2011-02-06 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / graphite-clast-to-gimple.c
blob47a03d50f6f6700a461ca8721894f12b936bb5cf
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "diagnostic-core.h"
25 #include "tree-flow.h"
26 #include "tree-dump.h"
27 #include "cfgloop.h"
28 #include "tree-chrec.h"
29 #include "tree-data-ref.h"
30 #include "tree-scalar-evolution.h"
31 #include "sese.h"
33 #ifdef HAVE_cloog
34 #include "cloog/cloog.h"
35 #include "ppl_c.h"
36 #include "graphite-cloog-util.h"
37 #include "graphite-ppl.h"
38 #include "graphite-poly.h"
39 #include "graphite-clast-to-gimple.h"
40 #include "graphite-dependences.h"
41 #include "graphite-cloog-compat.h"
43 /* This flag is set when an error occurred during the translation of
44 CLAST to Gimple. */
45 static bool gloog_error;
47 /* Verifies properties that GRAPHITE should maintain during translation. */
49 static inline void
50 graphite_verify (void)
52 #ifdef ENABLE_CHECKING
53 verify_loop_structure ();
54 verify_dominators (CDI_DOMINATORS);
55 verify_loop_closed_ssa (true);
56 #endif
59 /* Stores the INDEX in a vector for a given clast NAME. */
61 typedef struct clast_name_index {
62 int index;
63 const char *name;
64 } *clast_name_index_p;
66 /* Returns a pointer to a new element of type clast_name_index_p built
67 from NAME and INDEX. */
69 static inline clast_name_index_p
70 new_clast_name_index (const char *name, int index)
72 clast_name_index_p res = XNEW (struct clast_name_index);
74 res->name = name;
75 res->index = index;
76 return res;
79 /* For a given clast NAME, returns -1 if it does not correspond to any
80 parameter, or otherwise, returns the index in the PARAMS or
81 SCATTERING_DIMENSIONS vector. */
83 static inline int
84 clast_name_to_index (clast_name_p name, htab_t index_table)
86 struct clast_name_index tmp;
87 PTR *slot;
89 #ifdef CLOOG_ORG
90 gcc_assert (name->type == clast_expr_name);
91 tmp.name = ((const struct clast_name*) name)->name;
92 #else
93 tmp.name = name;
94 #endif
96 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
98 if (slot && *slot)
99 return ((struct clast_name_index *) *slot)->index;
101 return -1;
104 /* Records in INDEX_TABLE the INDEX for NAME. */
106 static inline void
107 save_clast_name_index (htab_t index_table, const char *name, int index)
109 struct clast_name_index tmp;
110 PTR *slot;
112 tmp.name = name;
113 slot = htab_find_slot (index_table, &tmp, INSERT);
115 if (slot)
117 if (*slot)
118 free (*slot);
120 *slot = new_clast_name_index (name, index);
124 /* Computes a hash function for database element ELT. */
126 static inline hashval_t
127 clast_name_index_elt_info (const void *elt)
129 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
132 /* Compares database elements E1 and E2. */
134 static inline int
135 eq_clast_name_indexes (const void *e1, const void *e2)
137 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
138 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
140 return (elt1->name == elt2->name);
143 /* For a given scattering dimension, return the new induction variable
144 associated to it. */
146 static inline tree
147 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
149 return VEC_index (tree, newivs, depth);
154 /* Returns the tree variable from the name NAME that was given in
155 Cloog representation. */
157 static tree
158 clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
159 htab_t newivs_index, htab_t params_index)
161 int index;
162 VEC (tree, heap) *params = SESE_PARAMS (region);
164 if (params && params_index)
166 index = clast_name_to_index (name, params_index);
168 if (index >= 0)
169 return VEC_index (tree, params, index);
172 gcc_assert (newivs && newivs_index);
173 index = clast_name_to_index (name, newivs_index);
174 gcc_assert (index >= 0);
176 return newivs_to_depth_to_newiv (newivs, index);
179 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
181 static tree
182 max_signed_precision_type (tree type1, tree type2)
184 int p1 = TYPE_PRECISION (type1);
185 int p2 = TYPE_PRECISION (type2);
186 int precision;
187 tree type;
188 enum machine_mode mode;
190 if (p1 > p2)
191 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
192 else
193 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
195 if (precision > BITS_PER_WORD)
197 gloog_error = true;
198 return integer_type_node;
201 mode = smallest_mode_for_size (precision, MODE_INT);
202 precision = GET_MODE_PRECISION (mode);
203 type = build_nonstandard_integer_type (precision, false);
205 if (!type)
207 gloog_error = true;
208 return integer_type_node;
211 return type;
214 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
216 static tree
217 max_precision_type (tree type1, tree type2)
219 if (POINTER_TYPE_P (type1))
220 return type1;
222 if (POINTER_TYPE_P (type2))
223 return type2;
225 if (!TYPE_UNSIGNED (type1)
226 || !TYPE_UNSIGNED (type2))
227 return max_signed_precision_type (type1, type2);
229 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
232 static tree
233 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
234 htab_t, htab_t);
236 /* Converts a Cloog reduction expression R with reduction operation OP
237 to a GCC expression tree of type TYPE. */
239 static tree
240 clast_to_gcc_expression_red (tree type, enum tree_code op,
241 struct clast_reduction *r,
242 sese region, VEC (tree, heap) *newivs,
243 htab_t newivs_index, htab_t params_index)
245 int i;
246 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
247 newivs_index, params_index);
248 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
250 for (i = 1; i < r->n; i++)
252 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
253 newivs, newivs_index, params_index);
254 res = fold_build2 (op, type, res, t);
257 return res;
260 /* Converts a Cloog AST expression E back to a GCC expression tree of
261 type TYPE. */
263 static tree
264 clast_to_gcc_expression (tree type, struct clast_expr *e,
265 sese region, VEC (tree, heap) *newivs,
266 htab_t newivs_index, htab_t params_index)
268 switch (e->type)
270 case clast_expr_term:
272 struct clast_term *t = (struct clast_term *) e;
274 if (t->var)
276 if (mpz_cmp_si (t->val, 1) == 0)
278 tree name = clast_name_to_gcc (t->var, region, newivs,
279 newivs_index, params_index);
281 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
282 name = fold_convert (sizetype, name);
284 name = fold_convert (type, name);
285 return name;
288 else if (mpz_cmp_si (t->val, -1) == 0)
290 tree name = clast_name_to_gcc (t->var, region, newivs,
291 newivs_index, params_index);
293 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
294 name = fold_convert (sizetype, name);
296 name = fold_convert (type, name);
298 return fold_build1 (NEGATE_EXPR, type, name);
300 else
302 tree name = clast_name_to_gcc (t->var, region, newivs,
303 newivs_index, params_index);
304 tree cst = gmp_cst_to_tree (type, t->val);
306 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
307 name = fold_convert (sizetype, name);
309 name = fold_convert (type, name);
311 if (!POINTER_TYPE_P (type))
312 return fold_build2 (MULT_EXPR, type, cst, name);
314 gloog_error = true;
315 return cst;
318 else
319 return gmp_cst_to_tree (type, t->val);
322 case clast_expr_red:
324 struct clast_reduction *r = (struct clast_reduction *) e;
326 switch (r->type)
328 case clast_red_sum:
329 return clast_to_gcc_expression_red
330 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
331 r, region, newivs, newivs_index, params_index);
333 case clast_red_min:
334 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
335 newivs, newivs_index,
336 params_index);
338 case clast_red_max:
339 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
340 newivs, newivs_index,
341 params_index);
343 default:
344 gcc_unreachable ();
346 break;
349 case clast_expr_bin:
351 struct clast_binary *b = (struct clast_binary *) e;
352 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
353 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
354 newivs_index, params_index);
355 tree tr = gmp_cst_to_tree (type, b->RHS);
357 switch (b->type)
359 case clast_bin_fdiv:
360 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
362 case clast_bin_cdiv:
363 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
365 case clast_bin_div:
366 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
368 case clast_bin_mod:
369 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
371 default:
372 gcc_unreachable ();
376 default:
377 gcc_unreachable ();
380 return NULL_TREE;
383 /* Return the precision needed to represent the value VAL. */
385 static int
386 precision_for_value (mpz_t val)
388 mpz_t x, y, two;
389 int precision;
391 mpz_init (x);
392 mpz_init (y);
393 mpz_init (two);
394 mpz_set_si (x, 2);
395 mpz_set (y, val);
396 mpz_set_si (two, 2);
397 precision = 1;
399 if (mpz_sgn (y) < 0)
400 mpz_neg (y, y);
402 while (mpz_cmp (y, x) >= 0)
404 mpz_mul (x, x, two);
405 precision++;
408 mpz_clear (x);
409 mpz_clear (y);
410 mpz_clear (two);
412 return precision;
415 /* Return the precision needed to represent the values between LOW and
416 UP. */
418 static int
419 precision_for_interval (mpz_t low, mpz_t up)
421 mpz_t diff;
422 int precision;
424 gcc_assert (mpz_cmp (low, up) <= 0);
426 mpz_init (diff);
427 mpz_sub (diff, up, low);
428 precision = precision_for_value (diff);
429 mpz_clear (diff);
431 return precision;
434 /* Return a type that could represent the integer value VAL. */
436 static tree
437 gcc_type_for_interval (mpz_t low, mpz_t up)
439 bool unsigned_p = true;
440 int precision, prec_up, prec_int;
441 tree type;
442 enum machine_mode mode;
444 gcc_assert (mpz_cmp (low, up) <= 0);
446 prec_up = precision_for_value (up);
447 prec_int = precision_for_interval (low, up);
448 precision = MAX (prec_up, prec_int);
450 if (precision > BITS_PER_WORD)
452 gloog_error = true;
453 return integer_type_node;
456 if (mpz_sgn (low) <= 0)
457 unsigned_p = false;
459 else if (precision < BITS_PER_WORD)
461 unsigned_p = false;
462 precision++;
465 mode = smallest_mode_for_size (precision, MODE_INT);
466 precision = GET_MODE_PRECISION (mode);
467 type = build_nonstandard_integer_type (precision, unsigned_p);
469 if (!type)
471 gloog_error = true;
472 return integer_type_node;
475 return type;
478 /* Return a type that could represent the integer value VAL, or
479 otherwise return NULL_TREE. */
481 static tree
482 gcc_type_for_value (mpz_t val)
484 return gcc_type_for_interval (val, val);
487 /* Return the type for the clast_term T used in STMT. */
489 static tree
490 gcc_type_for_clast_term (struct clast_term *t,
491 sese region, VEC (tree, heap) *newivs,
492 htab_t newivs_index, htab_t params_index)
494 gcc_assert (t->expr.type == clast_expr_term);
496 if (!t->var)
497 return gcc_type_for_value (t->val);
499 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
500 newivs_index, params_index));
503 static tree
504 gcc_type_for_clast_expr (struct clast_expr *, sese,
505 VEC (tree, heap) *, htab_t, htab_t);
507 /* Return the type for the clast_reduction R used in STMT. */
509 static tree
510 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
511 VEC (tree, heap) *newivs,
512 htab_t newivs_index, htab_t params_index)
514 int i;
515 tree type = NULL_TREE;
517 if (r->n == 1)
518 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
519 newivs_index, params_index);
521 switch (r->type)
523 case clast_red_sum:
524 case clast_red_min:
525 case clast_red_max:
526 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
527 newivs_index, params_index);
528 for (i = 1; i < r->n; i++)
529 type = max_precision_type (type, gcc_type_for_clast_expr
530 (r->elts[i], region, newivs,
531 newivs_index, params_index));
533 return type;
535 default:
536 break;
539 gcc_unreachable ();
540 return NULL_TREE;
543 /* Return the type for the clast_binary B used in STMT. */
545 static tree
546 gcc_type_for_clast_bin (struct clast_binary *b,
547 sese region, VEC (tree, heap) *newivs,
548 htab_t newivs_index, htab_t params_index)
550 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
551 newivs, newivs_index, params_index);
552 tree r = gcc_type_for_value (b->RHS);
553 return max_signed_precision_type (l, r);
556 /* Returns the type for the CLAST expression E when used in statement
557 STMT. */
559 static tree
560 gcc_type_for_clast_expr (struct clast_expr *e,
561 sese region, VEC (tree, heap) *newivs,
562 htab_t newivs_index, htab_t params_index)
564 switch (e->type)
566 case clast_expr_term:
567 return gcc_type_for_clast_term ((struct clast_term *) e, region,
568 newivs, newivs_index, params_index);
570 case clast_expr_red:
571 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
572 newivs, newivs_index, params_index);
574 case clast_expr_bin:
575 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
576 newivs, newivs_index, params_index);
578 default:
579 gcc_unreachable ();
582 return NULL_TREE;
585 /* Returns the type for the equation CLEQ. */
587 static tree
588 gcc_type_for_clast_eq (struct clast_equation *cleq,
589 sese region, VEC (tree, heap) *newivs,
590 htab_t newivs_index, htab_t params_index)
592 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
593 newivs_index, params_index);
594 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
595 newivs_index, params_index);
596 return max_precision_type (l, r);
599 /* Translates a clast equation CLEQ to a tree. */
601 static tree
602 graphite_translate_clast_equation (sese region,
603 struct clast_equation *cleq,
604 VEC (tree, heap) *newivs,
605 htab_t newivs_index, htab_t params_index)
607 enum tree_code comp;
608 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
609 params_index);
610 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
611 newivs_index, params_index);
612 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
613 newivs_index, params_index);
615 if (cleq->sign == 0)
616 comp = EQ_EXPR;
618 else if (cleq->sign > 0)
619 comp = GE_EXPR;
621 else
622 comp = LE_EXPR;
624 return fold_build2 (comp, boolean_type_node, lhs, rhs);
627 /* Creates the test for the condition in STMT. */
629 static tree
630 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
631 VEC (tree, heap) *newivs,
632 htab_t newivs_index, htab_t params_index)
634 tree cond = NULL;
635 int i;
637 for (i = 0; i < stmt->n; i++)
639 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
640 newivs, newivs_index,
641 params_index);
643 if (cond)
644 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
645 else
646 cond = eq;
649 return cond;
652 /* Creates a new if region corresponding to Cloog's guard. */
654 static edge
655 graphite_create_new_guard (sese region, edge entry_edge,
656 struct clast_guard *stmt,
657 VEC (tree, heap) *newivs,
658 htab_t newivs_index, htab_t params_index)
660 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
661 newivs_index, params_index);
662 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
663 return exit_edge;
666 /* Compute the lower bound LOW and upper bound UP for the induction
667 variable at LEVEL for the statement PBB, based on the transformed
668 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
669 the iteration domain, and G the context parameters. */
671 static void
672 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
674 ppl_Pointset_Powerset_C_Polyhedron_t ps;
675 ppl_Linear_Expression_t le;
677 combine_context_id_scat (&ps, pbb, false);
679 /* Prepare the linear expression corresponding to the level that we
680 want to maximize/minimize. */
682 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
683 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
685 ppl_new_Linear_Expression_with_dimension (&le, dim);
686 ppl_set_coef (le, 2 * level + 1, 1);
689 ppl_max_for_le_pointset (ps, le, up);
690 ppl_min_for_le_pointset (ps, le, low);
691 ppl_delete_Linear_Expression (le);
692 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
695 /* Compute the type for the induction variable at LEVEL for the
696 statement PBB, based on the transformed schedule of PBB. */
698 static tree
699 compute_type_for_level (poly_bb_p pbb, int level)
701 mpz_t low, up;
702 tree type;
704 mpz_init (low);
705 mpz_init (up);
707 compute_bounds_for_level (pbb, level, low, up);
708 type = gcc_type_for_interval (low, up);
710 mpz_clear (low);
711 mpz_clear (up);
712 return type;
715 /* Walks a CLAST and returns the first statement in the body of a
716 loop. */
718 static struct clast_user_stmt *
719 clast_get_body_of_loop (struct clast_stmt *stmt)
721 if (!stmt
722 || CLAST_STMT_IS_A (stmt, stmt_user))
723 return (struct clast_user_stmt *) stmt;
725 if (CLAST_STMT_IS_A (stmt, stmt_for))
726 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
728 if (CLAST_STMT_IS_A (stmt, stmt_guard))
729 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
731 if (CLAST_STMT_IS_A (stmt, stmt_block))
732 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
734 gcc_unreachable ();
737 /* Returns the type for the induction variable for the loop translated
738 from STMT_FOR. */
740 static tree
741 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
742 tree lb_type, tree ub_type)
744 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
745 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
746 CloogStatement *cs = body->statement;
747 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
749 return max_signed_precision_type (lb_type, max_precision_type
750 (ub_type, compute_type_for_level
751 (pbb, level - 1)));
754 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
755 induction variable for the new LOOP. New LOOP is attached to CFG
756 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
757 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
758 CLooG's scattering name to the induction variable created for the
759 loop of STMT. The new induction variable is inserted in the NEWIVS
760 vector. */
762 static struct loop *
763 graphite_create_new_loop (sese region, edge entry_edge,
764 struct clast_for *stmt,
765 loop_p outer, VEC (tree, heap) **newivs,
766 htab_t newivs_index, htab_t params_index, int level)
768 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
769 newivs_index, params_index);
770 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
771 newivs_index, params_index);
772 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
773 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
774 newivs_index, params_index);
775 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
776 newivs_index, params_index);
777 tree stride = gmp_cst_to_tree (type, stmt->stride);
778 tree ivvar = create_tmp_var (type, "graphite_IV");
779 tree iv, iv_after_increment;
780 loop_p loop = create_empty_loop_on_edge
781 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
782 outer ? outer : entry_edge->src->loop_father);
784 add_referenced_var (ivvar);
786 save_clast_name_index (newivs_index, stmt->iterator,
787 VEC_length (tree, *newivs));
788 VEC_safe_push (tree, heap, *newivs, iv);
789 return loop;
792 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
793 induction variables of the loops around GBB in SESE. */
795 static void
796 build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
797 VEC (tree, heap) *newivs, htab_t newivs_index,
798 struct clast_user_stmt *user_stmt,
799 htab_t params_index)
801 struct clast_stmt *t;
802 int depth = 0;
803 CloogStatement *cs = user_stmt->statement;
804 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
805 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
807 for (t = user_stmt->substitutions; t; t = t->next, depth++)
809 struct clast_expr *expr = (struct clast_expr *)
810 ((struct clast_assignment *)t)->RHS;
811 tree type = gcc_type_for_clast_expr (expr, region, newivs,
812 newivs_index, params_index);
813 tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
814 newivs_index, params_index);
815 loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
817 VEC_replace (tree, iv_map, old_loop->num, new_name);
821 /* Construct bb_pbb_def with BB and PBB. */
823 static bb_pbb_def *
824 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
826 bb_pbb_def *bb_pbb_p;
828 bb_pbb_p = XNEW (bb_pbb_def);
829 bb_pbb_p->bb = bb;
830 bb_pbb_p->pbb = pbb;
832 return bb_pbb_p;
835 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
837 static void
838 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
840 bb_pbb_def tmp;
841 PTR *x;
843 tmp.bb = bb;
844 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
846 if (x && !*x)
847 *x = new_bb_pbb_def (bb, pbb);
850 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
852 static poly_bb_p
853 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
855 bb_pbb_def tmp;
856 PTR *slot;
858 tmp.bb = bb;
859 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
861 if (slot && *slot)
862 return ((bb_pbb_def *) *slot)->pbb;
864 return NULL;
867 /* Check data dependency in LOOP at scattering level LEVEL.
868 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
869 mapping. */
871 static bool
872 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
874 unsigned i,j;
875 basic_block *bbs = get_loop_body_in_dom_order (loop);
877 for (i = 0; i < loop->num_nodes; i++)
879 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
881 if (pbb1 == NULL)
882 continue;
884 for (j = 0; j < loop->num_nodes; j++)
886 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
888 if (pbb2 == NULL)
889 continue;
891 if (dependency_between_pbbs_p (pbb1, pbb2, level))
893 free (bbs);
894 return true;
899 free (bbs);
901 return false;
904 /* Translates a clast user statement STMT to gimple.
906 - REGION is the sese region we used to generate the scop.
907 - NEXT_E is the edge where new generated code should be attached.
908 - CONTEXT_LOOP is the loop in which the generated code will be placed
909 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
910 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
911 the sese region. */
912 static edge
913 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
914 VEC (tree, heap) **newivs,
915 htab_t newivs_index, htab_t bb_pbb_mapping,
916 htab_t params_index)
918 int i, nb_loops;
919 basic_block new_bb;
920 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
921 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
922 VEC (tree, heap) *iv_map;
924 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
925 return next_e;
927 nb_loops = number_of_loops ();
928 iv_map = VEC_alloc (tree, heap, nb_loops);
929 for (i = 0; i < nb_loops; i++)
930 VEC_quick_push (tree, iv_map, NULL_TREE);
932 build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
933 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
934 next_e, iv_map);
935 VEC_free (tree, heap, iv_map);
937 new_bb = next_e->src;
938 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
939 update_ssa (TODO_update_ssa);
941 return next_e;
944 /* Creates a new if region protecting the loop to be executed, if the execution
945 count is zero (lb > ub). */
947 static edge
948 graphite_create_new_loop_guard (sese region, edge entry_edge,
949 struct clast_for *stmt,
950 VEC (tree, heap) *newivs,
951 htab_t newivs_index, htab_t params_index)
953 tree cond_expr;
954 edge exit_edge;
955 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
956 newivs_index, params_index);
957 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
958 newivs_index, params_index);
959 tree type = max_precision_type (lb_type, ub_type);
960 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
961 newivs_index, params_index);
962 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
963 newivs_index, params_index);
964 /* When ub is simply a constant or a parameter, use lb <= ub. */
965 if (TREE_CODE (ub) == INTEGER_CST || TREE_CODE (ub) == SSA_NAME)
966 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
967 else
969 tree one = (POINTER_TYPE_P (type)
970 ? size_one_node
971 : fold_convert (type, integer_one_node));
972 /* Adding +1 and using LT_EXPR helps with loop latches that have a
973 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
974 2^k-1 due to integer overflow, and the condition lb <= ub is true,
975 even if we do not want this. However lb < ub + 1 is false, as
976 expected. */
977 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
978 : PLUS_EXPR, type, ub, one);
980 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
983 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
985 return exit_edge;
988 static edge
989 translate_clast (sese, loop_p, struct clast_stmt *, edge,
990 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
992 /* Create the loop for a clast for statement.
994 - REGION is the sese region we used to generate the scop.
995 - NEXT_E is the edge where new generated code should be attached.
996 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
997 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
998 the sese region. */
999 static edge
1000 translate_clast_for_loop (sese region, loop_p context_loop,
1001 struct clast_for *stmt, edge next_e,
1002 VEC (tree, heap) **newivs,
1003 htab_t newivs_index, htab_t bb_pbb_mapping,
1004 int level, htab_t params_index)
1006 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1007 context_loop, newivs,
1008 newivs_index, params_index,
1009 level);
1010 edge last_e = single_exit (loop);
1011 edge to_body = single_succ_edge (loop->header);
1012 basic_block after = to_body->dest;
1014 /* Create a basic block for loop close phi nodes. */
1015 last_e = single_succ_edge (split_edge (last_e));
1017 /* Translate the body of the loop. */
1018 next_e = translate_clast (region, loop, stmt->body, to_body,
1019 newivs, newivs_index, bb_pbb_mapping, level + 1,
1020 params_index);
1021 redirect_edge_succ_nodup (next_e, after);
1022 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1024 if (flag_loop_parallelize_all
1025 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1026 get_scattering_level (level)))
1027 loop->can_be_parallel = true;
1029 return last_e;
1032 /* Translates a clast for statement STMT to gimple. First a guard is created
1033 protecting the loop, if it is executed zero times. In this guard we create
1034 the real loop structure.
1036 - REGION is the sese region we used to generate the scop.
1037 - NEXT_E is the edge where new generated code should be attached.
1038 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1039 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1040 the sese region. */
1041 static edge
1042 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1043 edge next_e, VEC (tree, heap) **newivs,
1044 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1045 htab_t params_index)
1047 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1048 newivs_index, params_index);
1049 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1051 translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
1052 newivs_index, bb_pbb_mapping, level,
1053 params_index);
1054 return last_e;
1057 /* Translates a clast guard statement STMT to gimple.
1059 - REGION is the sese region we used to generate the scop.
1060 - NEXT_E is the edge where new generated code should be attached.
1061 - CONTEXT_LOOP is the loop in which the generated code will be placed
1062 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1063 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1064 the sese region. */
1065 static edge
1066 translate_clast_guard (sese region, loop_p context_loop,
1067 struct clast_guard *stmt, edge next_e,
1068 VEC (tree, heap) **newivs,
1069 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1070 htab_t params_index)
1072 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1073 newivs_index, params_index);
1074 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1076 translate_clast (region, context_loop, stmt->then, true_e,
1077 newivs, newivs_index, bb_pbb_mapping,
1078 level, params_index);
1079 return last_e;
1082 /* Translates a CLAST statement STMT to GCC representation in the
1083 context of a SESE.
1085 - NEXT_E is the edge where new generated code should be attached.
1086 - CONTEXT_LOOP is the loop in which the generated code will be placed
1087 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1088 static edge
1089 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1090 edge next_e, VEC (tree, heap) **newivs,
1091 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1092 htab_t params_index)
1094 if (!stmt)
1095 return next_e;
1097 if (CLAST_STMT_IS_A (stmt, stmt_root))
1098 ; /* Do nothing. */
1100 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1101 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1102 next_e, newivs, newivs_index,
1103 bb_pbb_mapping, params_index);
1105 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1106 next_e = translate_clast_for (region, context_loop,
1107 (struct clast_for *) stmt, next_e,
1108 newivs, newivs_index,
1109 bb_pbb_mapping, level, params_index);
1111 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1112 next_e = translate_clast_guard (region, context_loop,
1113 (struct clast_guard *) stmt, next_e,
1114 newivs, newivs_index,
1115 bb_pbb_mapping, level, params_index);
1117 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1118 next_e = translate_clast (region, context_loop,
1119 ((struct clast_block *) stmt)->body,
1120 next_e, newivs, newivs_index,
1121 bb_pbb_mapping, level, params_index);
1122 else
1123 gcc_unreachable();
1125 recompute_all_dominators ();
1126 graphite_verify ();
1128 return translate_clast (region, context_loop, stmt->next, next_e,
1129 newivs, newivs_index,
1130 bb_pbb_mapping, level, params_index);
1133 /* Free the SCATTERING domain list. */
1135 static void
1136 free_scattering (CloogScatteringList *scattering)
1138 while (scattering)
1140 CloogScattering *dom = cloog_scattering (scattering);
1141 CloogScatteringList *next = cloog_next_scattering (scattering);
1143 cloog_scattering_free (dom);
1144 free (scattering);
1145 scattering = next;
1149 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1150 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1151 from 0 to scop_nb_loops (scop). */
1153 static void
1154 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1156 sese region = SCOP_REGION (scop);
1157 int i;
1158 int nb_iterators = scop_max_loop_depth (scop);
1159 int nb_scattering = cloog_program_nb_scattdims (prog);
1160 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1161 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1162 char **scattering = XNEWVEC (char *, nb_scattering);
1163 char **parameters= XNEWVEC (char *, nb_parameters);
1165 cloog_program_set_names (prog, cloog_names_malloc ());
1167 for (i = 0; i < nb_parameters; i++)
1169 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1170 const char *name = get_name (param);
1171 int len;
1173 if (!name)
1174 name = "T";
1176 len = strlen (name);
1177 len += 17;
1178 parameters[i] = XNEWVEC (char, len + 1);
1179 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1182 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1183 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1185 for (i = 0; i < nb_iterators; i++)
1187 int len = 4 + 16;
1188 iterators[i] = XNEWVEC (char, len);
1189 snprintf (iterators[i], len, "git_%d", i);
1192 cloog_names_set_nb_iterators (cloog_program_names (prog),
1193 nb_iterators);
1194 cloog_names_set_iterators (cloog_program_names (prog),
1195 iterators);
1197 for (i = 0; i < nb_scattering; i++)
1199 int len = 5 + 16;
1200 scattering[i] = XNEWVEC (char, len);
1201 snprintf (scattering[i], len, "scat_%d", i);
1204 cloog_names_set_nb_scattering (cloog_program_names (prog),
1205 nb_scattering);
1206 cloog_names_set_scattering (cloog_program_names (prog),
1207 scattering);
1210 /* Initialize a CLooG input file. */
1212 static FILE *
1213 init_cloog_input_file (int scop_number)
1215 FILE *graphite_out_file;
1216 int len = strlen (dump_base_name);
1217 char *dumpname = XNEWVEC (char, len + 25);
1218 char *s_scop_number = XNEWVEC (char, 15);
1220 memcpy (dumpname, dump_base_name, len + 1);
1221 strip_off_ending (dumpname, len);
1222 sprintf (s_scop_number, ".%d", scop_number);
1223 strcat (dumpname, s_scop_number);
1224 strcat (dumpname, ".cloog");
1225 graphite_out_file = fopen (dumpname, "w+b");
1227 if (graphite_out_file == 0)
1228 fatal_error ("can%'t open %s for writing: %m", dumpname);
1230 free (dumpname);
1232 return graphite_out_file;
1235 /* Build cloog program for SCoP. */
1237 static void
1238 build_cloog_prog (scop_p scop, CloogProgram *prog,
1239 CloogOptions *options, CloogState *state ATTRIBUTE_UNUSED)
1241 int i;
1242 int max_nb_loops = scop_max_loop_depth (scop);
1243 poly_bb_p pbb;
1244 CloogLoop *loop_list = NULL;
1245 CloogBlockList *block_list = NULL;
1246 CloogScatteringList *scattering = NULL;
1247 int nbs = 2 * max_nb_loops + 1;
1248 int *scaldims;
1250 cloog_program_set_context
1251 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
1252 scop_nb_params (scop), state));
1253 nbs = unify_scattering_dimensions (scop);
1254 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1255 cloog_program_set_nb_scattdims (prog, nbs);
1256 initialize_cloog_names (scop, prog);
1258 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1260 CloogStatement *stmt;
1261 CloogBlock *block;
1262 CloogDomain *dom;
1264 /* Dead code elimination: when the domain of a PBB is empty,
1265 don't generate code for the PBB. */
1266 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1267 continue;
1269 /* Build the new statement and its block. */
1270 stmt = cloog_statement_alloc (state, pbb_index (pbb));
1271 dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
1272 scop_nb_params (scop),
1273 state);
1274 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1275 cloog_statement_set_usr (stmt, pbb);
1277 /* Build loop list. */
1279 CloogLoop *new_loop_list = cloog_loop_malloc (state);
1280 cloog_loop_set_next (new_loop_list, loop_list);
1281 cloog_loop_set_domain (new_loop_list, dom);
1282 cloog_loop_set_block (new_loop_list, block);
1283 loop_list = new_loop_list;
1286 /* Build block list. */
1288 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1290 cloog_block_list_set_next (new_block_list, block_list);
1291 cloog_block_list_set_block (new_block_list, block);
1292 block_list = new_block_list;
1295 /* Build scattering list. */
1297 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1298 CloogScatteringList *new_scattering
1299 = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
1300 ppl_Polyhedron_t scat;
1301 CloogScattering *dom;
1303 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1304 dom = new_Cloog_Scattering_from_ppl_Polyhedron
1305 (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
1306 state);
1308 cloog_set_next_scattering (new_scattering, scattering);
1309 cloog_set_scattering (new_scattering, dom);
1310 scattering = new_scattering;
1314 cloog_program_set_loop (prog, loop_list);
1315 cloog_program_set_blocklist (prog, block_list);
1317 for (i = 0; i < nbs; i++)
1318 scaldims[i] = 0 ;
1320 cloog_program_set_scaldims (prog, scaldims);
1322 /* Extract scalar dimensions to simplify the code generation problem. */
1323 cloog_program_extract_scalars (prog, scattering, options);
1325 /* Dump a .cloog input file, if requested. This feature is only
1326 enabled in the Graphite branch. */
1327 if (0)
1329 static size_t file_scop_number = 0;
1330 FILE *cloog_file = init_cloog_input_file (file_scop_number);
1332 cloog_program_dump_cloog (cloog_file, prog, scattering);
1333 ++file_scop_number;
1336 /* Apply scattering. */
1337 cloog_program_scatter (prog, scattering, options);
1338 free_scattering (scattering);
1340 /* Iterators corresponding to scalar dimensions have to be extracted. */
1341 cloog_names_scalarize (cloog_program_names (prog), nbs,
1342 cloog_program_scaldims (prog));
1344 /* Free blocklist. */
1346 CloogBlockList *next = cloog_program_blocklist (prog);
1348 while (next)
1350 CloogBlockList *toDelete = next;
1351 next = cloog_block_list_next (next);
1352 cloog_block_list_set_next (toDelete, NULL);
1353 cloog_block_list_set_block (toDelete, NULL);
1354 cloog_block_list_free (toDelete);
1356 cloog_program_set_blocklist (prog, NULL);
1360 /* Return the options that will be used in GLOOG. */
1362 static CloogOptions *
1363 set_cloog_options (CloogState *state ATTRIBUTE_UNUSED)
1365 CloogOptions *options = cloog_options_malloc (state);
1367 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1368 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1369 we pass an incomplete program to cloog. */
1370 options->language = LANGUAGE_C;
1372 /* Enable complex equality spreading: removes dummy statements
1373 (assignments) in the generated code which repeats the
1374 substitution equations for statements. This is useless for
1375 GLooG. */
1376 options->esp = 1;
1378 #ifdef CLOOG_ORG
1379 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1380 options->quiet = 1;
1381 #else
1382 /* Enable C pretty-printing mode: normalizes the substitution
1383 equations for statements. */
1384 options->cpp = 1;
1385 #endif
1387 /* Allow cloog to build strides with a stride width different to one.
1388 This example has stride = 4:
1390 for (i = 0; i < 20; i += 4)
1391 A */
1392 options->strides = 1;
1394 /* Disable optimizations and make cloog generate source code closer to the
1395 input. This is useful for debugging, but later we want the optimized
1396 code.
1398 XXX: We can not disable optimizations, as loop blocking is not working
1399 without them. */
1400 if (0)
1402 options->f = -1;
1403 options->l = INT_MAX;
1406 return options;
1409 /* Prints STMT to STDERR. */
1411 void
1412 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1414 CloogState *state = cloog_state_malloc ();
1415 CloogOptions *options = set_cloog_options (state);
1417 clast_pprint (file, stmt, 0, options);
1418 cloog_options_free (options);
1419 cloog_state_free (state);
1422 /* Prints STMT to STDERR. */
1424 DEBUG_FUNCTION void
1425 debug_clast_stmt (struct clast_stmt *stmt)
1427 print_clast_stmt (stderr, stmt);
1430 /* Translate SCOP to a CLooG program and clast. These two
1431 representations should be freed together: a clast cannot be used
1432 without a program. */
1434 cloog_prog_clast
1435 scop_to_clast (scop_p scop, CloogState *state)
1437 CloogOptions *options = set_cloog_options (state);
1438 cloog_prog_clast pc;
1440 /* Connect new cloog prog generation to graphite. */
1441 pc.prog = cloog_program_malloc ();
1442 build_cloog_prog (scop, pc.prog, options, state);
1443 pc.prog = cloog_program_generate (pc.prog, options);
1444 pc.stmt = cloog_clast_create (pc.prog, options);
1446 cloog_options_free (options);
1447 return pc;
1450 /* Prints to FILE the code generated by CLooG for SCOP. */
1452 void
1453 print_generated_program (FILE *file, scop_p scop)
1455 CloogState *state = cloog_state_malloc ();
1456 CloogOptions *options = set_cloog_options (state);
1458 cloog_prog_clast pc = scop_to_clast (scop, state);
1460 fprintf (file, " (prog: \n");
1461 cloog_program_print (file, pc.prog);
1462 fprintf (file, " )\n");
1464 fprintf (file, " (clast: \n");
1465 clast_pprint (file, pc.stmt, 0, options);
1466 fprintf (file, " )\n");
1468 cloog_options_free (options);
1469 cloog_clast_free (pc.stmt);
1470 cloog_program_free (pc.prog);
1473 /* Prints to STDERR the code generated by CLooG for SCOP. */
1475 DEBUG_FUNCTION void
1476 debug_generated_program (scop_p scop)
1478 print_generated_program (stderr, scop);
1481 /* Add CLooG names to parameter index. The index is used to translate
1482 back from CLooG names to GCC trees. */
1484 static void
1485 create_params_index (htab_t index_table, CloogProgram *prog) {
1486 CloogNames* names = cloog_program_names (prog);
1487 int nb_parameters = cloog_names_nb_parameters (names);
1488 char **parameters = cloog_names_parameters (names);
1489 int i;
1491 for (i = 0; i < nb_parameters; i++)
1492 save_clast_name_index (index_table, parameters[i], i);
1495 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1496 the given SCOP. Return true if code generation succeeded.
1497 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1500 bool
1501 gloog (scop_p scop, htab_t bb_pbb_mapping)
1503 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1504 loop_p context_loop;
1505 sese region = SCOP_REGION (scop);
1506 ifsese if_region = NULL;
1507 htab_t newivs_index, params_index;
1508 cloog_prog_clast pc;
1509 CloogState *state;
1511 state = cloog_state_malloc ();
1512 timevar_push (TV_GRAPHITE_CODE_GEN);
1513 gloog_error = false;
1515 pc = scop_to_clast (scop, state);
1517 if (dump_file && (dump_flags & TDF_DETAILS))
1519 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1520 print_clast_stmt (dump_file, pc.stmt);
1521 fprintf (dump_file, "\n");
1524 recompute_all_dominators ();
1525 graphite_verify ();
1527 if_region = move_sese_in_condition (region);
1528 sese_insert_phis_for_liveouts (region,
1529 if_region->region->exit->src,
1530 if_region->false_region->exit,
1531 if_region->true_region->exit);
1532 recompute_all_dominators ();
1533 graphite_verify ();
1535 context_loop = SESE_ENTRY (region)->src->loop_father;
1536 newivs_index = htab_create (10, clast_name_index_elt_info,
1537 eq_clast_name_indexes, free);
1538 params_index = htab_create (10, clast_name_index_elt_info,
1539 eq_clast_name_indexes, free);
1541 create_params_index (params_index, pc.prog);
1543 translate_clast (region, context_loop, pc.stmt,
1544 if_region->true_region->entry,
1545 &newivs, newivs_index,
1546 bb_pbb_mapping, 1, params_index);
1547 graphite_verify ();
1548 scev_reset ();
1549 recompute_all_dominators ();
1550 graphite_verify ();
1552 if (gloog_error)
1553 set_ifsese_condition (if_region, integer_zero_node);
1555 free (if_region->true_region);
1556 free (if_region->region);
1557 free (if_region);
1559 htab_delete (newivs_index);
1560 htab_delete (params_index);
1561 VEC_free (tree, heap, newivs);
1562 cloog_clast_free (pc.stmt);
1563 cloog_program_free (pc.prog);
1564 timevar_pop (TV_GRAPHITE_CODE_GEN);
1566 if (dump_file && (dump_flags & TDF_DETAILS))
1568 loop_p loop;
1569 loop_iterator li;
1570 int num_no_dependency = 0;
1572 FOR_EACH_LOOP (li, loop, 0)
1573 if (loop->can_be_parallel)
1574 num_no_dependency++;
1576 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1577 num_no_dependency);
1580 cloog_state_free (state);
1582 return !gloog_error;
1584 #endif