Der
, False);
6236 Set_Parent
(Full_Der
, Full_Decl
);
6238 Insert_After
(N
, Full_Decl
);
6241 -- If this is a completion, the full view being built is itself
6242 -- private. We build a subtype of the parent with the same
6243 -- constraints as this full view, to convey to the back end the
6244 -- constrained components and the size of this subtype. If the
6245 -- parent is constrained, its full view can serve as the
6246 -- underlying full view of the derived type.
6248 if No
(Discriminant_Specifications
(N
)) then
6249 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6250 N_Subtype_Indication
6252 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
6254 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
6255 Set_Underlying_Full_View
6256 (Derived_Type
, Full_View
(Parent_Type
));
6260 -- If there are new discriminants, the parent subtype is
6261 -- constrained by them, but it is not clear how to build
6262 -- the Underlying_Full_View in this case???
6269 -- Build partial view of derived type from partial view of parent
6271 Build_Derived_Record_Type
6272 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6274 if Present
(Full_View
(Parent_Type
)) and then not Is_Completion
then
6275 if not In_Open_Scopes
(Par_Scope
)
6276 or else not In_Same_Source_Unit
(N
, Parent_Type
)
6278 -- Swap partial and full views temporarily
6280 Install_Private_Declarations
(Par_Scope
);
6281 Install_Visible_Declarations
(Par_Scope
);
6285 -- Build full view of derived type from full view of parent which
6286 -- is now installed. Subprograms have been derived on the partial
6287 -- view, the completion does not derive them anew.
6289 if not Is_Tagged_Type
(Parent_Type
) then
6291 -- If the parent is itself derived from another private type,
6292 -- installing the private declarations has not affected its
6293 -- privacy status, so use its own full view explicitly.
6295 if Is_Private_Type
(Parent_Type
) then
6296 Build_Derived_Record_Type
6297 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
6299 Build_Derived_Record_Type
6300 (Full_Decl
, Parent_Type
, Full_Der
, False);
6304 -- If full view of parent is tagged, the completion inherits
6305 -- the proper primitive operations.
6307 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
6308 Build_Derived_Record_Type
6309 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
6312 -- The full declaration has been introduced into the tree and
6313 -- processed in the step above. It should not be analyzed again
6314 -- (when encountered later in the current list of declarations)
6315 -- to prevent spurious name conflicts. The full entity remains
6318 Set_Analyzed
(Full_Decl
);
6321 Uninstall_Declarations
(Par_Scope
);
6323 if In_Open_Scopes
(Par_Scope
) then
6324 Install_Visible_Declarations
(Par_Scope
);
6328 Der_Base
:= Base_Type
(Derived_Type
);
6329 Set_Full_View
(Derived_Type
, Full_Der
);
6330 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
6332 -- Copy the discriminant list from full view to the partial views
6333 -- (base type and its subtype). Gigi requires that the partial and
6334 -- full views have the same discriminants.
6336 -- Note that since the partial view is pointing to discriminants
6337 -- in the full view, their scope will be that of the full view.
6338 -- This might cause some front end problems and need adjustment???
6340 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
6341 Set_First_Entity
(Der_Base
, Discr
);
6344 Last_Discr
:= Discr
;
6345 Next_Discriminant
(Discr
);
6346 exit when No
(Discr
);
6349 Set_Last_Entity
(Der_Base
, Last_Discr
);
6351 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
6352 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
6353 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
6356 -- If this is a completion, the derived type stays private and
6357 -- there is no need to create a further full view, except in the
6358 -- unusual case when the derivation is nested within a child unit,
6364 elsif Present
(Full_View
(Parent_Type
))
6365 and then Has_Discriminants
(Full_View
(Parent_Type
))
6367 if Has_Unknown_Discriminants
(Parent_Type
)
6368 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6369 N_Subtype_Indication
6372 ("cannot constrain type with unknown discriminants",
6373 Subtype_Indication
(Type_Definition
(N
)));
6377 -- If full view of parent is a record type, build full view as a
6378 -- derivation from the parent's full view. Partial view remains
6379 -- private. For code generation and linking, the full view must have
6380 -- the same public status as the partial one. This full view is only
6381 -- needed if the parent type is in an enclosing scope, so that the
6382 -- full view may actually become visible, e.g. in a child unit. This
6383 -- is both more efficient, and avoids order of freezing problems with
6384 -- the added entities.
6386 if not Is_Private_Type
(Full_View
(Parent_Type
))
6387 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
6390 Make_Defining_Identifier
6391 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6392 Set_Is_Itype
(Full_Der
);
6393 Set_Has_Private_Declaration
(Full_Der
);
6394 Set_Has_Private_Declaration
(Derived_Type
);
6395 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6396 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6397 Set_Full_View
(Derived_Type
, Full_Der
);
6398 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6399 Full_P
:= Full_View
(Parent_Type
);
6400 Exchange_Declarations
(Parent_Type
);
6402 Exchange_Declarations
(Full_P
);
6405 Build_Derived_Record_Type
6406 (N
, Full_View
(Parent_Type
), Derived_Type
,
6407 Derive_Subps
=> False);
6410 -- In any case, the primitive operations are inherited from the
6411 -- parent type, not from the internal full view.
6413 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
6415 if Derive_Subps
then
6416 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6420 -- Untagged type, No discriminants on either view
6422 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6423 N_Subtype_Indication
6426 ("illegal constraint on type without discriminants", N
);
6429 if Present
(Discriminant_Specifications
(N
))
6430 and then Present
(Full_View
(Parent_Type
))
6431 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6433 Error_Msg_N
("cannot add discriminants to untagged type", N
);
6436 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6437 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6438 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
6439 Set_Has_Controlled_Component
6440 (Derived_Type
, Has_Controlled_Component
6443 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6445 if not Is_Controlled
(Parent_Type
) then
6446 Set_Finalize_Storage_Only
6447 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
6450 -- Construct the implicit full view by deriving from full view of the
6451 -- parent type. In order to get proper visibility, we install the
6452 -- parent scope and its declarations.
6454 -- ??? If the parent is untagged private and its completion is
6455 -- tagged, this mechanism will not work because we cannot derive from
6456 -- the tagged full view unless we have an extension.
6458 if Present
(Full_View
(Parent_Type
))
6459 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6460 and then not Is_Completion
6463 Make_Defining_Identifier
6464 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6465 Set_Is_Itype
(Full_Der
);
6466 Set_Has_Private_Declaration
(Full_Der
);
6467 Set_Has_Private_Declaration
(Derived_Type
);
6468 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6469 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6470 Set_Full_View
(Derived_Type
, Full_Der
);
6472 if not In_Open_Scopes
(Par_Scope
) then
6473 Install_Private_Declarations
(Par_Scope
);
6474 Install_Visible_Declarations
(Par_Scope
);
6476 Uninstall_Declarations
(Par_Scope
);
6478 -- If parent scope is open and in another unit, and parent has a
6479 -- completion, then the derivation is taking place in the visible
6480 -- part of a child unit. In that case retrieve the full view of
6481 -- the parent momentarily.
6483 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6484 Full_P
:= Full_View
(Parent_Type
);
6485 Exchange_Declarations
(Parent_Type
);
6487 Exchange_Declarations
(Full_P
);
6489 -- Otherwise it is a local derivation
6495 Set_Scope
(Full_Der
, Current_Scope
);
6496 Set_Is_First_Subtype
(Full_Der
,
6497 Is_First_Subtype
(Derived_Type
));
6498 Set_Has_Size_Clause
(Full_Der
, False);
6499 Set_Has_Alignment_Clause
(Full_Der
, False);
6500 Set_Next_Entity
(Full_Der
, Empty
);
6501 Set_Has_Delayed_Freeze
(Full_Der
);
6502 Set_Is_Frozen
(Full_Der
, False);
6503 Set_Freeze_Node
(Full_Der
, Empty
);
6504 Set_Depends_On_Private
(Full_Der
,
6505 Has_Private_Component
(Full_Der
));
6506 Set_Public_Status
(Full_Der
);
6510 Set_Has_Unknown_Discriminants
(Derived_Type
,
6511 Has_Unknown_Discriminants
(Parent_Type
));
6513 if Is_Private_Type
(Derived_Type
) then
6514 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6517 if Is_Private_Type
(Parent_Type
)
6518 and then Base_Type
(Parent_Type
) = Parent_Type
6519 and then In_Open_Scopes
(Scope
(Parent_Type
))
6521 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
6523 if Is_Child_Unit
(Scope
(Current_Scope
))
6524 and then Is_Completion
6525 and then In_Private_Part
(Current_Scope
)
6526 and then Scope
(Parent_Type
) /= Current_Scope
6528 -- This is the unusual case where a type completed by a private
6529 -- derivation occurs within a package nested in a child unit, and
6530 -- the parent is declared in an ancestor. In this case, the full
6531 -- view of the parent type will become visible in the body of
6532 -- the enclosing child, and only then will the current type be
6533 -- possibly non-private. We build a underlying full view that
6534 -- will be installed when the enclosing child body is compiled.
6537 Make_Defining_Identifier
6538 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6539 Set_Is_Itype
(Full_Der
);
6540 Build_Itype_Reference
(Full_Der
, N
);
6542 -- The full view will be used to swap entities on entry/exit to
6543 -- the body, and must appear in the entity list for the package.
6545 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
6546 Set_Has_Private_Declaration
(Full_Der
);
6547 Set_Has_Private_Declaration
(Derived_Type
);
6548 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6549 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6550 Full_P
:= Full_View
(Parent_Type
);
6551 Exchange_Declarations
(Parent_Type
);
6553 Exchange_Declarations
(Full_P
);
6554 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
6557 end Build_Derived_Private_Type
;
6559 -------------------------------
6560 -- Build_Derived_Record_Type --
6561 -------------------------------
6565 -- Ideally we would like to use the same model of type derivation for
6566 -- tagged and untagged record types. Unfortunately this is not quite
6567 -- possible because the semantics of representation clauses is different
6568 -- for tagged and untagged records under inheritance. Consider the
6571 -- type R (...) is [tagged] record ... end record;
6572 -- type T (...) is new R (...) [with ...];
6574 -- The representation clauses for T can specify a completely different
6575 -- record layout from R's. Hence the same component can be placed in two
6576 -- very different positions in objects of type T and R. If R and T are
6577 -- tagged types, representation clauses for T can only specify the layout
6578 -- of non inherited components, thus components that are common in R and T
6579 -- have the same position in objects of type R and T.
6581 -- This has two implications. The first is that the entire tree for R's
6582 -- declaration needs to be copied for T in the untagged case, so that T
6583 -- can be viewed as a record type of its own with its own representation
6584 -- clauses. The second implication is the way we handle discriminants.
6585 -- Specifically, in the untagged case we need a way to communicate to Gigi
6586 -- what are the real discriminants in the record, while for the semantics
6587 -- we need to consider those introduced by the user to rename the
6588 -- discriminants in the parent type. This is handled by introducing the
6589 -- notion of stored discriminants. See below for more.
6591 -- Fortunately the way regular components are inherited can be handled in
6592 -- the same way in tagged and untagged types.
6594 -- To complicate things a bit more the private view of a private extension
6595 -- cannot be handled in the same way as the full view (for one thing the
6596 -- semantic rules are somewhat different). We will explain what differs
6599 -- 2. DISCRIMINANTS UNDER INHERITANCE
6601 -- The semantic rules governing the discriminants of derived types are
6604 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6605 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6607 -- If parent type has discriminants, then the discriminants that are
6608 -- declared in the derived type are [3.4 (11)]:
6610 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6613 -- o Otherwise, each discriminant of the parent type (implicitly declared
6614 -- in the same order with the same specifications). In this case, the
6615 -- discriminants are said to be "inherited", or if unknown in the parent
6616 -- are also unknown in the derived type.
6618 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6620 -- o The parent subtype shall be constrained;
6622 -- o If the parent type is not a tagged type, then each discriminant of
6623 -- the derived type shall be used in the constraint defining a parent
6624 -- subtype. [Implementation note: This ensures that the new discriminant
6625 -- can share storage with an existing discriminant.]
6627 -- For the derived type each discriminant of the parent type is either
6628 -- inherited, constrained to equal some new discriminant of the derived
6629 -- type, or constrained to the value of an expression.
6631 -- When inherited or constrained to equal some new discriminant, the
6632 -- parent discriminant and the discriminant of the derived type are said
6635 -- If a discriminant of the parent type is constrained to a specific value
6636 -- in the derived type definition, then the discriminant is said to be
6637 -- "specified" by that derived type definition.
6639 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6641 -- We have spoken about stored discriminants in point 1 (introduction)
6642 -- above. There are two sort of stored discriminants: implicit and
6643 -- explicit. As long as the derived type inherits the same discriminants as
6644 -- the root record type, stored discriminants are the same as regular
6645 -- discriminants, and are said to be implicit. However, if any discriminant
6646 -- in the root type was renamed in the derived type, then the derived
6647 -- type will contain explicit stored discriminants. Explicit stored
6648 -- discriminants are discriminants in addition to the semantically visible
6649 -- discriminants defined for the derived type. Stored discriminants are
6650 -- used by Gigi to figure out what are the physical discriminants in
6651 -- objects of the derived type (see precise definition in einfo.ads).
6652 -- As an example, consider the following:
6654 -- type R (D1, D2, D3 : Int) is record ... end record;
6655 -- type T1 is new R;
6656 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6657 -- type T3 is new T2;
6658 -- type T4 (Y : Int) is new T3 (Y, 99);
6660 -- The following table summarizes the discriminants and stored
6661 -- discriminants in R and T1 through T4.
6663 -- Type Discrim Stored Discrim Comment
6664 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6665 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6666 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6667 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6668 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6670 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6671 -- find the corresponding discriminant in the parent type, while
6672 -- Original_Record_Component (abbreviated ORC below), the actual physical
6673 -- component that is renamed. Finally the field Is_Completely_Hidden
6674 -- (abbreviated ICH below) is set for all explicit stored discriminants
6675 -- (see einfo.ads for more info). For the above example this gives:
6677 -- Discrim CD ORC ICH
6678 -- ^^^^^^^ ^^ ^^^ ^^^
6679 -- D1 in R empty itself no
6680 -- D2 in R empty itself no
6681 -- D3 in R empty itself no
6683 -- D1 in T1 D1 in R itself no
6684 -- D2 in T1 D2 in R itself no
6685 -- D3 in T1 D3 in R itself no
6687 -- X1 in T2 D3 in T1 D3 in T2 no
6688 -- X2 in T2 D1 in T1 D1 in T2 no
6689 -- D1 in T2 empty itself yes
6690 -- D2 in T2 empty itself yes
6691 -- D3 in T2 empty itself yes
6693 -- X1 in T3 X1 in T2 D3 in T3 no
6694 -- X2 in T3 X2 in T2 D1 in T3 no
6695 -- D1 in T3 empty itself yes
6696 -- D2 in T3 empty itself yes
6697 -- D3 in T3 empty itself yes
6699 -- Y in T4 X1 in T3 D3 in T3 no
6700 -- D1 in T3 empty itself yes
6701 -- D2 in T3 empty itself yes
6702 -- D3 in T3 empty itself yes
6704 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6706 -- Type derivation for tagged types is fairly straightforward. If no
6707 -- discriminants are specified by the derived type, these are inherited
6708 -- from the parent. No explicit stored discriminants are ever necessary.
6709 -- The only manipulation that is done to the tree is that of adding a
6710 -- _parent field with parent type and constrained to the same constraint
6711 -- specified for the parent in the derived type definition. For instance:
6713 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6714 -- type T1 is new R with null record;
6715 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6717 -- are changed into:
6719 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6720 -- _parent : R (D1, D2, D3);
6723 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6724 -- _parent : T1 (X2, 88, X1);
6727 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6728 -- ORC and ICH fields are:
6730 -- Discrim CD ORC ICH
6731 -- ^^^^^^^ ^^ ^^^ ^^^
6732 -- D1 in R empty itself no
6733 -- D2 in R empty itself no
6734 -- D3 in R empty itself no
6736 -- D1 in T1 D1 in R D1 in R no
6737 -- D2 in T1 D2 in R D2 in R no
6738 -- D3 in T1 D3 in R D3 in R no
6740 -- X1 in T2 D3 in T1 D3 in R no
6741 -- X2 in T2 D1 in T1 D1 in R no
6743 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6745 -- Regardless of whether we dealing with a tagged or untagged type
6746 -- we will transform all derived type declarations of the form
6748 -- type T is new R (...) [with ...];
6750 -- subtype S is R (...);
6751 -- type T is new S [with ...];
6753 -- type BT is new R [with ...];
6754 -- subtype T is BT (...);
6756 -- That is, the base derived type is constrained only if it has no
6757 -- discriminants. The reason for doing this is that GNAT's semantic model
6758 -- assumes that a base type with discriminants is unconstrained.
6760 -- Note that, strictly speaking, the above transformation is not always
6761 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6763 -- procedure B34011A is
6764 -- type REC (D : integer := 0) is record
6769 -- type T6 is new Rec;
6770 -- function F return T6;
6775 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6778 -- The definition of Q6.U is illegal. However transforming Q6.U into
6780 -- type BaseU is new T6;
6781 -- subtype U is BaseU (Q6.F.I)
6783 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6784 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6785 -- the transformation described above.
6787 -- There is another instance where the above transformation is incorrect.
6791 -- type Base (D : Integer) is tagged null record;
6792 -- procedure P (X : Base);
6794 -- type Der is new Base (2) with null record;
6795 -- procedure P (X : Der);
6798 -- Then the above transformation turns this into
6800 -- type Der_Base is new Base with null record;
6801 -- -- procedure P (X : Base) is implicitly inherited here
6802 -- -- as procedure P (X : Der_Base).
6804 -- subtype Der is Der_Base (2);
6805 -- procedure P (X : Der);
6806 -- -- The overriding of P (X : Der_Base) is illegal since we
6807 -- -- have a parameter conformance problem.
6809 -- To get around this problem, after having semantically processed Der_Base
6810 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6811 -- Discriminant_Constraint from Der so that when parameter conformance is
6812 -- checked when P is overridden, no semantic errors are flagged.
6814 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6816 -- Regardless of whether we are dealing with a tagged or untagged type
6817 -- we will transform all derived type declarations of the form
6819 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6820 -- type T is new R [with ...];
6822 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6824 -- The reason for such transformation is that it allows us to implement a
6825 -- very clean form of component inheritance as explained below.
6827 -- Note that this transformation is not achieved by direct tree rewriting
6828 -- and manipulation, but rather by redoing the semantic actions that the
6829 -- above transformation will entail. This is done directly in routine
6830 -- Inherit_Components.
6832 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6834 -- In both tagged and untagged derived types, regular non discriminant
6835 -- components are inherited in the derived type from the parent type. In
6836 -- the absence of discriminants component, inheritance is straightforward
6837 -- as components can simply be copied from the parent.
6839 -- If the parent has discriminants, inheriting components constrained with
6840 -- these discriminants requires caution. Consider the following example:
6842 -- type R (D1, D2 : Positive) is [tagged] record
6843 -- S : String (D1 .. D2);
6846 -- type T1 is new R [with null record];
6847 -- type T2 (X : positive) is new R (1, X) [with null record];
6849 -- As explained in 6. above, T1 is rewritten as
6850 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6851 -- which makes the treatment for T1 and T2 identical.
6853 -- What we want when inheriting S, is that references to D1 and D2 in R are
6854 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6855 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6856 -- with either discriminant references in the derived type or expressions.
6857 -- This replacement is achieved as follows: before inheriting R's
6858 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6859 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6860 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6861 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6862 -- by String (1 .. X).
6864 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6866 -- We explain here the rules governing private type extensions relevant to
6867 -- type derivation. These rules are explained on the following example:
6869 -- type D [(...)] is new A [(...)] with private; <-- partial view
6870 -- type D [(...)] is new P [(...)] with null record; <-- full view
6872 -- Type A is called the ancestor subtype of the private extension.
6873 -- Type P is the parent type of the full view of the private extension. It
6874 -- must be A or a type derived from A.
6876 -- The rules concerning the discriminants of private type extensions are
6879 -- o If a private extension inherits known discriminants from the ancestor
6880 -- subtype, then the full view shall also inherit its discriminants from
6881 -- the ancestor subtype and the parent subtype of the full view shall be
6882 -- constrained if and only if the ancestor subtype is constrained.
6884 -- o If a partial view has unknown discriminants, then the full view may
6885 -- define a definite or an indefinite subtype, with or without
6888 -- o If a partial view has neither known nor unknown discriminants, then
6889 -- the full view shall define a definite subtype.
6891 -- o If the ancestor subtype of a private extension has constrained
6892 -- discriminants, then the parent subtype of the full view shall impose a
6893 -- statically matching constraint on those discriminants.
6895 -- This means that only the following forms of private extensions are
6898 -- type D is new A with private; <-- partial view
6899 -- type D is new P with null record; <-- full view
6901 -- If A has no discriminants than P has no discriminants, otherwise P must
6902 -- inherit A's discriminants.
6904 -- type D is new A (...) with private; <-- partial view
6905 -- type D is new P (:::) with null record; <-- full view
6907 -- P must inherit A's discriminants and (...) and (:::) must statically
6910 -- subtype A is R (...);
6911 -- type D is new A with private; <-- partial view
6912 -- type D is new P with null record; <-- full view
6914 -- P must have inherited R's discriminants and must be derived from A or
6915 -- any of its subtypes.
6917 -- type D (..) is new A with private; <-- partial view
6918 -- type D (..) is new P [(:::)] with null record; <-- full view
6920 -- No specific constraints on P's discriminants or constraint (:::).
6921 -- Note that A can be unconstrained, but the parent subtype P must either
6922 -- be constrained or (:::) must be present.
6924 -- type D (..) is new A [(...)] with private; <-- partial view
6925 -- type D (..) is new P [(:::)] with null record; <-- full view
6927 -- P's constraints on A's discriminants must statically match those
6928 -- imposed by (...).
6930 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6932 -- The full view of a private extension is handled exactly as described
6933 -- above. The model chose for the private view of a private extension is
6934 -- the same for what concerns discriminants (i.e. they receive the same
6935 -- treatment as in the tagged case). However, the private view of the
6936 -- private extension always inherits the components of the parent base,
6937 -- without replacing any discriminant reference. Strictly speaking this is
6938 -- incorrect. However, Gigi never uses this view to generate code so this
6939 -- is a purely semantic issue. In theory, a set of transformations similar
6940 -- to those given in 5. and 6. above could be applied to private views of
6941 -- private extensions to have the same model of component inheritance as
6942 -- for non private extensions. However, this is not done because it would
6943 -- further complicate private type processing. Semantically speaking, this
6944 -- leaves us in an uncomfortable situation. As an example consider:
6947 -- type R (D : integer) is tagged record
6948 -- S : String (1 .. D);
6950 -- procedure P (X : R);
6951 -- type T is new R (1) with private;
6953 -- type T is new R (1) with null record;
6956 -- This is transformed into:
6959 -- type R (D : integer) is tagged record
6960 -- S : String (1 .. D);
6962 -- procedure P (X : R);
6963 -- type T is new R (1) with private;
6965 -- type BaseT is new R with null record;
6966 -- subtype T is BaseT (1);
6969 -- (strictly speaking the above is incorrect Ada)
6971 -- From the semantic standpoint the private view of private extension T
6972 -- should be flagged as constrained since one can clearly have
6976 -- in a unit withing Pack. However, when deriving subprograms for the
6977 -- private view of private extension T, T must be seen as unconstrained
6978 -- since T has discriminants (this is a constraint of the current
6979 -- subprogram derivation model). Thus, when processing the private view of
6980 -- a private extension such as T, we first mark T as unconstrained, we
6981 -- process it, we perform program derivation and just before returning from
6982 -- Build_Derived_Record_Type we mark T as constrained.
6984 -- ??? Are there are other uncomfortable cases that we will have to
6987 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6989 -- Types that are derived from a visible record type and have a private
6990 -- extension present other peculiarities. They behave mostly like private
6991 -- types, but if they have primitive operations defined, these will not
6992 -- have the proper signatures for further inheritance, because other
6993 -- primitive operations will use the implicit base that we define for
6994 -- private derivations below. This affect subprogram inheritance (see
6995 -- Derive_Subprograms for details). We also derive the implicit base from
6996 -- the base type of the full view, so that the implicit base is a record
6997 -- type and not another private type, This avoids infinite loops.
6999 procedure Build_Derived_Record_Type
7001 Parent_Type
: Entity_Id
;
7002 Derived_Type
: Entity_Id
;
7003 Derive_Subps
: Boolean := True)
7005 Discriminant_Specs
: constant Boolean :=
7006 Present
(Discriminant_Specifications
(N
));
7007 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7008 Loc
: constant Source_Ptr
:= Sloc
(N
);
7009 Private_Extension
: constant Boolean :=
7010 Nkind
(N
) = N_Private_Extension_Declaration
;
7011 Assoc_List
: Elist_Id
;
7012 Constraint_Present
: Boolean;
7014 Discrim
: Entity_Id
;
7016 Inherit_Discrims
: Boolean := False;
7017 Last_Discrim
: Entity_Id
;
7018 New_Base
: Entity_Id
;
7020 New_Discrs
: Elist_Id
;
7021 New_Indic
: Node_Id
;
7022 Parent_Base
: Entity_Id
;
7023 Save_Etype
: Entity_Id
;
7024 Save_Discr_Constr
: Elist_Id
;
7025 Save_Next_Entity
: Entity_Id
;
7028 Discs
: Elist_Id
:= New_Elmt_List
;
7029 -- An empty Discs list means that there were no constraints in the
7030 -- subtype indication or that there was an error processing it.
7033 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7034 and then Present
(Full_View
(Parent_Type
))
7035 and then Has_Discriminants
(Parent_Type
)
7037 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7039 Parent_Base
:= Base_Type
(Parent_Type
);
7042 -- AI05-0115 : if this is a derivation from a private type in some
7043 -- other scope that may lead to invisible components for the derived
7044 -- type, mark it accordingly.
7046 if Is_Private_Type
(Parent_Type
) then
7047 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7050 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7051 and then In_Private_Part
(Scope
(Parent_Type
))
7056 Set_Has_Private_Ancestor
(Derived_Type
);
7060 Set_Has_Private_Ancestor
7061 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7064 -- Before we start the previously documented transformations, here is
7065 -- little fix for size and alignment of tagged types. Normally when we
7066 -- derive type D from type P, we copy the size and alignment of P as the
7067 -- default for D, and in the absence of explicit representation clauses
7068 -- for D, the size and alignment are indeed the same as the parent.
7070 -- But this is wrong for tagged types, since fields may be added, and
7071 -- the default size may need to be larger, and the default alignment may
7072 -- need to be larger.
7074 -- We therefore reset the size and alignment fields in the tagged case.
7075 -- Note that the size and alignment will in any case be at least as
7076 -- large as the parent type (since the derived type has a copy of the
7077 -- parent type in the _parent field)
7079 -- The type is also marked as being tagged here, which is needed when
7080 -- processing components with a self-referential anonymous access type
7081 -- in the call to Check_Anonymous_Access_Components below. Note that
7082 -- this flag is also set later on for completeness.
7085 Set_Is_Tagged_Type
(Derived_Type
);
7086 Init_Size_Align
(Derived_Type
);
7089 -- STEP 0a: figure out what kind of derived type declaration we have
7091 if Private_Extension
then
7093 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7096 Type_Def
:= Type_Definition
(N
);
7098 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7099 -- Parent_Base can be a private type or private extension. However,
7100 -- for tagged types with an extension the newly added fields are
7101 -- visible and hence the Derived_Type is always an E_Record_Type.
7102 -- (except that the parent may have its own private fields).
7103 -- For untagged types we preserve the Ekind of the Parent_Base.
7105 if Present
(Record_Extension_Part
(Type_Def
)) then
7106 Set_Ekind
(Derived_Type
, E_Record_Type
);
7108 -- Create internal access types for components with anonymous
7111 if Ada_Version
>= Ada_2005
then
7112 Check_Anonymous_Access_Components
7113 (N
, Derived_Type
, Derived_Type
,
7114 Component_List
(Record_Extension_Part
(Type_Def
)));
7118 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7122 -- Indic can either be an N_Identifier if the subtype indication
7123 -- contains no constraint or an N_Subtype_Indication if the subtype
7124 -- indication has a constraint.
7126 Indic
:= Subtype_Indication
(Type_Def
);
7127 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7129 -- Check that the type has visible discriminants. The type may be
7130 -- a private type with unknown discriminants whose full view has
7131 -- discriminants which are invisible.
7133 if Constraint_Present
then
7134 if not Has_Discriminants
(Parent_Base
)
7136 (Has_Unknown_Discriminants
(Parent_Base
)
7137 and then Is_Private_Type
(Parent_Base
))
7140 ("invalid constraint: type has no discriminant",
7141 Constraint
(Indic
));
7143 Constraint_Present
:= False;
7144 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7146 elsif Is_Constrained
(Parent_Type
) then
7148 ("invalid constraint: parent type is already constrained",
7149 Constraint
(Indic
));
7151 Constraint_Present
:= False;
7152 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7156 -- STEP 0b: If needed, apply transformation given in point 5. above
7158 if not Private_Extension
7159 and then Has_Discriminants
(Parent_Type
)
7160 and then not Discriminant_Specs
7161 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7163 -- First, we must analyze the constraint (see comment in point 5.)
7165 if Constraint_Present
then
7166 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7168 if Has_Discriminants
(Derived_Type
)
7169 and then Has_Private_Declaration
(Derived_Type
)
7170 and then Present
(Discriminant_Constraint
(Derived_Type
))
7172 -- Verify that constraints of the full view statically match
7173 -- those given in the partial view.
7179 C1
:= First_Elmt
(New_Discrs
);
7180 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7181 while Present
(C1
) and then Present
(C2
) loop
7182 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7184 (Is_OK_Static_Expression
(Node
(C1
))
7186 Is_OK_Static_Expression
(Node
(C2
))
7188 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7194 "constraint not conformant to previous declaration",
7205 -- Insert and analyze the declaration for the unconstrained base type
7207 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7210 Make_Full_Type_Declaration
(Loc
,
7211 Defining_Identifier
=> New_Base
,
7213 Make_Derived_Type_Definition
(Loc
,
7214 Abstract_Present
=> Abstract_Present
(Type_Def
),
7215 Limited_Present
=> Limited_Present
(Type_Def
),
7216 Subtype_Indication
=>
7217 New_Occurrence_Of
(Parent_Base
, Loc
),
7218 Record_Extension_Part
=>
7219 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7220 Interface_List
=> Interface_List
(Type_Def
)));
7222 Set_Parent
(New_Decl
, Parent
(N
));
7223 Mark_Rewrite_Insertion
(New_Decl
);
7224 Insert_Before
(N
, New_Decl
);
7226 -- In the extension case, make sure ancestor is frozen appropriately
7227 -- (see also non-discriminated case below).
7229 if Present
(Record_Extension_Part
(Type_Def
))
7230 or else Is_Interface
(Parent_Base
)
7232 Freeze_Before
(New_Decl
, Parent_Type
);
7235 -- Note that this call passes False for the Derive_Subps parameter
7236 -- because subprogram derivation is deferred until after creating
7237 -- the subtype (see below).
7240 (New_Decl
, Parent_Base
, New_Base
,
7241 Is_Completion
=> True, Derive_Subps
=> False);
7243 -- ??? This needs re-examination to determine whether the
7244 -- above call can simply be replaced by a call to Analyze.
7246 Set_Analyzed
(New_Decl
);
7248 -- Insert and analyze the declaration for the constrained subtype
7250 if Constraint_Present
then
7252 Make_Subtype_Indication
(Loc
,
7253 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7254 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
7258 Constr_List
: constant List_Id
:= New_List
;
7263 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
7264 while Present
(C
) loop
7267 -- It is safe here to call New_Copy_Tree since
7268 -- Force_Evaluation was called on each constraint in
7269 -- Build_Discriminant_Constraints.
7271 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7277 Make_Subtype_Indication
(Loc
,
7278 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7280 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
7285 Make_Subtype_Declaration
(Loc
,
7286 Defining_Identifier
=> Derived_Type
,
7287 Subtype_Indication
=> New_Indic
));
7291 -- Derivation of subprograms must be delayed until the full subtype
7292 -- has been established, to ensure proper overriding of subprograms
7293 -- inherited by full types. If the derivations occurred as part of
7294 -- the call to Build_Derived_Type above, then the check for type
7295 -- conformance would fail because earlier primitive subprograms
7296 -- could still refer to the full type prior the change to the new
7297 -- subtype and hence would not match the new base type created here.
7298 -- Subprograms are not derived, however, when Derive_Subps is False
7299 -- (since otherwise there could be redundant derivations).
7301 if Derive_Subps
then
7302 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7305 -- For tagged types the Discriminant_Constraint of the new base itype
7306 -- is inherited from the first subtype so that no subtype conformance
7307 -- problem arise when the first subtype overrides primitive
7308 -- operations inherited by the implicit base type.
7311 Set_Discriminant_Constraint
7312 (New_Base
, Discriminant_Constraint
(Derived_Type
));
7318 -- If we get here Derived_Type will have no discriminants or it will be
7319 -- a discriminated unconstrained base type.
7321 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7325 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7326 -- The declaration of a specific descendant of an interface type
7327 -- freezes the interface type (RM 13.14).
7329 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
7330 Freeze_Before
(N
, Parent_Type
);
7333 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7334 -- cannot be declared at a deeper level than its parent type is
7335 -- removed. The check on derivation within a generic body is also
7336 -- relaxed, but there's a restriction that a derived tagged type
7337 -- cannot be declared in a generic body if it's derived directly
7338 -- or indirectly from a formal type of that generic.
7340 if Ada_Version
>= Ada_2005
then
7341 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
7343 Ancestor_Type
: Entity_Id
;
7346 -- Check to see if any ancestor of the derived type is a
7349 Ancestor_Type
:= Parent_Type
;
7350 while not Is_Generic_Type
(Ancestor_Type
)
7351 and then Etype
(Ancestor_Type
) /= Ancestor_Type
7353 Ancestor_Type
:= Etype
(Ancestor_Type
);
7356 -- If the derived type does have a formal type as an
7357 -- ancestor, then it's an error if the derived type is
7358 -- declared within the body of the generic unit that
7359 -- declares the formal type in its generic formal part. It's
7360 -- sufficient to check whether the ancestor type is declared
7361 -- inside the same generic body as the derived type (such as
7362 -- within a nested generic spec), in which case the
7363 -- derivation is legal. If the formal type is declared
7364 -- outside of that generic body, then it's guaranteed that
7365 -- the derived type is declared within the generic body of
7366 -- the generic unit declaring the formal type.
7368 if Is_Generic_Type
(Ancestor_Type
)
7369 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
7370 Enclosing_Generic_Body
(Derived_Type
)
7373 ("parent type of& must not be descendant of formal type"
7374 & " of an enclosing generic body",
7375 Indic
, Derived_Type
);
7380 elsif Type_Access_Level
(Derived_Type
) /=
7381 Type_Access_Level
(Parent_Type
)
7382 and then not Is_Generic_Type
(Derived_Type
)
7384 if Is_Controlled
(Parent_Type
) then
7386 ("controlled type must be declared at the library level",
7390 ("type extension at deeper accessibility level than parent",
7396 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
7400 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
7403 ("parent type of& must not be outside generic body"
7405 Indic
, Derived_Type
);
7411 -- Ada 2005 (AI-251)
7413 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
7415 -- "The declaration of a specific descendant of an interface type
7416 -- freezes the interface type" (RM 13.14).
7421 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
7422 Iface
:= First
(Interface_List
(Type_Def
));
7423 while Present
(Iface
) loop
7424 Freeze_Before
(N
, Etype
(Iface
));
7431 -- STEP 1b : preliminary cleanup of the full view of private types
7433 -- If the type is already marked as having discriminants, then it's the
7434 -- completion of a private type or private extension and we need to
7435 -- retain the discriminants from the partial view if the current
7436 -- declaration has Discriminant_Specifications so that we can verify
7437 -- conformance. However, we must remove any existing components that
7438 -- were inherited from the parent (and attached in Copy_And_Swap)
7439 -- because the full type inherits all appropriate components anyway, and
7440 -- we do not want the partial view's components interfering.
7442 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
7443 Discrim
:= First_Discriminant
(Derived_Type
);
7445 Last_Discrim
:= Discrim
;
7446 Next_Discriminant
(Discrim
);
7447 exit when No
(Discrim
);
7450 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
7452 -- In all other cases wipe out the list of inherited components (even
7453 -- inherited discriminants), it will be properly rebuilt here.
7456 Set_First_Entity
(Derived_Type
, Empty
);
7457 Set_Last_Entity
(Derived_Type
, Empty
);
7460 -- STEP 1c: Initialize some flags for the Derived_Type
7462 -- The following flags must be initialized here so that
7463 -- Process_Discriminants can check that discriminants of tagged types do
7464 -- not have a default initial value and that access discriminants are
7465 -- only specified for limited records. For completeness, these flags are
7466 -- also initialized along with all the other flags below.
7468 -- AI-419: Limitedness is not inherited from an interface parent, so to
7469 -- be limited in that case the type must be explicitly declared as
7470 -- limited. However, task and protected interfaces are always limited.
7472 if Limited_Present
(Type_Def
) then
7473 Set_Is_Limited_Record
(Derived_Type
);
7475 elsif Is_Limited_Record
(Parent_Type
)
7476 or else (Present
(Full_View
(Parent_Type
))
7477 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
7479 if not Is_Interface
(Parent_Type
)
7480 or else Is_Synchronized_Interface
(Parent_Type
)
7481 or else Is_Protected_Interface
(Parent_Type
)
7482 or else Is_Task_Interface
(Parent_Type
)
7484 Set_Is_Limited_Record
(Derived_Type
);
7488 -- STEP 2a: process discriminants of derived type if any
7490 Push_Scope
(Derived_Type
);
7492 if Discriminant_Specs
then
7493 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
7495 -- The following call initializes fields Has_Discriminants and
7496 -- Discriminant_Constraint, unless we are processing the completion
7497 -- of a private type declaration.
7499 Check_Or_Process_Discriminants
(N
, Derived_Type
);
7501 -- For untagged types, the constraint on the Parent_Type must be
7502 -- present and is used to rename the discriminants.
7504 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
7505 Error_Msg_N
("untagged parent must have discriminants", Indic
);
7507 elsif not Is_Tagged
and then not Constraint_Present
then
7509 ("discriminant constraint needed for derived untagged records",
7512 -- Otherwise the parent subtype must be constrained unless we have a
7513 -- private extension.
7515 elsif not Constraint_Present
7516 and then not Private_Extension
7517 and then not Is_Constrained
(Parent_Type
)
7520 ("unconstrained type not allowed in this context", Indic
);
7522 elsif Constraint_Present
then
7523 -- The following call sets the field Corresponding_Discriminant
7524 -- for the discriminants in the Derived_Type.
7526 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
7528 -- For untagged types all new discriminants must rename
7529 -- discriminants in the parent. For private extensions new
7530 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7532 Discrim
:= First_Discriminant
(Derived_Type
);
7533 while Present
(Discrim
) loop
7535 and then No
(Corresponding_Discriminant
(Discrim
))
7538 ("new discriminants must constrain old ones", Discrim
);
7540 elsif Private_Extension
7541 and then Present
(Corresponding_Discriminant
(Discrim
))
7544 ("only static constraints allowed for parent"
7545 & " discriminants in the partial view", Indic
);
7549 -- If a new discriminant is used in the constraint, then its
7550 -- subtype must be statically compatible with the parent
7551 -- discriminant's subtype (3.7(15)).
7553 if Present
(Corresponding_Discriminant
(Discrim
))
7555 not Subtypes_Statically_Compatible
7557 Etype
(Corresponding_Discriminant
(Discrim
)))
7560 ("subtype must be compatible with parent discriminant",
7564 Next_Discriminant
(Discrim
);
7567 -- Check whether the constraints of the full view statically
7568 -- match those imposed by the parent subtype [7.3(13)].
7570 if Present
(Stored_Constraint
(Derived_Type
)) then
7575 C1
:= First_Elmt
(Discs
);
7576 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
7577 while Present
(C1
) and then Present
(C2
) loop
7579 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7582 ("not conformant with previous declaration",
7593 -- STEP 2b: No new discriminants, inherit discriminants if any
7596 if Private_Extension
then
7597 Set_Has_Unknown_Discriminants
7599 Has_Unknown_Discriminants
(Parent_Type
)
7600 or else Unknown_Discriminants_Present
(N
));
7602 -- The partial view of the parent may have unknown discriminants,
7603 -- but if the full view has discriminants and the parent type is
7604 -- in scope they must be inherited.
7606 elsif Has_Unknown_Discriminants
(Parent_Type
)
7608 (not Has_Discriminants
(Parent_Type
)
7609 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
7611 Set_Has_Unknown_Discriminants
(Derived_Type
);
7614 if not Has_Unknown_Discriminants
(Derived_Type
)
7615 and then not Has_Unknown_Discriminants
(Parent_Base
)
7616 and then Has_Discriminants
(Parent_Type
)
7618 Inherit_Discrims
:= True;
7619 Set_Has_Discriminants
7620 (Derived_Type
, True);
7621 Set_Discriminant_Constraint
7622 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
7625 -- The following test is true for private types (remember
7626 -- transformation 5. is not applied to those) and in an error
7629 if Constraint_Present
then
7630 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7633 -- For now mark a new derived type as constrained only if it has no
7634 -- discriminants. At the end of Build_Derived_Record_Type we properly
7635 -- set this flag in the case of private extensions. See comments in
7636 -- point 9. just before body of Build_Derived_Record_Type.
7640 not (Inherit_Discrims
7641 or else Has_Unknown_Discriminants
(Derived_Type
)));
7644 -- STEP 3: initialize fields of derived type
7646 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
7647 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7649 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7650 -- but cannot be interfaces
7652 if not Private_Extension
7653 and then Ekind
(Derived_Type
) /= E_Private_Type
7654 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
7656 if Interface_Present
(Type_Def
) then
7657 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
7660 Set_Interfaces
(Derived_Type
, No_Elist
);
7663 -- Fields inherited from the Parent_Type
7666 (Derived_Type
, Einfo
.Discard_Names
(Parent_Type
));
7667 Set_Has_Specified_Layout
7668 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
7669 Set_Is_Limited_Composite
7670 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
7671 Set_Is_Private_Composite
7672 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
7674 -- Fields inherited from the Parent_Base
7676 Set_Has_Controlled_Component
7677 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
7678 Set_Has_Non_Standard_Rep
7679 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7680 Set_Has_Primitive_Operations
7681 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
7683 -- Fields inherited from the Parent_Base in the non-private case
7685 if Ekind
(Derived_Type
) = E_Record_Type
then
7686 Set_Has_Complex_Representation
7687 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
7690 -- Fields inherited from the Parent_Base for record types
7692 if Is_Record_Type
(Derived_Type
) then
7695 Parent_Full
: Entity_Id
;
7698 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7699 -- Parent_Base can be a private type or private extension. Go
7700 -- to the full view here to get the E_Record_Type specific flags.
7702 if Present
(Full_View
(Parent_Base
)) then
7703 Parent_Full
:= Full_View
(Parent_Base
);
7705 Parent_Full
:= Parent_Base
;
7708 Set_OK_To_Reorder_Components
7709 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
7710 Set_Reverse_Bit_Order
7711 (Derived_Type
, Reverse_Bit_Order
(Parent_Full
));
7712 Set_Reverse_Storage_Order
7713 (Derived_Type
, Reverse_Storage_Order
(Parent_Full
));
7717 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7719 if not Is_Controlled
(Parent_Type
) then
7720 Set_Finalize_Storage_Only
7721 (Derived_Type
, Finalize_Storage_Only
(Parent_Type
));
7724 -- Set fields for private derived types
7726 if Is_Private_Type
(Derived_Type
) then
7727 Set_Depends_On_Private
(Derived_Type
, True);
7728 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7730 -- Inherit fields from non private record types. If this is the
7731 -- completion of a derivation from a private type, the parent itself
7732 -- is private, and the attributes come from its full view, which must
7736 if Is_Private_Type
(Parent_Base
)
7737 and then not Is_Record_Type
(Parent_Base
)
7739 Set_Component_Alignment
7740 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
7742 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
7744 Set_Component_Alignment
7745 (Derived_Type
, Component_Alignment
(Parent_Base
));
7747 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
7751 -- Set fields for tagged types
7754 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
7756 -- All tagged types defined in Ada.Finalization are controlled
7758 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
7759 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
7760 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
7762 Set_Is_Controlled
(Derived_Type
);
7764 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
7767 -- Minor optimization: there is no need to generate the class-wide
7768 -- entity associated with an underlying record view.
7770 if not Is_Underlying_Record_View
(Derived_Type
) then
7771 Make_Class_Wide_Type
(Derived_Type
);
7774 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
7776 if Has_Discriminants
(Derived_Type
)
7777 and then Constraint_Present
7779 Set_Stored_Constraint
7780 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
7783 if Ada_Version
>= Ada_2005
then
7785 Ifaces_List
: Elist_Id
;
7788 -- Checks rules 3.9.4 (13/2 and 14/2)
7790 if Comes_From_Source
(Derived_Type
)
7791 and then not Is_Private_Type
(Derived_Type
)
7792 and then Is_Interface
(Parent_Type
)
7793 and then not Is_Interface
(Derived_Type
)
7795 if Is_Task_Interface
(Parent_Type
) then
7797 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7800 elsif Is_Protected_Interface
(Parent_Type
) then
7802 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7807 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7809 Check_Interfaces
(N
, Type_Def
);
7811 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7812 -- not already in the parents.
7816 Ifaces_List
=> Ifaces_List
,
7817 Exclude_Parents
=> True);
7819 Set_Interfaces
(Derived_Type
, Ifaces_List
);
7821 -- If the derived type is the anonymous type created for
7822 -- a declaration whose parent has a constraint, propagate
7823 -- the interface list to the source type. This must be done
7824 -- prior to the completion of the analysis of the source type
7825 -- because the components in the extension may contain current
7826 -- instances whose legality depends on some ancestor.
7828 if Is_Itype
(Derived_Type
) then
7830 Def
: constant Node_Id
:=
7831 Associated_Node_For_Itype
(Derived_Type
);
7834 and then Nkind
(Def
) = N_Full_Type_Declaration
7837 (Defining_Identifier
(Def
), Ifaces_List
);
7845 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
7846 Set_Has_Non_Standard_Rep
7847 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7850 -- STEP 4: Inherit components from the parent base and constrain them.
7851 -- Apply the second transformation described in point 6. above.
7853 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
7854 or else not Has_Discriminants
(Parent_Type
)
7855 or else not Is_Constrained
(Parent_Type
)
7859 Constrs
:= Discriminant_Constraint
(Parent_Type
);
7864 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
7866 -- STEP 5a: Copy the parent record declaration for untagged types
7868 if not Is_Tagged
then
7870 -- Discriminant_Constraint (Derived_Type) has been properly
7871 -- constructed. Save it and temporarily set it to Empty because we
7872 -- do not want the call to New_Copy_Tree below to mess this list.
7874 if Has_Discriminants
(Derived_Type
) then
7875 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
7876 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
7878 Save_Discr_Constr
:= No_Elist
;
7881 -- Save the Etype field of Derived_Type. It is correctly set now,
7882 -- but the call to New_Copy tree may remap it to point to itself,
7883 -- which is not what we want. Ditto for the Next_Entity field.
7885 Save_Etype
:= Etype
(Derived_Type
);
7886 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
7888 -- Assoc_List maps all stored discriminants in the Parent_Base to
7889 -- stored discriminants in the Derived_Type. It is fundamental that
7890 -- no types or itypes with discriminants other than the stored
7891 -- discriminants appear in the entities declared inside
7892 -- Derived_Type, since the back end cannot deal with it.
7896 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
7898 -- Restore the fields saved prior to the New_Copy_Tree call
7899 -- and compute the stored constraint.
7901 Set_Etype
(Derived_Type
, Save_Etype
);
7902 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
7904 if Has_Discriminants
(Derived_Type
) then
7905 Set_Discriminant_Constraint
7906 (Derived_Type
, Save_Discr_Constr
);
7907 Set_Stored_Constraint
7908 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
7909 Replace_Components
(Derived_Type
, New_Decl
);
7910 Set_Has_Implicit_Dereference
7911 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
7914 -- Insert the new derived type declaration
7916 Rewrite
(N
, New_Decl
);
7918 -- STEP 5b: Complete the processing for record extensions in generics
7920 -- There is no completion for record extensions declared in the
7921 -- parameter part of a generic, so we need to complete processing for
7922 -- these generic record extensions here. The Record_Type_Definition call
7923 -- will change the Ekind of the components from E_Void to E_Component.
7925 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
7926 Record_Type_Definition
(Empty
, Derived_Type
);
7928 -- STEP 5c: Process the record extension for non private tagged types
7930 elsif not Private_Extension
then
7932 -- Add the _parent field in the derived type
7934 Expand_Record_Extension
(Derived_Type
, Type_Def
);
7936 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7937 -- implemented interfaces if we are in expansion mode
7940 and then Has_Interfaces
(Derived_Type
)
7942 Add_Interface_Tag_Components
(N
, Derived_Type
);
7945 -- Analyze the record extension
7947 Record_Type_Definition
7948 (Record_Extension_Part
(Type_Def
), Derived_Type
);
7953 -- Nothing else to do if there is an error in the derivation.
7954 -- An unusual case: the full view may be derived from a type in an
7955 -- instance, when the partial view was used illegally as an actual
7956 -- in that instance, leading to a circular definition.
7958 if Etype
(Derived_Type
) = Any_Type
7959 or else Etype
(Parent_Type
) = Derived_Type
7964 -- Set delayed freeze and then derive subprograms, we need to do
7965 -- this in this order so that derived subprograms inherit the
7966 -- derived freeze if necessary.
7968 Set_Has_Delayed_Freeze
(Derived_Type
);
7970 if Derive_Subps
then
7971 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7974 -- If we have a private extension which defines a constrained derived
7975 -- type mark as constrained here after we have derived subprograms. See
7976 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7978 if Private_Extension
and then Inherit_Discrims
then
7979 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
7980 Set_Is_Constrained
(Derived_Type
, True);
7981 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
7983 elsif Is_Constrained
(Parent_Type
) then
7985 (Derived_Type
, True);
7986 Set_Discriminant_Constraint
7987 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
7991 -- Update the class-wide type, which shares the now-completed entity
7992 -- list with its specific type. In case of underlying record views,
7993 -- we do not generate the corresponding class wide entity.
7996 and then not Is_Underlying_Record_View
(Derived_Type
)
7999 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8001 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8003 end Build_Derived_Record_Type
;
8005 ------------------------
8006 -- Build_Derived_Type --
8007 ------------------------
8009 procedure Build_Derived_Type
8011 Parent_Type
: Entity_Id
;
8012 Derived_Type
: Entity_Id
;
8013 Is_Completion
: Boolean;
8014 Derive_Subps
: Boolean := True)
8016 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8019 -- Set common attributes
8021 Set_Scope
(Derived_Type
, Current_Scope
);
8023 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8024 Set_Etype
(Derived_Type
, Parent_Base
);
8025 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8027 Set_Size_Info
(Derived_Type
, Parent_Type
);
8028 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8029 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8030 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8032 -- If the parent type is a private subtype, the convention on the base
8033 -- type may be set in the private part, and not propagated to the
8034 -- subtype until later, so we obtain the convention from the base type.
8036 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8038 -- Propagate invariant information. The new type has invariants if
8039 -- they are inherited from the parent type, and these invariants can
8040 -- be further inherited, so both flags are set.
8042 if Has_Inheritable_Invariants
(Parent_Type
) then
8043 Set_Has_Inheritable_Invariants
(Derived_Type
);
8044 Set_Has_Invariants
(Derived_Type
);
8047 -- We similarly inherit predicates
8049 if Has_Predicates
(Parent_Type
) then
8050 Set_Has_Predicates
(Derived_Type
);
8053 -- The derived type inherits the representation clauses of the parent.
8054 -- However, for a private type that is completed by a derivation, there
8055 -- may be operation attributes that have been specified already (stream
8056 -- attributes and External_Tag) and those must be provided. Finally,
8057 -- if the partial view is a private extension, the representation items
8058 -- of the parent have been inherited already, and should not be chained
8059 -- twice to the derived type.
8061 if Is_Tagged_Type
(Parent_Type
)
8062 and then Present
(First_Rep_Item
(Derived_Type
))
8064 -- The existing items are either operational items or items inherited
8065 -- from a private extension declaration.
8069 -- Used to iterate over representation items of the derived type
8072 -- Last representation item of the (non-empty) representation
8073 -- item list of the derived type.
8075 Found
: Boolean := False;
8078 Rep
:= First_Rep_Item
(Derived_Type
);
8080 while Present
(Rep
) loop
8081 if Rep
= First_Rep_Item
(Parent_Type
) then
8086 Rep
:= Next_Rep_Item
(Rep
);
8088 if Present
(Rep
) then
8094 -- Here if we either encountered the parent type's first rep
8095 -- item on the derived type's rep item list (in which case
8096 -- Found is True, and we have nothing else to do), or if we
8097 -- reached the last rep item of the derived type, which is
8098 -- Last_Rep, in which case we further chain the parent type's
8099 -- rep items to those of the derived type.
8102 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
8107 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
8110 case Ekind
(Parent_Type
) is
8111 when Numeric_Kind
=>
8112 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8115 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8119 | Class_Wide_Kind
=>
8120 Build_Derived_Record_Type
8121 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8124 when Enumeration_Kind
=>
8125 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8128 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8130 when Incomplete_Or_Private_Kind
=>
8131 Build_Derived_Private_Type
8132 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8134 -- For discriminated types, the derivation includes deriving
8135 -- primitive operations. For others it is done below.
8137 if Is_Tagged_Type
(Parent_Type
)
8138 or else Has_Discriminants
(Parent_Type
)
8139 or else (Present
(Full_View
(Parent_Type
))
8140 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8145 when Concurrent_Kind
=>
8146 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8149 raise Program_Error
;
8152 if Etype
(Derived_Type
) = Any_Type
then
8156 -- Set delayed freeze and then derive subprograms, we need to do this
8157 -- in this order so that derived subprograms inherit the derived freeze
8160 Set_Has_Delayed_Freeze
(Derived_Type
);
8161 if Derive_Subps
then
8162 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8165 Set_Has_Primitive_Operations
8166 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8167 end Build_Derived_Type
;
8169 -----------------------
8170 -- Build_Discriminal --
8171 -----------------------
8173 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8174 D_Minal
: Entity_Id
;
8175 CR_Disc
: Entity_Id
;
8178 -- A discriminal has the same name as the discriminant
8180 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8182 Set_Ekind
(D_Minal
, E_In_Parameter
);
8183 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8184 Set_Etype
(D_Minal
, Etype
(Discrim
));
8185 Set_Scope
(D_Minal
, Current_Scope
);
8187 Set_Discriminal
(Discrim
, D_Minal
);
8188 Set_Discriminal_Link
(D_Minal
, Discrim
);
8190 -- For task types, build at once the discriminants of the corresponding
8191 -- record, which are needed if discriminants are used in entry defaults
8192 -- and in family bounds.
8194 if Is_Concurrent_Type
(Current_Scope
)
8195 or else Is_Limited_Type
(Current_Scope
)
8197 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8199 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8200 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8201 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8202 Set_Scope
(CR_Disc
, Current_Scope
);
8203 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8204 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8206 end Build_Discriminal
;
8208 ------------------------------------
8209 -- Build_Discriminant_Constraints --
8210 ------------------------------------
8212 function Build_Discriminant_Constraints
8215 Derived_Def
: Boolean := False) return Elist_Id
8217 C
: constant Node_Id
:= Constraint
(Def
);
8218 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
8220 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
8221 -- Saves the expression corresponding to a given discriminant in T
8223 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
8224 -- Return the Position number within array Discr_Expr of a discriminant
8225 -- D within the discriminant list of the discriminated type T.
8231 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
8235 Disc
:= First_Discriminant
(T
);
8236 for J
in Discr_Expr
'Range loop
8241 Next_Discriminant
(Disc
);
8244 -- Note: Since this function is called on discriminants that are
8245 -- known to belong to the discriminated type, falling through the
8246 -- loop with no match signals an internal compiler error.
8248 raise Program_Error
;
8251 -- Declarations local to Build_Discriminant_Constraints
8255 Elist
: constant Elist_Id
:= New_Elmt_List
;
8263 Discrim_Present
: Boolean := False;
8265 -- Start of processing for Build_Discriminant_Constraints
8268 -- The following loop will process positional associations only.
8269 -- For a positional association, the (single) discriminant is
8270 -- implicitly specified by position, in textual order (RM 3.7.2).
8272 Discr
:= First_Discriminant
(T
);
8273 Constr
:= First
(Constraints
(C
));
8274 for D
in Discr_Expr
'Range loop
8275 exit when Nkind
(Constr
) = N_Discriminant_Association
;
8278 Error_Msg_N
("too few discriminants given in constraint", C
);
8279 return New_Elmt_List
;
8281 elsif Nkind
(Constr
) = N_Range
8282 or else (Nkind
(Constr
) = N_Attribute_Reference
8284 Attribute_Name
(Constr
) = Name_Range
)
8287 ("a range is not a valid discriminant constraint", Constr
);
8288 Discr_Expr
(D
) := Error
;
8291 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
8292 Discr_Expr
(D
) := Constr
;
8295 Next_Discriminant
(Discr
);
8299 if No
(Discr
) and then Present
(Constr
) then
8300 Error_Msg_N
("too many discriminants given in constraint", Constr
);
8301 return New_Elmt_List
;
8304 -- Named associations can be given in any order, but if both positional
8305 -- and named associations are used in the same discriminant constraint,
8306 -- then positional associations must occur first, at their normal
8307 -- position. Hence once a named association is used, the rest of the
8308 -- discriminant constraint must use only named associations.
8310 while Present
(Constr
) loop
8312 -- Positional association forbidden after a named association
8314 if Nkind
(Constr
) /= N_Discriminant_Association
then
8315 Error_Msg_N
("positional association follows named one", Constr
);
8316 return New_Elmt_List
;
8318 -- Otherwise it is a named association
8321 -- E records the type of the discriminants in the named
8322 -- association. All the discriminants specified in the same name
8323 -- association must have the same type.
8327 -- Search the list of discriminants in T to see if the simple name
8328 -- given in the constraint matches any of them.
8330 Id
:= First
(Selector_Names
(Constr
));
8331 while Present
(Id
) loop
8334 -- If Original_Discriminant is present, we are processing a
8335 -- generic instantiation and this is an instance node. We need
8336 -- to find the name of the corresponding discriminant in the
8337 -- actual record type T and not the name of the discriminant in
8338 -- the generic formal. Example:
8341 -- type G (D : int) is private;
8343 -- subtype W is G (D => 1);
8345 -- type Rec (X : int) is record ... end record;
8346 -- package Q is new P (G => Rec);
8348 -- At the point of the instantiation, formal type G is Rec
8349 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8350 -- which really looks like "subtype W is Rec (D => 1);" at
8351 -- the point of instantiation, we want to find the discriminant
8352 -- that corresponds to D in Rec, i.e. X.
8354 if Present
(Original_Discriminant
(Id
))
8355 and then In_Instance
8357 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
8361 Discr
:= First_Discriminant
(T
);
8362 while Present
(Discr
) loop
8363 if Chars
(Discr
) = Chars
(Id
) then
8368 Next_Discriminant
(Discr
);
8372 Error_Msg_N
("& does not match any discriminant", Id
);
8373 return New_Elmt_List
;
8375 -- If the parent type is a generic formal, preserve the
8376 -- name of the discriminant for subsequent instances.
8377 -- see comment at the beginning of this if statement.
8379 elsif Is_Generic_Type
(Root_Type
(T
)) then
8380 Set_Original_Discriminant
(Id
, Discr
);
8384 Position
:= Pos_Of_Discr
(T
, Discr
);
8386 if Present
(Discr_Expr
(Position
)) then
8387 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
8390 -- Each discriminant specified in the same named association
8391 -- must be associated with a separate copy of the
8392 -- corresponding expression.
8394 if Present
(Next
(Id
)) then
8395 Expr
:= New_Copy_Tree
(Expression
(Constr
));
8396 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
8398 Expr
:= Expression
(Constr
);
8401 Discr_Expr
(Position
) := Expr
;
8402 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
8405 -- A discriminant association with more than one discriminant
8406 -- name is only allowed if the named discriminants are all of
8407 -- the same type (RM 3.7.1(8)).
8410 E
:= Base_Type
(Etype
(Discr
));
8412 elsif Base_Type
(Etype
(Discr
)) /= E
then
8414 ("all discriminants in an association " &
8415 "must have the same type", Id
);
8425 -- A discriminant constraint must provide exactly one value for each
8426 -- discriminant of the type (RM 3.7.1(8)).
8428 for J
in Discr_Expr
'Range loop
8429 if No
(Discr_Expr
(J
)) then
8430 Error_Msg_N
("too few discriminants given in constraint", C
);
8431 return New_Elmt_List
;
8435 -- Determine if there are discriminant expressions in the constraint
8437 for J
in Discr_Expr
'Range loop
8438 if Denotes_Discriminant
8439 (Discr_Expr
(J
), Check_Concurrent
=> True)
8441 Discrim_Present
:= True;
8445 -- Build an element list consisting of the expressions given in the
8446 -- discriminant constraint and apply the appropriate checks. The list
8447 -- is constructed after resolving any named discriminant associations
8448 -- and therefore the expressions appear in the textual order of the
8451 Discr
:= First_Discriminant
(T
);
8452 for J
in Discr_Expr
'Range loop
8453 if Discr_Expr
(J
) /= Error
then
8454 Append_Elmt
(Discr_Expr
(J
), Elist
);
8456 -- If any of the discriminant constraints is given by a
8457 -- discriminant and we are in a derived type declaration we
8458 -- have a discriminant renaming. Establish link between new
8459 -- and old discriminant.
8461 if Denotes_Discriminant
(Discr_Expr
(J
)) then
8463 Set_Corresponding_Discriminant
8464 (Entity
(Discr_Expr
(J
)), Discr
);
8467 -- Force the evaluation of non-discriminant expressions.
8468 -- If we have found a discriminant in the constraint 3.4(26)
8469 -- and 3.8(18) demand that no range checks are performed are
8470 -- after evaluation. If the constraint is for a component
8471 -- definition that has a per-object constraint, expressions are
8472 -- evaluated but not checked either. In all other cases perform
8476 if Discrim_Present
then
8479 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
8481 Has_Per_Object_Constraint
8482 (Defining_Identifier
(Parent
(Parent
(Def
))))
8486 elsif Is_Access_Type
(Etype
(Discr
)) then
8487 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
8490 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
8493 Force_Evaluation
(Discr_Expr
(J
));
8496 -- Check that the designated type of an access discriminant's
8497 -- expression is not a class-wide type unless the discriminant's
8498 -- designated type is also class-wide.
8500 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
8501 and then not Is_Class_Wide_Type
8502 (Designated_Type
(Etype
(Discr
)))
8503 and then Etype
(Discr_Expr
(J
)) /= Any_Type
8504 and then Is_Class_Wide_Type
8505 (Designated_Type
(Etype
(Discr_Expr
(J
))))
8507 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
8509 elsif Is_Access_Type
(Etype
(Discr
))
8510 and then not Is_Access_Constant
(Etype
(Discr
))
8511 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
8512 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
8515 ("constraint for discriminant& must be access to variable",
8520 Next_Discriminant
(Discr
);
8524 end Build_Discriminant_Constraints
;
8526 ---------------------------------
8527 -- Build_Discriminated_Subtype --
8528 ---------------------------------
8530 procedure Build_Discriminated_Subtype
8534 Related_Nod
: Node_Id
;
8535 For_Access
: Boolean := False)
8537 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
8538 Constrained
: constant Boolean :=
8540 and then not Is_Empty_Elmt_List
(Elist
)
8541 and then not Is_Class_Wide_Type
(T
))
8542 or else Is_Constrained
(T
);
8545 if Ekind
(T
) = E_Record_Type
then
8547 Set_Ekind
(Def_Id
, E_Private_Subtype
);
8548 Set_Is_For_Access_Subtype
(Def_Id
, True);
8550 Set_Ekind
(Def_Id
, E_Record_Subtype
);
8553 -- Inherit preelaboration flag from base, for types for which it
8554 -- may have been set: records, private types, protected types.
8556 Set_Known_To_Have_Preelab_Init
8557 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8559 elsif Ekind
(T
) = E_Task_Type
then
8560 Set_Ekind
(Def_Id
, E_Task_Subtype
);
8562 elsif Ekind
(T
) = E_Protected_Type
then
8563 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
8564 Set_Known_To_Have_Preelab_Init
8565 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8567 elsif Is_Private_Type
(T
) then
8568 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8569 Set_Known_To_Have_Preelab_Init
8570 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8572 elsif Is_Class_Wide_Type
(T
) then
8573 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
8576 -- Incomplete type. Attach subtype to list of dependents, to be
8577 -- completed with full view of parent type, unless is it the
8578 -- designated subtype of a record component within an init_proc.
8579 -- This last case arises for a component of an access type whose
8580 -- designated type is incomplete (e.g. a Taft Amendment type).
8581 -- The designated subtype is within an inner scope, and needs no
8582 -- elaboration, because only the access type is needed in the
8583 -- initialization procedure.
8585 Set_Ekind
(Def_Id
, Ekind
(T
));
8587 if For_Access
and then Within_Init_Proc
then
8590 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
8594 Set_Etype
(Def_Id
, T
);
8595 Init_Size_Align
(Def_Id
);
8596 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
8597 Set_Is_Constrained
(Def_Id
, Constrained
);
8599 Set_First_Entity
(Def_Id
, First_Entity
(T
));
8600 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
8601 Set_Has_Implicit_Dereference
8602 (Def_Id
, Has_Implicit_Dereference
(T
));
8604 -- If the subtype is the completion of a private declaration, there may
8605 -- have been representation clauses for the partial view, and they must
8606 -- be preserved. Build_Derived_Type chains the inherited clauses with
8607 -- the ones appearing on the extension. If this comes from a subtype
8608 -- declaration, all clauses are inherited.
8610 if No
(First_Rep_Item
(Def_Id
)) then
8611 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8614 if Is_Tagged_Type
(T
) then
8615 Set_Is_Tagged_Type
(Def_Id
);
8616 Make_Class_Wide_Type
(Def_Id
);
8619 Set_Stored_Constraint
(Def_Id
, No_Elist
);
8622 Set_Discriminant_Constraint
(Def_Id
, Elist
);
8623 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
8626 if Is_Tagged_Type
(T
) then
8628 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8629 -- concurrent record type (which has the list of primitive
8632 if Ada_Version
>= Ada_2005
8633 and then Is_Concurrent_Type
(T
)
8635 Set_Corresponding_Record_Type
(Def_Id
,
8636 Corresponding_Record_Type
(T
));
8638 Set_Direct_Primitive_Operations
(Def_Id
,
8639 Direct_Primitive_Operations
(T
));
8642 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
8645 -- Subtypes introduced by component declarations do not need to be
8646 -- marked as delayed, and do not get freeze nodes, because the semantics
8647 -- verifies that the parents of the subtypes are frozen before the
8648 -- enclosing record is frozen.
8650 if not Is_Type
(Scope
(Def_Id
)) then
8651 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
8653 if Is_Private_Type
(T
)
8654 and then Present
(Full_View
(T
))
8656 Conditional_Delay
(Def_Id
, Full_View
(T
));
8658 Conditional_Delay
(Def_Id
, T
);
8662 if Is_Record_Type
(T
) then
8663 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
8666 and then not Is_Empty_Elmt_List
(Elist
)
8667 and then not For_Access
8669 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
8670 elsif not For_Access
then
8671 Set_Cloned_Subtype
(Def_Id
, T
);
8674 end Build_Discriminated_Subtype
;
8676 ---------------------------
8677 -- Build_Itype_Reference --
8678 ---------------------------
8680 procedure Build_Itype_Reference
8684 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
8687 -- Itype references are only created for use by the back-end
8689 if Inside_A_Generic
then
8692 Set_Itype
(IR
, Ityp
);
8693 Insert_After
(Nod
, IR
);
8695 end Build_Itype_Reference
;
8697 ------------------------
8698 -- Build_Scalar_Bound --
8699 ------------------------
8701 function Build_Scalar_Bound
8704 Der_T
: Entity_Id
) return Node_Id
8706 New_Bound
: Entity_Id
;
8709 -- Note: not clear why this is needed, how can the original bound
8710 -- be unanalyzed at this point? and if it is, what business do we
8711 -- have messing around with it? and why is the base type of the
8712 -- parent type the right type for the resolution. It probably is
8713 -- not! It is OK for the new bound we are creating, but not for
8714 -- the old one??? Still if it never happens, no problem!
8716 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
8718 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
8719 New_Bound
:= New_Copy
(Bound
);
8720 Set_Etype
(New_Bound
, Der_T
);
8721 Set_Analyzed
(New_Bound
);
8723 elsif Is_Entity_Name
(Bound
) then
8724 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
8726 -- The following is almost certainly wrong. What business do we have
8727 -- relocating a node (Bound) that is presumably still attached to
8728 -- the tree elsewhere???
8731 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
8734 Set_Etype
(New_Bound
, Der_T
);
8736 end Build_Scalar_Bound
;
8738 --------------------------------
8739 -- Build_Underlying_Full_View --
8740 --------------------------------
8742 procedure Build_Underlying_Full_View
8747 Loc
: constant Source_Ptr
:= Sloc
(N
);
8748 Subt
: constant Entity_Id
:=
8749 Make_Defining_Identifier
8750 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
8757 procedure Set_Discriminant_Name
(Id
: Node_Id
);
8758 -- If the derived type has discriminants, they may rename discriminants
8759 -- of the parent. When building the full view of the parent, we need to
8760 -- recover the names of the original discriminants if the constraint is
8761 -- given by named associations.
8763 ---------------------------
8764 -- Set_Discriminant_Name --
8765 ---------------------------
8767 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
8771 Set_Original_Discriminant
(Id
, Empty
);
8773 if Has_Discriminants
(Typ
) then
8774 Disc
:= First_Discriminant
(Typ
);
8775 while Present
(Disc
) loop
8776 if Chars
(Disc
) = Chars
(Id
)
8777 and then Present
(Corresponding_Discriminant
(Disc
))
8779 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
8781 Next_Discriminant
(Disc
);
8784 end Set_Discriminant_Name
;
8786 -- Start of processing for Build_Underlying_Full_View
8789 if Nkind
(N
) = N_Full_Type_Declaration
then
8790 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
8792 elsif Nkind
(N
) = N_Subtype_Declaration
then
8793 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
8795 elsif Nkind
(N
) = N_Component_Declaration
then
8798 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
8801 raise Program_Error
;
8804 C
:= First
(Constraints
(Constr
));
8805 while Present
(C
) loop
8806 if Nkind
(C
) = N_Discriminant_Association
then
8807 Id
:= First
(Selector_Names
(C
));
8808 while Present
(Id
) loop
8809 Set_Discriminant_Name
(Id
);
8818 Make_Subtype_Declaration
(Loc
,
8819 Defining_Identifier
=> Subt
,
8820 Subtype_Indication
=>
8821 Make_Subtype_Indication
(Loc
,
8822 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
8823 Constraint
=> New_Copy_Tree
(Constr
)));
8825 -- If this is a component subtype for an outer itype, it is not
8826 -- a list member, so simply set the parent link for analysis: if
8827 -- the enclosing type does not need to be in a declarative list,
8828 -- neither do the components.
8830 if Is_List_Member
(N
)
8831 and then Nkind
(N
) /= N_Component_Declaration
8833 Insert_Before
(N
, Indic
);
8835 Set_Parent
(Indic
, Parent
(N
));
8839 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
8840 end Build_Underlying_Full_View
;
8842 -------------------------------
8843 -- Check_Abstract_Overriding --
8844 -------------------------------
8846 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
8847 Alias_Subp
: Entity_Id
;
8853 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
8854 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
8855 -- which has pragma Implemented already set. Check whether Subp's entity
8856 -- kind conforms to the implementation kind of the overridden routine.
8858 procedure Check_Pragma_Implemented
8860 Iface_Subp
: Entity_Id
);
8861 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
8862 -- Iface_Subp and both entities have pragma Implemented already set on
8863 -- them. Check whether the two implementation kinds are conforming.
8865 procedure Inherit_Pragma_Implemented
8867 Iface_Subp
: Entity_Id
);
8868 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
8869 -- subprogram Iface_Subp which has been marked by pragma Implemented.
8870 -- Propagate the implementation kind of Iface_Subp to Subp.
8872 ------------------------------
8873 -- Check_Pragma_Implemented --
8874 ------------------------------
8876 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
8877 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
8878 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
8879 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
8880 Contr_Typ
: Entity_Id
;
8881 Impl_Subp
: Entity_Id
;
8884 -- Subp must have an alias since it is a hidden entity used to link
8885 -- an interface subprogram to its overriding counterpart.
8887 pragma Assert
(Present
(Subp_Alias
));
8889 -- Handle aliases to synchronized wrappers
8891 Impl_Subp
:= Subp_Alias
;
8893 if Is_Primitive_Wrapper
(Impl_Subp
) then
8894 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
8897 -- Extract the type of the controlling formal
8899 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
8901 if Is_Concurrent_Record_Type
(Contr_Typ
) then
8902 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
8905 -- An interface subprogram whose implementation kind is By_Entry must
8906 -- be implemented by an entry.
8908 if Impl_Kind
= Name_By_Entry
8909 and then Ekind
(Impl_Subp
) /= E_Entry
8911 Error_Msg_Node_2
:= Iface_Alias
;
8913 ("type & must implement abstract subprogram & with an entry",
8914 Subp_Alias
, Contr_Typ
);
8916 elsif Impl_Kind
= Name_By_Protected_Procedure
then
8918 -- An interface subprogram whose implementation kind is By_
8919 -- Protected_Procedure cannot be implemented by a primitive
8920 -- procedure of a task type.
8922 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
8923 Error_Msg_Node_2
:= Contr_Typ
;
8925 ("interface subprogram & cannot be implemented by a " &
8926 "primitive procedure of task type &", Subp_Alias
,
8929 -- An interface subprogram whose implementation kind is By_
8930 -- Protected_Procedure must be implemented by a procedure.
8932 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
8933 Error_Msg_Node_2
:= Iface_Alias
;
8935 ("type & must implement abstract subprogram & with a " &
8936 "procedure", Subp_Alias
, Contr_Typ
);
8939 end Check_Pragma_Implemented
;
8941 ------------------------------
8942 -- Check_Pragma_Implemented --
8943 ------------------------------
8945 procedure Check_Pragma_Implemented
8947 Iface_Subp
: Entity_Id
)
8949 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8950 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
8953 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
8954 -- and overriding subprogram are different. In general this is an
8955 -- error except when the implementation kind of the overridden
8956 -- subprograms is By_Any or Optional.
8958 if Iface_Kind
/= Subp_Kind
8959 and then Iface_Kind
/= Name_By_Any
8960 and then Iface_Kind
/= Name_Optional
8962 if Iface_Kind
= Name_By_Entry
then
8964 ("incompatible implementation kind, overridden subprogram " &
8965 "is marked By_Entry", Subp
);
8968 ("incompatible implementation kind, overridden subprogram " &
8969 "is marked By_Protected_Procedure", Subp
);
8972 end Check_Pragma_Implemented
;
8974 --------------------------------
8975 -- Inherit_Pragma_Implemented --
8976 --------------------------------
8978 procedure Inherit_Pragma_Implemented
8980 Iface_Subp
: Entity_Id
)
8982 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8983 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
8984 Impl_Prag
: Node_Id
;
8987 -- Since the implementation kind is stored as a representation item
8988 -- rather than a flag, create a pragma node.
8992 Chars
=> Name_Implemented
,
8993 Pragma_Argument_Associations
=> New_List
(
8994 Make_Pragma_Argument_Association
(Loc
,
8996 New_Reference_To
(Subp
, Loc
)),
8998 Make_Pragma_Argument_Association
(Loc
,
8999 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9001 -- The pragma doesn't need to be analyzed because it is internally
9002 -- build. It is safe to directly register it as a rep item since we
9003 -- are only interested in the characters of the implementation kind.
9005 Record_Rep_Item
(Subp
, Impl_Prag
);
9006 end Inherit_Pragma_Implemented
;
9008 -- Start of processing for Check_Abstract_Overriding
9011 Op_List
:= Primitive_Operations
(T
);
9013 -- Loop to check primitive operations
9015 Elmt
:= First_Elmt
(Op_List
);
9016 while Present
(Elmt
) loop
9017 Subp
:= Node
(Elmt
);
9018 Alias_Subp
:= Alias
(Subp
);
9020 -- Inherited subprograms are identified by the fact that they do not
9021 -- come from source, and the associated source location is the
9022 -- location of the first subtype of the derived type.
9024 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9025 -- subprograms that "require overriding".
9027 -- Special exception, do not complain about failure to override the
9028 -- stream routines _Input and _Output, as well as the primitive
9029 -- operations used in dispatching selects since we always provide
9030 -- automatic overridings for these subprograms.
9032 -- Also ignore this rule for convention CIL since .NET libraries
9033 -- do bizarre things with interfaces???
9035 -- The partial view of T may have been a private extension, for
9036 -- which inherited functions dispatching on result are abstract.
9037 -- If the full view is a null extension, there is no need for
9038 -- overriding in Ada 2005, but wrappers need to be built for them
9039 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9041 if Is_Null_Extension
(T
)
9042 and then Has_Controlling_Result
(Subp
)
9043 and then Ada_Version
>= Ada_2005
9044 and then Present
(Alias_Subp
)
9045 and then not Comes_From_Source
(Subp
)
9046 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9047 and then not Is_Access_Type
(Etype
(Subp
))
9051 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9052 -- processing because this check is done with the aliased
9055 elsif Present
(Interface_Alias
(Subp
)) then
9058 elsif (Is_Abstract_Subprogram
(Subp
)
9059 or else Requires_Overriding
(Subp
)
9061 (Has_Controlling_Result
(Subp
)
9062 and then Present
(Alias_Subp
)
9063 and then not Comes_From_Source
(Subp
)
9064 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9065 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9066 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9067 and then not Is_Abstract_Type
(T
)
9068 and then Convention
(T
) /= Convention_CIL
9069 and then not Is_Predefined_Interface_Primitive
(Subp
)
9071 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9072 -- with abstract interface types because the check will be done
9073 -- with the aliased entity (otherwise we generate a duplicated
9076 and then not Present
(Interface_Alias
(Subp
))
9078 if Present
(Alias_Subp
) then
9080 -- Only perform the check for a derived subprogram when the
9081 -- type has an explicit record extension. This avoids incorrect
9082 -- flagging of abstract subprograms for the case of a type
9083 -- without an extension that is derived from a formal type
9084 -- with a tagged actual (can occur within a private part).
9086 -- Ada 2005 (AI-391): In the case of an inherited function with
9087 -- a controlling result of the type, the rule does not apply if
9088 -- the type is a null extension (unless the parent function
9089 -- itself is abstract, in which case the function must still be
9090 -- be overridden). The expander will generate an overriding
9091 -- wrapper function calling the parent subprogram (see
9092 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9094 Type_Def
:= Type_Definition
(Parent
(T
));
9096 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9097 and then Present
(Record_Extension_Part
(Type_Def
))
9099 (Ada_Version
< Ada_2005
9100 or else not Is_Null_Extension
(T
)
9101 or else Ekind
(Subp
) = E_Procedure
9102 or else not Has_Controlling_Result
(Subp
)
9103 or else Is_Abstract_Subprogram
(Alias_Subp
)
9104 or else Requires_Overriding
(Subp
)
9105 or else Is_Access_Type
(Etype
(Subp
)))
9107 -- Avoid reporting error in case of abstract predefined
9108 -- primitive inherited from interface type because the
9109 -- body of internally generated predefined primitives
9110 -- of tagged types are generated later by Freeze_Type
9112 if Is_Interface
(Root_Type
(T
))
9113 and then Is_Abstract_Subprogram
(Subp
)
9114 and then Is_Predefined_Dispatching_Operation
(Subp
)
9115 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9121 ("type must be declared abstract or & overridden",
9124 -- Traverse the whole chain of aliased subprograms to
9125 -- complete the error notification. This is especially
9126 -- useful for traceability of the chain of entities when
9127 -- the subprogram corresponds with an interface
9128 -- subprogram (which may be defined in another package).
9130 if Present
(Alias_Subp
) then
9136 while Present
(Alias
(E
)) loop
9138 -- Avoid reporting redundant errors on entities
9139 -- inherited from interfaces
9141 if Sloc
(E
) /= Sloc
(T
) then
9142 Error_Msg_Sloc
:= Sloc
(E
);
9144 ("\& has been inherited #", T
, Subp
);
9150 Error_Msg_Sloc
:= Sloc
(E
);
9152 -- AI05-0068: report if there is an overriding
9153 -- non-abstract subprogram that is invisible.
9156 and then not Is_Abstract_Subprogram
(E
)
9159 ("\& subprogram# is not visible",
9164 ("\& has been inherited from subprogram #",
9171 -- Ada 2005 (AI-345): Protected or task type implementing
9172 -- abstract interfaces.
9174 elsif Is_Concurrent_Record_Type
(T
)
9175 and then Present
(Interfaces
(T
))
9177 -- The controlling formal of Subp must be of mode "out",
9178 -- "in out" or an access-to-variable to be overridden.
9180 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9181 and then Ekind
(Subp
) /= E_Function
9183 if not Is_Predefined_Dispatching_Operation
(Subp
)
9184 and then Is_Protected_Type
9185 (Corresponding_Concurrent_Type
(T
))
9187 Error_Msg_PT
(T
, Subp
);
9190 -- Some other kind of overriding failure
9194 ("interface subprogram & must be overridden",
9197 -- Examine primitive operations of synchronized type,
9198 -- to find homonyms that have the wrong profile.
9205 First_Entity
(Corresponding_Concurrent_Type
(T
));
9206 while Present
(Prim
) loop
9207 if Chars
(Prim
) = Chars
(Subp
) then
9209 ("profile is not type conformant with "
9210 & "prefixed view profile of "
9211 & "inherited operation&", Prim
, Subp
);
9221 Error_Msg_Node_2
:= T
;
9223 ("abstract subprogram& not allowed for type&", Subp
);
9225 -- Also post unconditional warning on the type (unconditional
9226 -- so that if there are more than one of these cases, we get
9227 -- them all, and not just the first one).
9229 Error_Msg_Node_2
:= Subp
;
9230 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
9234 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9237 -- Subp is an expander-generated procedure which maps an interface
9238 -- alias to a protected wrapper. The interface alias is flagged by
9239 -- pragma Implemented. Ensure that Subp is a procedure when the
9240 -- implementation kind is By_Protected_Procedure or an entry when
9243 if Ada_Version
>= Ada_2012
9244 and then Is_Hidden
(Subp
)
9245 and then Present
(Interface_Alias
(Subp
))
9246 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
9248 Check_Pragma_Implemented
(Subp
);
9251 -- Subp is an interface primitive which overrides another interface
9252 -- primitive marked with pragma Implemented.
9254 if Ada_Version
>= Ada_2012
9255 and then Present
(Overridden_Operation
(Subp
))
9256 and then Has_Rep_Pragma
9257 (Overridden_Operation
(Subp
), Name_Implemented
)
9259 -- If the overriding routine is also marked by Implemented, check
9260 -- that the two implementation kinds are conforming.
9262 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
9263 Check_Pragma_Implemented
9265 Iface_Subp
=> Overridden_Operation
(Subp
));
9267 -- Otherwise the overriding routine inherits the implementation
9268 -- kind from the overridden subprogram.
9271 Inherit_Pragma_Implemented
9273 Iface_Subp
=> Overridden_Operation
(Subp
));
9279 end Check_Abstract_Overriding
;
9281 ------------------------------------------------
9282 -- Check_Access_Discriminant_Requires_Limited --
9283 ------------------------------------------------
9285 procedure Check_Access_Discriminant_Requires_Limited
9290 -- A discriminant_specification for an access discriminant shall appear
9291 -- only in the declaration for a task or protected type, or for a type
9292 -- with the reserved word 'limited' in its definition or in one of its
9293 -- ancestors (RM 3.7(10)).
9295 -- AI-0063: The proper condition is that type must be immutably limited,
9296 -- or else be a partial view.
9298 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
9299 if Is_Immutably_Limited_Type
(Current_Scope
)
9301 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
9302 and then Limited_Present
(Parent
(Current_Scope
)))
9308 ("access discriminants allowed only for limited types", Loc
);
9311 end Check_Access_Discriminant_Requires_Limited
;
9313 -----------------------------------
9314 -- Check_Aliased_Component_Types --
9315 -----------------------------------
9317 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
9321 -- ??? Also need to check components of record extensions, but not
9322 -- components of protected types (which are always limited).
9324 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9325 -- types to be unconstrained. This is safe because it is illegal to
9326 -- create access subtypes to such types with explicit discriminant
9329 if not Is_Limited_Type
(T
) then
9330 if Ekind
(T
) = E_Record_Type
then
9331 C
:= First_Component
(T
);
9332 while Present
(C
) loop
9334 and then Has_Discriminants
(Etype
(C
))
9335 and then not Is_Constrained
(Etype
(C
))
9336 and then not In_Instance_Body
9337 and then Ada_Version
< Ada_2005
9340 ("aliased component must be constrained (RM 3.6(11))",
9347 elsif Ekind
(T
) = E_Array_Type
then
9348 if Has_Aliased_Components
(T
)
9349 and then Has_Discriminants
(Component_Type
(T
))
9350 and then not Is_Constrained
(Component_Type
(T
))
9351 and then not In_Instance_Body
9352 and then Ada_Version
< Ada_2005
9355 ("aliased component type must be constrained (RM 3.6(11))",
9360 end Check_Aliased_Component_Types
;
9362 ----------------------
9363 -- Check_Completion --
9364 ----------------------
9366 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
9369 procedure Post_Error
;
9370 -- Post error message for lack of completion for entity E
9376 procedure Post_Error
is
9378 procedure Missing_Body
;
9379 -- Output missing body message
9385 procedure Missing_Body
is
9387 -- Spec is in same unit, so we can post on spec
9389 if In_Same_Source_Unit
(Body_Id
, E
) then
9390 Error_Msg_N
("missing body for &", E
);
9392 -- Spec is in a separate unit, so we have to post on the body
9395 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
9399 -- Start of processing for Post_Error
9402 if not Comes_From_Source
(E
) then
9404 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
9405 -- It may be an anonymous protected type created for a
9406 -- single variable. Post error on variable, if present.
9412 Var
:= First_Entity
(Current_Scope
);
9413 while Present
(Var
) loop
9414 exit when Etype
(Var
) = E
9415 and then Comes_From_Source
(Var
);
9420 if Present
(Var
) then
9427 -- If a generated entity has no completion, then either previous
9428 -- semantic errors have disabled the expansion phase, or else we had
9429 -- missing subunits, or else we are compiling without expansion,
9430 -- or else something is very wrong.
9432 if not Comes_From_Source
(E
) then
9434 (Serious_Errors_Detected
> 0
9435 or else Configurable_Run_Time_Violations
> 0
9436 or else Subunits_Missing
9437 or else not Expander_Active
);
9440 -- Here for source entity
9443 -- Here if no body to post the error message, so we post the error
9444 -- on the declaration that has no completion. This is not really
9445 -- the right place to post it, think about this later ???
9447 if No
(Body_Id
) then
9450 ("missing full declaration for }", Parent
(E
), E
);
9452 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
9455 -- Package body has no completion for a declaration that appears
9456 -- in the corresponding spec. Post error on the body, with a
9457 -- reference to the non-completed declaration.
9460 Error_Msg_Sloc
:= Sloc
(E
);
9463 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
9465 elsif Is_Overloadable
(E
)
9466 and then Current_Entity_In_Scope
(E
) /= E
9468 -- It may be that the completion is mistyped and appears as
9469 -- a distinct overloading of the entity.
9472 Candidate
: constant Entity_Id
:=
9473 Current_Entity_In_Scope
(E
);
9474 Decl
: constant Node_Id
:=
9475 Unit_Declaration_Node
(Candidate
);
9478 if Is_Overloadable
(Candidate
)
9479 and then Ekind
(Candidate
) = Ekind
(E
)
9480 and then Nkind
(Decl
) = N_Subprogram_Body
9481 and then Acts_As_Spec
(Decl
)
9483 Check_Type_Conformant
(Candidate
, E
);
9497 -- Start of processing for Check_Completion
9500 E
:= First_Entity
(Current_Scope
);
9501 while Present
(E
) loop
9502 if Is_Intrinsic_Subprogram
(E
) then
9505 -- The following situation requires special handling: a child unit
9506 -- that appears in the context clause of the body of its parent:
9508 -- procedure Parent.Child (...);
9510 -- with Parent.Child;
9511 -- package body Parent is
9513 -- Here Parent.Child appears as a local entity, but should not be
9514 -- flagged as requiring completion, because it is a compilation
9517 -- Ignore missing completion for a subprogram that does not come from
9518 -- source (including the _Call primitive operation of RAS types,
9519 -- which has to have the flag Comes_From_Source for other purposes):
9520 -- we assume that the expander will provide the missing completion.
9521 -- In case of previous errors, other expansion actions that provide
9522 -- bodies for null procedures with not be invoked, so inhibit message
9525 -- Note that E_Operator is not in the list that follows, because
9526 -- this kind is reserved for predefined operators, that are
9527 -- intrinsic and do not need completion.
9529 elsif Ekind
(E
) = E_Function
9530 or else Ekind
(E
) = E_Procedure
9531 or else Ekind
(E
) = E_Generic_Function
9532 or else Ekind
(E
) = E_Generic_Procedure
9534 if Has_Completion
(E
) then
9537 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
9540 elsif Is_Subprogram
(E
)
9541 and then (not Comes_From_Source
(E
)
9542 or else Chars
(E
) = Name_uCall
)
9547 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
9551 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
9552 and then Null_Present
(Parent
(E
))
9553 and then Serious_Errors_Detected
> 0
9561 elsif Is_Entry
(E
) then
9562 if not Has_Completion
(E
) and then
9563 (Ekind
(Scope
(E
)) = E_Protected_Object
9564 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
9569 elsif Is_Package_Or_Generic_Package
(E
) then
9570 if Unit_Requires_Body
(E
) then
9571 if not Has_Completion
(E
)
9572 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
9578 elsif not Is_Child_Unit
(E
) then
9579 May_Need_Implicit_Body
(E
);
9582 -- A formal incomplete type (Ada 2012) does not require a completion;
9583 -- other incomplete type declarations do.
9585 elsif Ekind
(E
) = E_Incomplete_Type
9586 and then No
(Underlying_Type
(E
))
9587 and then not Is_Generic_Type
(E
)
9591 elsif (Ekind
(E
) = E_Task_Type
or else
9592 Ekind
(E
) = E_Protected_Type
)
9593 and then not Has_Completion
(E
)
9597 -- A single task declared in the current scope is a constant, verify
9598 -- that the body of its anonymous type is in the same scope. If the
9599 -- task is defined elsewhere, this may be a renaming declaration for
9600 -- which no completion is needed.
9602 elsif Ekind
(E
) = E_Constant
9603 and then Ekind
(Etype
(E
)) = E_Task_Type
9604 and then not Has_Completion
(Etype
(E
))
9605 and then Scope
(Etype
(E
)) = Current_Scope
9609 elsif Ekind
(E
) = E_Protected_Object
9610 and then not Has_Completion
(Etype
(E
))
9614 elsif Ekind
(E
) = E_Record_Type
then
9615 if Is_Tagged_Type
(E
) then
9616 Check_Abstract_Overriding
(E
);
9617 Check_Conventions
(E
);
9620 Check_Aliased_Component_Types
(E
);
9622 elsif Ekind
(E
) = E_Array_Type
then
9623 Check_Aliased_Component_Types
(E
);
9629 end Check_Completion
;
9631 ------------------------------------
9632 -- Check_CPP_Type_Has_No_Defaults --
9633 ------------------------------------
9635 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
9636 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
9641 -- Obtain the component list
9643 if Nkind
(Tdef
) = N_Record_Definition
then
9644 Clist
:= Component_List
(Tdef
);
9645 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
9646 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
9649 -- Check all components to ensure no default expressions
9651 if Present
(Clist
) then
9652 Comp
:= First
(Component_Items
(Clist
));
9653 while Present
(Comp
) loop
9654 if Present
(Expression
(Comp
)) then
9656 ("component of imported 'C'P'P type cannot have "
9657 & "default expression", Expression
(Comp
));
9663 end Check_CPP_Type_Has_No_Defaults
;
9665 ----------------------------
9666 -- Check_Delta_Expression --
9667 ----------------------------
9669 procedure Check_Delta_Expression
(E
: Node_Id
) is
9671 if not (Is_Real_Type
(Etype
(E
))) then
9672 Wrong_Type
(E
, Any_Real
);
9674 elsif not Is_OK_Static_Expression
(E
) then
9675 Flag_Non_Static_Expr
9676 ("non-static expression used for delta value!", E
);
9678 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
9679 Error_Msg_N
("delta expression must be positive", E
);
9685 -- If any of above errors occurred, then replace the incorrect
9686 -- expression by the real 0.1, which should prevent further errors.
9689 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
9690 Analyze_And_Resolve
(E
, Standard_Float
);
9691 end Check_Delta_Expression
;
9693 -----------------------------
9694 -- Check_Digits_Expression --
9695 -----------------------------
9697 procedure Check_Digits_Expression
(E
: Node_Id
) is
9699 if not (Is_Integer_Type
(Etype
(E
))) then
9700 Wrong_Type
(E
, Any_Integer
);
9702 elsif not Is_OK_Static_Expression
(E
) then
9703 Flag_Non_Static_Expr
9704 ("non-static expression used for digits value!", E
);
9706 elsif Expr_Value
(E
) <= 0 then
9707 Error_Msg_N
("digits value must be greater than zero", E
);
9713 -- If any of above errors occurred, then replace the incorrect
9714 -- expression by the integer 1, which should prevent further errors.
9716 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
9717 Analyze_And_Resolve
(E
, Standard_Integer
);
9719 end Check_Digits_Expression
;
9721 --------------------------
9722 -- Check_Initialization --
9723 --------------------------
9725 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
9727 if Is_Limited_Type
(T
)
9728 and then not In_Instance
9729 and then not In_Inlined_Body
9731 if not OK_For_Limited_Init
(T
, Exp
) then
9733 -- In GNAT mode, this is just a warning, to allow it to be evilly
9734 -- turned off. Otherwise it is a real error.
9738 ("?cannot initialize entities of limited type!", Exp
);
9740 elsif Ada_Version
< Ada_2005
then
9742 -- The side effect removal machinery may generate illegal Ada
9743 -- code to avoid the usage of access types and 'reference in
9744 -- Alfa mode. Since this is legal code with respect to theorem
9745 -- proving, do not emit the error.
9748 and then Nkind
(Exp
) = N_Function_Call
9749 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
9750 and then not Comes_From_Source
9751 (Defining_Identifier
(Parent
(Exp
)))
9757 ("cannot initialize entities of limited type", Exp
);
9758 Explain_Limited_Type
(T
, Exp
);
9762 -- Specialize error message according to kind of illegal
9763 -- initial expression.
9765 if Nkind
(Exp
) = N_Type_Conversion
9766 and then Nkind
(Expression
(Exp
)) = N_Function_Call
9769 ("illegal context for call"
9770 & " to function with limited result", Exp
);
9774 ("initialization of limited object requires aggregate "
9775 & "or function call", Exp
);
9780 end Check_Initialization
;
9782 ----------------------
9783 -- Check_Interfaces --
9784 ----------------------
9786 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
9787 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
9790 Iface_Def
: Node_Id
;
9791 Iface_Typ
: Entity_Id
;
9792 Parent_Node
: Node_Id
;
9794 Is_Task
: Boolean := False;
9795 -- Set True if parent type or any progenitor is a task interface
9797 Is_Protected
: Boolean := False;
9798 -- Set True if parent type or any progenitor is a protected interface
9800 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
9801 -- Check that a progenitor is compatible with declaration.
9802 -- Error is posted on Error_Node.
9808 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
9809 Iface_Id
: constant Entity_Id
:=
9810 Defining_Identifier
(Parent
(Iface_Def
));
9814 if Nkind
(N
) = N_Private_Extension_Declaration
then
9817 Type_Def
:= Type_Definition
(N
);
9820 if Is_Task_Interface
(Iface_Id
) then
9823 elsif Is_Protected_Interface
(Iface_Id
) then
9824 Is_Protected
:= True;
9827 if Is_Synchronized_Interface
(Iface_Id
) then
9829 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9830 -- extension derived from a synchronized interface must explicitly
9831 -- be declared synchronized, because the full view will be a
9832 -- synchronized type.
9834 if Nkind
(N
) = N_Private_Extension_Declaration
then
9835 if not Synchronized_Present
(N
) then
9837 ("private extension of& must be explicitly synchronized",
9841 -- However, by 3.9.4(16/2), a full type that is a record extension
9842 -- is never allowed to derive from a synchronized interface (note
9843 -- that interfaces must be excluded from this check, because those
9844 -- are represented by derived type definitions in some cases).
9846 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9847 and then not Interface_Present
(Type_Definition
(N
))
9849 Error_Msg_N
("record extension cannot derive from synchronized"
9850 & " interface", Error_Node
);
9854 -- Check that the characteristics of the progenitor are compatible
9855 -- with the explicit qualifier in the declaration.
9856 -- The check only applies to qualifiers that come from source.
9857 -- Limited_Present also appears in the declaration of corresponding
9858 -- records, and the check does not apply to them.
9860 if Limited_Present
(Type_Def
)
9862 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
9864 if Is_Limited_Interface
(Parent_Type
)
9865 and then not Is_Limited_Interface
(Iface_Id
)
9868 ("progenitor& must be limited interface",
9869 Error_Node
, Iface_Id
);
9872 (Task_Present
(Iface_Def
)
9873 or else Protected_Present
(Iface_Def
)
9874 or else Synchronized_Present
(Iface_Def
))
9875 and then Nkind
(N
) /= N_Private_Extension_Declaration
9876 and then not Error_Posted
(N
)
9879 ("progenitor& must be limited interface",
9880 Error_Node
, Iface_Id
);
9883 -- Protected interfaces can only inherit from limited, synchronized
9884 -- or protected interfaces.
9886 elsif Nkind
(N
) = N_Full_Type_Declaration
9887 and then Protected_Present
(Type_Def
)
9889 if Limited_Present
(Iface_Def
)
9890 or else Synchronized_Present
(Iface_Def
)
9891 or else Protected_Present
(Iface_Def
)
9895 elsif Task_Present
(Iface_Def
) then
9896 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9897 & " from task interface", Error_Node
);
9900 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9901 & " from non-limited interface", Error_Node
);
9904 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9905 -- limited and synchronized.
9907 elsif Synchronized_Present
(Type_Def
) then
9908 if Limited_Present
(Iface_Def
)
9909 or else Synchronized_Present
(Iface_Def
)
9913 elsif Protected_Present
(Iface_Def
)
9914 and then Nkind
(N
) /= N_Private_Extension_Declaration
9916 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9917 & " from protected interface", Error_Node
);
9919 elsif Task_Present
(Iface_Def
)
9920 and then Nkind
(N
) /= N_Private_Extension_Declaration
9922 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9923 & " from task interface", Error_Node
);
9925 elsif not Is_Limited_Interface
(Iface_Id
) then
9926 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9927 & " from non-limited interface", Error_Node
);
9930 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9931 -- synchronized or task interfaces.
9933 elsif Nkind
(N
) = N_Full_Type_Declaration
9934 and then Task_Present
(Type_Def
)
9936 if Limited_Present
(Iface_Def
)
9937 or else Synchronized_Present
(Iface_Def
)
9938 or else Task_Present
(Iface_Def
)
9942 elsif Protected_Present
(Iface_Def
) then
9943 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9944 & " protected interface", Error_Node
);
9947 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9948 & " non-limited interface", Error_Node
);
9953 -- Start of processing for Check_Interfaces
9956 if Is_Interface
(Parent_Type
) then
9957 if Is_Task_Interface
(Parent_Type
) then
9960 elsif Is_Protected_Interface
(Parent_Type
) then
9961 Is_Protected
:= True;
9965 if Nkind
(N
) = N_Private_Extension_Declaration
then
9967 -- Check that progenitors are compatible with declaration
9969 Iface
:= First
(Interface_List
(Def
));
9970 while Present
(Iface
) loop
9971 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
9973 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
9974 Iface_Def
:= Type_Definition
(Parent_Node
);
9976 if not Is_Interface
(Iface_Typ
) then
9977 Diagnose_Interface
(Iface
, Iface_Typ
);
9980 Check_Ifaces
(Iface_Def
, Iface
);
9986 if Is_Task
and Is_Protected
then
9988 ("type cannot derive from task and protected interface", N
);
9994 -- Full type declaration of derived type.
9995 -- Check compatibility with parent if it is interface type
9997 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9998 and then Is_Interface
(Parent_Type
)
10000 Parent_Node
:= Parent
(Parent_Type
);
10002 -- More detailed checks for interface varieties
10005 (Iface_Def
=> Type_Definition
(Parent_Node
),
10006 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
10009 Iface
:= First
(Interface_List
(Def
));
10010 while Present
(Iface
) loop
10011 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
10013 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
10014 Iface_Def
:= Type_Definition
(Parent_Node
);
10016 if not Is_Interface
(Iface_Typ
) then
10017 Diagnose_Interface
(Iface
, Iface_Typ
);
10020 -- "The declaration of a specific descendant of an interface
10021 -- type freezes the interface type" RM 13.14
10023 Freeze_Before
(N
, Iface_Typ
);
10024 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
10030 if Is_Task
and Is_Protected
then
10032 ("type cannot derive from task and protected interface", N
);
10034 end Check_Interfaces
;
10036 ------------------------------------
10037 -- Check_Or_Process_Discriminants --
10038 ------------------------------------
10040 -- If an incomplete or private type declaration was already given for the
10041 -- type, the discriminants may have already been processed if they were
10042 -- present on the incomplete declaration. In this case a full conformance
10043 -- check has been performed in Find_Type_Name, and we then recheck here
10044 -- some properties that can't be checked on the partial view alone.
10045 -- Otherwise we call Process_Discriminants.
10047 procedure Check_Or_Process_Discriminants
10050 Prev
: Entity_Id
:= Empty
)
10053 if Has_Discriminants
(T
) then
10055 -- Discriminants are already set on T if they were already present
10056 -- on the partial view. Make them visible to component declarations.
10060 -- Discriminant on T (full view) referencing expr on partial view
10062 Prev_D
: Entity_Id
;
10063 -- Entity of corresponding discriminant on partial view
10066 -- Discriminant specification for full view, expression is the
10067 -- syntactic copy on full view (which has been checked for
10068 -- conformance with partial view), only used here to post error
10072 D
:= First_Discriminant
(T
);
10073 New_D
:= First
(Discriminant_Specifications
(N
));
10074 while Present
(D
) loop
10075 Prev_D
:= Current_Entity
(D
);
10076 Set_Current_Entity
(D
);
10077 Set_Is_Immediately_Visible
(D
);
10078 Set_Homonym
(D
, Prev_D
);
10080 -- Handle the case where there is an untagged partial view and
10081 -- the full view is tagged: must disallow discriminants with
10082 -- defaults, unless compiling for Ada 2012, which allows a
10083 -- limited tagged type to have defaulted discriminants (see
10084 -- AI05-0214). However, suppress the error here if it was
10085 -- already reported on the default expression of the partial
10088 if Is_Tagged_Type
(T
)
10089 and then Present
(Expression
(Parent
(D
)))
10090 and then (not Is_Limited_Type
(Current_Scope
)
10091 or else Ada_Version
< Ada_2012
)
10092 and then not Error_Posted
(Expression
(Parent
(D
)))
10094 if Ada_Version
>= Ada_2012
then
10096 ("discriminants of nonlimited tagged type cannot have"
10098 Expression
(New_D
));
10101 ("discriminants of tagged type cannot have defaults",
10102 Expression
(New_D
));
10106 -- Ada 2005 (AI-230): Access discriminant allowed in
10107 -- non-limited record types.
10109 if Ada_Version
< Ada_2005
then
10111 -- This restriction gets applied to the full type here. It
10112 -- has already been applied earlier to the partial view.
10114 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
10117 Next_Discriminant
(D
);
10122 elsif Present
(Discriminant_Specifications
(N
)) then
10123 Process_Discriminants
(N
, Prev
);
10125 end Check_Or_Process_Discriminants
;
10127 ----------------------
10128 -- Check_Real_Bound --
10129 ----------------------
10131 procedure Check_Real_Bound
(Bound
: Node_Id
) is
10133 if not Is_Real_Type
(Etype
(Bound
)) then
10135 ("bound in real type definition must be of real type", Bound
);
10137 elsif not Is_OK_Static_Expression
(Bound
) then
10138 Flag_Non_Static_Expr
10139 ("non-static expression used for real type bound!", Bound
);
10146 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
10148 Resolve
(Bound
, Standard_Float
);
10149 end Check_Real_Bound
;
10151 ------------------------------
10152 -- Complete_Private_Subtype --
10153 ------------------------------
10155 procedure Complete_Private_Subtype
10158 Full_Base
: Entity_Id
;
10159 Related_Nod
: Node_Id
)
10161 Save_Next_Entity
: Entity_Id
;
10162 Save_Homonym
: Entity_Id
;
10165 -- Set semantic attributes for (implicit) private subtype completion.
10166 -- If the full type has no discriminants, then it is a copy of the full
10167 -- view of the base. Otherwise, it is a subtype of the base with a
10168 -- possible discriminant constraint. Save and restore the original
10169 -- Next_Entity field of full to ensure that the calls to Copy_Node
10170 -- do not corrupt the entity chain.
10172 -- Note that the type of the full view is the same entity as the type of
10173 -- the partial view. In this fashion, the subtype has access to the
10174 -- correct view of the parent.
10176 Save_Next_Entity
:= Next_Entity
(Full
);
10177 Save_Homonym
:= Homonym
(Priv
);
10179 case Ekind
(Full_Base
) is
10180 when E_Record_Type |
10186 Copy_Node
(Priv
, Full
);
10188 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
10189 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
10190 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
10193 Copy_Node
(Full_Base
, Full
);
10194 Set_Chars
(Full
, Chars
(Priv
));
10195 Conditional_Delay
(Full
, Priv
);
10196 Set_Sloc
(Full
, Sloc
(Priv
));
10199 Set_Next_Entity
(Full
, Save_Next_Entity
);
10200 Set_Homonym
(Full
, Save_Homonym
);
10201 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
10203 -- Set common attributes for all subtypes: kind, convention, etc.
10205 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
10206 Set_Convention
(Full
, Convention
(Full_Base
));
10208 -- The Etype of the full view is inconsistent. Gigi needs to see the
10209 -- structural full view, which is what the current scheme gives:
10210 -- the Etype of the full view is the etype of the full base. However,
10211 -- if the full base is a derived type, the full view then looks like
10212 -- a subtype of the parent, not a subtype of the full base. If instead
10215 -- Set_Etype (Full, Full_Base);
10217 -- then we get inconsistencies in the front-end (confusion between
10218 -- views). Several outstanding bugs are related to this ???
10220 Set_Is_First_Subtype
(Full
, False);
10221 Set_Scope
(Full
, Scope
(Priv
));
10222 Set_Size_Info
(Full
, Full_Base
);
10223 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
10224 Set_Is_Itype
(Full
);
10226 -- A subtype of a private-type-without-discriminants, whose full-view
10227 -- has discriminants with default expressions, is not constrained!
10229 if not Has_Discriminants
(Priv
) then
10230 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
10232 if Has_Discriminants
(Full_Base
) then
10233 Set_Discriminant_Constraint
10234 (Full
, Discriminant_Constraint
(Full_Base
));
10236 -- The partial view may have been indefinite, the full view
10239 Set_Has_Unknown_Discriminants
10240 (Full
, Has_Unknown_Discriminants
(Full_Base
));
10244 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
10245 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
10247 -- Freeze the private subtype entity if its parent is delayed, and not
10248 -- already frozen. We skip this processing if the type is an anonymous
10249 -- subtype of a record component, or is the corresponding record of a
10250 -- protected type, since ???
10252 if not Is_Type
(Scope
(Full
)) then
10253 Set_Has_Delayed_Freeze
(Full
,
10254 Has_Delayed_Freeze
(Full_Base
)
10255 and then (not Is_Frozen
(Full_Base
)));
10258 Set_Freeze_Node
(Full
, Empty
);
10259 Set_Is_Frozen
(Full
, False);
10260 Set_Full_View
(Priv
, Full
);
10262 if Has_Discriminants
(Full
) then
10263 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
10264 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
10266 if Has_Unknown_Discriminants
(Full
) then
10267 Set_Discriminant_Constraint
(Full
, No_Elist
);
10271 if Ekind
(Full_Base
) = E_Record_Type
10272 and then Has_Discriminants
(Full_Base
)
10273 and then Has_Discriminants
(Priv
) -- might not, if errors
10274 and then not Has_Unknown_Discriminants
(Priv
)
10275 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
10277 Create_Constrained_Components
10278 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
10280 -- If the full base is itself derived from private, build a congruent
10281 -- subtype of its underlying type, for use by the back end. For a
10282 -- constrained record component, the declaration cannot be placed on
10283 -- the component list, but it must nevertheless be built an analyzed, to
10284 -- supply enough information for Gigi to compute the size of component.
10286 elsif Ekind
(Full_Base
) in Private_Kind
10287 and then Is_Derived_Type
(Full_Base
)
10288 and then Has_Discriminants
(Full_Base
)
10289 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
10291 if not Is_Itype
(Priv
)
10293 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
10295 Build_Underlying_Full_View
10296 (Parent
(Priv
), Full
, Etype
(Full_Base
));
10298 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
10299 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
10302 elsif Is_Record_Type
(Full_Base
) then
10304 -- Show Full is simply a renaming of Full_Base
10306 Set_Cloned_Subtype
(Full
, Full_Base
);
10309 -- It is unsafe to share to bounds of a scalar type, because the Itype
10310 -- is elaborated on demand, and if a bound is non-static then different
10311 -- orders of elaboration in different units will lead to different
10312 -- external symbols.
10314 if Is_Scalar_Type
(Full_Base
) then
10315 Set_Scalar_Range
(Full
,
10316 Make_Range
(Sloc
(Related_Nod
),
10318 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
10320 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
10322 -- This completion inherits the bounds of the full parent, but if
10323 -- the parent is an unconstrained floating point type, so is the
10326 if Is_Floating_Point_Type
(Full_Base
) then
10327 Set_Includes_Infinities
10328 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
10332 -- ??? It seems that a lot of fields are missing that should be copied
10333 -- from Full_Base to Full. Here are some that are introduced in a
10334 -- non-disruptive way but a cleanup is necessary.
10336 if Is_Tagged_Type
(Full_Base
) then
10337 Set_Is_Tagged_Type
(Full
);
10338 Set_Direct_Primitive_Operations
(Full
,
10339 Direct_Primitive_Operations
(Full_Base
));
10341 -- Inherit class_wide type of full_base in case the partial view was
10342 -- not tagged. Otherwise it has already been created when the private
10343 -- subtype was analyzed.
10345 if No
(Class_Wide_Type
(Full
)) then
10346 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
10349 -- If this is a subtype of a protected or task type, constrain its
10350 -- corresponding record, unless this is a subtype without constraints,
10351 -- i.e. a simple renaming as with an actual subtype in an instance.
10353 elsif Is_Concurrent_Type
(Full_Base
) then
10354 if Has_Discriminants
(Full
)
10355 and then Present
(Corresponding_Record_Type
(Full_Base
))
10357 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
10359 Set_Corresponding_Record_Type
(Full
,
10360 Constrain_Corresponding_Record
10361 (Full
, Corresponding_Record_Type
(Full_Base
),
10362 Related_Nod
, Full_Base
));
10365 Set_Corresponding_Record_Type
(Full
,
10366 Corresponding_Record_Type
(Full_Base
));
10370 -- Link rep item chain, and also setting of Has_Predicates from private
10371 -- subtype to full subtype, since we will need these on the full subtype
10372 -- to create the predicate function. Note that the full subtype may
10373 -- already have rep items, inherited from the full view of the base
10374 -- type, so we must be sure not to overwrite these entries.
10379 Next_Item
: Node_Id
;
10382 Item
:= First_Rep_Item
(Full
);
10384 -- If no existing rep items on full type, we can just link directly
10385 -- to the list of items on the private type.
10388 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
10390 -- Otherwise, search to the end of items currently linked to the full
10391 -- subtype and append the private items to the end. However, if Priv
10392 -- and Full already have the same list of rep items, then the append
10393 -- is not done, as that would create a circularity.
10395 elsif Item
/= First_Rep_Item
(Priv
) then
10399 Next_Item
:= Next_Rep_Item
(Item
);
10400 exit when No
(Next_Item
);
10403 -- If the private view has aspect specifications, the full view
10404 -- inherits them. Since these aspects may already have been
10405 -- attached to the full view during derivation, do not append
10406 -- them if already present.
10408 if Item
= First_Rep_Item
(Priv
) then
10414 -- And link the private type items at the end of the chain
10417 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
10422 -- Make sure Has_Predicates is set on full type if it is set on the
10423 -- private type. Note that it may already be set on the full type and
10424 -- if so, we don't want to unset it.
10426 if Has_Predicates
(Priv
) then
10427 Set_Has_Predicates
(Full
);
10429 end Complete_Private_Subtype
;
10431 ----------------------------
10432 -- Constant_Redeclaration --
10433 ----------------------------
10435 procedure Constant_Redeclaration
10440 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
10441 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
10444 procedure Check_Possible_Deferred_Completion
10445 (Prev_Id
: Entity_Id
;
10446 Prev_Obj_Def
: Node_Id
;
10447 Curr_Obj_Def
: Node_Id
);
10448 -- Determine whether the two object definitions describe the partial
10449 -- and the full view of a constrained deferred constant. Generate
10450 -- a subtype for the full view and verify that it statically matches
10451 -- the subtype of the partial view.
10453 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
10454 -- If deferred constant is an access type initialized with an allocator,
10455 -- check whether there is an illegal recursion in the definition,
10456 -- through a default value of some record subcomponent. This is normally
10457 -- detected when generating init procs, but requires this additional
10458 -- mechanism when expansion is disabled.
10460 ----------------------------------------
10461 -- Check_Possible_Deferred_Completion --
10462 ----------------------------------------
10464 procedure Check_Possible_Deferred_Completion
10465 (Prev_Id
: Entity_Id
;
10466 Prev_Obj_Def
: Node_Id
;
10467 Curr_Obj_Def
: Node_Id
)
10470 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
10471 and then Present
(Constraint
(Prev_Obj_Def
))
10472 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
10473 and then Present
(Constraint
(Curr_Obj_Def
))
10476 Loc
: constant Source_Ptr
:= Sloc
(N
);
10477 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
10478 Decl
: constant Node_Id
:=
10479 Make_Subtype_Declaration
(Loc
,
10480 Defining_Identifier
=> Def_Id
,
10481 Subtype_Indication
=>
10482 Relocate_Node
(Curr_Obj_Def
));
10485 Insert_Before_And_Analyze
(N
, Decl
);
10486 Set_Etype
(Id
, Def_Id
);
10488 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
10489 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
10490 Error_Msg_N
("subtype does not statically match deferred " &
10491 "declaration#", N
);
10495 end Check_Possible_Deferred_Completion
;
10497 ---------------------------------
10498 -- Check_Recursive_Declaration --
10499 ---------------------------------
10501 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
10505 if Is_Record_Type
(Typ
) then
10506 Comp
:= First_Component
(Typ
);
10507 while Present
(Comp
) loop
10508 if Comes_From_Source
(Comp
) then
10509 if Present
(Expression
(Parent
(Comp
)))
10510 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
10511 and then Entity
(Expression
(Parent
(Comp
))) = Prev
10513 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
10515 ("illegal circularity with declaration for&#",
10519 elsif Is_Record_Type
(Etype
(Comp
)) then
10520 Check_Recursive_Declaration
(Etype
(Comp
));
10524 Next_Component
(Comp
);
10527 end Check_Recursive_Declaration
;
10529 -- Start of processing for Constant_Redeclaration
10532 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
10533 if Nkind
(Object_Definition
10534 (Parent
(Prev
))) = N_Subtype_Indication
10536 -- Find type of new declaration. The constraints of the two
10537 -- views must match statically, but there is no point in
10538 -- creating an itype for the full view.
10540 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
10541 Find_Type
(Subtype_Mark
(Obj_Def
));
10542 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
10545 Find_Type
(Obj_Def
);
10546 New_T
:= Entity
(Obj_Def
);
10552 -- The full view may impose a constraint, even if the partial
10553 -- view does not, so construct the subtype.
10555 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
10560 -- Current declaration is illegal, diagnosed below in Enter_Name
10566 -- If previous full declaration or a renaming declaration exists, or if
10567 -- a homograph is present, let Enter_Name handle it, either with an
10568 -- error or with the removal of an overridden implicit subprogram.
10570 if Ekind
(Prev
) /= E_Constant
10571 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
10572 or else Present
(Expression
(Parent
(Prev
)))
10573 or else Present
(Full_View
(Prev
))
10577 -- Verify that types of both declarations match, or else that both types
10578 -- are anonymous access types whose designated subtypes statically match
10579 -- (as allowed in Ada 2005 by AI-385).
10581 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
10583 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
10584 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
10585 or else Is_Access_Constant
(Etype
(New_T
)) /=
10586 Is_Access_Constant
(Etype
(Prev
))
10587 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
10588 Can_Never_Be_Null
(Etype
(Prev
))
10589 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
10590 Null_Exclusion_Present
(Parent
(Id
))
10591 or else not Subtypes_Statically_Match
10592 (Designated_Type
(Etype
(Prev
)),
10593 Designated_Type
(Etype
(New_T
))))
10595 Error_Msg_Sloc
:= Sloc
(Prev
);
10596 Error_Msg_N
("type does not match declaration#", N
);
10597 Set_Full_View
(Prev
, Id
);
10598 Set_Etype
(Id
, Any_Type
);
10601 Null_Exclusion_Present
(Parent
(Prev
))
10602 and then not Null_Exclusion_Present
(N
)
10604 Error_Msg_Sloc
:= Sloc
(Prev
);
10605 Error_Msg_N
("null-exclusion does not match declaration#", N
);
10606 Set_Full_View
(Prev
, Id
);
10607 Set_Etype
(Id
, Any_Type
);
10609 -- If so, process the full constant declaration
10612 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10613 -- the deferred declaration is constrained, then the subtype defined
10614 -- by the subtype_indication in the full declaration shall match it
10617 Check_Possible_Deferred_Completion
10619 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
10620 Curr_Obj_Def
=> Obj_Def
);
10622 Set_Full_View
(Prev
, Id
);
10623 Set_Is_Public
(Id
, Is_Public
(Prev
));
10624 Set_Is_Internal
(Id
);
10625 Append_Entity
(Id
, Current_Scope
);
10627 -- Check ALIASED present if present before (RM 7.4(7))
10629 if Is_Aliased
(Prev
)
10630 and then not Aliased_Present
(N
)
10632 Error_Msg_Sloc
:= Sloc
(Prev
);
10633 Error_Msg_N
("ALIASED required (see declaration#)", N
);
10636 -- Check that placement is in private part and that the incomplete
10637 -- declaration appeared in the visible part.
10639 if Ekind
(Current_Scope
) = E_Package
10640 and then not In_Private_Part
(Current_Scope
)
10642 Error_Msg_Sloc
:= Sloc
(Prev
);
10644 ("full constant for declaration#"
10645 & " must be in private part", N
);
10647 elsif Ekind
(Current_Scope
) = E_Package
10649 List_Containing
(Parent
(Prev
)) /=
10650 Visible_Declarations
10651 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
10654 ("deferred constant must be declared in visible part",
10658 if Is_Access_Type
(T
)
10659 and then Nkind
(Expression
(N
)) = N_Allocator
10661 Check_Recursive_Declaration
(Designated_Type
(T
));
10664 end Constant_Redeclaration
;
10666 ----------------------
10667 -- Constrain_Access --
10668 ----------------------
10670 procedure Constrain_Access
10671 (Def_Id
: in out Entity_Id
;
10673 Related_Nod
: Node_Id
)
10675 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10676 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
10677 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
10678 Constraint_OK
: Boolean := True;
10680 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
10681 -- Simple predicate to test for defaulted discriminants
10682 -- Shouldn't this be in sem_util???
10684 ---------------------------------
10685 -- Has_Defaulted_Discriminants --
10686 ---------------------------------
10688 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
10690 return Has_Discriminants
(Typ
)
10691 and then Present
(First_Discriminant
(Typ
))
10693 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
10694 end Has_Defaulted_Discriminants
;
10696 -- Start of processing for Constrain_Access
10699 if Is_Array_Type
(Desig_Type
) then
10700 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
10702 elsif (Is_Record_Type
(Desig_Type
)
10703 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
10704 and then not Is_Constrained
(Desig_Type
)
10706 -- ??? The following code is a temporary kludge to ignore a
10707 -- discriminant constraint on access type if it is constraining
10708 -- the current record. Avoid creating the implicit subtype of the
10709 -- record we are currently compiling since right now, we cannot
10710 -- handle these. For now, just return the access type itself.
10712 if Desig_Type
= Current_Scope
10713 and then No
(Def_Id
)
10715 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
10716 Def_Id
:= Entity
(Subtype_Mark
(S
));
10718 -- This call added to ensure that the constraint is analyzed
10719 -- (needed for a B test). Note that we still return early from
10720 -- this procedure to avoid recursive processing. ???
10722 Constrain_Discriminated_Type
10723 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
10727 -- Enforce rule that the constraint is illegal if there is an
10728 -- unconstrained view of the designated type. This means that the
10729 -- partial view (either a private type declaration or a derivation
10730 -- from a private type) has no discriminants. (Defect Report
10731 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
10733 -- Rule updated for Ada 2005: the private type is said to have
10734 -- a constrained partial view, given that objects of the type
10735 -- can be declared. Furthermore, the rule applies to all access
10736 -- types, unlike the rule concerning default discriminants (see
10739 if (Ekind
(T
) = E_General_Access_Type
10740 or else Ada_Version
>= Ada_2005
)
10741 and then Has_Private_Declaration
(Desig_Type
)
10742 and then In_Open_Scopes
(Scope
(Desig_Type
))
10743 and then Has_Discriminants
(Desig_Type
)
10746 Pack
: constant Node_Id
:=
10747 Unit_Declaration_Node
(Scope
(Desig_Type
));
10752 if Nkind
(Pack
) = N_Package_Declaration
then
10753 Decls
:= Visible_Declarations
(Specification
(Pack
));
10754 Decl
:= First
(Decls
);
10755 while Present
(Decl
) loop
10756 if (Nkind
(Decl
) = N_Private_Type_Declaration
10758 Chars
(Defining_Identifier
(Decl
)) =
10759 Chars
(Desig_Type
))
10762 (Nkind
(Decl
) = N_Full_Type_Declaration
10764 Chars
(Defining_Identifier
(Decl
)) =
10766 and then Is_Derived_Type
(Desig_Type
)
10768 Has_Private_Declaration
(Etype
(Desig_Type
)))
10770 if No
(Discriminant_Specifications
(Decl
)) then
10772 ("cannot constrain access type if designated " &
10773 "type has constrained partial view", S
);
10785 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
10786 For_Access
=> True);
10788 elsif (Is_Task_Type
(Desig_Type
)
10789 or else Is_Protected_Type
(Desig_Type
))
10790 and then not Is_Constrained
(Desig_Type
)
10792 Constrain_Concurrent
10793 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
10796 Error_Msg_N
("invalid constraint on access type", S
);
10797 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
10798 Constraint_OK
:= False;
10801 if No
(Def_Id
) then
10802 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
10804 Set_Ekind
(Def_Id
, E_Access_Subtype
);
10807 if Constraint_OK
then
10808 Set_Etype
(Def_Id
, Base_Type
(T
));
10810 if Is_Private_Type
(Desig_Type
) then
10811 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
10814 Set_Etype
(Def_Id
, Any_Type
);
10817 Set_Size_Info
(Def_Id
, T
);
10818 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
10819 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
10820 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10821 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
10823 Conditional_Delay
(Def_Id
, T
);
10825 -- AI-363 : Subtypes of general access types whose designated types have
10826 -- default discriminants are disallowed. In instances, the rule has to
10827 -- be checked against the actual, of which T is the subtype. In a
10828 -- generic body, the rule is checked assuming that the actual type has
10829 -- defaulted discriminants.
10831 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
10832 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
10833 and then Has_Defaulted_Discriminants
(Desig_Type
)
10835 if Ada_Version
< Ada_2005
then
10837 ("access subtype of general access type would not " &
10838 "be allowed in Ada 2005?", S
);
10841 ("access subtype of general access type not allowed", S
);
10844 Error_Msg_N
("\discriminants have defaults", S
);
10846 elsif Is_Access_Type
(T
)
10847 and then Is_Generic_Type
(Desig_Type
)
10848 and then Has_Discriminants
(Desig_Type
)
10849 and then In_Package_Body
(Current_Scope
)
10851 if Ada_Version
< Ada_2005
then
10853 ("access subtype would not be allowed in generic body " &
10854 "in Ada 2005?", S
);
10857 ("access subtype not allowed in generic body", S
);
10861 ("\designated type is a discriminated formal", S
);
10864 end Constrain_Access
;
10866 ---------------------
10867 -- Constrain_Array --
10868 ---------------------
10870 procedure Constrain_Array
10871 (Def_Id
: in out Entity_Id
;
10873 Related_Nod
: Node_Id
;
10874 Related_Id
: Entity_Id
;
10875 Suffix
: Character)
10877 C
: constant Node_Id
:= Constraint
(SI
);
10878 Number_Of_Constraints
: Nat
:= 0;
10881 Constraint_OK
: Boolean := True;
10884 T
:= Entity
(Subtype_Mark
(SI
));
10886 if Ekind
(T
) in Access_Kind
then
10887 T
:= Designated_Type
(T
);
10890 -- If an index constraint follows a subtype mark in a subtype indication
10891 -- then the type or subtype denoted by the subtype mark must not already
10892 -- impose an index constraint. The subtype mark must denote either an
10893 -- unconstrained array type or an access type whose designated type
10894 -- is such an array type... (RM 3.6.1)
10896 if Is_Constrained
(T
) then
10897 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
10898 Constraint_OK
:= False;
10901 S
:= First
(Constraints
(C
));
10902 while Present
(S
) loop
10903 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
10907 -- In either case, the index constraint must provide a discrete
10908 -- range for each index of the array type and the type of each
10909 -- discrete range must be the same as that of the corresponding
10910 -- index. (RM 3.6.1)
10912 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
10913 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
10914 Constraint_OK
:= False;
10917 S
:= First
(Constraints
(C
));
10918 Index
:= First_Index
(T
);
10921 -- Apply constraints to each index type
10923 for J
in 1 .. Number_Of_Constraints
loop
10924 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
10932 if No
(Def_Id
) then
10934 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
10935 Set_Parent
(Def_Id
, Related_Nod
);
10938 Set_Ekind
(Def_Id
, E_Array_Subtype
);
10941 Set_Size_Info
(Def_Id
, (T
));
10942 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10943 Set_Etype
(Def_Id
, Base_Type
(T
));
10945 if Constraint_OK
then
10946 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
10948 Set_First_Index
(Def_Id
, First_Index
(T
));
10951 Set_Is_Constrained
(Def_Id
, True);
10952 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
10953 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10955 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
10956 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
10958 -- A subtype does not inherit the packed_array_type of is parent. We
10959 -- need to initialize the attribute because if Def_Id is previously
10960 -- analyzed through a limited_with clause, it will have the attributes
10961 -- of an incomplete type, one of which is an Elist that overlaps the
10962 -- Packed_Array_Type field.
10964 Set_Packed_Array_Type
(Def_Id
, Empty
);
10966 -- Build a freeze node if parent still needs one. Also make sure that
10967 -- the Depends_On_Private status is set because the subtype will need
10968 -- reprocessing at the time the base type does, and also we must set a
10969 -- conditional delay.
10971 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
10972 Conditional_Delay
(Def_Id
, T
);
10973 end Constrain_Array
;
10975 ------------------------------
10976 -- Constrain_Component_Type --
10977 ------------------------------
10979 function Constrain_Component_Type
10981 Constrained_Typ
: Entity_Id
;
10982 Related_Node
: Node_Id
;
10984 Constraints
: Elist_Id
) return Entity_Id
10986 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
10987 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
10989 function Build_Constrained_Array_Type
10990 (Old_Type
: Entity_Id
) return Entity_Id
;
10991 -- If Old_Type is an array type, one of whose indexes is constrained
10992 -- by a discriminant, build an Itype whose constraint replaces the
10993 -- discriminant with its value in the constraint.
10995 function Build_Constrained_Discriminated_Type
10996 (Old_Type
: Entity_Id
) return Entity_Id
;
10997 -- Ditto for record components
10999 function Build_Constrained_Access_Type
11000 (Old_Type
: Entity_Id
) return Entity_Id
;
11001 -- Ditto for access types. Makes use of previous two functions, to
11002 -- constrain designated type.
11004 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
11005 -- T is an array or discriminated type, C is a list of constraints
11006 -- that apply to T. This routine builds the constrained subtype.
11008 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
11009 -- Returns True if Expr is a discriminant
11011 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
11012 -- Find the value of discriminant Discrim in Constraint
11014 -----------------------------------
11015 -- Build_Constrained_Access_Type --
11016 -----------------------------------
11018 function Build_Constrained_Access_Type
11019 (Old_Type
: Entity_Id
) return Entity_Id
11021 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
11023 Desig_Subtype
: Entity_Id
;
11027 -- if the original access type was not embedded in the enclosing
11028 -- type definition, there is no need to produce a new access
11029 -- subtype. In fact every access type with an explicit constraint
11030 -- generates an itype whose scope is the enclosing record.
11032 if not Is_Type
(Scope
(Old_Type
)) then
11035 elsif Is_Array_Type
(Desig_Type
) then
11036 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
11038 elsif Has_Discriminants
(Desig_Type
) then
11040 -- This may be an access type to an enclosing record type for
11041 -- which we are constructing the constrained components. Return
11042 -- the enclosing record subtype. This is not always correct,
11043 -- but avoids infinite recursion. ???
11045 Desig_Subtype
:= Any_Type
;
11047 for J
in reverse 0 .. Scope_Stack
.Last
loop
11048 Scop
:= Scope_Stack
.Table
(J
).Entity
;
11051 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
11053 Desig_Subtype
:= Scop
;
11056 exit when not Is_Type
(Scop
);
11059 if Desig_Subtype
= Any_Type
then
11061 Build_Constrained_Discriminated_Type
(Desig_Type
);
11068 if Desig_Subtype
/= Desig_Type
then
11070 -- The Related_Node better be here or else we won't be able
11071 -- to attach new itypes to a node in the tree.
11073 pragma Assert
(Present
(Related_Node
));
11075 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
11077 Set_Etype
(Itype
, Base_Type
(Old_Type
));
11078 Set_Size_Info
(Itype
, (Old_Type
));
11079 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
11080 Set_Depends_On_Private
(Itype
, Has_Private_Component
11082 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
11085 -- The new itype needs freezing when it depends on a not frozen
11086 -- type and the enclosing subtype needs freezing.
11088 if Has_Delayed_Freeze
(Constrained_Typ
)
11089 and then not Is_Frozen
(Constrained_Typ
)
11091 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
11099 end Build_Constrained_Access_Type
;
11101 ----------------------------------
11102 -- Build_Constrained_Array_Type --
11103 ----------------------------------
11105 function Build_Constrained_Array_Type
11106 (Old_Type
: Entity_Id
) return Entity_Id
11110 Old_Index
: Node_Id
;
11111 Range_Node
: Node_Id
;
11112 Constr_List
: List_Id
;
11114 Need_To_Create_Itype
: Boolean := False;
11117 Old_Index
:= First_Index
(Old_Type
);
11118 while Present
(Old_Index
) loop
11119 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11121 if Is_Discriminant
(Lo_Expr
)
11122 or else Is_Discriminant
(Hi_Expr
)
11124 Need_To_Create_Itype
:= True;
11127 Next_Index
(Old_Index
);
11130 if Need_To_Create_Itype
then
11131 Constr_List
:= New_List
;
11133 Old_Index
:= First_Index
(Old_Type
);
11134 while Present
(Old_Index
) loop
11135 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11137 if Is_Discriminant
(Lo_Expr
) then
11138 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
11141 if Is_Discriminant
(Hi_Expr
) then
11142 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
11147 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
11149 Append
(Range_Node
, To
=> Constr_List
);
11151 Next_Index
(Old_Index
);
11154 return Build_Subtype
(Old_Type
, Constr_List
);
11159 end Build_Constrained_Array_Type
;
11161 ------------------------------------------
11162 -- Build_Constrained_Discriminated_Type --
11163 ------------------------------------------
11165 function Build_Constrained_Discriminated_Type
11166 (Old_Type
: Entity_Id
) return Entity_Id
11169 Constr_List
: List_Id
;
11170 Old_Constraint
: Elmt_Id
;
11172 Need_To_Create_Itype
: Boolean := False;
11175 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11176 while Present
(Old_Constraint
) loop
11177 Expr
:= Node
(Old_Constraint
);
11179 if Is_Discriminant
(Expr
) then
11180 Need_To_Create_Itype
:= True;
11183 Next_Elmt
(Old_Constraint
);
11186 if Need_To_Create_Itype
then
11187 Constr_List
:= New_List
;
11189 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11190 while Present
(Old_Constraint
) loop
11191 Expr
:= Node
(Old_Constraint
);
11193 if Is_Discriminant
(Expr
) then
11194 Expr
:= Get_Discr_Value
(Expr
);
11197 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
11199 Next_Elmt
(Old_Constraint
);
11202 return Build_Subtype
(Old_Type
, Constr_List
);
11207 end Build_Constrained_Discriminated_Type
;
11209 -------------------
11210 -- Build_Subtype --
11211 -------------------
11213 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
11215 Subtyp_Decl
: Node_Id
;
11216 Def_Id
: Entity_Id
;
11217 Btyp
: Entity_Id
:= Base_Type
(T
);
11220 -- The Related_Node better be here or else we won't be able to
11221 -- attach new itypes to a node in the tree.
11223 pragma Assert
(Present
(Related_Node
));
11225 -- If the view of the component's type is incomplete or private
11226 -- with unknown discriminants, then the constraint must be applied
11227 -- to the full type.
11229 if Has_Unknown_Discriminants
(Btyp
)
11230 and then Present
(Underlying_Type
(Btyp
))
11232 Btyp
:= Underlying_Type
(Btyp
);
11236 Make_Subtype_Indication
(Loc
,
11237 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
11238 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
11240 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
11243 Make_Subtype_Declaration
(Loc
,
11244 Defining_Identifier
=> Def_Id
,
11245 Subtype_Indication
=> Indic
);
11247 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
11249 -- Itypes must be analyzed with checks off (see package Itypes)
11251 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
11256 ---------------------
11257 -- Get_Discr_Value --
11258 ---------------------
11260 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
11265 -- The discriminant may be declared for the type, in which case we
11266 -- find it by iterating over the list of discriminants. If the
11267 -- discriminant is inherited from a parent type, it appears as the
11268 -- corresponding discriminant of the current type. This will be the
11269 -- case when constraining an inherited component whose constraint is
11270 -- given by a discriminant of the parent.
11272 D
:= First_Discriminant
(Typ
);
11273 E
:= First_Elmt
(Constraints
);
11275 while Present
(D
) loop
11276 if D
= Entity
(Discrim
)
11277 or else D
= CR_Discriminant
(Entity
(Discrim
))
11278 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
11283 Next_Discriminant
(D
);
11287 -- The Corresponding_Discriminant mechanism is incomplete, because
11288 -- the correspondence between new and old discriminants is not one
11289 -- to one: one new discriminant can constrain several old ones. In
11290 -- that case, scan sequentially the stored_constraint, the list of
11291 -- discriminants of the parents, and the constraints.
11292 -- Previous code checked for the present of the Stored_Constraint
11293 -- list for the derived type, but did not use it at all. Should it
11294 -- be present when the component is a discriminated task type?
11296 if Is_Derived_Type
(Typ
)
11297 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
11299 D
:= First_Discriminant
(Etype
(Typ
));
11300 E
:= First_Elmt
(Constraints
);
11301 while Present
(D
) loop
11302 if D
= Entity
(Discrim
) then
11306 Next_Discriminant
(D
);
11311 -- Something is wrong if we did not find the value
11313 raise Program_Error
;
11314 end Get_Discr_Value
;
11316 ---------------------
11317 -- Is_Discriminant --
11318 ---------------------
11320 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
11321 Discrim_Scope
: Entity_Id
;
11324 if Denotes_Discriminant
(Expr
) then
11325 Discrim_Scope
:= Scope
(Entity
(Expr
));
11327 -- Either we have a reference to one of Typ's discriminants,
11329 pragma Assert
(Discrim_Scope
= Typ
11331 -- or to the discriminants of the parent type, in the case
11332 -- of a derivation of a tagged type with variants.
11334 or else Discrim_Scope
= Etype
(Typ
)
11335 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
11337 -- or same as above for the case where the discriminants
11338 -- were declared in Typ's private view.
11340 or else (Is_Private_Type
(Discrim_Scope
)
11341 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11343 -- or else we are deriving from the full view and the
11344 -- discriminant is declared in the private entity.
11346 or else (Is_Private_Type
(Typ
)
11347 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11349 -- Or we are constrained the corresponding record of a
11350 -- synchronized type that completes a private declaration.
11352 or else (Is_Concurrent_Record_Type
(Typ
)
11354 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
11356 -- or we have a class-wide type, in which case make sure the
11357 -- discriminant found belongs to the root type.
11359 or else (Is_Class_Wide_Type
(Typ
)
11360 and then Etype
(Typ
) = Discrim_Scope
));
11365 -- In all other cases we have something wrong
11368 end Is_Discriminant
;
11370 -- Start of processing for Constrain_Component_Type
11373 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
11374 and then Comes_From_Source
(Parent
(Comp
))
11375 and then Comes_From_Source
11376 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11379 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11381 return Compon_Type
;
11383 elsif Is_Array_Type
(Compon_Type
) then
11384 return Build_Constrained_Array_Type
(Compon_Type
);
11386 elsif Has_Discriminants
(Compon_Type
) then
11387 return Build_Constrained_Discriminated_Type
(Compon_Type
);
11389 elsif Is_Access_Type
(Compon_Type
) then
11390 return Build_Constrained_Access_Type
(Compon_Type
);
11393 return Compon_Type
;
11395 end Constrain_Component_Type
;
11397 --------------------------
11398 -- Constrain_Concurrent --
11399 --------------------------
11401 -- For concurrent types, the associated record value type carries the same
11402 -- discriminants, so when we constrain a concurrent type, we must constrain
11403 -- the corresponding record type as well.
11405 procedure Constrain_Concurrent
11406 (Def_Id
: in out Entity_Id
;
11408 Related_Nod
: Node_Id
;
11409 Related_Id
: Entity_Id
;
11410 Suffix
: Character)
11412 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11413 -- case of a private subtype (needed when only doing semantic analysis).
11415 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
11419 if Ekind
(T_Ent
) in Access_Kind
then
11420 T_Ent
:= Designated_Type
(T_Ent
);
11423 T_Val
:= Corresponding_Record_Type
(T_Ent
);
11425 if Present
(T_Val
) then
11427 if No
(Def_Id
) then
11428 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11431 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11433 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11434 Set_Corresponding_Record_Type
(Def_Id
,
11435 Constrain_Corresponding_Record
11436 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
11439 -- If there is no associated record, expansion is disabled and this
11440 -- is a generic context. Create a subtype in any case, so that
11441 -- semantic analysis can proceed.
11443 if No
(Def_Id
) then
11444 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11447 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11449 end Constrain_Concurrent
;
11451 ------------------------------------
11452 -- Constrain_Corresponding_Record --
11453 ------------------------------------
11455 function Constrain_Corresponding_Record
11456 (Prot_Subt
: Entity_Id
;
11457 Corr_Rec
: Entity_Id
;
11458 Related_Nod
: Node_Id
;
11459 Related_Id
: Entity_Id
) return Entity_Id
11461 T_Sub
: constant Entity_Id
:=
11462 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
11465 Set_Etype
(T_Sub
, Corr_Rec
);
11466 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
11467 Set_Is_Constrained
(T_Sub
, True);
11468 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
11469 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
11471 -- As elsewhere, we do not want to create a freeze node for this itype
11472 -- if it is created for a constrained component of an enclosing record
11473 -- because references to outer discriminants will appear out of scope.
11475 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
11476 Conditional_Delay
(T_Sub
, Corr_Rec
);
11478 Set_Is_Frozen
(T_Sub
);
11481 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
11482 Set_Discriminant_Constraint
11483 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
11484 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
11485 Create_Constrained_Components
11486 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
11489 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
11492 end Constrain_Corresponding_Record
;
11494 -----------------------
11495 -- Constrain_Decimal --
11496 -----------------------
11498 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
11499 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11500 C
: constant Node_Id
:= Constraint
(S
);
11501 Loc
: constant Source_Ptr
:= Sloc
(C
);
11502 Range_Expr
: Node_Id
;
11503 Digits_Expr
: Node_Id
;
11508 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
11510 if Nkind
(C
) = N_Range_Constraint
then
11511 Range_Expr
:= Range_Expression
(C
);
11512 Digits_Val
:= Digits_Value
(T
);
11515 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
11517 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11519 Digits_Expr
:= Digits_Expression
(C
);
11520 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
11522 Check_Digits_Expression
(Digits_Expr
);
11523 Digits_Val
:= Expr_Value
(Digits_Expr
);
11525 if Digits_Val
> Digits_Value
(T
) then
11527 ("digits expression is incompatible with subtype", C
);
11528 Digits_Val
:= Digits_Value
(T
);
11531 if Present
(Range_Constraint
(C
)) then
11532 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
11534 Range_Expr
:= Empty
;
11538 Set_Etype
(Def_Id
, Base_Type
(T
));
11539 Set_Size_Info
(Def_Id
, (T
));
11540 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11541 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11542 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
11543 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11544 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
11545 Set_Digits_Value
(Def_Id
, Digits_Val
);
11547 -- Manufacture range from given digits value if no range present
11549 if No
(Range_Expr
) then
11550 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
11554 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
11556 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
11559 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
11560 Set_Discrete_RM_Size
(Def_Id
);
11562 -- Unconditionally delay the freeze, since we cannot set size
11563 -- information in all cases correctly until the freeze point.
11565 Set_Has_Delayed_Freeze
(Def_Id
);
11566 end Constrain_Decimal
;
11568 ----------------------------------
11569 -- Constrain_Discriminated_Type --
11570 ----------------------------------
11572 procedure Constrain_Discriminated_Type
11573 (Def_Id
: Entity_Id
;
11575 Related_Nod
: Node_Id
;
11576 For_Access
: Boolean := False)
11578 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11581 Elist
: Elist_Id
:= New_Elmt_List
;
11583 procedure Fixup_Bad_Constraint
;
11584 -- This is called after finding a bad constraint, and after having
11585 -- posted an appropriate error message. The mission is to leave the
11586 -- entity T in as reasonable state as possible!
11588 --------------------------
11589 -- Fixup_Bad_Constraint --
11590 --------------------------
11592 procedure Fixup_Bad_Constraint
is
11594 -- Set a reasonable Ekind for the entity. For an incomplete type,
11595 -- we can't do much, but for other types, we can set the proper
11596 -- corresponding subtype kind.
11598 if Ekind
(T
) = E_Incomplete_Type
then
11599 Set_Ekind
(Def_Id
, Ekind
(T
));
11601 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
11604 -- Set Etype to the known type, to reduce chances of cascaded errors
11606 Set_Etype
(Def_Id
, E
);
11607 Set_Error_Posted
(Def_Id
);
11608 end Fixup_Bad_Constraint
;
11610 -- Start of processing for Constrain_Discriminated_Type
11613 C
:= Constraint
(S
);
11615 -- A discriminant constraint is only allowed in a subtype indication,
11616 -- after a subtype mark. This subtype mark must denote either a type
11617 -- with discriminants, or an access type whose designated type is a
11618 -- type with discriminants. A discriminant constraint specifies the
11619 -- values of these discriminants (RM 3.7.2(5)).
11621 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
11623 if Ekind
(T
) in Access_Kind
then
11624 T
:= Designated_Type
(T
);
11627 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11628 -- Avoid generating an error for access-to-incomplete subtypes.
11630 if Ada_Version
>= Ada_2005
11631 and then Ekind
(T
) = E_Incomplete_Type
11632 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
11633 and then not Is_Itype
(Def_Id
)
11635 -- A little sanity check, emit an error message if the type
11636 -- has discriminants to begin with. Type T may be a regular
11637 -- incomplete type or imported via a limited with clause.
11639 if Has_Discriminants
(T
)
11641 (From_With_Type
(T
)
11642 and then Present
(Non_Limited_View
(T
))
11643 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
11644 N_Full_Type_Declaration
11645 and then Present
(Discriminant_Specifications
11646 (Parent
(Non_Limited_View
(T
)))))
11649 ("(Ada 2005) incomplete subtype may not be constrained", C
);
11651 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11654 Fixup_Bad_Constraint
;
11657 -- Check that the type has visible discriminants. The type may be
11658 -- a private type with unknown discriminants whose full view has
11659 -- discriminants which are invisible.
11661 elsif not Has_Discriminants
(T
)
11663 (Has_Unknown_Discriminants
(T
)
11664 and then Is_Private_Type
(T
))
11666 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11667 Fixup_Bad_Constraint
;
11670 elsif Is_Constrained
(E
)
11671 or else (Ekind
(E
) = E_Class_Wide_Subtype
11672 and then Present
(Discriminant_Constraint
(E
)))
11674 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
11675 Fixup_Bad_Constraint
;
11679 -- T may be an unconstrained subtype (e.g. a generic actual).
11680 -- Constraint applies to the base type.
11682 T
:= Base_Type
(T
);
11684 Elist
:= Build_Discriminant_Constraints
(T
, S
);
11686 -- If the list returned was empty we had an error in building the
11687 -- discriminant constraint. We have also already signalled an error
11688 -- in the incomplete type case
11690 if Is_Empty_Elmt_List
(Elist
) then
11691 Fixup_Bad_Constraint
;
11695 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
11696 end Constrain_Discriminated_Type
;
11698 ---------------------------
11699 -- Constrain_Enumeration --
11700 ---------------------------
11702 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
11703 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11704 C
: constant Node_Id
:= Constraint
(S
);
11707 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11709 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
11711 Set_Etype
(Def_Id
, Base_Type
(T
));
11712 Set_Size_Info
(Def_Id
, (T
));
11713 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11714 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11716 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11718 Set_Discrete_RM_Size
(Def_Id
);
11719 end Constrain_Enumeration
;
11721 ----------------------
11722 -- Constrain_Float --
11723 ----------------------
11725 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
11726 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11732 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
11734 Set_Etype
(Def_Id
, Base_Type
(T
));
11735 Set_Size_Info
(Def_Id
, (T
));
11736 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11738 -- Process the constraint
11740 C
:= Constraint
(S
);
11742 -- Digits constraint present
11744 if Nkind
(C
) = N_Digits_Constraint
then
11746 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11747 Check_Restriction
(No_Obsolescent_Features
, C
);
11749 if Warn_On_Obsolescent_Feature
then
11751 ("subtype digits constraint is an " &
11752 "obsolescent feature (RM J.3(8))?", C
);
11755 D
:= Digits_Expression
(C
);
11756 Analyze_And_Resolve
(D
, Any_Integer
);
11757 Check_Digits_Expression
(D
);
11758 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
11760 -- Check that digits value is in range. Obviously we can do this
11761 -- at compile time, but it is strictly a runtime check, and of
11762 -- course there is an ACVC test that checks this!
11764 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
11765 Error_Msg_Uint_1
:= Digits_Value
(T
);
11766 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
11768 Make_Raise_Constraint_Error
(Sloc
(D
),
11769 Reason
=> CE_Range_Check_Failed
);
11770 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11773 C
:= Range_Constraint
(C
);
11775 -- No digits constraint present
11778 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
11781 -- Range constraint present
11783 if Nkind
(C
) = N_Range_Constraint
then
11784 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11786 -- No range constraint present
11789 pragma Assert
(No
(C
));
11790 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11793 Set_Is_Constrained
(Def_Id
);
11794 end Constrain_Float
;
11796 ---------------------
11797 -- Constrain_Index --
11798 ---------------------
11800 procedure Constrain_Index
11803 Related_Nod
: Node_Id
;
11804 Related_Id
: Entity_Id
;
11805 Suffix
: Character;
11806 Suffix_Index
: Nat
)
11808 Def_Id
: Entity_Id
;
11809 R
: Node_Id
:= Empty
;
11810 T
: constant Entity_Id
:= Etype
(Index
);
11813 if Nkind
(S
) = N_Range
11815 (Nkind
(S
) = N_Attribute_Reference
11816 and then Attribute_Name
(S
) = Name_Range
)
11818 -- A Range attribute will be transformed into N_Range by Resolve
11824 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
11826 if not Error_Posted
(S
)
11828 (Nkind
(S
) /= N_Range
11829 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
11830 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
11832 if Base_Type
(T
) /= Any_Type
11833 and then Etype
(Low_Bound
(S
)) /= Any_Type
11834 and then Etype
(High_Bound
(S
)) /= Any_Type
11836 Error_Msg_N
("range expected", S
);
11840 elsif Nkind
(S
) = N_Subtype_Indication
then
11842 -- The parser has verified that this is a discrete indication
11844 Resolve_Discrete_Subtype_Indication
(S
, T
);
11845 R
:= Range_Expression
(Constraint
(S
));
11847 -- Capture values of bounds and generate temporaries for them if
11848 -- needed, since checks may cause duplication of the expressions
11849 -- which must not be reevaluated.
11851 -- The forced evaluation removes side effects from expressions,
11852 -- which should occur also in Alfa mode. Otherwise, we end up with
11853 -- unexpected insertions of actions at places where this is not
11854 -- supposed to occur, e.g. on default parameters of a call.
11856 if Expander_Active
then
11857 Force_Evaluation
(Low_Bound
(R
));
11858 Force_Evaluation
(High_Bound
(R
));
11861 elsif Nkind
(S
) = N_Discriminant_Association
then
11863 -- Syntactically valid in subtype indication
11865 Error_Msg_N
("invalid index constraint", S
);
11866 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11869 -- Subtype_Mark case, no anonymous subtypes to construct
11874 if Is_Entity_Name
(S
) then
11875 if not Is_Type
(Entity
(S
)) then
11876 Error_Msg_N
("expect subtype mark for index constraint", S
);
11878 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
11879 Wrong_Type
(S
, Base_Type
(T
));
11881 -- Check error of subtype with predicate in index constraint
11884 Bad_Predicated_Subtype_Use
11885 ("subtype& has predicate, not allowed in index constraint",
11892 Error_Msg_N
("invalid index constraint", S
);
11893 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11899 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
11901 Set_Etype
(Def_Id
, Base_Type
(T
));
11903 if Is_Modular_Integer_Type
(T
) then
11904 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11906 elsif Is_Integer_Type
(T
) then
11907 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11910 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11911 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11912 Set_First_Literal
(Def_Id
, First_Literal
(T
));
11915 Set_Size_Info
(Def_Id
, (T
));
11916 Set_RM_Size
(Def_Id
, RM_Size
(T
));
11917 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11919 Set_Scalar_Range
(Def_Id
, R
);
11921 Set_Etype
(S
, Def_Id
);
11922 Set_Discrete_RM_Size
(Def_Id
);
11923 end Constrain_Index
;
11925 -----------------------
11926 -- Constrain_Integer --
11927 -----------------------
11929 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
11930 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11931 C
: constant Node_Id
:= Constraint
(S
);
11934 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11936 if Is_Modular_Integer_Type
(T
) then
11937 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11939 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11942 Set_Etype
(Def_Id
, Base_Type
(T
));
11943 Set_Size_Info
(Def_Id
, (T
));
11944 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11945 Set_Discrete_RM_Size
(Def_Id
);
11946 end Constrain_Integer
;
11948 ------------------------------
11949 -- Constrain_Ordinary_Fixed --
11950 ------------------------------
11952 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
11953 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11959 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
11960 Set_Etype
(Def_Id
, Base_Type
(T
));
11961 Set_Size_Info
(Def_Id
, (T
));
11962 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11963 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11965 -- Process the constraint
11967 C
:= Constraint
(S
);
11969 -- Delta constraint present
11971 if Nkind
(C
) = N_Delta_Constraint
then
11973 Check_SPARK_Restriction
("delta constraint is not allowed", S
);
11974 Check_Restriction
(No_Obsolescent_Features
, C
);
11976 if Warn_On_Obsolescent_Feature
then
11978 ("subtype delta constraint is an " &
11979 "obsolescent feature (RM J.3(7))?");
11982 D
:= Delta_Expression
(C
);
11983 Analyze_And_Resolve
(D
, Any_Real
);
11984 Check_Delta_Expression
(D
);
11985 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
11987 -- Check that delta value is in range. Obviously we can do this
11988 -- at compile time, but it is strictly a runtime check, and of
11989 -- course there is an ACVC test that checks this!
11991 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
11992 Error_Msg_N
("?delta value is too small", D
);
11994 Make_Raise_Constraint_Error
(Sloc
(D
),
11995 Reason
=> CE_Range_Check_Failed
);
11996 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11999 C
:= Range_Constraint
(C
);
12001 -- No delta constraint present
12004 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12007 -- Range constraint present
12009 if Nkind
(C
) = N_Range_Constraint
then
12010 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12012 -- No range constraint present
12015 pragma Assert
(No
(C
));
12016 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
12020 Set_Discrete_RM_Size
(Def_Id
);
12022 -- Unconditionally delay the freeze, since we cannot set size
12023 -- information in all cases correctly until the freeze point.
12025 Set_Has_Delayed_Freeze
(Def_Id
);
12026 end Constrain_Ordinary_Fixed
;
12028 -----------------------
12029 -- Contain_Interface --
12030 -----------------------
12032 function Contain_Interface
12033 (Iface
: Entity_Id
;
12034 Ifaces
: Elist_Id
) return Boolean
12036 Iface_Elmt
: Elmt_Id
;
12039 if Present
(Ifaces
) then
12040 Iface_Elmt
:= First_Elmt
(Ifaces
);
12041 while Present
(Iface_Elmt
) loop
12042 if Node
(Iface_Elmt
) = Iface
then
12046 Next_Elmt
(Iface_Elmt
);
12051 end Contain_Interface
;
12053 ---------------------------
12054 -- Convert_Scalar_Bounds --
12055 ---------------------------
12057 procedure Convert_Scalar_Bounds
12059 Parent_Type
: Entity_Id
;
12060 Derived_Type
: Entity_Id
;
12063 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
12070 -- Defend against previous errors
12072 if No
(Scalar_Range
(Derived_Type
)) then
12076 Lo
:= Build_Scalar_Bound
12077 (Type_Low_Bound
(Derived_Type
),
12078 Parent_Type
, Implicit_Base
);
12080 Hi
:= Build_Scalar_Bound
12081 (Type_High_Bound
(Derived_Type
),
12082 Parent_Type
, Implicit_Base
);
12089 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
12091 Set_Parent
(Rng
, N
);
12092 Set_Scalar_Range
(Derived_Type
, Rng
);
12094 -- Analyze the bounds
12096 Analyze_And_Resolve
(Lo
, Implicit_Base
);
12097 Analyze_And_Resolve
(Hi
, Implicit_Base
);
12099 -- Analyze the range itself, except that we do not analyze it if
12100 -- the bounds are real literals, and we have a fixed-point type.
12101 -- The reason for this is that we delay setting the bounds in this
12102 -- case till we know the final Small and Size values (see circuit
12103 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12105 if Is_Fixed_Point_Type
(Parent_Type
)
12106 and then Nkind
(Lo
) = N_Real_Literal
12107 and then Nkind
(Hi
) = N_Real_Literal
12111 -- Here we do the analysis of the range
12113 -- Note: we do this manually, since if we do a normal Analyze and
12114 -- Resolve call, there are problems with the conversions used for
12115 -- the derived type range.
12118 Set_Etype
(Rng
, Implicit_Base
);
12119 Set_Analyzed
(Rng
, True);
12121 end Convert_Scalar_Bounds
;
12123 -------------------
12124 -- Copy_And_Swap --
12125 -------------------
12127 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
12129 -- Initialize new full declaration entity by copying the pertinent
12130 -- fields of the corresponding private declaration entity.
12132 -- We temporarily set Ekind to a value appropriate for a type to
12133 -- avoid assert failures in Einfo from checking for setting type
12134 -- attributes on something that is not a type. Ekind (Priv) is an
12135 -- appropriate choice, since it allowed the attributes to be set
12136 -- in the first place. This Ekind value will be modified later.
12138 Set_Ekind
(Full
, Ekind
(Priv
));
12140 -- Also set Etype temporarily to Any_Type, again, in the absence
12141 -- of errors, it will be properly reset, and if there are errors,
12142 -- then we want a value of Any_Type to remain.
12144 Set_Etype
(Full
, Any_Type
);
12146 -- Now start copying attributes
12148 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
12150 if Has_Discriminants
(Full
) then
12151 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
12152 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
12155 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
12156 Set_Homonym
(Full
, Homonym
(Priv
));
12157 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
12158 Set_Is_Public
(Full
, Is_Public
(Priv
));
12159 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
12160 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
12161 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
12162 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
12163 Set_Has_Pragma_Unreferenced_Objects
12164 (Full
, Has_Pragma_Unreferenced_Objects
12167 Conditional_Delay
(Full
, Priv
);
12169 if Is_Tagged_Type
(Full
) then
12170 Set_Direct_Primitive_Operations
(Full
,
12171 Direct_Primitive_Operations
(Priv
));
12173 if Is_Base_Type
(Priv
) then
12174 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
12178 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
12179 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
12180 Set_Scope
(Full
, Scope
(Priv
));
12181 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
12182 Set_First_Entity
(Full
, First_Entity
(Priv
));
12183 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
12185 -- If access types have been recorded for later handling, keep them in
12186 -- the full view so that they get handled when the full view freeze
12187 -- node is expanded.
12189 if Present
(Freeze_Node
(Priv
))
12190 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
12192 Ensure_Freeze_Node
(Full
);
12193 Set_Access_Types_To_Process
12194 (Freeze_Node
(Full
),
12195 Access_Types_To_Process
(Freeze_Node
(Priv
)));
12198 -- Swap the two entities. Now Private is the full type entity and Full
12199 -- is the private one. They will be swapped back at the end of the
12200 -- private part. This swapping ensures that the entity that is visible
12201 -- in the private part is the full declaration.
12203 Exchange_Entities
(Priv
, Full
);
12204 Append_Entity
(Full
, Scope
(Full
));
12207 -------------------------------------
12208 -- Copy_Array_Base_Type_Attributes --
12209 -------------------------------------
12211 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
12213 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
12214 Set_Component_Type
(T1
, Component_Type
(T2
));
12215 Set_Component_Size
(T1
, Component_Size
(T2
));
12216 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
12217 Set_Finalize_Storage_Only
(T1
, Finalize_Storage_Only
(T2
));
12218 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
12219 Set_Has_Task
(T1
, Has_Task
(T2
));
12220 Set_Is_Packed
(T1
, Is_Packed
(T2
));
12221 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
12222 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
12223 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
12224 end Copy_Array_Base_Type_Attributes
;
12226 -----------------------------------
12227 -- Copy_Array_Subtype_Attributes --
12228 -----------------------------------
12230 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
12232 Set_Size_Info
(T1
, T2
);
12234 Set_First_Index
(T1
, First_Index
(T2
));
12235 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
12236 Set_Is_Atomic
(T1
, Is_Atomic
(T2
));
12237 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
12238 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
12239 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
12240 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
12241 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
12242 Set_Convention
(T1
, Convention
(T2
));
12243 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
12244 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
12245 Set_Packed_Array_Type
(T1
, Packed_Array_Type
(T2
));
12246 end Copy_Array_Subtype_Attributes
;
12248 -----------------------------------
12249 -- Create_Constrained_Components --
12250 -----------------------------------
12252 procedure Create_Constrained_Components
12254 Decl_Node
: Node_Id
;
12256 Constraints
: Elist_Id
)
12258 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
12259 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
12260 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
12261 Assoc_List
: constant List_Id
:= New_List
;
12262 Discr_Val
: Elmt_Id
;
12266 Is_Static
: Boolean := True;
12268 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
12269 -- Collect parent type components that do not appear in a variant part
12271 procedure Create_All_Components
;
12272 -- Iterate over Comp_List to create the components of the subtype
12274 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
12275 -- Creates a new component from Old_Compon, copying all the fields from
12276 -- it, including its Etype, inserts the new component in the Subt entity
12277 -- chain and returns the new component.
12279 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
12280 -- If true, and discriminants are static, collect only components from
12281 -- variants selected by discriminant values.
12283 ------------------------------
12284 -- Collect_Fixed_Components --
12285 ------------------------------
12287 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
12289 -- Build association list for discriminants, and find components of the
12290 -- variant part selected by the values of the discriminants.
12292 Old_C
:= First_Discriminant
(Typ
);
12293 Discr_Val
:= First_Elmt
(Constraints
);
12294 while Present
(Old_C
) loop
12295 Append_To
(Assoc_List
,
12296 Make_Component_Association
(Loc
,
12297 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
12298 Expression
=> New_Copy
(Node
(Discr_Val
))));
12300 Next_Elmt
(Discr_Val
);
12301 Next_Discriminant
(Old_C
);
12304 -- The tag and the possible parent component are unconditionally in
12307 if Is_Tagged_Type
(Typ
)
12308 or else Has_Controlled_Component
(Typ
)
12310 Old_C
:= First_Component
(Typ
);
12311 while Present
(Old_C
) loop
12312 if Chars
((Old_C
)) = Name_uTag
12313 or else Chars
((Old_C
)) = Name_uParent
12315 Append_Elmt
(Old_C
, Comp_List
);
12318 Next_Component
(Old_C
);
12321 end Collect_Fixed_Components
;
12323 ---------------------------
12324 -- Create_All_Components --
12325 ---------------------------
12327 procedure Create_All_Components
is
12331 Comp
:= First_Elmt
(Comp_List
);
12332 while Present
(Comp
) loop
12333 Old_C
:= Node
(Comp
);
12334 New_C
:= Create_Component
(Old_C
);
12338 Constrain_Component_Type
12339 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12340 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12344 end Create_All_Components
;
12346 ----------------------
12347 -- Create_Component --
12348 ----------------------
12350 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
12351 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
12354 if Ekind
(Old_Compon
) = E_Discriminant
12355 and then Is_Completely_Hidden
(Old_Compon
)
12357 -- This is a shadow discriminant created for a discriminant of
12358 -- the parent type, which needs to be present in the subtype.
12359 -- Give the shadow discriminant an internal name that cannot
12360 -- conflict with that of visible components.
12362 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
12365 -- Set the parent so we have a proper link for freezing etc. This is
12366 -- not a real parent pointer, since of course our parent does not own
12367 -- up to us and reference us, we are an illegitimate child of the
12368 -- original parent!
12370 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
12372 -- If the old component's Esize was already determined and is a
12373 -- static value, then the new component simply inherits it. Otherwise
12374 -- the old component's size may require run-time determination, but
12375 -- the new component's size still might be statically determinable
12376 -- (if, for example it has a static constraint). In that case we want
12377 -- Layout_Type to recompute the component's size, so we reset its
12378 -- size and positional fields.
12380 if Frontend_Layout_On_Target
12381 and then not Known_Static_Esize
(Old_Compon
)
12383 Set_Esize
(New_Compon
, Uint_0
);
12384 Init_Normalized_First_Bit
(New_Compon
);
12385 Init_Normalized_Position
(New_Compon
);
12386 Init_Normalized_Position_Max
(New_Compon
);
12389 -- We do not want this node marked as Comes_From_Source, since
12390 -- otherwise it would get first class status and a separate cross-
12391 -- reference line would be generated. Illegitimate children do not
12392 -- rate such recognition.
12394 Set_Comes_From_Source
(New_Compon
, False);
12396 -- But it is a real entity, and a birth certificate must be properly
12397 -- registered by entering it into the entity list.
12399 Enter_Name
(New_Compon
);
12402 end Create_Component
;
12404 -----------------------
12405 -- Is_Variant_Record --
12406 -----------------------
12408 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
12410 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
12411 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
12412 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
12415 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
12416 end Is_Variant_Record
;
12418 -- Start of processing for Create_Constrained_Components
12421 pragma Assert
(Subt
/= Base_Type
(Subt
));
12422 pragma Assert
(Typ
= Base_Type
(Typ
));
12424 Set_First_Entity
(Subt
, Empty
);
12425 Set_Last_Entity
(Subt
, Empty
);
12427 -- Check whether constraint is fully static, in which case we can
12428 -- optimize the list of components.
12430 Discr_Val
:= First_Elmt
(Constraints
);
12431 while Present
(Discr_Val
) loop
12432 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
12433 Is_Static
:= False;
12437 Next_Elmt
(Discr_Val
);
12440 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
12444 -- Inherit the discriminants of the parent type
12446 Add_Discriminants
: declare
12452 Old_C
:= First_Discriminant
(Typ
);
12454 while Present
(Old_C
) loop
12455 Num_Disc
:= Num_Disc
+ 1;
12456 New_C
:= Create_Component
(Old_C
);
12457 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12458 Next_Discriminant
(Old_C
);
12461 -- For an untagged derived subtype, the number of discriminants may
12462 -- be smaller than the number of inherited discriminants, because
12463 -- several of them may be renamed by a single new discriminant or
12464 -- constrained. In this case, add the hidden discriminants back into
12465 -- the subtype, because they need to be present if the optimizer of
12466 -- the GCC 4.x back-end decides to break apart assignments between
12467 -- objects using the parent view into member-wise assignments.
12471 if Is_Derived_Type
(Typ
)
12472 and then not Is_Tagged_Type
(Typ
)
12474 Old_C
:= First_Stored_Discriminant
(Typ
);
12476 while Present
(Old_C
) loop
12477 Num_Gird
:= Num_Gird
+ 1;
12478 Next_Stored_Discriminant
(Old_C
);
12482 if Num_Gird
> Num_Disc
then
12484 -- Find out multiple uses of new discriminants, and add hidden
12485 -- components for the extra renamed discriminants. We recognize
12486 -- multiple uses through the Corresponding_Discriminant of a
12487 -- new discriminant: if it constrains several old discriminants,
12488 -- this field points to the last one in the parent type. The
12489 -- stored discriminants of the derived type have the same name
12490 -- as those of the parent.
12494 New_Discr
: Entity_Id
;
12495 Old_Discr
: Entity_Id
;
12498 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
12499 Old_Discr
:= First_Stored_Discriminant
(Typ
);
12500 while Present
(Constr
) loop
12501 if Is_Entity_Name
(Node
(Constr
))
12502 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
12504 New_Discr
:= Entity
(Node
(Constr
));
12506 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
12509 -- The new discriminant has been used to rename a
12510 -- subsequent old discriminant. Introduce a shadow
12511 -- component for the current old discriminant.
12513 New_C
:= Create_Component
(Old_Discr
);
12514 Set_Original_Record_Component
(New_C
, Old_Discr
);
12518 -- The constraint has eliminated the old discriminant.
12519 -- Introduce a shadow component.
12521 New_C
:= Create_Component
(Old_Discr
);
12522 Set_Original_Record_Component
(New_C
, Old_Discr
);
12525 Next_Elmt
(Constr
);
12526 Next_Stored_Discriminant
(Old_Discr
);
12530 end Add_Discriminants
;
12533 and then Is_Variant_Record
(Typ
)
12535 Collect_Fixed_Components
(Typ
);
12537 Gather_Components
(
12539 Component_List
(Type_Definition
(Parent
(Typ
))),
12540 Governed_By
=> Assoc_List
,
12542 Report_Errors
=> Errors
);
12543 pragma Assert
(not Errors
);
12545 Create_All_Components
;
12547 -- If the subtype declaration is created for a tagged type derivation
12548 -- with constraints, we retrieve the record definition of the parent
12549 -- type to select the components of the proper variant.
12552 and then Is_Tagged_Type
(Typ
)
12553 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
12555 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
12556 and then Is_Variant_Record
(Parent_Type
)
12558 Collect_Fixed_Components
(Typ
);
12560 Gather_Components
(
12562 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
12563 Governed_By
=> Assoc_List
,
12565 Report_Errors
=> Errors
);
12566 pragma Assert
(not Errors
);
12568 -- If the tagged derivation has a type extension, collect all the
12569 -- new components therein.
12572 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
12574 Old_C
:= First_Component
(Typ
);
12575 while Present
(Old_C
) loop
12576 if Original_Record_Component
(Old_C
) = Old_C
12577 and then Chars
(Old_C
) /= Name_uTag
12578 and then Chars
(Old_C
) /= Name_uParent
12580 Append_Elmt
(Old_C
, Comp_List
);
12583 Next_Component
(Old_C
);
12587 Create_All_Components
;
12590 -- If discriminants are not static, or if this is a multi-level type
12591 -- extension, we have to include all components of the parent type.
12593 Old_C
:= First_Component
(Typ
);
12594 while Present
(Old_C
) loop
12595 New_C
:= Create_Component
(Old_C
);
12599 Constrain_Component_Type
12600 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12601 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12603 Next_Component
(Old_C
);
12608 end Create_Constrained_Components
;
12610 ------------------------------------------
12611 -- Decimal_Fixed_Point_Type_Declaration --
12612 ------------------------------------------
12614 procedure Decimal_Fixed_Point_Type_Declaration
12618 Loc
: constant Source_Ptr
:= Sloc
(Def
);
12619 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
12620 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
12621 Implicit_Base
: Entity_Id
;
12628 Check_SPARK_Restriction
12629 ("decimal fixed point type is not allowed", Def
);
12630 Check_Restriction
(No_Fixed_Point
, Def
);
12632 -- Create implicit base type
12635 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
12636 Set_Etype
(Implicit_Base
, Implicit_Base
);
12638 -- Analyze and process delta expression
12640 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
12642 Check_Delta_Expression
(Delta_Expr
);
12643 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
12645 -- Check delta is power of 10, and determine scale value from it
12651 Scale_Val
:= Uint_0
;
12654 if Val
< Ureal_1
then
12655 while Val
< Ureal_1
loop
12656 Val
:= Val
* Ureal_10
;
12657 Scale_Val
:= Scale_Val
+ 1;
12660 if Scale_Val
> 18 then
12661 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
12662 Scale_Val
:= UI_From_Int
(+18);
12666 while Val
> Ureal_1
loop
12667 Val
:= Val
/ Ureal_10
;
12668 Scale_Val
:= Scale_Val
- 1;
12671 if Scale_Val
< -18 then
12672 Error_Msg_N
("scale is less than minimum value of -18", Def
);
12673 Scale_Val
:= UI_From_Int
(-18);
12677 if Val
/= Ureal_1
then
12678 Error_Msg_N
("delta expression must be a power of 10", Def
);
12679 Delta_Val
:= Ureal_10
** (-Scale_Val
);
12683 -- Set delta, scale and small (small = delta for decimal type)
12685 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
12686 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
12687 Set_Small_Value
(Implicit_Base
, Delta_Val
);
12689 -- Analyze and process digits expression
12691 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
12692 Check_Digits_Expression
(Digs_Expr
);
12693 Digs_Val
:= Expr_Value
(Digs_Expr
);
12695 if Digs_Val
> 18 then
12696 Digs_Val
:= UI_From_Int
(+18);
12697 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
12700 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
12701 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
12703 -- Set range of base type from digits value for now. This will be
12704 -- expanded to represent the true underlying base range by Freeze.
12706 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
12708 -- Note: We leave size as zero for now, size will be set at freeze
12709 -- time. We have to do this for ordinary fixed-point, because the size
12710 -- depends on the specified small, and we might as well do the same for
12711 -- decimal fixed-point.
12713 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
12715 -- If there are bounds given in the declaration use them as the
12716 -- bounds of the first named subtype.
12718 if Present
(Real_Range_Specification
(Def
)) then
12720 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
12721 Low
: constant Node_Id
:= Low_Bound
(RRS
);
12722 High
: constant Node_Id
:= High_Bound
(RRS
);
12727 Analyze_And_Resolve
(Low
, Any_Real
);
12728 Analyze_And_Resolve
(High
, Any_Real
);
12729 Check_Real_Bound
(Low
);
12730 Check_Real_Bound
(High
);
12731 Low_Val
:= Expr_Value_R
(Low
);
12732 High_Val
:= Expr_Value_R
(High
);
12734 if Low_Val
< (-Bound_Val
) then
12736 ("range low bound too small for digits value", Low
);
12737 Low_Val
:= -Bound_Val
;
12740 if High_Val
> Bound_Val
then
12742 ("range high bound too large for digits value", High
);
12743 High_Val
:= Bound_Val
;
12746 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
12749 -- If no explicit range, use range that corresponds to given
12750 -- digits value. This will end up as the final range for the
12754 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
12757 -- Complete entity for first subtype
12759 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
12760 Set_Etype
(T
, Implicit_Base
);
12761 Set_Size_Info
(T
, Implicit_Base
);
12762 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
12763 Set_Digits_Value
(T
, Digs_Val
);
12764 Set_Delta_Value
(T
, Delta_Val
);
12765 Set_Small_Value
(T
, Delta_Val
);
12766 Set_Scale_Value
(T
, Scale_Val
);
12767 Set_Is_Constrained
(T
);
12768 end Decimal_Fixed_Point_Type_Declaration
;
12770 -----------------------------------
12771 -- Derive_Progenitor_Subprograms --
12772 -----------------------------------
12774 procedure Derive_Progenitor_Subprograms
12775 (Parent_Type
: Entity_Id
;
12776 Tagged_Type
: Entity_Id
)
12781 Iface_Elmt
: Elmt_Id
;
12782 Iface_Subp
: Entity_Id
;
12783 New_Subp
: Entity_Id
:= Empty
;
12784 Prim_Elmt
: Elmt_Id
;
12789 pragma Assert
(Ada_Version
>= Ada_2005
12790 and then Is_Record_Type
(Tagged_Type
)
12791 and then Is_Tagged_Type
(Tagged_Type
)
12792 and then Has_Interfaces
(Tagged_Type
));
12794 -- Step 1: Transfer to the full-view primitives associated with the
12795 -- partial-view that cover interface primitives. Conceptually this
12796 -- work should be done later by Process_Full_View; done here to
12797 -- simplify its implementation at later stages. It can be safely
12798 -- done here because interfaces must be visible in the partial and
12799 -- private view (RM 7.3(7.3/2)).
12801 -- Small optimization: This work is only required if the parent is
12802 -- abstract. If the tagged type is not abstract, it cannot have
12803 -- abstract primitives (the only entities in the list of primitives of
12804 -- non-abstract tagged types that can reference abstract primitives
12805 -- through its Alias attribute are the internal entities that have
12806 -- attribute Interface_Alias, and these entities are generated later
12807 -- by Add_Internal_Interface_Entities).
12809 if In_Private_Part
(Current_Scope
)
12810 and then Is_Abstract_Type
(Parent_Type
)
12812 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
12813 while Present
(Elmt
) loop
12814 Subp
:= Node
(Elmt
);
12816 -- At this stage it is not possible to have entities in the list
12817 -- of primitives that have attribute Interface_Alias
12819 pragma Assert
(No
(Interface_Alias
(Subp
)));
12821 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
12823 if Is_Interface
(Typ
) then
12824 E
:= Find_Primitive_Covering_Interface
12825 (Tagged_Type
=> Tagged_Type
,
12826 Iface_Prim
=> Subp
);
12829 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
12831 Replace_Elmt
(Elmt
, E
);
12832 Remove_Homonym
(Subp
);
12840 -- Step 2: Add primitives of progenitors that are not implemented by
12841 -- parents of Tagged_Type
12843 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
12844 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
12845 while Present
(Iface_Elmt
) loop
12846 Iface
:= Node
(Iface_Elmt
);
12848 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
12849 while Present
(Prim_Elmt
) loop
12850 Iface_Subp
:= Node
(Prim_Elmt
);
12852 -- Exclude derivation of predefined primitives except those
12853 -- that come from source, or are inherited from one that comes
12854 -- from source. Required to catch declarations of equality
12855 -- operators of interfaces. For example:
12857 -- type Iface is interface;
12858 -- function "=" (Left, Right : Iface) return Boolean;
12860 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
12861 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
12863 E
:= Find_Primitive_Covering_Interface
12864 (Tagged_Type
=> Tagged_Type
,
12865 Iface_Prim
=> Iface_Subp
);
12867 -- If not found we derive a new primitive leaving its alias
12868 -- attribute referencing the interface primitive
12872 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12874 -- Ada 2012 (AI05-0197): If the covering primitive's name
12875 -- differs from the name of the interface primitive then it
12876 -- is a private primitive inherited from a parent type. In
12877 -- such case, given that Tagged_Type covers the interface,
12878 -- the inherited private primitive becomes visible. For such
12879 -- purpose we add a new entity that renames the inherited
12880 -- private primitive.
12882 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
12883 pragma Assert
(Has_Suffix
(E
, 'P'));
12885 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12886 Set_Alias
(New_Subp
, E
);
12887 Set_Is_Abstract_Subprogram
(New_Subp
,
12888 Is_Abstract_Subprogram
(E
));
12890 -- Propagate to the full view interface entities associated
12891 -- with the partial view
12893 elsif In_Private_Part
(Current_Scope
)
12894 and then Present
(Alias
(E
))
12895 and then Alias
(E
) = Iface_Subp
12897 List_Containing
(Parent
(E
)) /=
12898 Private_Declarations
12900 (Unit_Declaration_Node
(Current_Scope
)))
12902 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
12906 Next_Elmt
(Prim_Elmt
);
12909 Next_Elmt
(Iface_Elmt
);
12912 end Derive_Progenitor_Subprograms
;
12914 -----------------------
12915 -- Derive_Subprogram --
12916 -----------------------
12918 procedure Derive_Subprogram
12919 (New_Subp
: in out Entity_Id
;
12920 Parent_Subp
: Entity_Id
;
12921 Derived_Type
: Entity_Id
;
12922 Parent_Type
: Entity_Id
;
12923 Actual_Subp
: Entity_Id
:= Empty
)
12925 Formal
: Entity_Id
;
12926 -- Formal parameter of parent primitive operation
12928 Formal_Of_Actual
: Entity_Id
;
12929 -- Formal parameter of actual operation, when the derivation is to
12930 -- create a renaming for a primitive operation of an actual in an
12933 New_Formal
: Entity_Id
;
12934 -- Formal of inherited operation
12936 Visible_Subp
: Entity_Id
:= Parent_Subp
;
12938 function Is_Private_Overriding
return Boolean;
12939 -- If Subp is a private overriding of a visible operation, the inherited
12940 -- operation derives from the overridden op (even though its body is the
12941 -- overriding one) and the inherited operation is visible now. See
12942 -- sem_disp to see the full details of the handling of the overridden
12943 -- subprogram, which is removed from the list of primitive operations of
12944 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12945 -- and used to diagnose abstract operations that need overriding in the
12948 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
12949 -- When the type is an anonymous access type, create a new access type
12950 -- designating the derived type.
12952 procedure Set_Derived_Name
;
12953 -- This procedure sets the appropriate Chars name for New_Subp. This
12954 -- is normally just a copy of the parent name. An exception arises for
12955 -- type support subprograms, where the name is changed to reflect the
12956 -- name of the derived type, e.g. if type foo is derived from type bar,
12957 -- then a procedure barDA is derived with a name fooDA.
12959 ---------------------------
12960 -- Is_Private_Overriding --
12961 ---------------------------
12963 function Is_Private_Overriding
return Boolean is
12967 -- If the parent is not a dispatching operation there is no
12968 -- need to investigate overridings
12970 if not Is_Dispatching_Operation
(Parent_Subp
) then
12974 -- The visible operation that is overridden is a homonym of the
12975 -- parent subprogram. We scan the homonym chain to find the one
12976 -- whose alias is the subprogram we are deriving.
12978 Prev
:= Current_Entity
(Parent_Subp
);
12979 while Present
(Prev
) loop
12980 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
12981 and then Alias
(Prev
) = Parent_Subp
12982 and then Scope
(Parent_Subp
) = Scope
(Prev
)
12983 and then not Is_Hidden
(Prev
)
12985 Visible_Subp
:= Prev
;
12989 Prev
:= Homonym
(Prev
);
12993 end Is_Private_Overriding
;
12999 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
13000 Acc_Type
: Entity_Id
;
13001 Par
: constant Node_Id
:= Parent
(Derived_Type
);
13004 -- When the type is an anonymous access type, create a new access
13005 -- type designating the derived type. This itype must be elaborated
13006 -- at the point of the derivation, not on subsequent calls that may
13007 -- be out of the proper scope for Gigi, so we insert a reference to
13008 -- it after the derivation.
13010 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
13012 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
13015 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
13016 and then Present
(Full_View
(Desig_Typ
))
13017 and then not Is_Private_Type
(Parent_Type
)
13019 Desig_Typ
:= Full_View
(Desig_Typ
);
13022 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
13024 -- Ada 2005 (AI-251): Handle also derivations of abstract
13025 -- interface primitives.
13027 or else (Is_Interface
(Desig_Typ
)
13028 and then not Is_Class_Wide_Type
(Desig_Typ
))
13030 Acc_Type
:= New_Copy
(Etype
(Id
));
13031 Set_Etype
(Acc_Type
, Acc_Type
);
13032 Set_Scope
(Acc_Type
, New_Subp
);
13034 -- Compute size of anonymous access type
13036 if Is_Array_Type
(Desig_Typ
)
13037 and then not Is_Constrained
(Desig_Typ
)
13039 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
13041 Init_Size
(Acc_Type
, System_Address_Size
);
13044 Init_Alignment
(Acc_Type
);
13045 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
13047 Set_Etype
(New_Id
, Acc_Type
);
13048 Set_Scope
(New_Id
, New_Subp
);
13050 -- Create a reference to it
13051 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
13054 Set_Etype
(New_Id
, Etype
(Id
));
13058 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
13060 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
13061 and then Present
(Full_View
(Etype
(Id
)))
13063 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
13065 -- Constraint checks on formals are generated during expansion,
13066 -- based on the signature of the original subprogram. The bounds
13067 -- of the derived type are not relevant, and thus we can use
13068 -- the base type for the formals. However, the return type may be
13069 -- used in a context that requires that the proper static bounds
13070 -- be used (a case statement, for example) and for those cases
13071 -- we must use the derived type (first subtype), not its base.
13073 -- If the derived_type_definition has no constraints, we know that
13074 -- the derived type has the same constraints as the first subtype
13075 -- of the parent, and we can also use it rather than its base,
13076 -- which can lead to more efficient code.
13078 if Etype
(Id
) = Parent_Type
then
13079 if Is_Scalar_Type
(Parent_Type
)
13081 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
13083 Set_Etype
(New_Id
, Derived_Type
);
13085 elsif Nkind
(Par
) = N_Full_Type_Declaration
13087 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
13090 (Subtype_Indication
(Type_Definition
(Par
)))
13092 Set_Etype
(New_Id
, Derived_Type
);
13095 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13099 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13103 Set_Etype
(New_Id
, Etype
(Id
));
13107 ----------------------
13108 -- Set_Derived_Name --
13109 ----------------------
13111 procedure Set_Derived_Name
is
13112 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
13114 if Nm
= TSS_Null
then
13115 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
13117 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
13119 end Set_Derived_Name
;
13121 -- Start of processing for Derive_Subprogram
13125 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
13126 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
13127 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
13129 -- Check whether the inherited subprogram is a private operation that
13130 -- should be inherited but not yet made visible. Such subprograms can
13131 -- become visible at a later point (e.g., the private part of a public
13132 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13133 -- following predicate is true, then this is not such a private
13134 -- operation and the subprogram simply inherits the name of the parent
13135 -- subprogram. Note the special check for the names of controlled
13136 -- operations, which are currently exempted from being inherited with
13137 -- a hidden name because they must be findable for generation of
13138 -- implicit run-time calls.
13140 if not Is_Hidden
(Parent_Subp
)
13141 or else Is_Internal
(Parent_Subp
)
13142 or else Is_Private_Overriding
13143 or else Is_Internal_Name
(Chars
(Parent_Subp
))
13144 or else Chars
(Parent_Subp
) = Name_Initialize
13145 or else Chars
(Parent_Subp
) = Name_Adjust
13146 or else Chars
(Parent_Subp
) = Name_Finalize
13150 -- An inherited dispatching equality will be overridden by an internally
13151 -- generated one, or by an explicit one, so preserve its name and thus
13152 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13153 -- private operation it may become invisible if the full view has
13154 -- progenitors, and the dispatch table will be malformed.
13155 -- We check that the type is limited to handle the anomalous declaration
13156 -- of Limited_Controlled, which is derived from a non-limited type, and
13157 -- which is handled specially elsewhere as well.
13159 elsif Chars
(Parent_Subp
) = Name_Op_Eq
13160 and then Is_Dispatching_Operation
(Parent_Subp
)
13161 and then Etype
(Parent_Subp
) = Standard_Boolean
13162 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
13164 Etype
(First_Formal
(Parent_Subp
)) =
13165 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
13169 -- If parent is hidden, this can be a regular derivation if the
13170 -- parent is immediately visible in a non-instantiating context,
13171 -- or if we are in the private part of an instance. This test
13172 -- should still be refined ???
13174 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13175 -- operation as a non-visible operation in cases where the parent
13176 -- subprogram might not be visible now, but was visible within the
13177 -- original generic, so it would be wrong to make the inherited
13178 -- subprogram non-visible now. (Not clear if this test is fully
13179 -- correct; are there any cases where we should declare the inherited
13180 -- operation as not visible to avoid it being overridden, e.g., when
13181 -- the parent type is a generic actual with private primitives ???)
13183 -- (they should be treated the same as other private inherited
13184 -- subprograms, but it's not clear how to do this cleanly). ???
13186 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
13187 and then Is_Immediately_Visible
(Parent_Subp
)
13188 and then not In_Instance
)
13189 or else In_Instance_Not_Visible
13193 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13194 -- overrides an interface primitive because interface primitives
13195 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13197 elsif Ada_Version
>= Ada_2005
13198 and then Is_Dispatching_Operation
(Parent_Subp
)
13199 and then Covers_Some_Interface
(Parent_Subp
)
13203 -- Otherwise, the type is inheriting a private operation, so enter
13204 -- it with a special name so it can't be overridden.
13207 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
13210 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
13212 if Present
(Actual_Subp
) then
13213 Replace_Type
(Actual_Subp
, New_Subp
);
13215 Replace_Type
(Parent_Subp
, New_Subp
);
13218 Conditional_Delay
(New_Subp
, Parent_Subp
);
13220 -- If we are creating a renaming for a primitive operation of an
13221 -- actual of a generic derived type, we must examine the signature
13222 -- of the actual primitive, not that of the generic formal, which for
13223 -- example may be an interface. However the name and initial value
13224 -- of the inherited operation are those of the formal primitive.
13226 Formal
:= First_Formal
(Parent_Subp
);
13228 if Present
(Actual_Subp
) then
13229 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
13231 Formal_Of_Actual
:= Empty
;
13234 while Present
(Formal
) loop
13235 New_Formal
:= New_Copy
(Formal
);
13237 -- Normally we do not go copying parents, but in the case of
13238 -- formals, we need to link up to the declaration (which is the
13239 -- parameter specification), and it is fine to link up to the
13240 -- original formal's parameter specification in this case.
13242 Set_Parent
(New_Formal
, Parent
(Formal
));
13243 Append_Entity
(New_Formal
, New_Subp
);
13245 if Present
(Formal_Of_Actual
) then
13246 Replace_Type
(Formal_Of_Actual
, New_Formal
);
13247 Next_Formal
(Formal_Of_Actual
);
13249 Replace_Type
(Formal
, New_Formal
);
13252 Next_Formal
(Formal
);
13255 -- If this derivation corresponds to a tagged generic actual, then
13256 -- primitive operations rename those of the actual. Otherwise the
13257 -- primitive operations rename those of the parent type, If the parent
13258 -- renames an intrinsic operator, so does the new subprogram. We except
13259 -- concatenation, which is always properly typed, and does not get
13260 -- expanded as other intrinsic operations.
13262 if No
(Actual_Subp
) then
13263 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
13264 Set_Is_Intrinsic_Subprogram
(New_Subp
);
13266 if Present
(Alias
(Parent_Subp
))
13267 and then Chars
(Parent_Subp
) /= Name_Op_Concat
13269 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
13271 Set_Alias
(New_Subp
, Parent_Subp
);
13275 Set_Alias
(New_Subp
, Parent_Subp
);
13279 Set_Alias
(New_Subp
, Actual_Subp
);
13282 -- Derived subprograms of a tagged type must inherit the convention
13283 -- of the parent subprogram (a requirement of AI-117). Derived
13284 -- subprograms of untagged types simply get convention Ada by default.
13286 if Is_Tagged_Type
(Derived_Type
) then
13287 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
13290 -- Predefined controlled operations retain their name even if the parent
13291 -- is hidden (see above), but they are not primitive operations if the
13292 -- ancestor is not visible, for example if the parent is a private
13293 -- extension completed with a controlled extension. Note that a full
13294 -- type that is controlled can break privacy: the flag Is_Controlled is
13295 -- set on both views of the type.
13297 if Is_Controlled
(Parent_Type
)
13299 (Chars
(Parent_Subp
) = Name_Initialize
13300 or else Chars
(Parent_Subp
) = Name_Adjust
13301 or else Chars
(Parent_Subp
) = Name_Finalize
)
13302 and then Is_Hidden
(Parent_Subp
)
13303 and then not Is_Visibly_Controlled
(Parent_Type
)
13305 Set_Is_Hidden
(New_Subp
);
13308 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
13309 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
13311 if Ekind
(Parent_Subp
) = E_Procedure
then
13312 Set_Is_Valued_Procedure
13313 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
13315 Set_Has_Controlling_Result
13316 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
13319 -- No_Return must be inherited properly. If this is overridden in the
13320 -- case of a dispatching operation, then a check is made in Sem_Disp
13321 -- that the overriding operation is also No_Return (no such check is
13322 -- required for the case of non-dispatching operation.
13324 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
13326 -- A derived function with a controlling result is abstract. If the
13327 -- Derived_Type is a nonabstract formal generic derived type, then
13328 -- inherited operations are not abstract: the required check is done at
13329 -- instantiation time. If the derivation is for a generic actual, the
13330 -- function is not abstract unless the actual is.
13332 if Is_Generic_Type
(Derived_Type
)
13333 and then not Is_Abstract_Type
(Derived_Type
)
13337 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13338 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13340 elsif Ada_Version
>= Ada_2005
13341 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13342 or else (Is_Tagged_Type
(Derived_Type
)
13343 and then Etype
(New_Subp
) = Derived_Type
13344 and then not Is_Null_Extension
(Derived_Type
))
13345 or else (Is_Tagged_Type
(Derived_Type
)
13346 and then Ekind
(Etype
(New_Subp
)) =
13347 E_Anonymous_Access_Type
13348 and then Designated_Type
(Etype
(New_Subp
)) =
13350 and then not Is_Null_Extension
(Derived_Type
)))
13351 and then No
(Actual_Subp
)
13353 if not Is_Tagged_Type
(Derived_Type
)
13354 or else Is_Abstract_Type
(Derived_Type
)
13355 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
13357 Set_Is_Abstract_Subprogram
(New_Subp
);
13359 Set_Requires_Overriding
(New_Subp
);
13362 elsif Ada_Version
< Ada_2005
13363 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13364 or else (Is_Tagged_Type
(Derived_Type
)
13365 and then Etype
(New_Subp
) = Derived_Type
13366 and then No
(Actual_Subp
)))
13368 Set_Is_Abstract_Subprogram
(New_Subp
);
13370 -- AI05-0097 : an inherited operation that dispatches on result is
13371 -- abstract if the derived type is abstract, even if the parent type
13372 -- is concrete and the derived type is a null extension.
13374 elsif Has_Controlling_Result
(Alias
(New_Subp
))
13375 and then Is_Abstract_Type
(Etype
(New_Subp
))
13377 Set_Is_Abstract_Subprogram
(New_Subp
);
13379 -- Finally, if the parent type is abstract we must verify that all
13380 -- inherited operations are either non-abstract or overridden, or that
13381 -- the derived type itself is abstract (this check is performed at the
13382 -- end of a package declaration, in Check_Abstract_Overriding). A
13383 -- private overriding in the parent type will not be visible in the
13384 -- derivation if we are not in an inner package or in a child unit of
13385 -- the parent type, in which case the abstractness of the inherited
13386 -- operation is carried to the new subprogram.
13388 elsif Is_Abstract_Type
(Parent_Type
)
13389 and then not In_Open_Scopes
(Scope
(Parent_Type
))
13390 and then Is_Private_Overriding
13391 and then Is_Abstract_Subprogram
(Visible_Subp
)
13393 if No
(Actual_Subp
) then
13394 Set_Alias
(New_Subp
, Visible_Subp
);
13395 Set_Is_Abstract_Subprogram
(New_Subp
, True);
13398 -- If this is a derivation for an instance of a formal derived
13399 -- type, abstractness comes from the primitive operation of the
13400 -- actual, not from the operation inherited from the ancestor.
13402 Set_Is_Abstract_Subprogram
13403 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
13407 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
13409 -- Check for case of a derived subprogram for the instantiation of a
13410 -- formal derived tagged type, if so mark the subprogram as dispatching
13411 -- and inherit the dispatching attributes of the actual subprogram. The
13412 -- derived subprogram is effectively renaming of the actual subprogram,
13413 -- so it needs to have the same attributes as the actual.
13415 if Present
(Actual_Subp
)
13416 and then Is_Dispatching_Operation
(Actual_Subp
)
13418 Set_Is_Dispatching_Operation
(New_Subp
);
13420 if Present
(DTC_Entity
(Actual_Subp
)) then
13421 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
13422 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
13426 -- Indicate that a derived subprogram does not require a body and that
13427 -- it does not require processing of default expressions.
13429 Set_Has_Completion
(New_Subp
);
13430 Set_Default_Expressions_Processed
(New_Subp
);
13432 if Ekind
(New_Subp
) = E_Function
then
13433 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
13435 end Derive_Subprogram
;
13437 ------------------------
13438 -- Derive_Subprograms --
13439 ------------------------
13441 procedure Derive_Subprograms
13442 (Parent_Type
: Entity_Id
;
13443 Derived_Type
: Entity_Id
;
13444 Generic_Actual
: Entity_Id
:= Empty
)
13446 Op_List
: constant Elist_Id
:=
13447 Collect_Primitive_Operations
(Parent_Type
);
13449 function Check_Derived_Type
return Boolean;
13450 -- Check that all the entities derived from Parent_Type are found in
13451 -- the list of primitives of Derived_Type exactly in the same order.
13453 procedure Derive_Interface_Subprogram
13454 (New_Subp
: in out Entity_Id
;
13456 Actual_Subp
: Entity_Id
);
13457 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13458 -- (which is an interface primitive). If Generic_Actual is present then
13459 -- Actual_Subp is the actual subprogram corresponding with the generic
13460 -- subprogram Subp.
13462 function Check_Derived_Type
return Boolean is
13466 New_Subp
: Entity_Id
;
13471 -- Traverse list of entities in the current scope searching for
13472 -- an incomplete type whose full-view is derived type
13474 E
:= First_Entity
(Scope
(Derived_Type
));
13476 and then E
/= Derived_Type
13478 if Ekind
(E
) = E_Incomplete_Type
13479 and then Present
(Full_View
(E
))
13480 and then Full_View
(E
) = Derived_Type
13482 -- Disable this test if Derived_Type completes an incomplete
13483 -- type because in such case more primitives can be added
13484 -- later to the list of primitives of Derived_Type by routine
13485 -- Process_Incomplete_Dependents
13490 E
:= Next_Entity
(E
);
13493 List
:= Collect_Primitive_Operations
(Derived_Type
);
13494 Elmt
:= First_Elmt
(List
);
13496 Op_Elmt
:= First_Elmt
(Op_List
);
13497 while Present
(Op_Elmt
) loop
13498 Subp
:= Node
(Op_Elmt
);
13499 New_Subp
:= Node
(Elmt
);
13501 -- At this early stage Derived_Type has no entities with attribute
13502 -- Interface_Alias. In addition, such primitives are always
13503 -- located at the end of the list of primitives of Parent_Type.
13504 -- Therefore, if found we can safely stop processing pending
13507 exit when Present
(Interface_Alias
(Subp
));
13509 -- Handle hidden entities
13511 if not Is_Predefined_Dispatching_Operation
(Subp
)
13512 and then Is_Hidden
(Subp
)
13514 if Present
(New_Subp
)
13515 and then Primitive_Names_Match
(Subp
, New_Subp
)
13521 if not Present
(New_Subp
)
13522 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
13523 or else not Primitive_Names_Match
(Subp
, New_Subp
)
13531 Next_Elmt
(Op_Elmt
);
13535 end Check_Derived_Type
;
13537 ---------------------------------
13538 -- Derive_Interface_Subprogram --
13539 ---------------------------------
13541 procedure Derive_Interface_Subprogram
13542 (New_Subp
: in out Entity_Id
;
13544 Actual_Subp
: Entity_Id
)
13546 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
13547 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
13550 pragma Assert
(Is_Interface
(Iface_Type
));
13553 (New_Subp
=> New_Subp
,
13554 Parent_Subp
=> Iface_Subp
,
13555 Derived_Type
=> Derived_Type
,
13556 Parent_Type
=> Iface_Type
,
13557 Actual_Subp
=> Actual_Subp
);
13559 -- Given that this new interface entity corresponds with a primitive
13560 -- of the parent that was not overridden we must leave it associated
13561 -- with its parent primitive to ensure that it will share the same
13562 -- dispatch table slot when overridden.
13564 if No
(Actual_Subp
) then
13565 Set_Alias
(New_Subp
, Subp
);
13567 -- For instantiations this is not needed since the previous call to
13568 -- Derive_Subprogram leaves the entity well decorated.
13571 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
13574 end Derive_Interface_Subprogram
;
13578 Alias_Subp
: Entity_Id
;
13579 Act_List
: Elist_Id
;
13580 Act_Elmt
: Elmt_Id
:= No_Elmt
;
13581 Act_Subp
: Entity_Id
:= Empty
;
13583 Need_Search
: Boolean := False;
13584 New_Subp
: Entity_Id
:= Empty
;
13585 Parent_Base
: Entity_Id
;
13588 -- Start of processing for Derive_Subprograms
13591 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
13592 and then Has_Discriminants
(Parent_Type
)
13593 and then Present
(Full_View
(Parent_Type
))
13595 Parent_Base
:= Full_View
(Parent_Type
);
13597 Parent_Base
:= Parent_Type
;
13600 if Present
(Generic_Actual
) then
13601 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
13602 Act_Elmt
:= First_Elmt
(Act_List
);
13605 -- Derive primitives inherited from the parent. Note that if the generic
13606 -- actual is present, this is not really a type derivation, it is a
13607 -- completion within an instance.
13609 -- Case 1: Derived_Type does not implement interfaces
13611 if not Is_Tagged_Type
(Derived_Type
)
13612 or else (not Has_Interfaces
(Derived_Type
)
13613 and then not (Present
(Generic_Actual
)
13615 Has_Interfaces
(Generic_Actual
)))
13617 Elmt
:= First_Elmt
(Op_List
);
13618 while Present
(Elmt
) loop
13619 Subp
:= Node
(Elmt
);
13621 -- Literals are derived earlier in the process of building the
13622 -- derived type, and are skipped here.
13624 if Ekind
(Subp
) = E_Enumeration_Literal
then
13627 -- The actual is a direct descendant and the common primitive
13628 -- operations appear in the same order.
13630 -- If the generic parent type is present, the derived type is an
13631 -- instance of a formal derived type, and within the instance its
13632 -- operations are those of the actual. We derive from the formal
13633 -- type but make the inherited operations aliases of the
13634 -- corresponding operations of the actual.
13637 pragma Assert
(No
(Node
(Act_Elmt
))
13638 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
13640 Type_Conformant
(Subp
, Node
(Act_Elmt
),
13641 Skip_Controlling_Formals
=> True)));
13644 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
13646 if Present
(Act_Elmt
) then
13647 Next_Elmt
(Act_Elmt
);
13654 -- Case 2: Derived_Type implements interfaces
13657 -- If the parent type has no predefined primitives we remove
13658 -- predefined primitives from the list of primitives of generic
13659 -- actual to simplify the complexity of this algorithm.
13661 if Present
(Generic_Actual
) then
13663 Has_Predefined_Primitives
: Boolean := False;
13666 -- Check if the parent type has predefined primitives
13668 Elmt
:= First_Elmt
(Op_List
);
13669 while Present
(Elmt
) loop
13670 Subp
:= Node
(Elmt
);
13672 if Is_Predefined_Dispatching_Operation
(Subp
)
13673 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
13675 Has_Predefined_Primitives
:= True;
13682 -- Remove predefined primitives of Generic_Actual. We must use
13683 -- an auxiliary list because in case of tagged types the value
13684 -- returned by Collect_Primitive_Operations is the value stored
13685 -- in its Primitive_Operations attribute (and we don't want to
13686 -- modify its current contents).
13688 if not Has_Predefined_Primitives
then
13690 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
13693 Elmt
:= First_Elmt
(Act_List
);
13694 while Present
(Elmt
) loop
13695 Subp
:= Node
(Elmt
);
13697 if not Is_Predefined_Dispatching_Operation
(Subp
)
13698 or else Comes_From_Source
(Subp
)
13700 Append_Elmt
(Subp
, Aux_List
);
13706 Act_List
:= Aux_List
;
13710 Act_Elmt
:= First_Elmt
(Act_List
);
13711 Act_Subp
:= Node
(Act_Elmt
);
13715 -- Stage 1: If the generic actual is not present we derive the
13716 -- primitives inherited from the parent type. If the generic parent
13717 -- type is present, the derived type is an instance of a formal
13718 -- derived type, and within the instance its operations are those of
13719 -- the actual. We derive from the formal type but make the inherited
13720 -- operations aliases of the corresponding operations of the actual.
13722 Elmt
:= First_Elmt
(Op_List
);
13723 while Present
(Elmt
) loop
13724 Subp
:= Node
(Elmt
);
13725 Alias_Subp
:= Ultimate_Alias
(Subp
);
13727 -- Do not derive internal entities of the parent that link
13728 -- interface primitives with their covering primitive. These
13729 -- entities will be added to this type when frozen.
13731 if Present
(Interface_Alias
(Subp
)) then
13735 -- If the generic actual is present find the corresponding
13736 -- operation in the generic actual. If the parent type is a
13737 -- direct ancestor of the derived type then, even if it is an
13738 -- interface, the operations are inherited from the primary
13739 -- dispatch table and are in the proper order. If we detect here
13740 -- that primitives are not in the same order we traverse the list
13741 -- of primitive operations of the actual to find the one that
13742 -- implements the interface primitive.
13746 (Present
(Generic_Actual
)
13747 and then Present
(Act_Subp
)
13749 (Primitive_Names_Match
(Subp
, Act_Subp
)
13751 Type_Conformant
(Subp
, Act_Subp
,
13752 Skip_Controlling_Formals
=> True)))
13754 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
13755 Use_Full_View
=> True));
13757 -- Remember that we need searching for all pending primitives
13759 Need_Search
:= True;
13761 -- Handle entities associated with interface primitives
13763 if Present
(Alias_Subp
)
13764 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13765 and then not Is_Predefined_Dispatching_Operation
(Subp
)
13767 -- Search for the primitive in the homonym chain
13770 Find_Primitive_Covering_Interface
13771 (Tagged_Type
=> Generic_Actual
,
13772 Iface_Prim
=> Alias_Subp
);
13774 -- Previous search may not locate primitives covering
13775 -- interfaces defined in generics units or instantiations.
13776 -- (it fails if the covering primitive has formals whose
13777 -- type is also defined in generics or instantiations).
13778 -- In such case we search in the list of primitives of the
13779 -- generic actual for the internal entity that links the
13780 -- interface primitive and the covering primitive.
13783 and then Is_Generic_Type
(Parent_Type
)
13785 -- This code has been designed to handle only generic
13786 -- formals that implement interfaces that are defined
13787 -- in a generic unit or instantiation. If this code is
13788 -- needed for other cases we must review it because
13789 -- (given that it relies on Original_Location to locate
13790 -- the primitive of Generic_Actual that covers the
13791 -- interface) it could leave linked through attribute
13792 -- Alias entities of unrelated instantiations).
13796 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
13798 Instantiation_Depth
13799 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
13802 Iface_Prim_Loc
: constant Source_Ptr
:=
13803 Original_Location
(Sloc
(Alias_Subp
));
13808 First_Elmt
(Primitive_Operations
(Generic_Actual
));
13810 Search
: while Present
(Elmt
) loop
13811 Prim
:= Node
(Elmt
);
13813 if Present
(Interface_Alias
(Prim
))
13814 and then Original_Location
13815 (Sloc
(Interface_Alias
(Prim
)))
13818 Act_Subp
:= Alias
(Prim
);
13827 pragma Assert
(Present
(Act_Subp
)
13828 or else Is_Abstract_Type
(Generic_Actual
)
13829 or else Serious_Errors_Detected
> 0);
13831 -- Handle predefined primitives plus the rest of user-defined
13835 Act_Elmt
:= First_Elmt
(Act_List
);
13836 while Present
(Act_Elmt
) loop
13837 Act_Subp
:= Node
(Act_Elmt
);
13839 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
13840 and then Type_Conformant
13842 Skip_Controlling_Formals
=> True)
13843 and then No
(Interface_Alias
(Act_Subp
));
13845 Next_Elmt
(Act_Elmt
);
13848 if No
(Act_Elmt
) then
13854 -- Case 1: If the parent is a limited interface then it has the
13855 -- predefined primitives of synchronized interfaces. However, the
13856 -- actual type may be a non-limited type and hence it does not
13857 -- have such primitives.
13859 if Present
(Generic_Actual
)
13860 and then not Present
(Act_Subp
)
13861 and then Is_Limited_Interface
(Parent_Base
)
13862 and then Is_Predefined_Interface_Primitive
(Subp
)
13866 -- Case 2: Inherit entities associated with interfaces that were
13867 -- not covered by the parent type. We exclude here null interface
13868 -- primitives because they do not need special management.
13870 -- We also exclude interface operations that are renamings. If the
13871 -- subprogram is an explicit renaming of an interface primitive,
13872 -- it is a regular primitive operation, and the presence of its
13873 -- alias is not relevant: it has to be derived like any other
13876 elsif Present
(Alias
(Subp
))
13877 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
13878 N_Subprogram_Renaming_Declaration
13879 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13881 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
13882 and then Null_Present
(Parent
(Alias_Subp
)))
13884 -- If this is an abstract private type then we transfer the
13885 -- derivation of the interface primitive from the partial view
13886 -- to the full view. This is safe because all the interfaces
13887 -- must be visible in the partial view. Done to avoid adding
13888 -- a new interface derivation to the private part of the
13889 -- enclosing package; otherwise this new derivation would be
13890 -- decorated as hidden when the analysis of the enclosing
13891 -- package completes.
13893 if Is_Abstract_Type
(Derived_Type
)
13894 and then In_Private_Part
(Current_Scope
)
13895 and then Has_Private_Declaration
(Derived_Type
)
13898 Partial_View
: Entity_Id
;
13903 Partial_View
:= First_Entity
(Current_Scope
);
13905 exit when No
(Partial_View
)
13906 or else (Has_Private_Declaration
(Partial_View
)
13908 Full_View
(Partial_View
) = Derived_Type
);
13910 Next_Entity
(Partial_View
);
13913 -- If the partial view was not found then the source code
13914 -- has errors and the derivation is not needed.
13916 if Present
(Partial_View
) then
13918 First_Elmt
(Primitive_Operations
(Partial_View
));
13919 while Present
(Elmt
) loop
13920 Ent
:= Node
(Elmt
);
13922 if Present
(Alias
(Ent
))
13923 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
13926 (Ent
, Primitive_Operations
(Derived_Type
));
13933 -- If the interface primitive was not found in the
13934 -- partial view then this interface primitive was
13935 -- overridden. We add a derivation to activate in
13936 -- Derive_Progenitor_Subprograms the machinery to
13940 Derive_Interface_Subprogram
13941 (New_Subp
=> New_Subp
,
13943 Actual_Subp
=> Act_Subp
);
13948 Derive_Interface_Subprogram
13949 (New_Subp
=> New_Subp
,
13951 Actual_Subp
=> Act_Subp
);
13954 -- Case 3: Common derivation
13958 (New_Subp
=> New_Subp
,
13959 Parent_Subp
=> Subp
,
13960 Derived_Type
=> Derived_Type
,
13961 Parent_Type
=> Parent_Base
,
13962 Actual_Subp
=> Act_Subp
);
13965 -- No need to update Act_Elm if we must search for the
13966 -- corresponding operation in the generic actual
13969 and then Present
(Act_Elmt
)
13971 Next_Elmt
(Act_Elmt
);
13972 Act_Subp
:= Node
(Act_Elmt
);
13979 -- Inherit additional operations from progenitors. If the derived
13980 -- type is a generic actual, there are not new primitive operations
13981 -- for the type because it has those of the actual, and therefore
13982 -- nothing needs to be done. The renamings generated above are not
13983 -- primitive operations, and their purpose is simply to make the
13984 -- proper operations visible within an instantiation.
13986 if No
(Generic_Actual
) then
13987 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
13991 -- Final check: Direct descendants must have their primitives in the
13992 -- same order. We exclude from this test untagged types and instances
13993 -- of formal derived types. We skip this test if we have already
13994 -- reported serious errors in the sources.
13996 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
13997 or else Present
(Generic_Actual
)
13998 or else Serious_Errors_Detected
> 0
13999 or else Check_Derived_Type
);
14000 end Derive_Subprograms
;
14002 --------------------------------
14003 -- Derived_Standard_Character --
14004 --------------------------------
14006 procedure Derived_Standard_Character
14008 Parent_Type
: Entity_Id
;
14009 Derived_Type
: Entity_Id
)
14011 Loc
: constant Source_Ptr
:= Sloc
(N
);
14012 Def
: constant Node_Id
:= Type_Definition
(N
);
14013 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14014 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
14015 Implicit_Base
: constant Entity_Id
:=
14017 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
14023 Discard_Node
(Process_Subtype
(Indic
, N
));
14025 Set_Etype
(Implicit_Base
, Parent_Base
);
14026 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
14027 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
14029 Set_Is_Character_Type
(Implicit_Base
, True);
14030 Set_Has_Delayed_Freeze
(Implicit_Base
);
14032 -- The bounds of the implicit base are the bounds of the parent base.
14033 -- Note that their type is the parent base.
14035 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
14036 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
14038 Set_Scalar_Range
(Implicit_Base
,
14041 High_Bound
=> Hi
));
14043 Conditional_Delay
(Derived_Type
, Parent_Type
);
14045 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
14046 Set_Etype
(Derived_Type
, Implicit_Base
);
14047 Set_Size_Info
(Derived_Type
, Parent_Type
);
14049 if Unknown_RM_Size
(Derived_Type
) then
14050 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
14053 Set_Is_Character_Type
(Derived_Type
, True);
14055 if Nkind
(Indic
) /= N_Subtype_Indication
then
14057 -- If no explicit constraint, the bounds are those
14058 -- of the parent type.
14060 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
14061 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
14062 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
14065 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
14067 -- Because the implicit base is used in the conversion of the bounds, we
14068 -- have to freeze it now. This is similar to what is done for numeric
14069 -- types, and it equally suspicious, but otherwise a non-static bound
14070 -- will have a reference to an unfrozen type, which is rejected by Gigi
14071 -- (???). This requires specific care for definition of stream
14072 -- attributes. For details, see comments at the end of
14073 -- Build_Derived_Numeric_Type.
14075 Freeze_Before
(N
, Implicit_Base
);
14076 end Derived_Standard_Character
;
14078 ------------------------------
14079 -- Derived_Type_Declaration --
14080 ------------------------------
14082 procedure Derived_Type_Declaration
14085 Is_Completion
: Boolean)
14087 Parent_Type
: Entity_Id
;
14089 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
14090 -- Check whether the parent type is a generic formal, or derives
14091 -- directly or indirectly from one.
14093 ------------------------
14094 -- Comes_From_Generic --
14095 ------------------------
14097 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
14099 if Is_Generic_Type
(Typ
) then
14102 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
14105 elsif Is_Private_Type
(Typ
)
14106 and then Present
(Full_View
(Typ
))
14107 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
14111 elsif Is_Generic_Actual_Type
(Typ
) then
14117 end Comes_From_Generic
;
14121 Def
: constant Node_Id
:= Type_Definition
(N
);
14122 Iface_Def
: Node_Id
;
14123 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14124 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
14125 Parent_Node
: Node_Id
;
14128 -- Start of processing for Derived_Type_Declaration
14131 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
14133 -- Ada 2005 (AI-251): In case of interface derivation check that the
14134 -- parent is also an interface.
14136 if Interface_Present
(Def
) then
14137 Check_SPARK_Restriction
("interface is not allowed", Def
);
14139 if not Is_Interface
(Parent_Type
) then
14140 Diagnose_Interface
(Indic
, Parent_Type
);
14143 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
14144 Iface_Def
:= Type_Definition
(Parent_Node
);
14146 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14147 -- other limited interfaces.
14149 if Limited_Present
(Def
) then
14150 if Limited_Present
(Iface_Def
) then
14153 elsif Protected_Present
(Iface_Def
) then
14155 ("descendant of& must be declared"
14156 & " as a protected interface",
14159 elsif Synchronized_Present
(Iface_Def
) then
14161 ("descendant of& must be declared"
14162 & " as a synchronized interface",
14165 elsif Task_Present
(Iface_Def
) then
14167 ("descendant of& must be declared as a task interface",
14172 ("(Ada 2005) limited interface cannot "
14173 & "inherit from non-limited interface", Indic
);
14176 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14177 -- from non-limited or limited interfaces.
14179 elsif not Protected_Present
(Def
)
14180 and then not Synchronized_Present
(Def
)
14181 and then not Task_Present
(Def
)
14183 if Limited_Present
(Iface_Def
) then
14186 elsif Protected_Present
(Iface_Def
) then
14188 ("descendant of& must be declared"
14189 & " as a protected interface",
14192 elsif Synchronized_Present
(Iface_Def
) then
14194 ("descendant of& must be declared"
14195 & " as a synchronized interface",
14198 elsif Task_Present
(Iface_Def
) then
14200 ("descendant of& must be declared as a task interface",
14209 if Is_Tagged_Type
(Parent_Type
)
14210 and then Is_Concurrent_Type
(Parent_Type
)
14211 and then not Is_Interface
(Parent_Type
)
14214 ("parent type of a record extension cannot be "
14215 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
14216 Set_Etype
(T
, Any_Type
);
14220 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14223 if Is_Tagged_Type
(Parent_Type
)
14224 and then Is_Non_Empty_List
(Interface_List
(Def
))
14231 Intf
:= First
(Interface_List
(Def
));
14232 while Present
(Intf
) loop
14233 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
14235 if not Is_Interface
(T
) then
14236 Diagnose_Interface
(Intf
, T
);
14238 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14239 -- a limited type from having a nonlimited progenitor.
14241 elsif (Limited_Present
(Def
)
14242 or else (not Is_Interface
(Parent_Type
)
14243 and then Is_Limited_Type
(Parent_Type
)))
14244 and then not Is_Limited_Interface
(T
)
14247 ("progenitor interface& of limited type must be limited",
14256 if Parent_Type
= Any_Type
14257 or else Etype
(Parent_Type
) = Any_Type
14258 or else (Is_Class_Wide_Type
(Parent_Type
)
14259 and then Etype
(Parent_Type
) = T
)
14261 -- If Parent_Type is undefined or illegal, make new type into a
14262 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14263 -- errors. If this is a self-definition, emit error now.
14266 or else T
= Etype
(Parent_Type
)
14268 Error_Msg_N
("type cannot be used in its own definition", Indic
);
14271 Set_Ekind
(T
, Ekind
(Parent_Type
));
14272 Set_Etype
(T
, Any_Type
);
14273 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
14275 if Is_Tagged_Type
(T
)
14276 and then Is_Record_Type
(T
)
14278 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
14284 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14285 -- an interface is special because the list of interfaces in the full
14286 -- view can be given in any order. For example:
14288 -- type A is interface;
14289 -- type B is interface and A;
14290 -- type D is new B with private;
14292 -- type D is new A and B with null record; -- 1 --
14294 -- In this case we perform the following transformation of -1-:
14296 -- type D is new B and A with null record;
14298 -- If the parent of the full-view covers the parent of the partial-view
14299 -- we have two possible cases:
14301 -- 1) They have the same parent
14302 -- 2) The parent of the full-view implements some further interfaces
14304 -- In both cases we do not need to perform the transformation. In the
14305 -- first case the source program is correct and the transformation is
14306 -- not needed; in the second case the source program does not fulfill
14307 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14310 -- This transformation not only simplifies the rest of the analysis of
14311 -- this type declaration but also simplifies the correct generation of
14312 -- the object layout to the expander.
14314 if In_Private_Part
(Current_Scope
)
14315 and then Is_Interface
(Parent_Type
)
14319 Partial_View
: Entity_Id
;
14320 Partial_View_Parent
: Entity_Id
;
14321 New_Iface
: Node_Id
;
14324 -- Look for the associated private type declaration
14326 Partial_View
:= First_Entity
(Current_Scope
);
14328 exit when No
(Partial_View
)
14329 or else (Has_Private_Declaration
(Partial_View
)
14330 and then Full_View
(Partial_View
) = T
);
14332 Next_Entity
(Partial_View
);
14335 -- If the partial view was not found then the source code has
14336 -- errors and the transformation is not needed.
14338 if Present
(Partial_View
) then
14339 Partial_View_Parent
:= Etype
(Partial_View
);
14341 -- If the parent of the full-view covers the parent of the
14342 -- partial-view we have nothing else to do.
14344 if Interface_Present_In_Ancestor
14345 (Parent_Type
, Partial_View_Parent
)
14349 -- Traverse the list of interfaces of the full-view to look
14350 -- for the parent of the partial-view and perform the tree
14354 Iface
:= First
(Interface_List
(Def
));
14355 while Present
(Iface
) loop
14356 if Etype
(Iface
) = Etype
(Partial_View
) then
14357 Rewrite
(Subtype_Indication
(Def
),
14358 New_Copy
(Subtype_Indication
14359 (Parent
(Partial_View
))));
14362 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
14363 Append
(New_Iface
, Interface_List
(Def
));
14365 -- Analyze the transformed code
14367 Derived_Type_Declaration
(T
, N
, Is_Completion
);
14378 -- Only composite types other than array types are allowed to have
14379 -- discriminants. In SPARK, no types are allowed to have discriminants.
14381 if Present
(Discriminant_Specifications
(N
)) then
14382 if (Is_Elementary_Type
(Parent_Type
)
14383 or else Is_Array_Type
(Parent_Type
))
14384 and then not Error_Posted
(N
)
14387 ("elementary or array type cannot have discriminants",
14388 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
14389 Set_Has_Discriminants
(T
, False);
14391 Check_SPARK_Restriction
("discriminant type is not allowed", N
);
14395 -- In Ada 83, a derived type defined in a package specification cannot
14396 -- be used for further derivation until the end of its visible part.
14397 -- Note that derivation in the private part of the package is allowed.
14399 if Ada_Version
= Ada_83
14400 and then Is_Derived_Type
(Parent_Type
)
14401 and then In_Visible_Part
(Scope
(Parent_Type
))
14403 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
14405 ("(Ada 83): premature use of type for derivation", Indic
);
14409 -- Check for early use of incomplete or private type
14411 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
14412 Error_Msg_N
("premature derivation of incomplete type", Indic
);
14415 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
14416 and then not Comes_From_Generic
(Parent_Type
))
14417 or else Has_Private_Component
(Parent_Type
)
14419 -- The ancestor type of a formal type can be incomplete, in which
14420 -- case only the operations of the partial view are available in the
14421 -- generic. Subsequent checks may be required when the full view is
14422 -- analyzed to verify that a derivation from a tagged type has an
14425 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
14428 elsif No
(Underlying_Type
(Parent_Type
))
14429 or else Has_Private_Component
(Parent_Type
)
14432 ("premature derivation of derived or private type", Indic
);
14434 -- Flag the type itself as being in error, this prevents some
14435 -- nasty problems with subsequent uses of the malformed type.
14437 Set_Error_Posted
(T
);
14439 -- Check that within the immediate scope of an untagged partial
14440 -- view it's illegal to derive from the partial view if the
14441 -- full view is tagged. (7.3(7))
14443 -- We verify that the Parent_Type is a partial view by checking
14444 -- that it is not a Full_Type_Declaration (i.e. a private type or
14445 -- private extension declaration), to distinguish a partial view
14446 -- from a derivation from a private type which also appears as
14447 -- E_Private_Type. If the parent base type is not declared in an
14448 -- enclosing scope there is no need to check.
14450 elsif Present
(Full_View
(Parent_Type
))
14451 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
14452 and then not Is_Tagged_Type
(Parent_Type
)
14453 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
14454 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14457 ("premature derivation from type with tagged full view",
14462 -- Check that form of derivation is appropriate
14464 Taggd
:= Is_Tagged_Type
(Parent_Type
);
14466 -- Perhaps the parent type should be changed to the class-wide type's
14467 -- specific type in this case to prevent cascading errors ???
14469 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
14470 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
14474 if Present
(Extension
) and then not Taggd
then
14476 ("type derived from untagged type cannot have extension", Indic
);
14478 elsif No
(Extension
) and then Taggd
then
14480 -- If this declaration is within a private part (or body) of a
14481 -- generic instantiation then the derivation is allowed (the parent
14482 -- type can only appear tagged in this case if it's a generic actual
14483 -- type, since it would otherwise have been rejected in the analysis
14484 -- of the generic template).
14486 if not Is_Generic_Actual_Type
(Parent_Type
)
14487 or else In_Visible_Part
(Scope
(Parent_Type
))
14489 if Is_Class_Wide_Type
(Parent_Type
) then
14491 ("parent type must not be a class-wide type", Indic
);
14493 -- Use specific type to prevent cascaded errors.
14495 Parent_Type
:= Etype
(Parent_Type
);
14499 ("type derived from tagged type must have extension", Indic
);
14504 -- AI-443: Synchronized formal derived types require a private
14505 -- extension. There is no point in checking the ancestor type or
14506 -- the progenitors since the construct is wrong to begin with.
14508 if Ada_Version
>= Ada_2005
14509 and then Is_Generic_Type
(T
)
14510 and then Present
(Original_Node
(N
))
14513 Decl
: constant Node_Id
:= Original_Node
(N
);
14516 if Nkind
(Decl
) = N_Formal_Type_Declaration
14517 and then Nkind
(Formal_Type_Definition
(Decl
)) =
14518 N_Formal_Derived_Type_Definition
14519 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
14520 and then No
(Extension
)
14522 -- Avoid emitting a duplicate error message
14524 and then not Error_Posted
(Indic
)
14527 ("synchronized derived type must have extension", N
);
14532 if Null_Exclusion_Present
(Def
)
14533 and then not Is_Access_Type
(Parent_Type
)
14535 Error_Msg_N
("null exclusion can only apply to an access type", N
);
14538 -- Avoid deriving parent primitives of underlying record views
14540 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
14541 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
14543 -- AI-419: The parent type of an explicitly limited derived type must
14544 -- be a limited type or a limited interface.
14546 if Limited_Present
(Def
) then
14547 Set_Is_Limited_Record
(T
);
14549 if Is_Interface
(T
) then
14550 Set_Is_Limited_Interface
(T
);
14553 if not Is_Limited_Type
(Parent_Type
)
14555 (not Is_Interface
(Parent_Type
)
14556 or else not Is_Limited_Interface
(Parent_Type
))
14558 -- AI05-0096: a derivation in the private part of an instance is
14559 -- legal if the generic formal is untagged limited, and the actual
14562 if Is_Generic_Actual_Type
(Parent_Type
)
14563 and then In_Private_Part
(Current_Scope
)
14566 (Generic_Parent_Type
(Parent
(Parent_Type
)))
14572 ("parent type& of limited type must be limited",
14578 -- In SPARK, there are no derived type definitions other than type
14579 -- extensions of tagged record types.
14581 if No
(Extension
) then
14582 Check_SPARK_Restriction
("derived type is not allowed", N
);
14584 end Derived_Type_Declaration
;
14586 ------------------------
14587 -- Diagnose_Interface --
14588 ------------------------
14590 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
14592 if not Is_Interface
(E
)
14593 and then E
/= Any_Type
14595 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
14597 end Diagnose_Interface
;
14599 ----------------------------------
14600 -- Enumeration_Type_Declaration --
14601 ----------------------------------
14603 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14610 -- Create identifier node representing lower bound
14612 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14613 L
:= First
(Literals
(Def
));
14614 Set_Chars
(B_Node
, Chars
(L
));
14615 Set_Entity
(B_Node
, L
);
14616 Set_Etype
(B_Node
, T
);
14617 Set_Is_Static_Expression
(B_Node
, True);
14619 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
14620 Set_Low_Bound
(R_Node
, B_Node
);
14622 Set_Ekind
(T
, E_Enumeration_Type
);
14623 Set_First_Literal
(T
, L
);
14625 Set_Is_Constrained
(T
);
14629 -- Loop through literals of enumeration type setting pos and rep values
14630 -- except that if the Ekind is already set, then it means the literal
14631 -- was already constructed (case of a derived type declaration and we
14632 -- should not disturb the Pos and Rep values.
14634 while Present
(L
) loop
14635 if Ekind
(L
) /= E_Enumeration_Literal
then
14636 Set_Ekind
(L
, E_Enumeration_Literal
);
14637 Set_Enumeration_Pos
(L
, Ev
);
14638 Set_Enumeration_Rep
(L
, Ev
);
14639 Set_Is_Known_Valid
(L
, True);
14643 New_Overloaded_Entity
(L
);
14644 Generate_Definition
(L
);
14645 Set_Convention
(L
, Convention_Intrinsic
);
14647 -- Case of character literal
14649 if Nkind
(L
) = N_Defining_Character_Literal
then
14650 Set_Is_Character_Type
(T
, True);
14652 -- Check violation of No_Wide_Characters
14654 if Restriction_Check_Required
(No_Wide_Characters
) then
14655 Get_Name_String
(Chars
(L
));
14657 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
14658 Check_Restriction
(No_Wide_Characters
, L
);
14667 -- Now create a node representing upper bound
14669 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14670 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
14671 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
14672 Set_Etype
(B_Node
, T
);
14673 Set_Is_Static_Expression
(B_Node
, True);
14675 Set_High_Bound
(R_Node
, B_Node
);
14677 -- Initialize various fields of the type. Some of this information
14678 -- may be overwritten later through rep.clauses.
14680 Set_Scalar_Range
(T
, R_Node
);
14681 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
14682 Set_Enum_Esize
(T
);
14683 Set_Enum_Pos_To_Rep
(T
, Empty
);
14685 -- Set Discard_Names if configuration pragma set, or if there is
14686 -- a parameterless pragma in the current declarative region
14688 if Global_Discard_Names
14689 or else Discard_Names
(Scope
(T
))
14691 Set_Discard_Names
(T
);
14694 -- Process end label if there is one
14696 if Present
(Def
) then
14697 Process_End_Label
(Def
, 'e', T
);
14699 end Enumeration_Type_Declaration
;
14701 ---------------------------------
14702 -- Expand_To_Stored_Constraint --
14703 ---------------------------------
14705 function Expand_To_Stored_Constraint
14707 Constraint
: Elist_Id
) return Elist_Id
14709 Explicitly_Discriminated_Type
: Entity_Id
;
14710 Expansion
: Elist_Id
;
14711 Discriminant
: Entity_Id
;
14713 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
14714 -- Find the nearest type that actually specifies discriminants
14716 ---------------------------------
14717 -- Type_With_Explicit_Discrims --
14718 ---------------------------------
14720 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
14721 Typ
: constant E
:= Base_Type
(Id
);
14724 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
14725 if Present
(Full_View
(Typ
)) then
14726 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
14730 if Has_Discriminants
(Typ
) then
14735 if Etype
(Typ
) = Typ
then
14737 elsif Has_Discriminants
(Typ
) then
14740 return Type_With_Explicit_Discrims
(Etype
(Typ
));
14743 end Type_With_Explicit_Discrims
;
14745 -- Start of processing for Expand_To_Stored_Constraint
14749 or else Is_Empty_Elmt_List
(Constraint
)
14754 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
14756 if No
(Explicitly_Discriminated_Type
) then
14760 Expansion
:= New_Elmt_List
;
14763 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
14764 while Present
(Discriminant
) loop
14766 Get_Discriminant_Value
(
14767 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
14769 Next_Stored_Discriminant
(Discriminant
);
14773 end Expand_To_Stored_Constraint
;
14775 ---------------------------
14776 -- Find_Hidden_Interface --
14777 ---------------------------
14779 function Find_Hidden_Interface
14781 Dest
: Elist_Id
) return Entity_Id
14784 Iface_Elmt
: Elmt_Id
;
14787 if Present
(Src
) and then Present
(Dest
) then
14788 Iface_Elmt
:= First_Elmt
(Src
);
14789 while Present
(Iface_Elmt
) loop
14790 Iface
:= Node
(Iface_Elmt
);
14792 if Is_Interface
(Iface
)
14793 and then not Contain_Interface
(Iface
, Dest
)
14798 Next_Elmt
(Iface_Elmt
);
14803 end Find_Hidden_Interface
;
14805 --------------------
14806 -- Find_Type_Name --
14807 --------------------
14809 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
14810 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
14812 New_Id
: Entity_Id
;
14813 Prev_Par
: Node_Id
;
14815 procedure Tag_Mismatch
;
14816 -- Diagnose a tagged partial view whose full view is untagged.
14817 -- We post the message on the full view, with a reference to
14818 -- the previous partial view. The partial view can be private
14819 -- or incomplete, and these are handled in a different manner,
14820 -- so we determine the position of the error message from the
14821 -- respective slocs of both.
14827 procedure Tag_Mismatch
is
14829 if Sloc
(Prev
) < Sloc
(Id
) then
14830 if Ada_Version
>= Ada_2012
14831 and then Nkind
(N
) = N_Private_Type_Declaration
14834 ("declaration of private } must be a tagged type ", Id
, Prev
);
14837 ("full declaration of } must be a tagged type ", Id
, Prev
);
14840 if Ada_Version
>= Ada_2012
14841 and then Nkind
(N
) = N_Private_Type_Declaration
14844 ("declaration of private } must be a tagged type ", Prev
, Id
);
14847 ("full declaration of } must be a tagged type ", Prev
, Id
);
14852 -- Start of processing for Find_Type_Name
14855 -- Find incomplete declaration, if one was given
14857 Prev
:= Current_Entity_In_Scope
(Id
);
14859 -- New type declaration
14865 -- Previous declaration exists
14868 Prev_Par
:= Parent
(Prev
);
14870 -- Error if not incomplete/private case except if previous
14871 -- declaration is implicit, etc. Enter_Name will emit error if
14874 if not Is_Incomplete_Or_Private_Type
(Prev
) then
14878 -- Check invalid completion of private or incomplete type
14880 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
14881 N_Task_Type_Declaration
,
14882 N_Protected_Type_Declaration
)
14884 (Ada_Version
< Ada_2012
14885 or else not Is_Incomplete_Type
(Prev
)
14886 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
14887 N_Private_Extension_Declaration
))
14889 -- Completion must be a full type declarations (RM 7.3(4))
14891 Error_Msg_Sloc
:= Sloc
(Prev
);
14892 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
14894 -- Set scope of Id to avoid cascaded errors. Entity is never
14895 -- examined again, except when saving globals in generics.
14897 Set_Scope
(Id
, Current_Scope
);
14900 -- If this is a repeated incomplete declaration, no further
14901 -- checks are possible.
14903 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
14907 -- Case of full declaration of incomplete type
14909 elsif Ekind
(Prev
) = E_Incomplete_Type
14910 and then (Ada_Version
< Ada_2012
14911 or else No
(Full_View
(Prev
))
14912 or else not Is_Private_Type
(Full_View
(Prev
)))
14915 -- Indicate that the incomplete declaration has a matching full
14916 -- declaration. The defining occurrence of the incomplete
14917 -- declaration remains the visible one, and the procedure
14918 -- Get_Full_View dereferences it whenever the type is used.
14920 if Present
(Full_View
(Prev
)) then
14921 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
14924 Set_Full_View
(Prev
, Id
);
14925 Append_Entity
(Id
, Current_Scope
);
14926 Set_Is_Public
(Id
, Is_Public
(Prev
));
14927 Set_Is_Internal
(Id
);
14930 -- If the incomplete view is tagged, a class_wide type has been
14931 -- created already. Use it for the private type as well, in order
14932 -- to prevent multiple incompatible class-wide types that may be
14933 -- created for self-referential anonymous access components.
14935 if Is_Tagged_Type
(Prev
)
14936 and then Present
(Class_Wide_Type
(Prev
))
14938 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
14939 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
14941 -- If the incomplete type is completed by a private declaration
14942 -- the class-wide type remains associated with the incomplete
14943 -- type, to prevent order-of-elaboration issues in gigi, else
14944 -- we associate the class-wide type with the known full view.
14946 if Nkind
(N
) /= N_Private_Type_Declaration
then
14947 Set_Etype
(Class_Wide_Type
(Id
), Id
);
14951 -- Case of full declaration of private type
14954 -- If the private type was a completion of an incomplete type then
14955 -- update Prev to reference the private type
14957 if Ada_Version
>= Ada_2012
14958 and then Ekind
(Prev
) = E_Incomplete_Type
14959 and then Present
(Full_View
(Prev
))
14960 and then Is_Private_Type
(Full_View
(Prev
))
14962 Prev
:= Full_View
(Prev
);
14963 Prev_Par
:= Parent
(Prev
);
14966 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
14967 if Etype
(Prev
) /= Prev
then
14969 -- Prev is a private subtype or a derived type, and needs
14972 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
14975 elsif Ekind
(Prev
) = E_Private_Type
14976 and then Nkind_In
(N
, N_Task_Type_Declaration
,
14977 N_Protected_Type_Declaration
)
14980 ("completion of nonlimited type cannot be limited", N
);
14982 elsif Ekind
(Prev
) = E_Record_Type_With_Private
14983 and then Nkind_In
(N
, N_Task_Type_Declaration
,
14984 N_Protected_Type_Declaration
)
14986 if not Is_Limited_Record
(Prev
) then
14988 ("completion of nonlimited type cannot be limited", N
);
14990 elsif No
(Interface_List
(N
)) then
14992 ("completion of tagged private type must be tagged",
14996 elsif Nkind
(N
) = N_Full_Type_Declaration
14998 Nkind
(Type_Definition
(N
)) = N_Record_Definition
14999 and then Interface_Present
(Type_Definition
(N
))
15002 ("completion of private type cannot be an interface", N
);
15005 -- Ada 2005 (AI-251): Private extension declaration of a task
15006 -- type or a protected type. This case arises when covering
15007 -- interface types.
15009 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15010 N_Protected_Type_Declaration
)
15014 elsif Nkind
(N
) /= N_Full_Type_Declaration
15015 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
15018 ("full view of private extension must be an extension", N
);
15020 elsif not (Abstract_Present
(Parent
(Prev
)))
15021 and then Abstract_Present
(Type_Definition
(N
))
15024 ("full view of non-abstract extension cannot be abstract", N
);
15027 if not In_Private_Part
(Current_Scope
) then
15029 ("declaration of full view must appear in private part", N
);
15032 Copy_And_Swap
(Prev
, Id
);
15033 Set_Has_Private_Declaration
(Prev
);
15034 Set_Has_Private_Declaration
(Id
);
15036 -- Preserve aspect and iterator flags that may have been set on
15037 -- the partial view.
15039 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
15040 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
15042 -- If no error, propagate freeze_node from private to full view.
15043 -- It may have been generated for an early operational item.
15045 if Present
(Freeze_Node
(Id
))
15046 and then Serious_Errors_Detected
= 0
15047 and then No
(Full_View
(Id
))
15049 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
15050 Set_Freeze_Node
(Id
, Empty
);
15051 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
15054 Set_Full_View
(Id
, Prev
);
15058 -- Verify that full declaration conforms to partial one
15060 if Is_Incomplete_Or_Private_Type
(Prev
)
15061 and then Present
(Discriminant_Specifications
(Prev_Par
))
15063 if Present
(Discriminant_Specifications
(N
)) then
15064 if Ekind
(Prev
) = E_Incomplete_Type
then
15065 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
15067 Check_Discriminant_Conformance
(N
, Prev
, Id
);
15072 ("missing discriminants in full type declaration", N
);
15074 -- To avoid cascaded errors on subsequent use, share the
15075 -- discriminants of the partial view.
15077 Set_Discriminant_Specifications
(N
,
15078 Discriminant_Specifications
(Prev_Par
));
15082 -- A prior untagged partial view can have an associated class-wide
15083 -- type due to use of the class attribute, and in this case the full
15084 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15085 -- of incomplete tagged declarations, but we check for it.
15088 and then (Is_Tagged_Type
(Prev
)
15089 or else Present
(Class_Wide_Type
(Prev
)))
15091 -- Ada 2012 (AI05-0162): A private type may be the completion of
15092 -- an incomplete type
15094 if Ada_Version
>= Ada_2012
15095 and then Is_Incomplete_Type
(Prev
)
15096 and then Nkind_In
(N
, N_Private_Type_Declaration
,
15097 N_Private_Extension_Declaration
)
15099 -- No need to check private extensions since they are tagged
15101 if Nkind
(N
) = N_Private_Type_Declaration
15102 and then not Tagged_Present
(N
)
15107 -- The full declaration is either a tagged type (including
15108 -- a synchronized type that implements interfaces) or a
15109 -- type extension, otherwise this is an error.
15111 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15112 N_Protected_Type_Declaration
)
15114 if No
(Interface_List
(N
))
15115 and then not Error_Posted
(N
)
15120 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
15122 -- Indicate that the previous declaration (tagged incomplete
15123 -- or private declaration) requires the same on the full one.
15125 if not Tagged_Present
(Type_Definition
(N
)) then
15127 Set_Is_Tagged_Type
(Id
);
15130 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
15131 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
15133 ("full declaration of } must be a record extension",
15136 -- Set some attributes to produce a usable full view
15138 Set_Is_Tagged_Type
(Id
);
15147 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
15148 and then Present
(Premature_Use
(Parent
(Prev
)))
15150 Error_Msg_Sloc
:= Sloc
(N
);
15152 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
15157 end Find_Type_Name
;
15159 -------------------------
15160 -- Find_Type_Of_Object --
15161 -------------------------
15163 function Find_Type_Of_Object
15164 (Obj_Def
: Node_Id
;
15165 Related_Nod
: Node_Id
) return Entity_Id
15167 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
15168 P
: Node_Id
:= Parent
(Obj_Def
);
15173 -- If the parent is a component_definition node we climb to the
15174 -- component_declaration node
15176 if Nkind
(P
) = N_Component_Definition
then
15180 -- Case of an anonymous array subtype
15182 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
15183 N_Unconstrained_Array_Definition
)
15186 Array_Type_Declaration
(T
, Obj_Def
);
15188 -- Create an explicit subtype whenever possible
15190 elsif Nkind
(P
) /= N_Component_Declaration
15191 and then Def_Kind
= N_Subtype_Indication
15193 -- Base name of subtype on object name, which will be unique in
15194 -- the current scope.
15196 -- If this is a duplicate declaration, return base type, to avoid
15197 -- generating duplicate anonymous types.
15199 if Error_Posted
(P
) then
15200 Analyze
(Subtype_Mark
(Obj_Def
));
15201 return Entity
(Subtype_Mark
(Obj_Def
));
15206 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
15208 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
15210 Insert_Action
(Obj_Def
,
15211 Make_Subtype_Declaration
(Sloc
(P
),
15212 Defining_Identifier
=> T
,
15213 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
15215 -- This subtype may need freezing, and this will not be done
15216 -- automatically if the object declaration is not in declarative
15217 -- part. Since this is an object declaration, the type cannot always
15218 -- be frozen here. Deferred constants do not freeze their type
15219 -- (which often enough will be private).
15221 if Nkind
(P
) = N_Object_Declaration
15222 and then Constant_Present
(P
)
15223 and then No
(Expression
(P
))
15227 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, P
));
15230 -- Ada 2005 AI-406: the object definition in an object declaration
15231 -- can be an access definition.
15233 elsif Def_Kind
= N_Access_Definition
then
15234 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
15236 Set_Is_Local_Anonymous_Access
15238 V
=> (Ada_Version
< Ada_2012
)
15239 or else (Nkind
(P
) /= N_Object_Declaration
)
15240 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
15242 -- Otherwise, the object definition is just a subtype_mark
15245 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
15247 -- If expansion is disabled an object definition that is an aggregate
15248 -- will not get expanded and may lead to scoping problems in the back
15249 -- end, if the object is referenced in an inner scope. In that case
15250 -- create an itype reference for the object definition now. This
15251 -- may be redundant in some cases, but harmless.
15254 and then Nkind
(Related_Nod
) = N_Object_Declaration
15257 Build_Itype_Reference
(T
, Related_Nod
);
15262 end Find_Type_Of_Object
;
15264 --------------------------------
15265 -- Find_Type_Of_Subtype_Indic --
15266 --------------------------------
15268 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
15272 -- Case of subtype mark with a constraint
15274 if Nkind
(S
) = N_Subtype_Indication
then
15275 Find_Type
(Subtype_Mark
(S
));
15276 Typ
:= Entity
(Subtype_Mark
(S
));
15279 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
15282 ("incorrect constraint for this kind of type", Constraint
(S
));
15283 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
15286 -- Otherwise we have a subtype mark without a constraint
15288 elsif Error_Posted
(S
) then
15289 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
15297 -- Check No_Wide_Characters restriction
15299 Check_Wide_Character_Restriction
(Typ
, S
);
15302 end Find_Type_Of_Subtype_Indic
;
15304 -------------------------------------
15305 -- Floating_Point_Type_Declaration --
15306 -------------------------------------
15308 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15309 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
15310 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
15312 Base_Typ
: Entity_Id
;
15313 Implicit_Base
: Entity_Id
;
15316 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
15317 -- Find if given digits value, and possibly a specified range, allows
15318 -- derivation from specified type
15320 function Find_Base_Type
return Entity_Id
;
15321 -- Find a predefined base type that Def can derive from, or generate
15322 -- an error and substitute Long_Long_Float if none exists.
15324 ---------------------
15325 -- Can_Derive_From --
15326 ---------------------
15328 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
15329 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
15332 -- Check specified "digits" constraint
15334 if Digs_Val
> Digits_Value
(E
) then
15338 -- Avoid types not matching pragma Float_Representation, if present
15340 if (Opt
.Float_Format
= 'I' and then Float_Rep
(E
) /= IEEE_Binary
)
15342 (Opt
.Float_Format
= 'V' and then Float_Rep
(E
) /= VAX_Native
)
15347 -- Check for matching range, if specified
15349 if Present
(Spec
) then
15350 if Expr_Value_R
(Type_Low_Bound
(E
)) >
15351 Expr_Value_R
(Low_Bound
(Spec
))
15356 if Expr_Value_R
(Type_High_Bound
(E
)) <
15357 Expr_Value_R
(High_Bound
(Spec
))
15364 end Can_Derive_From
;
15366 --------------------
15367 -- Find_Base_Type --
15368 --------------------
15370 function Find_Base_Type
return Entity_Id
is
15371 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
15374 -- Iterate over the predefined types in order, returning the first
15375 -- one that Def can derive from.
15377 while Present
(Choice
) loop
15378 if Can_Derive_From
(Node
(Choice
)) then
15379 return Node
(Choice
);
15382 Next_Elmt
(Choice
);
15385 -- If we can't derive from any existing type, use Long_Long_Float
15386 -- and give appropriate message explaining the problem.
15388 if Digs_Val
> Max_Digs_Val
then
15389 -- It might be the case that there is a type with the requested
15390 -- range, just not the combination of digits and range.
15393 ("no predefined type has requested range and precision",
15394 Real_Range_Specification
(Def
));
15398 ("range too large for any predefined type",
15399 Real_Range_Specification
(Def
));
15402 return Standard_Long_Long_Float
;
15403 end Find_Base_Type
;
15405 -- Start of processing for Floating_Point_Type_Declaration
15408 Check_Restriction
(No_Floating_Point
, Def
);
15410 -- Create an implicit base type
15413 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
15415 -- Analyze and verify digits value
15417 Analyze_And_Resolve
(Digs
, Any_Integer
);
15418 Check_Digits_Expression
(Digs
);
15419 Digs_Val
:= Expr_Value
(Digs
);
15421 -- Process possible range spec and find correct type to derive from
15423 Process_Real_Range_Specification
(Def
);
15425 -- Check that requested number of digits is not too high.
15427 if Digs_Val
> Max_Digs_Val
then
15428 -- The check for Max_Base_Digits may be somewhat expensive, as it
15429 -- requires reading System, so only do it when necessary.
15432 Max_Base_Digits
: constant Uint
:=
15435 (Parent
(RTE
(RE_Max_Base_Digits
))));
15438 if Digs_Val
> Max_Base_Digits
then
15439 Error_Msg_Uint_1
:= Max_Base_Digits
;
15440 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
15442 elsif No
(Real_Range_Specification
(Def
)) then
15443 Error_Msg_Uint_1
:= Max_Digs_Val
;
15444 Error_Msg_N
("types with more than ^ digits need range spec "
15445 & "(RM 3.5.7(6))", Digs
);
15450 -- Find a suitable type to derive from or complain and use a substitute
15452 Base_Typ
:= Find_Base_Type
;
15454 -- If there are bounds given in the declaration use them as the bounds
15455 -- of the type, otherwise use the bounds of the predefined base type
15456 -- that was chosen based on the Digits value.
15458 if Present
(Real_Range_Specification
(Def
)) then
15459 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
15460 Set_Is_Constrained
(T
);
15462 -- The bounds of this range must be converted to machine numbers
15463 -- in accordance with RM 4.9(38).
15465 Bound
:= Type_Low_Bound
(T
);
15467 if Nkind
(Bound
) = N_Real_Literal
then
15469 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15470 Set_Is_Machine_Number
(Bound
);
15473 Bound
:= Type_High_Bound
(T
);
15475 if Nkind
(Bound
) = N_Real_Literal
then
15477 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15478 Set_Is_Machine_Number
(Bound
);
15482 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
15485 -- Complete definition of implicit base and declared first subtype
15487 Set_Etype
(Implicit_Base
, Base_Typ
);
15489 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
15490 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
15491 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
15492 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
15493 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
15494 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
15496 Set_Ekind
(T
, E_Floating_Point_Subtype
);
15497 Set_Etype
(T
, Implicit_Base
);
15499 Set_Size_Info
(T
, (Implicit_Base
));
15500 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
15501 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15502 Set_Digits_Value
(T
, Digs_Val
);
15503 end Floating_Point_Type_Declaration
;
15505 ----------------------------
15506 -- Get_Discriminant_Value --
15507 ----------------------------
15509 -- This is the situation:
15511 -- There is a non-derived type
15513 -- type T0 (Dx, Dy, Dz...)
15515 -- There are zero or more levels of derivation, with each derivation
15516 -- either purely inheriting the discriminants, or defining its own.
15518 -- type Ti is new Ti-1
15520 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15522 -- subtype Ti is ...
15524 -- The subtype issue is avoided by the use of Original_Record_Component,
15525 -- and the fact that derived subtypes also derive the constraints.
15527 -- This chain leads back from
15529 -- Typ_For_Constraint
15531 -- Typ_For_Constraint has discriminants, and the value for each
15532 -- discriminant is given by its corresponding Elmt of Constraints.
15534 -- Discriminant is some discriminant in this hierarchy
15536 -- We need to return its value
15538 -- We do this by recursively searching each level, and looking for
15539 -- Discriminant. Once we get to the bottom, we start backing up
15540 -- returning the value for it which may in turn be a discriminant
15541 -- further up, so on the backup we continue the substitution.
15543 function Get_Discriminant_Value
15544 (Discriminant
: Entity_Id
;
15545 Typ_For_Constraint
: Entity_Id
;
15546 Constraint
: Elist_Id
) return Node_Id
15548 function Root_Corresponding_Discriminant
15549 (Discr
: Entity_Id
) return Entity_Id
;
15550 -- Given a discriminant, traverse the chain of inherited discriminants
15551 -- and return the topmost discriminant.
15553 function Search_Derivation_Levels
15555 Discrim_Values
: Elist_Id
;
15556 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
15557 -- This is the routine that performs the recursive search of levels
15558 -- as described above.
15560 -------------------------------------
15561 -- Root_Corresponding_Discriminant --
15562 -------------------------------------
15564 function Root_Corresponding_Discriminant
15565 (Discr
: Entity_Id
) return Entity_Id
15571 while Present
(Corresponding_Discriminant
(D
)) loop
15572 D
:= Corresponding_Discriminant
(D
);
15576 end Root_Corresponding_Discriminant
;
15578 ------------------------------
15579 -- Search_Derivation_Levels --
15580 ------------------------------
15582 function Search_Derivation_Levels
15584 Discrim_Values
: Elist_Id
;
15585 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
15589 Result
: Node_Or_Entity_Id
;
15590 Result_Entity
: Node_Id
;
15593 -- If inappropriate type, return Error, this happens only in
15594 -- cascaded error situations, and we want to avoid a blow up.
15596 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
15600 -- Look deeper if possible. Use Stored_Constraints only for
15601 -- untagged types. For tagged types use the given constraint.
15602 -- This asymmetry needs explanation???
15604 if not Stored_Discrim_Values
15605 and then Present
(Stored_Constraint
(Ti
))
15606 and then not Is_Tagged_Type
(Ti
)
15609 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
15612 Td
: constant Entity_Id
:= Etype
(Ti
);
15616 Result
:= Discriminant
;
15619 if Present
(Stored_Constraint
(Ti
)) then
15621 Search_Derivation_Levels
15622 (Td
, Stored_Constraint
(Ti
), True);
15625 Search_Derivation_Levels
15626 (Td
, Discrim_Values
, Stored_Discrim_Values
);
15632 -- Extra underlying places to search, if not found above. For
15633 -- concurrent types, the relevant discriminant appears in the
15634 -- corresponding record. For a type derived from a private type
15635 -- without discriminant, the full view inherits the discriminants
15636 -- of the full view of the parent.
15638 if Result
= Discriminant
then
15639 if Is_Concurrent_Type
(Ti
)
15640 and then Present
(Corresponding_Record_Type
(Ti
))
15643 Search_Derivation_Levels
(
15644 Corresponding_Record_Type
(Ti
),
15646 Stored_Discrim_Values
);
15648 elsif Is_Private_Type
(Ti
)
15649 and then not Has_Discriminants
(Ti
)
15650 and then Present
(Full_View
(Ti
))
15651 and then Etype
(Full_View
(Ti
)) /= Ti
15654 Search_Derivation_Levels
(
15657 Stored_Discrim_Values
);
15661 -- If Result is not a (reference to a) discriminant, return it,
15662 -- otherwise set Result_Entity to the discriminant.
15664 if Nkind
(Result
) = N_Defining_Identifier
then
15665 pragma Assert
(Result
= Discriminant
);
15666 Result_Entity
:= Result
;
15669 if not Denotes_Discriminant
(Result
) then
15673 Result_Entity
:= Entity
(Result
);
15676 -- See if this level of derivation actually has discriminants
15677 -- because tagged derivations can add them, hence the lower
15678 -- levels need not have any.
15680 if not Has_Discriminants
(Ti
) then
15684 -- Scan Ti's discriminants for Result_Entity,
15685 -- and return its corresponding value, if any.
15687 Result_Entity
:= Original_Record_Component
(Result_Entity
);
15689 Assoc
:= First_Elmt
(Discrim_Values
);
15691 if Stored_Discrim_Values
then
15692 Disc
:= First_Stored_Discriminant
(Ti
);
15694 Disc
:= First_Discriminant
(Ti
);
15697 while Present
(Disc
) loop
15698 pragma Assert
(Present
(Assoc
));
15700 if Original_Record_Component
(Disc
) = Result_Entity
then
15701 return Node
(Assoc
);
15706 if Stored_Discrim_Values
then
15707 Next_Stored_Discriminant
(Disc
);
15709 Next_Discriminant
(Disc
);
15713 -- Could not find it
15716 end Search_Derivation_Levels
;
15720 Result
: Node_Or_Entity_Id
;
15722 -- Start of processing for Get_Discriminant_Value
15725 -- ??? This routine is a gigantic mess and will be deleted. For the
15726 -- time being just test for the trivial case before calling recurse.
15728 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
15734 D
:= First_Discriminant
(Typ_For_Constraint
);
15735 E
:= First_Elmt
(Constraint
);
15736 while Present
(D
) loop
15737 if Chars
(D
) = Chars
(Discriminant
) then
15741 Next_Discriminant
(D
);
15747 Result
:= Search_Derivation_Levels
15748 (Typ_For_Constraint
, Constraint
, False);
15750 -- ??? hack to disappear when this routine is gone
15752 if Nkind
(Result
) = N_Defining_Identifier
then
15758 D
:= First_Discriminant
(Typ_For_Constraint
);
15759 E
:= First_Elmt
(Constraint
);
15760 while Present
(D
) loop
15761 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
15765 Next_Discriminant
(D
);
15771 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
15773 end Get_Discriminant_Value
;
15775 --------------------------
15776 -- Has_Range_Constraint --
15777 --------------------------
15779 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
15780 C
: constant Node_Id
:= Constraint
(N
);
15783 if Nkind
(C
) = N_Range_Constraint
then
15786 elsif Nkind
(C
) = N_Digits_Constraint
then
15788 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
15790 Present
(Range_Constraint
(C
));
15792 elsif Nkind
(C
) = N_Delta_Constraint
then
15793 return Present
(Range_Constraint
(C
));
15798 end Has_Range_Constraint
;
15800 ------------------------
15801 -- Inherit_Components --
15802 ------------------------
15804 function Inherit_Components
15806 Parent_Base
: Entity_Id
;
15807 Derived_Base
: Entity_Id
;
15808 Is_Tagged
: Boolean;
15809 Inherit_Discr
: Boolean;
15810 Discs
: Elist_Id
) return Elist_Id
15812 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
15814 procedure Inherit_Component
15815 (Old_C
: Entity_Id
;
15816 Plain_Discrim
: Boolean := False;
15817 Stored_Discrim
: Boolean := False);
15818 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
15819 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
15820 -- True, Old_C is a stored discriminant. If they are both false then
15821 -- Old_C is a regular component.
15823 -----------------------
15824 -- Inherit_Component --
15825 -----------------------
15827 procedure Inherit_Component
15828 (Old_C
: Entity_Id
;
15829 Plain_Discrim
: Boolean := False;
15830 Stored_Discrim
: Boolean := False)
15832 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
15833 -- Id denotes the entity of an access discriminant or anonymous
15834 -- access component. Set the type of Id to either the same type of
15835 -- Old_C or create a new one depending on whether the parent and
15836 -- the child types are in the same scope.
15838 ------------------------
15839 -- Set_Anonymous_Type --
15840 ------------------------
15842 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
15843 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
15846 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
15847 Set_Etype
(Id
, Old_Typ
);
15849 -- The parent and the derived type are in two different scopes.
15850 -- Reuse the type of the original discriminant / component by
15851 -- copying it in order to preserve all attributes.
15855 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
15858 Set_Etype
(Id
, Typ
);
15860 -- Since we do not generate component declarations for
15861 -- inherited components, associate the itype with the
15864 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
15865 Set_Scope
(Typ
, Derived_Base
);
15868 end Set_Anonymous_Type
;
15870 -- Local variables and constants
15872 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
15874 Corr_Discrim
: Entity_Id
;
15875 Discrim
: Entity_Id
;
15877 -- Start of processing for Inherit_Component
15880 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
15882 Set_Parent
(New_C
, Parent
(Old_C
));
15884 -- Regular discriminants and components must be inserted in the scope
15885 -- of the Derived_Base. Do it here.
15887 if not Stored_Discrim
then
15888 Enter_Name
(New_C
);
15891 -- For tagged types the Original_Record_Component must point to
15892 -- whatever this field was pointing to in the parent type. This has
15893 -- already been achieved by the call to New_Copy above.
15895 if not Is_Tagged
then
15896 Set_Original_Record_Component
(New_C
, New_C
);
15899 -- Set the proper type of an access discriminant
15901 if Ekind
(New_C
) = E_Discriminant
15902 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
15904 Set_Anonymous_Type
(New_C
);
15907 -- If we have inherited a component then see if its Etype contains
15908 -- references to Parent_Base discriminants. In this case, replace
15909 -- these references with the constraints given in Discs. We do not
15910 -- do this for the partial view of private types because this is
15911 -- not needed (only the components of the full view will be used
15912 -- for code generation) and cause problem. We also avoid this
15913 -- transformation in some error situations.
15915 if Ekind
(New_C
) = E_Component
then
15917 -- Set the proper type of an anonymous access component
15919 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
15920 Set_Anonymous_Type
(New_C
);
15922 elsif (Is_Private_Type
(Derived_Base
)
15923 and then not Is_Generic_Type
(Derived_Base
))
15924 or else (Is_Empty_Elmt_List
(Discs
)
15925 and then not Expander_Active
)
15927 Set_Etype
(New_C
, Etype
(Old_C
));
15930 -- The current component introduces a circularity of the
15933 -- limited with Pack_2;
15934 -- package Pack_1 is
15935 -- type T_1 is tagged record
15936 -- Comp : access Pack_2.T_2;
15942 -- package Pack_2 is
15943 -- type T_2 is new Pack_1.T_1 with ...;
15948 Constrain_Component_Type
15949 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
15953 -- In derived tagged types it is illegal to reference a non
15954 -- discriminant component in the parent type. To catch this, mark
15955 -- these components with an Ekind of E_Void. This will be reset in
15956 -- Record_Type_Definition after processing the record extension of
15957 -- the derived type.
15959 -- If the declaration is a private extension, there is no further
15960 -- record extension to process, and the components retain their
15961 -- current kind, because they are visible at this point.
15963 if Is_Tagged
and then Ekind
(New_C
) = E_Component
15964 and then Nkind
(N
) /= N_Private_Extension_Declaration
15966 Set_Ekind
(New_C
, E_Void
);
15969 if Plain_Discrim
then
15970 Set_Corresponding_Discriminant
(New_C
, Old_C
);
15971 Build_Discriminal
(New_C
);
15973 -- If we are explicitly inheriting a stored discriminant it will be
15974 -- completely hidden.
15976 elsif Stored_Discrim
then
15977 Set_Corresponding_Discriminant
(New_C
, Empty
);
15978 Set_Discriminal
(New_C
, Empty
);
15979 Set_Is_Completely_Hidden
(New_C
);
15981 -- Set the Original_Record_Component of each discriminant in the
15982 -- derived base to point to the corresponding stored that we just
15985 Discrim
:= First_Discriminant
(Derived_Base
);
15986 while Present
(Discrim
) loop
15987 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
15989 -- Corr_Discrim could be missing in an error situation
15991 if Present
(Corr_Discrim
)
15992 and then Original_Record_Component
(Corr_Discrim
) = Old_C
15994 Set_Original_Record_Component
(Discrim
, New_C
);
15997 Next_Discriminant
(Discrim
);
16000 Append_Entity
(New_C
, Derived_Base
);
16003 if not Is_Tagged
then
16004 Append_Elmt
(Old_C
, Assoc_List
);
16005 Append_Elmt
(New_C
, Assoc_List
);
16007 end Inherit_Component
;
16009 -- Variables local to Inherit_Component
16011 Loc
: constant Source_Ptr
:= Sloc
(N
);
16013 Parent_Discrim
: Entity_Id
;
16014 Stored_Discrim
: Entity_Id
;
16016 Component
: Entity_Id
;
16018 -- Start of processing for Inherit_Components
16021 if not Is_Tagged
then
16022 Append_Elmt
(Parent_Base
, Assoc_List
);
16023 Append_Elmt
(Derived_Base
, Assoc_List
);
16026 -- Inherit parent discriminants if needed
16028 if Inherit_Discr
then
16029 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
16030 while Present
(Parent_Discrim
) loop
16031 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
16032 Next_Discriminant
(Parent_Discrim
);
16036 -- Create explicit stored discrims for untagged types when necessary
16038 if not Has_Unknown_Discriminants
(Derived_Base
)
16039 and then Has_Discriminants
(Parent_Base
)
16040 and then not Is_Tagged
16043 or else First_Discriminant
(Parent_Base
) /=
16044 First_Stored_Discriminant
(Parent_Base
))
16046 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
16047 while Present
(Stored_Discrim
) loop
16048 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
16049 Next_Stored_Discriminant
(Stored_Discrim
);
16053 -- See if we can apply the second transformation for derived types, as
16054 -- explained in point 6. in the comments above Build_Derived_Record_Type
16055 -- This is achieved by appending Derived_Base discriminants into Discs,
16056 -- which has the side effect of returning a non empty Discs list to the
16057 -- caller of Inherit_Components, which is what we want. This must be
16058 -- done for private derived types if there are explicit stored
16059 -- discriminants, to ensure that we can retrieve the values of the
16060 -- constraints provided in the ancestors.
16063 and then Is_Empty_Elmt_List
(Discs
)
16064 and then Present
(First_Discriminant
(Derived_Base
))
16066 (not Is_Private_Type
(Derived_Base
)
16067 or else Is_Completely_Hidden
16068 (First_Stored_Discriminant
(Derived_Base
))
16069 or else Is_Generic_Type
(Derived_Base
))
16071 D
:= First_Discriminant
(Derived_Base
);
16072 while Present
(D
) loop
16073 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
16074 Next_Discriminant
(D
);
16078 -- Finally, inherit non-discriminant components unless they are not
16079 -- visible because defined or inherited from the full view of the
16080 -- parent. Don't inherit the _parent field of the parent type.
16082 Component
:= First_Entity
(Parent_Base
);
16083 while Present
(Component
) loop
16085 -- Ada 2005 (AI-251): Do not inherit components associated with
16086 -- secondary tags of the parent.
16088 if Ekind
(Component
) = E_Component
16089 and then Present
(Related_Type
(Component
))
16093 elsif Ekind
(Component
) /= E_Component
16094 or else Chars
(Component
) = Name_uParent
16098 -- If the derived type is within the parent type's declarative
16099 -- region, then the components can still be inherited even though
16100 -- they aren't visible at this point. This can occur for cases
16101 -- such as within public child units where the components must
16102 -- become visible upon entering the child unit's private part.
16104 elsif not Is_Visible_Component
(Component
)
16105 and then not In_Open_Scopes
(Scope
(Parent_Base
))
16109 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
16110 E_Limited_Private_Type
)
16115 Inherit_Component
(Component
);
16118 Next_Entity
(Component
);
16121 -- For tagged derived types, inherited discriminants cannot be used in
16122 -- component declarations of the record extension part. To achieve this
16123 -- we mark the inherited discriminants as not visible.
16125 if Is_Tagged
and then Inherit_Discr
then
16126 D
:= First_Discriminant
(Derived_Base
);
16127 while Present
(D
) loop
16128 Set_Is_Immediately_Visible
(D
, False);
16129 Next_Discriminant
(D
);
16134 end Inherit_Components
;
16136 -----------------------
16137 -- Is_Constant_Bound --
16138 -----------------------
16140 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
16142 if Compile_Time_Known_Value
(Exp
) then
16145 elsif Is_Entity_Name
(Exp
)
16146 and then Present
(Entity
(Exp
))
16148 return Is_Constant_Object
(Entity
(Exp
))
16149 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
16151 elsif Nkind
(Exp
) in N_Binary_Op
then
16152 return Is_Constant_Bound
(Left_Opnd
(Exp
))
16153 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
16154 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
16159 end Is_Constant_Bound
;
16161 -----------------------
16162 -- Is_Null_Extension --
16163 -----------------------
16165 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
16166 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
16167 Comp_List
: Node_Id
;
16171 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
16172 or else not Is_Tagged_Type
(T
)
16173 or else Nkind
(Type_Definition
(Type_Decl
)) /=
16174 N_Derived_Type_Definition
16175 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
16181 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
16183 if Present
(Discriminant_Specifications
(Type_Decl
)) then
16186 elsif Present
(Comp_List
)
16187 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
16189 Comp
:= First
(Component_Items
(Comp_List
));
16191 -- Only user-defined components are relevant. The component list
16192 -- may also contain a parent component and internal components
16193 -- corresponding to secondary tags, but these do not determine
16194 -- whether this is a null extension.
16196 while Present
(Comp
) loop
16197 if Comes_From_Source
(Comp
) then
16208 end Is_Null_Extension
;
16210 ------------------------------
16211 -- Is_Valid_Constraint_Kind --
16212 ------------------------------
16214 function Is_Valid_Constraint_Kind
16215 (T_Kind
: Type_Kind
;
16216 Constraint_Kind
: Node_Kind
) return Boolean
16220 when Enumeration_Kind |
16222 return Constraint_Kind
= N_Range_Constraint
;
16224 when Decimal_Fixed_Point_Kind
=>
16225 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16226 N_Range_Constraint
);
16228 when Ordinary_Fixed_Point_Kind
=>
16229 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
16230 N_Range_Constraint
);
16233 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16234 N_Range_Constraint
);
16241 E_Incomplete_Type |
16244 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
16247 return True; -- Error will be detected later
16249 end Is_Valid_Constraint_Kind
;
16251 --------------------------
16252 -- Is_Visible_Component --
16253 --------------------------
16255 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
16256 Original_Comp
: Entity_Id
:= Empty
;
16257 Original_Scope
: Entity_Id
;
16258 Type_Scope
: Entity_Id
;
16260 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
16261 -- Check whether parent type of inherited component is declared locally,
16262 -- possibly within a nested package or instance. The current scope is
16263 -- the derived record itself.
16265 -------------------
16266 -- Is_Local_Type --
16267 -------------------
16269 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
16273 Scop
:= Scope
(Typ
);
16274 while Present
(Scop
)
16275 and then Scop
/= Standard_Standard
16277 if Scop
= Scope
(Current_Scope
) then
16281 Scop
:= Scope
(Scop
);
16287 -- Start of processing for Is_Visible_Component
16290 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
16291 Original_Comp
:= Original_Record_Component
(C
);
16294 if No
(Original_Comp
) then
16296 -- Premature usage, or previous error
16301 Original_Scope
:= Scope
(Original_Comp
);
16302 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
16305 -- This test only concerns tagged types
16307 if not Is_Tagged_Type
(Original_Scope
) then
16310 -- If it is _Parent or _Tag, there is no visibility issue
16312 elsif not Comes_From_Source
(Original_Comp
) then
16315 -- Discriminants are always visible
16317 elsif Ekind
(Original_Comp
) = E_Discriminant
16318 and then not Has_Unknown_Discriminants
(Original_Scope
)
16322 -- In the body of an instantiation, no need to check for the visibility
16325 elsif In_Instance_Body
then
16328 -- If the component has been declared in an ancestor which is currently
16329 -- a private type, then it is not visible. The same applies if the
16330 -- component's containing type is not in an open scope and the original
16331 -- component's enclosing type is a visible full view of a private type
16332 -- (which can occur in cases where an attempt is being made to reference
16333 -- a component in a sibling package that is inherited from a visible
16334 -- component of a type in an ancestor package; the component in the
16335 -- sibling package should not be visible even though the component it
16336 -- inherited from is visible). This does not apply however in the case
16337 -- where the scope of the type is a private child unit, or when the
16338 -- parent comes from a local package in which the ancestor is currently
16339 -- visible. The latter suppression of visibility is needed for cases
16340 -- that are tested in B730006.
16342 elsif Is_Private_Type
(Original_Scope
)
16344 (not Is_Private_Descendant
(Type_Scope
)
16345 and then not In_Open_Scopes
(Type_Scope
)
16346 and then Has_Private_Declaration
(Original_Scope
))
16348 -- If the type derives from an entity in a formal package, there
16349 -- are no additional visible components.
16351 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
16352 N_Formal_Package_Declaration
16356 -- if we are not in the private part of the current package, there
16357 -- are no additional visible components.
16359 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
16360 and then not In_Private_Part
(Scope
(Current_Scope
))
16365 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
16366 and then In_Open_Scopes
(Scope
(Original_Scope
))
16367 and then Is_Local_Type
(Type_Scope
);
16370 -- There is another weird way in which a component may be invisible
16371 -- when the private and the full view are not derived from the same
16372 -- ancestor. Here is an example :
16374 -- type A1 is tagged record F1 : integer; end record;
16375 -- type A2 is new A1 with record F2 : integer; end record;
16376 -- type T is new A1 with private;
16378 -- type T is new A2 with null record;
16380 -- In this case, the full view of T inherits F1 and F2 but the private
16381 -- view inherits only F1
16385 Ancestor
: Entity_Id
:= Scope
(C
);
16389 if Ancestor
= Original_Scope
then
16391 elsif Ancestor
= Etype
(Ancestor
) then
16395 Ancestor
:= Etype
(Ancestor
);
16399 end Is_Visible_Component
;
16401 --------------------------
16402 -- Make_Class_Wide_Type --
16403 --------------------------
16405 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
16406 CW_Type
: Entity_Id
;
16408 Next_E
: Entity_Id
;
16411 if Present
(Class_Wide_Type
(T
)) then
16413 -- The class-wide type is a partially decorated entity created for a
16414 -- unanalyzed tagged type referenced through a limited with clause.
16415 -- When the tagged type is analyzed, its class-wide type needs to be
16416 -- redecorated. Note that we reuse the entity created by Decorate_
16417 -- Tagged_Type in order to preserve all links.
16419 if Materialize_Entity
(Class_Wide_Type
(T
)) then
16420 CW_Type
:= Class_Wide_Type
(T
);
16421 Set_Materialize_Entity
(CW_Type
, False);
16423 -- The class wide type can have been defined by the partial view, in
16424 -- which case everything is already done.
16430 -- Default case, we need to create a new class-wide type
16434 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
16437 -- Inherit root type characteristics
16439 CW_Name
:= Chars
(CW_Type
);
16440 Next_E
:= Next_Entity
(CW_Type
);
16441 Copy_Node
(T
, CW_Type
);
16442 Set_Comes_From_Source
(CW_Type
, False);
16443 Set_Chars
(CW_Type
, CW_Name
);
16444 Set_Parent
(CW_Type
, Parent
(T
));
16445 Set_Next_Entity
(CW_Type
, Next_E
);
16447 -- Ensure we have a new freeze node for the class-wide type. The partial
16448 -- view may have freeze action of its own, requiring a proper freeze
16449 -- node, and the same freeze node cannot be shared between the two
16452 Set_Has_Delayed_Freeze
(CW_Type
);
16453 Set_Freeze_Node
(CW_Type
, Empty
);
16455 -- Customize the class-wide type: It has no prim. op., it cannot be
16456 -- abstract and its Etype points back to the specific root type.
16458 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
16459 Set_Is_Tagged_Type
(CW_Type
, True);
16460 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
16461 Set_Is_Abstract_Type
(CW_Type
, False);
16462 Set_Is_Constrained
(CW_Type
, False);
16463 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
16465 if Ekind
(T
) = E_Class_Wide_Subtype
then
16466 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
16468 Set_Etype
(CW_Type
, T
);
16471 -- If this is the class_wide type of a constrained subtype, it does
16472 -- not have discriminants.
16474 Set_Has_Discriminants
(CW_Type
,
16475 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
16477 Set_Has_Unknown_Discriminants
(CW_Type
, True);
16478 Set_Class_Wide_Type
(T
, CW_Type
);
16479 Set_Equivalent_Type
(CW_Type
, Empty
);
16481 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16483 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
16484 end Make_Class_Wide_Type
;
16490 procedure Make_Index
16492 Related_Nod
: Node_Id
;
16493 Related_Id
: Entity_Id
:= Empty
;
16494 Suffix_Index
: Nat
:= 1;
16495 In_Iter_Schm
: Boolean := False)
16499 Def_Id
: Entity_Id
:= Empty
;
16500 Found
: Boolean := False;
16503 -- For a discrete range used in a constrained array definition and
16504 -- defined by a range, an implicit conversion to the predefined type
16505 -- INTEGER is assumed if each bound is either a numeric literal, a named
16506 -- number, or an attribute, and the type of both bounds (prior to the
16507 -- implicit conversion) is the type universal_integer. Otherwise, both
16508 -- bounds must be of the same discrete type, other than universal
16509 -- integer; this type must be determinable independently of the
16510 -- context, but using the fact that the type must be discrete and that
16511 -- both bounds must have the same type.
16513 -- Character literals also have a universal type in the absence of
16514 -- of additional context, and are resolved to Standard_Character.
16516 if Nkind
(I
) = N_Range
then
16518 -- The index is given by a range constraint. The bounds are known
16519 -- to be of a consistent type.
16521 if not Is_Overloaded
(I
) then
16524 -- For universal bounds, choose the specific predefined type
16526 if T
= Universal_Integer
then
16527 T
:= Standard_Integer
;
16529 elsif T
= Any_Character
then
16530 Ambiguous_Character
(Low_Bound
(I
));
16532 T
:= Standard_Character
;
16535 -- The node may be overloaded because some user-defined operators
16536 -- are available, but if a universal interpretation exists it is
16537 -- also the selected one.
16539 elsif Universal_Interpretation
(I
) = Universal_Integer
then
16540 T
:= Standard_Integer
;
16546 Ind
: Interp_Index
;
16550 Get_First_Interp
(I
, Ind
, It
);
16551 while Present
(It
.Typ
) loop
16552 if Is_Discrete_Type
(It
.Typ
) then
16555 and then not Covers
(It
.Typ
, T
)
16556 and then not Covers
(T
, It
.Typ
)
16558 Error_Msg_N
("ambiguous bounds in discrete range", I
);
16566 Get_Next_Interp
(Ind
, It
);
16569 if T
= Any_Type
then
16570 Error_Msg_N
("discrete type required for range", I
);
16571 Set_Etype
(I
, Any_Type
);
16574 elsif T
= Universal_Integer
then
16575 T
:= Standard_Integer
;
16580 if not Is_Discrete_Type
(T
) then
16581 Error_Msg_N
("discrete type required for range", I
);
16582 Set_Etype
(I
, Any_Type
);
16586 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
16587 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
16588 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
16589 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16590 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16592 -- The type of the index will be the type of the prefix, as long
16593 -- as the upper bound is 'Last of the same type.
16595 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
16597 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
16598 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
16599 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
16600 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
16607 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
16609 elsif Nkind
(I
) = N_Subtype_Indication
then
16611 -- The index is given by a subtype with a range constraint
16613 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
16615 if not Is_Discrete_Type
(T
) then
16616 Error_Msg_N
("discrete type required for range", I
);
16617 Set_Etype
(I
, Any_Type
);
16621 R
:= Range_Expression
(Constraint
(I
));
16624 Process_Range_Expr_In_Decl
16625 (R
, Entity
(Subtype_Mark
(I
)), In_Iter_Schm
=> In_Iter_Schm
);
16627 elsif Nkind
(I
) = N_Attribute_Reference
then
16629 -- The parser guarantees that the attribute is a RANGE attribute
16631 -- If the node denotes the range of a type mark, that is also the
16632 -- resulting type, and we do no need to create an Itype for it.
16634 if Is_Entity_Name
(Prefix
(I
))
16635 and then Comes_From_Source
(I
)
16636 and then Is_Type
(Entity
(Prefix
(I
)))
16637 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
16639 Def_Id
:= Entity
(Prefix
(I
));
16642 Analyze_And_Resolve
(I
);
16646 -- If none of the above, must be a subtype. We convert this to a
16647 -- range attribute reference because in the case of declared first
16648 -- named subtypes, the types in the range reference can be different
16649 -- from the type of the entity. A range attribute normalizes the
16650 -- reference and obtains the correct types for the bounds.
16652 -- This transformation is in the nature of an expansion, is only
16653 -- done if expansion is active. In particular, it is not done on
16654 -- formal generic types, because we need to retain the name of the
16655 -- original index for instantiation purposes.
16658 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
16659 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
16660 Set_Etype
(I
, Any_Integer
);
16664 -- The type mark may be that of an incomplete type. It is only
16665 -- now that we can get the full view, previous analysis does
16666 -- not look specifically for a type mark.
16668 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
16669 Set_Etype
(I
, Entity
(I
));
16670 Def_Id
:= Entity
(I
);
16672 if not Is_Discrete_Type
(Def_Id
) then
16673 Error_Msg_N
("discrete type required for index", I
);
16674 Set_Etype
(I
, Any_Type
);
16679 if Expander_Active
then
16681 Make_Attribute_Reference
(Sloc
(I
),
16682 Attribute_Name
=> Name_Range
,
16683 Prefix
=> Relocate_Node
(I
)));
16685 -- The original was a subtype mark that does not freeze. This
16686 -- means that the rewritten version must not freeze either.
16688 Set_Must_Not_Freeze
(I
);
16689 Set_Must_Not_Freeze
(Prefix
(I
));
16691 -- Is order critical??? if so, document why, if not
16692 -- use Analyze_And_Resolve
16694 Analyze_And_Resolve
(I
);
16698 -- If expander is inactive, type is legal, nothing else to construct
16705 if not Is_Discrete_Type
(T
) then
16706 Error_Msg_N
("discrete type required for range", I
);
16707 Set_Etype
(I
, Any_Type
);
16710 elsif T
= Any_Type
then
16711 Set_Etype
(I
, Any_Type
);
16715 -- We will now create the appropriate Itype to describe the range, but
16716 -- first a check. If we originally had a subtype, then we just label
16717 -- the range with this subtype. Not only is there no need to construct
16718 -- a new subtype, but it is wrong to do so for two reasons:
16720 -- 1. A legality concern, if we have a subtype, it must not freeze,
16721 -- and the Itype would cause freezing incorrectly
16723 -- 2. An efficiency concern, if we created an Itype, it would not be
16724 -- recognized as the same type for the purposes of eliminating
16725 -- checks in some circumstances.
16727 -- We signal this case by setting the subtype entity in Def_Id
16729 if No
(Def_Id
) then
16731 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
16732 Set_Etype
(Def_Id
, Base_Type
(T
));
16734 if Is_Signed_Integer_Type
(T
) then
16735 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
16737 elsif Is_Modular_Integer_Type
(T
) then
16738 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
16741 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
16742 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
16743 Set_First_Literal
(Def_Id
, First_Literal
(T
));
16746 Set_Size_Info
(Def_Id
, (T
));
16747 Set_RM_Size
(Def_Id
, RM_Size
(T
));
16748 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
16750 Set_Scalar_Range
(Def_Id
, R
);
16751 Conditional_Delay
(Def_Id
, T
);
16753 -- In the subtype indication case, if the immediate parent of the
16754 -- new subtype is non-static, then the subtype we create is non-
16755 -- static, even if its bounds are static.
16757 if Nkind
(I
) = N_Subtype_Indication
16758 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
16760 Set_Is_Non_Static_Subtype
(Def_Id
);
16764 -- Final step is to label the index with this constructed type
16766 Set_Etype
(I
, Def_Id
);
16769 ------------------------------
16770 -- Modular_Type_Declaration --
16771 ------------------------------
16773 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16774 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
16777 procedure Set_Modular_Size
(Bits
: Int
);
16778 -- Sets RM_Size to Bits, and Esize to normal word size above this
16780 ----------------------
16781 -- Set_Modular_Size --
16782 ----------------------
16784 procedure Set_Modular_Size
(Bits
: Int
) is
16786 Set_RM_Size
(T
, UI_From_Int
(Bits
));
16791 elsif Bits
<= 16 then
16792 Init_Esize
(T
, 16);
16794 elsif Bits
<= 32 then
16795 Init_Esize
(T
, 32);
16798 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
16801 if not Non_Binary_Modulus
(T
)
16802 and then Esize
(T
) = RM_Size
(T
)
16804 Set_Is_Known_Valid
(T
);
16806 end Set_Modular_Size
;
16808 -- Start of processing for Modular_Type_Declaration
16811 -- If the mod expression is (exactly) 2 * literal, where literal is
16812 -- 64 or less,then almost certainly the * was meant to be **. Warn!
16814 if Warn_On_Suspicious_Modulus_Value
16815 and then Nkind
(Mod_Expr
) = N_Op_Multiply
16816 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
16817 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
16818 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
16819 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
16821 Error_Msg_N
("suspicious MOD value, was '*'* intended'??", Mod_Expr
);
16824 -- Proceed with analysis of mod expression
16826 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
16828 Set_Ekind
(T
, E_Modular_Integer_Type
);
16829 Init_Alignment
(T
);
16830 Set_Is_Constrained
(T
);
16832 if not Is_OK_Static_Expression
(Mod_Expr
) then
16833 Flag_Non_Static_Expr
16834 ("non-static expression used for modular type bound!", Mod_Expr
);
16835 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16837 M_Val
:= Expr_Value
(Mod_Expr
);
16841 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
16842 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16845 Set_Modulus
(T
, M_Val
);
16847 -- Create bounds for the modular type based on the modulus given in
16848 -- the type declaration and then analyze and resolve those bounds.
16850 Set_Scalar_Range
(T
,
16851 Make_Range
(Sloc
(Mod_Expr
),
16852 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
16853 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
16855 -- Properly analyze the literals for the range. We do this manually
16856 -- because we can't go calling Resolve, since we are resolving these
16857 -- bounds with the type, and this type is certainly not complete yet!
16859 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
16860 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
16861 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
16862 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
16864 -- Loop through powers of two to find number of bits required
16866 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
16870 if M_Val
= 2 ** Bits
then
16871 Set_Modular_Size
(Bits
);
16876 elsif M_Val
< 2 ** Bits
then
16877 Check_SPARK_Restriction
("modulus should be a power of 2", T
);
16878 Set_Non_Binary_Modulus
(T
);
16880 if Bits
> System_Max_Nonbinary_Modulus_Power
then
16881 Error_Msg_Uint_1
:=
16882 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
16884 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
16885 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16889 -- In the non-binary case, set size as per RM 13.3(55)
16891 Set_Modular_Size
(Bits
);
16898 -- If we fall through, then the size exceed System.Max_Binary_Modulus
16899 -- so we just signal an error and set the maximum size.
16901 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
16902 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
16904 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16905 Init_Alignment
(T
);
16907 end Modular_Type_Declaration
;
16909 --------------------------
16910 -- New_Concatenation_Op --
16911 --------------------------
16913 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
16914 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
16917 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
16918 -- Create abbreviated declaration for the formal of a predefined
16919 -- Operator 'Op' of type 'Typ'
16921 --------------------
16922 -- Make_Op_Formal --
16923 --------------------
16925 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
16926 Formal
: Entity_Id
;
16928 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
16929 Set_Etype
(Formal
, Typ
);
16930 Set_Mechanism
(Formal
, Default_Mechanism
);
16932 end Make_Op_Formal
;
16934 -- Start of processing for New_Concatenation_Op
16937 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
16939 Set_Ekind
(Op
, E_Operator
);
16940 Set_Scope
(Op
, Current_Scope
);
16941 Set_Etype
(Op
, Typ
);
16942 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
16943 Set_Is_Immediately_Visible
(Op
);
16944 Set_Is_Intrinsic_Subprogram
(Op
);
16945 Set_Has_Completion
(Op
);
16946 Append_Entity
(Op
, Current_Scope
);
16948 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
16950 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16951 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16952 end New_Concatenation_Op
;
16954 -------------------------
16955 -- OK_For_Limited_Init --
16956 -------------------------
16958 -- ???Check all calls of this, and compare the conditions under which it's
16961 function OK_For_Limited_Init
16963 Exp
: Node_Id
) return Boolean
16966 return Is_CPP_Constructor_Call
(Exp
)
16967 or else (Ada_Version
>= Ada_2005
16968 and then not Debug_Flag_Dot_L
16969 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
16970 end OK_For_Limited_Init
;
16972 -------------------------------
16973 -- OK_For_Limited_Init_In_05 --
16974 -------------------------------
16976 function OK_For_Limited_Init_In_05
16978 Exp
: Node_Id
) return Boolean
16981 -- An object of a limited interface type can be initialized with any
16982 -- expression of a nonlimited descendant type.
16984 if Is_Class_Wide_Type
(Typ
)
16985 and then Is_Limited_Interface
(Typ
)
16986 and then not Is_Limited_Type
(Etype
(Exp
))
16991 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
16992 -- case of limited aggregates (including extension aggregates), and
16993 -- function calls. The function call may have been given in prefixed
16994 -- notation, in which case the original node is an indexed component.
16995 -- If the function is parameterless, the original node was an explicit
16996 -- dereference. The function may also be parameterless, in which case
16997 -- the source node is just an identifier.
16999 case Nkind
(Original_Node
(Exp
)) is
17000 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
17003 when N_Identifier
=>
17004 return Present
(Entity
(Original_Node
(Exp
)))
17005 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
17007 when N_Qualified_Expression
=>
17009 OK_For_Limited_Init_In_05
17010 (Typ
, Expression
(Original_Node
(Exp
)));
17012 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17013 -- with a function call, the expander has rewritten the call into an
17014 -- N_Type_Conversion node to force displacement of the pointer to
17015 -- reference the component containing the secondary dispatch table.
17016 -- Otherwise a type conversion is not a legal context.
17017 -- A return statement for a build-in-place function returning a
17018 -- synchronized type also introduces an unchecked conversion.
17020 when N_Type_Conversion |
17021 N_Unchecked_Type_Conversion
=>
17022 return not Comes_From_Source
(Exp
)
17024 OK_For_Limited_Init_In_05
17025 (Typ
, Expression
(Original_Node
(Exp
)));
17027 when N_Indexed_Component |
17028 N_Selected_Component |
17029 N_Explicit_Dereference
=>
17030 return Nkind
(Exp
) = N_Function_Call
;
17032 -- A use of 'Input is a function call, hence allowed. Normally the
17033 -- attribute will be changed to a call, but the attribute by itself
17034 -- can occur with -gnatc.
17036 when N_Attribute_Reference
=>
17037 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
17039 -- For a conditional expression, all dependent expressions must be
17040 -- legal constructs.
17042 when N_Conditional_Expression
=>
17044 Then_Expr
: constant Node_Id
:=
17045 Next
(First
(Expressions
(Original_Node
(Exp
))));
17046 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
17048 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
17049 and then OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
17052 when N_Case_Expression
=>
17057 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
17058 while Present
(Alt
) loop
17059 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
17072 end OK_For_Limited_Init_In_05
;
17074 -------------------------------------------
17075 -- Ordinary_Fixed_Point_Type_Declaration --
17076 -------------------------------------------
17078 procedure Ordinary_Fixed_Point_Type_Declaration
17082 Loc
: constant Source_Ptr
:= Sloc
(Def
);
17083 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
17084 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
17085 Implicit_Base
: Entity_Id
;
17092 Check_Restriction
(No_Fixed_Point
, Def
);
17094 -- Create implicit base type
17097 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
17098 Set_Etype
(Implicit_Base
, Implicit_Base
);
17100 -- Analyze and process delta expression
17102 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
17104 Check_Delta_Expression
(Delta_Expr
);
17105 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
17107 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
17109 -- Compute default small from given delta, which is the largest power
17110 -- of two that does not exceed the given delta value.
17120 if Delta_Val
< Ureal_1
then
17121 while Delta_Val
< Tmp
loop
17122 Tmp
:= Tmp
/ Ureal_2
;
17123 Scale
:= Scale
+ 1;
17128 Tmp
:= Tmp
* Ureal_2
;
17129 exit when Tmp
> Delta_Val
;
17130 Scale
:= Scale
- 1;
17134 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
17137 Set_Small_Value
(Implicit_Base
, Small_Val
);
17139 -- If no range was given, set a dummy range
17141 if RRS
<= Empty_Or_Error
then
17142 Low_Val
:= -Small_Val
;
17143 High_Val
:= Small_Val
;
17145 -- Otherwise analyze and process given range
17149 Low
: constant Node_Id
:= Low_Bound
(RRS
);
17150 High
: constant Node_Id
:= High_Bound
(RRS
);
17153 Analyze_And_Resolve
(Low
, Any_Real
);
17154 Analyze_And_Resolve
(High
, Any_Real
);
17155 Check_Real_Bound
(Low
);
17156 Check_Real_Bound
(High
);
17158 -- Obtain and set the range
17160 Low_Val
:= Expr_Value_R
(Low
);
17161 High_Val
:= Expr_Value_R
(High
);
17163 if Low_Val
> High_Val
then
17164 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
17169 -- The range for both the implicit base and the declared first subtype
17170 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17171 -- set a temporary range in place. Note that the bounds of the base
17172 -- type will be widened to be symmetrical and to fill the available
17173 -- bits when the type is frozen.
17175 -- We could do this with all discrete types, and probably should, but
17176 -- we absolutely have to do it for fixed-point, since the end-points
17177 -- of the range and the size are determined by the small value, which
17178 -- could be reset before the freeze point.
17180 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
17181 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
17183 -- Complete definition of first subtype
17185 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
17186 Set_Etype
(T
, Implicit_Base
);
17187 Init_Size_Align
(T
);
17188 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
17189 Set_Small_Value
(T
, Small_Val
);
17190 Set_Delta_Value
(T
, Delta_Val
);
17191 Set_Is_Constrained
(T
);
17193 end Ordinary_Fixed_Point_Type_Declaration
;
17195 ----------------------------------------
17196 -- Prepare_Private_Subtype_Completion --
17197 ----------------------------------------
17199 procedure Prepare_Private_Subtype_Completion
17201 Related_Nod
: Node_Id
)
17203 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
17204 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
17208 if Present
(Full_B
) then
17210 -- The Base_Type is already completed, we can complete the subtype
17211 -- now. We have to create a new entity with the same name, Thus we
17212 -- can't use Create_Itype.
17214 -- This is messy, should be fixed ???
17216 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
17217 Set_Is_Itype
(Full
);
17218 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
17219 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
17222 -- The parent subtype may be private, but the base might not, in some
17223 -- nested instances. In that case, the subtype does not need to be
17224 -- exchanged. It would still be nice to make private subtypes and their
17225 -- bases consistent at all times ???
17227 if Is_Private_Type
(Id_B
) then
17228 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
17231 end Prepare_Private_Subtype_Completion
;
17233 ---------------------------
17234 -- Process_Discriminants --
17235 ---------------------------
17237 procedure Process_Discriminants
17239 Prev
: Entity_Id
:= Empty
)
17241 Elist
: constant Elist_Id
:= New_Elmt_List
;
17244 Discr_Number
: Uint
;
17245 Discr_Type
: Entity_Id
;
17246 Default_Present
: Boolean := False;
17247 Default_Not_Present
: Boolean := False;
17250 -- A composite type other than an array type can have discriminants.
17251 -- On entry, the current scope is the composite type.
17253 -- The discriminants are initially entered into the scope of the type
17254 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17255 -- use, as explained at the end of this procedure.
17257 Discr
:= First
(Discriminant_Specifications
(N
));
17258 while Present
(Discr
) loop
17259 Enter_Name
(Defining_Identifier
(Discr
));
17261 -- For navigation purposes we add a reference to the discriminant
17262 -- in the entity for the type. If the current declaration is a
17263 -- completion, place references on the partial view. Otherwise the
17264 -- type is the current scope.
17266 if Present
(Prev
) then
17268 -- The references go on the partial view, if present. If the
17269 -- partial view has discriminants, the references have been
17270 -- generated already.
17272 if not Has_Discriminants
(Prev
) then
17273 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
17277 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
17280 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
17281 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
17283 -- Ada 2005 (AI-254)
17285 if Present
(Access_To_Subprogram_Definition
17286 (Discriminant_Type
(Discr
)))
17287 and then Protected_Present
(Access_To_Subprogram_Definition
17288 (Discriminant_Type
(Discr
)))
17291 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
17295 Find_Type
(Discriminant_Type
(Discr
));
17296 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
17298 if Error_Posted
(Discriminant_Type
(Discr
)) then
17299 Discr_Type
:= Any_Type
;
17303 if Is_Access_Type
(Discr_Type
) then
17305 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17308 if Ada_Version
< Ada_2005
then
17309 Check_Access_Discriminant_Requires_Limited
17310 (Discr
, Discriminant_Type
(Discr
));
17313 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
17315 ("(Ada 83) access discriminant not allowed", Discr
);
17318 elsif not Is_Discrete_Type
(Discr_Type
) then
17319 Error_Msg_N
("discriminants must have a discrete or access type",
17320 Discriminant_Type
(Discr
));
17323 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
17325 -- If a discriminant specification includes the assignment compound
17326 -- delimiter followed by an expression, the expression is the default
17327 -- expression of the discriminant; the default expression must be of
17328 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17329 -- a default expression, we do the special preanalysis, since this
17330 -- expression does not freeze (see "Handling of Default and Per-
17331 -- Object Expressions" in spec of package Sem).
17333 if Present
(Expression
(Discr
)) then
17334 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
17336 if Nkind
(N
) = N_Formal_Type_Declaration
then
17338 ("discriminant defaults not allowed for formal type",
17339 Expression
(Discr
));
17341 -- Flag an error for a tagged type with defaulted discriminants,
17342 -- excluding limited tagged types when compiling for Ada 2012
17343 -- (see AI05-0214).
17345 elsif Is_Tagged_Type
(Current_Scope
)
17346 and then (not Is_Limited_Type
(Current_Scope
)
17347 or else Ada_Version
< Ada_2012
)
17348 and then Comes_From_Source
(N
)
17350 -- Note: see similar test in Check_Or_Process_Discriminants, to
17351 -- handle the (illegal) case of the completion of an untagged
17352 -- view with discriminants with defaults by a tagged full view.
17353 -- We skip the check if Discr does not come from source, to
17354 -- account for the case of an untagged derived type providing
17355 -- defaults for a renamed discriminant from a private untagged
17356 -- ancestor with a tagged full view (ACATS B460006).
17358 if Ada_Version
>= Ada_2012
then
17360 ("discriminants of nonlimited tagged type cannot have"
17362 Expression
(Discr
));
17365 ("discriminants of tagged type cannot have defaults",
17366 Expression
(Discr
));
17370 Default_Present
:= True;
17371 Append_Elmt
(Expression
(Discr
), Elist
);
17373 -- Tag the defining identifiers for the discriminants with
17374 -- their corresponding default expressions from the tree.
17376 Set_Discriminant_Default_Value
17377 (Defining_Identifier
(Discr
), Expression
(Discr
));
17381 Default_Not_Present
:= True;
17384 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17385 -- Discr_Type but with the null-exclusion attribute
17387 if Ada_Version
>= Ada_2005
then
17389 -- Ada 2005 (AI-231): Static checks
17391 if Can_Never_Be_Null
(Discr_Type
) then
17392 Null_Exclusion_Static_Checks
(Discr
);
17394 elsif Is_Access_Type
(Discr_Type
)
17395 and then Null_Exclusion_Present
(Discr
)
17397 -- No need to check itypes because in their case this check
17398 -- was done at their point of creation
17400 and then not Is_Itype
(Discr_Type
)
17402 if Can_Never_Be_Null
(Discr_Type
) then
17404 ("`NOT NULL` not allowed (& already excludes null)",
17409 Set_Etype
(Defining_Identifier
(Discr
),
17410 Create_Null_Excluding_Itype
17412 Related_Nod
=> Discr
));
17414 -- Check for improper null exclusion if the type is otherwise
17415 -- legal for a discriminant.
17417 elsif Null_Exclusion_Present
(Discr
)
17418 and then Is_Discrete_Type
(Discr_Type
)
17421 ("null exclusion can only apply to an access type", Discr
);
17424 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17425 -- can't have defaults. Synchronized types, or types that are
17426 -- explicitly limited are fine, but special tests apply to derived
17427 -- types in generics: in a generic body we have to assume the
17428 -- worst, and therefore defaults are not allowed if the parent is
17429 -- a generic formal private type (see ACATS B370001).
17431 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
17432 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
17433 or else Is_Limited_Record
(Current_Scope
)
17434 or else Is_Concurrent_Type
(Current_Scope
)
17435 or else Is_Concurrent_Record_Type
(Current_Scope
)
17436 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
17438 if not Is_Derived_Type
(Current_Scope
)
17439 or else not Is_Generic_Type
(Etype
(Current_Scope
))
17440 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
17441 or else Limited_Present
17442 (Type_Definition
(Parent
(Current_Scope
)))
17447 Error_Msg_N
("access discriminants of nonlimited types",
17448 Expression
(Discr
));
17449 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17452 elsif Present
(Expression
(Discr
)) then
17454 ("(Ada 2005) access discriminants of nonlimited types",
17455 Expression
(Discr
));
17456 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17464 -- An element list consisting of the default expressions of the
17465 -- discriminants is constructed in the above loop and used to set
17466 -- the Discriminant_Constraint attribute for the type. If an object
17467 -- is declared of this (record or task) type without any explicit
17468 -- discriminant constraint given, this element list will form the
17469 -- actual parameters for the corresponding initialization procedure
17472 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
17473 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
17475 -- Default expressions must be provided either for all or for none
17476 -- of the discriminants of a discriminant part. (RM 3.7.1)
17478 if Default_Present
and then Default_Not_Present
then
17480 ("incomplete specification of defaults for discriminants", N
);
17483 -- The use of the name of a discriminant is not allowed in default
17484 -- expressions of a discriminant part if the specification of the
17485 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17487 -- To detect this, the discriminant names are entered initially with an
17488 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17489 -- attempt to use a void entity (for example in an expression that is
17490 -- type-checked) produces the error message: premature usage. Now after
17491 -- completing the semantic analysis of the discriminant part, we can set
17492 -- the Ekind of all the discriminants appropriately.
17494 Discr
:= First
(Discriminant_Specifications
(N
));
17495 Discr_Number
:= Uint_1
;
17496 while Present
(Discr
) loop
17497 Id
:= Defining_Identifier
(Discr
);
17498 Set_Ekind
(Id
, E_Discriminant
);
17499 Init_Component_Location
(Id
);
17501 Set_Discriminant_Number
(Id
, Discr_Number
);
17503 -- Make sure this is always set, even in illegal programs
17505 Set_Corresponding_Discriminant
(Id
, Empty
);
17507 -- Initialize the Original_Record_Component to the entity itself.
17508 -- Inherit_Components will propagate the right value to
17509 -- discriminants in derived record types.
17511 Set_Original_Record_Component
(Id
, Id
);
17513 -- Create the discriminal for the discriminant
17515 Build_Discriminal
(Id
);
17518 Discr_Number
:= Discr_Number
+ 1;
17521 Set_Has_Discriminants
(Current_Scope
);
17522 end Process_Discriminants
;
17524 -----------------------
17525 -- Process_Full_View --
17526 -----------------------
17528 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
17529 Priv_Parent
: Entity_Id
;
17530 Full_Parent
: Entity_Id
;
17531 Full_Indic
: Node_Id
;
17533 procedure Collect_Implemented_Interfaces
17535 Ifaces
: Elist_Id
);
17536 -- Ada 2005: Gather all the interfaces that Typ directly or
17537 -- inherently implements. Duplicate entries are not added to
17538 -- the list Ifaces.
17540 ------------------------------------
17541 -- Collect_Implemented_Interfaces --
17542 ------------------------------------
17544 procedure Collect_Implemented_Interfaces
17549 Iface_Elmt
: Elmt_Id
;
17552 -- Abstract interfaces are only associated with tagged record types
17554 if not Is_Tagged_Type
(Typ
)
17555 or else not Is_Record_Type
(Typ
)
17560 -- Recursively climb to the ancestors
17562 if Etype
(Typ
) /= Typ
17564 -- Protect the frontend against wrong cyclic declarations like:
17566 -- type B is new A with private;
17567 -- type C is new A with private;
17569 -- type B is new C with null record;
17570 -- type C is new B with null record;
17572 and then Etype
(Typ
) /= Priv_T
17573 and then Etype
(Typ
) /= Full_T
17575 -- Keep separate the management of private type declarations
17577 if Ekind
(Typ
) = E_Record_Type_With_Private
then
17579 -- Handle the following erroneous case:
17580 -- type Private_Type is tagged private;
17582 -- type Private_Type is new Type_Implementing_Iface;
17584 if Present
(Full_View
(Typ
))
17585 and then Etype
(Typ
) /= Full_View
(Typ
)
17587 if Is_Interface
(Etype
(Typ
)) then
17588 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17591 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17594 -- Non-private types
17597 if Is_Interface
(Etype
(Typ
)) then
17598 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17601 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17605 -- Handle entities in the list of abstract interfaces
17607 if Present
(Interfaces
(Typ
)) then
17608 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
17609 while Present
(Iface_Elmt
) loop
17610 Iface
:= Node
(Iface_Elmt
);
17612 pragma Assert
(Is_Interface
(Iface
));
17614 if not Contain_Interface
(Iface
, Ifaces
) then
17615 Append_Elmt
(Iface
, Ifaces
);
17616 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
17619 Next_Elmt
(Iface_Elmt
);
17622 end Collect_Implemented_Interfaces
;
17624 -- Start of processing for Process_Full_View
17627 -- First some sanity checks that must be done after semantic
17628 -- decoration of the full view and thus cannot be placed with other
17629 -- similar checks in Find_Type_Name
17631 if not Is_Limited_Type
(Priv_T
)
17632 and then (Is_Limited_Type
(Full_T
)
17633 or else Is_Limited_Composite
(Full_T
))
17635 if In_Instance
then
17639 ("completion of nonlimited type cannot be limited", Full_T
);
17640 Explain_Limited_Type
(Full_T
, Full_T
);
17643 elsif Is_Abstract_Type
(Full_T
)
17644 and then not Is_Abstract_Type
(Priv_T
)
17647 ("completion of nonabstract type cannot be abstract", Full_T
);
17649 elsif Is_Tagged_Type
(Priv_T
)
17650 and then Is_Limited_Type
(Priv_T
)
17651 and then not Is_Limited_Type
(Full_T
)
17653 -- If pragma CPP_Class was applied to the private declaration
17654 -- propagate the limitedness to the full-view
17656 if Is_CPP_Class
(Priv_T
) then
17657 Set_Is_Limited_Record
(Full_T
);
17659 -- GNAT allow its own definition of Limited_Controlled to disobey
17660 -- this rule in order in ease the implementation. This test is safe
17661 -- because Root_Controlled is defined in a child of System that
17662 -- normal programs are not supposed to use.
17664 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
17665 Set_Is_Limited_Composite
(Full_T
);
17668 ("completion of limited tagged type must be limited", Full_T
);
17671 elsif Is_Generic_Type
(Priv_T
) then
17672 Error_Msg_N
("generic type cannot have a completion", Full_T
);
17675 -- Check that ancestor interfaces of private and full views are
17676 -- consistent. We omit this check for synchronized types because
17677 -- they are performed on the corresponding record type when frozen.
17679 if Ada_Version
>= Ada_2005
17680 and then Is_Tagged_Type
(Priv_T
)
17681 and then Is_Tagged_Type
(Full_T
)
17682 and then not Is_Concurrent_Type
(Full_T
)
17686 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17687 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17690 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
17691 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
17693 -- Ada 2005 (AI-251): The partial view shall be a descendant of
17694 -- an interface type if and only if the full type is descendant
17695 -- of the interface type (AARM 7.3 (7.3/2)).
17697 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
17699 if Present
(Iface
) then
17701 ("interface & not implemented by full type " &
17702 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
17705 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
17707 if Present
(Iface
) then
17709 ("interface & not implemented by partial view " &
17710 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
17715 if Is_Tagged_Type
(Priv_T
)
17716 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17717 and then Is_Derived_Type
(Full_T
)
17719 Priv_Parent
:= Etype
(Priv_T
);
17721 -- The full view of a private extension may have been transformed
17722 -- into an unconstrained derived type declaration and a subtype
17723 -- declaration (see build_derived_record_type for details).
17725 if Nkind
(N
) = N_Subtype_Declaration
then
17726 Full_Indic
:= Subtype_Indication
(N
);
17727 Full_Parent
:= Etype
(Base_Type
(Full_T
));
17729 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
17730 Full_Parent
:= Etype
(Full_T
);
17733 -- Check that the parent type of the full type is a descendant of
17734 -- the ancestor subtype given in the private extension. If either
17735 -- entity has an Etype equal to Any_Type then we had some previous
17736 -- error situation [7.3(8)].
17738 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
17741 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
17742 -- any order. Therefore we don't have to check that its parent must
17743 -- be a descendant of the parent of the private type declaration.
17745 elsif Is_Interface
(Priv_Parent
)
17746 and then Is_Interface
(Full_Parent
)
17750 -- Ada 2005 (AI-251): If the parent of the private type declaration
17751 -- is an interface there is no need to check that it is an ancestor
17752 -- of the associated full type declaration. The required tests for
17753 -- this case are performed by Build_Derived_Record_Type.
17755 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
17756 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
17759 ("parent of full type must descend from parent"
17760 & " of private extension", Full_Indic
);
17762 -- First check a formal restriction, and then proceed with checking
17763 -- Ada rules. Since the formal restriction is not a serious error, we
17764 -- don't prevent further error detection for this check, hence the
17769 -- In formal mode, when completing a private extension the type
17770 -- named in the private part must be exactly the same as that
17771 -- named in the visible part.
17773 if Priv_Parent
/= Full_Parent
then
17774 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
17775 Check_SPARK_Restriction
("% expected", Full_Indic
);
17778 -- Check the rules of 7.3(10): if the private extension inherits
17779 -- known discriminants, then the full type must also inherit those
17780 -- discriminants from the same (ancestor) type, and the parent
17781 -- subtype of the full type must be constrained if and only if
17782 -- the ancestor subtype of the private extension is constrained.
17784 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
17785 and then not Has_Unknown_Discriminants
(Priv_T
)
17786 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
17789 Priv_Indic
: constant Node_Id
:=
17790 Subtype_Indication
(Parent
(Priv_T
));
17792 Priv_Constr
: constant Boolean :=
17793 Is_Constrained
(Priv_Parent
)
17795 Nkind
(Priv_Indic
) = N_Subtype_Indication
17797 Is_Constrained
(Entity
(Priv_Indic
));
17799 Full_Constr
: constant Boolean :=
17800 Is_Constrained
(Full_Parent
)
17802 Nkind
(Full_Indic
) = N_Subtype_Indication
17804 Is_Constrained
(Entity
(Full_Indic
));
17806 Priv_Discr
: Entity_Id
;
17807 Full_Discr
: Entity_Id
;
17810 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
17811 Full_Discr
:= First_Discriminant
(Full_Parent
);
17812 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
17813 if Original_Record_Component
(Priv_Discr
) =
17814 Original_Record_Component
(Full_Discr
)
17816 Corresponding_Discriminant
(Priv_Discr
) =
17817 Corresponding_Discriminant
(Full_Discr
)
17824 Next_Discriminant
(Priv_Discr
);
17825 Next_Discriminant
(Full_Discr
);
17828 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
17830 ("full view must inherit discriminants of the parent"
17831 & " type used in the private extension", Full_Indic
);
17833 elsif Priv_Constr
and then not Full_Constr
then
17835 ("parent subtype of full type must be constrained",
17838 elsif Full_Constr
and then not Priv_Constr
then
17840 ("parent subtype of full type must be unconstrained",
17845 -- Check the rules of 7.3(12): if a partial view has neither
17846 -- known or unknown discriminants, then the full type
17847 -- declaration shall define a definite subtype.
17849 elsif not Has_Unknown_Discriminants
(Priv_T
)
17850 and then not Has_Discriminants
(Priv_T
)
17851 and then not Is_Constrained
(Full_T
)
17854 ("full view must define a constrained type if partial view"
17855 & " has no discriminants", Full_T
);
17858 -- ??????? Do we implement the following properly ?????
17859 -- If the ancestor subtype of a private extension has constrained
17860 -- discriminants, then the parent subtype of the full view shall
17861 -- impose a statically matching constraint on those discriminants
17866 -- For untagged types, verify that a type without discriminants
17867 -- is not completed with an unconstrained type.
17869 if not Is_Indefinite_Subtype
(Priv_T
)
17870 and then Is_Indefinite_Subtype
(Full_T
)
17872 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
17876 -- AI-419: verify that the use of "limited" is consistent
17879 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
17882 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17883 and then not Limited_Present
(Parent
(Priv_T
))
17884 and then not Synchronized_Present
(Parent
(Priv_T
))
17885 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
17887 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
17888 and then Limited_Present
(Type_Definition
(Orig_Decl
))
17891 ("full view of non-limited extension cannot be limited", N
);
17895 -- Ada 2005 (AI-443): A synchronized private extension must be
17896 -- completed by a task or protected type.
17898 if Ada_Version
>= Ada_2005
17899 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17900 and then Synchronized_Present
(Parent
(Priv_T
))
17901 and then not Is_Concurrent_Type
(Full_T
)
17903 Error_Msg_N
("full view of synchronized extension must " &
17904 "be synchronized type", N
);
17907 -- Ada 2005 AI-363: if the full view has discriminants with
17908 -- defaults, it is illegal to declare constrained access subtypes
17909 -- whose designated type is the current type. This allows objects
17910 -- of the type that are declared in the heap to be unconstrained.
17912 if not Has_Unknown_Discriminants
(Priv_T
)
17913 and then not Has_Discriminants
(Priv_T
)
17914 and then Has_Discriminants
(Full_T
)
17916 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
17918 Set_Has_Constrained_Partial_View
(Full_T
);
17919 Set_Has_Constrained_Partial_View
(Priv_T
);
17922 -- Create a full declaration for all its subtypes recorded in
17923 -- Private_Dependents and swap them similarly to the base type. These
17924 -- are subtypes that have been define before the full declaration of
17925 -- the private type. We also swap the entry in Private_Dependents list
17926 -- so we can properly restore the private view on exit from the scope.
17929 Priv_Elmt
: Elmt_Id
;
17934 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
17935 while Present
(Priv_Elmt
) loop
17936 Priv
:= Node
(Priv_Elmt
);
17938 if Ekind_In
(Priv
, E_Private_Subtype
,
17939 E_Limited_Private_Subtype
,
17940 E_Record_Subtype_With_Private
)
17942 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
17943 Set_Is_Itype
(Full
);
17944 Set_Parent
(Full
, Parent
(Priv
));
17945 Set_Associated_Node_For_Itype
(Full
, N
);
17947 -- Now we need to complete the private subtype, but since the
17948 -- base type has already been swapped, we must also swap the
17949 -- subtypes (and thus, reverse the arguments in the call to
17950 -- Complete_Private_Subtype).
17952 Copy_And_Swap
(Priv
, Full
);
17953 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
17954 Replace_Elmt
(Priv_Elmt
, Full
);
17957 Next_Elmt
(Priv_Elmt
);
17961 -- If the private view was tagged, copy the new primitive operations
17962 -- from the private view to the full view.
17964 if Is_Tagged_Type
(Full_T
) then
17966 Disp_Typ
: Entity_Id
;
17967 Full_List
: Elist_Id
;
17969 Prim_Elmt
: Elmt_Id
;
17970 Priv_List
: Elist_Id
;
17974 L
: Elist_Id
) return Boolean;
17975 -- Determine whether list L contains element E
17983 L
: Elist_Id
) return Boolean
17985 List_Elmt
: Elmt_Id
;
17988 List_Elmt
:= First_Elmt
(L
);
17989 while Present
(List_Elmt
) loop
17990 if Node
(List_Elmt
) = E
then
17994 Next_Elmt
(List_Elmt
);
18000 -- Start of processing
18003 if Is_Tagged_Type
(Priv_T
) then
18004 Priv_List
:= Primitive_Operations
(Priv_T
);
18005 Prim_Elmt
:= First_Elmt
(Priv_List
);
18007 -- In the case of a concurrent type completing a private tagged
18008 -- type, primitives may have been declared in between the two
18009 -- views. These subprograms need to be wrapped the same way
18010 -- entries and protected procedures are handled because they
18011 -- cannot be directly shared by the two views.
18013 if Is_Concurrent_Type
(Full_T
) then
18015 Conc_Typ
: constant Entity_Id
:=
18016 Corresponding_Record_Type
(Full_T
);
18017 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
18018 Wrap_Spec
: Node_Id
;
18021 while Present
(Prim_Elmt
) loop
18022 Prim
:= Node
(Prim_Elmt
);
18024 if Comes_From_Source
(Prim
)
18025 and then not Is_Abstract_Subprogram
(Prim
)
18028 Make_Subprogram_Declaration
(Sloc
(Prim
),
18032 Obj_Typ
=> Conc_Typ
,
18034 Parameter_Specifications
(
18037 Insert_After
(Curr_Nod
, Wrap_Spec
);
18038 Curr_Nod
:= Wrap_Spec
;
18040 Analyze
(Wrap_Spec
);
18043 Next_Elmt
(Prim_Elmt
);
18049 -- For non-concurrent types, transfer explicit primitives, but
18050 -- omit those inherited from the parent of the private view
18051 -- since they will be re-inherited later on.
18054 Full_List
:= Primitive_Operations
(Full_T
);
18056 while Present
(Prim_Elmt
) loop
18057 Prim
:= Node
(Prim_Elmt
);
18059 if Comes_From_Source
(Prim
)
18060 and then not Contains
(Prim
, Full_List
)
18062 Append_Elmt
(Prim
, Full_List
);
18065 Next_Elmt
(Prim_Elmt
);
18069 -- Untagged private view
18072 Full_List
:= Primitive_Operations
(Full_T
);
18074 -- In this case the partial view is untagged, so here we locate
18075 -- all of the earlier primitives that need to be treated as
18076 -- dispatching (those that appear between the two views). Note
18077 -- that these additional operations must all be new operations
18078 -- (any earlier operations that override inherited operations
18079 -- of the full view will already have been inserted in the
18080 -- primitives list, marked by Check_Operation_From_Private_View
18081 -- as dispatching. Note that implicit "/=" operators are
18082 -- excluded from being added to the primitives list since they
18083 -- shouldn't be treated as dispatching (tagged "/=" is handled
18086 Prim
:= Next_Entity
(Full_T
);
18087 while Present
(Prim
) and then Prim
/= Priv_T
loop
18088 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
18089 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
18091 if Disp_Typ
= Full_T
18092 and then (Chars
(Prim
) /= Name_Op_Ne
18093 or else Comes_From_Source
(Prim
))
18095 Check_Controlling_Formals
(Full_T
, Prim
);
18097 if not Is_Dispatching_Operation
(Prim
) then
18098 Append_Elmt
(Prim
, Full_List
);
18099 Set_Is_Dispatching_Operation
(Prim
, True);
18100 Set_DT_Position
(Prim
, No_Uint
);
18103 elsif Is_Dispatching_Operation
(Prim
)
18104 and then Disp_Typ
/= Full_T
18107 -- Verify that it is not otherwise controlled by a
18108 -- formal or a return value of type T.
18110 Check_Controlling_Formals
(Disp_Typ
, Prim
);
18114 Next_Entity
(Prim
);
18118 -- For the tagged case, the two views can share the same primitive
18119 -- operations list and the same class-wide type. Update attributes
18120 -- of the class-wide type which depend on the full declaration.
18122 if Is_Tagged_Type
(Priv_T
) then
18123 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
18124 Set_Class_Wide_Type
18125 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
18127 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
18132 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18134 if Known_To_Have_Preelab_Init
(Priv_T
) then
18136 -- Case where there is a pragma Preelaborable_Initialization. We
18137 -- always allow this in predefined units, which is a bit of a kludge,
18138 -- but it means we don't have to struggle to meet the requirements in
18139 -- the RM for having Preelaborable Initialization. Otherwise we
18140 -- require that the type meets the RM rules. But we can't check that
18141 -- yet, because of the rule about overriding Initialize, so we simply
18142 -- set a flag that will be checked at freeze time.
18144 if not In_Predefined_Unit
(Full_T
) then
18145 Set_Must_Have_Preelab_Init
(Full_T
);
18149 -- If pragma CPP_Class was applied to the private type declaration,
18150 -- propagate it now to the full type declaration.
18152 if Is_CPP_Class
(Priv_T
) then
18153 Set_Is_CPP_Class
(Full_T
);
18154 Set_Convention
(Full_T
, Convention_CPP
);
18156 -- Check that components of imported CPP types do not have default
18159 Check_CPP_Type_Has_No_Defaults
(Full_T
);
18162 -- If the private view has user specified stream attributes, then so has
18165 -- Why the test, how could these flags be already set in Full_T ???
18167 if Has_Specified_Stream_Read
(Priv_T
) then
18168 Set_Has_Specified_Stream_Read
(Full_T
);
18171 if Has_Specified_Stream_Write
(Priv_T
) then
18172 Set_Has_Specified_Stream_Write
(Full_T
);
18175 if Has_Specified_Stream_Input
(Priv_T
) then
18176 Set_Has_Specified_Stream_Input
(Full_T
);
18179 if Has_Specified_Stream_Output
(Priv_T
) then
18180 Set_Has_Specified_Stream_Output
(Full_T
);
18183 -- Propagate invariants to full type
18185 if Has_Invariants
(Priv_T
) then
18186 Set_Has_Invariants
(Full_T
);
18187 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
18190 if Has_Inheritable_Invariants
(Priv_T
) then
18191 Set_Has_Inheritable_Invariants
(Full_T
);
18194 -- Propagate predicates to full type
18196 if Has_Predicates
(Priv_T
) then
18197 Set_Predicate_Function
(Priv_T
, Predicate_Function
(Full_T
));
18198 Set_Has_Predicates
(Full_T
);
18200 end Process_Full_View
;
18202 -----------------------------------
18203 -- Process_Incomplete_Dependents --
18204 -----------------------------------
18206 procedure Process_Incomplete_Dependents
18208 Full_T
: Entity_Id
;
18211 Inc_Elmt
: Elmt_Id
;
18212 Priv_Dep
: Entity_Id
;
18213 New_Subt
: Entity_Id
;
18215 Disc_Constraint
: Elist_Id
;
18218 if No
(Private_Dependents
(Inc_T
)) then
18222 -- Itypes that may be generated by the completion of an incomplete
18223 -- subtype are not used by the back-end and not attached to the tree.
18224 -- They are created only for constraint-checking purposes.
18226 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
18227 while Present
(Inc_Elmt
) loop
18228 Priv_Dep
:= Node
(Inc_Elmt
);
18230 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
18232 -- An Access_To_Subprogram type may have a return type or a
18233 -- parameter type that is incomplete. Replace with the full view.
18235 if Etype
(Priv_Dep
) = Inc_T
then
18236 Set_Etype
(Priv_Dep
, Full_T
);
18240 Formal
: Entity_Id
;
18243 Formal
:= First_Formal
(Priv_Dep
);
18244 while Present
(Formal
) loop
18245 if Etype
(Formal
) = Inc_T
then
18246 Set_Etype
(Formal
, Full_T
);
18249 Next_Formal
(Formal
);
18253 elsif Is_Overloadable
(Priv_Dep
) then
18255 -- If a subprogram in the incomplete dependents list is primitive
18256 -- for a tagged full type then mark it as a dispatching operation,
18257 -- check whether it overrides an inherited subprogram, and check
18258 -- restrictions on its controlling formals. Note that a protected
18259 -- operation is never dispatching: only its wrapper operation
18260 -- (which has convention Ada) is.
18262 if Is_Tagged_Type
(Full_T
)
18263 and then Is_Primitive
(Priv_Dep
)
18264 and then Convention
(Priv_Dep
) /= Convention_Protected
18266 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
18267 Set_Is_Dispatching_Operation
(Priv_Dep
);
18268 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
18271 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
18273 -- Can happen during processing of a body before the completion
18274 -- of a TA type. Ignore, because spec is also on dependent list.
18278 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18279 -- corresponding subtype of the full view.
18281 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
18282 Set_Subtype_Indication
18283 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
18284 Set_Etype
(Priv_Dep
, Full_T
);
18285 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
18286 Set_Analyzed
(Parent
(Priv_Dep
), False);
18288 -- Reanalyze the declaration, suppressing the call to
18289 -- Enter_Name to avoid duplicate names.
18291 Analyze_Subtype_Declaration
18292 (N
=> Parent
(Priv_Dep
),
18295 -- Dependent is a subtype
18298 -- We build a new subtype indication using the full view of the
18299 -- incomplete parent. The discriminant constraints have been
18300 -- elaborated already at the point of the subtype declaration.
18302 New_Subt
:= Create_Itype
(E_Void
, N
);
18304 if Has_Discriminants
(Full_T
) then
18305 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
18307 Disc_Constraint
:= No_Elist
;
18310 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
18311 Set_Full_View
(Priv_Dep
, New_Subt
);
18314 Next_Elmt
(Inc_Elmt
);
18316 end Process_Incomplete_Dependents
;
18318 --------------------------------
18319 -- Process_Range_Expr_In_Decl --
18320 --------------------------------
18322 procedure Process_Range_Expr_In_Decl
18325 Check_List
: List_Id
:= Empty_List
;
18326 R_Check_Off
: Boolean := False;
18327 In_Iter_Schm
: Boolean := False)
18330 R_Checks
: Check_Result
;
18331 Insert_Node
: Node_Id
;
18332 Def_Id
: Entity_Id
;
18335 Analyze_And_Resolve
(R
, Base_Type
(T
));
18337 if Nkind
(R
) = N_Range
then
18339 -- In SPARK, all ranges should be static, with the exception of the
18340 -- discrete type definition of a loop parameter specification.
18342 if not In_Iter_Schm
18343 and then not Is_Static_Range
(R
)
18345 Check_SPARK_Restriction
("range should be static", R
);
18348 Lo
:= Low_Bound
(R
);
18349 Hi
:= High_Bound
(R
);
18351 -- We need to ensure validity of the bounds here, because if we
18352 -- go ahead and do the expansion, then the expanded code will get
18353 -- analyzed with range checks suppressed and we miss the check.
18355 Validity_Check_Range
(R
);
18357 -- If there were errors in the declaration, try and patch up some
18358 -- common mistakes in the bounds. The cases handled are literals
18359 -- which are Integer where the expected type is Real and vice versa.
18360 -- These corrections allow the compilation process to proceed further
18361 -- along since some basic assumptions of the format of the bounds
18364 if Etype
(R
) = Any_Type
then
18366 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18368 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
18370 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18372 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
18374 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18376 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
18378 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18380 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
18387 -- If the bounds of the range have been mistakenly given as string
18388 -- literals (perhaps in place of character literals), then an error
18389 -- has already been reported, but we rewrite the string literal as a
18390 -- bound of the range's type to avoid blowups in later processing
18391 -- that looks at static values.
18393 if Nkind
(Lo
) = N_String_Literal
then
18395 Make_Attribute_Reference
(Sloc
(Lo
),
18396 Attribute_Name
=> Name_First
,
18397 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
18398 Analyze_And_Resolve
(Lo
);
18401 if Nkind
(Hi
) = N_String_Literal
then
18403 Make_Attribute_Reference
(Sloc
(Hi
),
18404 Attribute_Name
=> Name_First
,
18405 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
18406 Analyze_And_Resolve
(Hi
);
18409 -- If bounds aren't scalar at this point then exit, avoiding
18410 -- problems with further processing of the range in this procedure.
18412 if not Is_Scalar_Type
(Etype
(Lo
)) then
18416 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18417 -- then range of the base type. Here we check whether the bounds
18418 -- are in the range of the subtype itself. Note that if the bounds
18419 -- represent the null range the Constraint_Error exception should
18422 -- ??? The following code should be cleaned up as follows
18424 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18425 -- is done in the call to Range_Check (R, T); below
18427 -- 2. The use of R_Check_Off should be investigated and possibly
18428 -- removed, this would clean up things a bit.
18430 if Is_Null_Range
(Lo
, Hi
) then
18434 -- Capture values of bounds and generate temporaries for them
18435 -- if needed, before applying checks, since checks may cause
18436 -- duplication of the expression without forcing evaluation.
18438 -- The forced evaluation removes side effects from expressions,
18439 -- which should occur also in Alfa mode. Otherwise, we end up with
18440 -- unexpected insertions of actions at places where this is not
18441 -- supposed to occur, e.g. on default parameters of a call.
18443 if Expander_Active
then
18444 Force_Evaluation
(Lo
);
18445 Force_Evaluation
(Hi
);
18448 -- We use a flag here instead of suppressing checks on the
18449 -- type because the type we check against isn't necessarily
18450 -- the place where we put the check.
18452 if not R_Check_Off
then
18453 R_Checks
:= Get_Range_Checks
(R
, T
);
18455 -- Look up tree to find an appropriate insertion point. We
18456 -- can't just use insert_actions because later processing
18457 -- depends on the insertion node. Prior to Ada 2012 the
18458 -- insertion point could only be a declaration or a loop, but
18459 -- quantified expressions can appear within any context in an
18460 -- expression, and the insertion point can be any statement,
18461 -- pragma, or declaration.
18463 Insert_Node
:= Parent
(R
);
18464 while Present
(Insert_Node
) loop
18466 Nkind
(Insert_Node
) in N_Declaration
18469 (Insert_Node
, N_Component_Declaration
,
18470 N_Loop_Parameter_Specification
,
18471 N_Function_Specification
,
18472 N_Procedure_Specification
);
18474 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
18475 or else Nkind
(Insert_Node
) in
18476 N_Statement_Other_Than_Procedure_Call
18477 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
18480 Insert_Node
:= Parent
(Insert_Node
);
18483 -- Why would Type_Decl not be present??? Without this test,
18484 -- short regression tests fail.
18486 if Present
(Insert_Node
) then
18488 -- Case of loop statement. Verify that the range is part
18489 -- of the subtype indication of the iteration scheme.
18491 if Nkind
(Insert_Node
) = N_Loop_Statement
then
18496 Indic
:= Parent
(R
);
18497 while Present
(Indic
)
18498 and then Nkind
(Indic
) /= N_Subtype_Indication
18500 Indic
:= Parent
(Indic
);
18503 if Present
(Indic
) then
18504 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
18506 Insert_Range_Checks
18510 Sloc
(Insert_Node
),
18512 Do_Before
=> True);
18516 -- Insertion before a declaration. If the declaration
18517 -- includes discriminants, the list of applicable checks
18518 -- is given by the caller.
18520 elsif Nkind
(Insert_Node
) in N_Declaration
then
18521 Def_Id
:= Defining_Identifier
(Insert_Node
);
18523 if (Ekind
(Def_Id
) = E_Record_Type
18524 and then Depends_On_Discriminant
(R
))
18526 (Ekind
(Def_Id
) = E_Protected_Type
18527 and then Has_Discriminants
(Def_Id
))
18529 Append_Range_Checks
18531 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
18534 Insert_Range_Checks
18536 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
18540 -- Insertion before a statement. Range appears in the
18541 -- context of a quantified expression. Insertion will
18542 -- take place when expression is expanded.
18551 -- Case of other than an explicit N_Range node
18553 -- The forced evaluation removes side effects from expressions, which
18554 -- should occur also in Alfa mode. Otherwise, we end up with unexpected
18555 -- insertions of actions at places where this is not supposed to occur,
18556 -- e.g. on default parameters of a call.
18558 elsif Expander_Active
then
18559 Get_Index_Bounds
(R
, Lo
, Hi
);
18560 Force_Evaluation
(Lo
);
18561 Force_Evaluation
(Hi
);
18563 end Process_Range_Expr_In_Decl
;
18565 --------------------------------------
18566 -- Process_Real_Range_Specification --
18567 --------------------------------------
18569 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
18570 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
18573 Err
: Boolean := False;
18575 procedure Analyze_Bound
(N
: Node_Id
);
18576 -- Analyze and check one bound
18578 -------------------
18579 -- Analyze_Bound --
18580 -------------------
18582 procedure Analyze_Bound
(N
: Node_Id
) is
18584 Analyze_And_Resolve
(N
, Any_Real
);
18586 if not Is_OK_Static_Expression
(N
) then
18587 Flag_Non_Static_Expr
18588 ("bound in real type definition is not static!", N
);
18593 -- Start of processing for Process_Real_Range_Specification
18596 if Present
(Spec
) then
18597 Lo
:= Low_Bound
(Spec
);
18598 Hi
:= High_Bound
(Spec
);
18599 Analyze_Bound
(Lo
);
18600 Analyze_Bound
(Hi
);
18602 -- If error, clear away junk range specification
18605 Set_Real_Range_Specification
(Def
, Empty
);
18608 end Process_Real_Range_Specification
;
18610 ---------------------
18611 -- Process_Subtype --
18612 ---------------------
18614 function Process_Subtype
18616 Related_Nod
: Node_Id
;
18617 Related_Id
: Entity_Id
:= Empty
;
18618 Suffix
: Character := ' ') return Entity_Id
18621 Def_Id
: Entity_Id
;
18622 Error_Node
: Node_Id
;
18623 Full_View_Id
: Entity_Id
;
18624 Subtype_Mark_Id
: Entity_Id
;
18626 May_Have_Null_Exclusion
: Boolean;
18628 procedure Check_Incomplete
(T
: Entity_Id
);
18629 -- Called to verify that an incomplete type is not used prematurely
18631 ----------------------
18632 -- Check_Incomplete --
18633 ----------------------
18635 procedure Check_Incomplete
(T
: Entity_Id
) is
18637 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18639 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
18641 not (Ada_Version
>= Ada_2005
18643 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
18645 (Nkind
(Parent
(T
)) = N_Subtype_Indication
18646 and then Nkind
(Parent
(Parent
(T
))) =
18647 N_Subtype_Declaration
)))
18649 Error_Msg_N
("invalid use of type before its full declaration", T
);
18651 end Check_Incomplete
;
18653 -- Start of processing for Process_Subtype
18656 -- Case of no constraints present
18658 if Nkind
(S
) /= N_Subtype_Indication
then
18660 Check_Incomplete
(S
);
18663 -- Ada 2005 (AI-231): Static check
18665 if Ada_Version
>= Ada_2005
18666 and then Present
(P
)
18667 and then Null_Exclusion_Present
(P
)
18668 and then Nkind
(P
) /= N_Access_To_Object_Definition
18669 and then not Is_Access_Type
(Entity
(S
))
18671 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
18674 -- The following is ugly, can't we have a range or even a flag???
18676 May_Have_Null_Exclusion
:=
18677 Nkind_In
(P
, N_Access_Definition
,
18678 N_Access_Function_Definition
,
18679 N_Access_Procedure_Definition
,
18680 N_Access_To_Object_Definition
,
18682 N_Component_Definition
)
18684 Nkind_In
(P
, N_Derived_Type_Definition
,
18685 N_Discriminant_Specification
,
18686 N_Formal_Object_Declaration
,
18687 N_Object_Declaration
,
18688 N_Object_Renaming_Declaration
,
18689 N_Parameter_Specification
,
18690 N_Subtype_Declaration
);
18692 -- Create an Itype that is a duplicate of Entity (S) but with the
18693 -- null-exclusion attribute.
18695 if May_Have_Null_Exclusion
18696 and then Is_Access_Type
(Entity
(S
))
18697 and then Null_Exclusion_Present
(P
)
18699 -- No need to check the case of an access to object definition.
18700 -- It is correct to define double not-null pointers.
18703 -- type Not_Null_Int_Ptr is not null access Integer;
18704 -- type Acc is not null access Not_Null_Int_Ptr;
18706 and then Nkind
(P
) /= N_Access_To_Object_Definition
18708 if Can_Never_Be_Null
(Entity
(S
)) then
18709 case Nkind
(Related_Nod
) is
18710 when N_Full_Type_Declaration
=>
18711 if Nkind
(Type_Definition
(Related_Nod
))
18712 in N_Array_Type_Definition
18716 (Component_Definition
18717 (Type_Definition
(Related_Nod
)));
18720 Subtype_Indication
(Type_Definition
(Related_Nod
));
18723 when N_Subtype_Declaration
=>
18724 Error_Node
:= Subtype_Indication
(Related_Nod
);
18726 when N_Object_Declaration
=>
18727 Error_Node
:= Object_Definition
(Related_Nod
);
18729 when N_Component_Declaration
=>
18731 Subtype_Indication
(Component_Definition
(Related_Nod
));
18733 when N_Allocator
=>
18734 Error_Node
:= Expression
(Related_Nod
);
18737 pragma Assert
(False);
18738 Error_Node
:= Related_Nod
;
18742 ("`NOT NULL` not allowed (& already excludes null)",
18748 Create_Null_Excluding_Itype
18750 Related_Nod
=> P
));
18751 Set_Entity
(S
, Etype
(S
));
18756 -- Case of constraint present, so that we have an N_Subtype_Indication
18757 -- node (this node is created only if constraints are present).
18760 Find_Type
(Subtype_Mark
(S
));
18762 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
18764 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
18765 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
18767 Check_Incomplete
(Subtype_Mark
(S
));
18771 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
18773 -- Explicit subtype declaration case
18775 if Nkind
(P
) = N_Subtype_Declaration
then
18776 Def_Id
:= Defining_Identifier
(P
);
18778 -- Explicit derived type definition case
18780 elsif Nkind
(P
) = N_Derived_Type_Definition
then
18781 Def_Id
:= Defining_Identifier
(Parent
(P
));
18783 -- Implicit case, the Def_Id must be created as an implicit type.
18784 -- The one exception arises in the case of concurrent types, array
18785 -- and access types, where other subsidiary implicit types may be
18786 -- created and must appear before the main implicit type. In these
18787 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
18788 -- has not yet been called to create Def_Id.
18791 if Is_Array_Type
(Subtype_Mark_Id
)
18792 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
18793 or else Is_Access_Type
(Subtype_Mark_Id
)
18797 -- For the other cases, we create a new unattached Itype,
18798 -- and set the indication to ensure it gets attached later.
18802 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18806 -- If the kind of constraint is invalid for this kind of type,
18807 -- then give an error, and then pretend no constraint was given.
18809 if not Is_Valid_Constraint_Kind
18810 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
18813 ("incorrect constraint for this kind of type", Constraint
(S
));
18815 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
18817 -- Set Ekind of orphan itype, to prevent cascaded errors
18819 if Present
(Def_Id
) then
18820 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
18823 -- Make recursive call, having got rid of the bogus constraint
18825 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
18828 -- Remaining processing depends on type. Select on Base_Type kind to
18829 -- ensure getting to the concrete type kind in the case of a private
18830 -- subtype (needed when only doing semantic analysis).
18832 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
18833 when Access_Kind
=>
18834 Constrain_Access
(Def_Id
, S
, Related_Nod
);
18837 and then Is_Itype
(Designated_Type
(Def_Id
))
18838 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
18839 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
18841 Build_Itype_Reference
18842 (Designated_Type
(Def_Id
), Related_Nod
);
18846 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
18848 when Decimal_Fixed_Point_Kind
=>
18849 Constrain_Decimal
(Def_Id
, S
);
18851 when Enumeration_Kind
=>
18852 Constrain_Enumeration
(Def_Id
, S
);
18854 when Ordinary_Fixed_Point_Kind
=>
18855 Constrain_Ordinary_Fixed
(Def_Id
, S
);
18858 Constrain_Float
(Def_Id
, S
);
18860 when Integer_Kind
=>
18861 Constrain_Integer
(Def_Id
, S
);
18863 when E_Record_Type |
18866 E_Incomplete_Type
=>
18867 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18869 if Ekind
(Def_Id
) = E_Incomplete_Type
then
18870 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18873 when Private_Kind
=>
18874 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18875 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18877 -- In case of an invalid constraint prevent further processing
18878 -- since the type constructed is missing expected fields.
18880 if Etype
(Def_Id
) = Any_Type
then
18884 -- If the full view is that of a task with discriminants,
18885 -- we must constrain both the concurrent type and its
18886 -- corresponding record type. Otherwise we will just propagate
18887 -- the constraint to the full view, if available.
18889 if Present
(Full_View
(Subtype_Mark_Id
))
18890 and then Has_Discriminants
(Subtype_Mark_Id
)
18891 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
18894 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18896 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
18897 Constrain_Concurrent
(Full_View_Id
, S
,
18898 Related_Nod
, Related_Id
, Suffix
);
18899 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
18900 Set_Full_View
(Def_Id
, Full_View_Id
);
18902 -- Introduce an explicit reference to the private subtype,
18903 -- to prevent scope anomalies in gigi if first use appears
18904 -- in a nested context, e.g. a later function body.
18905 -- Should this be generated in other contexts than a full
18906 -- type declaration?
18908 if Is_Itype
(Def_Id
)
18910 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
18912 Build_Itype_Reference
(Def_Id
, Parent
(P
));
18916 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
18919 when Concurrent_Kind
=>
18920 Constrain_Concurrent
(Def_Id
, S
,
18921 Related_Nod
, Related_Id
, Suffix
);
18924 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
18927 -- Size and Convention are always inherited from the base type
18929 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
18930 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
18934 end Process_Subtype
;
18936 ---------------------------------------
18937 -- Check_Anonymous_Access_Components --
18938 ---------------------------------------
18940 procedure Check_Anonymous_Access_Components
18941 (Typ_Decl
: Node_Id
;
18944 Comp_List
: Node_Id
)
18946 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
18947 Anon_Access
: Entity_Id
;
18950 Comp_Def
: Node_Id
;
18952 Type_Def
: Node_Id
;
18954 procedure Build_Incomplete_Type_Declaration
;
18955 -- If the record type contains components that include an access to the
18956 -- current record, then create an incomplete type declaration for the
18957 -- record, to be used as the designated type of the anonymous access.
18958 -- This is done only once, and only if there is no previous partial
18959 -- view of the type.
18961 function Designates_T
(Subt
: Node_Id
) return Boolean;
18962 -- Check whether a node designates the enclosing record type, or 'Class
18965 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
18966 -- Check whether an access definition includes a reference to
18967 -- the enclosing record type. The reference can be a subtype mark
18968 -- in the access definition itself, a 'Class attribute reference, or
18969 -- recursively a reference appearing in a parameter specification
18970 -- or result definition of an access_to_subprogram definition.
18972 --------------------------------------
18973 -- Build_Incomplete_Type_Declaration --
18974 --------------------------------------
18976 procedure Build_Incomplete_Type_Declaration
is
18981 -- Is_Tagged indicates whether the type is tagged. It is tagged if
18982 -- it's "is new ... with record" or else "is tagged record ...".
18984 Is_Tagged
: constant Boolean :=
18985 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
18988 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
18990 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
18991 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
18994 -- If there is a previous partial view, no need to create a new one
18995 -- If the partial view, given by Prev, is incomplete, If Prev is
18996 -- a private declaration, full declaration is flagged accordingly.
18998 if Prev
/= Typ
then
19000 Make_Class_Wide_Type
(Prev
);
19001 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
19002 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19007 elsif Has_Private_Declaration
(Typ
) then
19009 -- If we refer to T'Class inside T, and T is the completion of a
19010 -- private type, then we need to make sure the class-wide type
19014 Make_Class_Wide_Type
(Typ
);
19019 -- If there was a previous anonymous access type, the incomplete
19020 -- type declaration will have been created already.
19022 elsif Present
(Current_Entity
(Typ
))
19023 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
19024 and then Full_View
(Current_Entity
(Typ
)) = Typ
19027 and then Comes_From_Source
(Current_Entity
(Typ
))
19028 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
19030 Make_Class_Wide_Type
(Typ
);
19032 ("incomplete view of tagged type should be declared tagged?",
19033 Parent
(Current_Entity
(Typ
)));
19038 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
19039 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
19041 -- Type has already been inserted into the current scope. Remove
19042 -- it, and add incomplete declaration for type, so that subsequent
19043 -- anonymous access types can use it. The entity is unchained from
19044 -- the homonym list and from immediate visibility. After analysis,
19045 -- the entity in the incomplete declaration becomes immediately
19046 -- visible in the record declaration that follows.
19048 H
:= Current_Entity
(Typ
);
19051 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
19054 and then Homonym
(H
) /= Typ
19056 H
:= Homonym
(Typ
);
19059 Set_Homonym
(H
, Homonym
(Typ
));
19062 Insert_Before
(Typ_Decl
, Decl
);
19064 Set_Full_View
(Inc_T
, Typ
);
19068 -- Create a common class-wide type for both views, and set the
19069 -- Etype of the class-wide type to the full view.
19071 Make_Class_Wide_Type
(Inc_T
);
19072 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
19073 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19076 end Build_Incomplete_Type_Declaration
;
19082 function Designates_T
(Subt
: Node_Id
) return Boolean is
19083 Type_Id
: constant Name_Id
:= Chars
(Typ
);
19085 function Names_T
(Nam
: Node_Id
) return Boolean;
19086 -- The record type has not been introduced in the current scope
19087 -- yet, so we must examine the name of the type itself, either
19088 -- an identifier T, or an expanded name of the form P.T, where
19089 -- P denotes the current scope.
19095 function Names_T
(Nam
: Node_Id
) return Boolean is
19097 if Nkind
(Nam
) = N_Identifier
then
19098 return Chars
(Nam
) = Type_Id
;
19100 elsif Nkind
(Nam
) = N_Selected_Component
then
19101 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
19102 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
19103 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
19105 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
19106 return Chars
(Selector_Name
(Prefix
(Nam
))) =
19107 Chars
(Current_Scope
);
19121 -- Start of processing for Designates_T
19124 if Nkind
(Subt
) = N_Identifier
then
19125 return Chars
(Subt
) = Type_Id
;
19127 -- Reference can be through an expanded name which has not been
19128 -- analyzed yet, and which designates enclosing scopes.
19130 elsif Nkind
(Subt
) = N_Selected_Component
then
19131 if Names_T
(Subt
) then
19134 -- Otherwise it must denote an entity that is already visible.
19135 -- The access definition may name a subtype of the enclosing
19136 -- type, if there is a previous incomplete declaration for it.
19139 Find_Selected_Component
(Subt
);
19141 Is_Entity_Name
(Subt
)
19142 and then Scope
(Entity
(Subt
)) = Current_Scope
19144 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
19146 (Is_Class_Wide_Type
(Entity
(Subt
))
19148 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
19152 -- A reference to the current type may appear as the prefix of
19153 -- a 'Class attribute.
19155 elsif Nkind
(Subt
) = N_Attribute_Reference
19156 and then Attribute_Name
(Subt
) = Name_Class
19158 return Names_T
(Prefix
(Subt
));
19169 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
19170 Param_Spec
: Node_Id
;
19172 Acc_Subprg
: constant Node_Id
:=
19173 Access_To_Subprogram_Definition
(Acc_Def
);
19176 if No
(Acc_Subprg
) then
19177 return Designates_T
(Subtype_Mark
(Acc_Def
));
19180 -- Component is an access_to_subprogram: examine its formals,
19181 -- and result definition in the case of an access_to_function.
19183 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
19184 while Present
(Param_Spec
) loop
19185 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
19186 and then Mentions_T
(Parameter_Type
(Param_Spec
))
19190 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
19197 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
19198 if Nkind
(Result_Definition
(Acc_Subprg
)) =
19199 N_Access_Definition
19201 return Mentions_T
(Result_Definition
(Acc_Subprg
));
19203 return Designates_T
(Result_Definition
(Acc_Subprg
));
19210 -- Start of processing for Check_Anonymous_Access_Components
19213 if No
(Comp_List
) then
19217 Comp
:= First
(Component_Items
(Comp_List
));
19218 while Present
(Comp
) loop
19219 if Nkind
(Comp
) = N_Component_Declaration
19221 (Access_Definition
(Component_Definition
(Comp
)))
19223 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
19225 Comp_Def
:= Component_Definition
(Comp
);
19227 Access_To_Subprogram_Definition
19228 (Access_Definition
(Comp_Def
));
19230 Build_Incomplete_Type_Declaration
;
19231 Anon_Access
:= Make_Temporary
(Loc
, 'S');
19233 -- Create a declaration for the anonymous access type: either
19234 -- an access_to_object or an access_to_subprogram.
19236 if Present
(Acc_Def
) then
19237 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
19239 Make_Access_Function_Definition
(Loc
,
19240 Parameter_Specifications
=>
19241 Parameter_Specifications
(Acc_Def
),
19242 Result_Definition
=> Result_Definition
(Acc_Def
));
19245 Make_Access_Procedure_Definition
(Loc
,
19246 Parameter_Specifications
=>
19247 Parameter_Specifications
(Acc_Def
));
19252 Make_Access_To_Object_Definition
(Loc
,
19253 Subtype_Indication
=>
19256 (Access_Definition
(Comp_Def
))));
19258 Set_Constant_Present
19259 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
19261 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
19264 Set_Null_Exclusion_Present
19266 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
19269 Make_Full_Type_Declaration
(Loc
,
19270 Defining_Identifier
=> Anon_Access
,
19271 Type_Definition
=> Type_Def
);
19273 Insert_Before
(Typ_Decl
, Decl
);
19276 -- If an access to subprogram, create the extra formals
19278 if Present
(Acc_Def
) then
19279 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
19281 -- If an access to object, preserve entity of designated type,
19282 -- for ASIS use, before rewriting the component definition.
19289 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
19291 -- If the access definition is to the current record,
19292 -- the visible entity at this point is an incomplete
19293 -- type. Retrieve the full view to simplify ASIS queries
19295 if Ekind
(Desig
) = E_Incomplete_Type
then
19296 Desig
:= Full_View
(Desig
);
19300 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
19305 Make_Component_Definition
(Loc
,
19306 Subtype_Indication
=>
19307 New_Occurrence_Of
(Anon_Access
, Loc
)));
19309 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
19310 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
19312 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
19315 Set_Is_Local_Anonymous_Access
(Anon_Access
);
19321 if Present
(Variant_Part
(Comp_List
)) then
19325 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
19326 while Present
(V
) loop
19327 Check_Anonymous_Access_Components
19328 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
19329 Next_Non_Pragma
(V
);
19333 end Check_Anonymous_Access_Components
;
19335 --------------------------------
19336 -- Preanalyze_Spec_Expression --
19337 --------------------------------
19339 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19340 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19342 In_Spec_Expression
:= True;
19343 Preanalyze_And_Resolve
(N
, T
);
19344 In_Spec_Expression
:= Save_In_Spec_Expression
;
19345 end Preanalyze_Spec_Expression
;
19347 -----------------------------
19348 -- Record_Type_Declaration --
19349 -----------------------------
19351 procedure Record_Type_Declaration
19356 Def
: constant Node_Id
:= Type_Definition
(N
);
19357 Is_Tagged
: Boolean;
19358 Tag_Comp
: Entity_Id
;
19361 -- These flags must be initialized before calling Process_Discriminants
19362 -- because this routine makes use of them.
19364 Set_Ekind
(T
, E_Record_Type
);
19366 Init_Size_Align
(T
);
19367 Set_Interfaces
(T
, No_Elist
);
19368 Set_Stored_Constraint
(T
, No_Elist
);
19372 if Ada_Version
< Ada_2005
19373 or else not Interface_Present
(Def
)
19375 if Limited_Present
(Def
) then
19376 Check_SPARK_Restriction
("limited is not allowed", N
);
19379 if Abstract_Present
(Def
) then
19380 Check_SPARK_Restriction
("abstract is not allowed", N
);
19383 -- The flag Is_Tagged_Type might have already been set by
19384 -- Find_Type_Name if it detected an error for declaration T. This
19385 -- arises in the case of private tagged types where the full view
19386 -- omits the word tagged.
19389 Tagged_Present
(Def
)
19390 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
19392 Set_Is_Tagged_Type
(T
, Is_Tagged
);
19393 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
19395 -- Type is abstract if full declaration carries keyword, or if
19396 -- previous partial view did.
19398 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
19399 or else Abstract_Present
(Def
));
19402 Check_SPARK_Restriction
("interface is not allowed", N
);
19405 Analyze_Interface_Declaration
(T
, Def
);
19407 if Present
(Discriminant_Specifications
(N
)) then
19409 ("interface types cannot have discriminants",
19410 Defining_Identifier
19411 (First
(Discriminant_Specifications
(N
))));
19415 -- First pass: if there are self-referential access components,
19416 -- create the required anonymous access type declarations, and if
19417 -- need be an incomplete type declaration for T itself.
19419 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
19421 if Ada_Version
>= Ada_2005
19422 and then Present
(Interface_List
(Def
))
19424 Check_Interfaces
(N
, Def
);
19427 Ifaces_List
: Elist_Id
;
19430 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19431 -- already in the parents.
19435 Ifaces_List
=> Ifaces_List
,
19436 Exclude_Parents
=> True);
19438 Set_Interfaces
(T
, Ifaces_List
);
19442 -- Records constitute a scope for the component declarations within.
19443 -- The scope is created prior to the processing of these declarations.
19444 -- Discriminants are processed first, so that they are visible when
19445 -- processing the other components. The Ekind of the record type itself
19446 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19448 -- Enter record scope
19452 -- If an incomplete or private type declaration was already given for
19453 -- the type, then this scope already exists, and the discriminants have
19454 -- been declared within. We must verify that the full declaration
19455 -- matches the incomplete one.
19457 Check_Or_Process_Discriminants
(N
, T
, Prev
);
19459 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
19460 Set_Has_Delayed_Freeze
(T
, True);
19462 -- For tagged types add a manually analyzed component corresponding
19463 -- to the component _tag, the corresponding piece of tree will be
19464 -- expanded as part of the freezing actions if it is not a CPP_Class.
19468 -- Do not add the tag unless we are in expansion mode
19470 if Expander_Active
then
19471 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
19472 Enter_Name
(Tag_Comp
);
19474 Set_Ekind
(Tag_Comp
, E_Component
);
19475 Set_Is_Tag
(Tag_Comp
);
19476 Set_Is_Aliased
(Tag_Comp
);
19477 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
19478 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
19479 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
19480 Init_Component_Location
(Tag_Comp
);
19482 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19483 -- implemented interfaces.
19485 if Has_Interfaces
(T
) then
19486 Add_Interface_Tag_Components
(N
, T
);
19490 Make_Class_Wide_Type
(T
);
19491 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
19494 -- We must suppress range checks when processing record components in
19495 -- the presence of discriminants, since we don't want spurious checks to
19496 -- be generated during their analysis, but Suppress_Range_Checks flags
19497 -- must be reset the after processing the record definition.
19499 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19500 -- couldn't we just use the normal range check suppression method here.
19501 -- That would seem cleaner ???
19503 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
19504 Set_Kill_Range_Checks
(T
, True);
19505 Record_Type_Definition
(Def
, Prev
);
19506 Set_Kill_Range_Checks
(T
, False);
19508 Record_Type_Definition
(Def
, Prev
);
19511 -- Exit from record scope
19515 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19516 -- the implemented interfaces and associate them an aliased entity.
19519 and then not Is_Empty_List
(Interface_List
(Def
))
19521 Derive_Progenitor_Subprograms
(T
, T
);
19523 end Record_Type_Declaration
;
19525 ----------------------------
19526 -- Record_Type_Definition --
19527 ----------------------------
19529 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
19530 Component
: Entity_Id
;
19531 Ctrl_Components
: Boolean := False;
19532 Final_Storage_Only
: Boolean;
19536 if Ekind
(Prev_T
) = E_Incomplete_Type
then
19537 T
:= Full_View
(Prev_T
);
19542 -- In SPARK, tagged types and type extensions may only be declared in
19543 -- the specification of library unit packages.
19545 if Present
(Def
) and then Is_Tagged_Type
(T
) then
19551 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
19552 Typ
:= Parent
(Def
);
19555 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
19556 Typ
:= Parent
(Parent
(Def
));
19559 Ctxt
:= Parent
(Typ
);
19561 if Nkind
(Ctxt
) = N_Package_Body
19562 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
19564 Check_SPARK_Restriction
19565 ("type should be defined in package specification", Typ
);
19567 elsif Nkind
(Ctxt
) /= N_Package_Specification
19568 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
19570 Check_SPARK_Restriction
19571 ("type should be defined in library unit package", Typ
);
19576 Final_Storage_Only
:= not Is_Controlled
(T
);
19578 -- Ada 2005: check whether an explicit Limited is present in a derived
19579 -- type declaration.
19581 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
19582 and then Limited_Present
(Parent
(Def
))
19584 Set_Is_Limited_Record
(T
);
19587 -- If the component list of a record type is defined by the reserved
19588 -- word null and there is no discriminant part, then the record type has
19589 -- no components and all records of the type are null records (RM 3.7)
19590 -- This procedure is also called to process the extension part of a
19591 -- record extension, in which case the current scope may have inherited
19595 or else No
(Component_List
(Def
))
19596 or else Null_Present
(Component_List
(Def
))
19598 if not Is_Tagged_Type
(T
) then
19599 Check_SPARK_Restriction
("non-tagged record cannot be null", Def
);
19603 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
19605 if Present
(Variant_Part
(Component_List
(Def
))) then
19606 Check_SPARK_Restriction
("variant part is not allowed", Def
);
19607 Analyze
(Variant_Part
(Component_List
(Def
)));
19611 -- After completing the semantic analysis of the record definition,
19612 -- record components, both new and inherited, are accessible. Set their
19613 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19614 -- whose Ekind may be void.
19616 Component
:= First_Entity
(Current_Scope
);
19617 while Present
(Component
) loop
19618 if Ekind
(Component
) = E_Void
19619 and then not Is_Itype
(Component
)
19621 Set_Ekind
(Component
, E_Component
);
19622 Init_Component_Location
(Component
);
19625 if Has_Task
(Etype
(Component
)) then
19629 if Ekind
(Component
) /= E_Component
then
19632 -- Do not set Has_Controlled_Component on a class-wide equivalent
19633 -- type. See Make_CW_Equivalent_Type.
19635 elsif not Is_Class_Wide_Equivalent_Type
(T
)
19636 and then (Has_Controlled_Component
(Etype
(Component
))
19637 or else (Chars
(Component
) /= Name_uParent
19638 and then Is_Controlled
(Etype
(Component
))))
19640 Set_Has_Controlled_Component
(T
, True);
19641 Final_Storage_Only
:=
19643 and then Finalize_Storage_Only
(Etype
(Component
));
19644 Ctrl_Components
:= True;
19647 Next_Entity
(Component
);
19650 -- A Type is Finalize_Storage_Only only if all its controlled components
19653 if Ctrl_Components
then
19654 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
19657 -- Place reference to end record on the proper entity, which may
19658 -- be a partial view.
19660 if Present
(Def
) then
19661 Process_End_Label
(Def
, 'e', Prev_T
);
19663 end Record_Type_Definition
;
19665 ------------------------
19666 -- Replace_Components --
19667 ------------------------
19669 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
19670 function Process
(N
: Node_Id
) return Traverse_Result
;
19676 function Process
(N
: Node_Id
) return Traverse_Result
is
19680 if Nkind
(N
) = N_Discriminant_Specification
then
19681 Comp
:= First_Discriminant
(Typ
);
19682 while Present
(Comp
) loop
19683 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19684 Set_Defining_Identifier
(N
, Comp
);
19688 Next_Discriminant
(Comp
);
19691 elsif Nkind
(N
) = N_Component_Declaration
then
19692 Comp
:= First_Component
(Typ
);
19693 while Present
(Comp
) loop
19694 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19695 Set_Defining_Identifier
(N
, Comp
);
19699 Next_Component
(Comp
);
19706 procedure Replace
is new Traverse_Proc
(Process
);
19708 -- Start of processing for Replace_Components
19712 end Replace_Components
;
19714 -------------------------------
19715 -- Set_Completion_Referenced --
19716 -------------------------------
19718 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
19720 -- If in main unit, mark entity that is a completion as referenced,
19721 -- warnings go on the partial view when needed.
19723 if In_Extended_Main_Source_Unit
(E
) then
19724 Set_Referenced
(E
);
19726 end Set_Completion_Referenced
;
19728 ---------------------
19729 -- Set_Fixed_Range --
19730 ---------------------
19732 -- The range for fixed-point types is complicated by the fact that we
19733 -- do not know the exact end points at the time of the declaration. This
19734 -- is true for three reasons:
19736 -- A size clause may affect the fudging of the end-points.
19737 -- A small clause may affect the values of the end-points.
19738 -- We try to include the end-points if it does not affect the size.
19740 -- This means that the actual end-points must be established at the
19741 -- point when the type is frozen. Meanwhile, we first narrow the range
19742 -- as permitted (so that it will fit if necessary in a small specified
19743 -- size), and then build a range subtree with these narrowed bounds.
19744 -- Set_Fixed_Range constructs the range from real literal values, and
19745 -- sets the range as the Scalar_Range of the given fixed-point type entity.
19747 -- The parent of this range is set to point to the entity so that it is
19748 -- properly hooked into the tree (unlike normal Scalar_Range entries for
19749 -- other scalar types, which are just pointers to the range in the
19750 -- original tree, this would otherwise be an orphan).
19752 -- The tree is left unanalyzed. When the type is frozen, the processing
19753 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
19754 -- analyzed, and uses this as an indication that it should complete
19755 -- work on the range (it will know the final small and size values).
19757 procedure Set_Fixed_Range
19763 S
: constant Node_Id
:=
19765 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
19766 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
19768 Set_Scalar_Range
(E
, S
);
19771 -- Before the freeze point, the bounds of a fixed point are universal
19772 -- and carry the corresponding type.
19774 Set_Etype
(Low_Bound
(S
), Universal_Real
);
19775 Set_Etype
(High_Bound
(S
), Universal_Real
);
19776 end Set_Fixed_Range
;
19778 ----------------------------------
19779 -- Set_Scalar_Range_For_Subtype --
19780 ----------------------------------
19782 procedure Set_Scalar_Range_For_Subtype
19783 (Def_Id
: Entity_Id
;
19787 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
19790 -- Defend against previous error
19792 if Nkind
(R
) = N_Error
then
19796 Set_Scalar_Range
(Def_Id
, R
);
19798 -- We need to link the range into the tree before resolving it so
19799 -- that types that are referenced, including importantly the subtype
19800 -- itself, are properly frozen (Freeze_Expression requires that the
19801 -- expression be properly linked into the tree). Of course if it is
19802 -- already linked in, then we do not disturb the current link.
19804 if No
(Parent
(R
)) then
19805 Set_Parent
(R
, Def_Id
);
19808 -- Reset the kind of the subtype during analysis of the range, to
19809 -- catch possible premature use in the bounds themselves.
19811 Set_Ekind
(Def_Id
, E_Void
);
19812 Process_Range_Expr_In_Decl
(R
, Subt
);
19813 Set_Ekind
(Def_Id
, Kind
);
19814 end Set_Scalar_Range_For_Subtype
;
19816 --------------------------------------------------------
19817 -- Set_Stored_Constraint_From_Discriminant_Constraint --
19818 --------------------------------------------------------
19820 procedure Set_Stored_Constraint_From_Discriminant_Constraint
19824 -- Make sure set if encountered during Expand_To_Stored_Constraint
19826 Set_Stored_Constraint
(E
, No_Elist
);
19828 -- Give it the right value
19830 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
19831 Set_Stored_Constraint
(E
,
19832 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
19834 end Set_Stored_Constraint_From_Discriminant_Constraint
;
19836 -------------------------------------
19837 -- Signed_Integer_Type_Declaration --
19838 -------------------------------------
19840 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
19841 Implicit_Base
: Entity_Id
;
19842 Base_Typ
: Entity_Id
;
19845 Errs
: Boolean := False;
19849 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
19850 -- Determine whether given bounds allow derivation from specified type
19852 procedure Check_Bound
(Expr
: Node_Id
);
19853 -- Check bound to make sure it is integral and static. If not, post
19854 -- appropriate error message and set Errs flag
19856 ---------------------
19857 -- Can_Derive_From --
19858 ---------------------
19860 -- Note we check both bounds against both end values, to deal with
19861 -- strange types like ones with a range of 0 .. -12341234.
19863 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
19864 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
19865 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
19867 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
19869 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
19870 end Can_Derive_From
;
19876 procedure Check_Bound
(Expr
: Node_Id
) is
19878 -- If a range constraint is used as an integer type definition, each
19879 -- bound of the range must be defined by a static expression of some
19880 -- integer type, but the two bounds need not have the same integer
19881 -- type (Negative bounds are allowed.) (RM 3.5.4)
19883 if not Is_Integer_Type
(Etype
(Expr
)) then
19885 ("integer type definition bounds must be of integer type", Expr
);
19888 elsif not Is_OK_Static_Expression
(Expr
) then
19889 Flag_Non_Static_Expr
19890 ("non-static expression used for integer type bound!", Expr
);
19893 -- The bounds are folded into literals, and we set their type to be
19894 -- universal, to avoid typing difficulties: we cannot set the type
19895 -- of the literal to the new type, because this would be a forward
19896 -- reference for the back end, and if the original type is user-
19897 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
19900 if Is_Entity_Name
(Expr
) then
19901 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
19904 Set_Etype
(Expr
, Universal_Integer
);
19908 -- Start of processing for Signed_Integer_Type_Declaration
19911 -- Create an anonymous base type
19914 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
19916 -- Analyze and check the bounds, they can be of any integer type
19918 Lo
:= Low_Bound
(Def
);
19919 Hi
:= High_Bound
(Def
);
19921 -- Arbitrarily use Integer as the type if either bound had an error
19923 if Hi
= Error
or else Lo
= Error
then
19924 Base_Typ
:= Any_Integer
;
19925 Set_Error_Posted
(T
, True);
19927 -- Here both bounds are OK expressions
19930 Analyze_And_Resolve
(Lo
, Any_Integer
);
19931 Analyze_And_Resolve
(Hi
, Any_Integer
);
19937 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19938 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19941 -- Find type to derive from
19943 Lo_Val
:= Expr_Value
(Lo
);
19944 Hi_Val
:= Expr_Value
(Hi
);
19946 if Can_Derive_From
(Standard_Short_Short_Integer
) then
19947 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
19949 elsif Can_Derive_From
(Standard_Short_Integer
) then
19950 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
19952 elsif Can_Derive_From
(Standard_Integer
) then
19953 Base_Typ
:= Base_Type
(Standard_Integer
);
19955 elsif Can_Derive_From
(Standard_Long_Integer
) then
19956 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
19958 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
19959 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
19962 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
19963 Error_Msg_N
("integer type definition bounds out of range", Def
);
19964 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19965 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19969 -- Complete both implicit base and declared first subtype entities
19971 Set_Etype
(Implicit_Base
, Base_Typ
);
19972 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
19973 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
19974 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
19976 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
19977 Set_Etype
(T
, Implicit_Base
);
19979 -- In formal verification mode, restrict the base type's range to the
19980 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
19981 -- around zero with a possible extra negative value that contains the
19982 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
19983 -- should not be relied upon in formal verification.
19985 if Strict_Alfa_Mode
then
19989 Dloc
: constant Source_Ptr
:= Sloc
(Def
);
19995 -- If the subtype range is empty, the smallest base type range
19996 -- is the symmetric range around zero containing Lo_Val and
19999 if UI_Gt
(Lo_Val
, Hi_Val
) then
20000 Sym_Hi_Val
:= UI_Max
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
));
20001 Sym_Lo_Val
:= UI_Negate
(Sym_Hi_Val
);
20003 -- Otherwise, if the subtype range is not empty and Hi_Val has
20004 -- the largest absolute value, Hi_Val is non negative and the
20005 -- smallest base type range is the symmetric range around zero
20006 -- containing Hi_Val.
20008 elsif UI_Le
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
)) then
20009 Sym_Hi_Val
:= Hi_Val
;
20010 Sym_Lo_Val
:= UI_Negate
(Hi_Val
);
20012 -- Otherwise, the subtype range is not empty, Lo_Val has the
20013 -- strictly largest absolute value, Lo_Val is negative and the
20014 -- smallest base type range is the symmetric range around zero
20015 -- with an extra negative value Lo_Val.
20018 Sym_Lo_Val
:= Lo_Val
;
20019 Sym_Hi_Val
:= UI_Sub
(UI_Negate
(Lo_Val
), Uint_1
);
20022 Lbound
:= Make_Integer_Literal
(Dloc
, Sym_Lo_Val
);
20023 Ubound
:= Make_Integer_Literal
(Dloc
, Sym_Hi_Val
);
20024 Set_Is_Static_Expression
(Lbound
);
20025 Set_Is_Static_Expression
(Ubound
);
20026 Analyze_And_Resolve
(Lbound
, Any_Integer
);
20027 Analyze_And_Resolve
(Ubound
, Any_Integer
);
20029 Bounds
:= Make_Range
(Dloc
, Lbound
, Ubound
);
20030 Set_Etype
(Bounds
, Base_Typ
);
20032 Set_Scalar_Range
(Implicit_Base
, Bounds
);
20036 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
20039 Set_Size_Info
(T
, (Implicit_Base
));
20040 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
20041 Set_Scalar_Range
(T
, Def
);
20042 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
20043 Set_Is_Constrained
(T
);
20044 end Signed_Integer_Type_Declaration
;