* stor-layout.c (finish_record_layout): Also propagate the
[official-gcc.git] / gcc / stor-layout.c
blobfa638dc95fbe276bf191598e310df88c11a74483
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "input.h"
26 #include "alias.h"
27 #include "symtab.h"
28 #include "tree.h"
29 #include "fold-const.h"
30 #include "stor-layout.h"
31 #include "stringpool.h"
32 #include "varasm.h"
33 #include "print-tree.h"
34 #include "rtl.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "hard-reg-set.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expmed.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "emit-rtl.h"
45 #include "stmt.h"
46 #include "expr.h"
47 #include "diagnostic-core.h"
48 #include "target.h"
49 #include "langhooks.h"
50 #include "regs.h"
51 #include "params.h"
52 #include "is-a.h"
53 #include "plugin-api.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "tree-inline.h"
57 #include "tree-dump.h"
58 #include "gimplify.h"
60 /* Data type for the expressions representing sizes of data types.
61 It is the first integer type laid out. */
62 tree sizetype_tab[(int) stk_type_kind_last];
64 /* If nonzero, this is an upper limit on alignment of structure fields.
65 The value is measured in bits. */
66 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
68 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
69 in the address spaces' address_mode, not pointer_mode. Set only by
70 internal_reference_types called only by a front end. */
71 static int reference_types_internal = 0;
73 static tree self_referential_size (tree);
74 static void finalize_record_size (record_layout_info);
75 static void finalize_type_size (tree);
76 static void place_union_field (record_layout_info, tree);
77 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
78 HOST_WIDE_INT, tree);
79 extern void debug_rli (record_layout_info);
81 /* Show that REFERENCE_TYPES are internal and should use address_mode.
82 Called only by front end. */
84 void
85 internal_reference_types (void)
87 reference_types_internal = 1;
90 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
91 to serve as the actual size-expression for a type or decl. */
93 tree
94 variable_size (tree size)
96 /* Obviously. */
97 if (TREE_CONSTANT (size))
98 return size;
100 /* If the size is self-referential, we can't make a SAVE_EXPR (see
101 save_expr for the rationale). But we can do something else. */
102 if (CONTAINS_PLACEHOLDER_P (size))
103 return self_referential_size (size);
105 /* If we are in the global binding level, we can't make a SAVE_EXPR
106 since it may end up being shared across functions, so it is up
107 to the front-end to deal with this case. */
108 if (lang_hooks.decls.global_bindings_p ())
109 return size;
111 return save_expr (size);
114 /* An array of functions used for self-referential size computation. */
115 static GTY(()) vec<tree, va_gc> *size_functions;
117 /* Return true if T is a self-referential component reference. */
119 static bool
120 self_referential_component_ref_p (tree t)
122 if (TREE_CODE (t) != COMPONENT_REF)
123 return false;
125 while (REFERENCE_CLASS_P (t))
126 t = TREE_OPERAND (t, 0);
128 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
131 /* Similar to copy_tree_r but do not copy component references involving
132 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
133 and substituted in substitute_in_expr. */
135 static tree
136 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
138 enum tree_code code = TREE_CODE (*tp);
140 /* Stop at types, decls, constants like copy_tree_r. */
141 if (TREE_CODE_CLASS (code) == tcc_type
142 || TREE_CODE_CLASS (code) == tcc_declaration
143 || TREE_CODE_CLASS (code) == tcc_constant)
145 *walk_subtrees = 0;
146 return NULL_TREE;
149 /* This is the pattern built in ada/make_aligning_type. */
150 else if (code == ADDR_EXPR
151 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
153 *walk_subtrees = 0;
154 return NULL_TREE;
157 /* Default case: the component reference. */
158 else if (self_referential_component_ref_p (*tp))
160 *walk_subtrees = 0;
161 return NULL_TREE;
164 /* We're not supposed to have them in self-referential size trees
165 because we wouldn't properly control when they are evaluated.
166 However, not creating superfluous SAVE_EXPRs requires accurate
167 tracking of readonly-ness all the way down to here, which we
168 cannot always guarantee in practice. So punt in this case. */
169 else if (code == SAVE_EXPR)
170 return error_mark_node;
172 else if (code == STATEMENT_LIST)
173 gcc_unreachable ();
175 return copy_tree_r (tp, walk_subtrees, data);
178 /* Given a SIZE expression that is self-referential, return an equivalent
179 expression to serve as the actual size expression for a type. */
181 static tree
182 self_referential_size (tree size)
184 static unsigned HOST_WIDE_INT fnno = 0;
185 vec<tree> self_refs = vNULL;
186 tree param_type_list = NULL, param_decl_list = NULL;
187 tree t, ref, return_type, fntype, fnname, fndecl;
188 unsigned int i;
189 char buf[128];
190 vec<tree, va_gc> *args = NULL;
192 /* Do not factor out simple operations. */
193 t = skip_simple_constant_arithmetic (size);
194 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
195 return size;
197 /* Collect the list of self-references in the expression. */
198 find_placeholder_in_expr (size, &self_refs);
199 gcc_assert (self_refs.length () > 0);
201 /* Obtain a private copy of the expression. */
202 t = size;
203 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
204 return size;
205 size = t;
207 /* Build the parameter and argument lists in parallel; also
208 substitute the former for the latter in the expression. */
209 vec_alloc (args, self_refs.length ());
210 FOR_EACH_VEC_ELT (self_refs, i, ref)
212 tree subst, param_name, param_type, param_decl;
214 if (DECL_P (ref))
216 /* We shouldn't have true variables here. */
217 gcc_assert (TREE_READONLY (ref));
218 subst = ref;
220 /* This is the pattern built in ada/make_aligning_type. */
221 else if (TREE_CODE (ref) == ADDR_EXPR)
222 subst = ref;
223 /* Default case: the component reference. */
224 else
225 subst = TREE_OPERAND (ref, 1);
227 sprintf (buf, "p%d", i);
228 param_name = get_identifier (buf);
229 param_type = TREE_TYPE (ref);
230 param_decl
231 = build_decl (input_location, PARM_DECL, param_name, param_type);
232 DECL_ARG_TYPE (param_decl) = param_type;
233 DECL_ARTIFICIAL (param_decl) = 1;
234 TREE_READONLY (param_decl) = 1;
236 size = substitute_in_expr (size, subst, param_decl);
238 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
239 param_decl_list = chainon (param_decl, param_decl_list);
240 args->quick_push (ref);
243 self_refs.release ();
245 /* Append 'void' to indicate that the number of parameters is fixed. */
246 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
248 /* The 3 lists have been created in reverse order. */
249 param_type_list = nreverse (param_type_list);
250 param_decl_list = nreverse (param_decl_list);
252 /* Build the function type. */
253 return_type = TREE_TYPE (size);
254 fntype = build_function_type (return_type, param_type_list);
256 /* Build the function declaration. */
257 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
258 fnname = get_file_function_name (buf);
259 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
260 for (t = param_decl_list; t; t = DECL_CHAIN (t))
261 DECL_CONTEXT (t) = fndecl;
262 DECL_ARGUMENTS (fndecl) = param_decl_list;
263 DECL_RESULT (fndecl)
264 = build_decl (input_location, RESULT_DECL, 0, return_type);
265 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
267 /* The function has been created by the compiler and we don't
268 want to emit debug info for it. */
269 DECL_ARTIFICIAL (fndecl) = 1;
270 DECL_IGNORED_P (fndecl) = 1;
272 /* It is supposed to be "const" and never throw. */
273 TREE_READONLY (fndecl) = 1;
274 TREE_NOTHROW (fndecl) = 1;
276 /* We want it to be inlined when this is deemed profitable, as
277 well as discarded if every call has been integrated. */
278 DECL_DECLARED_INLINE_P (fndecl) = 1;
280 /* It is made up of a unique return statement. */
281 DECL_INITIAL (fndecl) = make_node (BLOCK);
282 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
283 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
284 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
285 TREE_STATIC (fndecl) = 1;
287 /* Put it onto the list of size functions. */
288 vec_safe_push (size_functions, fndecl);
290 /* Replace the original expression with a call to the size function. */
291 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
294 /* Take, queue and compile all the size functions. It is essential that
295 the size functions be gimplified at the very end of the compilation
296 in order to guarantee transparent handling of self-referential sizes.
297 Otherwise the GENERIC inliner would not be able to inline them back
298 at each of their call sites, thus creating artificial non-constant
299 size expressions which would trigger nasty problems later on. */
301 void
302 finalize_size_functions (void)
304 unsigned int i;
305 tree fndecl;
307 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
309 allocate_struct_function (fndecl, false);
310 set_cfun (NULL);
311 dump_function (TDI_original, fndecl);
312 gimplify_function_tree (fndecl);
313 cgraph_node::finalize_function (fndecl, false);
316 vec_free (size_functions);
319 /* Return the machine mode to use for a nonscalar of SIZE bits. The
320 mode must be in class MCLASS, and have exactly that many value bits;
321 it may have padding as well. If LIMIT is nonzero, modes of wider
322 than MAX_FIXED_MODE_SIZE will not be used. */
324 machine_mode
325 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
327 machine_mode mode;
328 int i;
330 if (limit && size > MAX_FIXED_MODE_SIZE)
331 return BLKmode;
333 /* Get the first mode which has this size, in the specified class. */
334 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
335 mode = GET_MODE_WIDER_MODE (mode))
336 if (GET_MODE_PRECISION (mode) == size)
337 return mode;
339 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
340 for (i = 0; i < NUM_INT_N_ENTS; i ++)
341 if (int_n_data[i].bitsize == size
342 && int_n_enabled_p[i])
343 return int_n_data[i].m;
345 return BLKmode;
348 /* Similar, except passed a tree node. */
350 machine_mode
351 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
353 unsigned HOST_WIDE_INT uhwi;
354 unsigned int ui;
356 if (!tree_fits_uhwi_p (size))
357 return BLKmode;
358 uhwi = tree_to_uhwi (size);
359 ui = uhwi;
360 if (uhwi != ui)
361 return BLKmode;
362 return mode_for_size (ui, mclass, limit);
365 /* Similar, but never return BLKmode; return the narrowest mode that
366 contains at least the requested number of value bits. */
368 machine_mode
369 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
371 machine_mode mode = VOIDmode;
372 int i;
374 /* Get the first mode which has at least this size, in the
375 specified class. */
376 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
377 mode = GET_MODE_WIDER_MODE (mode))
378 if (GET_MODE_PRECISION (mode) >= size)
379 break;
381 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
382 for (i = 0; i < NUM_INT_N_ENTS; i ++)
383 if (int_n_data[i].bitsize >= size
384 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
385 && int_n_enabled_p[i])
386 mode = int_n_data[i].m;
388 if (mode == VOIDmode)
389 gcc_unreachable ();
391 return mode;
394 /* Find an integer mode of the exact same size, or BLKmode on failure. */
396 machine_mode
397 int_mode_for_mode (machine_mode mode)
399 switch (GET_MODE_CLASS (mode))
401 case MODE_INT:
402 case MODE_PARTIAL_INT:
403 break;
405 case MODE_COMPLEX_INT:
406 case MODE_COMPLEX_FLOAT:
407 case MODE_FLOAT:
408 case MODE_DECIMAL_FLOAT:
409 case MODE_VECTOR_INT:
410 case MODE_VECTOR_FLOAT:
411 case MODE_FRACT:
412 case MODE_ACCUM:
413 case MODE_UFRACT:
414 case MODE_UACCUM:
415 case MODE_VECTOR_FRACT:
416 case MODE_VECTOR_ACCUM:
417 case MODE_VECTOR_UFRACT:
418 case MODE_VECTOR_UACCUM:
419 case MODE_POINTER_BOUNDS:
420 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
421 break;
423 case MODE_RANDOM:
424 if (mode == BLKmode)
425 break;
427 /* ... fall through ... */
429 case MODE_CC:
430 default:
431 gcc_unreachable ();
434 return mode;
437 /* Find a mode that can be used for efficient bitwise operations on MODE.
438 Return BLKmode if no such mode exists. */
440 machine_mode
441 bitwise_mode_for_mode (machine_mode mode)
443 /* Quick exit if we already have a suitable mode. */
444 unsigned int bitsize = GET_MODE_BITSIZE (mode);
445 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
446 return mode;
448 /* Reuse the sanity checks from int_mode_for_mode. */
449 gcc_checking_assert ((int_mode_for_mode (mode), true));
451 /* Try to replace complex modes with complex modes. In general we
452 expect both components to be processed independently, so we only
453 care whether there is a register for the inner mode. */
454 if (COMPLEX_MODE_P (mode))
456 machine_mode trial = mode;
457 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
458 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
459 if (trial != BLKmode
460 && have_regs_of_mode[GET_MODE_INNER (trial)])
461 return trial;
464 /* Try to replace vector modes with vector modes. Also try using vector
465 modes if an integer mode would be too big. */
466 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
468 machine_mode trial = mode;
469 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
470 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
471 if (trial != BLKmode
472 && have_regs_of_mode[trial]
473 && targetm.vector_mode_supported_p (trial))
474 return trial;
477 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
478 return mode_for_size (bitsize, MODE_INT, true);
481 /* Find a type that can be used for efficient bitwise operations on MODE.
482 Return null if no such mode exists. */
484 tree
485 bitwise_type_for_mode (machine_mode mode)
487 mode = bitwise_mode_for_mode (mode);
488 if (mode == BLKmode)
489 return NULL_TREE;
491 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
492 tree inner_type = build_nonstandard_integer_type (inner_size, true);
494 if (VECTOR_MODE_P (mode))
495 return build_vector_type_for_mode (inner_type, mode);
497 if (COMPLEX_MODE_P (mode))
498 return build_complex_type (inner_type);
500 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
501 return inner_type;
504 /* Find a mode that is suitable for representing a vector with
505 NUNITS elements of mode INNERMODE. Returns BLKmode if there
506 is no suitable mode. */
508 machine_mode
509 mode_for_vector (machine_mode innermode, unsigned nunits)
511 machine_mode mode;
513 /* First, look for a supported vector type. */
514 if (SCALAR_FLOAT_MODE_P (innermode))
515 mode = MIN_MODE_VECTOR_FLOAT;
516 else if (SCALAR_FRACT_MODE_P (innermode))
517 mode = MIN_MODE_VECTOR_FRACT;
518 else if (SCALAR_UFRACT_MODE_P (innermode))
519 mode = MIN_MODE_VECTOR_UFRACT;
520 else if (SCALAR_ACCUM_MODE_P (innermode))
521 mode = MIN_MODE_VECTOR_ACCUM;
522 else if (SCALAR_UACCUM_MODE_P (innermode))
523 mode = MIN_MODE_VECTOR_UACCUM;
524 else
525 mode = MIN_MODE_VECTOR_INT;
527 /* Do not check vector_mode_supported_p here. We'll do that
528 later in vector_type_mode. */
529 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
530 if (GET_MODE_NUNITS (mode) == nunits
531 && GET_MODE_INNER (mode) == innermode)
532 break;
534 /* For integers, try mapping it to a same-sized scalar mode. */
535 if (mode == VOIDmode
536 && GET_MODE_CLASS (innermode) == MODE_INT)
537 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
538 MODE_INT, 0);
540 if (mode == VOIDmode
541 || (GET_MODE_CLASS (mode) == MODE_INT
542 && !have_regs_of_mode[mode]))
543 return BLKmode;
545 return mode;
548 /* Return the alignment of MODE. This will be bounded by 1 and
549 BIGGEST_ALIGNMENT. */
551 unsigned int
552 get_mode_alignment (machine_mode mode)
554 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
557 /* Return the precision of the mode, or for a complex or vector mode the
558 precision of the mode of its elements. */
560 unsigned int
561 element_precision (machine_mode mode)
563 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
564 mode = GET_MODE_INNER (mode);
566 return GET_MODE_PRECISION (mode);
569 /* Return the natural mode of an array, given that it is SIZE bytes in
570 total and has elements of type ELEM_TYPE. */
572 static machine_mode
573 mode_for_array (tree elem_type, tree size)
575 tree elem_size;
576 unsigned HOST_WIDE_INT int_size, int_elem_size;
577 bool limit_p;
579 /* One-element arrays get the component type's mode. */
580 elem_size = TYPE_SIZE (elem_type);
581 if (simple_cst_equal (size, elem_size))
582 return TYPE_MODE (elem_type);
584 limit_p = true;
585 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
587 int_size = tree_to_uhwi (size);
588 int_elem_size = tree_to_uhwi (elem_size);
589 if (int_elem_size > 0
590 && int_size % int_elem_size == 0
591 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
592 int_size / int_elem_size))
593 limit_p = false;
595 return mode_for_size_tree (size, MODE_INT, limit_p);
598 /* Subroutine of layout_decl: Force alignment required for the data type.
599 But if the decl itself wants greater alignment, don't override that. */
601 static inline void
602 do_type_align (tree type, tree decl)
604 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
606 DECL_ALIGN (decl) = TYPE_ALIGN (type);
607 if (TREE_CODE (decl) == FIELD_DECL)
608 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
612 /* Set the size, mode and alignment of a ..._DECL node.
613 TYPE_DECL does need this for C++.
614 Note that LABEL_DECL and CONST_DECL nodes do not need this,
615 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
616 Don't call layout_decl for them.
618 KNOWN_ALIGN is the amount of alignment we can assume this
619 decl has with no special effort. It is relevant only for FIELD_DECLs
620 and depends on the previous fields.
621 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
622 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
623 the record will be aligned to suit. */
625 void
626 layout_decl (tree decl, unsigned int known_align)
628 tree type = TREE_TYPE (decl);
629 enum tree_code code = TREE_CODE (decl);
630 rtx rtl = NULL_RTX;
631 location_t loc = DECL_SOURCE_LOCATION (decl);
633 if (code == CONST_DECL)
634 return;
636 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
637 || code == TYPE_DECL ||code == FIELD_DECL);
639 rtl = DECL_RTL_IF_SET (decl);
641 if (type == error_mark_node)
642 type = void_type_node;
644 /* Usually the size and mode come from the data type without change,
645 however, the front-end may set the explicit width of the field, so its
646 size may not be the same as the size of its type. This happens with
647 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
648 also happens with other fields. For example, the C++ front-end creates
649 zero-sized fields corresponding to empty base classes, and depends on
650 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
651 size in bytes from the size in bits. If we have already set the mode,
652 don't set it again since we can be called twice for FIELD_DECLs. */
654 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
655 if (DECL_MODE (decl) == VOIDmode)
656 DECL_MODE (decl) = TYPE_MODE (type);
658 if (DECL_SIZE (decl) == 0)
660 DECL_SIZE (decl) = TYPE_SIZE (type);
661 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
663 else if (DECL_SIZE_UNIT (decl) == 0)
664 DECL_SIZE_UNIT (decl)
665 = fold_convert_loc (loc, sizetype,
666 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
667 bitsize_unit_node));
669 if (code != FIELD_DECL)
670 /* For non-fields, update the alignment from the type. */
671 do_type_align (type, decl);
672 else
673 /* For fields, it's a bit more complicated... */
675 bool old_user_align = DECL_USER_ALIGN (decl);
676 bool zero_bitfield = false;
677 bool packed_p = DECL_PACKED (decl);
678 unsigned int mfa;
680 if (DECL_BIT_FIELD (decl))
682 DECL_BIT_FIELD_TYPE (decl) = type;
684 /* A zero-length bit-field affects the alignment of the next
685 field. In essence such bit-fields are not influenced by
686 any packing due to #pragma pack or attribute packed. */
687 if (integer_zerop (DECL_SIZE (decl))
688 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
690 zero_bitfield = true;
691 packed_p = false;
692 if (PCC_BITFIELD_TYPE_MATTERS)
693 do_type_align (type, decl);
694 else
696 #ifdef EMPTY_FIELD_BOUNDARY
697 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
699 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
700 DECL_USER_ALIGN (decl) = 0;
702 #endif
706 /* See if we can use an ordinary integer mode for a bit-field.
707 Conditions are: a fixed size that is correct for another mode,
708 occupying a complete byte or bytes on proper boundary. */
709 if (TYPE_SIZE (type) != 0
710 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
711 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
713 machine_mode xmode
714 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
715 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
717 if (xmode != BLKmode
718 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
719 && (known_align == 0 || known_align >= xalign))
721 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
722 DECL_MODE (decl) = xmode;
723 DECL_BIT_FIELD (decl) = 0;
727 /* Turn off DECL_BIT_FIELD if we won't need it set. */
728 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
729 && known_align >= TYPE_ALIGN (type)
730 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
731 DECL_BIT_FIELD (decl) = 0;
733 else if (packed_p && DECL_USER_ALIGN (decl))
734 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
735 round up; we'll reduce it again below. We want packing to
736 supersede USER_ALIGN inherited from the type, but defer to
737 alignment explicitly specified on the field decl. */;
738 else
739 do_type_align (type, decl);
741 /* If the field is packed and not explicitly aligned, give it the
742 minimum alignment. Note that do_type_align may set
743 DECL_USER_ALIGN, so we need to check old_user_align instead. */
744 if (packed_p
745 && !old_user_align)
746 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
748 if (! packed_p && ! DECL_USER_ALIGN (decl))
750 /* Some targets (i.e. i386, VMS) limit struct field alignment
751 to a lower boundary than alignment of variables unless
752 it was overridden by attribute aligned. */
753 #ifdef BIGGEST_FIELD_ALIGNMENT
754 DECL_ALIGN (decl)
755 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
756 #endif
757 #ifdef ADJUST_FIELD_ALIGN
758 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
759 #endif
762 if (zero_bitfield)
763 mfa = initial_max_fld_align * BITS_PER_UNIT;
764 else
765 mfa = maximum_field_alignment;
766 /* Should this be controlled by DECL_USER_ALIGN, too? */
767 if (mfa != 0)
768 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
771 /* Evaluate nonconstant size only once, either now or as soon as safe. */
772 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
773 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
774 if (DECL_SIZE_UNIT (decl) != 0
775 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
776 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
778 /* If requested, warn about definitions of large data objects. */
779 if (warn_larger_than
780 && (code == VAR_DECL || code == PARM_DECL)
781 && ! DECL_EXTERNAL (decl))
783 tree size = DECL_SIZE_UNIT (decl);
785 if (size != 0 && TREE_CODE (size) == INTEGER_CST
786 && compare_tree_int (size, larger_than_size) > 0)
788 int size_as_int = TREE_INT_CST_LOW (size);
790 if (compare_tree_int (size, size_as_int) == 0)
791 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
792 else
793 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
794 decl, larger_than_size);
798 /* If the RTL was already set, update its mode and mem attributes. */
799 if (rtl)
801 PUT_MODE (rtl, DECL_MODE (decl));
802 SET_DECL_RTL (decl, 0);
803 set_mem_attributes (rtl, decl, 1);
804 SET_DECL_RTL (decl, rtl);
808 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
809 a previous call to layout_decl and calls it again. */
811 void
812 relayout_decl (tree decl)
814 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
815 DECL_MODE (decl) = VOIDmode;
816 if (!DECL_USER_ALIGN (decl))
817 DECL_ALIGN (decl) = 0;
818 SET_DECL_RTL (decl, 0);
820 layout_decl (decl, 0);
823 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
824 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
825 is to be passed to all other layout functions for this record. It is the
826 responsibility of the caller to call `free' for the storage returned.
827 Note that garbage collection is not permitted until we finish laying
828 out the record. */
830 record_layout_info
831 start_record_layout (tree t)
833 record_layout_info rli = XNEW (struct record_layout_info_s);
835 rli->t = t;
837 /* If the type has a minimum specified alignment (via an attribute
838 declaration, for example) use it -- otherwise, start with a
839 one-byte alignment. */
840 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
841 rli->unpacked_align = rli->record_align;
842 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
844 #ifdef STRUCTURE_SIZE_BOUNDARY
845 /* Packed structures don't need to have minimum size. */
846 if (! TYPE_PACKED (t))
848 unsigned tmp;
850 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
851 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
852 if (maximum_field_alignment != 0)
853 tmp = MIN (tmp, maximum_field_alignment);
854 rli->record_align = MAX (rli->record_align, tmp);
856 #endif
858 rli->offset = size_zero_node;
859 rli->bitpos = bitsize_zero_node;
860 rli->prev_field = 0;
861 rli->pending_statics = 0;
862 rli->packed_maybe_necessary = 0;
863 rli->remaining_in_alignment = 0;
865 return rli;
868 /* Return the combined bit position for the byte offset OFFSET and the
869 bit position BITPOS.
871 These functions operate on byte and bit positions present in FIELD_DECLs
872 and assume that these expressions result in no (intermediate) overflow.
873 This assumption is necessary to fold the expressions as much as possible,
874 so as to avoid creating artificially variable-sized types in languages
875 supporting variable-sized types like Ada. */
877 tree
878 bit_from_pos (tree offset, tree bitpos)
880 if (TREE_CODE (offset) == PLUS_EXPR)
881 offset = size_binop (PLUS_EXPR,
882 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
883 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
884 else
885 offset = fold_convert (bitsizetype, offset);
886 return size_binop (PLUS_EXPR, bitpos,
887 size_binop (MULT_EXPR, offset, bitsize_unit_node));
890 /* Return the combined truncated byte position for the byte offset OFFSET and
891 the bit position BITPOS. */
893 tree
894 byte_from_pos (tree offset, tree bitpos)
896 tree bytepos;
897 if (TREE_CODE (bitpos) == MULT_EXPR
898 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
899 bytepos = TREE_OPERAND (bitpos, 0);
900 else
901 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
902 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
905 /* Split the bit position POS into a byte offset *POFFSET and a bit
906 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
908 void
909 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
910 tree pos)
912 tree toff_align = bitsize_int (off_align);
913 if (TREE_CODE (pos) == MULT_EXPR
914 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
916 *poffset = size_binop (MULT_EXPR,
917 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
918 size_int (off_align / BITS_PER_UNIT));
919 *pbitpos = bitsize_zero_node;
921 else
923 *poffset = size_binop (MULT_EXPR,
924 fold_convert (sizetype,
925 size_binop (FLOOR_DIV_EXPR, pos,
926 toff_align)),
927 size_int (off_align / BITS_PER_UNIT));
928 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
932 /* Given a pointer to bit and byte offsets and an offset alignment,
933 normalize the offsets so they are within the alignment. */
935 void
936 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
938 /* If the bit position is now larger than it should be, adjust it
939 downwards. */
940 if (compare_tree_int (*pbitpos, off_align) >= 0)
942 tree offset, bitpos;
943 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
944 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
945 *pbitpos = bitpos;
949 /* Print debugging information about the information in RLI. */
951 DEBUG_FUNCTION void
952 debug_rli (record_layout_info rli)
954 print_node_brief (stderr, "type", rli->t, 0);
955 print_node_brief (stderr, "\noffset", rli->offset, 0);
956 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
958 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
959 rli->record_align, rli->unpacked_align,
960 rli->offset_align);
962 /* The ms_struct code is the only that uses this. */
963 if (targetm.ms_bitfield_layout_p (rli->t))
964 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
966 if (rli->packed_maybe_necessary)
967 fprintf (stderr, "packed may be necessary\n");
969 if (!vec_safe_is_empty (rli->pending_statics))
971 fprintf (stderr, "pending statics:\n");
972 debug_vec_tree (rli->pending_statics);
976 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
977 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
979 void
980 normalize_rli (record_layout_info rli)
982 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
985 /* Returns the size in bytes allocated so far. */
987 tree
988 rli_size_unit_so_far (record_layout_info rli)
990 return byte_from_pos (rli->offset, rli->bitpos);
993 /* Returns the size in bits allocated so far. */
995 tree
996 rli_size_so_far (record_layout_info rli)
998 return bit_from_pos (rli->offset, rli->bitpos);
1001 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1002 the next available location within the record is given by KNOWN_ALIGN.
1003 Update the variable alignment fields in RLI, and return the alignment
1004 to give the FIELD. */
1006 unsigned int
1007 update_alignment_for_field (record_layout_info rli, tree field,
1008 unsigned int known_align)
1010 /* The alignment required for FIELD. */
1011 unsigned int desired_align;
1012 /* The type of this field. */
1013 tree type = TREE_TYPE (field);
1014 /* True if the field was explicitly aligned by the user. */
1015 bool user_align;
1016 bool is_bitfield;
1018 /* Do not attempt to align an ERROR_MARK node */
1019 if (TREE_CODE (type) == ERROR_MARK)
1020 return 0;
1022 /* Lay out the field so we know what alignment it needs. */
1023 layout_decl (field, known_align);
1024 desired_align = DECL_ALIGN (field);
1025 user_align = DECL_USER_ALIGN (field);
1027 is_bitfield = (type != error_mark_node
1028 && DECL_BIT_FIELD_TYPE (field)
1029 && ! integer_zerop (TYPE_SIZE (type)));
1031 /* Record must have at least as much alignment as any field.
1032 Otherwise, the alignment of the field within the record is
1033 meaningless. */
1034 if (targetm.ms_bitfield_layout_p (rli->t))
1036 /* Here, the alignment of the underlying type of a bitfield can
1037 affect the alignment of a record; even a zero-sized field
1038 can do this. The alignment should be to the alignment of
1039 the type, except that for zero-size bitfields this only
1040 applies if there was an immediately prior, nonzero-size
1041 bitfield. (That's the way it is, experimentally.) */
1042 if ((!is_bitfield && !DECL_PACKED (field))
1043 || ((DECL_SIZE (field) == NULL_TREE
1044 || !integer_zerop (DECL_SIZE (field)))
1045 ? !DECL_PACKED (field)
1046 : (rli->prev_field
1047 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1048 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1050 unsigned int type_align = TYPE_ALIGN (type);
1051 type_align = MAX (type_align, desired_align);
1052 if (maximum_field_alignment != 0)
1053 type_align = MIN (type_align, maximum_field_alignment);
1054 rli->record_align = MAX (rli->record_align, type_align);
1055 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1058 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1060 /* Named bit-fields cause the entire structure to have the
1061 alignment implied by their type. Some targets also apply the same
1062 rules to unnamed bitfields. */
1063 if (DECL_NAME (field) != 0
1064 || targetm.align_anon_bitfield ())
1066 unsigned int type_align = TYPE_ALIGN (type);
1068 #ifdef ADJUST_FIELD_ALIGN
1069 if (! TYPE_USER_ALIGN (type))
1070 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1071 #endif
1073 /* Targets might chose to handle unnamed and hence possibly
1074 zero-width bitfield. Those are not influenced by #pragmas
1075 or packed attributes. */
1076 if (integer_zerop (DECL_SIZE (field)))
1078 if (initial_max_fld_align)
1079 type_align = MIN (type_align,
1080 initial_max_fld_align * BITS_PER_UNIT);
1082 else if (maximum_field_alignment != 0)
1083 type_align = MIN (type_align, maximum_field_alignment);
1084 else if (DECL_PACKED (field))
1085 type_align = MIN (type_align, BITS_PER_UNIT);
1087 /* The alignment of the record is increased to the maximum
1088 of the current alignment, the alignment indicated on the
1089 field (i.e., the alignment specified by an __aligned__
1090 attribute), and the alignment indicated by the type of
1091 the field. */
1092 rli->record_align = MAX (rli->record_align, desired_align);
1093 rli->record_align = MAX (rli->record_align, type_align);
1095 if (warn_packed)
1096 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1097 user_align |= TYPE_USER_ALIGN (type);
1100 else
1102 rli->record_align = MAX (rli->record_align, desired_align);
1103 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1106 TYPE_USER_ALIGN (rli->t) |= user_align;
1108 return desired_align;
1111 /* Called from place_field to handle unions. */
1113 static void
1114 place_union_field (record_layout_info rli, tree field)
1116 update_alignment_for_field (rli, field, /*known_align=*/0);
1118 DECL_FIELD_OFFSET (field) = size_zero_node;
1119 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1120 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1122 /* If this is an ERROR_MARK return *after* having set the
1123 field at the start of the union. This helps when parsing
1124 invalid fields. */
1125 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1126 return;
1128 /* We assume the union's size will be a multiple of a byte so we don't
1129 bother with BITPOS. */
1130 if (TREE_CODE (rli->t) == UNION_TYPE)
1131 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1132 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1133 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1134 DECL_SIZE_UNIT (field), rli->offset);
1137 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1138 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1139 units of alignment than the underlying TYPE. */
1140 static int
1141 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1142 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1144 /* Note that the calculation of OFFSET might overflow; we calculate it so
1145 that we still get the right result as long as ALIGN is a power of two. */
1146 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1148 offset = offset % align;
1149 return ((offset + size + align - 1) / align
1150 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1153 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1154 is a FIELD_DECL to be added after those fields already present in
1155 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1156 callers that desire that behavior must manually perform that step.) */
1158 void
1159 place_field (record_layout_info rli, tree field)
1161 /* The alignment required for FIELD. */
1162 unsigned int desired_align;
1163 /* The alignment FIELD would have if we just dropped it into the
1164 record as it presently stands. */
1165 unsigned int known_align;
1166 unsigned int actual_align;
1167 /* The type of this field. */
1168 tree type = TREE_TYPE (field);
1170 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1172 /* If FIELD is static, then treat it like a separate variable, not
1173 really like a structure field. If it is a FUNCTION_DECL, it's a
1174 method. In both cases, all we do is lay out the decl, and we do
1175 it *after* the record is laid out. */
1176 if (TREE_CODE (field) == VAR_DECL)
1178 vec_safe_push (rli->pending_statics, field);
1179 return;
1182 /* Enumerators and enum types which are local to this class need not
1183 be laid out. Likewise for initialized constant fields. */
1184 else if (TREE_CODE (field) != FIELD_DECL)
1185 return;
1187 /* Unions are laid out very differently than records, so split
1188 that code off to another function. */
1189 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1191 place_union_field (rli, field);
1192 return;
1195 else if (TREE_CODE (type) == ERROR_MARK)
1197 /* Place this field at the current allocation position, so we
1198 maintain monotonicity. */
1199 DECL_FIELD_OFFSET (field) = rli->offset;
1200 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1201 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1202 return;
1205 /* Work out the known alignment so far. Note that A & (-A) is the
1206 value of the least-significant bit in A that is one. */
1207 if (! integer_zerop (rli->bitpos))
1208 known_align = (tree_to_uhwi (rli->bitpos)
1209 & - tree_to_uhwi (rli->bitpos));
1210 else if (integer_zerop (rli->offset))
1211 known_align = 0;
1212 else if (tree_fits_uhwi_p (rli->offset))
1213 known_align = (BITS_PER_UNIT
1214 * (tree_to_uhwi (rli->offset)
1215 & - tree_to_uhwi (rli->offset)));
1216 else
1217 known_align = rli->offset_align;
1219 desired_align = update_alignment_for_field (rli, field, known_align);
1220 if (known_align == 0)
1221 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1223 if (warn_packed && DECL_PACKED (field))
1225 if (known_align >= TYPE_ALIGN (type))
1227 if (TYPE_ALIGN (type) > desired_align)
1229 if (STRICT_ALIGNMENT)
1230 warning (OPT_Wattributes, "packed attribute causes "
1231 "inefficient alignment for %q+D", field);
1232 /* Don't warn if DECL_PACKED was set by the type. */
1233 else if (!TYPE_PACKED (rli->t))
1234 warning (OPT_Wattributes, "packed attribute is "
1235 "unnecessary for %q+D", field);
1238 else
1239 rli->packed_maybe_necessary = 1;
1242 /* Does this field automatically have alignment it needs by virtue
1243 of the fields that precede it and the record's own alignment? */
1244 if (known_align < desired_align)
1246 /* No, we need to skip space before this field.
1247 Bump the cumulative size to multiple of field alignment. */
1249 if (!targetm.ms_bitfield_layout_p (rli->t)
1250 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1251 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1253 /* If the alignment is still within offset_align, just align
1254 the bit position. */
1255 if (desired_align < rli->offset_align)
1256 rli->bitpos = round_up (rli->bitpos, desired_align);
1257 else
1259 /* First adjust OFFSET by the partial bits, then align. */
1260 rli->offset
1261 = size_binop (PLUS_EXPR, rli->offset,
1262 fold_convert (sizetype,
1263 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1264 bitsize_unit_node)));
1265 rli->bitpos = bitsize_zero_node;
1267 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1270 if (! TREE_CONSTANT (rli->offset))
1271 rli->offset_align = desired_align;
1272 if (targetm.ms_bitfield_layout_p (rli->t))
1273 rli->prev_field = NULL;
1276 /* Handle compatibility with PCC. Note that if the record has any
1277 variable-sized fields, we need not worry about compatibility. */
1278 if (PCC_BITFIELD_TYPE_MATTERS
1279 && ! targetm.ms_bitfield_layout_p (rli->t)
1280 && TREE_CODE (field) == FIELD_DECL
1281 && type != error_mark_node
1282 && DECL_BIT_FIELD (field)
1283 && (! DECL_PACKED (field)
1284 /* Enter for these packed fields only to issue a warning. */
1285 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1286 && maximum_field_alignment == 0
1287 && ! integer_zerop (DECL_SIZE (field))
1288 && tree_fits_uhwi_p (DECL_SIZE (field))
1289 && tree_fits_uhwi_p (rli->offset)
1290 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1292 unsigned int type_align = TYPE_ALIGN (type);
1293 tree dsize = DECL_SIZE (field);
1294 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1295 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1296 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1298 #ifdef ADJUST_FIELD_ALIGN
1299 if (! TYPE_USER_ALIGN (type))
1300 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1301 #endif
1303 /* A bit field may not span more units of alignment of its type
1304 than its type itself. Advance to next boundary if necessary. */
1305 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1307 if (DECL_PACKED (field))
1309 if (warn_packed_bitfield_compat == 1)
1310 inform
1311 (input_location,
1312 "offset of packed bit-field %qD has changed in GCC 4.4",
1313 field);
1315 else
1316 rli->bitpos = round_up (rli->bitpos, type_align);
1319 if (! DECL_PACKED (field))
1320 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1323 #ifdef BITFIELD_NBYTES_LIMITED
1324 if (BITFIELD_NBYTES_LIMITED
1325 && ! targetm.ms_bitfield_layout_p (rli->t)
1326 && TREE_CODE (field) == FIELD_DECL
1327 && type != error_mark_node
1328 && DECL_BIT_FIELD_TYPE (field)
1329 && ! DECL_PACKED (field)
1330 && ! integer_zerop (DECL_SIZE (field))
1331 && tree_fits_uhwi_p (DECL_SIZE (field))
1332 && tree_fits_uhwi_p (rli->offset)
1333 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1335 unsigned int type_align = TYPE_ALIGN (type);
1336 tree dsize = DECL_SIZE (field);
1337 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1338 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1339 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1341 #ifdef ADJUST_FIELD_ALIGN
1342 if (! TYPE_USER_ALIGN (type))
1343 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1344 #endif
1346 if (maximum_field_alignment != 0)
1347 type_align = MIN (type_align, maximum_field_alignment);
1348 /* ??? This test is opposite the test in the containing if
1349 statement, so this code is unreachable currently. */
1350 else if (DECL_PACKED (field))
1351 type_align = MIN (type_align, BITS_PER_UNIT);
1353 /* A bit field may not span the unit of alignment of its type.
1354 Advance to next boundary if necessary. */
1355 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1356 rli->bitpos = round_up (rli->bitpos, type_align);
1358 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1360 #endif
1362 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1363 A subtlety:
1364 When a bit field is inserted into a packed record, the whole
1365 size of the underlying type is used by one or more same-size
1366 adjacent bitfields. (That is, if its long:3, 32 bits is
1367 used in the record, and any additional adjacent long bitfields are
1368 packed into the same chunk of 32 bits. However, if the size
1369 changes, a new field of that size is allocated.) In an unpacked
1370 record, this is the same as using alignment, but not equivalent
1371 when packing.
1373 Note: for compatibility, we use the type size, not the type alignment
1374 to determine alignment, since that matches the documentation */
1376 if (targetm.ms_bitfield_layout_p (rli->t))
1378 tree prev_saved = rli->prev_field;
1379 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1381 /* This is a bitfield if it exists. */
1382 if (rli->prev_field)
1384 /* If both are bitfields, nonzero, and the same size, this is
1385 the middle of a run. Zero declared size fields are special
1386 and handled as "end of run". (Note: it's nonzero declared
1387 size, but equal type sizes!) (Since we know that both
1388 the current and previous fields are bitfields by the
1389 time we check it, DECL_SIZE must be present for both.) */
1390 if (DECL_BIT_FIELD_TYPE (field)
1391 && !integer_zerop (DECL_SIZE (field))
1392 && !integer_zerop (DECL_SIZE (rli->prev_field))
1393 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1394 && tree_fits_uhwi_p (TYPE_SIZE (type))
1395 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1397 /* We're in the middle of a run of equal type size fields; make
1398 sure we realign if we run out of bits. (Not decl size,
1399 type size!) */
1400 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1402 if (rli->remaining_in_alignment < bitsize)
1404 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1406 /* out of bits; bump up to next 'word'. */
1407 rli->bitpos
1408 = size_binop (PLUS_EXPR, rli->bitpos,
1409 bitsize_int (rli->remaining_in_alignment));
1410 rli->prev_field = field;
1411 if (typesize < bitsize)
1412 rli->remaining_in_alignment = 0;
1413 else
1414 rli->remaining_in_alignment = typesize - bitsize;
1416 else
1417 rli->remaining_in_alignment -= bitsize;
1419 else
1421 /* End of a run: if leaving a run of bitfields of the same type
1422 size, we have to "use up" the rest of the bits of the type
1423 size.
1425 Compute the new position as the sum of the size for the prior
1426 type and where we first started working on that type.
1427 Note: since the beginning of the field was aligned then
1428 of course the end will be too. No round needed. */
1430 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1432 rli->bitpos
1433 = size_binop (PLUS_EXPR, rli->bitpos,
1434 bitsize_int (rli->remaining_in_alignment));
1436 else
1437 /* We "use up" size zero fields; the code below should behave
1438 as if the prior field was not a bitfield. */
1439 prev_saved = NULL;
1441 /* Cause a new bitfield to be captured, either this time (if
1442 currently a bitfield) or next time we see one. */
1443 if (!DECL_BIT_FIELD_TYPE (field)
1444 || integer_zerop (DECL_SIZE (field)))
1445 rli->prev_field = NULL;
1448 normalize_rli (rli);
1451 /* If we're starting a new run of same type size bitfields
1452 (or a run of non-bitfields), set up the "first of the run"
1453 fields.
1455 That is, if the current field is not a bitfield, or if there
1456 was a prior bitfield the type sizes differ, or if there wasn't
1457 a prior bitfield the size of the current field is nonzero.
1459 Note: we must be sure to test ONLY the type size if there was
1460 a prior bitfield and ONLY for the current field being zero if
1461 there wasn't. */
1463 if (!DECL_BIT_FIELD_TYPE (field)
1464 || (prev_saved != NULL
1465 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1466 : !integer_zerop (DECL_SIZE (field)) ))
1468 /* Never smaller than a byte for compatibility. */
1469 unsigned int type_align = BITS_PER_UNIT;
1471 /* (When not a bitfield), we could be seeing a flex array (with
1472 no DECL_SIZE). Since we won't be using remaining_in_alignment
1473 until we see a bitfield (and come by here again) we just skip
1474 calculating it. */
1475 if (DECL_SIZE (field) != NULL
1476 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1477 && tree_fits_uhwi_p (DECL_SIZE (field)))
1479 unsigned HOST_WIDE_INT bitsize
1480 = tree_to_uhwi (DECL_SIZE (field));
1481 unsigned HOST_WIDE_INT typesize
1482 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1484 if (typesize < bitsize)
1485 rli->remaining_in_alignment = 0;
1486 else
1487 rli->remaining_in_alignment = typesize - bitsize;
1490 /* Now align (conventionally) for the new type. */
1491 type_align = TYPE_ALIGN (TREE_TYPE (field));
1493 if (maximum_field_alignment != 0)
1494 type_align = MIN (type_align, maximum_field_alignment);
1496 rli->bitpos = round_up (rli->bitpos, type_align);
1498 /* If we really aligned, don't allow subsequent bitfields
1499 to undo that. */
1500 rli->prev_field = NULL;
1504 /* Offset so far becomes the position of this field after normalizing. */
1505 normalize_rli (rli);
1506 DECL_FIELD_OFFSET (field) = rli->offset;
1507 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1508 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1510 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1511 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1512 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1514 /* If this field ended up more aligned than we thought it would be (we
1515 approximate this by seeing if its position changed), lay out the field
1516 again; perhaps we can use an integral mode for it now. */
1517 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1518 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1519 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1520 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1521 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1522 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1523 actual_align = (BITS_PER_UNIT
1524 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1525 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1526 else
1527 actual_align = DECL_OFFSET_ALIGN (field);
1528 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1529 store / extract bit field operations will check the alignment of the
1530 record against the mode of bit fields. */
1532 if (known_align != actual_align)
1533 layout_decl (field, actual_align);
1535 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1536 rli->prev_field = field;
1538 /* Now add size of this field to the size of the record. If the size is
1539 not constant, treat the field as being a multiple of bytes and just
1540 adjust the offset, resetting the bit position. Otherwise, apportion the
1541 size amongst the bit position and offset. First handle the case of an
1542 unspecified size, which can happen when we have an invalid nested struct
1543 definition, such as struct j { struct j { int i; } }. The error message
1544 is printed in finish_struct. */
1545 if (DECL_SIZE (field) == 0)
1546 /* Do nothing. */;
1547 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1548 || TREE_OVERFLOW (DECL_SIZE (field)))
1550 rli->offset
1551 = size_binop (PLUS_EXPR, rli->offset,
1552 fold_convert (sizetype,
1553 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1554 bitsize_unit_node)));
1555 rli->offset
1556 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1557 rli->bitpos = bitsize_zero_node;
1558 rli->offset_align = MIN (rli->offset_align, desired_align);
1560 else if (targetm.ms_bitfield_layout_p (rli->t))
1562 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1564 /* If we ended a bitfield before the full length of the type then
1565 pad the struct out to the full length of the last type. */
1566 if ((DECL_CHAIN (field) == NULL
1567 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1568 && DECL_BIT_FIELD_TYPE (field)
1569 && !integer_zerop (DECL_SIZE (field)))
1570 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1571 bitsize_int (rli->remaining_in_alignment));
1573 normalize_rli (rli);
1575 else
1577 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1578 normalize_rli (rli);
1582 /* Assuming that all the fields have been laid out, this function uses
1583 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1584 indicated by RLI. */
1586 static void
1587 finalize_record_size (record_layout_info rli)
1589 tree unpadded_size, unpadded_size_unit;
1591 /* Now we want just byte and bit offsets, so set the offset alignment
1592 to be a byte and then normalize. */
1593 rli->offset_align = BITS_PER_UNIT;
1594 normalize_rli (rli);
1596 /* Determine the desired alignment. */
1597 #ifdef ROUND_TYPE_ALIGN
1598 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1599 rli->record_align);
1600 #else
1601 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1602 #endif
1604 /* Compute the size so far. Be sure to allow for extra bits in the
1605 size in bytes. We have guaranteed above that it will be no more
1606 than a single byte. */
1607 unpadded_size = rli_size_so_far (rli);
1608 unpadded_size_unit = rli_size_unit_so_far (rli);
1609 if (! integer_zerop (rli->bitpos))
1610 unpadded_size_unit
1611 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1613 /* Round the size up to be a multiple of the required alignment. */
1614 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1615 TYPE_SIZE_UNIT (rli->t)
1616 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1618 if (TREE_CONSTANT (unpadded_size)
1619 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1620 && input_location != BUILTINS_LOCATION)
1621 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1623 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1624 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1625 && TREE_CONSTANT (unpadded_size))
1627 tree unpacked_size;
1629 #ifdef ROUND_TYPE_ALIGN
1630 rli->unpacked_align
1631 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1632 #else
1633 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1634 #endif
1636 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1637 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1639 if (TYPE_NAME (rli->t))
1641 tree name;
1643 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1644 name = TYPE_NAME (rli->t);
1645 else
1646 name = DECL_NAME (TYPE_NAME (rli->t));
1648 if (STRICT_ALIGNMENT)
1649 warning (OPT_Wpacked, "packed attribute causes inefficient "
1650 "alignment for %qE", name);
1651 else
1652 warning (OPT_Wpacked,
1653 "packed attribute is unnecessary for %qE", name);
1655 else
1657 if (STRICT_ALIGNMENT)
1658 warning (OPT_Wpacked,
1659 "packed attribute causes inefficient alignment");
1660 else
1661 warning (OPT_Wpacked, "packed attribute is unnecessary");
1667 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1669 void
1670 compute_record_mode (tree type)
1672 tree field;
1673 machine_mode mode = VOIDmode;
1675 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1676 However, if possible, we use a mode that fits in a register
1677 instead, in order to allow for better optimization down the
1678 line. */
1679 SET_TYPE_MODE (type, BLKmode);
1681 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1682 return;
1684 /* A record which has any BLKmode members must itself be
1685 BLKmode; it can't go in a register. Unless the member is
1686 BLKmode only because it isn't aligned. */
1687 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1689 if (TREE_CODE (field) != FIELD_DECL)
1690 continue;
1692 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1693 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1694 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1695 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1696 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1697 || ! tree_fits_uhwi_p (bit_position (field))
1698 || DECL_SIZE (field) == 0
1699 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1700 return;
1702 /* If this field is the whole struct, remember its mode so
1703 that, say, we can put a double in a class into a DF
1704 register instead of forcing it to live in the stack. */
1705 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1706 mode = DECL_MODE (field);
1708 /* With some targets, it is sub-optimal to access an aligned
1709 BLKmode structure as a scalar. */
1710 if (targetm.member_type_forces_blk (field, mode))
1711 return;
1714 /* If we only have one real field; use its mode if that mode's size
1715 matches the type's size. This only applies to RECORD_TYPE. This
1716 does not apply to unions. */
1717 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1718 && tree_fits_uhwi_p (TYPE_SIZE (type))
1719 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1720 SET_TYPE_MODE (type, mode);
1721 else
1722 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1724 /* If structure's known alignment is less than what the scalar
1725 mode would need, and it matters, then stick with BLKmode. */
1726 if (TYPE_MODE (type) != BLKmode
1727 && STRICT_ALIGNMENT
1728 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1729 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1731 /* If this is the only reason this type is BLKmode, then
1732 don't force containing types to be BLKmode. */
1733 TYPE_NO_FORCE_BLK (type) = 1;
1734 SET_TYPE_MODE (type, BLKmode);
1738 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1739 out. */
1741 static void
1742 finalize_type_size (tree type)
1744 /* Normally, use the alignment corresponding to the mode chosen.
1745 However, where strict alignment is not required, avoid
1746 over-aligning structures, since most compilers do not do this
1747 alignment. */
1748 if (TYPE_MODE (type) != BLKmode
1749 && TYPE_MODE (type) != VOIDmode
1750 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1752 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1754 /* Don't override a larger alignment requirement coming from a user
1755 alignment of one of the fields. */
1756 if (mode_align >= TYPE_ALIGN (type))
1758 TYPE_ALIGN (type) = mode_align;
1759 TYPE_USER_ALIGN (type) = 0;
1763 /* Do machine-dependent extra alignment. */
1764 #ifdef ROUND_TYPE_ALIGN
1765 TYPE_ALIGN (type)
1766 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1767 #endif
1769 /* If we failed to find a simple way to calculate the unit size
1770 of the type, find it by division. */
1771 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1772 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1773 result will fit in sizetype. We will get more efficient code using
1774 sizetype, so we force a conversion. */
1775 TYPE_SIZE_UNIT (type)
1776 = fold_convert (sizetype,
1777 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1778 bitsize_unit_node));
1780 if (TYPE_SIZE (type) != 0)
1782 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1783 TYPE_SIZE_UNIT (type)
1784 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1787 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1788 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1789 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1790 if (TYPE_SIZE_UNIT (type) != 0
1791 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1792 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1794 /* Also layout any other variants of the type. */
1795 if (TYPE_NEXT_VARIANT (type)
1796 || type != TYPE_MAIN_VARIANT (type))
1798 tree variant;
1799 /* Record layout info of this variant. */
1800 tree size = TYPE_SIZE (type);
1801 tree size_unit = TYPE_SIZE_UNIT (type);
1802 unsigned int align = TYPE_ALIGN (type);
1803 unsigned int precision = TYPE_PRECISION (type);
1804 unsigned int user_align = TYPE_USER_ALIGN (type);
1805 machine_mode mode = TYPE_MODE (type);
1807 /* Copy it into all variants. */
1808 for (variant = TYPE_MAIN_VARIANT (type);
1809 variant != 0;
1810 variant = TYPE_NEXT_VARIANT (variant))
1812 TYPE_SIZE (variant) = size;
1813 TYPE_SIZE_UNIT (variant) = size_unit;
1814 unsigned valign = align;
1815 if (TYPE_USER_ALIGN (variant))
1816 valign = MAX (valign, TYPE_ALIGN (variant));
1817 else
1818 TYPE_USER_ALIGN (variant) = user_align;
1819 TYPE_ALIGN (variant) = valign;
1820 TYPE_PRECISION (variant) = precision;
1821 SET_TYPE_MODE (variant, mode);
1826 /* Return a new underlying object for a bitfield started with FIELD. */
1828 static tree
1829 start_bitfield_representative (tree field)
1831 tree repr = make_node (FIELD_DECL);
1832 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1833 /* Force the representative to begin at a BITS_PER_UNIT aligned
1834 boundary - C++ may use tail-padding of a base object to
1835 continue packing bits so the bitfield region does not start
1836 at bit zero (see g++.dg/abi/bitfield5.C for example).
1837 Unallocated bits may happen for other reasons as well,
1838 for example Ada which allows explicit bit-granular structure layout. */
1839 DECL_FIELD_BIT_OFFSET (repr)
1840 = size_binop (BIT_AND_EXPR,
1841 DECL_FIELD_BIT_OFFSET (field),
1842 bitsize_int (~(BITS_PER_UNIT - 1)));
1843 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1844 DECL_SIZE (repr) = DECL_SIZE (field);
1845 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1846 DECL_PACKED (repr) = DECL_PACKED (field);
1847 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1848 return repr;
1851 /* Finish up a bitfield group that was started by creating the underlying
1852 object REPR with the last field in the bitfield group FIELD. */
1854 static void
1855 finish_bitfield_representative (tree repr, tree field)
1857 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1858 machine_mode mode;
1859 tree nextf, size;
1861 size = size_diffop (DECL_FIELD_OFFSET (field),
1862 DECL_FIELD_OFFSET (repr));
1863 while (TREE_CODE (size) == COMPOUND_EXPR)
1864 size = TREE_OPERAND (size, 1);
1865 gcc_assert (tree_fits_uhwi_p (size));
1866 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1867 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1868 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1869 + tree_to_uhwi (DECL_SIZE (field)));
1871 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1872 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1874 /* Now nothing tells us how to pad out bitsize ... */
1875 nextf = DECL_CHAIN (field);
1876 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1877 nextf = DECL_CHAIN (nextf);
1878 if (nextf)
1880 tree maxsize;
1881 /* If there was an error, the field may be not laid out
1882 correctly. Don't bother to do anything. */
1883 if (TREE_TYPE (nextf) == error_mark_node)
1884 return;
1885 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1886 DECL_FIELD_OFFSET (repr));
1887 if (tree_fits_uhwi_p (maxsize))
1889 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1890 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1891 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1892 /* If the group ends within a bitfield nextf does not need to be
1893 aligned to BITS_PER_UNIT. Thus round up. */
1894 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1896 else
1897 maxbitsize = bitsize;
1899 else
1901 /* ??? If you consider that tail-padding of this struct might be
1902 re-used when deriving from it we cannot really do the following
1903 and thus need to set maxsize to bitsize? Also we cannot
1904 generally rely on maxsize to fold to an integer constant, so
1905 use bitsize as fallback for this case. */
1906 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1907 DECL_FIELD_OFFSET (repr));
1908 if (tree_fits_uhwi_p (maxsize))
1909 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1910 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1911 else
1912 maxbitsize = bitsize;
1915 /* Only if we don't artificially break up the representative in
1916 the middle of a large bitfield with different possibly
1917 overlapping representatives. And all representatives start
1918 at byte offset. */
1919 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1921 /* Find the smallest nice mode to use. */
1922 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1923 mode = GET_MODE_WIDER_MODE (mode))
1924 if (GET_MODE_BITSIZE (mode) >= bitsize)
1925 break;
1926 if (mode != VOIDmode
1927 && (GET_MODE_BITSIZE (mode) > maxbitsize
1928 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1929 mode = VOIDmode;
1931 if (mode == VOIDmode)
1933 /* We really want a BLKmode representative only as a last resort,
1934 considering the member b in
1935 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1936 Otherwise we simply want to split the representative up
1937 allowing for overlaps within the bitfield region as required for
1938 struct { int a : 7; int b : 7;
1939 int c : 10; int d; } __attribute__((packed));
1940 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1941 DECL_SIZE (repr) = bitsize_int (bitsize);
1942 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1943 DECL_MODE (repr) = BLKmode;
1944 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1945 bitsize / BITS_PER_UNIT);
1947 else
1949 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1950 DECL_SIZE (repr) = bitsize_int (modesize);
1951 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1952 DECL_MODE (repr) = mode;
1953 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1956 /* Remember whether the bitfield group is at the end of the
1957 structure or not. */
1958 DECL_CHAIN (repr) = nextf;
1961 /* Compute and set FIELD_DECLs for the underlying objects we should
1962 use for bitfield access for the structure T. */
1964 void
1965 finish_bitfield_layout (tree t)
1967 tree field, prev;
1968 tree repr = NULL_TREE;
1970 /* Unions would be special, for the ease of type-punning optimizations
1971 we could use the underlying type as hint for the representative
1972 if the bitfield would fit and the representative would not exceed
1973 the union in size. */
1974 if (TREE_CODE (t) != RECORD_TYPE)
1975 return;
1977 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1978 field; field = DECL_CHAIN (field))
1980 if (TREE_CODE (field) != FIELD_DECL)
1981 continue;
1983 /* In the C++ memory model, consecutive bit fields in a structure are
1984 considered one memory location and updating a memory location
1985 may not store into adjacent memory locations. */
1986 if (!repr
1987 && DECL_BIT_FIELD_TYPE (field))
1989 /* Start new representative. */
1990 repr = start_bitfield_representative (field);
1992 else if (repr
1993 && ! DECL_BIT_FIELD_TYPE (field))
1995 /* Finish off new representative. */
1996 finish_bitfield_representative (repr, prev);
1997 repr = NULL_TREE;
1999 else if (DECL_BIT_FIELD_TYPE (field))
2001 gcc_assert (repr != NULL_TREE);
2003 /* Zero-size bitfields finish off a representative and
2004 do not have a representative themselves. This is
2005 required by the C++ memory model. */
2006 if (integer_zerop (DECL_SIZE (field)))
2008 finish_bitfield_representative (repr, prev);
2009 repr = NULL_TREE;
2012 /* We assume that either DECL_FIELD_OFFSET of the representative
2013 and each bitfield member is a constant or they are equal.
2014 This is because we need to be able to compute the bit-offset
2015 of each field relative to the representative in get_bit_range
2016 during RTL expansion.
2017 If these constraints are not met, simply force a new
2018 representative to be generated. That will at most
2019 generate worse code but still maintain correctness with
2020 respect to the C++ memory model. */
2021 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2022 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2023 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2024 DECL_FIELD_OFFSET (field), 0)))
2026 finish_bitfield_representative (repr, prev);
2027 repr = start_bitfield_representative (field);
2030 else
2031 continue;
2033 if (repr)
2034 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2036 prev = field;
2039 if (repr)
2040 finish_bitfield_representative (repr, prev);
2043 /* Do all of the work required to layout the type indicated by RLI,
2044 once the fields have been laid out. This function will call `free'
2045 for RLI, unless FREE_P is false. Passing a value other than false
2046 for FREE_P is bad practice; this option only exists to support the
2047 G++ 3.2 ABI. */
2049 void
2050 finish_record_layout (record_layout_info rli, int free_p)
2052 tree variant;
2054 /* Compute the final size. */
2055 finalize_record_size (rli);
2057 /* Compute the TYPE_MODE for the record. */
2058 compute_record_mode (rli->t);
2060 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2061 finalize_type_size (rli->t);
2063 /* Compute bitfield representatives. */
2064 finish_bitfield_layout (rli->t);
2066 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2067 With C++ templates, it is too early to do this when the attribute
2068 is being parsed. */
2069 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2070 variant = TYPE_NEXT_VARIANT (variant))
2072 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2073 TYPE_REVERSE_STORAGE_ORDER (variant)
2074 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2077 /* Lay out any static members. This is done now because their type
2078 may use the record's type. */
2079 while (!vec_safe_is_empty (rli->pending_statics))
2080 layout_decl (rli->pending_statics->pop (), 0);
2082 /* Clean up. */
2083 if (free_p)
2085 vec_free (rli->pending_statics);
2086 free (rli);
2091 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2092 NAME, its fields are chained in reverse on FIELDS.
2094 If ALIGN_TYPE is non-null, it is given the same alignment as
2095 ALIGN_TYPE. */
2097 void
2098 finish_builtin_struct (tree type, const char *name, tree fields,
2099 tree align_type)
2101 tree tail, next;
2103 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2105 DECL_FIELD_CONTEXT (fields) = type;
2106 next = DECL_CHAIN (fields);
2107 DECL_CHAIN (fields) = tail;
2109 TYPE_FIELDS (type) = tail;
2111 if (align_type)
2113 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2114 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2117 layout_type (type);
2118 #if 0 /* not yet, should get fixed properly later */
2119 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2120 #else
2121 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2122 TYPE_DECL, get_identifier (name), type);
2123 #endif
2124 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2125 layout_decl (TYPE_NAME (type), 0);
2128 /* Calculate the mode, size, and alignment for TYPE.
2129 For an array type, calculate the element separation as well.
2130 Record TYPE on the chain of permanent or temporary types
2131 so that dbxout will find out about it.
2133 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2134 layout_type does nothing on such a type.
2136 If the type is incomplete, its TYPE_SIZE remains zero. */
2138 void
2139 layout_type (tree type)
2141 gcc_assert (type);
2143 if (type == error_mark_node)
2144 return;
2146 /* We don't want finalize_type_size to copy an alignment attribute to
2147 variants that don't have it. */
2148 type = TYPE_MAIN_VARIANT (type);
2150 /* Do nothing if type has been laid out before. */
2151 if (TYPE_SIZE (type))
2152 return;
2154 switch (TREE_CODE (type))
2156 case LANG_TYPE:
2157 /* This kind of type is the responsibility
2158 of the language-specific code. */
2159 gcc_unreachable ();
2161 case BOOLEAN_TYPE:
2162 case INTEGER_TYPE:
2163 case ENUMERAL_TYPE:
2164 SET_TYPE_MODE (type,
2165 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2166 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2167 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2168 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2169 break;
2171 case REAL_TYPE:
2172 SET_TYPE_MODE (type,
2173 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2174 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2175 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2176 break;
2178 case FIXED_POINT_TYPE:
2179 /* TYPE_MODE (type) has been set already. */
2180 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2181 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2182 break;
2184 case COMPLEX_TYPE:
2185 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2186 SET_TYPE_MODE (type,
2187 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2188 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2189 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2190 0));
2191 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2192 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2193 break;
2195 case VECTOR_TYPE:
2197 int nunits = TYPE_VECTOR_SUBPARTS (type);
2198 tree innertype = TREE_TYPE (type);
2200 gcc_assert (!(nunits & (nunits - 1)));
2202 /* Find an appropriate mode for the vector type. */
2203 if (TYPE_MODE (type) == VOIDmode)
2204 SET_TYPE_MODE (type,
2205 mode_for_vector (TYPE_MODE (innertype), nunits));
2207 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2208 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2209 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2210 TYPE_SIZE_UNIT (innertype),
2211 size_int (nunits));
2212 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2213 bitsize_int (nunits));
2215 /* For vector types, we do not default to the mode's alignment.
2216 Instead, query a target hook, defaulting to natural alignment.
2217 This prevents ABI changes depending on whether or not native
2218 vector modes are supported. */
2219 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2221 /* However, if the underlying mode requires a bigger alignment than
2222 what the target hook provides, we cannot use the mode. For now,
2223 simply reject that case. */
2224 gcc_assert (TYPE_ALIGN (type)
2225 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2226 break;
2229 case VOID_TYPE:
2230 /* This is an incomplete type and so doesn't have a size. */
2231 TYPE_ALIGN (type) = 1;
2232 TYPE_USER_ALIGN (type) = 0;
2233 SET_TYPE_MODE (type, VOIDmode);
2234 break;
2236 case POINTER_BOUNDS_TYPE:
2237 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2238 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2239 break;
2241 case OFFSET_TYPE:
2242 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2243 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2244 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2245 integral, which may be an __intN. */
2246 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2247 TYPE_PRECISION (type) = POINTER_SIZE;
2248 break;
2250 case FUNCTION_TYPE:
2251 case METHOD_TYPE:
2252 /* It's hard to see what the mode and size of a function ought to
2253 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2254 make it consistent with that. */
2255 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2256 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2257 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2258 break;
2260 case POINTER_TYPE:
2261 case REFERENCE_TYPE:
2263 machine_mode mode = TYPE_MODE (type);
2264 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2266 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2267 mode = targetm.addr_space.address_mode (as);
2270 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2271 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2272 TYPE_UNSIGNED (type) = 1;
2273 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2275 break;
2277 case ARRAY_TYPE:
2279 tree index = TYPE_DOMAIN (type);
2280 tree element = TREE_TYPE (type);
2282 build_pointer_type (element);
2284 /* We need to know both bounds in order to compute the size. */
2285 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2286 && TYPE_SIZE (element))
2288 tree ub = TYPE_MAX_VALUE (index);
2289 tree lb = TYPE_MIN_VALUE (index);
2290 tree element_size = TYPE_SIZE (element);
2291 tree length;
2293 /* Make sure that an array of zero-sized element is zero-sized
2294 regardless of its extent. */
2295 if (integer_zerop (element_size))
2296 length = size_zero_node;
2298 /* The computation should happen in the original signedness so
2299 that (possible) negative values are handled appropriately
2300 when determining overflow. */
2301 else
2303 /* ??? When it is obvious that the range is signed
2304 represent it using ssizetype. */
2305 if (TREE_CODE (lb) == INTEGER_CST
2306 && TREE_CODE (ub) == INTEGER_CST
2307 && TYPE_UNSIGNED (TREE_TYPE (lb))
2308 && tree_int_cst_lt (ub, lb))
2310 lb = wide_int_to_tree (ssizetype,
2311 offset_int::from (lb, SIGNED));
2312 ub = wide_int_to_tree (ssizetype,
2313 offset_int::from (ub, SIGNED));
2315 length
2316 = fold_convert (sizetype,
2317 size_binop (PLUS_EXPR,
2318 build_int_cst (TREE_TYPE (lb), 1),
2319 size_binop (MINUS_EXPR, ub, lb)));
2322 /* ??? We have no way to distinguish a null-sized array from an
2323 array spanning the whole sizetype range, so we arbitrarily
2324 decide that [0, -1] is the only valid representation. */
2325 if (integer_zerop (length)
2326 && TREE_OVERFLOW (length)
2327 && integer_zerop (lb))
2328 length = size_zero_node;
2330 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2331 fold_convert (bitsizetype,
2332 length));
2334 /* If we know the size of the element, calculate the total size
2335 directly, rather than do some division thing below. This
2336 optimization helps Fortran assumed-size arrays (where the
2337 size of the array is determined at runtime) substantially. */
2338 if (TYPE_SIZE_UNIT (element))
2339 TYPE_SIZE_UNIT (type)
2340 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2343 /* Now round the alignment and size,
2344 using machine-dependent criteria if any. */
2346 unsigned align = TYPE_ALIGN (element);
2347 if (TYPE_USER_ALIGN (type))
2348 align = MAX (align, TYPE_ALIGN (type));
2349 else
2350 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2351 #ifdef ROUND_TYPE_ALIGN
2352 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2353 #else
2354 align = MAX (align, BITS_PER_UNIT);
2355 #endif
2356 TYPE_ALIGN (type) = align;
2357 SET_TYPE_MODE (type, BLKmode);
2358 if (TYPE_SIZE (type) != 0
2359 && ! targetm.member_type_forces_blk (type, VOIDmode)
2360 /* BLKmode elements force BLKmode aggregate;
2361 else extract/store fields may lose. */
2362 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2363 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2365 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2366 TYPE_SIZE (type)));
2367 if (TYPE_MODE (type) != BLKmode
2368 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2369 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2371 TYPE_NO_FORCE_BLK (type) = 1;
2372 SET_TYPE_MODE (type, BLKmode);
2375 /* When the element size is constant, check that it is at least as
2376 large as the element alignment. */
2377 if (TYPE_SIZE_UNIT (element)
2378 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2379 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2380 TYPE_ALIGN_UNIT. */
2381 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2382 && !integer_zerop (TYPE_SIZE_UNIT (element))
2383 && compare_tree_int (TYPE_SIZE_UNIT (element),
2384 TYPE_ALIGN_UNIT (element)) < 0)
2385 error ("alignment of array elements is greater than element size");
2386 break;
2389 case RECORD_TYPE:
2390 case UNION_TYPE:
2391 case QUAL_UNION_TYPE:
2393 tree field;
2394 record_layout_info rli;
2396 /* Initialize the layout information. */
2397 rli = start_record_layout (type);
2399 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2400 in the reverse order in building the COND_EXPR that denotes
2401 its size. We reverse them again later. */
2402 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2403 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2405 /* Place all the fields. */
2406 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2407 place_field (rli, field);
2409 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2410 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2412 /* Finish laying out the record. */
2413 finish_record_layout (rli, /*free_p=*/true);
2415 break;
2417 default:
2418 gcc_unreachable ();
2421 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2422 records and unions, finish_record_layout already called this
2423 function. */
2424 if (!RECORD_OR_UNION_TYPE_P (type))
2425 finalize_type_size (type);
2427 /* We should never see alias sets on incomplete aggregates. And we
2428 should not call layout_type on not incomplete aggregates. */
2429 if (AGGREGATE_TYPE_P (type))
2430 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2433 /* Return the least alignment required for type TYPE. */
2435 unsigned int
2436 min_align_of_type (tree type)
2438 unsigned int align = TYPE_ALIGN (type);
2439 if (!TYPE_USER_ALIGN (type))
2441 align = MIN (align, BIGGEST_ALIGNMENT);
2442 #ifdef BIGGEST_FIELD_ALIGNMENT
2443 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2444 #endif
2445 unsigned int field_align = align;
2446 #ifdef ADJUST_FIELD_ALIGN
2447 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2448 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2449 ggc_free (field);
2450 #endif
2451 align = MIN (align, field_align);
2453 return align / BITS_PER_UNIT;
2456 /* Vector types need to re-check the target flags each time we report
2457 the machine mode. We need to do this because attribute target can
2458 change the result of vector_mode_supported_p and have_regs_of_mode
2459 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2460 change on a per-function basis. */
2461 /* ??? Possibly a better solution is to run through all the types
2462 referenced by a function and re-compute the TYPE_MODE once, rather
2463 than make the TYPE_MODE macro call a function. */
2465 machine_mode
2466 vector_type_mode (const_tree t)
2468 machine_mode mode;
2470 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2472 mode = t->type_common.mode;
2473 if (VECTOR_MODE_P (mode)
2474 && (!targetm.vector_mode_supported_p (mode)
2475 || !have_regs_of_mode[mode]))
2477 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2479 /* For integers, try mapping it to a same-sized scalar mode. */
2480 if (GET_MODE_CLASS (innermode) == MODE_INT)
2482 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2483 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2485 if (mode != VOIDmode && have_regs_of_mode[mode])
2486 return mode;
2489 return BLKmode;
2492 return mode;
2495 /* Create and return a type for signed integers of PRECISION bits. */
2497 tree
2498 make_signed_type (int precision)
2500 tree type = make_node (INTEGER_TYPE);
2502 TYPE_PRECISION (type) = precision;
2504 fixup_signed_type (type);
2505 return type;
2508 /* Create and return a type for unsigned integers of PRECISION bits. */
2510 tree
2511 make_unsigned_type (int precision)
2513 tree type = make_node (INTEGER_TYPE);
2515 TYPE_PRECISION (type) = precision;
2517 fixup_unsigned_type (type);
2518 return type;
2521 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2522 and SATP. */
2524 tree
2525 make_fract_type (int precision, int unsignedp, int satp)
2527 tree type = make_node (FIXED_POINT_TYPE);
2529 TYPE_PRECISION (type) = precision;
2531 if (satp)
2532 TYPE_SATURATING (type) = 1;
2534 /* Lay out the type: set its alignment, size, etc. */
2535 if (unsignedp)
2537 TYPE_UNSIGNED (type) = 1;
2538 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2540 else
2541 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2542 layout_type (type);
2544 return type;
2547 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2548 and SATP. */
2550 tree
2551 make_accum_type (int precision, int unsignedp, int satp)
2553 tree type = make_node (FIXED_POINT_TYPE);
2555 TYPE_PRECISION (type) = precision;
2557 if (satp)
2558 TYPE_SATURATING (type) = 1;
2560 /* Lay out the type: set its alignment, size, etc. */
2561 if (unsignedp)
2563 TYPE_UNSIGNED (type) = 1;
2564 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2566 else
2567 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2568 layout_type (type);
2570 return type;
2573 /* Initialize sizetypes so layout_type can use them. */
2575 void
2576 initialize_sizetypes (void)
2578 int precision, bprecision;
2580 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2581 if (strcmp (SIZETYPE, "unsigned int") == 0)
2582 precision = INT_TYPE_SIZE;
2583 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2584 precision = LONG_TYPE_SIZE;
2585 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2586 precision = LONG_LONG_TYPE_SIZE;
2587 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2588 precision = SHORT_TYPE_SIZE;
2589 else
2591 int i;
2593 precision = -1;
2594 for (i = 0; i < NUM_INT_N_ENTS; i++)
2595 if (int_n_enabled_p[i])
2597 char name[50];
2598 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2600 if (strcmp (name, SIZETYPE) == 0)
2602 precision = int_n_data[i].bitsize;
2605 if (precision == -1)
2606 gcc_unreachable ();
2609 bprecision
2610 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2611 bprecision
2612 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2613 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2614 bprecision = HOST_BITS_PER_DOUBLE_INT;
2616 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2617 sizetype = make_node (INTEGER_TYPE);
2618 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2619 TYPE_PRECISION (sizetype) = precision;
2620 TYPE_UNSIGNED (sizetype) = 1;
2621 bitsizetype = make_node (INTEGER_TYPE);
2622 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2623 TYPE_PRECISION (bitsizetype) = bprecision;
2624 TYPE_UNSIGNED (bitsizetype) = 1;
2626 /* Now layout both types manually. */
2627 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2628 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2629 TYPE_SIZE (sizetype) = bitsize_int (precision);
2630 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2631 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2633 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2634 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2635 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2636 TYPE_SIZE_UNIT (bitsizetype)
2637 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2638 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2640 /* Create the signed variants of *sizetype. */
2641 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2642 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2643 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2644 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2647 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2648 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2649 for TYPE, based on the PRECISION and whether or not the TYPE
2650 IS_UNSIGNED. PRECISION need not correspond to a width supported
2651 natively by the hardware; for example, on a machine with 8-bit,
2652 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2653 61. */
2655 void
2656 set_min_and_max_values_for_integral_type (tree type,
2657 int precision,
2658 signop sgn)
2660 /* For bitfields with zero width we end up creating integer types
2661 with zero precision. Don't assign any minimum/maximum values
2662 to those types, they don't have any valid value. */
2663 if (precision < 1)
2664 return;
2666 TYPE_MIN_VALUE (type)
2667 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2668 TYPE_MAX_VALUE (type)
2669 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2672 /* Set the extreme values of TYPE based on its precision in bits,
2673 then lay it out. Used when make_signed_type won't do
2674 because the tree code is not INTEGER_TYPE.
2675 E.g. for Pascal, when the -fsigned-char option is given. */
2677 void
2678 fixup_signed_type (tree type)
2680 int precision = TYPE_PRECISION (type);
2682 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2684 /* Lay out the type: set its alignment, size, etc. */
2685 layout_type (type);
2688 /* Set the extreme values of TYPE based on its precision in bits,
2689 then lay it out. This is used both in `make_unsigned_type'
2690 and for enumeral types. */
2692 void
2693 fixup_unsigned_type (tree type)
2695 int precision = TYPE_PRECISION (type);
2697 TYPE_UNSIGNED (type) = 1;
2699 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2701 /* Lay out the type: set its alignment, size, etc. */
2702 layout_type (type);
2705 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2706 starting at BITPOS.
2708 BITREGION_START is the bit position of the first bit in this
2709 sequence of bit fields. BITREGION_END is the last bit in this
2710 sequence. If these two fields are non-zero, we should restrict the
2711 memory access to that range. Otherwise, we are allowed to touch
2712 any adjacent non bit-fields.
2714 ALIGN is the alignment of the underlying object in bits.
2715 VOLATILEP says whether the bitfield is volatile. */
2717 bit_field_mode_iterator
2718 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2719 HOST_WIDE_INT bitregion_start,
2720 HOST_WIDE_INT bitregion_end,
2721 unsigned int align, bool volatilep)
2722 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2723 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2724 m_bitregion_end (bitregion_end), m_align (align),
2725 m_volatilep (volatilep), m_count (0)
2727 if (!m_bitregion_end)
2729 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2730 the bitfield is mapped and won't trap, provided that ALIGN isn't
2731 too large. The cap is the biggest required alignment for data,
2732 or at least the word size. And force one such chunk at least. */
2733 unsigned HOST_WIDE_INT units
2734 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2735 if (bitsize <= 0)
2736 bitsize = 1;
2737 m_bitregion_end = bitpos + bitsize + units - 1;
2738 m_bitregion_end -= m_bitregion_end % units + 1;
2742 /* Calls to this function return successively larger modes that can be used
2743 to represent the bitfield. Return true if another bitfield mode is
2744 available, storing it in *OUT_MODE if so. */
2746 bool
2747 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2749 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2751 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2753 /* Skip modes that don't have full precision. */
2754 if (unit != GET_MODE_PRECISION (m_mode))
2755 continue;
2757 /* Stop if the mode is too wide to handle efficiently. */
2758 if (unit > MAX_FIXED_MODE_SIZE)
2759 break;
2761 /* Don't deliver more than one multiword mode; the smallest one
2762 should be used. */
2763 if (m_count > 0 && unit > BITS_PER_WORD)
2764 break;
2766 /* Skip modes that are too small. */
2767 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2768 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2769 if (subend > unit)
2770 continue;
2772 /* Stop if the mode goes outside the bitregion. */
2773 HOST_WIDE_INT start = m_bitpos - substart;
2774 if (m_bitregion_start && start < m_bitregion_start)
2775 break;
2776 HOST_WIDE_INT end = start + unit;
2777 if (end > m_bitregion_end + 1)
2778 break;
2780 /* Stop if the mode requires too much alignment. */
2781 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2782 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2783 break;
2785 *out_mode = m_mode;
2786 m_mode = GET_MODE_WIDER_MODE (m_mode);
2787 m_count++;
2788 return true;
2790 return false;
2793 /* Return true if smaller modes are generally preferred for this kind
2794 of bitfield. */
2796 bool
2797 bit_field_mode_iterator::prefer_smaller_modes ()
2799 return (m_volatilep
2800 ? targetm.narrow_volatile_bitfield ()
2801 : !SLOW_BYTE_ACCESS);
2804 /* Find the best machine mode to use when referencing a bit field of length
2805 BITSIZE bits starting at BITPOS.
2807 BITREGION_START is the bit position of the first bit in this
2808 sequence of bit fields. BITREGION_END is the last bit in this
2809 sequence. If these two fields are non-zero, we should restrict the
2810 memory access to that range. Otherwise, we are allowed to touch
2811 any adjacent non bit-fields.
2813 The underlying object is known to be aligned to a boundary of ALIGN bits.
2814 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2815 larger than LARGEST_MODE (usually SImode).
2817 If no mode meets all these conditions, we return VOIDmode.
2819 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2820 smallest mode meeting these conditions.
2822 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2823 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2824 all the conditions.
2826 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2827 decide which of the above modes should be used. */
2829 machine_mode
2830 get_best_mode (int bitsize, int bitpos,
2831 unsigned HOST_WIDE_INT bitregion_start,
2832 unsigned HOST_WIDE_INT bitregion_end,
2833 unsigned int align,
2834 machine_mode largest_mode, bool volatilep)
2836 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2837 bitregion_end, align, volatilep);
2838 machine_mode widest_mode = VOIDmode;
2839 machine_mode mode;
2840 while (iter.next_mode (&mode)
2841 /* ??? For historical reasons, reject modes that would normally
2842 receive greater alignment, even if unaligned accesses are
2843 acceptable. This has both advantages and disadvantages.
2844 Removing this check means that something like:
2846 struct s { unsigned int x; unsigned int y; };
2847 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2849 can be implemented using a single load and compare on
2850 64-bit machines that have no alignment restrictions.
2851 For example, on powerpc64-linux-gnu, we would generate:
2853 ld 3,0(3)
2854 cntlzd 3,3
2855 srdi 3,3,6
2858 rather than:
2860 lwz 9,0(3)
2861 cmpwi 7,9,0
2862 bne 7,.L3
2863 lwz 3,4(3)
2864 cntlzw 3,3
2865 srwi 3,3,5
2866 extsw 3,3
2868 .p2align 4,,15
2869 .L3:
2870 li 3,0
2873 However, accessing more than one field can make life harder
2874 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2875 has a series of unsigned short copies followed by a series of
2876 unsigned short comparisons. With this check, both the copies
2877 and comparisons remain 16-bit accesses and FRE is able
2878 to eliminate the latter. Without the check, the comparisons
2879 can be done using 2 64-bit operations, which FRE isn't able
2880 to handle in the same way.
2882 Either way, it would probably be worth disabling this check
2883 during expand. One particular example where removing the
2884 check would help is the get_best_mode call in store_bit_field.
2885 If we are given a memory bitregion of 128 bits that is aligned
2886 to a 64-bit boundary, and the bitfield we want to modify is
2887 in the second half of the bitregion, this check causes
2888 store_bitfield to turn the memory into a 64-bit reference
2889 to the _first_ half of the region. We later use
2890 adjust_bitfield_address to get a reference to the correct half,
2891 but doing so looks to adjust_bitfield_address as though we are
2892 moving past the end of the original object, so it drops the
2893 associated MEM_EXPR and MEM_OFFSET. Removing the check
2894 causes store_bit_field to keep a 128-bit memory reference,
2895 so that the final bitfield reference still has a MEM_EXPR
2896 and MEM_OFFSET. */
2897 && GET_MODE_ALIGNMENT (mode) <= align
2898 && (largest_mode == VOIDmode
2899 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2901 widest_mode = mode;
2902 if (iter.prefer_smaller_modes ())
2903 break;
2905 return widest_mode;
2908 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2909 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2911 void
2912 get_mode_bounds (machine_mode mode, int sign,
2913 machine_mode target_mode,
2914 rtx *mmin, rtx *mmax)
2916 unsigned size = GET_MODE_PRECISION (mode);
2917 unsigned HOST_WIDE_INT min_val, max_val;
2919 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2921 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2922 if (mode == BImode)
2924 if (STORE_FLAG_VALUE < 0)
2926 min_val = STORE_FLAG_VALUE;
2927 max_val = 0;
2929 else
2931 min_val = 0;
2932 max_val = STORE_FLAG_VALUE;
2935 else if (sign)
2937 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2938 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2940 else
2942 min_val = 0;
2943 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2946 *mmin = gen_int_mode (min_val, target_mode);
2947 *mmax = gen_int_mode (max_val, target_mode);
2950 #include "gt-stor-layout.h"