1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- S Y S T E M . A R I T H _ 6 4 --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 with Interfaces
; use Interfaces
;
33 with Ada
.Unchecked_Conversion
;
35 package body System
.Arith_64
is
37 pragma Suppress
(Overflow_Check
);
38 pragma Suppress
(Range_Check
);
40 subtype Uns64
is Unsigned_64
;
41 function To_Uns
is new Ada
.Unchecked_Conversion
(Int64
, Uns64
);
42 function To_Int
is new Ada
.Unchecked_Conversion
(Uns64
, Int64
);
44 subtype Uns32
is Unsigned_32
;
46 -----------------------
47 -- Local Subprograms --
48 -----------------------
50 function "+" (A
, B
: Uns32
) return Uns64
;
51 function "+" (A
: Uns64
; B
: Uns32
) return Uns64
;
53 -- Length doubling additions
55 function "*" (A
, B
: Uns32
) return Uns64
;
57 -- Length doubling multiplication
59 function "/" (A
: Uns64
; B
: Uns32
) return Uns64
;
61 -- Length doubling division
63 function "rem" (A
: Uns64
; B
: Uns32
) return Uns64
;
64 pragma Inline
("rem");
65 -- Length doubling remainder
67 function "&" (Hi
, Lo
: Uns32
) return Uns64
;
69 -- Concatenate hi, lo values to form 64-bit result
71 function Le3
(X1
, X2
, X3
: Uns32
; Y1
, Y2
, Y3
: Uns32
) return Boolean;
72 -- Determines if 96 bit value X1&X2&X3 <= Y1&Y2&Y3
74 function Lo
(A
: Uns64
) return Uns32
;
76 -- Low order half of 64-bit value
78 function Hi
(A
: Uns64
) return Uns32
;
80 -- High order half of 64-bit value
82 procedure Sub3
(X1
, X2
, X3
: in out Uns32
; Y1
, Y2
, Y3
: Uns32
);
83 -- Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 with mod 2**96 wrap
85 function To_Neg_Int
(A
: Uns64
) return Int64
;
86 -- Convert to negative integer equivalent. If the input is in the range
87 -- 0 .. 2 ** 63, then the corresponding negative signed integer (obtained
88 -- by negating the given value) is returned, otherwise constraint error
91 function To_Pos_Int
(A
: Uns64
) return Int64
;
92 -- Convert to positive integer equivalent. If the input is in the range
93 -- 0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
94 -- returned, otherwise constraint error is raised.
96 procedure Raise_Error
;
97 pragma No_Return
(Raise_Error
);
98 -- Raise constraint error with appropriate message
104 function "&" (Hi
, Lo
: Uns32
) return Uns64
is
106 return Shift_Left
(Uns64
(Hi
), 32) or Uns64
(Lo
);
113 function "*" (A
, B
: Uns32
) return Uns64
is
115 return Uns64
(A
) * Uns64
(B
);
122 function "+" (A
, B
: Uns32
) return Uns64
is
124 return Uns64
(A
) + Uns64
(B
);
127 function "+" (A
: Uns64
; B
: Uns32
) return Uns64
is
129 return A
+ Uns64
(B
);
136 function "/" (A
: Uns64
; B
: Uns32
) return Uns64
is
138 return A
/ Uns64
(B
);
145 function "rem" (A
: Uns64
; B
: Uns32
) return Uns64
is
147 return A
rem Uns64
(B
);
150 --------------------------
151 -- Add_With_Ovflo_Check --
152 --------------------------
154 function Add_With_Ovflo_Check
(X
, Y
: Int64
) return Int64
is
155 R
: constant Int64
:= To_Int
(To_Uns
(X
) + To_Uns
(Y
));
159 if Y
< 0 or else R
>= 0 then
164 if Y
> 0 or else R
< 0 then
170 end Add_With_Ovflo_Check
;
176 procedure Double_Divide
181 Xu
: constant Uns64
:= To_Uns
(abs X
);
182 Yu
: constant Uns64
:= To_Uns
(abs Y
);
184 Yhi
: constant Uns32
:= Hi
(Yu
);
185 Ylo
: constant Uns32
:= Lo
(Yu
);
187 Zu
: constant Uns64
:= To_Uns
(abs Z
);
188 Zhi
: constant Uns32
:= Hi
(Zu
);
189 Zlo
: constant Uns32
:= Lo
(Zu
);
196 if Yu
= 0 or else Zu
= 0 then
200 -- Compute Y * Z. Note that if the result overflows 64 bits unsigned,
201 -- then the rounded result is clearly zero (since the dividend is at
202 -- most 2**63 - 1, the extra bit of precision is nice here!)
214 T2
:= (if Zhi
/= 0 then Ylo
* Zhi
else 0);
226 Du
:= Lo
(T2
) & Lo
(T1
);
228 -- Set final signs (RM 4.5.5(27-30))
230 Den_Pos
:= (Y
< 0) = (Z
< 0);
232 -- Check overflow case of largest negative number divided by 1
234 if X
= Int64
'First and then Du
= 1 and then not Den_Pos
then
238 -- Perform the actual division
243 -- Deal with rounding case
245 if Round
and then Ru
> (Du
- Uns64
'(1)) / Uns64'(2) then
246 Qu
:= Qu
+ Uns64
'(1);
249 -- Case of dividend (X) sign positive
253 Q := (if Den_Pos then To_Int (Qu) else -To_Int (Qu));
255 -- Case of dividend (X) sign negative
259 Q := (if Den_Pos then -To_Int (Qu) else To_Int (Qu));
267 function Hi (A : Uns64) return Uns32 is
269 return Uns32 (Shift_Right (A, 32));
276 function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean is
295 function Lo (A : Uns64) return Uns32 is
297 return Uns32 (A and 16#FFFF_FFFF#);
300 -------------------------------
301 -- Multiply_With_Ovflo_Check --
302 -------------------------------
304 function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
305 Xu : constant Uns64 := To_Uns (abs X);
306 Xhi : constant Uns32 := Hi (Xu);
307 Xlo : constant Uns32 := Lo (Xu);
309 Yu : constant Uns64 := To_Uns (abs Y);
310 Yhi : constant Uns32 := Hi (Yu);
311 Ylo : constant Uns32 := Lo (Yu);
326 else -- Yhi = Xhi = 0
330 -- Here we have T2 set to the contribution to the upper half
331 -- of the result from the upper halves of the input values.
340 T2 := Lo (T2) & Lo (T1);
344 return To_Pos_Int (T2);
346 return To_Neg_Int (T2);
350 return To_Pos_Int (T2);
352 return To_Neg_Int (T2);
356 end Multiply_With_Ovflo_Check;
362 procedure Raise_Error is
364 raise Constraint_Error with "64-bit arithmetic overflow";
371 procedure Scaled_Divide
376 Xu : constant Uns64 := To_Uns (abs X);
377 Xhi : constant Uns32 := Hi (Xu);
378 Xlo : constant Uns32 := Lo (Xu);
380 Yu : constant Uns64 := To_Uns (abs Y);
381 Yhi : constant Uns32 := Hi (Yu);
382 Ylo : constant Uns32 := Lo (Yu);
384 Zu : Uns64 := To_Uns (abs Z);
385 Zhi : Uns32 := Hi (Zu);
386 Zlo : Uns32 := Lo (Zu);
388 D : array (1 .. 4) of Uns32;
389 -- The dividend, four digits (D(1) is high order)
391 Qd : array (1 .. 2) of Uns32;
392 -- The quotient digits, two digits (Qd(1) is high order)
395 -- Value to subtract, three digits (S1 is high order)
399 -- Unsigned quotient and remainder
402 -- Scaling factor used for multiple-precision divide. Dividend and
403 -- Divisor are multiplied by 2 ** Scale, and the final remainder
404 -- is divided by the scaling factor. The reason for this scaling
405 -- is to allow more accurate estimation of quotient digits.
411 -- First do the multiplication, giving the four digit dividend
419 T2 := D (3) + Lo (T1);
421 D (2) := Hi (T1) + Hi (T2);
425 T2 := D (3) + Lo (T1);
427 T3 := D (2) + Hi (T1);
432 T1 := (D (1) & D (2)) + Uns64'(Xhi
* Yhi
);
443 T2
:= D
(3) + Lo
(T1
);
445 D
(2) := Hi
(T1
) + Hi
(T2
);
454 -- Now it is time for the dreaded multiple precision division. First
455 -- an easy case, check for the simple case of a one digit divisor.
458 if D
(1) /= 0 or else D
(2) >= Zlo
then
461 -- Here we are dividing at most three digits by one digit
465 T2
:= Lo
(T1
rem Zlo
) & D
(4);
467 Qu
:= Lo
(T1
/ Zlo
) & Lo
(T2
/ Zlo
);
471 -- If divisor is double digit and too large, raise error
473 elsif (D
(1) & D
(2)) >= Zu
then
476 -- This is the complex case where we definitely have a double digit
477 -- divisor and a dividend of at least three digits. We use the classical
478 -- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
479 -- of Computer Programming", Vol. 2 for a description (algorithm D).
482 -- First normalize the divisor so that it has the leading bit on.
483 -- We do this by finding the appropriate left shift amount.
487 if (Zhi
and 16#FFFF0000#
) = 0 then
489 Zu
:= Shift_Left
(Zu
, 16);
492 if (Hi
(Zu
) and 16#FF00_0000#
) = 0 then
494 Zu
:= Shift_Left
(Zu
, 8);
497 if (Hi
(Zu
) and 16#F000_0000#
) = 0 then
499 Zu
:= Shift_Left
(Zu
, 4);
502 if (Hi
(Zu
) and 16#C000_0000#
) = 0 then
504 Zu
:= Shift_Left
(Zu
, 2);
507 if (Hi
(Zu
) and 16#
8000_0000#
) = 0 then
509 Zu
:= Shift_Left
(Zu
, 1);
515 -- Note that when we scale up the dividend, it still fits in four
516 -- digits, since we already tested for overflow, and scaling does
517 -- not change the invariant that (D (1) & D (2)) >= Zu.
519 T1
:= Shift_Left
(D
(1) & D
(2), Scale
);
521 T2
:= Shift_Left
(0 & D
(3), Scale
);
522 D
(2) := Lo
(T1
) or Hi
(T2
);
523 T3
:= Shift_Left
(0 & D
(4), Scale
);
524 D
(3) := Lo
(T2
) or Hi
(T3
);
527 -- Loop to compute quotient digits, runs twice for Qd(1) and Qd(2)
531 -- Compute next quotient digit. We have to divide three digits by
532 -- two digits. We estimate the quotient by dividing the leading
533 -- two digits by the leading digit. Given the scaling we did above
534 -- which ensured the first bit of the divisor is set, this gives
535 -- an estimate of the quotient that is at most two too high.
537 Qd
(J
+ 1) := (if D
(J
+ 1) = Zhi
539 else Lo
((D
(J
+ 1) & D
(J
+ 2)) / Zhi
));
541 -- Compute amount to subtract
543 T1
:= Qd
(J
+ 1) * Zlo
;
544 T2
:= Qd
(J
+ 1) * Zhi
;
546 T1
:= Hi
(T1
) + Lo
(T2
);
548 S1
:= Hi
(T1
) + Hi
(T2
);
550 -- Adjust quotient digit if it was too high
553 exit when Le3
(S1
, S2
, S3
, D
(J
+ 1), D
(J
+ 2), D
(J
+ 3));
554 Qd
(J
+ 1) := Qd
(J
+ 1) - 1;
555 Sub3
(S1
, S2
, S3
, 0, Zhi
, Zlo
);
558 -- Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
560 Sub3
(D
(J
+ 1), D
(J
+ 2), D
(J
+ 3), S1
, S2
, S3
);
563 -- The two quotient digits are now set, and the remainder of the
564 -- scaled division is in D3&D4. To get the remainder for the
565 -- original unscaled division, we rescale this dividend.
567 -- We rescale the divisor as well, to make the proper comparison
568 -- for rounding below.
570 Qu
:= Qd
(1) & Qd
(2);
571 Ru
:= Shift_Right
(D
(3) & D
(4), Scale
);
572 Zu
:= Shift_Right
(Zu
, Scale
);
575 -- Deal with rounding case
577 if Round
and then Ru
> (Zu
- Uns64
'(1)) / Uns64'(2) then
578 Qu
:= Qu
+ Uns64
(1);
581 -- Set final signs (RM 4.5.5(27-30))
583 -- Case of dividend (X * Y) sign positive
585 if (X
>= 0 and then Y
>= 0) or else (X
< 0 and then Y
< 0) then
586 R
:= To_Pos_Int
(Ru
);
587 Q
:= (if Z
> 0 then To_Pos_Int
(Qu
) else To_Neg_Int
(Qu
));
589 -- Case of dividend (X * Y) sign negative
592 R
:= To_Neg_Int
(Ru
);
593 Q
:= (if Z
> 0 then To_Neg_Int
(Qu
) else To_Pos_Int
(Qu
));
601 procedure Sub3
(X1
, X2
, X3
: in out Uns32
; Y1
, Y2
, Y3
: Uns32
) is
621 -------------------------------
622 -- Subtract_With_Ovflo_Check --
623 -------------------------------
625 function Subtract_With_Ovflo_Check
(X
, Y
: Int64
) return Int64
is
626 R
: constant Int64
:= To_Int
(To_Uns
(X
) - To_Uns
(Y
));
630 if Y
> 0 or else R
>= 0 then
635 if Y
<= 0 or else R
< 0 then
641 end Subtract_With_Ovflo_Check
;
647 function To_Neg_Int
(A
: Uns64
) return Int64
is
648 R
: constant Int64
:= -To_Int
(A
);
662 function To_Pos_Int
(A
: Uns64
) return Int64
is
663 R
: constant Int64
:= To_Int
(A
);