* cp-tree.h (DECL_LOCAL_FUCNTION_P): New macro.
[official-gcc.git] / gcc / real.c
blob2ef6d1e15a5bf9d23d14d27020ee44027b6da734
1 /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF,
2 and support for XFmode IEEE extended real floating point arithmetic.
3 Copyright (C) 1993, 94-98, 1999 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "tree.h"
26 #include "toplev.h"
27 #include "tm_p.h"
29 /* To enable support of XFmode extended real floating point, define
30 LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h).
32 To support cross compilation between IEEE, VAX and IBM floating
33 point formats, define REAL_ARITHMETIC in the tm.h file.
35 In either case the machine files (tm.h) must not contain any code
36 that tries to use host floating point arithmetic to convert
37 REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf,
38 etc. In cross-compile situations a REAL_VALUE_TYPE may not
39 be intelligible to the host computer's native arithmetic.
41 The emulator defaults to the host's floating point format so that
42 its decimal conversion functions can be used if desired (see
43 real.h).
45 The first part of this file interfaces gcc to a floating point
46 arithmetic suite that was not written with gcc in mind. Avoid
47 changing the low-level arithmetic routines unless you have suitable
48 test programs available. A special version of the PARANOIA floating
49 point arithmetic tester, modified for this purpose, can be found on
50 usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of
51 XFmode and TFmode transcendental functions, can be obtained by ftp from
52 netlib.att.com: netlib/cephes. */
54 /* Type of computer arithmetic.
55 Only one of DEC, IBM, IEEE, C4X, or UNK should get defined.
57 `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically
58 to big-endian IEEE floating-point data structure. This definition
59 should work in SFmode `float' type and DFmode `double' type on
60 virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE
61 has been defined to be 96, then IEEE also invokes the particular
62 XFmode (`long double' type) data structure used by the Motorola
63 680x0 series processors.
65 `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to
66 little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE
67 has been defined to be 96, then IEEE also invokes the particular
68 XFmode `long double' data structure used by the Intel 80x86 series
69 processors.
71 `DEC' refers specifically to the Digital Equipment Corp PDP-11
72 and VAX floating point data structure. This model currently
73 supports no type wider than DFmode.
75 `IBM' refers specifically to the IBM System/370 and compatible
76 floating point data structure. This model currently supports
77 no type wider than DFmode. The IBM conversions were contributed by
78 frank@atom.ansto.gov.au (Frank Crawford).
80 `C4X' refers specifically to the floating point format used on
81 Texas Instruments TMS320C3x and TMS320C4x digital signal
82 processors. This supports QFmode (32-bit float, double) and HFmode
83 (40-bit long double) where BITS_PER_BYTE is 32. Unlike IEEE
84 floats, C4x floats are not rounded to be even. The C4x conversions
85 were contributed by m.hayes@elec.canterbury.ac.nz (Michael Hayes) and
86 Haj.Ten.Brugge@net.HCC.nl (Herman ten Brugge).
88 If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it)
89 then `long double' and `double' are both implemented, but they
90 both mean DFmode. In this case, the software floating-point
91 support available here is activated by writing
92 #define REAL_ARITHMETIC
93 in tm.h.
95 The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support
96 and may deactivate XFmode since `long double' is used to refer
97 to both modes.
99 The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN,
100 contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>,
101 separate the floating point unit's endian-ness from that of
102 the integer addressing. This permits one to define a big-endian
103 FPU on a little-endian machine (e.g., ARM). An extension to
104 BYTES_BIG_ENDIAN may be required for some machines in the future.
105 These optional macros may be defined in tm.h. In real.h, they
106 default to WORDS_BIG_ENDIAN, etc., so there is no need to define
107 them for any normal host or target machine on which the floats
108 and the integers have the same endian-ness. */
111 /* The following converts gcc macros into the ones used by this file. */
113 /* REAL_ARITHMETIC defined means that macros in real.h are
114 defined to call emulator functions. */
115 #ifdef REAL_ARITHMETIC
117 #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
118 /* PDP-11, Pro350, VAX: */
119 #define DEC 1
120 #else /* it's not VAX */
121 #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
122 /* IBM System/370 style */
123 #define IBM 1
124 #else /* it's also not an IBM */
125 #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
126 /* TMS320C3x/C4x style */
127 #define C4X 1
128 #else /* it's also not a C4X */
129 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
130 #define IEEE
131 #else /* it's not IEEE either */
132 /* UNKnown arithmetic. We don't support this and can't go on. */
133 unknown arithmetic type
134 #define UNK 1
135 #endif /* not IEEE */
136 #endif /* not C4X */
137 #endif /* not IBM */
138 #endif /* not VAX */
140 #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN
142 #else
143 /* REAL_ARITHMETIC not defined means that the *host's* data
144 structure will be used. It may differ by endian-ness from the
145 target machine's structure and will get its ends swapped
146 accordingly (but not here). Probably only the decimal <-> binary
147 functions in this file will actually be used in this case. */
149 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
150 #define DEC 1
151 #else /* it's not VAX */
152 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
153 /* IBM System/370 style */
154 #define IBM 1
155 #else /* it's also not an IBM */
156 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
157 #define IEEE
158 #else /* it's not IEEE either */
159 unknown arithmetic type
160 #define UNK 1
161 #endif /* not IEEE */
162 #endif /* not IBM */
163 #endif /* not VAX */
165 #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN
167 #endif /* REAL_ARITHMETIC not defined */
169 /* Define INFINITY for support of infinity.
170 Define NANS for support of Not-a-Number's (NaN's). */
171 #if !defined(DEC) && !defined(IBM) && !defined(C4X)
172 #define INFINITY
173 #define NANS
174 #endif
176 /* Support of NaNs requires support of infinity. */
177 #ifdef NANS
178 #ifndef INFINITY
179 #define INFINITY
180 #endif
181 #endif
183 /* Find a host integer type that is at least 16 bits wide,
184 and another type at least twice whatever that size is. */
186 #if HOST_BITS_PER_CHAR >= 16
187 #define EMUSHORT char
188 #define EMUSHORT_SIZE HOST_BITS_PER_CHAR
189 #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR)
190 #else
191 #if HOST_BITS_PER_SHORT >= 16
192 #define EMUSHORT short
193 #define EMUSHORT_SIZE HOST_BITS_PER_SHORT
194 #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT)
195 #else
196 #if HOST_BITS_PER_INT >= 16
197 #define EMUSHORT int
198 #define EMUSHORT_SIZE HOST_BITS_PER_INT
199 #define EMULONG_SIZE (2 * HOST_BITS_PER_INT)
200 #else
201 #if HOST_BITS_PER_LONG >= 16
202 #define EMUSHORT long
203 #define EMUSHORT_SIZE HOST_BITS_PER_LONG
204 #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG)
205 #else
206 /* You will have to modify this program to have a smaller unit size. */
207 #define EMU_NON_COMPILE
208 #endif
209 #endif
210 #endif
211 #endif
213 #if HOST_BITS_PER_SHORT >= EMULONG_SIZE
214 #define EMULONG short
215 #else
216 #if HOST_BITS_PER_INT >= EMULONG_SIZE
217 #define EMULONG int
218 #else
219 #if HOST_BITS_PER_LONG >= EMULONG_SIZE
220 #define EMULONG long
221 #else
222 #if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE
223 #define EMULONG long long int
224 #else
225 /* You will have to modify this program to have a smaller unit size. */
226 #define EMU_NON_COMPILE
227 #endif
228 #endif
229 #endif
230 #endif
233 /* The host interface doesn't work if no 16-bit size exists. */
234 #if EMUSHORT_SIZE != 16
235 #define EMU_NON_COMPILE
236 #endif
238 /* OK to continue compilation. */
239 #ifndef EMU_NON_COMPILE
241 /* Construct macros to translate between REAL_VALUE_TYPE and e type.
242 In GET_REAL and PUT_REAL, r and e are pointers.
243 A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations
244 in memory, with no holes. */
246 #if LONG_DOUBLE_TYPE_SIZE == 96
247 /* Number of 16 bit words in external e type format */
248 #define NE 6
249 #define MAXDECEXP 4932
250 #define MINDECEXP -4956
251 #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE)
252 #define PUT_REAL(e,r) \
253 do { \
254 if (2*NE < sizeof(*r)) \
255 bzero((char *)r, sizeof(*r)); \
256 bcopy ((char *) e, (char *) r, 2*NE); \
257 } while (0)
258 #else /* no XFmode */
259 #if LONG_DOUBLE_TYPE_SIZE == 128
260 #define NE 10
261 #define MAXDECEXP 4932
262 #define MINDECEXP -4977
263 #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE)
264 #define PUT_REAL(e,r) \
265 do { \
266 if (2*NE < sizeof(*r)) \
267 bzero((char *)r, sizeof(*r)); \
268 bcopy ((char *) e, (char *) r, 2*NE); \
269 } while (0)
270 #else
271 #define NE 6
272 #define MAXDECEXP 4932
273 #define MINDECEXP -4956
274 #ifdef REAL_ARITHMETIC
275 /* Emulator uses target format internally
276 but host stores it in host endian-ness. */
278 #define GET_REAL(r,e) \
279 do { \
280 if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \
281 e53toe ((unsigned EMUSHORT *) (r), (e)); \
282 else \
284 unsigned EMUSHORT w[4]; \
285 memcpy (&w[3], ((EMUSHORT *) r), sizeof (EMUSHORT)); \
286 memcpy (&w[2], ((EMUSHORT *) r) + 1, sizeof (EMUSHORT)); \
287 memcpy (&w[1], ((EMUSHORT *) r) + 2, sizeof (EMUSHORT)); \
288 memcpy (&w[0], ((EMUSHORT *) r) + 3, sizeof (EMUSHORT)); \
289 e53toe (w, (e)); \
291 } while (0)
293 #define PUT_REAL(e,r) \
294 do { \
295 if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \
296 etoe53 ((e), (unsigned EMUSHORT *) (r)); \
297 else \
299 unsigned EMUSHORT w[4]; \
300 etoe53 ((e), w); \
301 memcpy (((EMUSHORT *) r), &w[3], sizeof (EMUSHORT)); \
302 memcpy (((EMUSHORT *) r) + 1, &w[2], sizeof (EMUSHORT)); \
303 memcpy (((EMUSHORT *) r) + 2, &w[1], sizeof (EMUSHORT)); \
304 memcpy (((EMUSHORT *) r) + 3, &w[0], sizeof (EMUSHORT)); \
306 } while (0)
308 #else /* not REAL_ARITHMETIC */
310 /* emulator uses host format */
311 #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e))
312 #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r))
314 #endif /* not REAL_ARITHMETIC */
315 #endif /* not TFmode */
316 #endif /* not XFmode */
319 /* Number of 16 bit words in internal format */
320 #define NI (NE+3)
322 /* Array offset to exponent */
323 #define E 1
325 /* Array offset to high guard word */
326 #define M 2
328 /* Number of bits of precision */
329 #define NBITS ((NI-4)*16)
331 /* Maximum number of decimal digits in ASCII conversion
332 * = NBITS*log10(2)
334 #define NDEC (NBITS*8/27)
336 /* The exponent of 1.0 */
337 #define EXONE (0x3fff)
339 extern int extra_warnings;
340 extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[];
341 extern unsigned EMUSHORT elog2[], esqrt2[];
343 static void endian PROTO((unsigned EMUSHORT *, long *,
344 enum machine_mode));
345 static void eclear PROTO((unsigned EMUSHORT *));
346 static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
347 #if 0
348 static void eabs PROTO((unsigned EMUSHORT *));
349 #endif
350 static void eneg PROTO((unsigned EMUSHORT *));
351 static int eisneg PROTO((unsigned EMUSHORT *));
352 static int eisinf PROTO((unsigned EMUSHORT *));
353 static int eisnan PROTO((unsigned EMUSHORT *));
354 static void einfin PROTO((unsigned EMUSHORT *));
355 static void enan PROTO((unsigned EMUSHORT *, int));
356 static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
357 static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
358 static void ecleaz PROTO((unsigned EMUSHORT *));
359 static void ecleazs PROTO((unsigned EMUSHORT *));
360 static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
361 static void einan PROTO((unsigned EMUSHORT *));
362 static int eiisnan PROTO((unsigned EMUSHORT *));
363 static int eiisneg PROTO((unsigned EMUSHORT *));
364 #if 0
365 static void eiinfin PROTO((unsigned EMUSHORT *));
366 #endif
367 static int eiisinf PROTO((unsigned EMUSHORT *));
368 static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
369 static void eshdn1 PROTO((unsigned EMUSHORT *));
370 static void eshup1 PROTO((unsigned EMUSHORT *));
371 static void eshdn8 PROTO((unsigned EMUSHORT *));
372 static void eshup8 PROTO((unsigned EMUSHORT *));
373 static void eshup6 PROTO((unsigned EMUSHORT *));
374 static void eshdn6 PROTO((unsigned EMUSHORT *));
375 static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));\f
376 static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
377 static void m16m PROTO((unsigned int, unsigned short *,
378 unsigned short *));
379 static int edivm PROTO((unsigned short *, unsigned short *));
380 static int emulm PROTO((unsigned short *, unsigned short *));
381 static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int));
382 static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
383 unsigned EMUSHORT *));
384 static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
385 unsigned EMUSHORT *));
386 static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
387 unsigned EMUSHORT *));
388 static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
389 unsigned EMUSHORT *));
390 static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
391 unsigned EMUSHORT *));
392 static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
393 static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
394 static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
395 static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
396 static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
397 static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
398 static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
399 static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
400 static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
401 static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
402 static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
403 static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
404 static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
405 #if 0
406 static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
407 #endif
408 static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *));
409 static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *));
410 static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *,
411 unsigned EMUSHORT *));
412 static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *,
413 unsigned EMUSHORT *));
414 static int eshift PROTO((unsigned EMUSHORT *, int));
415 static int enormlz PROTO((unsigned EMUSHORT *));
416 #if 0
417 static void e24toasc PROTO((unsigned EMUSHORT *, char *, int));
418 static void e53toasc PROTO((unsigned EMUSHORT *, char *, int));
419 static void e64toasc PROTO((unsigned EMUSHORT *, char *, int));
420 static void e113toasc PROTO((unsigned EMUSHORT *, char *, int));
421 #endif /* 0 */
422 static void etoasc PROTO((unsigned EMUSHORT *, char *, int));
423 static void asctoe24 PROTO((const char *, unsigned EMUSHORT *));
424 static void asctoe53 PROTO((const char *, unsigned EMUSHORT *));
425 static void asctoe64 PROTO((const char *, unsigned EMUSHORT *));
426 static void asctoe113 PROTO((const char *, unsigned EMUSHORT *));
427 static void asctoe PROTO((const char *, unsigned EMUSHORT *));
428 static void asctoeg PROTO((const char *, unsigned EMUSHORT *, int));
429 static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
430 #if 0
431 static void efrexp PROTO((unsigned EMUSHORT *, int *,
432 unsigned EMUSHORT *));
433 #endif
434 static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *));
435 #if 0
436 static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
437 unsigned EMUSHORT *));
438 #endif
439 static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
440 static void mtherr PROTO((const char *, int));
441 #ifdef DEC
442 static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
443 static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
444 static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
445 #endif
446 #ifdef IBM
447 static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
448 enum machine_mode));
449 static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
450 enum machine_mode));
451 static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
452 enum machine_mode));
453 #endif
454 #ifdef C4X
455 static void c4xtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
456 enum machine_mode));
457 static void etoc4x PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
458 enum machine_mode));
459 static void toc4x PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
460 enum machine_mode));
461 #endif
462 static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode));
463 #if 0
464 static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
465 static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
466 static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
467 static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
468 static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
469 #endif
471 /* Copy 32-bit numbers obtained from array containing 16-bit numbers,
472 swapping ends if required, into output array of longs. The
473 result is normally passed to fprintf by the ASM_OUTPUT_ macros. */
475 static void
476 endian (e, x, mode)
477 unsigned EMUSHORT e[];
478 long x[];
479 enum machine_mode mode;
481 unsigned long th, t;
483 if (REAL_WORDS_BIG_ENDIAN)
485 switch (mode)
487 case TFmode:
488 /* Swap halfwords in the fourth long. */
489 th = (unsigned long) e[6] & 0xffff;
490 t = (unsigned long) e[7] & 0xffff;
491 t |= th << 16;
492 x[3] = (long) t;
494 case XFmode:
495 /* Swap halfwords in the third long. */
496 th = (unsigned long) e[4] & 0xffff;
497 t = (unsigned long) e[5] & 0xffff;
498 t |= th << 16;
499 x[2] = (long) t;
500 /* fall into the double case */
502 case DFmode:
503 /* Swap halfwords in the second word. */
504 th = (unsigned long) e[2] & 0xffff;
505 t = (unsigned long) e[3] & 0xffff;
506 t |= th << 16;
507 x[1] = (long) t;
508 /* fall into the float case */
510 case SFmode:
511 case HFmode:
512 /* Swap halfwords in the first word. */
513 th = (unsigned long) e[0] & 0xffff;
514 t = (unsigned long) e[1] & 0xffff;
515 t |= th << 16;
516 x[0] = (long) t;
517 break;
519 default:
520 abort ();
523 else
525 /* Pack the output array without swapping. */
527 switch (mode)
529 case TFmode:
530 /* Pack the fourth long. */
531 th = (unsigned long) e[7] & 0xffff;
532 t = (unsigned long) e[6] & 0xffff;
533 t |= th << 16;
534 x[3] = (long) t;
536 case XFmode:
537 /* Pack the third long.
538 Each element of the input REAL_VALUE_TYPE array has 16 useful bits
539 in it. */
540 th = (unsigned long) e[5] & 0xffff;
541 t = (unsigned long) e[4] & 0xffff;
542 t |= th << 16;
543 x[2] = (long) t;
544 /* fall into the double case */
546 case DFmode:
547 /* Pack the second long */
548 th = (unsigned long) e[3] & 0xffff;
549 t = (unsigned long) e[2] & 0xffff;
550 t |= th << 16;
551 x[1] = (long) t;
552 /* fall into the float case */
554 case SFmode:
555 case HFmode:
556 /* Pack the first long */
557 th = (unsigned long) e[1] & 0xffff;
558 t = (unsigned long) e[0] & 0xffff;
559 t |= th << 16;
560 x[0] = (long) t;
561 break;
563 default:
564 abort ();
570 /* This is the implementation of the REAL_ARITHMETIC macro. */
572 void
573 earith (value, icode, r1, r2)
574 REAL_VALUE_TYPE *value;
575 int icode;
576 REAL_VALUE_TYPE *r1;
577 REAL_VALUE_TYPE *r2;
579 unsigned EMUSHORT d1[NE], d2[NE], v[NE];
580 enum tree_code code;
582 GET_REAL (r1, d1);
583 GET_REAL (r2, d2);
584 #ifdef NANS
585 /* Return NaN input back to the caller. */
586 if (eisnan (d1))
588 PUT_REAL (d1, value);
589 return;
591 if (eisnan (d2))
593 PUT_REAL (d2, value);
594 return;
596 #endif
597 code = (enum tree_code) icode;
598 switch (code)
600 case PLUS_EXPR:
601 eadd (d2, d1, v);
602 break;
604 case MINUS_EXPR:
605 esub (d2, d1, v); /* d1 - d2 */
606 break;
608 case MULT_EXPR:
609 emul (d2, d1, v);
610 break;
612 case RDIV_EXPR:
613 #ifndef REAL_INFINITY
614 if (ecmp (d2, ezero) == 0)
616 #ifdef NANS
617 enan (v, eisneg (d1) ^ eisneg (d2));
618 break;
619 #else
620 abort ();
621 #endif
623 #endif
624 ediv (d2, d1, v); /* d1/d2 */
625 break;
627 case MIN_EXPR: /* min (d1,d2) */
628 if (ecmp (d1, d2) < 0)
629 emov (d1, v);
630 else
631 emov (d2, v);
632 break;
634 case MAX_EXPR: /* max (d1,d2) */
635 if (ecmp (d1, d2) > 0)
636 emov (d1, v);
637 else
638 emov (d2, v);
639 break;
640 default:
641 emov (ezero, v);
642 break;
644 PUT_REAL (v, value);
648 /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT.
649 implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */
651 REAL_VALUE_TYPE
652 etrunci (x)
653 REAL_VALUE_TYPE x;
655 unsigned EMUSHORT f[NE], g[NE];
656 REAL_VALUE_TYPE r;
657 HOST_WIDE_INT l;
659 GET_REAL (&x, g);
660 #ifdef NANS
661 if (eisnan (g))
662 return (x);
663 #endif
664 eifrac (g, &l, f);
665 ltoe (&l, g);
666 PUT_REAL (g, &r);
667 return (r);
671 /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT;
672 implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */
674 REAL_VALUE_TYPE
675 etruncui (x)
676 REAL_VALUE_TYPE x;
678 unsigned EMUSHORT f[NE], g[NE];
679 REAL_VALUE_TYPE r;
680 unsigned HOST_WIDE_INT l;
682 GET_REAL (&x, g);
683 #ifdef NANS
684 if (eisnan (g))
685 return (x);
686 #endif
687 euifrac (g, &l, f);
688 ultoe (&l, g);
689 PUT_REAL (g, &r);
690 return (r);
694 /* This is the REAL_VALUE_ATOF function. It converts a decimal or hexadecimal
695 string to binary, rounding off as indicated by the machine_mode argument.
696 Then it promotes the rounded value to REAL_VALUE_TYPE. */
698 REAL_VALUE_TYPE
699 ereal_atof (s, t)
700 const char *s;
701 enum machine_mode t;
703 unsigned EMUSHORT tem[NE], e[NE];
704 REAL_VALUE_TYPE r;
706 switch (t)
708 #ifdef C4X
709 case QFmode:
710 case HFmode:
711 asctoe53 (s, tem);
712 e53toe (tem, e);
713 break;
714 #else
715 case HFmode:
716 #endif
718 case SFmode:
719 asctoe24 (s, tem);
720 e24toe (tem, e);
721 break;
723 case DFmode:
724 asctoe53 (s, tem);
725 e53toe (tem, e);
726 break;
728 case XFmode:
729 asctoe64 (s, tem);
730 e64toe (tem, e);
731 break;
733 case TFmode:
734 asctoe113 (s, tem);
735 e113toe (tem, e);
736 break;
738 default:
739 asctoe (s, e);
741 PUT_REAL (e, &r);
742 return (r);
746 /* Expansion of REAL_NEGATE. */
748 REAL_VALUE_TYPE
749 ereal_negate (x)
750 REAL_VALUE_TYPE x;
752 unsigned EMUSHORT e[NE];
753 REAL_VALUE_TYPE r;
755 GET_REAL (&x, e);
756 eneg (e);
757 PUT_REAL (e, &r);
758 return (r);
762 /* Round real toward zero to HOST_WIDE_INT;
763 implements REAL_VALUE_FIX (x). */
765 HOST_WIDE_INT
766 efixi (x)
767 REAL_VALUE_TYPE x;
769 unsigned EMUSHORT f[NE], g[NE];
770 HOST_WIDE_INT l;
772 GET_REAL (&x, f);
773 #ifdef NANS
774 if (eisnan (f))
776 warning ("conversion from NaN to int");
777 return (-1);
779 #endif
780 eifrac (f, &l, g);
781 return l;
784 /* Round real toward zero to unsigned HOST_WIDE_INT
785 implements REAL_VALUE_UNSIGNED_FIX (x).
786 Negative input returns zero. */
788 unsigned HOST_WIDE_INT
789 efixui (x)
790 REAL_VALUE_TYPE x;
792 unsigned EMUSHORT f[NE], g[NE];
793 unsigned HOST_WIDE_INT l;
795 GET_REAL (&x, f);
796 #ifdef NANS
797 if (eisnan (f))
799 warning ("conversion from NaN to unsigned int");
800 return (-1);
802 #endif
803 euifrac (f, &l, g);
804 return l;
808 /* REAL_VALUE_FROM_INT macro. */
810 void
811 ereal_from_int (d, i, j, mode)
812 REAL_VALUE_TYPE *d;
813 HOST_WIDE_INT i, j;
814 enum machine_mode mode;
816 unsigned EMUSHORT df[NE], dg[NE];
817 HOST_WIDE_INT low, high;
818 int sign;
820 if (GET_MODE_CLASS (mode) != MODE_FLOAT)
821 abort ();
822 sign = 0;
823 low = i;
824 if ((high = j) < 0)
826 sign = 1;
827 /* complement and add 1 */
828 high = ~high;
829 if (low)
830 low = -low;
831 else
832 high += 1;
834 eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
835 ultoe ((unsigned HOST_WIDE_INT *) &high, dg);
836 emul (dg, df, dg);
837 ultoe ((unsigned HOST_WIDE_INT *) &low, df);
838 eadd (df, dg, dg);
839 if (sign)
840 eneg (dg);
842 /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
843 Avoid double-rounding errors later by rounding off now from the
844 extra-wide internal format to the requested precision. */
845 switch (GET_MODE_BITSIZE (mode))
847 case 32:
848 etoe24 (dg, df);
849 e24toe (df, dg);
850 break;
852 case 64:
853 etoe53 (dg, df);
854 e53toe (df, dg);
855 break;
857 case 96:
858 etoe64 (dg, df);
859 e64toe (df, dg);
860 break;
862 case 128:
863 etoe113 (dg, df);
864 e113toe (df, dg);
865 break;
867 default:
868 abort ();
871 PUT_REAL (dg, d);
875 /* REAL_VALUE_FROM_UNSIGNED_INT macro. */
877 void
878 ereal_from_uint (d, i, j, mode)
879 REAL_VALUE_TYPE *d;
880 unsigned HOST_WIDE_INT i, j;
881 enum machine_mode mode;
883 unsigned EMUSHORT df[NE], dg[NE];
884 unsigned HOST_WIDE_INT low, high;
886 if (GET_MODE_CLASS (mode) != MODE_FLOAT)
887 abort ();
888 low = i;
889 high = j;
890 eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
891 ultoe (&high, dg);
892 emul (dg, df, dg);
893 ultoe (&low, df);
894 eadd (df, dg, dg);
896 /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
897 Avoid double-rounding errors later by rounding off now from the
898 extra-wide internal format to the requested precision. */
899 switch (GET_MODE_BITSIZE (mode))
901 case 32:
902 etoe24 (dg, df);
903 e24toe (df, dg);
904 break;
906 case 64:
907 etoe53 (dg, df);
908 e53toe (df, dg);
909 break;
911 case 96:
912 etoe64 (dg, df);
913 e64toe (df, dg);
914 break;
916 case 128:
917 etoe113 (dg, df);
918 e113toe (df, dg);
919 break;
921 default:
922 abort ();
925 PUT_REAL (dg, d);
929 /* REAL_VALUE_TO_INT macro. */
931 void
932 ereal_to_int (low, high, rr)
933 HOST_WIDE_INT *low, *high;
934 REAL_VALUE_TYPE rr;
936 unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE];
937 int s;
939 GET_REAL (&rr, d);
940 #ifdef NANS
941 if (eisnan (d))
943 warning ("conversion from NaN to int");
944 *low = -1;
945 *high = -1;
946 return;
948 #endif
949 /* convert positive value */
950 s = 0;
951 if (eisneg (d))
953 eneg (d);
954 s = 1;
956 eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
957 ediv (df, d, dg); /* dg = d / 2^32 is the high word */
958 euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh);
959 emul (df, dh, dg); /* fractional part is the low word */
960 euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh);
961 if (s)
963 /* complement and add 1 */
964 *high = ~(*high);
965 if (*low)
966 *low = -(*low);
967 else
968 *high += 1;
973 /* REAL_VALUE_LDEXP macro. */
975 REAL_VALUE_TYPE
976 ereal_ldexp (x, n)
977 REAL_VALUE_TYPE x;
978 int n;
980 unsigned EMUSHORT e[NE], y[NE];
981 REAL_VALUE_TYPE r;
983 GET_REAL (&x, e);
984 #ifdef NANS
985 if (eisnan (e))
986 return (x);
987 #endif
988 eldexp (e, n, y);
989 PUT_REAL (y, &r);
990 return (r);
993 /* These routines are conditionally compiled because functions
994 of the same names may be defined in fold-const.c. */
996 #ifdef REAL_ARITHMETIC
998 /* Check for infinity in a REAL_VALUE_TYPE. */
1001 target_isinf (x)
1002 REAL_VALUE_TYPE x;
1004 unsigned EMUSHORT e[NE];
1006 #ifdef INFINITY
1007 GET_REAL (&x, e);
1008 return (eisinf (e));
1009 #else
1010 return 0;
1011 #endif
1014 /* Check whether a REAL_VALUE_TYPE item is a NaN. */
1017 target_isnan (x)
1018 REAL_VALUE_TYPE x;
1020 unsigned EMUSHORT e[NE];
1022 #ifdef NANS
1023 GET_REAL (&x, e);
1024 return (eisnan (e));
1025 #else
1026 return (0);
1027 #endif
1031 /* Check for a negative REAL_VALUE_TYPE number.
1032 This just checks the sign bit, so that -0 counts as negative. */
1035 target_negative (x)
1036 REAL_VALUE_TYPE x;
1038 return ereal_isneg (x);
1041 /* Expansion of REAL_VALUE_TRUNCATE.
1042 The result is in floating point, rounded to nearest or even. */
1044 REAL_VALUE_TYPE
1045 real_value_truncate (mode, arg)
1046 enum machine_mode mode;
1047 REAL_VALUE_TYPE arg;
1049 unsigned EMUSHORT e[NE], t[NE];
1050 REAL_VALUE_TYPE r;
1052 GET_REAL (&arg, e);
1053 #ifdef NANS
1054 if (eisnan (e))
1055 return (arg);
1056 #endif
1057 eclear (t);
1058 switch (mode)
1060 case TFmode:
1061 etoe113 (e, t);
1062 e113toe (t, t);
1063 break;
1065 case XFmode:
1066 etoe64 (e, t);
1067 e64toe (t, t);
1068 break;
1070 case DFmode:
1071 etoe53 (e, t);
1072 e53toe (t, t);
1073 break;
1075 case SFmode:
1076 #ifndef C4X
1077 case HFmode:
1078 #endif
1079 etoe24 (e, t);
1080 e24toe (t, t);
1081 break;
1083 #ifdef C4X
1084 case HFmode:
1085 case QFmode:
1086 etoe53 (e, t);
1087 e53toe (t, t);
1088 break;
1089 #endif
1091 case SImode:
1092 r = etrunci (arg);
1093 return (r);
1095 /* If an unsupported type was requested, presume that
1096 the machine files know something useful to do with
1097 the unmodified value. */
1099 default:
1100 return (arg);
1102 PUT_REAL (t, &r);
1103 return (r);
1106 /* Try to change R into its exact multiplicative inverse in machine mode
1107 MODE. Return nonzero function value if successful. */
1110 exact_real_inverse (mode, r)
1111 enum machine_mode mode;
1112 REAL_VALUE_TYPE *r;
1114 unsigned EMUSHORT e[NE], einv[NE];
1115 REAL_VALUE_TYPE rinv;
1116 int i;
1118 GET_REAL (r, e);
1120 /* Test for input in range. Don't transform IEEE special values. */
1121 if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0))
1122 return 0;
1124 /* Test for a power of 2: all significand bits zero except the MSB.
1125 We are assuming the target has binary (or hex) arithmetic. */
1126 if (e[NE - 2] != 0x8000)
1127 return 0;
1129 for (i = 0; i < NE - 2; i++)
1131 if (e[i] != 0)
1132 return 0;
1135 /* Compute the inverse and truncate it to the required mode. */
1136 ediv (e, eone, einv);
1137 PUT_REAL (einv, &rinv);
1138 rinv = real_value_truncate (mode, rinv);
1140 #ifdef CHECK_FLOAT_VALUE
1141 /* This check is not redundant. It may, for example, flush
1142 a supposedly IEEE denormal value to zero. */
1143 i = 0;
1144 if (CHECK_FLOAT_VALUE (mode, rinv, i))
1145 return 0;
1146 #endif
1147 GET_REAL (&rinv, einv);
1149 /* Check the bits again, because the truncation might have
1150 generated an arbitrary saturation value on overflow. */
1151 if (einv[NE - 2] != 0x8000)
1152 return 0;
1154 for (i = 0; i < NE - 2; i++)
1156 if (einv[i] != 0)
1157 return 0;
1160 /* Fail if the computed inverse is out of range. */
1161 if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0))
1162 return 0;
1164 /* Output the reciprocal and return success flag. */
1165 PUT_REAL (einv, r);
1166 return 1;
1168 #endif /* REAL_ARITHMETIC defined */
1170 /* Used for debugging--print the value of R in human-readable format
1171 on stderr. */
1173 void
1174 debug_real (r)
1175 REAL_VALUE_TYPE r;
1177 char dstr[30];
1179 REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr);
1180 fprintf (stderr, "%s", dstr);
1184 /* The following routines convert REAL_VALUE_TYPE to the various floating
1185 point formats that are meaningful to supported computers.
1187 The results are returned in 32-bit pieces, each piece stored in a `long'.
1188 This is so they can be printed by statements like
1190 fprintf (file, "%lx, %lx", L[0], L[1]);
1192 that will work on both narrow- and wide-word host computers. */
1194 /* Convert R to a 128-bit long double precision value. The output array L
1195 contains four 32-bit pieces of the result, in the order they would appear
1196 in memory. */
1198 void
1199 etartdouble (r, l)
1200 REAL_VALUE_TYPE r;
1201 long l[];
1203 unsigned EMUSHORT e[NE];
1205 GET_REAL (&r, e);
1206 etoe113 (e, e);
1207 endian (e, l, TFmode);
1210 /* Convert R to a double extended precision value. The output array L
1211 contains three 32-bit pieces of the result, in the order they would
1212 appear in memory. */
1214 void
1215 etarldouble (r, l)
1216 REAL_VALUE_TYPE r;
1217 long l[];
1219 unsigned EMUSHORT e[NE];
1221 GET_REAL (&r, e);
1222 etoe64 (e, e);
1223 endian (e, l, XFmode);
1226 /* Convert R to a double precision value. The output array L contains two
1227 32-bit pieces of the result, in the order they would appear in memory. */
1229 void
1230 etardouble (r, l)
1231 REAL_VALUE_TYPE r;
1232 long l[];
1234 unsigned EMUSHORT e[NE];
1236 GET_REAL (&r, e);
1237 etoe53 (e, e);
1238 endian (e, l, DFmode);
1241 /* Convert R to a single precision float value stored in the least-significant
1242 bits of a `long'. */
1244 long
1245 etarsingle (r)
1246 REAL_VALUE_TYPE r;
1248 unsigned EMUSHORT e[NE];
1249 long l;
1251 GET_REAL (&r, e);
1252 etoe24 (e, e);
1253 endian (e, &l, SFmode);
1254 return ((long) l);
1257 /* Convert X to a decimal ASCII string S for output to an assembly
1258 language file. Note, there is no standard way to spell infinity or
1259 a NaN, so these values may require special treatment in the tm.h
1260 macros. */
1262 void
1263 ereal_to_decimal (x, s)
1264 REAL_VALUE_TYPE x;
1265 char *s;
1267 unsigned EMUSHORT e[NE];
1269 GET_REAL (&x, e);
1270 etoasc (e, s, 20);
1273 /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y,
1274 or -2 if either is a NaN. */
1277 ereal_cmp (x, y)
1278 REAL_VALUE_TYPE x, y;
1280 unsigned EMUSHORT ex[NE], ey[NE];
1282 GET_REAL (&x, ex);
1283 GET_REAL (&y, ey);
1284 return (ecmp (ex, ey));
1287 /* Return 1 if the sign bit of X is set, else return 0. */
1290 ereal_isneg (x)
1291 REAL_VALUE_TYPE x;
1293 unsigned EMUSHORT ex[NE];
1295 GET_REAL (&x, ex);
1296 return (eisneg (ex));
1299 /* End of REAL_ARITHMETIC interface */
1302 Extended precision IEEE binary floating point arithmetic routines
1304 Numbers are stored in C language as arrays of 16-bit unsigned
1305 short integers. The arguments of the routines are pointers to
1306 the arrays.
1308 External e type data structure, similar to Intel 8087 chip
1309 temporary real format but possibly with a larger significand:
1311 NE-1 significand words (least significant word first,
1312 most significant bit is normally set)
1313 exponent (value = EXONE for 1.0,
1314 top bit is the sign)
1317 Internal exploded e-type data structure of a number (a "word" is 16 bits):
1319 ei[0] sign word (0 for positive, 0xffff for negative)
1320 ei[1] biased exponent (value = EXONE for the number 1.0)
1321 ei[2] high guard word (always zero after normalization)
1322 ei[3]
1323 to ei[NI-2] significand (NI-4 significand words,
1324 most significant word first,
1325 most significant bit is set)
1326 ei[NI-1] low guard word (0x8000 bit is rounding place)
1330 Routines for external format e-type numbers
1332 asctoe (string, e) ASCII string to extended double e type
1333 asctoe64 (string, &d) ASCII string to long double
1334 asctoe53 (string, &d) ASCII string to double
1335 asctoe24 (string, &f) ASCII string to single
1336 asctoeg (string, e, prec) ASCII string to specified precision
1337 e24toe (&f, e) IEEE single precision to e type
1338 e53toe (&d, e) IEEE double precision to e type
1339 e64toe (&d, e) IEEE long double precision to e type
1340 e113toe (&d, e) 128-bit long double precision to e type
1341 #if 0
1342 eabs (e) absolute value
1343 #endif
1344 eadd (a, b, c) c = b + a
1345 eclear (e) e = 0
1346 ecmp (a, b) Returns 1 if a > b, 0 if a == b,
1347 -1 if a < b, -2 if either a or b is a NaN.
1348 ediv (a, b, c) c = b / a
1349 efloor (a, b) truncate to integer, toward -infinity
1350 efrexp (a, exp, s) extract exponent and significand
1351 eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction
1352 euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction
1353 einfin (e) set e to infinity, leaving its sign alone
1354 eldexp (a, n, b) multiply by 2**n
1355 emov (a, b) b = a
1356 emul (a, b, c) c = b * a
1357 eneg (e) e = -e
1358 #if 0
1359 eround (a, b) b = nearest integer value to a
1360 #endif
1361 esub (a, b, c) c = b - a
1362 #if 0
1363 e24toasc (&f, str, n) single to ASCII string, n digits after decimal
1364 e53toasc (&d, str, n) double to ASCII string, n digits after decimal
1365 e64toasc (&d, str, n) 80-bit long double to ASCII string
1366 e113toasc (&d, str, n) 128-bit long double to ASCII string
1367 #endif
1368 etoasc (e, str, n) e to ASCII string, n digits after decimal
1369 etoe24 (e, &f) convert e type to IEEE single precision
1370 etoe53 (e, &d) convert e type to IEEE double precision
1371 etoe64 (e, &d) convert e type to IEEE long double precision
1372 ltoe (&l, e) HOST_WIDE_INT to e type
1373 ultoe (&l, e) unsigned HOST_WIDE_INT to e type
1374 eisneg (e) 1 if sign bit of e != 0, else 0
1375 eisinf (e) 1 if e has maximum exponent (non-IEEE)
1376 or is infinite (IEEE)
1377 eisnan (e) 1 if e is a NaN
1380 Routines for internal format exploded e-type numbers
1382 eaddm (ai, bi) add significands, bi = bi + ai
1383 ecleaz (ei) ei = 0
1384 ecleazs (ei) set ei = 0 but leave its sign alone
1385 ecmpm (ai, bi) compare significands, return 1, 0, or -1
1386 edivm (ai, bi) divide significands, bi = bi / ai
1387 emdnorm (ai,l,s,exp) normalize and round off
1388 emovi (a, ai) convert external a to internal ai
1389 emovo (ai, a) convert internal ai to external a
1390 emovz (ai, bi) bi = ai, low guard word of bi = 0
1391 emulm (ai, bi) multiply significands, bi = bi * ai
1392 enormlz (ei) left-justify the significand
1393 eshdn1 (ai) shift significand and guards down 1 bit
1394 eshdn8 (ai) shift down 8 bits
1395 eshdn6 (ai) shift down 16 bits
1396 eshift (ai, n) shift ai n bits up (or down if n < 0)
1397 eshup1 (ai) shift significand and guards up 1 bit
1398 eshup8 (ai) shift up 8 bits
1399 eshup6 (ai) shift up 16 bits
1400 esubm (ai, bi) subtract significands, bi = bi - ai
1401 eiisinf (ai) 1 if infinite
1402 eiisnan (ai) 1 if a NaN
1403 eiisneg (ai) 1 if sign bit of ai != 0, else 0
1404 einan (ai) set ai = NaN
1405 #if 0
1406 eiinfin (ai) set ai = infinity
1407 #endif
1409 The result is always normalized and rounded to NI-4 word precision
1410 after each arithmetic operation.
1412 Exception flags are NOT fully supported.
1414 Signaling NaN's are NOT supported; they are treated the same
1415 as quiet NaN's.
1417 Define INFINITY for support of infinity; otherwise a
1418 saturation arithmetic is implemented.
1420 Define NANS for support of Not-a-Number items; otherwise the
1421 arithmetic will never produce a NaN output, and might be confused
1422 by a NaN input.
1423 If NaN's are supported, the output of `ecmp (a,b)' is -2 if
1424 either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)'
1425 may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than'
1426 if in doubt.
1428 Denormals are always supported here where appropriate (e.g., not
1429 for conversion to DEC numbers). */
1431 /* Definitions for error codes that are passed to the common error handling
1432 routine mtherr.
1434 For Digital Equipment PDP-11 and VAX computers, certain
1435 IBM systems, and others that use numbers with a 56-bit
1436 significand, the symbol DEC should be defined. In this
1437 mode, most floating point constants are given as arrays
1438 of octal integers to eliminate decimal to binary conversion
1439 errors that might be introduced by the compiler.
1441 For computers, such as IBM PC, that follow the IEEE
1442 Standard for Binary Floating Point Arithmetic (ANSI/IEEE
1443 Std 754-1985), the symbol IEEE should be defined.
1444 These numbers have 53-bit significands. In this mode, constants
1445 are provided as arrays of hexadecimal 16 bit integers.
1446 The endian-ness of generated values is controlled by
1447 REAL_WORDS_BIG_ENDIAN.
1449 To accommodate other types of computer arithmetic, all
1450 constants are also provided in a normal decimal radix
1451 which one can hope are correctly converted to a suitable
1452 format by the available C language compiler. To invoke
1453 this mode, the symbol UNK is defined.
1455 An important difference among these modes is a predefined
1456 set of machine arithmetic constants for each. The numbers
1457 MACHEP (the machine roundoff error), MAXNUM (largest number
1458 represented), and several other parameters are preset by
1459 the configuration symbol. Check the file const.c to
1460 ensure that these values are correct for your computer.
1462 For ANSI C compatibility, define ANSIC equal to 1. Currently
1463 this affects only the atan2 function and others that use it. */
1465 /* Constant definitions for math error conditions. */
1467 #define DOMAIN 1 /* argument domain error */
1468 #define SING 2 /* argument singularity */
1469 #define OVERFLOW 3 /* overflow range error */
1470 #define UNDERFLOW 4 /* underflow range error */
1471 #define TLOSS 5 /* total loss of precision */
1472 #define PLOSS 6 /* partial loss of precision */
1473 #define INVALID 7 /* NaN-producing operation */
1475 /* e type constants used by high precision check routines */
1477 #if LONG_DOUBLE_TYPE_SIZE == 128
1478 /* 0.0 */
1479 unsigned EMUSHORT ezero[NE] =
1480 {0x0000, 0x0000, 0x0000, 0x0000,
1481 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,};
1482 extern unsigned EMUSHORT ezero[];
1484 /* 5.0E-1 */
1485 unsigned EMUSHORT ehalf[NE] =
1486 {0x0000, 0x0000, 0x0000, 0x0000,
1487 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,};
1488 extern unsigned EMUSHORT ehalf[];
1490 /* 1.0E0 */
1491 unsigned EMUSHORT eone[NE] =
1492 {0x0000, 0x0000, 0x0000, 0x0000,
1493 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
1494 extern unsigned EMUSHORT eone[];
1496 /* 2.0E0 */
1497 unsigned EMUSHORT etwo[NE] =
1498 {0x0000, 0x0000, 0x0000, 0x0000,
1499 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,};
1500 extern unsigned EMUSHORT etwo[];
1502 /* 3.2E1 */
1503 unsigned EMUSHORT e32[NE] =
1504 {0x0000, 0x0000, 0x0000, 0x0000,
1505 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,};
1506 extern unsigned EMUSHORT e32[];
1508 /* 6.93147180559945309417232121458176568075500134360255E-1 */
1509 unsigned EMUSHORT elog2[NE] =
1510 {0x40f3, 0xf6af, 0x03f2, 0xb398,
1511 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
1512 extern unsigned EMUSHORT elog2[];
1514 /* 1.41421356237309504880168872420969807856967187537695E0 */
1515 unsigned EMUSHORT esqrt2[NE] =
1516 {0x1d6f, 0xbe9f, 0x754a, 0x89b3,
1517 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
1518 extern unsigned EMUSHORT esqrt2[];
1520 /* 3.14159265358979323846264338327950288419716939937511E0 */
1521 unsigned EMUSHORT epi[NE] =
1522 {0x2902, 0x1cd1, 0x80dc, 0x628b,
1523 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
1524 extern unsigned EMUSHORT epi[];
1526 #else
1527 /* LONG_DOUBLE_TYPE_SIZE is other than 128 */
1528 unsigned EMUSHORT ezero[NE] =
1529 {0, 0000000, 0000000, 0000000, 0000000, 0000000,};
1530 unsigned EMUSHORT ehalf[NE] =
1531 {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,};
1532 unsigned EMUSHORT eone[NE] =
1533 {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,};
1534 unsigned EMUSHORT etwo[NE] =
1535 {0, 0000000, 0000000, 0000000, 0100000, 0040000,};
1536 unsigned EMUSHORT e32[NE] =
1537 {0, 0000000, 0000000, 0000000, 0100000, 0040004,};
1538 unsigned EMUSHORT elog2[NE] =
1539 {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
1540 unsigned EMUSHORT esqrt2[NE] =
1541 {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
1542 unsigned EMUSHORT epi[NE] =
1543 {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
1544 #endif
1546 /* Control register for rounding precision.
1547 This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */
1549 int rndprc = NBITS;
1550 extern int rndprc;
1552 /* Clear out entire e-type number X. */
1554 static void
1555 eclear (x)
1556 register unsigned EMUSHORT *x;
1558 register int i;
1560 for (i = 0; i < NE; i++)
1561 *x++ = 0;
1564 /* Move e-type number from A to B. */
1566 static void
1567 emov (a, b)
1568 register unsigned EMUSHORT *a, *b;
1570 register int i;
1572 for (i = 0; i < NE; i++)
1573 *b++ = *a++;
1577 #if 0
1578 /* Absolute value of e-type X. */
1580 static void
1581 eabs (x)
1582 unsigned EMUSHORT x[];
1584 /* sign is top bit of last word of external format */
1585 x[NE - 1] &= 0x7fff;
1587 #endif /* 0 */
1589 /* Negate the e-type number X. */
1591 static void
1592 eneg (x)
1593 unsigned EMUSHORT x[];
1596 x[NE - 1] ^= 0x8000; /* Toggle the sign bit */
1599 /* Return 1 if sign bit of e-type number X is nonzero, else zero. */
1601 static int
1602 eisneg (x)
1603 unsigned EMUSHORT x[];
1606 if (x[NE - 1] & 0x8000)
1607 return (1);
1608 else
1609 return (0);
1612 /* Return 1 if e-type number X is infinity, else return zero. */
1614 static int
1615 eisinf (x)
1616 unsigned EMUSHORT x[];
1619 #ifdef NANS
1620 if (eisnan (x))
1621 return (0);
1622 #endif
1623 if ((x[NE - 1] & 0x7fff) == 0x7fff)
1624 return (1);
1625 else
1626 return (0);
1629 /* Check if e-type number is not a number. The bit pattern is one that we
1630 defined, so we know for sure how to detect it. */
1632 static int
1633 eisnan (x)
1634 unsigned EMUSHORT x[];
1636 #ifdef NANS
1637 int i;
1639 /* NaN has maximum exponent */
1640 if ((x[NE - 1] & 0x7fff) != 0x7fff)
1641 return (0);
1642 /* ... and non-zero significand field. */
1643 for (i = 0; i < NE - 1; i++)
1645 if (*x++ != 0)
1646 return (1);
1648 #endif
1650 return (0);
1653 /* Fill e-type number X with infinity pattern (IEEE)
1654 or largest possible number (non-IEEE). */
1656 static void
1657 einfin (x)
1658 register unsigned EMUSHORT *x;
1660 register int i;
1662 #ifdef INFINITY
1663 for (i = 0; i < NE - 1; i++)
1664 *x++ = 0;
1665 *x |= 32767;
1666 #else
1667 for (i = 0; i < NE - 1; i++)
1668 *x++ = 0xffff;
1669 *x |= 32766;
1670 if (rndprc < NBITS)
1672 if (rndprc == 113)
1674 *(x - 9) = 0;
1675 *(x - 8) = 0;
1677 if (rndprc == 64)
1679 *(x - 5) = 0;
1681 if (rndprc == 53)
1683 *(x - 4) = 0xf800;
1685 else
1687 *(x - 4) = 0;
1688 *(x - 3) = 0;
1689 *(x - 2) = 0xff00;
1692 #endif
1695 /* Output an e-type NaN.
1696 This generates Intel's quiet NaN pattern for extended real.
1697 The exponent is 7fff, the leading mantissa word is c000. */
1699 static void
1700 enan (x, sign)
1701 register unsigned EMUSHORT *x;
1702 int sign;
1704 register int i;
1706 for (i = 0; i < NE - 2; i++)
1707 *x++ = 0;
1708 *x++ = 0xc000;
1709 *x = (sign << 15) | 0x7fff;
1712 /* Move in an e-type number A, converting it to exploded e-type B. */
1714 static void
1715 emovi (a, b)
1716 unsigned EMUSHORT *a, *b;
1718 register unsigned EMUSHORT *p, *q;
1719 int i;
1721 q = b;
1722 p = a + (NE - 1); /* point to last word of external number */
1723 /* get the sign bit */
1724 if (*p & 0x8000)
1725 *q++ = 0xffff;
1726 else
1727 *q++ = 0;
1728 /* get the exponent */
1729 *q = *p--;
1730 *q++ &= 0x7fff; /* delete the sign bit */
1731 #ifdef INFINITY
1732 if ((*(q - 1) & 0x7fff) == 0x7fff)
1734 #ifdef NANS
1735 if (eisnan (a))
1737 *q++ = 0;
1738 for (i = 3; i < NI; i++)
1739 *q++ = *p--;
1740 return;
1742 #endif
1744 for (i = 2; i < NI; i++)
1745 *q++ = 0;
1746 return;
1748 #endif
1750 /* clear high guard word */
1751 *q++ = 0;
1752 /* move in the significand */
1753 for (i = 0; i < NE - 1; i++)
1754 *q++ = *p--;
1755 /* clear low guard word */
1756 *q = 0;
1759 /* Move out exploded e-type number A, converting it to e type B. */
1761 static void
1762 emovo (a, b)
1763 unsigned EMUSHORT *a, *b;
1765 register unsigned EMUSHORT *p, *q;
1766 unsigned EMUSHORT i;
1767 int j;
1769 p = a;
1770 q = b + (NE - 1); /* point to output exponent */
1771 /* combine sign and exponent */
1772 i = *p++;
1773 if (i)
1774 *q-- = *p++ | 0x8000;
1775 else
1776 *q-- = *p++;
1777 #ifdef INFINITY
1778 if (*(p - 1) == 0x7fff)
1780 #ifdef NANS
1781 if (eiisnan (a))
1783 enan (b, eiisneg (a));
1784 return;
1786 #endif
1787 einfin (b);
1788 return;
1790 #endif
1791 /* skip over guard word */
1792 ++p;
1793 /* move the significand */
1794 for (j = 0; j < NE - 1; j++)
1795 *q-- = *p++;
1798 /* Clear out exploded e-type number XI. */
1800 static void
1801 ecleaz (xi)
1802 register unsigned EMUSHORT *xi;
1804 register int i;
1806 for (i = 0; i < NI; i++)
1807 *xi++ = 0;
1810 /* Clear out exploded e-type XI, but don't touch the sign. */
1812 static void
1813 ecleazs (xi)
1814 register unsigned EMUSHORT *xi;
1816 register int i;
1818 ++xi;
1819 for (i = 0; i < NI - 1; i++)
1820 *xi++ = 0;
1823 /* Move exploded e-type number from A to B. */
1825 static void
1826 emovz (a, b)
1827 register unsigned EMUSHORT *a, *b;
1829 register int i;
1831 for (i = 0; i < NI - 1; i++)
1832 *b++ = *a++;
1833 /* clear low guard word */
1834 *b = 0;
1837 /* Generate exploded e-type NaN.
1838 The explicit pattern for this is maximum exponent and
1839 top two significant bits set. */
1841 static void
1842 einan (x)
1843 unsigned EMUSHORT x[];
1846 ecleaz (x);
1847 x[E] = 0x7fff;
1848 x[M + 1] = 0xc000;
1851 /* Return nonzero if exploded e-type X is a NaN. */
1853 static int
1854 eiisnan (x)
1855 unsigned EMUSHORT x[];
1857 int i;
1859 if ((x[E] & 0x7fff) == 0x7fff)
1861 for (i = M + 1; i < NI; i++)
1863 if (x[i] != 0)
1864 return (1);
1867 return (0);
1870 /* Return nonzero if sign of exploded e-type X is nonzero. */
1872 static int
1873 eiisneg (x)
1874 unsigned EMUSHORT x[];
1877 return x[0] != 0;
1880 #if 0
1881 /* Fill exploded e-type X with infinity pattern.
1882 This has maximum exponent and significand all zeros. */
1884 static void
1885 eiinfin (x)
1886 unsigned EMUSHORT x[];
1889 ecleaz (x);
1890 x[E] = 0x7fff;
1892 #endif /* 0 */
1894 /* Return nonzero if exploded e-type X is infinite. */
1896 static int
1897 eiisinf (x)
1898 unsigned EMUSHORT x[];
1901 #ifdef NANS
1902 if (eiisnan (x))
1903 return (0);
1904 #endif
1905 if ((x[E] & 0x7fff) == 0x7fff)
1906 return (1);
1907 return (0);
1911 /* Compare significands of numbers in internal exploded e-type format.
1912 Guard words are included in the comparison.
1914 Returns +1 if a > b
1915 0 if a == b
1916 -1 if a < b */
1918 static int
1919 ecmpm (a, b)
1920 register unsigned EMUSHORT *a, *b;
1922 int i;
1924 a += M; /* skip up to significand area */
1925 b += M;
1926 for (i = M; i < NI; i++)
1928 if (*a++ != *b++)
1929 goto difrnt;
1931 return (0);
1933 difrnt:
1934 if (*(--a) > *(--b))
1935 return (1);
1936 else
1937 return (-1);
1940 /* Shift significand of exploded e-type X down by 1 bit. */
1942 static void
1943 eshdn1 (x)
1944 register unsigned EMUSHORT *x;
1946 register unsigned EMUSHORT bits;
1947 int i;
1949 x += M; /* point to significand area */
1951 bits = 0;
1952 for (i = M; i < NI; i++)
1954 if (*x & 1)
1955 bits |= 1;
1956 *x >>= 1;
1957 if (bits & 2)
1958 *x |= 0x8000;
1959 bits <<= 1;
1960 ++x;
1964 /* Shift significand of exploded e-type X up by 1 bit. */
1966 static void
1967 eshup1 (x)
1968 register unsigned EMUSHORT *x;
1970 register unsigned EMUSHORT bits;
1971 int i;
1973 x += NI - 1;
1974 bits = 0;
1976 for (i = M; i < NI; i++)
1978 if (*x & 0x8000)
1979 bits |= 1;
1980 *x <<= 1;
1981 if (bits & 2)
1982 *x |= 1;
1983 bits <<= 1;
1984 --x;
1989 /* Shift significand of exploded e-type X down by 8 bits. */
1991 static void
1992 eshdn8 (x)
1993 register unsigned EMUSHORT *x;
1995 register unsigned EMUSHORT newbyt, oldbyt;
1996 int i;
1998 x += M;
1999 oldbyt = 0;
2000 for (i = M; i < NI; i++)
2002 newbyt = *x << 8;
2003 *x >>= 8;
2004 *x |= oldbyt;
2005 oldbyt = newbyt;
2006 ++x;
2010 /* Shift significand of exploded e-type X up by 8 bits. */
2012 static void
2013 eshup8 (x)
2014 register unsigned EMUSHORT *x;
2016 int i;
2017 register unsigned EMUSHORT newbyt, oldbyt;
2019 x += NI - 1;
2020 oldbyt = 0;
2022 for (i = M; i < NI; i++)
2024 newbyt = *x >> 8;
2025 *x <<= 8;
2026 *x |= oldbyt;
2027 oldbyt = newbyt;
2028 --x;
2032 /* Shift significand of exploded e-type X up by 16 bits. */
2034 static void
2035 eshup6 (x)
2036 register unsigned EMUSHORT *x;
2038 int i;
2039 register unsigned EMUSHORT *p;
2041 p = x + M;
2042 x += M + 1;
2044 for (i = M; i < NI - 1; i++)
2045 *p++ = *x++;
2047 *p = 0;
2050 /* Shift significand of exploded e-type X down by 16 bits. */
2052 static void
2053 eshdn6 (x)
2054 register unsigned EMUSHORT *x;
2056 int i;
2057 register unsigned EMUSHORT *p;
2059 x += NI - 1;
2060 p = x + 1;
2062 for (i = M; i < NI - 1; i++)
2063 *(--p) = *(--x);
2065 *(--p) = 0;
2068 /* Add significands of exploded e-type X and Y. X + Y replaces Y. */
2070 static void
2071 eaddm (x, y)
2072 unsigned EMUSHORT *x, *y;
2074 register unsigned EMULONG a;
2075 int i;
2076 unsigned int carry;
2078 x += NI - 1;
2079 y += NI - 1;
2080 carry = 0;
2081 for (i = M; i < NI; i++)
2083 a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry;
2084 if (a & 0x10000)
2085 carry = 1;
2086 else
2087 carry = 0;
2088 *y = (unsigned EMUSHORT) a;
2089 --x;
2090 --y;
2094 /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */
2096 static void
2097 esubm (x, y)
2098 unsigned EMUSHORT *x, *y;
2100 unsigned EMULONG a;
2101 int i;
2102 unsigned int carry;
2104 x += NI - 1;
2105 y += NI - 1;
2106 carry = 0;
2107 for (i = M; i < NI; i++)
2109 a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry;
2110 if (a & 0x10000)
2111 carry = 1;
2112 else
2113 carry = 0;
2114 *y = (unsigned EMUSHORT) a;
2115 --x;
2116 --y;
2121 static unsigned EMUSHORT equot[NI];
2124 #if 0
2125 /* Radix 2 shift-and-add versions of multiply and divide */
2128 /* Divide significands */
2131 edivm (den, num)
2132 unsigned EMUSHORT den[], num[];
2134 int i;
2135 register unsigned EMUSHORT *p, *q;
2136 unsigned EMUSHORT j;
2138 p = &equot[0];
2139 *p++ = num[0];
2140 *p++ = num[1];
2142 for (i = M; i < NI; i++)
2144 *p++ = 0;
2147 /* Use faster compare and subtraction if denominator has only 15 bits of
2148 significance. */
2150 p = &den[M + 2];
2151 if (*p++ == 0)
2153 for (i = M + 3; i < NI; i++)
2155 if (*p++ != 0)
2156 goto fulldiv;
2158 if ((den[M + 1] & 1) != 0)
2159 goto fulldiv;
2160 eshdn1 (num);
2161 eshdn1 (den);
2163 p = &den[M + 1];
2164 q = &num[M + 1];
2166 for (i = 0; i < NBITS + 2; i++)
2168 if (*p <= *q)
2170 *q -= *p;
2171 j = 1;
2173 else
2175 j = 0;
2177 eshup1 (equot);
2178 equot[NI - 2] |= j;
2179 eshup1 (num);
2181 goto divdon;
2184 /* The number of quotient bits to calculate is NBITS + 1 scaling guard
2185 bit + 1 roundoff bit. */
2187 fulldiv:
2189 p = &equot[NI - 2];
2190 for (i = 0; i < NBITS + 2; i++)
2192 if (ecmpm (den, num) <= 0)
2194 esubm (den, num);
2195 j = 1; /* quotient bit = 1 */
2197 else
2198 j = 0;
2199 eshup1 (equot);
2200 *p |= j;
2201 eshup1 (num);
2204 divdon:
2206 eshdn1 (equot);
2207 eshdn1 (equot);
2209 /* test for nonzero remainder after roundoff bit */
2210 p = &num[M];
2211 j = 0;
2212 for (i = M; i < NI; i++)
2214 j |= *p++;
2216 if (j)
2217 j = 1;
2220 for (i = 0; i < NI; i++)
2221 num[i] = equot[i];
2222 return ((int) j);
2226 /* Multiply significands */
2229 emulm (a, b)
2230 unsigned EMUSHORT a[], b[];
2232 unsigned EMUSHORT *p, *q;
2233 int i, j, k;
2235 equot[0] = b[0];
2236 equot[1] = b[1];
2237 for (i = M; i < NI; i++)
2238 equot[i] = 0;
2240 p = &a[NI - 2];
2241 k = NBITS;
2242 while (*p == 0) /* significand is not supposed to be zero */
2244 eshdn6 (a);
2245 k -= 16;
2247 if ((*p & 0xff) == 0)
2249 eshdn8 (a);
2250 k -= 8;
2253 q = &equot[NI - 1];
2254 j = 0;
2255 for (i = 0; i < k; i++)
2257 if (*p & 1)
2258 eaddm (b, equot);
2259 /* remember if there were any nonzero bits shifted out */
2260 if (*q & 1)
2261 j |= 1;
2262 eshdn1 (a);
2263 eshdn1 (equot);
2266 for (i = 0; i < NI; i++)
2267 b[i] = equot[i];
2269 /* return flag for lost nonzero bits */
2270 return (j);
2273 #else
2275 /* Radix 65536 versions of multiply and divide. */
2277 /* Multiply significand of e-type number B
2278 by 16-bit quantity A, return e-type result to C. */
2280 static void
2281 m16m (a, b, c)
2282 unsigned int a;
2283 unsigned EMUSHORT b[], c[];
2285 register unsigned EMUSHORT *pp;
2286 register unsigned EMULONG carry;
2287 unsigned EMUSHORT *ps;
2288 unsigned EMUSHORT p[NI];
2289 unsigned EMULONG aa, m;
2290 int i;
2292 aa = a;
2293 pp = &p[NI-2];
2294 *pp++ = 0;
2295 *pp = 0;
2296 ps = &b[NI-1];
2298 for (i=M+1; i<NI; i++)
2300 if (*ps == 0)
2302 --ps;
2303 --pp;
2304 *(pp-1) = 0;
2306 else
2308 m = (unsigned EMULONG) aa * *ps--;
2309 carry = (m & 0xffff) + *pp;
2310 *pp-- = (unsigned EMUSHORT)carry;
2311 carry = (carry >> 16) + (m >> 16) + *pp;
2312 *pp = (unsigned EMUSHORT)carry;
2313 *(pp-1) = carry >> 16;
2316 for (i=M; i<NI; i++)
2317 c[i] = p[i];
2320 /* Divide significands of exploded e-types NUM / DEN. Neither the
2321 numerator NUM nor the denominator DEN is permitted to have its high guard
2322 word nonzero. */
2324 static int
2325 edivm (den, num)
2326 unsigned EMUSHORT den[], num[];
2328 int i;
2329 register unsigned EMUSHORT *p;
2330 unsigned EMULONG tnum;
2331 unsigned EMUSHORT j, tdenm, tquot;
2332 unsigned EMUSHORT tprod[NI+1];
2334 p = &equot[0];
2335 *p++ = num[0];
2336 *p++ = num[1];
2338 for (i=M; i<NI; i++)
2340 *p++ = 0;
2342 eshdn1 (num);
2343 tdenm = den[M+1];
2344 for (i=M; i<NI; i++)
2346 /* Find trial quotient digit (the radix is 65536). */
2347 tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1];
2349 /* Do not execute the divide instruction if it will overflow. */
2350 if ((tdenm * (unsigned long)0xffff) < tnum)
2351 tquot = 0xffff;
2352 else
2353 tquot = tnum / tdenm;
2354 /* Multiply denominator by trial quotient digit. */
2355 m16m ((unsigned int)tquot, den, tprod);
2356 /* The quotient digit may have been overestimated. */
2357 if (ecmpm (tprod, num) > 0)
2359 tquot -= 1;
2360 esubm (den, tprod);
2361 if (ecmpm (tprod, num) > 0)
2363 tquot -= 1;
2364 esubm (den, tprod);
2367 esubm (tprod, num);
2368 equot[i] = tquot;
2369 eshup6(num);
2371 /* test for nonzero remainder after roundoff bit */
2372 p = &num[M];
2373 j = 0;
2374 for (i=M; i<NI; i++)
2376 j |= *p++;
2378 if (j)
2379 j = 1;
2381 for (i=0; i<NI; i++)
2382 num[i] = equot[i];
2384 return ((int)j);
2387 /* Multiply significands of exploded e-type A and B, result in B. */
2389 static int
2390 emulm (a, b)
2391 unsigned EMUSHORT a[], b[];
2393 unsigned EMUSHORT *p, *q;
2394 unsigned EMUSHORT pprod[NI];
2395 unsigned EMUSHORT j;
2396 int i;
2398 equot[0] = b[0];
2399 equot[1] = b[1];
2400 for (i=M; i<NI; i++)
2401 equot[i] = 0;
2403 j = 0;
2404 p = &a[NI-1];
2405 q = &equot[NI-1];
2406 for (i=M+1; i<NI; i++)
2408 if (*p == 0)
2410 --p;
2412 else
2414 m16m ((unsigned int) *p--, b, pprod);
2415 eaddm(pprod, equot);
2417 j |= *q;
2418 eshdn6(equot);
2421 for (i=0; i<NI; i++)
2422 b[i] = equot[i];
2424 /* return flag for lost nonzero bits */
2425 return ((int)j);
2427 #endif
2430 /* Normalize and round off.
2432 The internal format number to be rounded is S.
2433 Input LOST is 0 if the value is exact. This is the so-called sticky bit.
2435 Input SUBFLG indicates whether the number was obtained
2436 by a subtraction operation. In that case if LOST is nonzero
2437 then the number is slightly smaller than indicated.
2439 Input EXP is the biased exponent, which may be negative.
2440 the exponent field of S is ignored but is replaced by
2441 EXP as adjusted by normalization and rounding.
2443 Input RCNTRL is the rounding control. If it is nonzero, the
2444 returned value will be rounded to RNDPRC bits.
2446 For future reference: In order for emdnorm to round off denormal
2447 significands at the right point, the input exponent must be
2448 adjusted to be the actual value it would have after conversion to
2449 the final floating point type. This adjustment has been
2450 implemented for all type conversions (etoe53, etc.) and decimal
2451 conversions, but not for the arithmetic functions (eadd, etc.).
2452 Data types having standard 15-bit exponents are not affected by
2453 this, but SFmode and DFmode are affected. For example, ediv with
2454 rndprc = 24 will not round correctly to 24-bit precision if the
2455 result is denormal. */
2457 static int rlast = -1;
2458 static int rw = 0;
2459 static unsigned EMUSHORT rmsk = 0;
2460 static unsigned EMUSHORT rmbit = 0;
2461 static unsigned EMUSHORT rebit = 0;
2462 static int re = 0;
2463 static unsigned EMUSHORT rbit[NI];
2465 static void
2466 emdnorm (s, lost, subflg, exp, rcntrl)
2467 unsigned EMUSHORT s[];
2468 int lost;
2469 int subflg;
2470 EMULONG exp;
2471 int rcntrl;
2473 int i, j;
2474 unsigned EMUSHORT r;
2476 /* Normalize */
2477 j = enormlz (s);
2479 /* a blank significand could mean either zero or infinity. */
2480 #ifndef INFINITY
2481 if (j > NBITS)
2483 ecleazs (s);
2484 return;
2486 #endif
2487 exp -= j;
2488 #ifndef INFINITY
2489 if (exp >= 32767L)
2490 goto overf;
2491 #else
2492 if ((j > NBITS) && (exp < 32767))
2494 ecleazs (s);
2495 return;
2497 #endif
2498 if (exp < 0L)
2500 if (exp > (EMULONG) (-NBITS - 1))
2502 j = (int) exp;
2503 i = eshift (s, j);
2504 if (i)
2505 lost = 1;
2507 else
2509 ecleazs (s);
2510 return;
2513 /* Round off, unless told not to by rcntrl. */
2514 if (rcntrl == 0)
2515 goto mdfin;
2516 /* Set up rounding parameters if the control register changed. */
2517 if (rndprc != rlast)
2519 ecleaz (rbit);
2520 switch (rndprc)
2522 default:
2523 case NBITS:
2524 rw = NI - 1; /* low guard word */
2525 rmsk = 0xffff;
2526 rmbit = 0x8000;
2527 re = rw - 1;
2528 rebit = 1;
2529 break;
2531 case 113:
2532 rw = 10;
2533 rmsk = 0x7fff;
2534 rmbit = 0x4000;
2535 rebit = 0x8000;
2536 re = rw;
2537 break;
2539 case 64:
2540 rw = 7;
2541 rmsk = 0xffff;
2542 rmbit = 0x8000;
2543 re = rw - 1;
2544 rebit = 1;
2545 break;
2547 /* For DEC or IBM arithmetic */
2548 case 56:
2549 rw = 6;
2550 rmsk = 0xff;
2551 rmbit = 0x80;
2552 rebit = 0x100;
2553 re = rw;
2554 break;
2556 case 53:
2557 rw = 6;
2558 rmsk = 0x7ff;
2559 rmbit = 0x0400;
2560 rebit = 0x800;
2561 re = rw;
2562 break;
2564 /* For C4x arithmetic */
2565 case 32:
2566 rw = 5;
2567 rmsk = 0xffff;
2568 rmbit = 0x8000;
2569 rebit = 1;
2570 re = rw - 1;
2571 break;
2573 case 24:
2574 rw = 4;
2575 rmsk = 0xff;
2576 rmbit = 0x80;
2577 rebit = 0x100;
2578 re = rw;
2579 break;
2581 rbit[re] = rebit;
2582 rlast = rndprc;
2585 /* Shift down 1 temporarily if the data structure has an implied
2586 most significant bit and the number is denormal.
2587 Intel long double denormals also lose one bit of precision. */
2588 if ((exp <= 0) && (rndprc != NBITS)
2589 && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
2591 lost |= s[NI - 1] & 1;
2592 eshdn1 (s);
2594 /* Clear out all bits below the rounding bit,
2595 remembering in r if any were nonzero. */
2596 r = s[rw] & rmsk;
2597 if (rndprc < NBITS)
2599 i = rw + 1;
2600 while (i < NI)
2602 if (s[i])
2603 r |= 1;
2604 s[i] = 0;
2605 ++i;
2608 s[rw] &= ~rmsk;
2609 if ((r & rmbit) != 0)
2611 #ifndef C4X
2612 if (r == rmbit)
2614 if (lost == 0)
2615 { /* round to even */
2616 if ((s[re] & rebit) == 0)
2617 goto mddone;
2619 else
2621 if (subflg != 0)
2622 goto mddone;
2625 #endif
2626 eaddm (rbit, s);
2628 mddone:
2629 /* Undo the temporary shift for denormal values. */
2630 if ((exp <= 0) && (rndprc != NBITS)
2631 && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
2633 eshup1 (s);
2635 if (s[2] != 0)
2636 { /* overflow on roundoff */
2637 eshdn1 (s);
2638 exp += 1;
2640 mdfin:
2641 s[NI - 1] = 0;
2642 if (exp >= 32767L)
2644 #ifndef INFINITY
2645 overf:
2646 #endif
2647 #ifdef INFINITY
2648 s[1] = 32767;
2649 for (i = 2; i < NI - 1; i++)
2650 s[i] = 0;
2651 if (extra_warnings)
2652 warning ("floating point overflow");
2653 #else
2654 s[1] = 32766;
2655 s[2] = 0;
2656 for (i = M + 1; i < NI - 1; i++)
2657 s[i] = 0xffff;
2658 s[NI - 1] = 0;
2659 if ((rndprc < 64) || (rndprc == 113))
2661 s[rw] &= ~rmsk;
2662 if (rndprc == 24)
2664 s[5] = 0;
2665 s[6] = 0;
2668 #endif
2669 return;
2671 if (exp < 0)
2672 s[1] = 0;
2673 else
2674 s[1] = (unsigned EMUSHORT) exp;
2677 /* Subtract. C = B - A, all e type numbers. */
2679 static int subflg = 0;
2681 static void
2682 esub (a, b, c)
2683 unsigned EMUSHORT *a, *b, *c;
2686 #ifdef NANS
2687 if (eisnan (a))
2689 emov (a, c);
2690 return;
2692 if (eisnan (b))
2694 emov (b, c);
2695 return;
2697 /* Infinity minus infinity is a NaN.
2698 Test for subtracting infinities of the same sign. */
2699 if (eisinf (a) && eisinf (b)
2700 && ((eisneg (a) ^ eisneg (b)) == 0))
2702 mtherr ("esub", INVALID);
2703 enan (c, 0);
2704 return;
2706 #endif
2707 subflg = 1;
2708 eadd1 (a, b, c);
2711 /* Add. C = A + B, all e type. */
2713 static void
2714 eadd (a, b, c)
2715 unsigned EMUSHORT *a, *b, *c;
2718 #ifdef NANS
2719 /* NaN plus anything is a NaN. */
2720 if (eisnan (a))
2722 emov (a, c);
2723 return;
2725 if (eisnan (b))
2727 emov (b, c);
2728 return;
2730 /* Infinity minus infinity is a NaN.
2731 Test for adding infinities of opposite signs. */
2732 if (eisinf (a) && eisinf (b)
2733 && ((eisneg (a) ^ eisneg (b)) != 0))
2735 mtherr ("esub", INVALID);
2736 enan (c, 0);
2737 return;
2739 #endif
2740 subflg = 0;
2741 eadd1 (a, b, c);
2744 /* Arithmetic common to both addition and subtraction. */
2746 static void
2747 eadd1 (a, b, c)
2748 unsigned EMUSHORT *a, *b, *c;
2750 unsigned EMUSHORT ai[NI], bi[NI], ci[NI];
2751 int i, lost, j, k;
2752 EMULONG lt, lta, ltb;
2754 #ifdef INFINITY
2755 if (eisinf (a))
2757 emov (a, c);
2758 if (subflg)
2759 eneg (c);
2760 return;
2762 if (eisinf (b))
2764 emov (b, c);
2765 return;
2767 #endif
2768 emovi (a, ai);
2769 emovi (b, bi);
2770 if (subflg)
2771 ai[0] = ~ai[0];
2773 /* compare exponents */
2774 lta = ai[E];
2775 ltb = bi[E];
2776 lt = lta - ltb;
2777 if (lt > 0L)
2778 { /* put the larger number in bi */
2779 emovz (bi, ci);
2780 emovz (ai, bi);
2781 emovz (ci, ai);
2782 ltb = bi[E];
2783 lt = -lt;
2785 lost = 0;
2786 if (lt != 0L)
2788 if (lt < (EMULONG) (-NBITS - 1))
2789 goto done; /* answer same as larger addend */
2790 k = (int) lt;
2791 lost = eshift (ai, k); /* shift the smaller number down */
2793 else
2795 /* exponents were the same, so must compare significands */
2796 i = ecmpm (ai, bi);
2797 if (i == 0)
2798 { /* the numbers are identical in magnitude */
2799 /* if different signs, result is zero */
2800 if (ai[0] != bi[0])
2802 eclear (c);
2803 return;
2805 /* if same sign, result is double */
2806 /* double denormalized tiny number */
2807 if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0))
2809 eshup1 (bi);
2810 goto done;
2812 /* add 1 to exponent unless both are zero! */
2813 for (j = 1; j < NI - 1; j++)
2815 if (bi[j] != 0)
2817 ltb += 1;
2818 if (ltb >= 0x7fff)
2820 eclear (c);
2821 if (ai[0] != 0)
2822 eneg (c);
2823 einfin (c);
2824 return;
2826 break;
2829 bi[E] = (unsigned EMUSHORT) ltb;
2830 goto done;
2832 if (i > 0)
2833 { /* put the larger number in bi */
2834 emovz (bi, ci);
2835 emovz (ai, bi);
2836 emovz (ci, ai);
2839 if (ai[0] == bi[0])
2841 eaddm (ai, bi);
2842 subflg = 0;
2844 else
2846 esubm (ai, bi);
2847 subflg = 1;
2849 emdnorm (bi, lost, subflg, ltb, 64);
2851 done:
2852 emovo (bi, c);
2855 /* Divide: C = B/A, all e type. */
2857 static void
2858 ediv (a, b, c)
2859 unsigned EMUSHORT *a, *b, *c;
2861 unsigned EMUSHORT ai[NI], bi[NI];
2862 int i, sign;
2863 EMULONG lt, lta, ltb;
2865 /* IEEE says if result is not a NaN, the sign is "-" if and only if
2866 operands have opposite signs -- but flush -0 to 0 later if not IEEE. */
2867 sign = eisneg(a) ^ eisneg(b);
2869 #ifdef NANS
2870 /* Return any NaN input. */
2871 if (eisnan (a))
2873 emov (a, c);
2874 return;
2876 if (eisnan (b))
2878 emov (b, c);
2879 return;
2881 /* Zero over zero, or infinity over infinity, is a NaN. */
2882 if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0))
2883 || (eisinf (a) && eisinf (b)))
2885 mtherr ("ediv", INVALID);
2886 enan (c, sign);
2887 return;
2889 #endif
2890 /* Infinity over anything else is infinity. */
2891 #ifdef INFINITY
2892 if (eisinf (b))
2894 einfin (c);
2895 goto divsign;
2897 /* Anything else over infinity is zero. */
2898 if (eisinf (a))
2900 eclear (c);
2901 goto divsign;
2903 #endif
2904 emovi (a, ai);
2905 emovi (b, bi);
2906 lta = ai[E];
2907 ltb = bi[E];
2908 if (bi[E] == 0)
2909 { /* See if numerator is zero. */
2910 for (i = 1; i < NI - 1; i++)
2912 if (bi[i] != 0)
2914 ltb -= enormlz (bi);
2915 goto dnzro1;
2918 eclear (c);
2919 goto divsign;
2921 dnzro1:
2923 if (ai[E] == 0)
2924 { /* possible divide by zero */
2925 for (i = 1; i < NI - 1; i++)
2927 if (ai[i] != 0)
2929 lta -= enormlz (ai);
2930 goto dnzro2;
2933 /* Divide by zero is not an invalid operation.
2934 It is a divide-by-zero operation! */
2935 einfin (c);
2936 mtherr ("ediv", SING);
2937 goto divsign;
2939 dnzro2:
2941 i = edivm (ai, bi);
2942 /* calculate exponent */
2943 lt = ltb - lta + EXONE;
2944 emdnorm (bi, i, 0, lt, 64);
2945 emovo (bi, c);
2947 divsign:
2949 if (sign
2950 #ifndef IEEE
2951 && (ecmp (c, ezero) != 0)
2952 #endif
2954 *(c+(NE-1)) |= 0x8000;
2955 else
2956 *(c+(NE-1)) &= ~0x8000;
2959 /* Multiply e-types A and B, return e-type product C. */
2961 static void
2962 emul (a, b, c)
2963 unsigned EMUSHORT *a, *b, *c;
2965 unsigned EMUSHORT ai[NI], bi[NI];
2966 int i, j, sign;
2967 EMULONG lt, lta, ltb;
2969 /* IEEE says if result is not a NaN, the sign is "-" if and only if
2970 operands have opposite signs -- but flush -0 to 0 later if not IEEE. */
2971 sign = eisneg(a) ^ eisneg(b);
2973 #ifdef NANS
2974 /* NaN times anything is the same NaN. */
2975 if (eisnan (a))
2977 emov (a, c);
2978 return;
2980 if (eisnan (b))
2982 emov (b, c);
2983 return;
2985 /* Zero times infinity is a NaN. */
2986 if ((eisinf (a) && (ecmp (b, ezero) == 0))
2987 || (eisinf (b) && (ecmp (a, ezero) == 0)))
2989 mtherr ("emul", INVALID);
2990 enan (c, sign);
2991 return;
2993 #endif
2994 /* Infinity times anything else is infinity. */
2995 #ifdef INFINITY
2996 if (eisinf (a) || eisinf (b))
2998 einfin (c);
2999 goto mulsign;
3001 #endif
3002 emovi (a, ai);
3003 emovi (b, bi);
3004 lta = ai[E];
3005 ltb = bi[E];
3006 if (ai[E] == 0)
3008 for (i = 1; i < NI - 1; i++)
3010 if (ai[i] != 0)
3012 lta -= enormlz (ai);
3013 goto mnzer1;
3016 eclear (c);
3017 goto mulsign;
3019 mnzer1:
3021 if (bi[E] == 0)
3023 for (i = 1; i < NI - 1; i++)
3025 if (bi[i] != 0)
3027 ltb -= enormlz (bi);
3028 goto mnzer2;
3031 eclear (c);
3032 goto mulsign;
3034 mnzer2:
3036 /* Multiply significands */
3037 j = emulm (ai, bi);
3038 /* calculate exponent */
3039 lt = lta + ltb - (EXONE - 1);
3040 emdnorm (bi, j, 0, lt, 64);
3041 emovo (bi, c);
3043 mulsign:
3045 if (sign
3046 #ifndef IEEE
3047 && (ecmp (c, ezero) != 0)
3048 #endif
3050 *(c+(NE-1)) |= 0x8000;
3051 else
3052 *(c+(NE-1)) &= ~0x8000;
3055 /* Convert double precision PE to e-type Y. */
3057 static void
3058 e53toe (pe, y)
3059 unsigned EMUSHORT *pe, *y;
3061 #ifdef DEC
3063 dectoe (pe, y);
3065 #else
3066 #ifdef IBM
3068 ibmtoe (pe, y, DFmode);
3070 #else
3071 #ifdef C4X
3073 c4xtoe (pe, y, HFmode);
3075 #else
3076 register unsigned EMUSHORT r;
3077 register unsigned EMUSHORT *e, *p;
3078 unsigned EMUSHORT yy[NI];
3079 int denorm, k;
3081 e = pe;
3082 denorm = 0; /* flag if denormalized number */
3083 ecleaz (yy);
3084 if (! REAL_WORDS_BIG_ENDIAN)
3085 e += 3;
3086 r = *e;
3087 yy[0] = 0;
3088 if (r & 0x8000)
3089 yy[0] = 0xffff;
3090 yy[M] = (r & 0x0f) | 0x10;
3091 r &= ~0x800f; /* strip sign and 4 significand bits */
3092 #ifdef INFINITY
3093 if (r == 0x7ff0)
3095 #ifdef NANS
3096 if (! REAL_WORDS_BIG_ENDIAN)
3098 if (((pe[3] & 0xf) != 0) || (pe[2] != 0)
3099 || (pe[1] != 0) || (pe[0] != 0))
3101 enan (y, yy[0] != 0);
3102 return;
3105 else
3107 if (((pe[0] & 0xf) != 0) || (pe[1] != 0)
3108 || (pe[2] != 0) || (pe[3] != 0))
3110 enan (y, yy[0] != 0);
3111 return;
3114 #endif /* NANS */
3115 eclear (y);
3116 einfin (y);
3117 if (yy[0])
3118 eneg (y);
3119 return;
3121 #endif /* INFINITY */
3122 r >>= 4;
3123 /* If zero exponent, then the significand is denormalized.
3124 So take back the understood high significand bit. */
3126 if (r == 0)
3128 denorm = 1;
3129 yy[M] &= ~0x10;
3131 r += EXONE - 01777;
3132 yy[E] = r;
3133 p = &yy[M + 1];
3134 #ifdef IEEE
3135 if (! REAL_WORDS_BIG_ENDIAN)
3137 *p++ = *(--e);
3138 *p++ = *(--e);
3139 *p++ = *(--e);
3141 else
3143 ++e;
3144 *p++ = *e++;
3145 *p++ = *e++;
3146 *p++ = *e++;
3148 #endif
3149 eshift (yy, -5);
3150 if (denorm)
3152 /* If zero exponent, then normalize the significand. */
3153 if ((k = enormlz (yy)) > NBITS)
3154 ecleazs (yy);
3155 else
3156 yy[E] -= (unsigned EMUSHORT) (k - 1);
3158 emovo (yy, y);
3159 #endif /* not C4X */
3160 #endif /* not IBM */
3161 #endif /* not DEC */
3164 /* Convert double extended precision float PE to e type Y. */
3166 static void
3167 e64toe (pe, y)
3168 unsigned EMUSHORT *pe, *y;
3170 unsigned EMUSHORT yy[NI];
3171 unsigned EMUSHORT *e, *p, *q;
3172 int i;
3174 e = pe;
3175 p = yy;
3176 for (i = 0; i < NE - 5; i++)
3177 *p++ = 0;
3178 /* This precision is not ordinarily supported on DEC or IBM. */
3179 #ifdef DEC
3180 for (i = 0; i < 5; i++)
3181 *p++ = *e++;
3182 #endif
3183 #ifdef IBM
3184 p = &yy[0] + (NE - 1);
3185 *p-- = *e++;
3186 ++e;
3187 for (i = 0; i < 5; i++)
3188 *p-- = *e++;
3189 #endif
3190 #ifdef IEEE
3191 if (! REAL_WORDS_BIG_ENDIAN)
3193 for (i = 0; i < 5; i++)
3194 *p++ = *e++;
3196 /* For denormal long double Intel format, shift significand up one
3197 -- but only if the top significand bit is zero. A top bit of 1
3198 is "pseudodenormal" when the exponent is zero. */
3199 if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
3201 unsigned EMUSHORT temp[NI];
3203 emovi(yy, temp);
3204 eshup1(temp);
3205 emovo(temp,y);
3206 return;
3209 else
3211 p = &yy[0] + (NE - 1);
3212 #ifdef ARM_EXTENDED_IEEE_FORMAT
3213 /* For ARMs, the exponent is in the lowest 15 bits of the word. */
3214 *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff);
3215 e += 2;
3216 #else
3217 *p-- = *e++;
3218 ++e;
3219 #endif
3220 for (i = 0; i < 4; i++)
3221 *p-- = *e++;
3223 #endif
3224 #ifdef INFINITY
3225 /* Point to the exponent field and check max exponent cases. */
3226 p = &yy[NE - 1];
3227 if ((*p & 0x7fff) == 0x7fff)
3229 #ifdef NANS
3230 if (! REAL_WORDS_BIG_ENDIAN)
3232 for (i = 0; i < 4; i++)
3234 if ((i != 3 && pe[i] != 0)
3235 /* Anything but 0x8000 here, including 0, is a NaN. */
3236 || (i == 3 && pe[i] != 0x8000))
3238 enan (y, (*p & 0x8000) != 0);
3239 return;
3243 else
3245 #ifdef ARM_EXTENDED_IEEE_FORMAT
3246 for (i = 2; i <= 5; i++)
3248 if (pe[i] != 0)
3250 enan (y, (*p & 0x8000) != 0);
3251 return;
3254 #else /* not ARM */
3255 /* In Motorola extended precision format, the most significant
3256 bit of an infinity mantissa could be either 1 or 0. It is
3257 the lower order bits that tell whether the value is a NaN. */
3258 if ((pe[2] & 0x7fff) != 0)
3259 goto bigend_nan;
3261 for (i = 3; i <= 5; i++)
3263 if (pe[i] != 0)
3265 bigend_nan:
3266 enan (y, (*p & 0x8000) != 0);
3267 return;
3270 #endif /* not ARM */
3272 #endif /* NANS */
3273 eclear (y);
3274 einfin (y);
3275 if (*p & 0x8000)
3276 eneg (y);
3277 return;
3279 #endif /* INFINITY */
3280 p = yy;
3281 q = y;
3282 for (i = 0; i < NE; i++)
3283 *q++ = *p++;
3286 /* Convert 128-bit long double precision float PE to e type Y. */
3288 static void
3289 e113toe (pe, y)
3290 unsigned EMUSHORT *pe, *y;
3292 register unsigned EMUSHORT r;
3293 unsigned EMUSHORT *e, *p;
3294 unsigned EMUSHORT yy[NI];
3295 int denorm, i;
3297 e = pe;
3298 denorm = 0;
3299 ecleaz (yy);
3300 #ifdef IEEE
3301 if (! REAL_WORDS_BIG_ENDIAN)
3302 e += 7;
3303 #endif
3304 r = *e;
3305 yy[0] = 0;
3306 if (r & 0x8000)
3307 yy[0] = 0xffff;
3308 r &= 0x7fff;
3309 #ifdef INFINITY
3310 if (r == 0x7fff)
3312 #ifdef NANS
3313 if (! REAL_WORDS_BIG_ENDIAN)
3315 for (i = 0; i < 7; i++)
3317 if (pe[i] != 0)
3319 enan (y, yy[0] != 0);
3320 return;
3324 else
3326 for (i = 1; i < 8; i++)
3328 if (pe[i] != 0)
3330 enan (y, yy[0] != 0);
3331 return;
3335 #endif /* NANS */
3336 eclear (y);
3337 einfin (y);
3338 if (yy[0])
3339 eneg (y);
3340 return;
3342 #endif /* INFINITY */
3343 yy[E] = r;
3344 p = &yy[M + 1];
3345 #ifdef IEEE
3346 if (! REAL_WORDS_BIG_ENDIAN)
3348 for (i = 0; i < 7; i++)
3349 *p++ = *(--e);
3351 else
3353 ++e;
3354 for (i = 0; i < 7; i++)
3355 *p++ = *e++;
3357 #endif
3358 /* If denormal, remove the implied bit; else shift down 1. */
3359 if (r == 0)
3361 yy[M] = 0;
3363 else
3365 yy[M] = 1;
3366 eshift (yy, -1);
3368 emovo (yy, y);
3371 /* Convert single precision float PE to e type Y. */
3373 static void
3374 e24toe (pe, y)
3375 unsigned EMUSHORT *pe, *y;
3377 #ifdef IBM
3379 ibmtoe (pe, y, SFmode);
3381 #else
3383 #ifdef C4X
3385 c4xtoe (pe, y, QFmode);
3387 #else
3389 register unsigned EMUSHORT r;
3390 register unsigned EMUSHORT *e, *p;
3391 unsigned EMUSHORT yy[NI];
3392 int denorm, k;
3394 e = pe;
3395 denorm = 0; /* flag if denormalized number */
3396 ecleaz (yy);
3397 #ifdef IEEE
3398 if (! REAL_WORDS_BIG_ENDIAN)
3399 e += 1;
3400 #endif
3401 #ifdef DEC
3402 e += 1;
3403 #endif
3404 r = *e;
3405 yy[0] = 0;
3406 if (r & 0x8000)
3407 yy[0] = 0xffff;
3408 yy[M] = (r & 0x7f) | 0200;
3409 r &= ~0x807f; /* strip sign and 7 significand bits */
3410 #ifdef INFINITY
3411 if (r == 0x7f80)
3413 #ifdef NANS
3414 if (REAL_WORDS_BIG_ENDIAN)
3416 if (((pe[0] & 0x7f) != 0) || (pe[1] != 0))
3418 enan (y, yy[0] != 0);
3419 return;
3422 else
3424 if (((pe[1] & 0x7f) != 0) || (pe[0] != 0))
3426 enan (y, yy[0] != 0);
3427 return;
3430 #endif /* NANS */
3431 eclear (y);
3432 einfin (y);
3433 if (yy[0])
3434 eneg (y);
3435 return;
3437 #endif /* INFINITY */
3438 r >>= 7;
3439 /* If zero exponent, then the significand is denormalized.
3440 So take back the understood high significand bit. */
3441 if (r == 0)
3443 denorm = 1;
3444 yy[M] &= ~0200;
3446 r += EXONE - 0177;
3447 yy[E] = r;
3448 p = &yy[M + 1];
3449 #ifdef DEC
3450 *p++ = *(--e);
3451 #endif
3452 #ifdef IEEE
3453 if (! REAL_WORDS_BIG_ENDIAN)
3454 *p++ = *(--e);
3455 else
3457 ++e;
3458 *p++ = *e++;
3460 #endif
3461 eshift (yy, -8);
3462 if (denorm)
3463 { /* if zero exponent, then normalize the significand */
3464 if ((k = enormlz (yy)) > NBITS)
3465 ecleazs (yy);
3466 else
3467 yy[E] -= (unsigned EMUSHORT) (k - 1);
3469 emovo (yy, y);
3470 #endif /* not C4X */
3471 #endif /* not IBM */
3474 /* Convert e-type X to IEEE 128-bit long double format E. */
3476 static void
3477 etoe113 (x, e)
3478 unsigned EMUSHORT *x, *e;
3480 unsigned EMUSHORT xi[NI];
3481 EMULONG exp;
3482 int rndsav;
3484 #ifdef NANS
3485 if (eisnan (x))
3487 make_nan (e, eisneg (x), TFmode);
3488 return;
3490 #endif
3491 emovi (x, xi);
3492 exp = (EMULONG) xi[E];
3493 #ifdef INFINITY
3494 if (eisinf (x))
3495 goto nonorm;
3496 #endif
3497 /* round off to nearest or even */
3498 rndsav = rndprc;
3499 rndprc = 113;
3500 emdnorm (xi, 0, 0, exp, 64);
3501 rndprc = rndsav;
3502 nonorm:
3503 toe113 (xi, e);
3506 /* Convert exploded e-type X, that has already been rounded to
3507 113-bit precision, to IEEE 128-bit long double format Y. */
3509 static void
3510 toe113 (a, b)
3511 unsigned EMUSHORT *a, *b;
3513 register unsigned EMUSHORT *p, *q;
3514 unsigned EMUSHORT i;
3516 #ifdef NANS
3517 if (eiisnan (a))
3519 make_nan (b, eiisneg (a), TFmode);
3520 return;
3522 #endif
3523 p = a;
3524 if (REAL_WORDS_BIG_ENDIAN)
3525 q = b;
3526 else
3527 q = b + 7; /* point to output exponent */
3529 /* If not denormal, delete the implied bit. */
3530 if (a[E] != 0)
3532 eshup1 (a);
3534 /* combine sign and exponent */
3535 i = *p++;
3536 if (REAL_WORDS_BIG_ENDIAN)
3538 if (i)
3539 *q++ = *p++ | 0x8000;
3540 else
3541 *q++ = *p++;
3543 else
3545 if (i)
3546 *q-- = *p++ | 0x8000;
3547 else
3548 *q-- = *p++;
3550 /* skip over guard word */
3551 ++p;
3552 /* move the significand */
3553 if (REAL_WORDS_BIG_ENDIAN)
3555 for (i = 0; i < 7; i++)
3556 *q++ = *p++;
3558 else
3560 for (i = 0; i < 7; i++)
3561 *q-- = *p++;
3565 /* Convert e-type X to IEEE double extended format E. */
3567 static void
3568 etoe64 (x, e)
3569 unsigned EMUSHORT *x, *e;
3571 unsigned EMUSHORT xi[NI];
3572 EMULONG exp;
3573 int rndsav;
3575 #ifdef NANS
3576 if (eisnan (x))
3578 make_nan (e, eisneg (x), XFmode);
3579 return;
3581 #endif
3582 emovi (x, xi);
3583 /* adjust exponent for offset */
3584 exp = (EMULONG) xi[E];
3585 #ifdef INFINITY
3586 if (eisinf (x))
3587 goto nonorm;
3588 #endif
3589 /* round off to nearest or even */
3590 rndsav = rndprc;
3591 rndprc = 64;
3592 emdnorm (xi, 0, 0, exp, 64);
3593 rndprc = rndsav;
3594 nonorm:
3595 toe64 (xi, e);
3598 /* Convert exploded e-type X, that has already been rounded to
3599 64-bit precision, to IEEE double extended format Y. */
3601 static void
3602 toe64 (a, b)
3603 unsigned EMUSHORT *a, *b;
3605 register unsigned EMUSHORT *p, *q;
3606 unsigned EMUSHORT i;
3608 #ifdef NANS
3609 if (eiisnan (a))
3611 make_nan (b, eiisneg (a), XFmode);
3612 return;
3614 #endif
3615 /* Shift denormal long double Intel format significand down one bit. */
3616 if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN)
3617 eshdn1 (a);
3618 p = a;
3619 #ifdef IBM
3620 q = b;
3621 #endif
3622 #ifdef DEC
3623 q = b + 4;
3624 #endif
3625 #ifdef IEEE
3626 if (REAL_WORDS_BIG_ENDIAN)
3627 q = b;
3628 else
3630 q = b + 4; /* point to output exponent */
3631 #if LONG_DOUBLE_TYPE_SIZE == 96
3632 /* Clear the last two bytes of 12-byte Intel format */
3633 *(q+1) = 0;
3634 #endif
3636 #endif
3638 /* combine sign and exponent */
3639 i = *p++;
3640 #ifdef IBM
3641 if (i)
3642 *q++ = *p++ | 0x8000;
3643 else
3644 *q++ = *p++;
3645 *q++ = 0;
3646 #endif
3647 #ifdef DEC
3648 if (i)
3649 *q-- = *p++ | 0x8000;
3650 else
3651 *q-- = *p++;
3652 #endif
3653 #ifdef IEEE
3654 if (REAL_WORDS_BIG_ENDIAN)
3656 #ifdef ARM_EXTENDED_IEEE_FORMAT
3657 /* The exponent is in the lowest 15 bits of the first word. */
3658 *q++ = i ? 0x8000 : 0;
3659 *q++ = *p++;
3660 #else
3661 if (i)
3662 *q++ = *p++ | 0x8000;
3663 else
3664 *q++ = *p++;
3665 *q++ = 0;
3666 #endif
3668 else
3670 if (i)
3671 *q-- = *p++ | 0x8000;
3672 else
3673 *q-- = *p++;
3675 #endif
3676 /* skip over guard word */
3677 ++p;
3678 /* move the significand */
3679 #ifdef IBM
3680 for (i = 0; i < 4; i++)
3681 *q++ = *p++;
3682 #endif
3683 #ifdef DEC
3684 for (i = 0; i < 4; i++)
3685 *q-- = *p++;
3686 #endif
3687 #ifdef IEEE
3688 if (REAL_WORDS_BIG_ENDIAN)
3690 for (i = 0; i < 4; i++)
3691 *q++ = *p++;
3693 else
3695 #ifdef INFINITY
3696 if (eiisinf (a))
3698 /* Intel long double infinity significand. */
3699 *q-- = 0x8000;
3700 *q-- = 0;
3701 *q-- = 0;
3702 *q = 0;
3703 return;
3705 #endif
3706 for (i = 0; i < 4; i++)
3707 *q-- = *p++;
3709 #endif
3712 /* e type to double precision. */
3714 #ifdef DEC
3715 /* Convert e-type X to DEC-format double E. */
3717 static void
3718 etoe53 (x, e)
3719 unsigned EMUSHORT *x, *e;
3721 etodec (x, e); /* see etodec.c */
3724 /* Convert exploded e-type X, that has already been rounded to
3725 56-bit double precision, to DEC double Y. */
3727 static void
3728 toe53 (x, y)
3729 unsigned EMUSHORT *x, *y;
3731 todec (x, y);
3734 #else
3735 #ifdef IBM
3736 /* Convert e-type X to IBM 370-format double E. */
3738 static void
3739 etoe53 (x, e)
3740 unsigned EMUSHORT *x, *e;
3742 etoibm (x, e, DFmode);
3745 /* Convert exploded e-type X, that has already been rounded to
3746 56-bit precision, to IBM 370 double Y. */
3748 static void
3749 toe53 (x, y)
3750 unsigned EMUSHORT *x, *y;
3752 toibm (x, y, DFmode);
3755 #else /* it's neither DEC nor IBM */
3756 #ifdef C4X
3757 /* Convert e-type X to C4X-format long double E. */
3759 static void
3760 etoe53 (x, e)
3761 unsigned EMUSHORT *x, *e;
3763 etoc4x (x, e, HFmode);
3766 /* Convert exploded e-type X, that has already been rounded to
3767 56-bit precision, to IBM 370 double Y. */
3769 static void
3770 toe53 (x, y)
3771 unsigned EMUSHORT *x, *y;
3773 toc4x (x, y, HFmode);
3776 #else /* it's neither DEC nor IBM nor C4X */
3778 /* Convert e-type X to IEEE double E. */
3780 static void
3781 etoe53 (x, e)
3782 unsigned EMUSHORT *x, *e;
3784 unsigned EMUSHORT xi[NI];
3785 EMULONG exp;
3786 int rndsav;
3788 #ifdef NANS
3789 if (eisnan (x))
3791 make_nan (e, eisneg (x), DFmode);
3792 return;
3794 #endif
3795 emovi (x, xi);
3796 /* adjust exponent for offsets */
3797 exp = (EMULONG) xi[E] - (EXONE - 0x3ff);
3798 #ifdef INFINITY
3799 if (eisinf (x))
3800 goto nonorm;
3801 #endif
3802 /* round off to nearest or even */
3803 rndsav = rndprc;
3804 rndprc = 53;
3805 emdnorm (xi, 0, 0, exp, 64);
3806 rndprc = rndsav;
3807 nonorm:
3808 toe53 (xi, e);
3811 /* Convert exploded e-type X, that has already been rounded to
3812 53-bit precision, to IEEE double Y. */
3814 static void
3815 toe53 (x, y)
3816 unsigned EMUSHORT *x, *y;
3818 unsigned EMUSHORT i;
3819 unsigned EMUSHORT *p;
3821 #ifdef NANS
3822 if (eiisnan (x))
3824 make_nan (y, eiisneg (x), DFmode);
3825 return;
3827 #endif
3828 p = &x[0];
3829 #ifdef IEEE
3830 if (! REAL_WORDS_BIG_ENDIAN)
3831 y += 3;
3832 #endif
3833 *y = 0; /* output high order */
3834 if (*p++)
3835 *y = 0x8000; /* output sign bit */
3837 i = *p++;
3838 if (i >= (unsigned int) 2047)
3840 /* Saturate at largest number less than infinity. */
3841 #ifdef INFINITY
3842 *y |= 0x7ff0;
3843 if (! REAL_WORDS_BIG_ENDIAN)
3845 *(--y) = 0;
3846 *(--y) = 0;
3847 *(--y) = 0;
3849 else
3851 ++y;
3852 *y++ = 0;
3853 *y++ = 0;
3854 *y++ = 0;
3856 #else
3857 *y |= (unsigned EMUSHORT) 0x7fef;
3858 if (! REAL_WORDS_BIG_ENDIAN)
3860 *(--y) = 0xffff;
3861 *(--y) = 0xffff;
3862 *(--y) = 0xffff;
3864 else
3866 ++y;
3867 *y++ = 0xffff;
3868 *y++ = 0xffff;
3869 *y++ = 0xffff;
3871 #endif
3872 return;
3874 if (i == 0)
3876 eshift (x, 4);
3878 else
3880 i <<= 4;
3881 eshift (x, 5);
3883 i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */
3884 *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */
3885 if (! REAL_WORDS_BIG_ENDIAN)
3887 *(--y) = *p++;
3888 *(--y) = *p++;
3889 *(--y) = *p;
3891 else
3893 ++y;
3894 *y++ = *p++;
3895 *y++ = *p++;
3896 *y++ = *p++;
3900 #endif /* not C4X */
3901 #endif /* not IBM */
3902 #endif /* not DEC */
3906 /* e type to single precision. */
3908 #ifdef IBM
3909 /* Convert e-type X to IBM 370 float E. */
3911 static void
3912 etoe24 (x, e)
3913 unsigned EMUSHORT *x, *e;
3915 etoibm (x, e, SFmode);
3918 /* Convert exploded e-type X, that has already been rounded to
3919 float precision, to IBM 370 float Y. */
3921 static void
3922 toe24 (x, y)
3923 unsigned EMUSHORT *x, *y;
3925 toibm (x, y, SFmode);
3928 #else
3930 #ifdef C4X
3931 /* Convert e-type X to C4X float E. */
3933 static void
3934 etoe24 (x, e)
3935 unsigned EMUSHORT *x, *e;
3937 etoc4x (x, e, QFmode);
3940 /* Convert exploded e-type X, that has already been rounded to
3941 float precision, to IBM 370 float Y. */
3943 static void
3944 toe24 (x, y)
3945 unsigned EMUSHORT *x, *y;
3947 toc4x (x, y, QFmode);
3950 #else
3952 /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */
3954 static void
3955 etoe24 (x, e)
3956 unsigned EMUSHORT *x, *e;
3958 EMULONG exp;
3959 unsigned EMUSHORT xi[NI];
3960 int rndsav;
3962 #ifdef NANS
3963 if (eisnan (x))
3965 make_nan (e, eisneg (x), SFmode);
3966 return;
3968 #endif
3969 emovi (x, xi);
3970 /* adjust exponent for offsets */
3971 exp = (EMULONG) xi[E] - (EXONE - 0177);
3972 #ifdef INFINITY
3973 if (eisinf (x))
3974 goto nonorm;
3975 #endif
3976 /* round off to nearest or even */
3977 rndsav = rndprc;
3978 rndprc = 24;
3979 emdnorm (xi, 0, 0, exp, 64);
3980 rndprc = rndsav;
3981 nonorm:
3982 toe24 (xi, e);
3985 /* Convert exploded e-type X, that has already been rounded to
3986 float precision, to IEEE float Y. */
3988 static void
3989 toe24 (x, y)
3990 unsigned EMUSHORT *x, *y;
3992 unsigned EMUSHORT i;
3993 unsigned EMUSHORT *p;
3995 #ifdef NANS
3996 if (eiisnan (x))
3998 make_nan (y, eiisneg (x), SFmode);
3999 return;
4001 #endif
4002 p = &x[0];
4003 #ifdef IEEE
4004 if (! REAL_WORDS_BIG_ENDIAN)
4005 y += 1;
4006 #endif
4007 #ifdef DEC
4008 y += 1;
4009 #endif
4010 *y = 0; /* output high order */
4011 if (*p++)
4012 *y = 0x8000; /* output sign bit */
4014 i = *p++;
4015 /* Handle overflow cases. */
4016 if (i >= 255)
4018 #ifdef INFINITY
4019 *y |= (unsigned EMUSHORT) 0x7f80;
4020 #ifdef DEC
4021 *(--y) = 0;
4022 #endif
4023 #ifdef IEEE
4024 if (! REAL_WORDS_BIG_ENDIAN)
4025 *(--y) = 0;
4026 else
4028 ++y;
4029 *y = 0;
4031 #endif
4032 #else /* no INFINITY */
4033 *y |= (unsigned EMUSHORT) 0x7f7f;
4034 #ifdef DEC
4035 *(--y) = 0xffff;
4036 #endif
4037 #ifdef IEEE
4038 if (! REAL_WORDS_BIG_ENDIAN)
4039 *(--y) = 0xffff;
4040 else
4042 ++y;
4043 *y = 0xffff;
4045 #endif
4046 #ifdef ERANGE
4047 errno = ERANGE;
4048 #endif
4049 #endif /* no INFINITY */
4050 return;
4052 if (i == 0)
4054 eshift (x, 7);
4056 else
4058 i <<= 7;
4059 eshift (x, 8);
4061 i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */
4062 /* High order output already has sign bit set. */
4063 *y |= i;
4064 #ifdef DEC
4065 *(--y) = *p;
4066 #endif
4067 #ifdef IEEE
4068 if (! REAL_WORDS_BIG_ENDIAN)
4069 *(--y) = *p;
4070 else
4072 ++y;
4073 *y = *p;
4075 #endif
4077 #endif /* not C4X */
4078 #endif /* not IBM */
4080 /* Compare two e type numbers.
4081 Return +1 if a > b
4082 0 if a == b
4083 -1 if a < b
4084 -2 if either a or b is a NaN. */
4086 static int
4087 ecmp (a, b)
4088 unsigned EMUSHORT *a, *b;
4090 unsigned EMUSHORT ai[NI], bi[NI];
4091 register unsigned EMUSHORT *p, *q;
4092 register int i;
4093 int msign;
4095 #ifdef NANS
4096 if (eisnan (a) || eisnan (b))
4097 return (-2);
4098 #endif
4099 emovi (a, ai);
4100 p = ai;
4101 emovi (b, bi);
4102 q = bi;
4104 if (*p != *q)
4105 { /* the signs are different */
4106 /* -0 equals + 0 */
4107 for (i = 1; i < NI - 1; i++)
4109 if (ai[i] != 0)
4110 goto nzro;
4111 if (bi[i] != 0)
4112 goto nzro;
4114 return (0);
4115 nzro:
4116 if (*p == 0)
4117 return (1);
4118 else
4119 return (-1);
4121 /* both are the same sign */
4122 if (*p == 0)
4123 msign = 1;
4124 else
4125 msign = -1;
4126 i = NI - 1;
4129 if (*p++ != *q++)
4131 goto diff;
4134 while (--i > 0);
4136 return (0); /* equality */
4138 diff:
4140 if (*(--p) > *(--q))
4141 return (msign); /* p is bigger */
4142 else
4143 return (-msign); /* p is littler */
4146 #if 0
4147 /* Find e-type nearest integer to X, as floor (X + 0.5). */
4149 static void
4150 eround (x, y)
4151 unsigned EMUSHORT *x, *y;
4153 eadd (ehalf, x, y);
4154 efloor (y, y);
4156 #endif /* 0 */
4158 /* Convert HOST_WIDE_INT LP to e type Y. */
4160 static void
4161 ltoe (lp, y)
4162 HOST_WIDE_INT *lp;
4163 unsigned EMUSHORT *y;
4165 unsigned EMUSHORT yi[NI];
4166 unsigned HOST_WIDE_INT ll;
4167 int k;
4169 ecleaz (yi);
4170 if (*lp < 0)
4172 /* make it positive */
4173 ll = (unsigned HOST_WIDE_INT) (-(*lp));
4174 yi[0] = 0xffff; /* put correct sign in the e type number */
4176 else
4178 ll = (unsigned HOST_WIDE_INT) (*lp);
4180 /* move the long integer to yi significand area */
4181 #if HOST_BITS_PER_WIDE_INT == 64
4182 yi[M] = (unsigned EMUSHORT) (ll >> 48);
4183 yi[M + 1] = (unsigned EMUSHORT) (ll >> 32);
4184 yi[M + 2] = (unsigned EMUSHORT) (ll >> 16);
4185 yi[M + 3] = (unsigned EMUSHORT) ll;
4186 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
4187 #else
4188 yi[M] = (unsigned EMUSHORT) (ll >> 16);
4189 yi[M + 1] = (unsigned EMUSHORT) ll;
4190 yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */
4191 #endif
4193 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
4194 ecleaz (yi); /* it was zero */
4195 else
4196 yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
4197 emovo (yi, y); /* output the answer */
4200 /* Convert unsigned HOST_WIDE_INT LP to e type Y. */
4202 static void
4203 ultoe (lp, y)
4204 unsigned HOST_WIDE_INT *lp;
4205 unsigned EMUSHORT *y;
4207 unsigned EMUSHORT yi[NI];
4208 unsigned HOST_WIDE_INT ll;
4209 int k;
4211 ecleaz (yi);
4212 ll = *lp;
4214 /* move the long integer to ayi significand area */
4215 #if HOST_BITS_PER_WIDE_INT == 64
4216 yi[M] = (unsigned EMUSHORT) (ll >> 48);
4217 yi[M + 1] = (unsigned EMUSHORT) (ll >> 32);
4218 yi[M + 2] = (unsigned EMUSHORT) (ll >> 16);
4219 yi[M + 3] = (unsigned EMUSHORT) ll;
4220 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
4221 #else
4222 yi[M] = (unsigned EMUSHORT) (ll >> 16);
4223 yi[M + 1] = (unsigned EMUSHORT) ll;
4224 yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */
4225 #endif
4227 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
4228 ecleaz (yi); /* it was zero */
4229 else
4230 yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */
4231 emovo (yi, y); /* output the answer */
4235 /* Find signed HOST_WIDE_INT integer I and floating point fractional
4236 part FRAC of e-type (packed internal format) floating point input X.
4237 The integer output I has the sign of the input, except that
4238 positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC.
4239 The output e-type fraction FRAC is the positive fractional
4240 part of abs (X). */
4242 static void
4243 eifrac (x, i, frac)
4244 unsigned EMUSHORT *x;
4245 HOST_WIDE_INT *i;
4246 unsigned EMUSHORT *frac;
4248 unsigned EMUSHORT xi[NI];
4249 int j, k;
4250 unsigned HOST_WIDE_INT ll;
4252 emovi (x, xi);
4253 k = (int) xi[E] - (EXONE - 1);
4254 if (k <= 0)
4256 /* if exponent <= 0, integer = 0 and real output is fraction */
4257 *i = 0L;
4258 emovo (xi, frac);
4259 return;
4261 if (k > (HOST_BITS_PER_WIDE_INT - 1))
4263 /* long integer overflow: output large integer
4264 and correct fraction */
4265 if (xi[0])
4266 *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1);
4267 else
4269 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4270 /* In this case, let it overflow and convert as if unsigned. */
4271 euifrac (x, &ll, frac);
4272 *i = (HOST_WIDE_INT) ll;
4273 return;
4274 #else
4275 /* In other cases, return the largest positive integer. */
4276 *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1;
4277 #endif
4279 eshift (xi, k);
4280 if (extra_warnings)
4281 warning ("overflow on truncation to integer");
4283 else if (k > 16)
4285 /* Shift more than 16 bits: first shift up k-16 mod 16,
4286 then shift up by 16's. */
4287 j = k - ((k >> 4) << 4);
4288 eshift (xi, j);
4289 ll = xi[M];
4290 k -= j;
4293 eshup6 (xi);
4294 ll = (ll << 16) | xi[M];
4296 while ((k -= 16) > 0);
4297 *i = ll;
4298 if (xi[0])
4299 *i = -(*i);
4301 else
4303 /* shift not more than 16 bits */
4304 eshift (xi, k);
4305 *i = (HOST_WIDE_INT) xi[M] & 0xffff;
4306 if (xi[0])
4307 *i = -(*i);
4309 xi[0] = 0;
4310 xi[E] = EXONE - 1;
4311 xi[M] = 0;
4312 if ((k = enormlz (xi)) > NBITS)
4313 ecleaz (xi);
4314 else
4315 xi[E] -= (unsigned EMUSHORT) k;
4317 emovo (xi, frac);
4321 /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part
4322 FRAC of e-type X. A negative input yields integer output = 0 but
4323 correct fraction. */
4325 static void
4326 euifrac (x, i, frac)
4327 unsigned EMUSHORT *x;
4328 unsigned HOST_WIDE_INT *i;
4329 unsigned EMUSHORT *frac;
4331 unsigned HOST_WIDE_INT ll;
4332 unsigned EMUSHORT xi[NI];
4333 int j, k;
4335 emovi (x, xi);
4336 k = (int) xi[E] - (EXONE - 1);
4337 if (k <= 0)
4339 /* if exponent <= 0, integer = 0 and argument is fraction */
4340 *i = 0L;
4341 emovo (xi, frac);
4342 return;
4344 if (k > HOST_BITS_PER_WIDE_INT)
4346 /* Long integer overflow: output large integer
4347 and correct fraction.
4348 Note, the BSD microvax compiler says that ~(0UL)
4349 is a syntax error. */
4350 *i = ~(0L);
4351 eshift (xi, k);
4352 if (extra_warnings)
4353 warning ("overflow on truncation to unsigned integer");
4355 else if (k > 16)
4357 /* Shift more than 16 bits: first shift up k-16 mod 16,
4358 then shift up by 16's. */
4359 j = k - ((k >> 4) << 4);
4360 eshift (xi, j);
4361 ll = xi[M];
4362 k -= j;
4365 eshup6 (xi);
4366 ll = (ll << 16) | xi[M];
4368 while ((k -= 16) > 0);
4369 *i = ll;
4371 else
4373 /* shift not more than 16 bits */
4374 eshift (xi, k);
4375 *i = (HOST_WIDE_INT) xi[M] & 0xffff;
4378 if (xi[0]) /* A negative value yields unsigned integer 0. */
4379 *i = 0L;
4381 xi[0] = 0;
4382 xi[E] = EXONE - 1;
4383 xi[M] = 0;
4384 if ((k = enormlz (xi)) > NBITS)
4385 ecleaz (xi);
4386 else
4387 xi[E] -= (unsigned EMUSHORT) k;
4389 emovo (xi, frac);
4392 /* Shift the significand of exploded e-type X up or down by SC bits. */
4394 static int
4395 eshift (x, sc)
4396 unsigned EMUSHORT *x;
4397 int sc;
4399 unsigned EMUSHORT lost;
4400 unsigned EMUSHORT *p;
4402 if (sc == 0)
4403 return (0);
4405 lost = 0;
4406 p = x + NI - 1;
4408 if (sc < 0)
4410 sc = -sc;
4411 while (sc >= 16)
4413 lost |= *p; /* remember lost bits */
4414 eshdn6 (x);
4415 sc -= 16;
4418 while (sc >= 8)
4420 lost |= *p & 0xff;
4421 eshdn8 (x);
4422 sc -= 8;
4425 while (sc > 0)
4427 lost |= *p & 1;
4428 eshdn1 (x);
4429 sc -= 1;
4432 else
4434 while (sc >= 16)
4436 eshup6 (x);
4437 sc -= 16;
4440 while (sc >= 8)
4442 eshup8 (x);
4443 sc -= 8;
4446 while (sc > 0)
4448 eshup1 (x);
4449 sc -= 1;
4452 if (lost)
4453 lost = 1;
4454 return ((int) lost);
4457 /* Shift normalize the significand area of exploded e-type X.
4458 Return the shift count (up = positive). */
4460 static int
4461 enormlz (x)
4462 unsigned EMUSHORT x[];
4464 register unsigned EMUSHORT *p;
4465 int sc;
4467 sc = 0;
4468 p = &x[M];
4469 if (*p != 0)
4470 goto normdn;
4471 ++p;
4472 if (*p & 0x8000)
4473 return (0); /* already normalized */
4474 while (*p == 0)
4476 eshup6 (x);
4477 sc += 16;
4479 /* With guard word, there are NBITS+16 bits available.
4480 Return true if all are zero. */
4481 if (sc > NBITS)
4482 return (sc);
4484 /* see if high byte is zero */
4485 while ((*p & 0xff00) == 0)
4487 eshup8 (x);
4488 sc += 8;
4490 /* now shift 1 bit at a time */
4491 while ((*p & 0x8000) == 0)
4493 eshup1 (x);
4494 sc += 1;
4495 if (sc > NBITS)
4497 mtherr ("enormlz", UNDERFLOW);
4498 return (sc);
4501 return (sc);
4503 /* Normalize by shifting down out of the high guard word
4504 of the significand */
4505 normdn:
4507 if (*p & 0xff00)
4509 eshdn8 (x);
4510 sc -= 8;
4512 while (*p != 0)
4514 eshdn1 (x);
4515 sc -= 1;
4517 if (sc < -NBITS)
4519 mtherr ("enormlz", OVERFLOW);
4520 return (sc);
4523 return (sc);
4526 /* Powers of ten used in decimal <-> binary conversions. */
4528 #define NTEN 12
4529 #define MAXP 4096
4531 #if LONG_DOUBLE_TYPE_SIZE == 128
4532 static unsigned EMUSHORT etens[NTEN + 1][NE] =
4534 {0x6576, 0x4a92, 0x804a, 0x153f,
4535 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */
4536 {0x6a32, 0xce52, 0x329a, 0x28ce,
4537 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */
4538 {0x526c, 0x50ce, 0xf18b, 0x3d28,
4539 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
4540 {0x9c66, 0x58f8, 0xbc50, 0x5c54,
4541 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
4542 {0x851e, 0xeab7, 0x98fe, 0x901b,
4543 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
4544 {0x0235, 0x0137, 0x36b1, 0x336c,
4545 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
4546 {0x50f8, 0x25fb, 0xc76b, 0x6b71,
4547 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
4548 {0x0000, 0x0000, 0x0000, 0x0000,
4549 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
4550 {0x0000, 0x0000, 0x0000, 0x0000,
4551 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
4552 {0x0000, 0x0000, 0x0000, 0x0000,
4553 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
4554 {0x0000, 0x0000, 0x0000, 0x0000,
4555 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
4556 {0x0000, 0x0000, 0x0000, 0x0000,
4557 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
4558 {0x0000, 0x0000, 0x0000, 0x0000,
4559 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */
4562 static unsigned EMUSHORT emtens[NTEN + 1][NE] =
4564 {0x2030, 0xcffc, 0xa1c3, 0x8123,
4565 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */
4566 {0x8264, 0xd2cb, 0xf2ea, 0x12d4,
4567 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */
4568 {0xf53f, 0xf698, 0x6bd3, 0x0158,
4569 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
4570 {0xe731, 0x04d4, 0xe3f2, 0xd332,
4571 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
4572 {0xa23e, 0x5308, 0xfefb, 0x1155,
4573 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
4574 {0xe26d, 0xdbde, 0xd05d, 0xb3f6,
4575 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
4576 {0x2a20, 0x6224, 0x47b3, 0x98d7,
4577 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
4578 {0x0b5b, 0x4af2, 0xa581, 0x18ed,
4579 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
4580 {0xbf71, 0xa9b3, 0x7989, 0xbe68,
4581 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
4582 {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
4583 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
4584 {0xc155, 0xa4a8, 0x404e, 0x6113,
4585 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
4586 {0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
4587 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
4588 {0xcccd, 0xcccc, 0xcccc, 0xcccc,
4589 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */
4591 #else
4592 /* LONG_DOUBLE_TYPE_SIZE is other than 128 */
4593 static unsigned EMUSHORT etens[NTEN + 1][NE] =
4595 {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */
4596 {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */
4597 {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
4598 {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
4599 {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
4600 {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
4601 {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
4602 {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
4603 {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
4604 {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
4605 {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
4606 {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
4607 {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */
4610 static unsigned EMUSHORT emtens[NTEN + 1][NE] =
4612 {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */
4613 {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */
4614 {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
4615 {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
4616 {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
4617 {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
4618 {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
4619 {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
4620 {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
4621 {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
4622 {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
4623 {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
4624 {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */
4626 #endif
4628 #if 0
4629 /* Convert float value X to ASCII string STRING with NDIG digits after
4630 the decimal point. */
4632 static void
4633 e24toasc (x, string, ndigs)
4634 unsigned EMUSHORT x[];
4635 char *string;
4636 int ndigs;
4638 unsigned EMUSHORT w[NI];
4640 e24toe (x, w);
4641 etoasc (w, string, ndigs);
4644 /* Convert double value X to ASCII string STRING with NDIG digits after
4645 the decimal point. */
4647 static void
4648 e53toasc (x, string, ndigs)
4649 unsigned EMUSHORT x[];
4650 char *string;
4651 int ndigs;
4653 unsigned EMUSHORT w[NI];
4655 e53toe (x, w);
4656 etoasc (w, string, ndigs);
4659 /* Convert double extended value X to ASCII string STRING with NDIG digits
4660 after the decimal point. */
4662 static void
4663 e64toasc (x, string, ndigs)
4664 unsigned EMUSHORT x[];
4665 char *string;
4666 int ndigs;
4668 unsigned EMUSHORT w[NI];
4670 e64toe (x, w);
4671 etoasc (w, string, ndigs);
4674 /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
4675 after the decimal point. */
4677 static void
4678 e113toasc (x, string, ndigs)
4679 unsigned EMUSHORT x[];
4680 char *string;
4681 int ndigs;
4683 unsigned EMUSHORT w[NI];
4685 e113toe (x, w);
4686 etoasc (w, string, ndigs);
4688 #endif /* 0 */
4690 /* Convert e-type X to ASCII string STRING with NDIGS digits after
4691 the decimal point. */
4693 static char wstring[80]; /* working storage for ASCII output */
4695 static void
4696 etoasc (x, string, ndigs)
4697 unsigned EMUSHORT x[];
4698 char *string;
4699 int ndigs;
4701 EMUSHORT digit;
4702 unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI];
4703 unsigned EMUSHORT *p, *r, *ten;
4704 unsigned EMUSHORT sign;
4705 int i, j, k, expon, rndsav;
4706 char *s, *ss;
4707 unsigned EMUSHORT m;
4710 rndsav = rndprc;
4711 ss = string;
4712 s = wstring;
4713 *ss = '\0';
4714 *s = '\0';
4715 #ifdef NANS
4716 if (eisnan (x))
4718 sprintf (wstring, " NaN ");
4719 goto bxit;
4721 #endif
4722 rndprc = NBITS; /* set to full precision */
4723 emov (x, y); /* retain external format */
4724 if (y[NE - 1] & 0x8000)
4726 sign = 0xffff;
4727 y[NE - 1] &= 0x7fff;
4729 else
4731 sign = 0;
4733 expon = 0;
4734 ten = &etens[NTEN][0];
4735 emov (eone, t);
4736 /* Test for zero exponent */
4737 if (y[NE - 1] == 0)
4739 for (k = 0; k < NE - 1; k++)
4741 if (y[k] != 0)
4742 goto tnzro; /* denormalized number */
4744 goto isone; /* valid all zeros */
4746 tnzro:
4748 /* Test for infinity. */
4749 if (y[NE - 1] == 0x7fff)
4751 if (sign)
4752 sprintf (wstring, " -Infinity ");
4753 else
4754 sprintf (wstring, " Infinity ");
4755 goto bxit;
4758 /* Test for exponent nonzero but significand denormalized.
4759 * This is an error condition.
4761 if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0))
4763 mtherr ("etoasc", DOMAIN);
4764 sprintf (wstring, "NaN");
4765 goto bxit;
4768 /* Compare to 1.0 */
4769 i = ecmp (eone, y);
4770 if (i == 0)
4771 goto isone;
4773 if (i == -2)
4774 abort ();
4776 if (i < 0)
4777 { /* Number is greater than 1 */
4778 /* Convert significand to an integer and strip trailing decimal zeros. */
4779 emov (y, u);
4780 u[NE - 1] = EXONE + NBITS - 1;
4782 p = &etens[NTEN - 4][0];
4783 m = 16;
4786 ediv (p, u, t);
4787 efloor (t, w);
4788 for (j = 0; j < NE - 1; j++)
4790 if (t[j] != w[j])
4791 goto noint;
4793 emov (t, u);
4794 expon += (int) m;
4795 noint:
4796 p += NE;
4797 m >>= 1;
4799 while (m != 0);
4801 /* Rescale from integer significand */
4802 u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1);
4803 emov (u, y);
4804 /* Find power of 10 */
4805 emov (eone, t);
4806 m = MAXP;
4807 p = &etens[0][0];
4808 /* An unordered compare result shouldn't happen here. */
4809 while (ecmp (ten, u) <= 0)
4811 if (ecmp (p, u) <= 0)
4813 ediv (p, u, u);
4814 emul (p, t, t);
4815 expon += (int) m;
4817 m >>= 1;
4818 if (m == 0)
4819 break;
4820 p += NE;
4823 else
4824 { /* Number is less than 1.0 */
4825 /* Pad significand with trailing decimal zeros. */
4826 if (y[NE - 1] == 0)
4828 while ((y[NE - 2] & 0x8000) == 0)
4830 emul (ten, y, y);
4831 expon -= 1;
4834 else
4836 emovi (y, w);
4837 for (i = 0; i < NDEC + 1; i++)
4839 if ((w[NI - 1] & 0x7) != 0)
4840 break;
4841 /* multiply by 10 */
4842 emovz (w, u);
4843 eshdn1 (u);
4844 eshdn1 (u);
4845 eaddm (w, u);
4846 u[1] += 3;
4847 while (u[2] != 0)
4849 eshdn1 (u);
4850 u[1] += 1;
4852 if (u[NI - 1] != 0)
4853 break;
4854 if (eone[NE - 1] <= u[1])
4855 break;
4856 emovz (u, w);
4857 expon -= 1;
4859 emovo (w, y);
4861 k = -MAXP;
4862 p = &emtens[0][0];
4863 r = &etens[0][0];
4864 emov (y, w);
4865 emov (eone, t);
4866 while (ecmp (eone, w) > 0)
4868 if (ecmp (p, w) >= 0)
4870 emul (r, w, w);
4871 emul (r, t, t);
4872 expon += k;
4874 k /= 2;
4875 if (k == 0)
4876 break;
4877 p += NE;
4878 r += NE;
4880 ediv (t, eone, t);
4882 isone:
4883 /* Find the first (leading) digit. */
4884 emovi (t, w);
4885 emovz (w, t);
4886 emovi (y, w);
4887 emovz (w, y);
4888 eiremain (t, y);
4889 digit = equot[NI - 1];
4890 while ((digit == 0) && (ecmp (y, ezero) != 0))
4892 eshup1 (y);
4893 emovz (y, u);
4894 eshup1 (u);
4895 eshup1 (u);
4896 eaddm (u, y);
4897 eiremain (t, y);
4898 digit = equot[NI - 1];
4899 expon -= 1;
4901 s = wstring;
4902 if (sign)
4903 *s++ = '-';
4904 else
4905 *s++ = ' ';
4906 /* Examine number of digits requested by caller. */
4907 if (ndigs < 0)
4908 ndigs = 0;
4909 if (ndigs > NDEC)
4910 ndigs = NDEC;
4911 if (digit == 10)
4913 *s++ = '1';
4914 *s++ = '.';
4915 if (ndigs > 0)
4917 *s++ = '0';
4918 ndigs -= 1;
4920 expon += 1;
4922 else
4924 *s++ = (char)digit + '0';
4925 *s++ = '.';
4927 /* Generate digits after the decimal point. */
4928 for (k = 0; k <= ndigs; k++)
4930 /* multiply current number by 10, without normalizing */
4931 eshup1 (y);
4932 emovz (y, u);
4933 eshup1 (u);
4934 eshup1 (u);
4935 eaddm (u, y);
4936 eiremain (t, y);
4937 *s++ = (char) equot[NI - 1] + '0';
4939 digit = equot[NI - 1];
4940 --s;
4941 ss = s;
4942 /* round off the ASCII string */
4943 if (digit > 4)
4945 /* Test for critical rounding case in ASCII output. */
4946 if (digit == 5)
4948 emovo (y, t);
4949 if (ecmp (t, ezero) != 0)
4950 goto roun; /* round to nearest */
4951 #ifndef C4X
4952 if ((*(s - 1) & 1) == 0)
4953 goto doexp; /* round to even */
4954 #endif
4956 /* Round up and propagate carry-outs */
4957 roun:
4958 --s;
4959 k = *s & 0x7f;
4960 /* Carry out to most significant digit? */
4961 if (k == '.')
4963 --s;
4964 k = *s;
4965 k += 1;
4966 *s = (char) k;
4967 /* Most significant digit carries to 10? */
4968 if (k > '9')
4970 expon += 1;
4971 *s = '1';
4973 goto doexp;
4975 /* Round up and carry out from less significant digits */
4976 k += 1;
4977 *s = (char) k;
4978 if (k > '9')
4980 *s = '0';
4981 goto roun;
4984 doexp:
4986 if (expon >= 0)
4987 sprintf (ss, "e+%d", expon);
4988 else
4989 sprintf (ss, "e%d", expon);
4991 sprintf (ss, "e%d", expon);
4992 bxit:
4993 rndprc = rndsav;
4994 /* copy out the working string */
4995 s = string;
4996 ss = wstring;
4997 while (*ss == ' ') /* strip possible leading space */
4998 ++ss;
4999 while ((*s++ = *ss++) != '\0')
5004 /* Convert ASCII string to floating point.
5006 Numeric input is a free format decimal number of any length, with
5007 or without decimal point. Entering E after the number followed by an
5008 integer number causes the second number to be interpreted as a power of
5009 10 to be multiplied by the first number (i.e., "scientific" notation). */
5011 /* Convert ASCII string S to single precision float value Y. */
5013 static void
5014 asctoe24 (s, y)
5015 const char *s;
5016 unsigned EMUSHORT *y;
5018 asctoeg (s, y, 24);
5022 /* Convert ASCII string S to double precision value Y. */
5024 static void
5025 asctoe53 (s, y)
5026 const char *s;
5027 unsigned EMUSHORT *y;
5029 #if defined(DEC) || defined(IBM)
5030 asctoeg (s, y, 56);
5031 #else
5032 #if defined(C4X)
5033 asctoeg (s, y, 32);
5034 #else
5035 asctoeg (s, y, 53);
5036 #endif
5037 #endif
5041 /* Convert ASCII string S to double extended value Y. */
5043 static void
5044 asctoe64 (s, y)
5045 const char *s;
5046 unsigned EMUSHORT *y;
5048 asctoeg (s, y, 64);
5051 /* Convert ASCII string S to 128-bit long double Y. */
5053 static void
5054 asctoe113 (s, y)
5055 const char *s;
5056 unsigned EMUSHORT *y;
5058 asctoeg (s, y, 113);
5061 /* Convert ASCII string S to e type Y. */
5063 static void
5064 asctoe (s, y)
5065 const char *s;
5066 unsigned EMUSHORT *y;
5068 asctoeg (s, y, NBITS);
5071 /* Convert ASCII string SS to e type Y, with a specified rounding precision
5072 of OPREC bits. BASE is 16 for C9X hexadecimal floating constants. */
5074 static void
5075 asctoeg (ss, y, oprec)
5076 const char *ss;
5077 unsigned EMUSHORT *y;
5078 int oprec;
5080 unsigned EMUSHORT yy[NI], xt[NI], tt[NI];
5081 int esign, decflg, sgnflg, nexp, exp, prec, lost;
5082 int k, trail, c, rndsav;
5083 EMULONG lexp;
5084 unsigned EMUSHORT nsign, *p;
5085 char *sp, *s, *lstr;
5086 int base = 10;
5088 /* Copy the input string. */
5089 lstr = (char *) alloca (strlen (ss) + 1);
5091 while (*ss == ' ') /* skip leading spaces */
5092 ++ss;
5094 sp = lstr;
5095 while ((*sp++ = *ss++) != '\0')
5097 s = lstr;
5099 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
5101 base = 16;
5102 s += 2;
5105 rndsav = rndprc;
5106 rndprc = NBITS; /* Set to full precision */
5107 lost = 0;
5108 nsign = 0;
5109 decflg = 0;
5110 sgnflg = 0;
5111 nexp = 0;
5112 exp = 0;
5113 prec = 0;
5114 ecleaz (yy);
5115 trail = 0;
5117 nxtcom:
5118 if (*s >= '0' && *s <= '9')
5119 k = *s - '0';
5120 else if (*s >= 'a')
5121 k = 10 + *s - 'a';
5122 else
5123 k = 10 + *s - 'A';
5124 if ((k >= 0) && (k < base))
5126 /* Ignore leading zeros */
5127 if ((prec == 0) && (decflg == 0) && (k == 0))
5128 goto donchr;
5129 /* Identify and strip trailing zeros after the decimal point. */
5130 if ((trail == 0) && (decflg != 0))
5132 sp = s;
5133 while ((*sp >= '0' && *sp <= '9')
5134 || (base == 16 && ((*sp >= 'a' && *sp <= 'f')
5135 || (*sp >= 'A' && *sp <= 'F'))))
5136 ++sp;
5137 /* Check for syntax error */
5138 c = *sp & 0x7f;
5139 if ((base != 10 || ((c != 'e') && (c != 'E')))
5140 && (base != 16 || ((c != 'p') && (c != 'P')))
5141 && (c != '\0')
5142 && (c != '\n') && (c != '\r') && (c != ' ')
5143 && (c != ','))
5144 goto error;
5145 --sp;
5146 while (*sp == '0')
5147 *sp-- = 'z';
5148 trail = 1;
5149 if (*s == 'z')
5150 goto donchr;
5153 /* If enough digits were given to more than fill up the yy register,
5154 continuing until overflow into the high guard word yy[2]
5155 guarantees that there will be a roundoff bit at the top
5156 of the low guard word after normalization. */
5158 if (yy[2] == 0)
5160 if (base == 16)
5162 if (decflg)
5163 nexp += 4; /* count digits after decimal point */
5165 eshup1 (yy); /* multiply current number by 16 */
5166 eshup1 (yy);
5167 eshup1 (yy);
5168 eshup1 (yy);
5170 else
5172 if (decflg)
5173 nexp += 1; /* count digits after decimal point */
5175 eshup1 (yy); /* multiply current number by 10 */
5176 emovz (yy, xt);
5177 eshup1 (xt);
5178 eshup1 (xt);
5179 eaddm (xt, yy);
5181 /* Insert the current digit. */
5182 ecleaz (xt);
5183 xt[NI - 2] = (unsigned EMUSHORT) k;
5184 eaddm (xt, yy);
5186 else
5188 /* Mark any lost non-zero digit. */
5189 lost |= k;
5190 /* Count lost digits before the decimal point. */
5191 if (decflg == 0)
5193 if (base == 10)
5194 nexp -= 1;
5195 else
5196 nexp -= 4;
5199 prec += 1;
5200 goto donchr;
5203 switch (*s)
5205 case 'z':
5206 break;
5207 case 'E':
5208 case 'e':
5209 case 'P':
5210 case 'p':
5211 goto expnt;
5212 case '.': /* decimal point */
5213 if (decflg)
5214 goto error;
5215 ++decflg;
5216 break;
5217 case '-':
5218 nsign = 0xffff;
5219 if (sgnflg)
5220 goto error;
5221 ++sgnflg;
5222 break;
5223 case '+':
5224 if (sgnflg)
5225 goto error;
5226 ++sgnflg;
5227 break;
5228 case ',':
5229 case ' ':
5230 case '\0':
5231 case '\n':
5232 case '\r':
5233 goto daldone;
5234 case 'i':
5235 case 'I':
5236 goto infinite;
5237 default:
5238 error:
5239 #ifdef NANS
5240 einan (yy);
5241 #else
5242 mtherr ("asctoe", DOMAIN);
5243 eclear (yy);
5244 #endif
5245 goto aexit;
5247 donchr:
5248 ++s;
5249 goto nxtcom;
5251 /* Exponent interpretation */
5252 expnt:
5253 /* 0.0eXXX is zero, regardless of XXX. Check for the 0.0. */
5254 for (k = 0; k < NI; k++)
5256 if (yy[k] != 0)
5257 goto read_expnt;
5259 goto aexit;
5261 read_expnt:
5262 esign = 1;
5263 exp = 0;
5264 ++s;
5265 /* check for + or - */
5266 if (*s == '-')
5268 esign = -1;
5269 ++s;
5271 if (*s == '+')
5272 ++s;
5273 while ((*s >= '0') && (*s <= '9'))
5275 exp *= 10;
5276 exp += *s++ - '0';
5277 if (exp > 999999)
5278 break;
5280 if (esign < 0)
5281 exp = -exp;
5282 if ((exp > MAXDECEXP) && (base == 10))
5284 infinite:
5285 ecleaz (yy);
5286 yy[E] = 0x7fff; /* infinity */
5287 goto aexit;
5289 if ((exp < MINDECEXP) && (base == 10))
5291 zero:
5292 ecleaz (yy);
5293 goto aexit;
5296 daldone:
5297 if (base == 16)
5299 /* Base 16 hexadecimal floating constant. */
5300 if ((k = enormlz (yy)) > NBITS)
5302 ecleaz (yy);
5303 goto aexit;
5305 /* Adjust the exponent. NEXP is the number of hex digits,
5306 EXP is a power of 2. */
5307 lexp = (EXONE - 1 + NBITS) - k + yy[E] + exp - nexp;
5308 if (lexp > 0x7fff)
5309 goto infinite;
5310 if (lexp < 0)
5311 goto zero;
5312 yy[E] = lexp;
5313 goto expdon;
5316 nexp = exp - nexp;
5317 /* Pad trailing zeros to minimize power of 10, per IEEE spec. */
5318 while ((nexp > 0) && (yy[2] == 0))
5320 emovz (yy, xt);
5321 eshup1 (xt);
5322 eshup1 (xt);
5323 eaddm (yy, xt);
5324 eshup1 (xt);
5325 if (xt[2] != 0)
5326 break;
5327 nexp -= 1;
5328 emovz (xt, yy);
5330 if ((k = enormlz (yy)) > NBITS)
5332 ecleaz (yy);
5333 goto aexit;
5335 lexp = (EXONE - 1 + NBITS) - k;
5336 emdnorm (yy, lost, 0, lexp, 64);
5337 lost = 0;
5339 /* Convert to external format:
5341 Multiply by 10**nexp. If precision is 64 bits,
5342 the maximum relative error incurred in forming 10**n
5343 for 0 <= n <= 324 is 8.2e-20, at 10**180.
5344 For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
5345 For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */
5347 lexp = yy[E];
5348 if (nexp == 0)
5350 k = 0;
5351 goto expdon;
5353 esign = 1;
5354 if (nexp < 0)
5356 nexp = -nexp;
5357 esign = -1;
5358 if (nexp > 4096)
5360 /* Punt. Can't handle this without 2 divides. */
5361 emovi (etens[0], tt);
5362 lexp -= tt[E];
5363 k = edivm (tt, yy);
5364 lexp += EXONE;
5365 nexp -= 4096;
5368 p = &etens[NTEN][0];
5369 emov (eone, xt);
5370 exp = 1;
5373 if (exp & nexp)
5374 emul (p, xt, xt);
5375 p -= NE;
5376 exp = exp + exp;
5378 while (exp <= MAXP);
5380 emovi (xt, tt);
5381 if (esign < 0)
5383 lexp -= tt[E];
5384 k = edivm (tt, yy);
5385 lexp += EXONE;
5387 else
5389 lexp += tt[E];
5390 k = emulm (tt, yy);
5391 lexp -= EXONE - 1;
5393 lost = k;
5395 expdon:
5397 /* Round and convert directly to the destination type */
5398 if (oprec == 53)
5399 lexp -= EXONE - 0x3ff;
5400 #ifdef C4X
5401 else if (oprec == 24 || oprec == 32)
5402 lexp -= (EXONE - 0x7f);
5403 #else
5404 #ifdef IBM
5405 else if (oprec == 24 || oprec == 56)
5406 lexp -= EXONE - (0x41 << 2);
5407 #else
5408 else if (oprec == 24)
5409 lexp -= EXONE - 0177;
5410 #endif /* IBM */
5411 #endif /* C4X */
5412 #ifdef DEC
5413 else if (oprec == 56)
5414 lexp -= EXONE - 0201;
5415 #endif
5416 rndprc = oprec;
5417 emdnorm (yy, lost, 0, lexp, 64);
5419 aexit:
5421 rndprc = rndsav;
5422 yy[0] = nsign;
5423 switch (oprec)
5425 #ifdef DEC
5426 case 56:
5427 todec (yy, y); /* see etodec.c */
5428 break;
5429 #endif
5430 #ifdef IBM
5431 case 56:
5432 toibm (yy, y, DFmode);
5433 break;
5434 #endif
5435 #ifdef C4X
5436 case 32:
5437 toc4x (yy, y, HFmode);
5438 break;
5439 #endif
5441 case 53:
5442 toe53 (yy, y);
5443 break;
5444 case 24:
5445 toe24 (yy, y);
5446 break;
5447 case 64:
5448 toe64 (yy, y);
5449 break;
5450 case 113:
5451 toe113 (yy, y);
5452 break;
5453 case NBITS:
5454 emovo (yy, y);
5455 break;
5461 /* Return Y = largest integer not greater than X (truncated toward minus
5462 infinity). */
5464 static unsigned EMUSHORT bmask[] =
5466 0xffff,
5467 0xfffe,
5468 0xfffc,
5469 0xfff8,
5470 0xfff0,
5471 0xffe0,
5472 0xffc0,
5473 0xff80,
5474 0xff00,
5475 0xfe00,
5476 0xfc00,
5477 0xf800,
5478 0xf000,
5479 0xe000,
5480 0xc000,
5481 0x8000,
5482 0x0000,
5485 static void
5486 efloor (x, y)
5487 unsigned EMUSHORT x[], y[];
5489 register unsigned EMUSHORT *p;
5490 int e, expon, i;
5491 unsigned EMUSHORT f[NE];
5493 emov (x, f); /* leave in external format */
5494 expon = (int) f[NE - 1];
5495 e = (expon & 0x7fff) - (EXONE - 1);
5496 if (e <= 0)
5498 eclear (y);
5499 goto isitneg;
5501 /* number of bits to clear out */
5502 e = NBITS - e;
5503 emov (f, y);
5504 if (e <= 0)
5505 return;
5507 p = &y[0];
5508 while (e >= 16)
5510 *p++ = 0;
5511 e -= 16;
5513 /* clear the remaining bits */
5514 *p &= bmask[e];
5515 /* truncate negatives toward minus infinity */
5516 isitneg:
5518 if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000)
5520 for (i = 0; i < NE - 1; i++)
5522 if (f[i] != y[i])
5524 esub (eone, y, y);
5525 break;
5532 #if 0
5533 /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1.
5534 For example, 1.1 = 0.55 * 2^1. */
5536 static void
5537 efrexp (x, exp, s)
5538 unsigned EMUSHORT x[];
5539 int *exp;
5540 unsigned EMUSHORT s[];
5542 unsigned EMUSHORT xi[NI];
5543 EMULONG li;
5545 emovi (x, xi);
5546 /* Handle denormalized numbers properly using long integer exponent. */
5547 li = (EMULONG) ((EMUSHORT) xi[1]);
5549 if (li == 0)
5551 li -= enormlz (xi);
5553 xi[1] = 0x3ffe;
5554 emovo (xi, s);
5555 *exp = (int) (li - 0x3ffe);
5557 #endif
5559 /* Return e type Y = X * 2^PWR2. */
5561 static void
5562 eldexp (x, pwr2, y)
5563 unsigned EMUSHORT x[];
5564 int pwr2;
5565 unsigned EMUSHORT y[];
5567 unsigned EMUSHORT xi[NI];
5568 EMULONG li;
5569 int i;
5571 emovi (x, xi);
5572 li = xi[1];
5573 li += pwr2;
5574 i = 0;
5575 emdnorm (xi, i, i, li, 64);
5576 emovo (xi, y);
5580 #if 0
5581 /* C = remainder after dividing B by A, all e type values.
5582 Least significant integer quotient bits left in EQUOT. */
5584 static void
5585 eremain (a, b, c)
5586 unsigned EMUSHORT a[], b[], c[];
5588 unsigned EMUSHORT den[NI], num[NI];
5590 #ifdef NANS
5591 if (eisinf (b)
5592 || (ecmp (a, ezero) == 0)
5593 || eisnan (a)
5594 || eisnan (b))
5596 enan (c, 0);
5597 return;
5599 #endif
5600 if (ecmp (a, ezero) == 0)
5602 mtherr ("eremain", SING);
5603 eclear (c);
5604 return;
5606 emovi (a, den);
5607 emovi (b, num);
5608 eiremain (den, num);
5609 /* Sign of remainder = sign of quotient */
5610 if (a[0] == b[0])
5611 num[0] = 0;
5612 else
5613 num[0] = 0xffff;
5614 emovo (num, c);
5616 #endif
5618 /* Return quotient of exploded e-types NUM / DEN in EQUOT,
5619 remainder in NUM. */
5621 static void
5622 eiremain (den, num)
5623 unsigned EMUSHORT den[], num[];
5625 EMULONG ld, ln;
5626 unsigned EMUSHORT j;
5628 ld = den[E];
5629 ld -= enormlz (den);
5630 ln = num[E];
5631 ln -= enormlz (num);
5632 ecleaz (equot);
5633 while (ln >= ld)
5635 if (ecmpm (den, num) <= 0)
5637 esubm (den, num);
5638 j = 1;
5640 else
5641 j = 0;
5642 eshup1 (equot);
5643 equot[NI - 1] |= j;
5644 eshup1 (num);
5645 ln -= 1;
5647 emdnorm (num, 0, 0, ln, 0);
5650 /* Report an error condition CODE encountered in function NAME.
5652 Mnemonic Value Significance
5654 DOMAIN 1 argument domain error
5655 SING 2 function singularity
5656 OVERFLOW 3 overflow range error
5657 UNDERFLOW 4 underflow range error
5658 TLOSS 5 total loss of precision
5659 PLOSS 6 partial loss of precision
5660 INVALID 7 NaN - producing operation
5661 EDOM 33 Unix domain error code
5662 ERANGE 34 Unix range error code
5664 The order of appearance of the following messages is bound to the
5665 error codes defined above. */
5667 int merror = 0;
5668 extern int merror;
5670 static void
5671 mtherr (name, code)
5672 const char *name;
5673 int code;
5675 /* The string passed by the calling program is supposed to be the
5676 name of the function in which the error occurred.
5677 The code argument selects which error message string will be printed. */
5679 if (strcmp (name, "esub") == 0)
5680 name = "subtraction";
5681 else if (strcmp (name, "ediv") == 0)
5682 name = "division";
5683 else if (strcmp (name, "emul") == 0)
5684 name = "multiplication";
5685 else if (strcmp (name, "enormlz") == 0)
5686 name = "normalization";
5687 else if (strcmp (name, "etoasc") == 0)
5688 name = "conversion to text";
5689 else if (strcmp (name, "asctoe") == 0)
5690 name = "parsing";
5691 else if (strcmp (name, "eremain") == 0)
5692 name = "modulus";
5693 else if (strcmp (name, "esqrt") == 0)
5694 name = "square root";
5695 if (extra_warnings)
5697 switch (code)
5699 case DOMAIN: warning ("%s: argument domain error" , name); break;
5700 case SING: warning ("%s: function singularity" , name); break;
5701 case OVERFLOW: warning ("%s: overflow range error" , name); break;
5702 case UNDERFLOW: warning ("%s: underflow range error" , name); break;
5703 case TLOSS: warning ("%s: total loss of precision" , name); break;
5704 case PLOSS: warning ("%s: partial loss of precision", name); break;
5705 case INVALID: warning ("%s: NaN - producing operation", name); break;
5706 default: abort ();
5710 /* Set global error message word */
5711 merror = code + 1;
5714 #ifdef DEC
5715 /* Convert DEC double precision D to e type E. */
5717 static void
5718 dectoe (d, e)
5719 unsigned EMUSHORT *d;
5720 unsigned EMUSHORT *e;
5722 unsigned EMUSHORT y[NI];
5723 register unsigned EMUSHORT r, *p;
5725 ecleaz (y); /* start with a zero */
5726 p = y; /* point to our number */
5727 r = *d; /* get DEC exponent word */
5728 if (*d & (unsigned int) 0x8000)
5729 *p = 0xffff; /* fill in our sign */
5730 ++p; /* bump pointer to our exponent word */
5731 r &= 0x7fff; /* strip the sign bit */
5732 if (r == 0) /* answer = 0 if high order DEC word = 0 */
5733 goto done;
5736 r >>= 7; /* shift exponent word down 7 bits */
5737 r += EXONE - 0201; /* subtract DEC exponent offset */
5738 /* add our e type exponent offset */
5739 *p++ = r; /* to form our exponent */
5741 r = *d++; /* now do the high order mantissa */
5742 r &= 0177; /* strip off the DEC exponent and sign bits */
5743 r |= 0200; /* the DEC understood high order mantissa bit */
5744 *p++ = r; /* put result in our high guard word */
5746 *p++ = *d++; /* fill in the rest of our mantissa */
5747 *p++ = *d++;
5748 *p = *d;
5750 eshdn8 (y); /* shift our mantissa down 8 bits */
5751 done:
5752 emovo (y, e);
5755 /* Convert e type X to DEC double precision D. */
5757 static void
5758 etodec (x, d)
5759 unsigned EMUSHORT *x, *d;
5761 unsigned EMUSHORT xi[NI];
5762 EMULONG exp;
5763 int rndsav;
5765 emovi (x, xi);
5766 /* Adjust exponent for offsets. */
5767 exp = (EMULONG) xi[E] - (EXONE - 0201);
5768 /* Round off to nearest or even. */
5769 rndsav = rndprc;
5770 rndprc = 56;
5771 emdnorm (xi, 0, 0, exp, 64);
5772 rndprc = rndsav;
5773 todec (xi, d);
5776 /* Convert exploded e-type X, that has already been rounded to
5777 56-bit precision, to DEC format double Y. */
5779 static void
5780 todec (x, y)
5781 unsigned EMUSHORT *x, *y;
5783 unsigned EMUSHORT i;
5784 unsigned EMUSHORT *p;
5786 p = x;
5787 *y = 0;
5788 if (*p++)
5789 *y = 0100000;
5790 i = *p++;
5791 if (i == 0)
5793 *y++ = 0;
5794 *y++ = 0;
5795 *y++ = 0;
5796 *y++ = 0;
5797 return;
5799 if (i > 0377)
5801 *y++ |= 077777;
5802 *y++ = 0xffff;
5803 *y++ = 0xffff;
5804 *y++ = 0xffff;
5805 #ifdef ERANGE
5806 errno = ERANGE;
5807 #endif
5808 return;
5810 i &= 0377;
5811 i <<= 7;
5812 eshup8 (x);
5813 x[M] &= 0177;
5814 i |= x[M];
5815 *y++ |= i;
5816 *y++ = x[M + 1];
5817 *y++ = x[M + 2];
5818 *y++ = x[M + 3];
5820 #endif /* DEC */
5822 #ifdef IBM
5823 /* Convert IBM single/double precision to e type. */
5825 static void
5826 ibmtoe (d, e, mode)
5827 unsigned EMUSHORT *d;
5828 unsigned EMUSHORT *e;
5829 enum machine_mode mode;
5831 unsigned EMUSHORT y[NI];
5832 register unsigned EMUSHORT r, *p;
5833 int rndsav;
5835 ecleaz (y); /* start with a zero */
5836 p = y; /* point to our number */
5837 r = *d; /* get IBM exponent word */
5838 if (*d & (unsigned int) 0x8000)
5839 *p = 0xffff; /* fill in our sign */
5840 ++p; /* bump pointer to our exponent word */
5841 r &= 0x7f00; /* strip the sign bit */
5842 r >>= 6; /* shift exponent word down 6 bits */
5843 /* in fact shift by 8 right and 2 left */
5844 r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */
5845 /* add our e type exponent offset */
5846 *p++ = r; /* to form our exponent */
5848 *p++ = *d++ & 0xff; /* now do the high order mantissa */
5849 /* strip off the IBM exponent and sign bits */
5850 if (mode != SFmode) /* there are only 2 words in SFmode */
5852 *p++ = *d++; /* fill in the rest of our mantissa */
5853 *p++ = *d++;
5855 *p = *d;
5857 if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0)
5858 y[0] = y[E] = 0;
5859 else
5860 y[E] -= 5 + enormlz (y); /* now normalise the mantissa */
5861 /* handle change in RADIX */
5862 emovo (y, e);
5867 /* Convert e type to IBM single/double precision. */
5869 static void
5870 etoibm (x, d, mode)
5871 unsigned EMUSHORT *x, *d;
5872 enum machine_mode mode;
5874 unsigned EMUSHORT xi[NI];
5875 EMULONG exp;
5876 int rndsav;
5878 emovi (x, xi);
5879 exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */
5880 /* round off to nearest or even */
5881 rndsav = rndprc;
5882 rndprc = 56;
5883 emdnorm (xi, 0, 0, exp, 64);
5884 rndprc = rndsav;
5885 toibm (xi, d, mode);
5888 static void
5889 toibm (x, y, mode)
5890 unsigned EMUSHORT *x, *y;
5891 enum machine_mode mode;
5893 unsigned EMUSHORT i;
5894 unsigned EMUSHORT *p;
5895 int r;
5897 p = x;
5898 *y = 0;
5899 if (*p++)
5900 *y = 0x8000;
5901 i = *p++;
5902 if (i == 0)
5904 *y++ = 0;
5905 *y++ = 0;
5906 if (mode != SFmode)
5908 *y++ = 0;
5909 *y++ = 0;
5911 return;
5913 r = i & 0x3;
5914 i >>= 2;
5915 if (i > 0x7f)
5917 *y++ |= 0x7fff;
5918 *y++ = 0xffff;
5919 if (mode != SFmode)
5921 *y++ = 0xffff;
5922 *y++ = 0xffff;
5924 #ifdef ERANGE
5925 errno = ERANGE;
5926 #endif
5927 return;
5929 i &= 0x7f;
5930 *y |= (i << 8);
5931 eshift (x, r + 5);
5932 *y++ |= x[M];
5933 *y++ = x[M + 1];
5934 if (mode != SFmode)
5936 *y++ = x[M + 2];
5937 *y++ = x[M + 3];
5940 #endif /* IBM */
5943 #ifdef C4X
5944 /* Convert C4X single/double precision to e type. */
5946 static void
5947 c4xtoe (d, e, mode)
5948 unsigned EMUSHORT *d;
5949 unsigned EMUSHORT *e;
5950 enum machine_mode mode;
5952 unsigned EMUSHORT y[NI];
5953 int r;
5954 int isnegative;
5955 int size;
5956 int i;
5957 int carry;
5959 /* Short-circuit the zero case. */
5960 if ((d[0] == 0x8000)
5961 && (d[1] == 0x0000)
5962 && ((mode == QFmode) || ((d[2] == 0x0000) && (d[3] == 0x0000))))
5964 e[0] = 0;
5965 e[1] = 0;
5966 e[2] = 0;
5967 e[3] = 0;
5968 e[4] = 0;
5969 e[5] = 0;
5970 return;
5973 ecleaz (y); /* start with a zero */
5974 r = d[0]; /* get sign/exponent part */
5975 if (r & (unsigned int) 0x0080)
5977 y[0] = 0xffff; /* fill in our sign */
5978 isnegative = TRUE;
5980 else
5982 isnegative = FALSE;
5985 r >>= 8; /* Shift exponent word down 8 bits. */
5986 if (r & 0x80) /* Make the exponent negative if it is. */
5988 r = r | (~0 & ~0xff);
5991 if (isnegative)
5993 /* Now do the high order mantissa. We don't "or" on the high bit
5994 because it is 2 (not 1) and is handled a little differently
5995 below. */
5996 y[M] = d[0] & 0x7f;
5998 y[M+1] = d[1];
5999 if (mode != QFmode) /* There are only 2 words in QFmode. */
6001 y[M+2] = d[2]; /* Fill in the rest of our mantissa. */
6002 y[M+3] = d[3];
6003 size = 4;
6005 else
6007 size = 2;
6009 eshift(y, -8);
6011 /* Now do the two's complement on the data. */
6013 carry = 1; /* Initially add 1 for the two's complement. */
6014 for (i=size + M; i > M; i--)
6016 if (carry && (y[i] == 0x0000))
6018 /* We overflowed into the next word, carry is the same. */
6019 y[i] = carry ? 0x0000 : 0xffff;
6021 else
6023 /* No overflow, just invert and add carry. */
6024 y[i] = ((~y[i]) + carry) & 0xffff;
6025 carry = 0;
6029 if (carry)
6031 eshift(y, -1);
6032 y[M+1] |= 0x8000;
6033 r++;
6035 y[1] = r + EXONE;
6037 else
6039 /* Add our e type exponent offset to form our exponent. */
6040 r += EXONE;
6041 y[1] = r;
6043 /* Now do the high order mantissa strip off the exponent and sign
6044 bits and add the high 1 bit. */
6045 y[M] = (d[0] & 0x7f) | 0x80;
6047 y[M+1] = d[1];
6048 if (mode != QFmode) /* There are only 2 words in QFmode. */
6050 y[M+2] = d[2]; /* Fill in the rest of our mantissa. */
6051 y[M+3] = d[3];
6053 eshift(y, -8);
6056 emovo (y, e);
6060 /* Convert e type to C4X single/double precision. */
6062 static void
6063 etoc4x (x, d, mode)
6064 unsigned EMUSHORT *x, *d;
6065 enum machine_mode mode;
6067 unsigned EMUSHORT xi[NI];
6068 EMULONG exp;
6069 int rndsav;
6071 emovi (x, xi);
6073 /* Adjust exponent for offsets. */
6074 exp = (EMULONG) xi[E] - (EXONE - 0x7f);
6076 /* Round off to nearest or even. */
6077 rndsav = rndprc;
6078 rndprc = mode == QFmode ? 24 : 32;
6079 emdnorm (xi, 0, 0, exp, 64);
6080 rndprc = rndsav;
6081 toc4x (xi, d, mode);
6084 static void
6085 toc4x (x, y, mode)
6086 unsigned EMUSHORT *x, *y;
6087 enum machine_mode mode;
6089 int i;
6090 int v;
6091 int carry;
6093 /* Short-circuit the zero case */
6094 if ((x[0] == 0) /* Zero exponent and sign */
6095 && (x[1] == 0)
6096 && (x[M] == 0) /* The rest is for zero mantissa */
6097 && (x[M+1] == 0)
6098 /* Only check for double if necessary */
6099 && ((mode == QFmode) || ((x[M+2] == 0) && (x[M+3] == 0))))
6101 /* We have a zero. Put it into the output and return. */
6102 *y++ = 0x8000;
6103 *y++ = 0x0000;
6104 if (mode != QFmode)
6106 *y++ = 0x0000;
6107 *y++ = 0x0000;
6109 return;
6112 *y = 0;
6114 /* Negative number require a two's complement conversion of the
6115 mantissa. */
6116 if (x[0])
6118 *y = 0x0080;
6120 i = ((int) x[1]) - 0x7f;
6122 /* Now add 1 to the inverted data to do the two's complement. */
6123 if (mode != QFmode)
6124 v = 4 + M;
6125 else
6126 v = 2 + M;
6127 carry = 1;
6128 while (v > M)
6130 if (x[v] == 0x0000)
6132 x[v] = carry ? 0x0000 : 0xffff;
6134 else
6136 x[v] = ((~x[v]) + carry) & 0xffff;
6137 carry = 0;
6139 v--;
6142 /* The following is a special case. The C4X negative float requires
6143 a zero in the high bit (because the format is (2 - x) x 2^m), so
6144 if a one is in that bit, we have to shift left one to get rid
6145 of it. This only occurs if the number is -1 x 2^m. */
6146 if (x[M+1] & 0x8000)
6148 /* This is the case of -1 x 2^m, we have to rid ourselves of the
6149 high sign bit and shift the exponent. */
6150 eshift(x, 1);
6151 i--;
6154 else
6156 i = ((int) x[1]) - 0x7f;
6159 if ((i < -128) || (i > 127))
6161 y[0] |= 0xff7f;
6162 y[1] = 0xffff;
6163 if (mode != QFmode)
6165 y[2] = 0xffff;
6166 y[3] = 0xffff;
6168 #ifdef ERANGE
6169 errno = ERANGE;
6170 #endif
6171 return;
6174 y[0] |= ((i & 0xff) << 8);
6176 eshift (x, 8);
6178 y[0] |= x[M] & 0x7f;
6179 y[1] = x[M + 1];
6180 if (mode != QFmode)
6182 y[2] = x[M + 2];
6183 y[3] = x[M + 3];
6186 #endif /* C4X */
6188 /* Output a binary NaN bit pattern in the target machine's format. */
6190 /* If special NaN bit patterns are required, define them in tm.h
6191 as arrays of unsigned 16-bit shorts. Otherwise, use the default
6192 patterns here. */
6193 #ifdef TFMODE_NAN
6194 TFMODE_NAN;
6195 #else
6196 #ifdef IEEE
6197 unsigned EMUSHORT TFbignan[8] =
6198 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6199 unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff};
6200 #endif
6201 #endif
6203 #ifdef XFMODE_NAN
6204 XFMODE_NAN;
6205 #else
6206 #ifdef IEEE
6207 unsigned EMUSHORT XFbignan[6] =
6208 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6209 unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0};
6210 #endif
6211 #endif
6213 #ifdef DFMODE_NAN
6214 DFMODE_NAN;
6215 #else
6216 #ifdef IEEE
6217 unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff};
6218 unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8};
6219 #endif
6220 #endif
6222 #ifdef SFMODE_NAN
6223 SFMODE_NAN;
6224 #else
6225 #ifdef IEEE
6226 unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff};
6227 unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0};
6228 #endif
6229 #endif
6232 static void
6233 make_nan (nan, sign, mode)
6234 unsigned EMUSHORT *nan;
6235 int sign;
6236 enum machine_mode mode;
6238 int n;
6239 unsigned EMUSHORT *p;
6241 switch (mode)
6243 /* Possibly the `reserved operand' patterns on a VAX can be
6244 used like NaN's, but probably not in the same way as IEEE. */
6245 #if !defined(DEC) && !defined(IBM) && !defined(C4X)
6246 case TFmode:
6247 n = 8;
6248 if (REAL_WORDS_BIG_ENDIAN)
6249 p = TFbignan;
6250 else
6251 p = TFlittlenan;
6252 break;
6254 case XFmode:
6255 n = 6;
6256 if (REAL_WORDS_BIG_ENDIAN)
6257 p = XFbignan;
6258 else
6259 p = XFlittlenan;
6260 break;
6262 case DFmode:
6263 n = 4;
6264 if (REAL_WORDS_BIG_ENDIAN)
6265 p = DFbignan;
6266 else
6267 p = DFlittlenan;
6268 break;
6270 case SFmode:
6271 case HFmode:
6272 n = 2;
6273 if (REAL_WORDS_BIG_ENDIAN)
6274 p = SFbignan;
6275 else
6276 p = SFlittlenan;
6277 break;
6278 #endif
6280 default:
6281 abort ();
6283 if (REAL_WORDS_BIG_ENDIAN)
6284 *nan++ = (sign << 15) | (*p++ & 0x7fff);
6285 while (--n != 0)
6286 *nan++ = *p++;
6287 if (! REAL_WORDS_BIG_ENDIAN)
6288 *nan = (sign << 15) | (*p & 0x7fff);
6291 /* This is the inverse of the function `etarsingle' invoked by
6292 REAL_VALUE_TO_TARGET_SINGLE. */
6294 REAL_VALUE_TYPE
6295 ereal_unto_float (f)
6296 long f;
6298 REAL_VALUE_TYPE r;
6299 unsigned EMUSHORT s[2];
6300 unsigned EMUSHORT e[NE];
6302 /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
6303 This is the inverse operation to what the function `endian' does. */
6304 if (REAL_WORDS_BIG_ENDIAN)
6306 s[0] = (unsigned EMUSHORT) (f >> 16);
6307 s[1] = (unsigned EMUSHORT) f;
6309 else
6311 s[0] = (unsigned EMUSHORT) f;
6312 s[1] = (unsigned EMUSHORT) (f >> 16);
6314 /* Convert and promote the target float to E-type. */
6315 e24toe (s, e);
6316 /* Output E-type to REAL_VALUE_TYPE. */
6317 PUT_REAL (e, &r);
6318 return r;
6322 /* This is the inverse of the function `etardouble' invoked by
6323 REAL_VALUE_TO_TARGET_DOUBLE. */
6325 REAL_VALUE_TYPE
6326 ereal_unto_double (d)
6327 long d[];
6329 REAL_VALUE_TYPE r;
6330 unsigned EMUSHORT s[4];
6331 unsigned EMUSHORT e[NE];
6333 /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */
6334 if (REAL_WORDS_BIG_ENDIAN)
6336 s[0] = (unsigned EMUSHORT) (d[0] >> 16);
6337 s[1] = (unsigned EMUSHORT) d[0];
6338 s[2] = (unsigned EMUSHORT) (d[1] >> 16);
6339 s[3] = (unsigned EMUSHORT) d[1];
6341 else
6343 /* Target float words are little-endian. */
6344 s[0] = (unsigned EMUSHORT) d[0];
6345 s[1] = (unsigned EMUSHORT) (d[0] >> 16);
6346 s[2] = (unsigned EMUSHORT) d[1];
6347 s[3] = (unsigned EMUSHORT) (d[1] >> 16);
6349 /* Convert target double to E-type. */
6350 e53toe (s, e);
6351 /* Output E-type to REAL_VALUE_TYPE. */
6352 PUT_REAL (e, &r);
6353 return r;
6357 /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE.
6358 This is somewhat like ereal_unto_float, but the input types
6359 for these are different. */
6361 REAL_VALUE_TYPE
6362 ereal_from_float (f)
6363 HOST_WIDE_INT f;
6365 REAL_VALUE_TYPE r;
6366 unsigned EMUSHORT s[2];
6367 unsigned EMUSHORT e[NE];
6369 /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
6370 This is the inverse operation to what the function `endian' does. */
6371 if (REAL_WORDS_BIG_ENDIAN)
6373 s[0] = (unsigned EMUSHORT) (f >> 16);
6374 s[1] = (unsigned EMUSHORT) f;
6376 else
6378 s[0] = (unsigned EMUSHORT) f;
6379 s[1] = (unsigned EMUSHORT) (f >> 16);
6381 /* Convert and promote the target float to E-type. */
6382 e24toe (s, e);
6383 /* Output E-type to REAL_VALUE_TYPE. */
6384 PUT_REAL (e, &r);
6385 return r;
6389 /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE.
6390 This is somewhat like ereal_unto_double, but the input types
6391 for these are different.
6393 The DFmode is stored as an array of HOST_WIDE_INT in the target's
6394 data format, with no holes in the bit packing. The first element
6395 of the input array holds the bits that would come first in the
6396 target computer's memory. */
6398 REAL_VALUE_TYPE
6399 ereal_from_double (d)
6400 HOST_WIDE_INT d[];
6402 REAL_VALUE_TYPE r;
6403 unsigned EMUSHORT s[4];
6404 unsigned EMUSHORT e[NE];
6406 /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */
6407 if (REAL_WORDS_BIG_ENDIAN)
6409 #if HOST_BITS_PER_WIDE_INT == 32
6410 s[0] = (unsigned EMUSHORT) (d[0] >> 16);
6411 s[1] = (unsigned EMUSHORT) d[0];
6412 s[2] = (unsigned EMUSHORT) (d[1] >> 16);
6413 s[3] = (unsigned EMUSHORT) d[1];
6414 #else
6415 /* In this case the entire target double is contained in the
6416 first array element. The second element of the input is
6417 ignored. */
6418 s[0] = (unsigned EMUSHORT) (d[0] >> 48);
6419 s[1] = (unsigned EMUSHORT) (d[0] >> 32);
6420 s[2] = (unsigned EMUSHORT) (d[0] >> 16);
6421 s[3] = (unsigned EMUSHORT) d[0];
6422 #endif
6424 else
6426 /* Target float words are little-endian. */
6427 s[0] = (unsigned EMUSHORT) d[0];
6428 s[1] = (unsigned EMUSHORT) (d[0] >> 16);
6429 #if HOST_BITS_PER_WIDE_INT == 32
6430 s[2] = (unsigned EMUSHORT) d[1];
6431 s[3] = (unsigned EMUSHORT) (d[1] >> 16);
6432 #else
6433 s[2] = (unsigned EMUSHORT) (d[0] >> 32);
6434 s[3] = (unsigned EMUSHORT) (d[0] >> 48);
6435 #endif
6437 /* Convert target double to E-type. */
6438 e53toe (s, e);
6439 /* Output E-type to REAL_VALUE_TYPE. */
6440 PUT_REAL (e, &r);
6441 return r;
6445 #if 0
6446 /* Convert target computer unsigned 64-bit integer to e-type.
6447 The endian-ness of DImode follows the convention for integers,
6448 so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */
6450 static void
6451 uditoe (di, e)
6452 unsigned EMUSHORT *di; /* Address of the 64-bit int. */
6453 unsigned EMUSHORT *e;
6455 unsigned EMUSHORT yi[NI];
6456 int k;
6458 ecleaz (yi);
6459 if (WORDS_BIG_ENDIAN)
6461 for (k = M; k < M + 4; k++)
6462 yi[k] = *di++;
6464 else
6466 for (k = M + 3; k >= M; k--)
6467 yi[k] = *di++;
6469 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
6470 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
6471 ecleaz (yi); /* it was zero */
6472 else
6473 yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
6474 emovo (yi, e);
6477 /* Convert target computer signed 64-bit integer to e-type. */
6479 static void
6480 ditoe (di, e)
6481 unsigned EMUSHORT *di; /* Address of the 64-bit int. */
6482 unsigned EMUSHORT *e;
6484 unsigned EMULONG acc;
6485 unsigned EMUSHORT yi[NI];
6486 unsigned EMUSHORT carry;
6487 int k, sign;
6489 ecleaz (yi);
6490 if (WORDS_BIG_ENDIAN)
6492 for (k = M; k < M + 4; k++)
6493 yi[k] = *di++;
6495 else
6497 for (k = M + 3; k >= M; k--)
6498 yi[k] = *di++;
6500 /* Take absolute value */
6501 sign = 0;
6502 if (yi[M] & 0x8000)
6504 sign = 1;
6505 carry = 0;
6506 for (k = M + 3; k >= M; k--)
6508 acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry;
6509 yi[k] = acc;
6510 carry = 0;
6511 if (acc & 0x10000)
6512 carry = 1;
6515 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
6516 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
6517 ecleaz (yi); /* it was zero */
6518 else
6519 yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
6520 emovo (yi, e);
6521 if (sign)
6522 eneg (e);
6526 /* Convert e-type to unsigned 64-bit int. */
6528 static void
6529 etoudi (x, i)
6530 unsigned EMUSHORT *x;
6531 unsigned EMUSHORT *i;
6533 unsigned EMUSHORT xi[NI];
6534 int j, k;
6536 emovi (x, xi);
6537 if (xi[0])
6539 xi[M] = 0;
6540 goto noshift;
6542 k = (int) xi[E] - (EXONE - 1);
6543 if (k <= 0)
6545 for (j = 0; j < 4; j++)
6546 *i++ = 0;
6547 return;
6549 if (k > 64)
6551 for (j = 0; j < 4; j++)
6552 *i++ = 0xffff;
6553 if (extra_warnings)
6554 warning ("overflow on truncation to integer");
6555 return;
6557 if (k > 16)
6559 /* Shift more than 16 bits: first shift up k-16 mod 16,
6560 then shift up by 16's. */
6561 j = k - ((k >> 4) << 4);
6562 if (j == 0)
6563 j = 16;
6564 eshift (xi, j);
6565 if (WORDS_BIG_ENDIAN)
6566 *i++ = xi[M];
6567 else
6569 i += 3;
6570 *i-- = xi[M];
6572 k -= j;
6575 eshup6 (xi);
6576 if (WORDS_BIG_ENDIAN)
6577 *i++ = xi[M];
6578 else
6579 *i-- = xi[M];
6581 while ((k -= 16) > 0);
6583 else
6585 /* shift not more than 16 bits */
6586 eshift (xi, k);
6588 noshift:
6590 if (WORDS_BIG_ENDIAN)
6592 i += 3;
6593 *i-- = xi[M];
6594 *i-- = 0;
6595 *i-- = 0;
6596 *i = 0;
6598 else
6600 *i++ = xi[M];
6601 *i++ = 0;
6602 *i++ = 0;
6603 *i = 0;
6609 /* Convert e-type to signed 64-bit int. */
6611 static void
6612 etodi (x, i)
6613 unsigned EMUSHORT *x;
6614 unsigned EMUSHORT *i;
6616 unsigned EMULONG acc;
6617 unsigned EMUSHORT xi[NI];
6618 unsigned EMUSHORT carry;
6619 unsigned EMUSHORT *isave;
6620 int j, k;
6622 emovi (x, xi);
6623 k = (int) xi[E] - (EXONE - 1);
6624 if (k <= 0)
6626 for (j = 0; j < 4; j++)
6627 *i++ = 0;
6628 return;
6630 if (k > 64)
6632 for (j = 0; j < 4; j++)
6633 *i++ = 0xffff;
6634 if (extra_warnings)
6635 warning ("overflow on truncation to integer");
6636 return;
6638 isave = i;
6639 if (k > 16)
6641 /* Shift more than 16 bits: first shift up k-16 mod 16,
6642 then shift up by 16's. */
6643 j = k - ((k >> 4) << 4);
6644 if (j == 0)
6645 j = 16;
6646 eshift (xi, j);
6647 if (WORDS_BIG_ENDIAN)
6648 *i++ = xi[M];
6649 else
6651 i += 3;
6652 *i-- = xi[M];
6654 k -= j;
6657 eshup6 (xi);
6658 if (WORDS_BIG_ENDIAN)
6659 *i++ = xi[M];
6660 else
6661 *i-- = xi[M];
6663 while ((k -= 16) > 0);
6665 else
6667 /* shift not more than 16 bits */
6668 eshift (xi, k);
6670 if (WORDS_BIG_ENDIAN)
6672 i += 3;
6673 *i = xi[M];
6674 *i-- = 0;
6675 *i-- = 0;
6676 *i = 0;
6678 else
6680 *i++ = xi[M];
6681 *i++ = 0;
6682 *i++ = 0;
6683 *i = 0;
6686 /* Negate if negative */
6687 if (xi[0])
6689 carry = 0;
6690 if (WORDS_BIG_ENDIAN)
6691 isave += 3;
6692 for (k = 0; k < 4; k++)
6694 acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry;
6695 if (WORDS_BIG_ENDIAN)
6696 *isave-- = acc;
6697 else
6698 *isave++ = acc;
6699 carry = 0;
6700 if (acc & 0x10000)
6701 carry = 1;
6707 /* Longhand square root routine. */
6710 static int esqinited = 0;
6711 static unsigned short sqrndbit[NI];
6713 static void
6714 esqrt (x, y)
6715 unsigned EMUSHORT *x, *y;
6717 unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI];
6718 EMULONG m, exp;
6719 int i, j, k, n, nlups;
6721 if (esqinited == 0)
6723 ecleaz (sqrndbit);
6724 sqrndbit[NI - 2] = 1;
6725 esqinited = 1;
6727 /* Check for arg <= 0 */
6728 i = ecmp (x, ezero);
6729 if (i <= 0)
6731 if (i == -1)
6733 mtherr ("esqrt", DOMAIN);
6734 eclear (y);
6736 else
6737 emov (x, y);
6738 return;
6741 #ifdef INFINITY
6742 if (eisinf (x))
6744 eclear (y);
6745 einfin (y);
6746 return;
6748 #endif
6749 /* Bring in the arg and renormalize if it is denormal. */
6750 emovi (x, xx);
6751 m = (EMULONG) xx[1]; /* local long word exponent */
6752 if (m == 0)
6753 m -= enormlz (xx);
6755 /* Divide exponent by 2 */
6756 m -= 0x3ffe;
6757 exp = (unsigned short) ((m / 2) + 0x3ffe);
6759 /* Adjust if exponent odd */
6760 if ((m & 1) != 0)
6762 if (m > 0)
6763 exp += 1;
6764 eshdn1 (xx);
6767 ecleaz (sq);
6768 ecleaz (num);
6769 n = 8; /* get 8 bits of result per inner loop */
6770 nlups = rndprc;
6771 j = 0;
6773 while (nlups > 0)
6775 /* bring in next word of arg */
6776 if (j < NE)
6777 num[NI - 1] = xx[j + 3];
6778 /* Do additional bit on last outer loop, for roundoff. */
6779 if (nlups <= 8)
6780 n = nlups + 1;
6781 for (i = 0; i < n; i++)
6783 /* Next 2 bits of arg */
6784 eshup1 (num);
6785 eshup1 (num);
6786 /* Shift up answer */
6787 eshup1 (sq);
6788 /* Make trial divisor */
6789 for (k = 0; k < NI; k++)
6790 temp[k] = sq[k];
6791 eshup1 (temp);
6792 eaddm (sqrndbit, temp);
6793 /* Subtract and insert answer bit if it goes in */
6794 if (ecmpm (temp, num) <= 0)
6796 esubm (temp, num);
6797 sq[NI - 2] |= 1;
6800 nlups -= n;
6801 j += 1;
6804 /* Adjust for extra, roundoff loop done. */
6805 exp += (NBITS - 1) - rndprc;
6807 /* Sticky bit = 1 if the remainder is nonzero. */
6808 k = 0;
6809 for (i = 3; i < NI; i++)
6810 k |= (int) num[i];
6812 /* Renormalize and round off. */
6813 emdnorm (sq, k, 0, exp, 64);
6814 emovo (sq, y);
6816 #endif
6817 #endif /* EMU_NON_COMPILE not defined */
6819 /* Return the binary precision of the significand for a given
6820 floating point mode. The mode can hold an integer value
6821 that many bits wide, without losing any bits. */
6824 significand_size (mode)
6825 enum machine_mode mode;
6828 /* Don't test the modes, but their sizes, lest this
6829 code won't work for BITS_PER_UNIT != 8 . */
6831 switch (GET_MODE_BITSIZE (mode))
6833 case 32:
6835 #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
6836 return 56;
6837 #endif
6839 return 24;
6841 case 64:
6842 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6843 return 53;
6844 #else
6845 #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
6846 return 56;
6847 #else
6848 #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
6849 return 56;
6850 #else
6851 #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
6852 return 56;
6853 #else
6854 abort ();
6855 #endif
6856 #endif
6857 #endif
6858 #endif
6860 case 96:
6861 return 64;
6862 case 128:
6863 return 113;
6865 default:
6866 abort ();