1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Part of the Sanitizer Allocator.
11 //===----------------------------------------------------------------------===//
12 #ifndef SANITIZER_ALLOCATOR_H
13 #error This file must be included inside sanitizer_allocator.h
16 template<class SizeClassAllocator
> struct SizeClassAllocator64LocalCache
;
18 // SizeClassAllocator64 -- allocator for 64-bit address space.
19 // The template parameter Params is a class containing the actual parameters.
21 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
23 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
24 // kSpaceSize is a power of two.
25 // At the beginning the entire space is mprotect-ed, then small parts of it
26 // are mapped on demand.
28 // Region: a part of Space dedicated to a single size class.
29 // There are kNumClasses Regions of equal size.
31 // UserChunk: a piece of memory returned to user.
32 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
34 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
36 // A Region looks like this:
37 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
39 struct SizeClassAllocator64FlagMasks
{ // Bit masks.
41 kRandomShuffleChunks
= 1,
45 template <class Params
>
46 class SizeClassAllocator64
{
48 using AddressSpaceView
= typename
Params::AddressSpaceView
;
49 static const uptr kSpaceBeg
= Params::kSpaceBeg
;
50 static const uptr kSpaceSize
= Params::kSpaceSize
;
51 static const uptr kMetadataSize
= Params::kMetadataSize
;
52 typedef typename
Params::SizeClassMap SizeClassMap
;
53 typedef typename
Params::MapUnmapCallback MapUnmapCallback
;
55 static const bool kRandomShuffleChunks
=
56 Params::kFlags
& SizeClassAllocator64FlagMasks::kRandomShuffleChunks
;
58 typedef SizeClassAllocator64
<Params
> ThisT
;
59 typedef SizeClassAllocator64LocalCache
<ThisT
> AllocatorCache
;
61 // When we know the size class (the region base) we can represent a pointer
62 // as a 4-byte integer (offset from the region start shifted right by 4).
63 typedef u32 CompactPtrT
;
64 static const uptr kCompactPtrScale
= 4;
65 CompactPtrT
PointerToCompactPtr(uptr base
, uptr ptr
) const {
66 return static_cast<CompactPtrT
>((ptr
- base
) >> kCompactPtrScale
);
68 uptr
CompactPtrToPointer(uptr base
, CompactPtrT ptr32
) const {
69 return base
+ (static_cast<uptr
>(ptr32
) << kCompactPtrScale
);
72 void Init(s32 release_to_os_interval_ms
) {
73 uptr TotalSpaceSize
= kSpaceSize
+ AdditionalSize();
74 if (kUsingConstantSpaceBeg
) {
75 CHECK_EQ(kSpaceBeg
, address_range
.Init(TotalSpaceSize
,
76 PrimaryAllocatorName
, kSpaceBeg
));
78 NonConstSpaceBeg
= address_range
.Init(TotalSpaceSize
,
79 PrimaryAllocatorName
);
80 CHECK_NE(NonConstSpaceBeg
, ~(uptr
)0);
82 SetReleaseToOSIntervalMs(release_to_os_interval_ms
);
83 MapWithCallbackOrDie(SpaceEnd(), AdditionalSize(),
84 "SizeClassAllocator: region info");
85 // Check that the RegionInfo array is aligned on the CacheLine size.
86 DCHECK_EQ(SpaceEnd() % kCacheLineSize
, 0);
89 s32
ReleaseToOSIntervalMs() const {
90 return atomic_load(&release_to_os_interval_ms_
, memory_order_relaxed
);
93 void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms
) {
94 atomic_store(&release_to_os_interval_ms_
, release_to_os_interval_ms
,
95 memory_order_relaxed
);
98 void ForceReleaseToOS() {
99 for (uptr class_id
= 1; class_id
< kNumClasses
; class_id
++) {
100 BlockingMutexLock
l(&GetRegionInfo(class_id
)->mutex
);
101 MaybeReleaseToOS(class_id
, true /*force*/);
105 static bool CanAllocate(uptr size
, uptr alignment
) {
106 return size
<= SizeClassMap::kMaxSize
&&
107 alignment
<= SizeClassMap::kMaxSize
;
110 NOINLINE
void ReturnToAllocator(AllocatorStats
*stat
, uptr class_id
,
111 const CompactPtrT
*chunks
, uptr n_chunks
) {
112 RegionInfo
*region
= GetRegionInfo(class_id
);
113 uptr region_beg
= GetRegionBeginBySizeClass(class_id
);
114 CompactPtrT
*free_array
= GetFreeArray(region_beg
);
116 BlockingMutexLock
l(®ion
->mutex
);
117 uptr old_num_chunks
= region
->num_freed_chunks
;
118 uptr new_num_freed_chunks
= old_num_chunks
+ n_chunks
;
119 // Failure to allocate free array space while releasing memory is non
121 if (UNLIKELY(!EnsureFreeArraySpace(region
, region_beg
,
122 new_num_freed_chunks
))) {
123 Report("FATAL: Internal error: %s's allocator exhausted the free list "
124 "space for size class %zd (%zd bytes).\n", SanitizerToolName
,
125 class_id
, ClassIdToSize(class_id
));
128 for (uptr i
= 0; i
< n_chunks
; i
++)
129 free_array
[old_num_chunks
+ i
] = chunks
[i
];
130 region
->num_freed_chunks
= new_num_freed_chunks
;
131 region
->stats
.n_freed
+= n_chunks
;
133 MaybeReleaseToOS(class_id
, false /*force*/);
136 NOINLINE
bool GetFromAllocator(AllocatorStats
*stat
, uptr class_id
,
137 CompactPtrT
*chunks
, uptr n_chunks
) {
138 RegionInfo
*region
= GetRegionInfo(class_id
);
139 uptr region_beg
= GetRegionBeginBySizeClass(class_id
);
140 CompactPtrT
*free_array
= GetFreeArray(region_beg
);
142 BlockingMutexLock
l(®ion
->mutex
);
143 if (UNLIKELY(region
->num_freed_chunks
< n_chunks
)) {
144 if (UNLIKELY(!PopulateFreeArray(stat
, class_id
, region
,
145 n_chunks
- region
->num_freed_chunks
)))
147 CHECK_GE(region
->num_freed_chunks
, n_chunks
);
149 region
->num_freed_chunks
-= n_chunks
;
150 uptr base_idx
= region
->num_freed_chunks
;
151 for (uptr i
= 0; i
< n_chunks
; i
++)
152 chunks
[i
] = free_array
[base_idx
+ i
];
153 region
->stats
.n_allocated
+= n_chunks
;
157 bool PointerIsMine(const void *p
) const {
158 uptr P
= reinterpret_cast<uptr
>(p
);
159 if (kUsingConstantSpaceBeg
&& (kSpaceBeg
% kSpaceSize
) == 0)
160 return P
/ kSpaceSize
== kSpaceBeg
/ kSpaceSize
;
161 return P
>= SpaceBeg() && P
< SpaceEnd();
164 uptr
GetRegionBegin(const void *p
) {
165 if (kUsingConstantSpaceBeg
)
166 return reinterpret_cast<uptr
>(p
) & ~(kRegionSize
- 1);
167 uptr space_beg
= SpaceBeg();
168 return ((reinterpret_cast<uptr
>(p
) - space_beg
) & ~(kRegionSize
- 1)) +
172 uptr
GetRegionBeginBySizeClass(uptr class_id
) const {
173 return SpaceBeg() + kRegionSize
* class_id
;
176 uptr
GetSizeClass(const void *p
) {
177 if (kUsingConstantSpaceBeg
&& (kSpaceBeg
% kSpaceSize
) == 0)
178 return ((reinterpret_cast<uptr
>(p
)) / kRegionSize
) % kNumClassesRounded
;
179 return ((reinterpret_cast<uptr
>(p
) - SpaceBeg()) / kRegionSize
) %
183 void *GetBlockBegin(const void *p
) {
184 uptr class_id
= GetSizeClass(p
);
185 uptr size
= ClassIdToSize(class_id
);
186 if (!size
) return nullptr;
187 uptr chunk_idx
= GetChunkIdx((uptr
)p
, size
);
188 uptr reg_beg
= GetRegionBegin(p
);
189 uptr beg
= chunk_idx
* size
;
190 uptr next_beg
= beg
+ size
;
191 if (class_id
>= kNumClasses
) return nullptr;
192 const RegionInfo
*region
= AddressSpaceView::Load(GetRegionInfo(class_id
));
193 if (region
->mapped_user
>= next_beg
)
194 return reinterpret_cast<void*>(reg_beg
+ beg
);
198 uptr
GetActuallyAllocatedSize(void *p
) {
199 CHECK(PointerIsMine(p
));
200 return ClassIdToSize(GetSizeClass(p
));
203 static uptr
ClassID(uptr size
) { return SizeClassMap::ClassID(size
); }
205 void *GetMetaData(const void *p
) {
206 uptr class_id
= GetSizeClass(p
);
207 uptr size
= ClassIdToSize(class_id
);
208 uptr chunk_idx
= GetChunkIdx(reinterpret_cast<uptr
>(p
), size
);
209 uptr region_beg
= GetRegionBeginBySizeClass(class_id
);
210 return reinterpret_cast<void *>(GetMetadataEnd(region_beg
) -
211 (1 + chunk_idx
) * kMetadataSize
);
214 uptr
TotalMemoryUsed() {
216 for (uptr i
= 0; i
< kNumClasses
; i
++)
217 res
+= GetRegionInfo(i
)->allocated_user
;
222 void TestOnlyUnmap() {
223 UnmapWithCallbackOrDie(SpaceBeg(), kSpaceSize
+ AdditionalSize());
226 static void FillMemoryProfile(uptr start
, uptr rss
, bool file
, uptr
*stats
,
228 for (uptr class_id
= 0; class_id
< stats_size
; class_id
++)
229 if (stats
[class_id
] == start
)
230 stats
[class_id
] = rss
;
233 void PrintStats(uptr class_id
, uptr rss
) {
234 RegionInfo
*region
= GetRegionInfo(class_id
);
235 if (region
->mapped_user
== 0) return;
236 uptr in_use
= region
->stats
.n_allocated
- region
->stats
.n_freed
;
237 uptr avail_chunks
= region
->allocated_user
/ ClassIdToSize(class_id
);
239 "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
240 "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
241 "last released: %6zdK region: 0x%zx\n",
242 region
->exhausted
? "F" : " ", class_id
, ClassIdToSize(class_id
),
243 region
->mapped_user
>> 10, region
->stats
.n_allocated
,
244 region
->stats
.n_freed
, in_use
, region
->num_freed_chunks
, avail_chunks
,
245 rss
>> 10, region
->rtoi
.num_releases
,
246 region
->rtoi
.last_released_bytes
>> 10,
247 SpaceBeg() + kRegionSize
* class_id
);
251 uptr rss_stats
[kNumClasses
];
252 for (uptr class_id
= 0; class_id
< kNumClasses
; class_id
++)
253 rss_stats
[class_id
] = SpaceBeg() + kRegionSize
* class_id
;
254 GetMemoryProfile(FillMemoryProfile
, rss_stats
, kNumClasses
);
256 uptr total_mapped
= 0;
258 uptr n_allocated
= 0;
260 for (uptr class_id
= 1; class_id
< kNumClasses
; class_id
++) {
261 RegionInfo
*region
= GetRegionInfo(class_id
);
262 if (region
->mapped_user
!= 0) {
263 total_mapped
+= region
->mapped_user
;
264 total_rss
+= rss_stats
[class_id
];
266 n_allocated
+= region
->stats
.n_allocated
;
267 n_freed
+= region
->stats
.n_freed
;
270 Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
271 "%zd allocations; remains %zd\n", total_mapped
>> 20,
272 total_rss
>> 20, n_allocated
, n_allocated
- n_freed
);
273 for (uptr class_id
= 1; class_id
< kNumClasses
; class_id
++)
274 PrintStats(class_id
, rss_stats
[class_id
]);
277 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
278 // introspection API.
280 for (uptr i
= 0; i
< kNumClasses
; i
++) {
281 GetRegionInfo(i
)->mutex
.Lock();
286 for (int i
= (int)kNumClasses
- 1; i
>= 0; i
--) {
287 GetRegionInfo(i
)->mutex
.Unlock();
291 // Iterate over all existing chunks.
292 // The allocator must be locked when calling this function.
293 void ForEachChunk(ForEachChunkCallback callback
, void *arg
) {
294 for (uptr class_id
= 1; class_id
< kNumClasses
; class_id
++) {
295 RegionInfo
*region
= GetRegionInfo(class_id
);
296 uptr chunk_size
= ClassIdToSize(class_id
);
297 uptr region_beg
= SpaceBeg() + class_id
* kRegionSize
;
298 uptr region_allocated_user_size
=
299 AddressSpaceView::Load(region
)->allocated_user
;
300 for (uptr chunk
= region_beg
;
301 chunk
< region_beg
+ region_allocated_user_size
;
302 chunk
+= chunk_size
) {
303 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
304 callback(chunk
, arg
);
309 static uptr
ClassIdToSize(uptr class_id
) {
310 return SizeClassMap::Size(class_id
);
313 static uptr
AdditionalSize() {
314 return RoundUpTo(sizeof(RegionInfo
) * kNumClassesRounded
,
315 GetPageSizeCached());
318 typedef SizeClassMap SizeClassMapT
;
319 static const uptr kNumClasses
= SizeClassMap::kNumClasses
;
320 static const uptr kNumClassesRounded
= SizeClassMap::kNumClassesRounded
;
322 // A packed array of counters. Each counter occupies 2^n bits, enough to store
323 // counter's max_value. Ctor will try to allocate the required buffer via
324 // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
325 // whether the initialization was successful by checking IsAllocated() result.
326 // For the performance sake, none of the accessors check the validity of the
327 // arguments, it is assumed that index is always in [0, n) range and the value
328 // is not incremented past max_value.
329 template<class MemoryMapperT
>
330 class PackedCounterArray
{
332 PackedCounterArray(u64 num_counters
, u64 max_value
, MemoryMapperT
*mapper
)
333 : n(num_counters
), memory_mapper(mapper
) {
334 CHECK_GT(num_counters
, 0);
335 CHECK_GT(max_value
, 0);
336 constexpr u64 kMaxCounterBits
= sizeof(*buffer
) * 8ULL;
337 // Rounding counter storage size up to the power of two allows for using
338 // bit shifts calculating particular counter's index and offset.
339 uptr counter_size_bits
=
340 RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value
) + 1);
341 CHECK_LE(counter_size_bits
, kMaxCounterBits
);
342 counter_size_bits_log
= Log2(counter_size_bits
);
343 counter_mask
= ~0ULL >> (kMaxCounterBits
- counter_size_bits
);
345 uptr packing_ratio
= kMaxCounterBits
>> counter_size_bits_log
;
346 CHECK_GT(packing_ratio
, 0);
347 packing_ratio_log
= Log2(packing_ratio
);
348 bit_offset_mask
= packing_ratio
- 1;
351 (RoundUpTo(n
, 1ULL << packing_ratio_log
) >> packing_ratio_log
) *
353 buffer
= reinterpret_cast<u64
*>(
354 memory_mapper
->MapPackedCounterArrayBuffer(buffer_size
));
356 ~PackedCounterArray() {
358 memory_mapper
->UnmapPackedCounterArrayBuffer(
359 reinterpret_cast<uptr
>(buffer
), buffer_size
);
363 bool IsAllocated() const {
367 u64
GetCount() const {
371 uptr
Get(uptr i
) const {
373 uptr index
= i
>> packing_ratio_log
;
374 uptr bit_offset
= (i
& bit_offset_mask
) << counter_size_bits_log
;
375 return (buffer
[index
] >> bit_offset
) & counter_mask
;
378 void Inc(uptr i
) const {
379 DCHECK_LT(Get(i
), counter_mask
);
380 uptr index
= i
>> packing_ratio_log
;
381 uptr bit_offset
= (i
& bit_offset_mask
) << counter_size_bits_log
;
382 buffer
[index
] += 1ULL << bit_offset
;
385 void IncRange(uptr from
, uptr to
) const {
387 for (uptr i
= from
; i
<= to
; i
++)
393 u64 counter_size_bits_log
;
395 u64 packing_ratio_log
;
398 MemoryMapperT
* const memory_mapper
;
403 template<class MemoryMapperT
>
404 class FreePagesRangeTracker
{
406 explicit FreePagesRangeTracker(MemoryMapperT
* mapper
)
407 : memory_mapper(mapper
),
408 page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale
)),
409 in_the_range(false), current_page(0), current_range_start_page(0) {}
411 void NextPage(bool freed
) {
414 current_range_start_page
= current_page
;
428 void CloseOpenedRange() {
430 memory_mapper
->ReleasePageRangeToOS(
431 current_range_start_page
<< page_size_scaled_log
,
432 current_page
<< page_size_scaled_log
);
433 in_the_range
= false;
437 MemoryMapperT
* const memory_mapper
;
438 const uptr page_size_scaled_log
;
441 uptr current_range_start_page
;
444 // Iterates over the free_array to identify memory pages containing freed
445 // chunks only and returns these pages back to OS.
446 // allocated_pages_count is the total number of pages allocated for the
448 template<class MemoryMapperT
>
449 static void ReleaseFreeMemoryToOS(CompactPtrT
*free_array
,
450 uptr free_array_count
, uptr chunk_size
,
451 uptr allocated_pages_count
,
452 MemoryMapperT
*memory_mapper
) {
453 const uptr page_size
= GetPageSizeCached();
455 // Figure out the number of chunks per page and whether we can take a fast
456 // path (the number of chunks per page is the same for all pages).
457 uptr full_pages_chunk_count_max
;
458 bool same_chunk_count_per_page
;
459 if (chunk_size
<= page_size
&& page_size
% chunk_size
== 0) {
460 // Same number of chunks per page, no cross overs.
461 full_pages_chunk_count_max
= page_size
/ chunk_size
;
462 same_chunk_count_per_page
= true;
463 } else if (chunk_size
<= page_size
&& page_size
% chunk_size
!= 0 &&
464 chunk_size
% (page_size
% chunk_size
) == 0) {
465 // Some chunks are crossing page boundaries, which means that the page
466 // contains one or two partial chunks, but all pages contain the same
468 full_pages_chunk_count_max
= page_size
/ chunk_size
+ 1;
469 same_chunk_count_per_page
= true;
470 } else if (chunk_size
<= page_size
) {
471 // Some chunks are crossing page boundaries, which means that the page
472 // contains one or two partial chunks.
473 full_pages_chunk_count_max
= page_size
/ chunk_size
+ 2;
474 same_chunk_count_per_page
= false;
475 } else if (chunk_size
> page_size
&& chunk_size
% page_size
== 0) {
476 // One chunk covers multiple pages, no cross overs.
477 full_pages_chunk_count_max
= 1;
478 same_chunk_count_per_page
= true;
479 } else if (chunk_size
> page_size
) {
480 // One chunk covers multiple pages, Some chunks are crossing page
481 // boundaries. Some pages contain one chunk, some contain two.
482 full_pages_chunk_count_max
= 2;
483 same_chunk_count_per_page
= false;
485 UNREACHABLE("All chunk_size/page_size ratios must be handled.");
488 PackedCounterArray
<MemoryMapperT
> counters(allocated_pages_count
,
489 full_pages_chunk_count_max
,
491 if (!counters
.IsAllocated())
494 const uptr chunk_size_scaled
= chunk_size
>> kCompactPtrScale
;
495 const uptr page_size_scaled
= page_size
>> kCompactPtrScale
;
496 const uptr page_size_scaled_log
= Log2(page_size_scaled
);
498 // Iterate over free chunks and count how many free chunks affect each
500 if (chunk_size
<= page_size
&& page_size
% chunk_size
== 0) {
501 // Each chunk affects one page only.
502 for (uptr i
= 0; i
< free_array_count
; i
++)
503 counters
.Inc(free_array
[i
] >> page_size_scaled_log
);
505 // In all other cases chunks might affect more than one page.
506 for (uptr i
= 0; i
< free_array_count
; i
++) {
508 free_array
[i
] >> page_size_scaled_log
,
509 (free_array
[i
] + chunk_size_scaled
- 1) >> page_size_scaled_log
);
513 // Iterate over pages detecting ranges of pages with chunk counters equal
514 // to the expected number of chunks for the particular page.
515 FreePagesRangeTracker
<MemoryMapperT
> range_tracker(memory_mapper
);
516 if (same_chunk_count_per_page
) {
517 // Fast path, every page has the same number of chunks affecting it.
518 for (uptr i
= 0; i
< counters
.GetCount(); i
++)
519 range_tracker
.NextPage(counters
.Get(i
) == full_pages_chunk_count_max
);
521 // Show path, go through the pages keeping count how many chunks affect
524 chunk_size
< page_size
? page_size_scaled
/ chunk_size_scaled
: 1;
525 const uptr pnc
= pn
* chunk_size_scaled
;
526 // The idea is to increment the current page pointer by the first chunk
527 // size, middle portion size (the portion of the page covered by chunks
528 // except the first and the last one) and then the last chunk size, adding
529 // up the number of chunks on the current page and checking on every step
530 // whether the page boundary was crossed.
531 uptr prev_page_boundary
= 0;
532 uptr current_boundary
= 0;
533 for (uptr i
= 0; i
< counters
.GetCount(); i
++) {
534 uptr page_boundary
= prev_page_boundary
+ page_size_scaled
;
535 uptr chunks_per_page
= pn
;
536 if (current_boundary
< page_boundary
) {
537 if (current_boundary
> prev_page_boundary
)
539 current_boundary
+= pnc
;
540 if (current_boundary
< page_boundary
) {
542 current_boundary
+= chunk_size_scaled
;
545 prev_page_boundary
= page_boundary
;
547 range_tracker
.NextPage(counters
.Get(i
) == chunks_per_page
);
550 range_tracker
.Done();
554 friend class MemoryMapper
;
556 ReservedAddressRange address_range
;
558 static const uptr kRegionSize
= kSpaceSize
/ kNumClassesRounded
;
559 // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
560 // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
561 // elements, but in reality this will not happen. For simplicity we
562 // dedicate 1/8 of the region's virtual space to FreeArray.
563 static const uptr kFreeArraySize
= kRegionSize
/ 8;
565 static const bool kUsingConstantSpaceBeg
= kSpaceBeg
!= ~(uptr
)0;
566 uptr NonConstSpaceBeg
;
567 uptr
SpaceBeg() const {
568 return kUsingConstantSpaceBeg
? kSpaceBeg
: NonConstSpaceBeg
;
570 uptr
SpaceEnd() const { return SpaceBeg() + kSpaceSize
; }
571 // kRegionSize must be >= 2^32.
572 COMPILER_CHECK((kRegionSize
) >= (1ULL << (SANITIZER_WORDSIZE
/ 2)));
573 // kRegionSize must be <= 2^36, see CompactPtrT.
574 COMPILER_CHECK((kRegionSize
) <= (1ULL << (SANITIZER_WORDSIZE
/ 2 + 4)));
575 // Call mmap for user memory with at least this size.
576 static const uptr kUserMapSize
= 1 << 16;
577 // Call mmap for metadata memory with at least this size.
578 static const uptr kMetaMapSize
= 1 << 16;
579 // Call mmap for free array memory with at least this size.
580 static const uptr kFreeArrayMapSize
= 1 << 16;
582 atomic_sint32_t release_to_os_interval_ms_
;
589 struct ReleaseToOsInfo
{
590 uptr n_freed_at_last_release
;
592 u64 last_release_at_ns
;
593 u64 last_released_bytes
;
596 struct ALIGNED(SANITIZER_CACHE_LINE_SIZE
) RegionInfo
{
598 uptr num_freed_chunks
; // Number of elements in the freearray.
599 uptr mapped_free_array
; // Bytes mapped for freearray.
600 uptr allocated_user
; // Bytes allocated for user memory.
601 uptr allocated_meta
; // Bytes allocated for metadata.
602 uptr mapped_user
; // Bytes mapped for user memory.
603 uptr mapped_meta
; // Bytes mapped for metadata.
604 u32 rand_state
; // Seed for random shuffle, used if kRandomShuffleChunks.
605 bool exhausted
; // Whether region is out of space for new chunks.
607 ReleaseToOsInfo rtoi
;
609 COMPILER_CHECK(sizeof(RegionInfo
) % kCacheLineSize
== 0);
611 RegionInfo
*GetRegionInfo(uptr class_id
) const {
612 DCHECK_LT(class_id
, kNumClasses
);
613 RegionInfo
*regions
= reinterpret_cast<RegionInfo
*>(SpaceEnd());
614 return ®ions
[class_id
];
617 uptr
GetMetadataEnd(uptr region_beg
) const {
618 return region_beg
+ kRegionSize
- kFreeArraySize
;
621 uptr
GetChunkIdx(uptr chunk
, uptr size
) const {
622 if (!kUsingConstantSpaceBeg
)
625 uptr offset
= chunk
% kRegionSize
;
626 // Here we divide by a non-constant. This is costly.
627 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
628 if (offset
>> (SANITIZER_WORDSIZE
/ 2))
629 return offset
/ size
;
630 return (u32
)offset
/ (u32
)size
;
633 CompactPtrT
*GetFreeArray(uptr region_beg
) const {
634 return reinterpret_cast<CompactPtrT
*>(GetMetadataEnd(region_beg
));
637 bool MapWithCallback(uptr beg
, uptr size
, const char *name
) {
638 uptr mapped
= address_range
.Map(beg
, size
, name
);
639 if (UNLIKELY(!mapped
))
641 CHECK_EQ(beg
, mapped
);
642 MapUnmapCallback().OnMap(beg
, size
);
646 void MapWithCallbackOrDie(uptr beg
, uptr size
, const char *name
) {
647 CHECK_EQ(beg
, address_range
.MapOrDie(beg
, size
, name
));
648 MapUnmapCallback().OnMap(beg
, size
);
651 void UnmapWithCallbackOrDie(uptr beg
, uptr size
) {
652 MapUnmapCallback().OnUnmap(beg
, size
);
653 address_range
.Unmap(beg
, size
);
656 bool EnsureFreeArraySpace(RegionInfo
*region
, uptr region_beg
,
657 uptr num_freed_chunks
) {
658 uptr needed_space
= num_freed_chunks
* sizeof(CompactPtrT
);
659 if (region
->mapped_free_array
< needed_space
) {
660 uptr new_mapped_free_array
= RoundUpTo(needed_space
, kFreeArrayMapSize
);
661 CHECK_LE(new_mapped_free_array
, kFreeArraySize
);
662 uptr current_map_end
= reinterpret_cast<uptr
>(GetFreeArray(region_beg
)) +
663 region
->mapped_free_array
;
664 uptr new_map_size
= new_mapped_free_array
- region
->mapped_free_array
;
665 if (UNLIKELY(!MapWithCallback(current_map_end
, new_map_size
,
666 "SizeClassAllocator: freearray")))
668 region
->mapped_free_array
= new_mapped_free_array
;
673 // Check whether this size class is exhausted.
674 bool IsRegionExhausted(RegionInfo
*region
, uptr class_id
,
675 uptr additional_map_size
) {
676 if (LIKELY(region
->mapped_user
+ region
->mapped_meta
+
677 additional_map_size
<= kRegionSize
- kFreeArraySize
))
679 if (!region
->exhausted
) {
680 region
->exhausted
= true;
681 Printf("%s: Out of memory. ", SanitizerToolName
);
682 Printf("The process has exhausted %zuMB for size class %zu.\n",
683 kRegionSize
>> 20, ClassIdToSize(class_id
));
688 NOINLINE
bool PopulateFreeArray(AllocatorStats
*stat
, uptr class_id
,
689 RegionInfo
*region
, uptr requested_count
) {
690 // region->mutex is held.
691 const uptr region_beg
= GetRegionBeginBySizeClass(class_id
);
692 const uptr size
= ClassIdToSize(class_id
);
694 const uptr total_user_bytes
=
695 region
->allocated_user
+ requested_count
* size
;
696 // Map more space for chunks, if necessary.
697 if (LIKELY(total_user_bytes
> region
->mapped_user
)) {
698 if (UNLIKELY(region
->mapped_user
== 0)) {
699 if (!kUsingConstantSpaceBeg
&& kRandomShuffleChunks
)
700 // The random state is initialized from ASLR.
701 region
->rand_state
= static_cast<u32
>(region_beg
>> 12);
702 // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
703 // preventing just allocated memory from being released sooner than
704 // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
705 // for short lived processes.
706 // Do it only when the feature is turned on, to avoid a potentially
707 // extraneous syscall.
708 if (ReleaseToOSIntervalMs() >= 0)
709 region
->rtoi
.last_release_at_ns
= MonotonicNanoTime();
711 // Do the mmap for the user memory.
712 const uptr user_map_size
=
713 RoundUpTo(total_user_bytes
- region
->mapped_user
, kUserMapSize
);
714 if (UNLIKELY(IsRegionExhausted(region
, class_id
, user_map_size
)))
716 if (UNLIKELY(!MapWithCallback(region_beg
+ region
->mapped_user
,
718 "SizeClassAllocator: region data")))
720 stat
->Add(AllocatorStatMapped
, user_map_size
);
721 region
->mapped_user
+= user_map_size
;
723 const uptr new_chunks_count
=
724 (region
->mapped_user
- region
->allocated_user
) / size
;
727 // Calculate the required space for metadata.
728 const uptr total_meta_bytes
=
729 region
->allocated_meta
+ new_chunks_count
* kMetadataSize
;
730 const uptr meta_map_size
= (total_meta_bytes
> region
->mapped_meta
) ?
731 RoundUpTo(total_meta_bytes
- region
->mapped_meta
, kMetaMapSize
) : 0;
732 // Map more space for metadata, if necessary.
734 if (UNLIKELY(IsRegionExhausted(region
, class_id
, meta_map_size
)))
736 if (UNLIKELY(!MapWithCallback(
737 GetMetadataEnd(region_beg
) - region
->mapped_meta
- meta_map_size
,
738 meta_map_size
, "SizeClassAllocator: region metadata")))
740 region
->mapped_meta
+= meta_map_size
;
744 // If necessary, allocate more space for the free array and populate it with
745 // newly allocated chunks.
746 const uptr total_freed_chunks
= region
->num_freed_chunks
+ new_chunks_count
;
747 if (UNLIKELY(!EnsureFreeArraySpace(region
, region_beg
, total_freed_chunks
)))
749 CompactPtrT
*free_array
= GetFreeArray(region_beg
);
750 for (uptr i
= 0, chunk
= region
->allocated_user
; i
< new_chunks_count
;
752 free_array
[total_freed_chunks
- 1 - i
] = PointerToCompactPtr(0, chunk
);
753 if (kRandomShuffleChunks
)
754 RandomShuffle(&free_array
[region
->num_freed_chunks
], new_chunks_count
,
755 ®ion
->rand_state
);
757 // All necessary memory is mapped and now it is safe to advance all
758 // 'allocated_*' counters.
759 region
->num_freed_chunks
+= new_chunks_count
;
760 region
->allocated_user
+= new_chunks_count
* size
;
761 CHECK_LE(region
->allocated_user
, region
->mapped_user
);
762 region
->allocated_meta
+= new_chunks_count
* kMetadataSize
;
763 CHECK_LE(region
->allocated_meta
, region
->mapped_meta
);
764 region
->exhausted
= false;
766 // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
767 // MaybeReleaseToOS from releasing just allocated pages or protect these
768 // not yet used chunks some other way.
775 MemoryMapper(const ThisT
& base_allocator
, uptr class_id
)
776 : allocator(base_allocator
),
777 region_base(base_allocator
.GetRegionBeginBySizeClass(class_id
)),
778 released_ranges_count(0),
782 uptr
GetReleasedRangesCount() const {
783 return released_ranges_count
;
786 uptr
GetReleasedBytes() const {
787 return released_bytes
;
790 uptr
MapPackedCounterArrayBuffer(uptr buffer_size
) {
791 // TODO(alekseyshl): The idea to explore is to check if we have enough
792 // space between num_freed_chunks*sizeof(CompactPtrT) and
793 // mapped_free_array to fit buffer_size bytes and use that space instead
794 // of mapping a temporary one.
795 return reinterpret_cast<uptr
>(
796 MmapOrDieOnFatalError(buffer_size
, "ReleaseToOSPageCounters"));
799 void UnmapPackedCounterArrayBuffer(uptr buffer
, uptr buffer_size
) {
800 UnmapOrDie(reinterpret_cast<void *>(buffer
), buffer_size
);
803 // Releases [from, to) range of pages back to OS.
804 void ReleasePageRangeToOS(CompactPtrT from
, CompactPtrT to
) {
805 const uptr from_page
= allocator
.CompactPtrToPointer(region_base
, from
);
806 const uptr to_page
= allocator
.CompactPtrToPointer(region_base
, to
);
807 ReleaseMemoryPagesToOS(from_page
, to_page
);
808 released_ranges_count
++;
809 released_bytes
+= to_page
- from_page
;
813 const ThisT
& allocator
;
814 const uptr region_base
;
815 uptr released_ranges_count
;
819 // Attempts to release RAM occupied by freed chunks back to OS. The region is
820 // expected to be locked.
821 void MaybeReleaseToOS(uptr class_id
, bool force
) {
822 RegionInfo
*region
= GetRegionInfo(class_id
);
823 const uptr chunk_size
= ClassIdToSize(class_id
);
824 const uptr page_size
= GetPageSizeCached();
826 uptr n
= region
->num_freed_chunks
;
827 if (n
* chunk_size
< page_size
)
828 return; // No chance to release anything.
829 if ((region
->stats
.n_freed
-
830 region
->rtoi
.n_freed_at_last_release
) * chunk_size
< page_size
) {
831 return; // Nothing new to release.
835 s32 interval_ms
= ReleaseToOSIntervalMs();
839 if (region
->rtoi
.last_release_at_ns
+ interval_ms
* 1000000ULL >
840 MonotonicNanoTime()) {
841 return; // Memory was returned recently.
845 MemoryMapper
memory_mapper(*this, class_id
);
847 ReleaseFreeMemoryToOS
<MemoryMapper
>(
848 GetFreeArray(GetRegionBeginBySizeClass(class_id
)), n
, chunk_size
,
849 RoundUpTo(region
->allocated_user
, page_size
) / page_size
,
852 if (memory_mapper
.GetReleasedRangesCount() > 0) {
853 region
->rtoi
.n_freed_at_last_release
= region
->stats
.n_freed
;
854 region
->rtoi
.num_releases
+= memory_mapper
.GetReleasedRangesCount();
855 region
->rtoi
.last_released_bytes
= memory_mapper
.GetReleasedBytes();
857 region
->rtoi
.last_release_at_ns
= MonotonicNanoTime();