PR c++/54038
[official-gcc.git] / gcc / ada / s-arit64.adb
blobb6f253585c149dca75950a0dc8afc7c9312c7d81
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . A R I T H _ 6 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Interfaces; use Interfaces;
33 with Ada.Unchecked_Conversion;
35 package body System.Arith_64 is
37 pragma Suppress (Overflow_Check);
38 pragma Suppress (Range_Check);
40 subtype Uns64 is Unsigned_64;
41 function To_Uns is new Ada.Unchecked_Conversion (Int64, Uns64);
42 function To_Int is new Ada.Unchecked_Conversion (Uns64, Int64);
44 subtype Uns32 is Unsigned_32;
46 -----------------------
47 -- Local Subprograms --
48 -----------------------
50 function "+" (A, B : Uns32) return Uns64;
51 function "+" (A : Uns64; B : Uns32) return Uns64;
52 pragma Inline ("+");
53 -- Length doubling additions
55 function "*" (A, B : Uns32) return Uns64;
56 pragma Inline ("*");
57 -- Length doubling multiplication
59 function "/" (A : Uns64; B : Uns32) return Uns64;
60 pragma Inline ("/");
61 -- Length doubling division
63 function "rem" (A : Uns64; B : Uns32) return Uns64;
64 pragma Inline ("rem");
65 -- Length doubling remainder
67 function "&" (Hi, Lo : Uns32) return Uns64;
68 pragma Inline ("&");
69 -- Concatenate hi, lo values to form 64-bit result
71 function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean;
72 -- Determines if 96 bit value X1&X2&X3 <= Y1&Y2&Y3
74 function Lo (A : Uns64) return Uns32;
75 pragma Inline (Lo);
76 -- Low order half of 64-bit value
78 function Hi (A : Uns64) return Uns32;
79 pragma Inline (Hi);
80 -- High order half of 64-bit value
82 procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32);
83 -- Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 with mod 2**96 wrap
85 function To_Neg_Int (A : Uns64) return Int64;
86 -- Convert to negative integer equivalent. If the input is in the range
87 -- 0 .. 2 ** 63, then the corresponding negative signed integer (obtained
88 -- by negating the given value) is returned, otherwise constraint error
89 -- is raised.
91 function To_Pos_Int (A : Uns64) return Int64;
92 -- Convert to positive integer equivalent. If the input is in the range
93 -- 0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
94 -- returned, otherwise constraint error is raised.
96 procedure Raise_Error;
97 pragma No_Return (Raise_Error);
98 -- Raise constraint error with appropriate message
100 ---------
101 -- "&" --
102 ---------
104 function "&" (Hi, Lo : Uns32) return Uns64 is
105 begin
106 return Shift_Left (Uns64 (Hi), 32) or Uns64 (Lo);
107 end "&";
109 ---------
110 -- "*" --
111 ---------
113 function "*" (A, B : Uns32) return Uns64 is
114 begin
115 return Uns64 (A) * Uns64 (B);
116 end "*";
118 ---------
119 -- "+" --
120 ---------
122 function "+" (A, B : Uns32) return Uns64 is
123 begin
124 return Uns64 (A) + Uns64 (B);
125 end "+";
127 function "+" (A : Uns64; B : Uns32) return Uns64 is
128 begin
129 return A + Uns64 (B);
130 end "+";
132 ---------
133 -- "/" --
134 ---------
136 function "/" (A : Uns64; B : Uns32) return Uns64 is
137 begin
138 return A / Uns64 (B);
139 end "/";
141 -----------
142 -- "rem" --
143 -----------
145 function "rem" (A : Uns64; B : Uns32) return Uns64 is
146 begin
147 return A rem Uns64 (B);
148 end "rem";
150 --------------------------
151 -- Add_With_Ovflo_Check --
152 --------------------------
154 function Add_With_Ovflo_Check (X, Y : Int64) return Int64 is
155 R : constant Int64 := To_Int (To_Uns (X) + To_Uns (Y));
157 begin
158 if X >= 0 then
159 if Y < 0 or else R >= 0 then
160 return R;
161 end if;
163 else -- X < 0
164 if Y > 0 or else R < 0 then
165 return R;
166 end if;
167 end if;
169 Raise_Error;
170 end Add_With_Ovflo_Check;
172 -------------------
173 -- Double_Divide --
174 -------------------
176 procedure Double_Divide
177 (X, Y, Z : Int64;
178 Q, R : out Int64;
179 Round : Boolean)
181 Xu : constant Uns64 := To_Uns (abs X);
182 Yu : constant Uns64 := To_Uns (abs Y);
184 Yhi : constant Uns32 := Hi (Yu);
185 Ylo : constant Uns32 := Lo (Yu);
187 Zu : constant Uns64 := To_Uns (abs Z);
188 Zhi : constant Uns32 := Hi (Zu);
189 Zlo : constant Uns32 := Lo (Zu);
191 T1, T2 : Uns64;
192 Du, Qu, Ru : Uns64;
193 Den_Pos : Boolean;
195 begin
196 if Yu = 0 or else Zu = 0 then
197 Raise_Error;
198 end if;
200 -- Compute Y * Z. Note that if the result overflows 64 bits unsigned,
201 -- then the rounded result is clearly zero (since the dividend is at
202 -- most 2**63 - 1, the extra bit of precision is nice here!)
204 if Yhi /= 0 then
205 if Zhi /= 0 then
206 Q := 0;
207 R := X;
208 return;
209 else
210 T2 := Yhi * Zlo;
211 end if;
213 else
214 T2 := (if Zhi /= 0 then Ylo * Zhi else 0);
215 end if;
217 T1 := Ylo * Zlo;
218 T2 := T2 + Hi (T1);
220 if Hi (T2) /= 0 then
221 Q := 0;
222 R := X;
223 return;
224 end if;
226 Du := Lo (T2) & Lo (T1);
228 -- Set final signs (RM 4.5.5(27-30))
230 Den_Pos := (Y < 0) = (Z < 0);
232 -- Check overflow case of largest negative number divided by 1
234 if X = Int64'First and then Du = 1 and then not Den_Pos then
235 Raise_Error;
236 end if;
238 -- Perform the actual division
240 Qu := Xu / Du;
241 Ru := Xu rem Du;
243 -- Deal with rounding case
245 if Round and then Ru > (Du - Uns64'(1)) / Uns64'(2) then
246 Qu := Qu + Uns64'(1);
247 end if;
249 -- Case of dividend (X) sign positive
251 if X >= 0 then
252 R := To_Int (Ru);
253 Q := (if Den_Pos then To_Int (Qu) else -To_Int (Qu));
255 -- Case of dividend (X) sign negative
257 else
258 R := -To_Int (Ru);
259 Q := (if Den_Pos then -To_Int (Qu) else To_Int (Qu));
260 end if;
261 end Double_Divide;
263 --------
264 -- Hi --
265 --------
267 function Hi (A : Uns64) return Uns32 is
268 begin
269 return Uns32 (Shift_Right (A, 32));
270 end Hi;
272 ---------
273 -- Le3 --
274 ---------
276 function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean is
277 begin
278 if X1 < Y1 then
279 return True;
280 elsif X1 > Y1 then
281 return False;
282 elsif X2 < Y2 then
283 return True;
284 elsif X2 > Y2 then
285 return False;
286 else
287 return X3 <= Y3;
288 end if;
289 end Le3;
291 --------
292 -- Lo --
293 --------
295 function Lo (A : Uns64) return Uns32 is
296 begin
297 return Uns32 (A and 16#FFFF_FFFF#);
298 end Lo;
300 -------------------------------
301 -- Multiply_With_Ovflo_Check --
302 -------------------------------
304 function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
305 Xu : constant Uns64 := To_Uns (abs X);
306 Xhi : constant Uns32 := Hi (Xu);
307 Xlo : constant Uns32 := Lo (Xu);
309 Yu : constant Uns64 := To_Uns (abs Y);
310 Yhi : constant Uns32 := Hi (Yu);
311 Ylo : constant Uns32 := Lo (Yu);
313 T1, T2 : Uns64;
315 begin
316 if Xhi /= 0 then
317 if Yhi /= 0 then
318 Raise_Error;
319 else
320 T2 := Xhi * Ylo;
321 end if;
323 elsif Yhi /= 0 then
324 T2 := Xlo * Yhi;
326 else -- Yhi = Xhi = 0
327 T2 := 0;
328 end if;
330 -- Here we have T2 set to the contribution to the upper half
331 -- of the result from the upper halves of the input values.
333 T1 := Xlo * Ylo;
334 T2 := T2 + Hi (T1);
336 if Hi (T2) /= 0 then
337 Raise_Error;
338 end if;
340 T2 := Lo (T2) & Lo (T1);
342 if X >= 0 then
343 if Y >= 0 then
344 return To_Pos_Int (T2);
345 else
346 return To_Neg_Int (T2);
347 end if;
348 else -- X < 0
349 if Y < 0 then
350 return To_Pos_Int (T2);
351 else
352 return To_Neg_Int (T2);
353 end if;
354 end if;
356 end Multiply_With_Ovflo_Check;
358 -----------------
359 -- Raise_Error --
360 -----------------
362 procedure Raise_Error is
363 begin
364 raise Constraint_Error with "64-bit arithmetic overflow";
365 end Raise_Error;
367 -------------------
368 -- Scaled_Divide --
369 -------------------
371 procedure Scaled_Divide
372 (X, Y, Z : Int64;
373 Q, R : out Int64;
374 Round : Boolean)
376 Xu : constant Uns64 := To_Uns (abs X);
377 Xhi : constant Uns32 := Hi (Xu);
378 Xlo : constant Uns32 := Lo (Xu);
380 Yu : constant Uns64 := To_Uns (abs Y);
381 Yhi : constant Uns32 := Hi (Yu);
382 Ylo : constant Uns32 := Lo (Yu);
384 Zu : Uns64 := To_Uns (abs Z);
385 Zhi : Uns32 := Hi (Zu);
386 Zlo : Uns32 := Lo (Zu);
388 D : array (1 .. 4) of Uns32;
389 -- The dividend, four digits (D(1) is high order)
391 Qd : array (1 .. 2) of Uns32;
392 -- The quotient digits, two digits (Qd(1) is high order)
394 S1, S2, S3 : Uns32;
395 -- Value to subtract, three digits (S1 is high order)
397 Qu : Uns64;
398 Ru : Uns64;
399 -- Unsigned quotient and remainder
401 Scale : Natural;
402 -- Scaling factor used for multiple-precision divide. Dividend and
403 -- Divisor are multiplied by 2 ** Scale, and the final remainder
404 -- is divided by the scaling factor. The reason for this scaling
405 -- is to allow more accurate estimation of quotient digits.
407 T1, T2, T3 : Uns64;
408 -- Temporary values
410 begin
411 -- First do the multiplication, giving the four digit dividend
413 T1 := Xlo * Ylo;
414 D (4) := Lo (T1);
415 D (3) := Hi (T1);
417 if Yhi /= 0 then
418 T1 := Xlo * Yhi;
419 T2 := D (3) + Lo (T1);
420 D (3) := Lo (T2);
421 D (2) := Hi (T1) + Hi (T2);
423 if Xhi /= 0 then
424 T1 := Xhi * Ylo;
425 T2 := D (3) + Lo (T1);
426 D (3) := Lo (T2);
427 T3 := D (2) + Hi (T1);
428 T3 := T3 + Hi (T2);
429 D (2) := Lo (T3);
430 D (1) := Hi (T3);
432 T1 := (D (1) & D (2)) + Uns64'(Xhi * Yhi);
433 D (1) := Hi (T1);
434 D (2) := Lo (T1);
436 else
437 D (1) := 0;
438 end if;
440 else
441 if Xhi /= 0 then
442 T1 := Xhi * Ylo;
443 T2 := D (3) + Lo (T1);
444 D (3) := Lo (T2);
445 D (2) := Hi (T1) + Hi (T2);
447 else
448 D (2) := 0;
449 end if;
451 D (1) := 0;
452 end if;
454 -- Now it is time for the dreaded multiple precision division. First
455 -- an easy case, check for the simple case of a one digit divisor.
457 if Zhi = 0 then
458 if D (1) /= 0 or else D (2) >= Zlo then
459 Raise_Error;
461 -- Here we are dividing at most three digits by one digit
463 else
464 T1 := D (2) & D (3);
465 T2 := Lo (T1 rem Zlo) & D (4);
467 Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
468 Ru := T2 rem Zlo;
469 end if;
471 -- If divisor is double digit and too large, raise error
473 elsif (D (1) & D (2)) >= Zu then
474 Raise_Error;
476 -- This is the complex case where we definitely have a double digit
477 -- divisor and a dividend of at least three digits. We use the classical
478 -- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
479 -- of Computer Programming", Vol. 2 for a description (algorithm D).
481 else
482 -- First normalize the divisor so that it has the leading bit on.
483 -- We do this by finding the appropriate left shift amount.
485 Scale := 0;
487 if (Zhi and 16#FFFF0000#) = 0 then
488 Scale := 16;
489 Zu := Shift_Left (Zu, 16);
490 end if;
492 if (Hi (Zu) and 16#FF00_0000#) = 0 then
493 Scale := Scale + 8;
494 Zu := Shift_Left (Zu, 8);
495 end if;
497 if (Hi (Zu) and 16#F000_0000#) = 0 then
498 Scale := Scale + 4;
499 Zu := Shift_Left (Zu, 4);
500 end if;
502 if (Hi (Zu) and 16#C000_0000#) = 0 then
503 Scale := Scale + 2;
504 Zu := Shift_Left (Zu, 2);
505 end if;
507 if (Hi (Zu) and 16#8000_0000#) = 0 then
508 Scale := Scale + 1;
509 Zu := Shift_Left (Zu, 1);
510 end if;
512 Zhi := Hi (Zu);
513 Zlo := Lo (Zu);
515 -- Note that when we scale up the dividend, it still fits in four
516 -- digits, since we already tested for overflow, and scaling does
517 -- not change the invariant that (D (1) & D (2)) >= Zu.
519 T1 := Shift_Left (D (1) & D (2), Scale);
520 D (1) := Hi (T1);
521 T2 := Shift_Left (0 & D (3), Scale);
522 D (2) := Lo (T1) or Hi (T2);
523 T3 := Shift_Left (0 & D (4), Scale);
524 D (3) := Lo (T2) or Hi (T3);
525 D (4) := Lo (T3);
527 -- Loop to compute quotient digits, runs twice for Qd(1) and Qd(2)
529 for J in 0 .. 1 loop
531 -- Compute next quotient digit. We have to divide three digits by
532 -- two digits. We estimate the quotient by dividing the leading
533 -- two digits by the leading digit. Given the scaling we did above
534 -- which ensured the first bit of the divisor is set, this gives
535 -- an estimate of the quotient that is at most two too high.
537 Qd (J + 1) := (if D (J + 1) = Zhi
538 then 2 ** 32 - 1
539 else Lo ((D (J + 1) & D (J + 2)) / Zhi));
541 -- Compute amount to subtract
543 T1 := Qd (J + 1) * Zlo;
544 T2 := Qd (J + 1) * Zhi;
545 S3 := Lo (T1);
546 T1 := Hi (T1) + Lo (T2);
547 S2 := Lo (T1);
548 S1 := Hi (T1) + Hi (T2);
550 -- Adjust quotient digit if it was too high
552 loop
553 exit when Le3 (S1, S2, S3, D (J + 1), D (J + 2), D (J + 3));
554 Qd (J + 1) := Qd (J + 1) - 1;
555 Sub3 (S1, S2, S3, 0, Zhi, Zlo);
556 end loop;
558 -- Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
560 Sub3 (D (J + 1), D (J + 2), D (J + 3), S1, S2, S3);
561 end loop;
563 -- The two quotient digits are now set, and the remainder of the
564 -- scaled division is in D3&D4. To get the remainder for the
565 -- original unscaled division, we rescale this dividend.
567 -- We rescale the divisor as well, to make the proper comparison
568 -- for rounding below.
570 Qu := Qd (1) & Qd (2);
571 Ru := Shift_Right (D (3) & D (4), Scale);
572 Zu := Shift_Right (Zu, Scale);
573 end if;
575 -- Deal with rounding case
577 if Round and then Ru > (Zu - Uns64'(1)) / Uns64'(2) then
578 Qu := Qu + Uns64 (1);
579 end if;
581 -- Set final signs (RM 4.5.5(27-30))
583 -- Case of dividend (X * Y) sign positive
585 if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
586 R := To_Pos_Int (Ru);
587 Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));
589 -- Case of dividend (X * Y) sign negative
591 else
592 R := To_Neg_Int (Ru);
593 Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
594 end if;
595 end Scaled_Divide;
597 ----------
598 -- Sub3 --
599 ----------
601 procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32) is
602 begin
603 if Y3 > X3 then
604 if X2 = 0 then
605 X1 := X1 - 1;
606 end if;
608 X2 := X2 - 1;
609 end if;
611 X3 := X3 - Y3;
613 if Y2 > X2 then
614 X1 := X1 - 1;
615 end if;
617 X2 := X2 - Y2;
618 X1 := X1 - Y1;
619 end Sub3;
621 -------------------------------
622 -- Subtract_With_Ovflo_Check --
623 -------------------------------
625 function Subtract_With_Ovflo_Check (X, Y : Int64) return Int64 is
626 R : constant Int64 := To_Int (To_Uns (X) - To_Uns (Y));
628 begin
629 if X >= 0 then
630 if Y > 0 or else R >= 0 then
631 return R;
632 end if;
634 else -- X < 0
635 if Y <= 0 or else R < 0 then
636 return R;
637 end if;
638 end if;
640 Raise_Error;
641 end Subtract_With_Ovflo_Check;
643 ----------------
644 -- To_Neg_Int --
645 ----------------
647 function To_Neg_Int (A : Uns64) return Int64 is
648 R : constant Int64 := -To_Int (A);
650 begin
651 if R <= 0 then
652 return R;
653 else
654 Raise_Error;
655 end if;
656 end To_Neg_Int;
658 ----------------
659 -- To_Pos_Int --
660 ----------------
662 function To_Pos_Int (A : Uns64) return Int64 is
663 R : constant Int64 := To_Int (A);
665 begin
666 if R >= 0 then
667 return R;
668 else
669 Raise_Error;
670 end if;
671 end To_Pos_Int;
673 end System.Arith_64;