1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
37 #include "basic-block.h"
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
79 /* Keep statistics of this pass. */
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
91 /* The table itself. */
92 static htab_t expr_table
;
94 /* Expression elements in the hash table. */
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
100 /* The same hash for this entry. */
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr
*avail_occr
;
107 static struct obstack expr_obstack
;
109 /* Occurrence of an expression.
110 There is at most one occurrence per basic block. If a pattern appears
111 more than once, the last appearance is used. */
115 /* Next occurrence of this expression. */
117 /* The insn that computes the expression. */
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
123 static struct obstack occr_obstack
;
125 /* The following structure holds the information about the occurrences of
126 the redundant instructions. */
134 static struct obstack unoccr_obstack
;
136 /* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
140 This array is used during the building of the hash table (step 1) to
141 determine if a reg is killed before the end of a basic block.
143 It is also used when eliminating partial redundancies (step 2) to see
144 if a reg was modified since the start of a basic block. */
145 static int *reg_avail_info
;
147 /* A list of insns that may modify memory within the current basic block. */
151 struct modifies_mem
*next
;
153 static struct modifies_mem
*modifies_mem_list
;
155 /* The modifies_mem structs also go on an obstack, only this obstack is
156 freed each time after completing the analysis or transformations on
157 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
158 object on the obstack to keep track of the bottom of the obstack. */
159 static struct obstack modifies_mem_obstack
;
160 static struct modifies_mem
*modifies_mem_obstack_bottom
;
162 /* Mapping of insn UIDs to CUIDs.
163 CUIDs are like UIDs except they increase monotonically in each basic
164 block, have no gaps, and only apply to real insns. */
165 static int *uid_cuid
;
166 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
169 /* Helpers for memory allocation/freeing. */
170 static void alloc_mem (void);
171 static void free_mem (void);
173 /* Support for hash table construction and transformations. */
174 static bool oprs_unchanged_p (rtx
, rtx
, bool);
175 static void record_last_reg_set_info (rtx
, int);
176 static void record_last_mem_set_info (rtx
);
177 static void record_last_set_info (rtx
, rtx
, void *);
178 static void record_opr_changes (rtx
);
180 static void find_mem_conflicts (rtx
, rtx
, void *);
181 static int load_killed_in_block_p (int, rtx
, bool);
182 static void reset_opr_set_tables (void);
184 /* Hash table support. */
185 static hashval_t
hash_expr (rtx
, int *);
186 static hashval_t
hash_expr_for_htab (const void *);
187 static int expr_equiv_p (const void *, const void *);
188 static void insert_expr_in_table (rtx
, rtx
);
189 static struct expr
*lookup_expr_in_table (rtx
);
190 static int dump_hash_table_entry (void **, void *);
191 static void dump_hash_table (FILE *);
193 /* Helpers for eliminate_partially_redundant_load. */
194 static bool reg_killed_on_edge (rtx
, edge
);
195 static bool reg_used_on_edge (rtx
, edge
);
197 static rtx
reg_set_between_after_reload_p (rtx
, rtx
, rtx
);
198 static rtx
reg_used_between_after_reload_p (rtx
, rtx
, rtx
);
199 static rtx
get_avail_load_store_reg (rtx
);
201 static bool bb_has_well_behaved_predecessors (basic_block
);
202 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
203 static void hash_scan_set (rtx
);
204 static void compute_hash_table (void);
206 /* The work horses of this pass. */
207 static void eliminate_partially_redundant_load (basic_block
,
210 static void eliminate_partially_redundant_loads (void);
213 /* Allocate memory for the CUID mapping array and register/memory
223 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
224 uid_cuid
= xcalloc (get_max_uid () + 1, sizeof (int));
227 FOR_BB_INSNS (bb
, insn
)
230 uid_cuid
[INSN_UID (insn
)] = i
++;
232 uid_cuid
[INSN_UID (insn
)] = i
;
235 /* Allocate the available expressions hash table. We don't want to
236 make the hash table too small, but unnecessarily making it too large
237 also doesn't help. The i/4 is a gcse.c relic, and seems like a
238 reasonable choice. */
239 expr_table
= htab_create (MAX (i
/ 4, 13),
240 hash_expr_for_htab
, expr_equiv_p
, NULL
);
242 /* We allocate everything on obstacks because we often can roll back
243 the whole obstack to some point. Freeing obstacks is very fast. */
244 gcc_obstack_init (&expr_obstack
);
245 gcc_obstack_init (&occr_obstack
);
246 gcc_obstack_init (&unoccr_obstack
);
247 gcc_obstack_init (&modifies_mem_obstack
);
249 /* Working array used to track the last set for each register
250 in the current block. */
251 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
253 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
254 can roll it back in reset_opr_set_tables. */
255 modifies_mem_obstack_bottom
=
256 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
257 sizeof (struct modifies_mem
));
260 /* Free memory allocated by alloc_mem. */
267 htab_delete (expr_table
);
269 obstack_free (&expr_obstack
, NULL
);
270 obstack_free (&occr_obstack
, NULL
);
271 obstack_free (&unoccr_obstack
, NULL
);
272 obstack_free (&modifies_mem_obstack
, NULL
);
274 free (reg_avail_info
);
278 /* Hash expression X.
279 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
280 or if the expression contains something we don't want to insert in the
284 hash_expr (rtx x
, int *do_not_record_p
)
286 *do_not_record_p
= 0;
287 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
288 NULL
, /*have_reg_qty=*/false);
291 /* Callback for hashtab.
292 Return the hash value for expression EXP. We don't actually hash
293 here, we just return the cached hash value. */
296 hash_expr_for_htab (const void *expp
)
298 struct expr
*exp
= (struct expr
*) expp
;
302 /* Callbach for hashtab.
303 Return nonzero if exp1 is equivalent to exp2. */
306 expr_equiv_p (const void *exp1p
, const void *exp2p
)
308 struct expr
*exp1
= (struct expr
*) exp1p
;
309 struct expr
*exp2
= (struct expr
*) exp2p
;
310 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
312 && exp1
->hash
!= exp2
->hash
)
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
323 insert_expr_in_table (rtx x
, rtx insn
)
327 struct expr
*cur_expr
, **slot
;
328 struct occr
*avail_occr
, *last_occr
= NULL
;
330 hash
= hash_expr (x
, &do_not_record_p
);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
344 sizeof (struct expr
));
346 cur_expr
->hash
= hash
;
347 cur_expr
->avail_occr
= NULL
;
349 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, cur_expr
,
353 /* The expression isn't found, so insert it. */
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack
, cur_expr
);
363 /* Search for another occurrence in the same basic block. */
364 avail_occr
= cur_expr
->avail_occr
;
365 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
367 /* If an occurrence isn't found, save a pointer to the end of
369 last_occr
= avail_occr
;
370 avail_occr
= avail_occr
->next
;
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
378 avail_occr
->insn
= insn
;
381 /* First occurrence of this expression in this basic block. */
382 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
383 sizeof (struct occr
));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr
->avail_occr
== NULL
)
387 cur_expr
->avail_occr
= avail_occr
;
389 last_occr
->next
= avail_occr
;
391 avail_occr
->insn
= insn
;
392 avail_occr
->next
= NULL
;
393 avail_occr
->deleted_p
= 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
402 lookup_expr_in_table (rtx pat
)
405 struct expr
**slot
, *tmp_expr
;
406 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
411 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
412 sizeof (struct expr
));
413 tmp_expr
->expr
= pat
;
414 tmp_expr
->hash
= hash
;
415 tmp_expr
->avail_occr
= NULL
;
417 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, tmp_expr
,
419 obstack_free (&expr_obstack
, tmp_expr
);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
433 dump_hash_table_entry (void **slot
, void *filep
)
435 struct expr
*expr
= (struct expr
*) *slot
;
436 FILE *file
= (FILE *) filep
;
439 fprintf (file
, "expr: ");
440 print_rtl (file
, expr
->expr
);
441 fprintf (file
,"\nhashcode: %u\n", expr
->hash
);
442 fprintf (file
,"list of occurences:\n");
443 occr
= expr
->avail_occr
;
446 rtx insn
= occr
->insn
;
447 print_rtl_single (file
, insn
);
448 fprintf (file
, "\n");
451 fprintf (file
, "\n");
456 dump_hash_table (FILE *file
)
458 fprintf (file
, "\n\nexpression hash table\n");
459 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table
),
461 (long) htab_elements (expr_table
),
462 htab_collisions (expr_table
));
463 if (htab_elements (expr_table
) > 0)
465 fprintf (file
, "\n\ntable entries:\n");
466 htab_traverse (expr_table
, dump_hash_table_entry
, file
);
468 fprintf (file
, "\n");
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
478 oprs_unchanged_p (rtx x
, rtx insn
, bool after_insn
)
491 #ifdef ENABLE_CHECKING
492 /* We are called after register allocation. */
493 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
497 /* If the last CUID setting the insn is less than the CUID of
498 INSN, then reg X is not changed in or after INSN. */
499 return reg_avail_info
[REGNO (x
)] < INSN_CUID (insn
);
501 /* Reg X is not set before INSN in the current basic block if
502 we have not yet recorded the CUID of an insn that touches
504 return reg_avail_info
[REGNO (x
)] == 0;
507 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
510 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
538 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
542 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
545 else if (fmt
[i
] == 'E')
546 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
547 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
555 /* Used for communication between find_mem_conflicts and
556 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
557 conflict between two memory references.
558 This is a bit of a hack to work around the limitations of note_stores. */
559 static int mems_conflict_p
;
561 /* DEST is the output of an instruction. If it is a memory reference, and
562 possibly conflicts with the load found in DATA, then set mems_conflict_p
563 to a nonzero value. */
566 find_mem_conflicts (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
569 rtx mem_op
= (rtx
) data
;
571 while (GET_CODE (dest
) == SUBREG
572 || GET_CODE (dest
) == ZERO_EXTRACT
573 || GET_CODE (dest
) == STRICT_LOW_PART
)
574 dest
= XEXP (dest
, 0);
576 /* If DEST is not a MEM, then it will not conflict with the load. Note
577 that function calls are assumed to clobber memory, but are handled
582 if (true_dependence (dest
, GET_MODE (dest
), mem_op
,
588 /* Return nonzero if the expression in X (a memory reference) is killed
589 in the current basic block before (if AFTER_INSN is false) or after
590 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
592 This function assumes that the modifies_mem table is flushed when
593 the hash table construction or redundancy elimination phases start
594 processing a new basic block. */
597 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
599 struct modifies_mem
*list_entry
= modifies_mem_list
;
603 rtx setter
= list_entry
->insn
;
605 /* Ignore entries in the list that do not apply. */
607 && INSN_CUID (setter
) < uid_limit
)
609 && INSN_CUID (setter
) > uid_limit
))
611 list_entry
= list_entry
->next
;
615 /* If SETTER is a call everything is clobbered. Note that calls
616 to pure functions are never put on the list, so we need not
621 /* SETTER must be an insn of some kind that sets memory. Call
622 note_stores to examine each hunk of memory that is modified.
623 It will set mems_conflict_p to nonzero if there may be a
624 conflict between X and SETTER. */
626 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
630 list_entry
= list_entry
->next
;
636 /* Record register first/last/block set information for REGNO in INSN. */
639 record_last_reg_set_info (rtx insn
, int regno
)
641 reg_avail_info
[regno
] = INSN_CUID (insn
);
645 /* Record memory modification information for INSN. We do not actually care
646 about the memory location(s) that are set, or even how they are set (consider
647 a CALL_INSN). We merely need to record which insns modify memory. */
650 record_last_mem_set_info (rtx insn
)
652 struct modifies_mem
*list_entry
;
654 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
655 sizeof (struct modifies_mem
));
656 list_entry
->insn
= insn
;
657 list_entry
->next
= modifies_mem_list
;
658 modifies_mem_list
= list_entry
;
661 /* Called from compute_hash_table via note_stores to handle one
662 SET or CLOBBER in an insn. DATA is really the instruction in which
663 the SET is taking place. */
666 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
668 rtx last_set_insn
= (rtx
) data
;
670 if (GET_CODE (dest
) == SUBREG
)
671 dest
= SUBREG_REG (dest
);
674 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
675 else if (MEM_P (dest
)
676 /* Ignore pushes, they clobber nothing. */
677 && ! push_operand (dest
, GET_MODE (dest
)))
678 record_last_mem_set_info (last_set_insn
);
682 /* Reset tables used to keep track of what's still available since the
683 start of the block. */
686 reset_opr_set_tables (void)
688 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
689 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
690 modifies_mem_list
= NULL
;
694 /* Record things set by INSN.
695 This data is used by oprs_unchanged_p. */
698 record_opr_changes (rtx insn
)
702 /* Find all stores and record them. */
703 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
705 /* Also record autoincremented REGs for this insn as changed. */
706 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
707 if (REG_NOTE_KIND (note
) == REG_INC
)
708 record_last_reg_set_info (insn
, REGNO (XEXP (note
, 0)));
710 /* Finally, if this is a call, record all call clobbers. */
715 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
716 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
717 record_last_reg_set_info (insn
, regno
);
719 if (! CONST_OR_PURE_CALL_P (insn
))
720 record_last_mem_set_info (insn
);
725 /* Scan the pattern of INSN and add an entry to the hash TABLE.
726 After reload we are interested in loads/stores only. */
729 hash_scan_set (rtx insn
)
731 rtx pat
= PATTERN (insn
);
732 rtx src
= SET_SRC (pat
);
733 rtx dest
= SET_DEST (pat
);
735 /* We are only interested in loads and stores. */
736 if (! MEM_P (src
) && ! MEM_P (dest
))
739 /* Don't mess with jumps and nops. */
740 if (JUMP_P (insn
) || set_noop_p (pat
))
743 #ifdef ENABLE_CHEKCING
744 /* We shouldn't have any EH_REGION notes post reload. */
745 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
751 if (/* Don't CSE something if we can't do a reg/reg copy. */
752 can_copy_p (GET_MODE (dest
))
753 /* Is SET_SRC something we want to gcse? */
754 && general_operand (src
, GET_MODE (src
))
755 /* An expression is not available if its operands are
756 subsequently modified, including this insn. */
757 && oprs_unchanged_p (src
, insn
, true))
759 insert_expr_in_table (src
, insn
);
762 else if (REG_P (src
))
764 /* Only record sets of pseudo-regs in the hash table. */
765 if (/* Don't CSE something if we can't do a reg/reg copy. */
766 can_copy_p (GET_MODE (src
))
767 /* Is SET_DEST something we want to gcse? */
768 && general_operand (dest
, GET_MODE (dest
))
769 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
770 /* Check if the memory expression is killed after insn. */
771 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
772 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
774 insert_expr_in_table (dest
, insn
);
780 /* Create hash table of memory expressions available at end of basic
781 blocks. Basically you should think of this hash table as the
782 representation of AVAIL_OUT. This is the set of expressions that
783 is generated in a basic block and not killed before the end of the
784 same basic block. Notice that this is really a local computation. */
787 compute_hash_table (void)
795 /* First pass over the instructions records information used to
796 determine when registers and memory are last set.
797 Since we compute a "local" AVAIL_OUT, reset the tables that
798 help us keep track of what has been modified since the start
800 reset_opr_set_tables ();
801 FOR_BB_INSNS (bb
, insn
)
804 record_opr_changes (insn
);
807 /* The next pass actually builds the hash table. */
808 FOR_BB_INSNS (bb
, insn
)
809 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
810 hash_scan_set (insn
);
815 /* Check if register REG is killed in any insn waiting to be inserted on
816 edge E. This function is required to check that our data flow analysis
817 is still valid prior to commit_edge_insertions. */
820 reg_killed_on_edge (rtx reg
, edge e
)
824 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
825 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
831 /* Similar to above - check if register REG is used in any insn waiting
832 to be inserted on edge E.
833 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
834 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
837 reg_used_on_edge (rtx reg
, edge e
)
841 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
842 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
849 /* Return the insn that sets register REG or clobbers it in between
850 FROM_INSN and TO_INSN (exclusive of those two).
851 Just like reg_set_between but for hard registers and not pseudos. */
854 reg_set_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
858 #ifdef ENABLE_CHECKING
859 /* We are called after register allocation. */
860 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
864 if (from_insn
== to_insn
)
867 for (insn
= NEXT_INSN (from_insn
);
869 insn
= NEXT_INSN (insn
))
872 if (set_of (reg
, insn
) != NULL_RTX
)
875 && call_used_regs
[REGNO (reg
)])
876 || find_reg_fusage (insn
, CLOBBER
, reg
))
879 if (FIND_REG_INC_NOTE (insn
, reg
))
886 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
887 (exclusive of those two). Similar to reg_used_between but for hard
888 registers and not pseudos. */
891 reg_used_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
895 #ifdef ENABLE_CHECKING
896 /* We are called after register allocation. */
897 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
901 if (from_insn
== to_insn
)
904 for (insn
= NEXT_INSN (from_insn
);
906 insn
= NEXT_INSN (insn
))
909 if (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
911 && call_used_regs
[REGNO (reg
)])
912 || find_reg_fusage (insn
, USE
, reg
)
913 || find_reg_fusage (insn
, CLOBBER
, reg
))
916 if (FIND_REG_INC_NOTE (insn
, reg
))
923 /* Return true if REG is used, set, or killed between the beginning of
924 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
927 reg_set_or_used_since_bb_start (rtx reg
, basic_block bb
, rtx up_to_insn
)
929 rtx insn
, start
= PREV_INSN (BB_HEAD (bb
));
931 if (reg_avail_info
[REGNO (reg
)] != 0)
934 insn
= reg_used_between_after_reload_p (reg
, start
, up_to_insn
);
936 insn
= reg_set_between_after_reload_p (reg
, start
, up_to_insn
);
939 reg_avail_info
[REGNO (reg
)] = INSN_CUID (insn
);
941 return insn
!= NULL_RTX
;
944 /* Return the loaded/stored register of a load/store instruction. */
947 get_avail_load_store_reg (rtx insn
)
949 if (REG_P (SET_DEST (PATTERN (insn
)))) /* A load. */
950 return SET_DEST(PATTERN(insn
));
951 if (REG_P (SET_SRC (PATTERN (insn
)))) /* A store. */
952 return SET_SRC (PATTERN (insn
));
956 /* Return nonzero if the predecessors of BB are "well behaved". */
959 bb_has_well_behaved_predecessors (basic_block bb
)
964 if (EDGE_COUNT (bb
->preds
) == 0)
967 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
969 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
972 if (JUMP_TABLE_DATA_P (BB_END (pred
->src
)))
979 /* Search for the occurrences of expression in BB. */
982 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
984 for (; occr
!= NULL
; occr
= occr
->next
)
985 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
991 /* This handles the case where several stores feed a partially redundant
992 load. It checks if the redundancy elimination is possible and if it's
995 Redundancy elimination is possible if,
996 1) None of the operands of an insn have been modified since the start
997 of the current basic block.
998 2) In any predecessor of the current basic block, the same expression
1001 See the function body for the heuristics that determine if eliminating
1002 a redundancy is also worth doing, assuming it is possible. */
1005 eliminate_partially_redundant_load (basic_block bb
, rtx insn
,
1009 rtx avail_insn
= NULL_RTX
;
1012 struct occr
*a_occr
;
1013 struct unoccr
*occr
, *avail_occrs
= NULL
;
1014 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
1016 gcov_type ok_count
= 0; /* Redundant load execution count. */
1017 gcov_type critical_count
= 0; /* Execution count of critical edges. */
1020 /* The execution count of the loads to be added to make the
1021 load fully redundant. */
1022 gcov_type not_ok_count
= 0;
1023 basic_block pred_bb
;
1025 pat
= PATTERN (insn
);
1026 dest
= SET_DEST (pat
);
1028 /* Check that the loaded register is not used, set, or killed from the
1029 beginning of the block. */
1030 if (reg_set_or_used_since_bb_start (dest
, bb
, insn
))
1033 /* Check potential for replacing load with copy for predecessors. */
1034 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
1036 rtx next_pred_bb_end
;
1038 avail_insn
= NULL_RTX
;
1039 pred_bb
= pred
->src
;
1040 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
1041 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
1042 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
1044 /* Check if the loaded register is not used. */
1045 avail_insn
= a_occr
->insn
;
1046 if (! (avail_reg
= get_avail_load_store_reg (avail_insn
)))
1048 /* Make sure we can generate a move from register avail_reg to
1050 extract_insn (gen_move_insn (copy_rtx (dest
),
1051 copy_rtx (avail_reg
)));
1052 if (! constrain_operands (1)
1053 || reg_killed_on_edge (avail_reg
, pred
)
1054 || reg_used_on_edge (dest
, pred
))
1059 if (! reg_set_between_after_reload_p (avail_reg
, avail_insn
,
1061 /* AVAIL_INSN remains non-null. */
1067 if (EDGE_CRITICAL_P (pred
))
1068 critical_count
+= pred
->count
;
1070 if (avail_insn
!= NULL_RTX
)
1073 ok_count
+= pred
->count
;
1074 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1075 sizeof (struct occr
));
1076 occr
->insn
= avail_insn
;
1078 occr
->next
= avail_occrs
;
1080 if (! rollback_unoccr
)
1081 rollback_unoccr
= occr
;
1085 not_ok_count
+= pred
->count
;
1086 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1087 sizeof (struct unoccr
));
1088 unoccr
->insn
= NULL_RTX
;
1089 unoccr
->pred
= pred
;
1090 unoccr
->next
= unavail_occrs
;
1091 unavail_occrs
= unoccr
;
1092 if (! rollback_unoccr
)
1093 rollback_unoccr
= unoccr
;
1097 if (/* No load can be replaced by copy. */
1099 /* Prevent exploding the code. */
1100 || (optimize_size
&& npred_ok
> 1))
1103 /* Check if it's worth applying the partial redundancy elimination. */
1104 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1106 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1109 /* Generate moves to the loaded register from where
1110 the memory is available. */
1111 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1113 avail_insn
= occr
->insn
;
1115 /* Set avail_reg to be the register having the value of the
1117 avail_reg
= get_avail_load_store_reg (avail_insn
);
1121 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1122 copy_rtx (avail_reg
)),
1124 stats
.moves_inserted
++;
1128 "generating move from %d to %d on edge from %d to %d\n",
1135 /* Regenerate loads where the memory is unavailable. */
1136 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1138 pred
= unoccr
->pred
;
1139 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1140 stats
.copies_inserted
++;
1145 "generating on edge from %d to %d a copy of load: ",
1148 print_rtl (dump_file
, PATTERN (insn
));
1149 fprintf (dump_file
, "\n");
1153 /* Delete the insn if it is not available in this block and mark it
1154 for deletion if it is available. If insn is available it may help
1155 discover additional redundancies, so mark it for later deletion. */
1156 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1157 a_occr
&& (a_occr
->insn
!= insn
);
1158 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
));
1163 a_occr
->deleted_p
= 1;
1166 if (rollback_unoccr
)
1167 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1170 /* Performing the redundancy elimination as described before. */
1173 eliminate_partially_redundant_loads (void)
1178 /* Note we start at block 1. */
1180 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1184 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1188 /* Don't try anything on basic blocks with strange predecessors. */
1189 if (! bb_has_well_behaved_predecessors (bb
))
1192 /* Do not try anything on cold basic blocks. */
1193 if (probably_cold_bb_p (bb
))
1196 /* Reset the table of things changed since the start of the current
1198 reset_opr_set_tables ();
1200 /* Look at all insns in the current basic block and see if there are
1201 any loads in it that we can record. */
1202 FOR_BB_INSNS (bb
, insn
)
1204 /* Is it a load - of the form (set (reg) (mem))? */
1205 if (NONJUMP_INSN_P (insn
)
1206 && GET_CODE (PATTERN (insn
)) == SET
1207 && REG_P (SET_DEST (PATTERN (insn
)))
1208 && MEM_P (SET_SRC (PATTERN (insn
))))
1210 rtx pat
= PATTERN (insn
);
1211 rtx src
= SET_SRC (pat
);
1214 if (!MEM_VOLATILE_P (src
)
1215 && GET_MODE (src
) != BLKmode
1216 && general_operand (src
, GET_MODE (src
))
1217 /* Are the operands unchanged since the start of the
1219 && oprs_unchanged_p (src
, insn
, false)
1220 && !(flag_non_call_exceptions
&& may_trap_p (src
))
1221 && !side_effects_p (src
)
1222 /* Is the expression recorded? */
1223 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1225 /* We now have a load (insn) and an available memory at
1226 its BB start (expr). Try to remove the loads if it is
1228 eliminate_partially_redundant_load (bb
, insn
, expr
);
1232 /* Keep track of everything modified by this insn, so that we
1233 know what has been modified since the start of the current
1236 record_opr_changes (insn
);
1240 commit_edge_insertions ();
1243 /* Go over the expression hash table and delete insns that were
1244 marked for later deletion. */
1246 /* This helper is called via htab_traverse. */
1248 delete_redundant_insns_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
1250 struct expr
*expr
= (struct expr
*) *slot
;
1253 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1255 if (occr
->deleted_p
)
1257 delete_insn (occr
->insn
);
1258 stats
.insns_deleted
++;
1262 fprintf (dump_file
, "deleting insn:\n");
1263 print_rtl_single (dump_file
, occr
->insn
);
1264 fprintf (dump_file
, "\n");
1273 delete_redundant_insns (void)
1275 htab_traverse (expr_table
, delete_redundant_insns_1
, NULL
);
1277 fprintf (dump_file
, "\n");
1280 /* Main entry point of the GCSE after reload - clean some redundant loads
1284 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1286 memset (&stats
, 0, sizeof (stats
));
1288 /* Allocate ememory for this pass.
1289 Also computes and initializes the insns' CUIDs. */
1292 /* We need alias analysis. */
1293 init_alias_analysis ();
1295 compute_hash_table ();
1298 dump_hash_table (dump_file
);
1300 if (htab_elements (expr_table
) > 0)
1302 eliminate_partially_redundant_loads ();
1303 delete_redundant_insns ();
1307 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1308 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1309 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1310 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1311 fprintf (dump_file
, "\n\n");
1315 /* We are finished with alias. */
1316 end_alias_analysis ();