1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
47 #include "hard-reg-set.h"
49 #include "insn-config.h"
52 #include "basic-block.h"
55 #include "langhooks.h"
60 struct target_rtl default_target_rtl
;
62 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
65 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
67 /* Commonly used modes. */
69 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
70 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
71 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
72 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
74 /* Datastructures maintained for currently processed function in RTL form. */
76 struct rtl_data x_rtl
;
78 /* Indexed by pseudo register number, gives the rtx for that pseudo.
79 Allocated in parallel with regno_pointer_align.
80 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
81 with length attribute nested in top level structures. */
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
88 static GTY(()) int label_num
= 1;
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
93 is set only for MODE_INT and MODE_VECTOR_INT modes. */
95 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
99 REAL_VALUE_TYPE dconst0
;
100 REAL_VALUE_TYPE dconst1
;
101 REAL_VALUE_TYPE dconst2
;
102 REAL_VALUE_TYPE dconstm1
;
103 REAL_VALUE_TYPE dconsthalf
;
105 /* Record fixed-point constant 0 and 1. */
106 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
107 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
109 /* We make one copy of (const_int C) where C is in
110 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
111 to save space during the compilation and simplify comparisons of
114 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
116 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx simple_return_rtx
;
122 /* A hash table storing CONST_INTs whose absolute value is greater
123 than MAX_SAVED_CONST_INT. */
125 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
126 htab_t const_int_htab
;
128 /* A hash table storing memory attribute structures. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
130 htab_t mem_attrs_htab
;
132 /* A hash table storing register attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
134 htab_t reg_attrs_htab
;
136 /* A hash table storing all CONST_DOUBLEs. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
138 htab_t const_double_htab
;
140 /* A hash table storing all CONST_FIXEDs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
142 htab_t const_fixed_htab
;
144 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
145 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
146 #define first_label_num (crtl->emit.x_first_label_num)
148 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
149 static void set_used_decls (tree
);
150 static void mark_label_nuses (rtx
);
151 static hashval_t
const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t
const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx
lookup_const_double (rtx
);
156 static hashval_t
const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx
lookup_const_fixed (rtx
);
159 static hashval_t
mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t
reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs
*get_reg_attrs (tree
, int);
164 static rtx
gen_const_vector (enum machine_mode
, int);
165 static void copy_rtx_if_shared_1 (rtx
*orig
);
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability
= -1;
171 /* Returns a hash code for X (which is a really a CONST_INT). */
174 const_int_htab_hash (const void *x
)
176 return (hashval_t
) INTVAL ((const_rtx
) x
);
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
184 const_int_htab_eq (const void *x
, const void *y
)
186 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 const_double_htab_hash (const void *x
)
193 const_rtx
const value
= (const_rtx
) x
;
196 if (GET_MODE (value
) == VOIDmode
)
197 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
200 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h
^= GET_MODE (value
);
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
210 const_double_htab_eq (const void *x
, const void *y
)
212 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
214 if (GET_MODE (a
) != GET_MODE (b
))
216 if (GET_MODE (a
) == VOIDmode
)
217 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
218 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
221 CONST_DOUBLE_REAL_VALUE (b
));
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
227 const_fixed_htab_hash (const void *x
)
229 const_rtx
const value
= (const_rtx
) x
;
232 h
= fixed_hash (CONST_FIXED_VALUE (value
));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h
^= GET_MODE (value
);
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
242 const_fixed_htab_eq (const void *x
, const void *y
)
244 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
246 if (GET_MODE (a
) != GET_MODE (b
))
248 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 mem_attrs_htab_hash (const void *x
)
256 const mem_attrs
*const p
= (const mem_attrs
*) x
;
258 return (p
->alias
^ (p
->align
* 1000)
259 ^ (p
->addrspace
* 4000)
260 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
261 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
265 /* Return true if the given memory attributes are equal. */
268 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
270 return (p
->alias
== q
->alias
271 && p
->offset_known_p
== q
->offset_known_p
272 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
273 && p
->size_known_p
== q
->size_known_p
274 && (!p
->size_known_p
|| p
->size
== q
->size
)
275 && p
->align
== q
->align
276 && p
->addrspace
== q
->addrspace
277 && (p
->expr
== q
->expr
278 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
279 && operand_equal_p (p
->expr
, q
->expr
, 0))));
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs_htab_eq (const void *x
, const void *y
)
289 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
295 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
306 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
309 *slot
= ggc_alloc_mem_attrs ();
310 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
313 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
319 reg_attrs_htab_hash (const void *x
)
321 const reg_attrs
*const p
= (const reg_attrs
*) x
;
323 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
331 reg_attrs_htab_eq (const void *x
, const void *y
)
333 const reg_attrs
*const p
= (const reg_attrs
*) x
;
334 const reg_attrs
*const q
= (const reg_attrs
*) y
;
336 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
343 get_reg_attrs (tree decl
, int offset
)
348 /* If everything is the default, we can just return zero. */
349 if (decl
== 0 && offset
== 0)
353 attrs
.offset
= offset
;
355 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
358 *slot
= ggc_alloc_reg_attrs ();
359 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
362 return (reg_attrs
*) *slot
;
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
373 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
374 MEM_VOLATILE_P (x
) = true;
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
385 gen_raw_REG (enum machine_mode mode
, int regno
)
387 rtx x
= gen_rtx_raw_REG (mode
, regno
);
388 ORIGINAL_REGNO (x
) = regno
;
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
401 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
402 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
406 return const_true_rtx
;
409 /* Look up the CONST_INT in the hash table. */
410 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
411 (hashval_t
) arg
, INSERT
);
413 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
419 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
421 return GEN_INT (trunc_int_for_mode (c
, mode
));
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
432 lookup_const_double (rtx real
)
434 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
444 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
446 rtx real
= rtx_alloc (CONST_DOUBLE
);
447 PUT_MODE (real
, mode
);
451 return lookup_const_double (real
);
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
459 lookup_const_fixed (rtx fixed
)
461 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
474 rtx fixed
= rtx_alloc (CONST_FIXED
);
475 PUT_MODE (fixed
, mode
);
479 return lookup_const_fixed (fixed
);
482 /* Constructs double_int from rtx CST. */
485 rtx_to_double_int (const_rtx cst
)
489 if (CONST_INT_P (cst
))
490 r
= double_int::from_shwi (INTVAL (cst
));
491 else if (CONST_DOUBLE_AS_INT_P (cst
))
493 r
.low
= CONST_DOUBLE_LOW (cst
);
494 r
.high
= CONST_DOUBLE_HIGH (cst
);
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
507 immed_double_int_const (double_int i
, enum machine_mode mode
)
509 return immed_double_const (i
.low
, i
.high
, mode
);
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
515 implied upper bits are copies of the high bit of i1. The value
516 itself is neither signed nor unsigned. Do not use this routine for
517 non-integer modes; convert to REAL_VALUE_TYPE and use
518 CONST_DOUBLE_FROM_REAL_VALUE. */
521 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
526 /* There are the following cases (note that there are no modes with
527 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
529 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
531 2) If the value of the integer fits into HOST_WIDE_INT anyway
532 (i.e., i1 consists only from copies of the sign bit, and sign
533 of i0 and i1 are the same), then we return a CONST_INT for i0.
534 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
535 if (mode
!= VOIDmode
)
537 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
538 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
539 /* We can get a 0 for an error mark. */
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
541 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
543 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
544 return gen_int_mode (i0
, mode
);
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
551 /* We use VOIDmode for integers. */
552 value
= rtx_alloc (CONST_DOUBLE
);
553 PUT_MODE (value
, VOIDmode
);
555 CONST_DOUBLE_LOW (value
) = i0
;
556 CONST_DOUBLE_HIGH (value
) = i1
;
558 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
559 XWINT (value
, i
) = 0;
561 return lookup_const_double (value
);
565 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
581 if (mode
== Pmode
&& !reload_in_progress
)
583 if (regno
== FRAME_POINTER_REGNUM
584 && (!reload_completed
|| frame_pointer_needed
))
585 return frame_pointer_rtx
;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno
== HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed
|| frame_pointer_needed
))
589 return hard_frame_pointer_rtx
;
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno
== ARG_POINTER_REGNUM
)
593 return arg_pointer_rtx
;
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
597 return return_address_pointer_rtx
;
599 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
601 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
602 return pic_offset_table_rtx
;
603 if (regno
== STACK_POINTER_REGNUM
)
604 return stack_pointer_rtx
;
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
622 && regno
< FIRST_PSEUDO_REGISTER
623 && reg_raw_mode
[regno
] == mode
)
624 return regno_reg_rtx
[regno
];
627 return gen_raw_REG (mode
, regno
);
631 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
633 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
635 /* This field is not cleared by the mere allocation of the rtx, so
642 /* Generate a memory referring to non-trapping constant memory. */
645 gen_const_mem (enum machine_mode mode
, rtx addr
)
647 rtx mem
= gen_rtx_MEM (mode
, addr
);
648 MEM_READONLY_P (mem
) = 1;
649 MEM_NOTRAP_P (mem
) = 1;
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
657 gen_frame_mem (enum machine_mode mode
, rtx addr
)
659 rtx mem
= gen_rtx_MEM (mode
, addr
);
660 MEM_NOTRAP_P (mem
) = 1;
661 set_mem_alias_set (mem
, get_frame_alias_set ());
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
669 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
671 rtx mem
= gen_rtx_MEM (mode
, addr
);
672 MEM_NOTRAP_P (mem
) = 1;
673 if (!cfun
->calls_alloca
)
674 set_mem_alias_set (mem
, get_frame_alias_set ());
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
682 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
683 const_rtx reg
, unsigned int offset
)
685 unsigned int isize
= GET_MODE_SIZE (imode
);
686 unsigned int osize
= GET_MODE_SIZE (omode
);
688 /* All subregs must be aligned. */
689 if (offset
% osize
!= 0)
692 /* The subreg offset cannot be outside the inner object. */
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
700 if (omode
== word_mode
)
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
709 && GET_MODE_INNER (imode
) == omode
)
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
727 /* Paradoxical subregs must have offset zero. */
731 /* This is a normal subreg. Verify that the offset is representable. */
733 /* For hard registers, we already have most of these rules collected in
734 subreg_offset_representable_p. */
735 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
737 unsigned int regno
= REGNO (reg
);
739 #ifdef CANNOT_CHANGE_MODE_CLASS
740 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
741 && GET_MODE_INNER (imode
) == omode
)
743 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
747 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
750 /* For pseudo registers, we want most of the same checks. Namely:
751 If the register no larger than a word, the subreg must be lowpart.
752 If the register is larger than a word, the subreg must be the lowpart
753 of a subword. A subreg does *not* perform arbitrary bit extraction.
754 Given that we've already checked mode/offset alignment, we only have
755 to check subword subregs here. */
756 if (osize
< UNITS_PER_WORD
)
758 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
759 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
760 if (offset
% UNITS_PER_WORD
!= low_off
)
767 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
769 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
770 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
773 /* Generate a SUBREG representing the least-significant part of REG if MODE
774 is smaller than mode of REG, otherwise paradoxical SUBREG. */
777 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
779 enum machine_mode inmode
;
781 inmode
= GET_MODE (reg
);
782 if (inmode
== VOIDmode
)
784 return gen_rtx_SUBREG (mode
, reg
,
785 subreg_lowpart_offset (mode
, inmode
));
789 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
792 gen_rtvec (int n
, ...)
800 /* Don't allocate an empty rtvec... */
807 rt_val
= rtvec_alloc (n
);
809 for (i
= 0; i
< n
; i
++)
810 rt_val
->elem
[i
] = va_arg (p
, rtx
);
817 gen_rtvec_v (int n
, rtx
*argp
)
822 /* Don't allocate an empty rtvec... */
826 rt_val
= rtvec_alloc (n
);
828 for (i
= 0; i
< n
; i
++)
829 rt_val
->elem
[i
] = *argp
++;
834 /* Return the number of bytes between the start of an OUTER_MODE
835 in-memory value and the start of an INNER_MODE in-memory value,
836 given that the former is a lowpart of the latter. It may be a
837 paradoxical lowpart, in which case the offset will be negative
838 on big-endian targets. */
841 byte_lowpart_offset (enum machine_mode outer_mode
,
842 enum machine_mode inner_mode
)
844 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
845 return subreg_lowpart_offset (outer_mode
, inner_mode
);
847 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
850 /* Generate a REG rtx for a new pseudo register of mode MODE.
851 This pseudo is assigned the next sequential register number. */
854 gen_reg_rtx (enum machine_mode mode
)
857 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
859 gcc_assert (can_create_pseudo_p ());
861 /* If a virtual register with bigger mode alignment is generated,
862 increase stack alignment estimation because it might be spilled
864 if (SUPPORTS_STACK_ALIGNMENT
865 && crtl
->stack_alignment_estimated
< align
866 && !crtl
->stack_realign_processed
)
868 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
869 if (crtl
->stack_alignment_estimated
< min_align
)
870 crtl
->stack_alignment_estimated
= min_align
;
873 if (generating_concat_p
874 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
875 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
877 /* For complex modes, don't make a single pseudo.
878 Instead, make a CONCAT of two pseudos.
879 This allows noncontiguous allocation of the real and imaginary parts,
880 which makes much better code. Besides, allocating DCmode
881 pseudos overstrains reload on some machines like the 386. */
882 rtx realpart
, imagpart
;
883 enum machine_mode partmode
= GET_MODE_INNER (mode
);
885 realpart
= gen_reg_rtx (partmode
);
886 imagpart
= gen_reg_rtx (partmode
);
887 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
890 /* Make sure regno_pointer_align, and regno_reg_rtx are large
891 enough to have an element for this pseudo reg number. */
893 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
895 int old_size
= crtl
->emit
.regno_pointer_align_length
;
899 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
900 memset (tmp
+ old_size
, 0, old_size
);
901 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
903 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
904 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
905 regno_reg_rtx
= new1
;
907 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
910 val
= gen_raw_REG (mode
, reg_rtx_no
);
911 regno_reg_rtx
[reg_rtx_no
++] = val
;
915 /* Update NEW with the same attributes as REG, but with OFFSET added
916 to the REG_OFFSET. */
919 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
921 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
922 REG_OFFSET (reg
) + offset
);
925 /* Generate a register with same attributes as REG, but with OFFSET
926 added to the REG_OFFSET. */
929 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
932 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
934 update_reg_offset (new_rtx
, reg
, offset
);
938 /* Generate a new pseudo-register with the same attributes as REG, but
939 with OFFSET added to the REG_OFFSET. */
942 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
944 rtx new_rtx
= gen_reg_rtx (mode
);
946 update_reg_offset (new_rtx
, reg
, offset
);
950 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
951 new register is a (possibly paradoxical) lowpart of the old one. */
954 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
956 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
957 PUT_MODE (reg
, mode
);
960 /* Copy REG's attributes from X, if X has any attributes. If REG and X
961 have different modes, REG is a (possibly paradoxical) lowpart of X. */
964 set_reg_attrs_from_value (rtx reg
, rtx x
)
967 bool can_be_reg_pointer
= true;
969 /* Don't call mark_reg_pointer for incompatible pointer sign
971 while (GET_CODE (x
) == SIGN_EXTEND
972 || GET_CODE (x
) == ZERO_EXTEND
973 || GET_CODE (x
) == TRUNCATE
974 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
976 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
977 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
978 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
979 can_be_reg_pointer
= false;
984 /* Hard registers can be reused for multiple purposes within the same
985 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
987 if (HARD_REGISTER_P (reg
))
990 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
993 if (MEM_OFFSET_KNOWN_P (x
))
994 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
995 MEM_OFFSET (x
) + offset
);
996 if (can_be_reg_pointer
&& MEM_POINTER (x
))
997 mark_reg_pointer (reg
, 0);
1002 update_reg_offset (reg
, x
, offset
);
1003 if (can_be_reg_pointer
&& REG_POINTER (x
))
1004 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1008 /* Generate a REG rtx for a new pseudo register, copying the mode
1009 and attributes from X. */
1012 gen_reg_rtx_and_attrs (rtx x
)
1014 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1015 set_reg_attrs_from_value (reg
, x
);
1019 /* Set the register attributes for registers contained in PARM_RTX.
1020 Use needed values from memory attributes of MEM. */
1023 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1025 if (REG_P (parm_rtx
))
1026 set_reg_attrs_from_value (parm_rtx
, mem
);
1027 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1029 /* Check for a NULL entry in the first slot, used to indicate that the
1030 parameter goes both on the stack and in registers. */
1031 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1032 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1034 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1035 if (REG_P (XEXP (x
, 0)))
1036 REG_ATTRS (XEXP (x
, 0))
1037 = get_reg_attrs (MEM_EXPR (mem
),
1038 INTVAL (XEXP (x
, 1)));
1043 /* Set the REG_ATTRS for registers in value X, given that X represents
1047 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1049 if (GET_CODE (x
) == SUBREG
)
1051 gcc_assert (subreg_lowpart_p (x
));
1056 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1058 if (GET_CODE (x
) == CONCAT
)
1060 if (REG_P (XEXP (x
, 0)))
1061 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1062 if (REG_P (XEXP (x
, 1)))
1063 REG_ATTRS (XEXP (x
, 1))
1064 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1066 if (GET_CODE (x
) == PARALLEL
)
1070 /* Check for a NULL entry, used to indicate that the parameter goes
1071 both on the stack and in registers. */
1072 if (XEXP (XVECEXP (x
, 0, 0), 0))
1077 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1079 rtx y
= XVECEXP (x
, 0, i
);
1080 if (REG_P (XEXP (y
, 0)))
1081 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1086 /* Assign the RTX X to declaration T. */
1089 set_decl_rtl (tree t
, rtx x
)
1091 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1093 set_reg_attrs_for_decl_rtl (t
, x
);
1096 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1097 if the ABI requires the parameter to be passed by reference. */
1100 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1102 DECL_INCOMING_RTL (t
) = x
;
1103 if (x
&& !by_reference_p
)
1104 set_reg_attrs_for_decl_rtl (t
, x
);
1107 /* Identify REG (which may be a CONCAT) as a user register. */
1110 mark_user_reg (rtx reg
)
1112 if (GET_CODE (reg
) == CONCAT
)
1114 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1115 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1119 gcc_assert (REG_P (reg
));
1120 REG_USERVAR_P (reg
) = 1;
1124 /* Identify REG as a probable pointer register and show its alignment
1125 as ALIGN, if nonzero. */
1128 mark_reg_pointer (rtx reg
, int align
)
1130 if (! REG_POINTER (reg
))
1132 REG_POINTER (reg
) = 1;
1135 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1137 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1138 /* We can no-longer be sure just how aligned this pointer is. */
1139 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1142 /* Return 1 plus largest pseudo reg number used in the current function. */
1150 /* Return 1 + the largest label number used so far in the current function. */
1153 max_label_num (void)
1158 /* Return first label number used in this function (if any were used). */
1161 get_first_label_num (void)
1163 return first_label_num
;
1166 /* If the rtx for label was created during the expansion of a nested
1167 function, then first_label_num won't include this label number.
1168 Fix this now so that array indices work later. */
1171 maybe_set_first_label_num (rtx x
)
1173 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1174 first_label_num
= CODE_LABEL_NUMBER (x
);
1177 /* Return a value representing some low-order bits of X, where the number
1178 of low-order bits is given by MODE. Note that no conversion is done
1179 between floating-point and fixed-point values, rather, the bit
1180 representation is returned.
1182 This function handles the cases in common between gen_lowpart, below,
1183 and two variants in cse.c and combine.c. These are the cases that can
1184 be safely handled at all points in the compilation.
1186 If this is not a case we can handle, return 0. */
1189 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1191 int msize
= GET_MODE_SIZE (mode
);
1194 enum machine_mode innermode
;
1196 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1197 so we have to make one up. Yuk. */
1198 innermode
= GET_MODE (x
);
1200 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1201 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1202 else if (innermode
== VOIDmode
)
1203 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1205 xsize
= GET_MODE_SIZE (innermode
);
1207 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1209 if (innermode
== mode
)
1212 /* MODE must occupy no more words than the mode of X. */
1213 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1214 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1217 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1218 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1221 offset
= subreg_lowpart_offset (mode
, innermode
);
1223 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1224 && (GET_MODE_CLASS (mode
) == MODE_INT
1225 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1227 /* If we are getting the low-order part of something that has been
1228 sign- or zero-extended, we can either just use the object being
1229 extended or make a narrower extension. If we want an even smaller
1230 piece than the size of the object being extended, call ourselves
1233 This case is used mostly by combine and cse. */
1235 if (GET_MODE (XEXP (x
, 0)) == mode
)
1237 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1238 return gen_lowpart_common (mode
, XEXP (x
, 0));
1239 else if (msize
< xsize
)
1240 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1242 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1243 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1244 || CONST_DOUBLE_P (x
) || CONST_INT_P (x
))
1245 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1247 /* Otherwise, we can't do this. */
1252 gen_highpart (enum machine_mode mode
, rtx x
)
1254 unsigned int msize
= GET_MODE_SIZE (mode
);
1257 /* This case loses if X is a subreg. To catch bugs early,
1258 complain if an invalid MODE is used even in other cases. */
1259 gcc_assert (msize
<= UNITS_PER_WORD
1260 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1262 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1263 subreg_highpart_offset (mode
, GET_MODE (x
)));
1264 gcc_assert (result
);
1266 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1267 the target if we have a MEM. gen_highpart must return a valid operand,
1268 emitting code if necessary to do so. */
1271 result
= validize_mem (result
);
1272 gcc_assert (result
);
1278 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1279 be VOIDmode constant. */
1281 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1283 if (GET_MODE (exp
) != VOIDmode
)
1285 gcc_assert (GET_MODE (exp
) == innermode
);
1286 return gen_highpart (outermode
, exp
);
1288 return simplify_gen_subreg (outermode
, exp
, innermode
,
1289 subreg_highpart_offset (outermode
, innermode
));
1292 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1295 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1297 unsigned int offset
= 0;
1298 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1302 if (WORDS_BIG_ENDIAN
)
1303 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1304 if (BYTES_BIG_ENDIAN
)
1305 offset
+= difference
% UNITS_PER_WORD
;
1311 /* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1314 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1316 unsigned int offset
= 0;
1317 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1319 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1323 if (! WORDS_BIG_ENDIAN
)
1324 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1325 if (! BYTES_BIG_ENDIAN
)
1326 offset
+= difference
% UNITS_PER_WORD
;
1332 /* Return 1 iff X, assumed to be a SUBREG,
1333 refers to the least significant part of its containing reg.
1334 If X is not a SUBREG, always return 1 (it is its own low part!). */
1337 subreg_lowpart_p (const_rtx x
)
1339 if (GET_CODE (x
) != SUBREG
)
1341 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1344 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1345 == SUBREG_BYTE (x
));
1348 /* Return true if X is a paradoxical subreg, false otherwise. */
1350 paradoxical_subreg_p (const_rtx x
)
1352 if (GET_CODE (x
) != SUBREG
)
1354 return (GET_MODE_PRECISION (GET_MODE (x
))
1355 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1358 /* Return subword OFFSET of operand OP.
1359 The word number, OFFSET, is interpreted as the word number starting
1360 at the low-order address. OFFSET 0 is the low-order word if not
1361 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1363 If we cannot extract the required word, we return zero. Otherwise,
1364 an rtx corresponding to the requested word will be returned.
1366 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1367 reload has completed, a valid address will always be returned. After
1368 reload, if a valid address cannot be returned, we return zero.
1370 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1371 it is the responsibility of the caller.
1373 MODE is the mode of OP in case it is a CONST_INT.
1375 ??? This is still rather broken for some cases. The problem for the
1376 moment is that all callers of this thing provide no 'goal mode' to
1377 tell us to work with. This exists because all callers were written
1378 in a word based SUBREG world.
1379 Now use of this function can be deprecated by simplify_subreg in most
1384 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1386 if (mode
== VOIDmode
)
1387 mode
= GET_MODE (op
);
1389 gcc_assert (mode
!= VOIDmode
);
1391 /* If OP is narrower than a word, fail. */
1393 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1396 /* If we want a word outside OP, return zero. */
1398 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1401 /* Form a new MEM at the requested address. */
1404 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1406 if (! validate_address
)
1409 else if (reload_completed
)
1411 if (! strict_memory_address_addr_space_p (word_mode
,
1413 MEM_ADDR_SPACE (op
)))
1417 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1420 /* Rest can be handled by simplify_subreg. */
1421 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1424 /* Similar to `operand_subword', but never return 0. If we can't
1425 extract the required subword, put OP into a register and try again.
1426 The second attempt must succeed. We always validate the address in
1429 MODE is the mode of OP, in case it is CONST_INT. */
1432 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1434 rtx result
= operand_subword (op
, offset
, 1, mode
);
1439 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1441 /* If this is a register which can not be accessed by words, copy it
1442 to a pseudo register. */
1444 op
= copy_to_reg (op
);
1446 op
= force_reg (mode
, op
);
1449 result
= operand_subword (op
, offset
, 1, mode
);
1450 gcc_assert (result
);
1455 /* Returns 1 if both MEM_EXPR can be considered equal
1459 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1464 if (! expr1
|| ! expr2
)
1467 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1470 return operand_equal_p (expr1
, expr2
, 0);
1473 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1474 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1478 get_mem_align_offset (rtx mem
, unsigned int align
)
1481 unsigned HOST_WIDE_INT offset
;
1483 /* This function can't use
1484 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1485 || (MAX (MEM_ALIGN (mem),
1486 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1490 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1492 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1493 for <variable>. get_inner_reference doesn't handle it and
1494 even if it did, the alignment in that case needs to be determined
1495 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1496 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1497 isn't sufficiently aligned, the object it is in might be. */
1498 gcc_assert (MEM_P (mem
));
1499 expr
= MEM_EXPR (mem
);
1500 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1503 offset
= MEM_OFFSET (mem
);
1506 if (DECL_ALIGN (expr
) < align
)
1509 else if (INDIRECT_REF_P (expr
))
1511 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1514 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1518 tree inner
= TREE_OPERAND (expr
, 0);
1519 tree field
= TREE_OPERAND (expr
, 1);
1520 tree byte_offset
= component_ref_field_offset (expr
);
1521 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1524 || !host_integerp (byte_offset
, 1)
1525 || !host_integerp (bit_offset
, 1))
1528 offset
+= tree_low_cst (byte_offset
, 1);
1529 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1531 if (inner
== NULL_TREE
)
1533 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1534 < (unsigned int) align
)
1538 else if (DECL_P (inner
))
1540 if (DECL_ALIGN (inner
) < align
)
1544 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1552 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1555 /* Given REF (a MEM) and T, either the type of X or the expression
1556 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1557 if we are making a new object of this type. BITPOS is nonzero if
1558 there is an offset outstanding on T that will be applied later. */
1561 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1562 HOST_WIDE_INT bitpos
)
1564 HOST_WIDE_INT apply_bitpos
= 0;
1566 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1569 /* It can happen that type_for_mode was given a mode for which there
1570 is no language-level type. In which case it returns NULL, which
1575 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1576 if (type
== error_mark_node
)
1579 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1580 wrong answer, as it assumes that DECL_RTL already has the right alias
1581 info. Callers should not set DECL_RTL until after the call to
1582 set_mem_attributes. */
1583 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1585 memset (&attrs
, 0, sizeof (attrs
));
1587 /* Get the alias set from the expression or type (perhaps using a
1588 front-end routine) and use it. */
1589 attrs
.alias
= get_alias_set (t
);
1591 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1592 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1594 /* Default values from pre-existing memory attributes if present. */
1595 refattrs
= MEM_ATTRS (ref
);
1598 /* ??? Can this ever happen? Calling this routine on a MEM that
1599 already carries memory attributes should probably be invalid. */
1600 attrs
.expr
= refattrs
->expr
;
1601 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1602 attrs
.offset
= refattrs
->offset
;
1603 attrs
.size_known_p
= refattrs
->size_known_p
;
1604 attrs
.size
= refattrs
->size
;
1605 attrs
.align
= refattrs
->align
;
1608 /* Otherwise, default values from the mode of the MEM reference. */
1611 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1612 gcc_assert (!defattrs
->expr
);
1613 gcc_assert (!defattrs
->offset_known_p
);
1615 /* Respect mode size. */
1616 attrs
.size_known_p
= defattrs
->size_known_p
;
1617 attrs
.size
= defattrs
->size
;
1618 /* ??? Is this really necessary? We probably should always get
1619 the size from the type below. */
1621 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1622 if T is an object, always compute the object alignment below. */
1624 attrs
.align
= defattrs
->align
;
1626 attrs
.align
= BITS_PER_UNIT
;
1627 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1628 e.g. if the type carries an alignment attribute. Should we be
1629 able to simply always use TYPE_ALIGN? */
1632 /* We can set the alignment from the type if we are making an object,
1633 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1634 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1635 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1637 else if (TREE_CODE (t
) == MEM_REF
)
1639 tree op0
= TREE_OPERAND (t
, 0);
1640 if (TREE_CODE (op0
) == ADDR_EXPR
1641 && (DECL_P (TREE_OPERAND (op0
, 0))
1642 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1644 if (DECL_P (TREE_OPERAND (op0
, 0)))
1645 attrs
.align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1646 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1648 attrs
.align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1649 #ifdef CONSTANT_ALIGNMENT
1650 attrs
.align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0),
1654 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1656 unsigned HOST_WIDE_INT ioff
1657 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1658 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1659 attrs
.align
= MIN (aoff
, attrs
.align
);
1663 /* ??? This isn't fully correct, we can't set the alignment from the
1664 type in all cases. */
1665 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1668 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1669 /* ??? This isn't fully correct, we can't set the alignment from the
1670 type in all cases. */
1671 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1673 /* If the size is known, we can set that. */
1674 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1676 attrs
.size_known_p
= true;
1677 attrs
.size
= tree_low_cst (TYPE_SIZE_UNIT (type
), 1);
1680 /* If T is not a type, we may be able to deduce some more information about
1685 bool align_computed
= false;
1687 if (TREE_THIS_VOLATILE (t
))
1688 MEM_VOLATILE_P (ref
) = 1;
1690 /* Now remove any conversions: they don't change what the underlying
1691 object is. Likewise for SAVE_EXPR. */
1692 while (CONVERT_EXPR_P (t
)
1693 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1694 || TREE_CODE (t
) == SAVE_EXPR
)
1695 t
= TREE_OPERAND (t
, 0);
1697 /* Note whether this expression can trap. */
1698 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1700 base
= get_base_address (t
);
1704 && TREE_READONLY (base
)
1705 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1706 && !TREE_THIS_VOLATILE (base
))
1707 MEM_READONLY_P (ref
) = 1;
1709 /* Mark static const strings readonly as well. */
1710 if (TREE_CODE (base
) == STRING_CST
1711 && TREE_READONLY (base
)
1712 && TREE_STATIC (base
))
1713 MEM_READONLY_P (ref
) = 1;
1715 if (TREE_CODE (base
) == MEM_REF
1716 || TREE_CODE (base
) == TARGET_MEM_REF
)
1717 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1720 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1723 as
= TYPE_ADDR_SPACE (type
);
1725 /* If this expression uses it's parent's alias set, mark it such
1726 that we won't change it. */
1727 if (component_uses_parent_alias_set (t
))
1728 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1730 /* If this is a decl, set the attributes of the MEM from it. */
1734 attrs
.offset_known_p
= true;
1736 apply_bitpos
= bitpos
;
1737 if (DECL_SIZE_UNIT (t
) && host_integerp (DECL_SIZE_UNIT (t
), 1))
1739 attrs
.size_known_p
= true;
1740 attrs
.size
= tree_low_cst (DECL_SIZE_UNIT (t
), 1);
1743 attrs
.size_known_p
= false;
1744 attrs
.align
= DECL_ALIGN (t
);
1745 align_computed
= true;
1748 /* If this is a constant, we know the alignment. */
1749 else if (CONSTANT_CLASS_P (t
))
1751 attrs
.align
= TYPE_ALIGN (type
);
1752 #ifdef CONSTANT_ALIGNMENT
1753 attrs
.align
= CONSTANT_ALIGNMENT (t
, attrs
.align
);
1755 align_computed
= true;
1758 /* If this is a field reference and not a bit-field, record it. */
1759 /* ??? There is some information that can be gleaned from bit-fields,
1760 such as the word offset in the structure that might be modified.
1761 But skip it for now. */
1762 else if (TREE_CODE (t
) == COMPONENT_REF
1763 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1766 attrs
.offset_known_p
= true;
1768 apply_bitpos
= bitpos
;
1769 /* ??? Any reason the field size would be different than
1770 the size we got from the type? */
1773 /* If this is an array reference, look for an outer field reference. */
1774 else if (TREE_CODE (t
) == ARRAY_REF
)
1776 tree off_tree
= size_zero_node
;
1777 /* We can't modify t, because we use it at the end of the
1783 tree index
= TREE_OPERAND (t2
, 1);
1784 tree low_bound
= array_ref_low_bound (t2
);
1785 tree unit_size
= array_ref_element_size (t2
);
1787 /* We assume all arrays have sizes that are a multiple of a byte.
1788 First subtract the lower bound, if any, in the type of the
1789 index, then convert to sizetype and multiply by the size of
1790 the array element. */
1791 if (! integer_zerop (low_bound
))
1792 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1795 off_tree
= size_binop (PLUS_EXPR
,
1796 size_binop (MULT_EXPR
,
1797 fold_convert (sizetype
,
1801 t2
= TREE_OPERAND (t2
, 0);
1803 while (TREE_CODE (t2
) == ARRAY_REF
);
1808 attrs
.offset_known_p
= false;
1809 if (host_integerp (off_tree
, 1))
1811 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1812 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1813 attrs
.align
= DECL_ALIGN (t2
);
1814 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< attrs
.align
)
1816 align_computed
= true;
1817 attrs
.offset_known_p
= true;
1818 attrs
.offset
= ioff
;
1819 apply_bitpos
= bitpos
;
1822 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1825 attrs
.offset_known_p
= false;
1826 if (host_integerp (off_tree
, 1))
1828 attrs
.offset_known_p
= true;
1829 attrs
.offset
= tree_low_cst (off_tree
, 1);
1830 apply_bitpos
= bitpos
;
1832 /* ??? Any reason the field size would be different than
1833 the size we got from the type? */
1837 /* If this is an indirect reference, record it. */
1838 else if (TREE_CODE (t
) == MEM_REF
1839 || TREE_CODE (t
) == TARGET_MEM_REF
)
1842 attrs
.offset_known_p
= true;
1844 apply_bitpos
= bitpos
;
1847 if (!align_computed
)
1849 unsigned int obj_align
= get_object_alignment (t
);
1850 attrs
.align
= MAX (attrs
.align
, obj_align
);
1854 as
= TYPE_ADDR_SPACE (type
);
1856 /* If we modified OFFSET based on T, then subtract the outstanding
1857 bit position offset. Similarly, increase the size of the accessed
1858 object to contain the negative offset. */
1861 gcc_assert (attrs
.offset_known_p
);
1862 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1863 if (attrs
.size_known_p
)
1864 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1867 /* Now set the attributes we computed above. */
1868 attrs
.addrspace
= as
;
1869 set_mem_attrs (ref
, &attrs
);
1873 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1875 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1878 /* Set the alias set of MEM to SET. */
1881 set_mem_alias_set (rtx mem
, alias_set_type set
)
1883 struct mem_attrs attrs
;
1885 /* If the new and old alias sets don't conflict, something is wrong. */
1886 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1887 attrs
= *get_mem_attrs (mem
);
1889 set_mem_attrs (mem
, &attrs
);
1892 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1895 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1897 struct mem_attrs attrs
;
1899 attrs
= *get_mem_attrs (mem
);
1900 attrs
.addrspace
= addrspace
;
1901 set_mem_attrs (mem
, &attrs
);
1904 /* Set the alignment of MEM to ALIGN bits. */
1907 set_mem_align (rtx mem
, unsigned int align
)
1909 struct mem_attrs attrs
;
1911 attrs
= *get_mem_attrs (mem
);
1912 attrs
.align
= align
;
1913 set_mem_attrs (mem
, &attrs
);
1916 /* Set the expr for MEM to EXPR. */
1919 set_mem_expr (rtx mem
, tree expr
)
1921 struct mem_attrs attrs
;
1923 attrs
= *get_mem_attrs (mem
);
1925 set_mem_attrs (mem
, &attrs
);
1928 /* Set the offset of MEM to OFFSET. */
1931 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1933 struct mem_attrs attrs
;
1935 attrs
= *get_mem_attrs (mem
);
1936 attrs
.offset_known_p
= true;
1937 attrs
.offset
= offset
;
1938 set_mem_attrs (mem
, &attrs
);
1941 /* Clear the offset of MEM. */
1944 clear_mem_offset (rtx mem
)
1946 struct mem_attrs attrs
;
1948 attrs
= *get_mem_attrs (mem
);
1949 attrs
.offset_known_p
= false;
1950 set_mem_attrs (mem
, &attrs
);
1953 /* Set the size of MEM to SIZE. */
1956 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1958 struct mem_attrs attrs
;
1960 attrs
= *get_mem_attrs (mem
);
1961 attrs
.size_known_p
= true;
1963 set_mem_attrs (mem
, &attrs
);
1966 /* Clear the size of MEM. */
1969 clear_mem_size (rtx mem
)
1971 struct mem_attrs attrs
;
1973 attrs
= *get_mem_attrs (mem
);
1974 attrs
.size_known_p
= false;
1975 set_mem_attrs (mem
, &attrs
);
1978 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1979 and its address changed to ADDR. (VOIDmode means don't change the mode.
1980 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1981 returned memory location is required to be valid. The memory
1982 attributes are not changed. */
1985 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1990 gcc_assert (MEM_P (memref
));
1991 as
= MEM_ADDR_SPACE (memref
);
1992 if (mode
== VOIDmode
)
1993 mode
= GET_MODE (memref
);
1995 addr
= XEXP (memref
, 0);
1996 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1997 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2002 if (reload_in_progress
|| reload_completed
)
2003 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2005 addr
= memory_address_addr_space (mode
, addr
, as
);
2008 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2011 new_rtx
= gen_rtx_MEM (mode
, addr
);
2012 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2016 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2017 way we are changing MEMREF, so we only preserve the alias set. */
2020 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
2022 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
2023 enum machine_mode mmode
= GET_MODE (new_rtx
);
2024 struct mem_attrs attrs
, *defattrs
;
2026 attrs
= *get_mem_attrs (memref
);
2027 defattrs
= mode_mem_attrs
[(int) mmode
];
2028 attrs
.expr
= NULL_TREE
;
2029 attrs
.offset_known_p
= false;
2030 attrs
.size_known_p
= defattrs
->size_known_p
;
2031 attrs
.size
= defattrs
->size
;
2032 attrs
.align
= defattrs
->align
;
2034 /* If there are no changes, just return the original memory reference. */
2035 if (new_rtx
== memref
)
2037 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2040 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2041 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2044 set_mem_attrs (new_rtx
, &attrs
);
2048 /* Return a memory reference like MEMREF, but with its mode changed
2049 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2050 nonzero, the memory address is forced to be valid.
2051 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2052 and the caller is responsible for adjusting MEMREF base register.
2053 If ADJUST_OBJECT is zero, the underlying object associated with the
2054 memory reference is left unchanged and the caller is responsible for
2055 dealing with it. Otherwise, if the new memory reference is outside
2056 the underlying object, even partially, then the object is dropped. */
2059 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2060 int validate
, int adjust_address
, int adjust_object
)
2062 rtx addr
= XEXP (memref
, 0);
2064 enum machine_mode address_mode
;
2066 struct mem_attrs attrs
, *defattrs
;
2067 unsigned HOST_WIDE_INT max_align
;
2069 attrs
= *get_mem_attrs (memref
);
2071 /* If there are no changes, just return the original memory reference. */
2072 if (mode
== GET_MODE (memref
) && !offset
2073 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2077 /* ??? Prefer to create garbage instead of creating shared rtl.
2078 This may happen even if offset is nonzero -- consider
2079 (plus (plus reg reg) const_int) -- so do this always. */
2080 addr
= copy_rtx (addr
);
2082 /* Convert a possibly large offset to a signed value within the
2083 range of the target address space. */
2084 address_mode
= get_address_mode (memref
);
2085 pbits
= GET_MODE_BITSIZE (address_mode
);
2086 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2088 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2089 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2095 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2096 object, we can merge it into the LO_SUM. */
2097 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2099 && (unsigned HOST_WIDE_INT
) offset
2100 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2101 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2102 plus_constant (address_mode
,
2103 XEXP (addr
, 1), offset
));
2105 addr
= plus_constant (address_mode
, addr
, offset
);
2108 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2110 /* If the address is a REG, change_address_1 rightfully returns memref,
2111 but this would destroy memref's MEM_ATTRS. */
2112 if (new_rtx
== memref
&& offset
!= 0)
2113 new_rtx
= copy_rtx (new_rtx
);
2115 /* Conservatively drop the object if we don't know where we start from. */
2116 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2118 attrs
.expr
= NULL_TREE
;
2122 /* Compute the new values of the memory attributes due to this adjustment.
2123 We add the offsets and update the alignment. */
2124 if (attrs
.offset_known_p
)
2126 attrs
.offset
+= offset
;
2128 /* Drop the object if the new left end is not within its bounds. */
2129 if (adjust_object
&& attrs
.offset
< 0)
2131 attrs
.expr
= NULL_TREE
;
2136 /* Compute the new alignment by taking the MIN of the alignment and the
2137 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2141 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2142 attrs
.align
= MIN (attrs
.align
, max_align
);
2145 /* We can compute the size in a number of ways. */
2146 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2147 if (defattrs
->size_known_p
)
2149 /* Drop the object if the new right end is not within its bounds. */
2150 if (adjust_object
&& (offset
+ defattrs
->size
) > attrs
.size
)
2152 attrs
.expr
= NULL_TREE
;
2155 attrs
.size_known_p
= true;
2156 attrs
.size
= defattrs
->size
;
2158 else if (attrs
.size_known_p
)
2160 attrs
.size
-= offset
;
2161 /* ??? The store_by_pieces machinery generates negative sizes. */
2162 gcc_assert (!(adjust_object
&& attrs
.size
< 0));
2165 set_mem_attrs (new_rtx
, &attrs
);
2170 /* Return a memory reference like MEMREF, but with its mode changed
2171 to MODE and its address changed to ADDR, which is assumed to be
2172 MEMREF offset by OFFSET bytes. If VALIDATE is
2173 nonzero, the memory address is forced to be valid. */
2176 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2177 HOST_WIDE_INT offset
, int validate
)
2179 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2180 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0);
2183 /* Return a memory reference like MEMREF, but whose address is changed by
2184 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2185 known to be in OFFSET (possibly 1). */
2188 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2190 rtx new_rtx
, addr
= XEXP (memref
, 0);
2191 enum machine_mode address_mode
;
2192 struct mem_attrs attrs
, *defattrs
;
2194 attrs
= *get_mem_attrs (memref
);
2195 address_mode
= get_address_mode (memref
);
2196 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2198 /* At this point we don't know _why_ the address is invalid. It
2199 could have secondary memory references, multiplies or anything.
2201 However, if we did go and rearrange things, we can wind up not
2202 being able to recognize the magic around pic_offset_table_rtx.
2203 This stuff is fragile, and is yet another example of why it is
2204 bad to expose PIC machinery too early. */
2205 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2207 && GET_CODE (addr
) == PLUS
2208 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2210 addr
= force_reg (GET_MODE (addr
), addr
);
2211 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2214 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2215 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2217 /* If there are no changes, just return the original memory reference. */
2218 if (new_rtx
== memref
)
2221 /* Update the alignment to reflect the offset. Reset the offset, which
2223 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2224 attrs
.offset_known_p
= false;
2225 attrs
.size_known_p
= defattrs
->size_known_p
;
2226 attrs
.size
= defattrs
->size
;
2227 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2228 set_mem_attrs (new_rtx
, &attrs
);
2232 /* Return a memory reference like MEMREF, but with its address changed to
2233 ADDR. The caller is asserting that the actual piece of memory pointed
2234 to is the same, just the form of the address is being changed, such as
2235 by putting something into a register. */
2238 replace_equiv_address (rtx memref
, rtx addr
)
2240 /* change_address_1 copies the memory attribute structure without change
2241 and that's exactly what we want here. */
2242 update_temp_slot_address (XEXP (memref
, 0), addr
);
2243 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2246 /* Likewise, but the reference is not required to be valid. */
2249 replace_equiv_address_nv (rtx memref
, rtx addr
)
2251 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2254 /* Return a memory reference like MEMREF, but with its mode widened to
2255 MODE and offset by OFFSET. This would be used by targets that e.g.
2256 cannot issue QImode memory operations and have to use SImode memory
2257 operations plus masking logic. */
2260 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2262 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0);
2263 struct mem_attrs attrs
;
2264 unsigned int size
= GET_MODE_SIZE (mode
);
2266 /* If there are no changes, just return the original memory reference. */
2267 if (new_rtx
== memref
)
2270 attrs
= *get_mem_attrs (new_rtx
);
2272 /* If we don't know what offset we were at within the expression, then
2273 we can't know if we've overstepped the bounds. */
2274 if (! attrs
.offset_known_p
)
2275 attrs
.expr
= NULL_TREE
;
2279 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2281 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2282 tree offset
= component_ref_field_offset (attrs
.expr
);
2284 if (! DECL_SIZE_UNIT (field
))
2286 attrs
.expr
= NULL_TREE
;
2290 /* Is the field at least as large as the access? If so, ok,
2291 otherwise strip back to the containing structure. */
2292 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2293 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2294 && attrs
.offset
>= 0)
2297 if (! host_integerp (offset
, 1))
2299 attrs
.expr
= NULL_TREE
;
2303 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2304 attrs
.offset
+= tree_low_cst (offset
, 1);
2305 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2308 /* Similarly for the decl. */
2309 else if (DECL_P (attrs
.expr
)
2310 && DECL_SIZE_UNIT (attrs
.expr
)
2311 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2312 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2313 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2317 /* The widened memory access overflows the expression, which means
2318 that it could alias another expression. Zap it. */
2319 attrs
.expr
= NULL_TREE
;
2325 attrs
.offset_known_p
= false;
2327 /* The widened memory may alias other stuff, so zap the alias set. */
2328 /* ??? Maybe use get_alias_set on any remaining expression. */
2330 attrs
.size_known_p
= true;
2332 set_mem_attrs (new_rtx
, &attrs
);
2336 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2337 static GTY(()) tree spill_slot_decl
;
2340 get_spill_slot_decl (bool force_build_p
)
2342 tree d
= spill_slot_decl
;
2344 struct mem_attrs attrs
;
2346 if (d
|| !force_build_p
)
2349 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2350 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2351 DECL_ARTIFICIAL (d
) = 1;
2352 DECL_IGNORED_P (d
) = 1;
2354 spill_slot_decl
= d
;
2356 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2357 MEM_NOTRAP_P (rd
) = 1;
2358 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2359 attrs
.alias
= new_alias_set ();
2361 set_mem_attrs (rd
, &attrs
);
2362 SET_DECL_RTL (d
, rd
);
2367 /* Given MEM, a result from assign_stack_local, fill in the memory
2368 attributes as appropriate for a register allocator spill slot.
2369 These slots are not aliasable by other memory. We arrange for
2370 them all to use a single MEM_EXPR, so that the aliasing code can
2371 work properly in the case of shared spill slots. */
2374 set_mem_attrs_for_spill (rtx mem
)
2376 struct mem_attrs attrs
;
2379 attrs
= *get_mem_attrs (mem
);
2380 attrs
.expr
= get_spill_slot_decl (true);
2381 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2382 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2384 /* We expect the incoming memory to be of the form:
2385 (mem:MODE (plus (reg sfp) (const_int offset)))
2386 with perhaps the plus missing for offset = 0. */
2387 addr
= XEXP (mem
, 0);
2388 attrs
.offset_known_p
= true;
2390 if (GET_CODE (addr
) == PLUS
2391 && CONST_INT_P (XEXP (addr
, 1)))
2392 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2394 set_mem_attrs (mem
, &attrs
);
2395 MEM_NOTRAP_P (mem
) = 1;
2398 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2401 gen_label_rtx (void)
2403 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2404 NULL
, label_num
++, NULL
);
2407 /* For procedure integration. */
2409 /* Install new pointers to the first and last insns in the chain.
2410 Also, set cur_insn_uid to one higher than the last in use.
2411 Used for an inline-procedure after copying the insn chain. */
2414 set_new_first_and_last_insn (rtx first
, rtx last
)
2418 set_first_insn (first
);
2419 set_last_insn (last
);
2422 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2424 int debug_count
= 0;
2426 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2427 cur_debug_insn_uid
= 0;
2429 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2430 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2431 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2434 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2435 if (DEBUG_INSN_P (insn
))
2440 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2442 cur_debug_insn_uid
++;
2445 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2446 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2451 /* Go through all the RTL insn bodies and copy any invalid shared
2452 structure. This routine should only be called once. */
2455 unshare_all_rtl_1 (rtx insn
)
2457 /* Unshare just about everything else. */
2458 unshare_all_rtl_in_chain (insn
);
2460 /* Make sure the addresses of stack slots found outside the insn chain
2461 (such as, in DECL_RTL of a variable) are not shared
2462 with the insn chain.
2464 This special care is necessary when the stack slot MEM does not
2465 actually appear in the insn chain. If it does appear, its address
2466 is unshared from all else at that point. */
2467 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2470 /* Go through all the RTL insn bodies and copy any invalid shared
2471 structure, again. This is a fairly expensive thing to do so it
2472 should be done sparingly. */
2475 unshare_all_rtl_again (rtx insn
)
2480 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2483 reset_used_flags (PATTERN (p
));
2484 reset_used_flags (REG_NOTES (p
));
2486 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2489 /* Make sure that virtual stack slots are not shared. */
2490 set_used_decls (DECL_INITIAL (cfun
->decl
));
2492 /* Make sure that virtual parameters are not shared. */
2493 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2494 set_used_flags (DECL_RTL (decl
));
2496 reset_used_flags (stack_slot_list
);
2498 unshare_all_rtl_1 (insn
);
2502 unshare_all_rtl (void)
2504 unshare_all_rtl_1 (get_insns ());
2509 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2510 Recursively does the same for subexpressions. */
2513 verify_rtx_sharing (rtx orig
, rtx insn
)
2518 const char *format_ptr
;
2523 code
= GET_CODE (x
);
2525 /* These types may be freely shared. */
2542 /* SCRATCH must be shared because they represent distinct values. */
2544 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2549 if (shared_const_p (orig
))
2554 /* A MEM is allowed to be shared if its address is constant. */
2555 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2556 || reload_completed
|| reload_in_progress
)
2565 /* This rtx may not be shared. If it has already been seen,
2566 replace it with a copy of itself. */
2567 #ifdef ENABLE_CHECKING
2568 if (RTX_FLAG (x
, used
))
2570 error ("invalid rtl sharing found in the insn");
2572 error ("shared rtx");
2574 internal_error ("internal consistency failure");
2577 gcc_assert (!RTX_FLAG (x
, used
));
2579 RTX_FLAG (x
, used
) = 1;
2581 /* Now scan the subexpressions recursively. */
2583 format_ptr
= GET_RTX_FORMAT (code
);
2585 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2587 switch (*format_ptr
++)
2590 verify_rtx_sharing (XEXP (x
, i
), insn
);
2594 if (XVEC (x
, i
) != NULL
)
2597 int len
= XVECLEN (x
, i
);
2599 for (j
= 0; j
< len
; j
++)
2601 /* We allow sharing of ASM_OPERANDS inside single
2603 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2604 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2606 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2608 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2617 /* Go through all the RTL insn bodies and check that there is no unexpected
2618 sharing in between the subexpressions. */
2621 verify_rtl_sharing (void)
2625 timevar_push (TV_VERIFY_RTL_SHARING
);
2627 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2630 reset_used_flags (PATTERN (p
));
2631 reset_used_flags (REG_NOTES (p
));
2633 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2634 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2637 rtx q
, sequence
= PATTERN (p
);
2639 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2641 q
= XVECEXP (sequence
, 0, i
);
2642 gcc_assert (INSN_P (q
));
2643 reset_used_flags (PATTERN (q
));
2644 reset_used_flags (REG_NOTES (q
));
2646 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q
));
2651 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2654 verify_rtx_sharing (PATTERN (p
), p
);
2655 verify_rtx_sharing (REG_NOTES (p
), p
);
2657 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p
), p
);
2660 timevar_pop (TV_VERIFY_RTL_SHARING
);
2663 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2664 Assumes the mark bits are cleared at entry. */
2667 unshare_all_rtl_in_chain (rtx insn
)
2669 for (; insn
; insn
= NEXT_INSN (insn
))
2672 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2673 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2675 CALL_INSN_FUNCTION_USAGE (insn
)
2676 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2680 /* Go through all virtual stack slots of a function and mark them as
2681 shared. We never replace the DECL_RTLs themselves with a copy,
2682 but expressions mentioned into a DECL_RTL cannot be shared with
2683 expressions in the instruction stream.
2685 Note that reload may convert pseudo registers into memories in-place.
2686 Pseudo registers are always shared, but MEMs never are. Thus if we
2687 reset the used flags on MEMs in the instruction stream, we must set
2688 them again on MEMs that appear in DECL_RTLs. */
2691 set_used_decls (tree blk
)
2696 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2697 if (DECL_RTL_SET_P (t
))
2698 set_used_flags (DECL_RTL (t
));
2700 /* Now process sub-blocks. */
2701 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2705 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2706 Recursively does the same for subexpressions. Uses
2707 copy_rtx_if_shared_1 to reduce stack space. */
2710 copy_rtx_if_shared (rtx orig
)
2712 copy_rtx_if_shared_1 (&orig
);
2716 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2717 use. Recursively does the same for subexpressions. */
2720 copy_rtx_if_shared_1 (rtx
*orig1
)
2726 const char *format_ptr
;
2730 /* Repeat is used to turn tail-recursion into iteration. */
2737 code
= GET_CODE (x
);
2739 /* These types may be freely shared. */
2755 /* SCRATCH must be shared because they represent distinct values. */
2758 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2763 if (shared_const_p (x
))
2773 /* The chain of insns is not being copied. */
2780 /* This rtx may not be shared. If it has already been seen,
2781 replace it with a copy of itself. */
2783 if (RTX_FLAG (x
, used
))
2785 x
= shallow_copy_rtx (x
);
2788 RTX_FLAG (x
, used
) = 1;
2790 /* Now scan the subexpressions recursively.
2791 We can store any replaced subexpressions directly into X
2792 since we know X is not shared! Any vectors in X
2793 must be copied if X was copied. */
2795 format_ptr
= GET_RTX_FORMAT (code
);
2796 length
= GET_RTX_LENGTH (code
);
2799 for (i
= 0; i
< length
; i
++)
2801 switch (*format_ptr
++)
2805 copy_rtx_if_shared_1 (last_ptr
);
2806 last_ptr
= &XEXP (x
, i
);
2810 if (XVEC (x
, i
) != NULL
)
2813 int len
= XVECLEN (x
, i
);
2815 /* Copy the vector iff I copied the rtx and the length
2817 if (copied
&& len
> 0)
2818 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2820 /* Call recursively on all inside the vector. */
2821 for (j
= 0; j
< len
; j
++)
2824 copy_rtx_if_shared_1 (last_ptr
);
2825 last_ptr
= &XVECEXP (x
, i
, j
);
2840 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2843 mark_used_flags (rtx x
, int flag
)
2847 const char *format_ptr
;
2850 /* Repeat is used to turn tail-recursion into iteration. */
2855 code
= GET_CODE (x
);
2857 /* These types may be freely shared so we needn't do any resetting
2881 /* The chain of insns is not being copied. */
2888 RTX_FLAG (x
, used
) = flag
;
2890 format_ptr
= GET_RTX_FORMAT (code
);
2891 length
= GET_RTX_LENGTH (code
);
2893 for (i
= 0; i
< length
; i
++)
2895 switch (*format_ptr
++)
2903 mark_used_flags (XEXP (x
, i
), flag
);
2907 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2908 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2914 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2915 to look for shared sub-parts. */
2918 reset_used_flags (rtx x
)
2920 mark_used_flags (x
, 0);
2923 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2924 to look for shared sub-parts. */
2927 set_used_flags (rtx x
)
2929 mark_used_flags (x
, 1);
2932 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2933 Return X or the rtx for the pseudo reg the value of X was copied into.
2934 OTHER must be valid as a SET_DEST. */
2937 make_safe_from (rtx x
, rtx other
)
2940 switch (GET_CODE (other
))
2943 other
= SUBREG_REG (other
);
2945 case STRICT_LOW_PART
:
2948 other
= XEXP (other
, 0);
2957 && GET_CODE (x
) != SUBREG
)
2959 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2960 || reg_mentioned_p (other
, x
))))
2962 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2963 emit_move_insn (temp
, x
);
2969 /* Emission of insns (adding them to the doubly-linked list). */
2971 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2974 get_last_insn_anywhere (void)
2976 struct sequence_stack
*stack
;
2977 if (get_last_insn ())
2978 return get_last_insn ();
2979 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2980 if (stack
->last
!= 0)
2985 /* Return the first nonnote insn emitted in current sequence or current
2986 function. This routine looks inside SEQUENCEs. */
2989 get_first_nonnote_insn (void)
2991 rtx insn
= get_insns ();
2996 for (insn
= next_insn (insn
);
2997 insn
&& NOTE_P (insn
);
2998 insn
= next_insn (insn
))
3002 if (NONJUMP_INSN_P (insn
)
3003 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3004 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3011 /* Return the last nonnote insn emitted in current sequence or current
3012 function. This routine looks inside SEQUENCEs. */
3015 get_last_nonnote_insn (void)
3017 rtx insn
= get_last_insn ();
3022 for (insn
= previous_insn (insn
);
3023 insn
&& NOTE_P (insn
);
3024 insn
= previous_insn (insn
))
3028 if (NONJUMP_INSN_P (insn
)
3029 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3030 insn
= XVECEXP (PATTERN (insn
), 0,
3031 XVECLEN (PATTERN (insn
), 0) - 1);
3038 /* Return the number of actual (non-debug) insns emitted in this
3042 get_max_insn_count (void)
3044 int n
= cur_insn_uid
;
3046 /* The table size must be stable across -g, to avoid codegen
3047 differences due to debug insns, and not be affected by
3048 -fmin-insn-uid, to avoid excessive table size and to simplify
3049 debugging of -fcompare-debug failures. */
3050 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3051 n
-= cur_debug_insn_uid
;
3053 n
-= MIN_NONDEBUG_INSN_UID
;
3059 /* Return the next insn. If it is a SEQUENCE, return the first insn
3063 next_insn (rtx insn
)
3067 insn
= NEXT_INSN (insn
);
3068 if (insn
&& NONJUMP_INSN_P (insn
)
3069 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3070 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3076 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3080 previous_insn (rtx insn
)
3084 insn
= PREV_INSN (insn
);
3085 if (insn
&& NONJUMP_INSN_P (insn
)
3086 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3087 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3093 /* Return the next insn after INSN that is not a NOTE. This routine does not
3094 look inside SEQUENCEs. */
3097 next_nonnote_insn (rtx insn
)
3101 insn
= NEXT_INSN (insn
);
3102 if (insn
== 0 || !NOTE_P (insn
))
3109 /* Return the next insn after INSN that is not a NOTE, but stop the
3110 search before we enter another basic block. This routine does not
3111 look inside SEQUENCEs. */
3114 next_nonnote_insn_bb (rtx insn
)
3118 insn
= NEXT_INSN (insn
);
3119 if (insn
== 0 || !NOTE_P (insn
))
3121 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3128 /* Return the previous insn before INSN that is not a NOTE. This routine does
3129 not look inside SEQUENCEs. */
3132 prev_nonnote_insn (rtx insn
)
3136 insn
= PREV_INSN (insn
);
3137 if (insn
== 0 || !NOTE_P (insn
))
3144 /* Return the previous insn before INSN that is not a NOTE, but stop
3145 the search before we enter another basic block. This routine does
3146 not look inside SEQUENCEs. */
3149 prev_nonnote_insn_bb (rtx insn
)
3153 insn
= PREV_INSN (insn
);
3154 if (insn
== 0 || !NOTE_P (insn
))
3156 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3163 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3164 routine does not look inside SEQUENCEs. */
3167 next_nondebug_insn (rtx insn
)
3171 insn
= NEXT_INSN (insn
);
3172 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3179 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3180 This routine does not look inside SEQUENCEs. */
3183 prev_nondebug_insn (rtx insn
)
3187 insn
= PREV_INSN (insn
);
3188 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3195 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3196 This routine does not look inside SEQUENCEs. */
3199 next_nonnote_nondebug_insn (rtx insn
)
3203 insn
= NEXT_INSN (insn
);
3204 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3211 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3212 This routine does not look inside SEQUENCEs. */
3215 prev_nonnote_nondebug_insn (rtx insn
)
3219 insn
= PREV_INSN (insn
);
3220 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3227 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3228 or 0, if there is none. This routine does not look inside
3232 next_real_insn (rtx insn
)
3236 insn
= NEXT_INSN (insn
);
3237 if (insn
== 0 || INSN_P (insn
))
3244 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3245 or 0, if there is none. This routine does not look inside
3249 prev_real_insn (rtx insn
)
3253 insn
= PREV_INSN (insn
);
3254 if (insn
== 0 || INSN_P (insn
))
3261 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3262 This routine does not look inside SEQUENCEs. */
3265 last_call_insn (void)
3269 for (insn
= get_last_insn ();
3270 insn
&& !CALL_P (insn
);
3271 insn
= PREV_INSN (insn
))
3277 /* Find the next insn after INSN that really does something. This routine
3278 does not look inside SEQUENCEs. After reload this also skips over
3279 standalone USE and CLOBBER insn. */
3282 active_insn_p (const_rtx insn
)
3284 return (CALL_P (insn
) || JUMP_P (insn
)
3285 || (NONJUMP_INSN_P (insn
)
3286 && (! reload_completed
3287 || (GET_CODE (PATTERN (insn
)) != USE
3288 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3292 next_active_insn (rtx insn
)
3296 insn
= NEXT_INSN (insn
);
3297 if (insn
== 0 || active_insn_p (insn
))
3304 /* Find the last insn before INSN that really does something. This routine
3305 does not look inside SEQUENCEs. After reload this also skips over
3306 standalone USE and CLOBBER insn. */
3309 prev_active_insn (rtx insn
)
3313 insn
= PREV_INSN (insn
);
3314 if (insn
== 0 || active_insn_p (insn
))
3321 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3324 next_label (rtx insn
)
3328 insn
= NEXT_INSN (insn
);
3329 if (insn
== 0 || LABEL_P (insn
))
3336 /* Return the last label to mark the same position as LABEL. Return LABEL
3337 itself if it is null or any return rtx. */
3340 skip_consecutive_labels (rtx label
)
3344 if (label
&& ANY_RETURN_P (label
))
3347 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3355 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3356 and REG_CC_USER notes so we can find it. */
3359 link_cc0_insns (rtx insn
)
3361 rtx user
= next_nonnote_insn (insn
);
3363 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3364 user
= XVECEXP (PATTERN (user
), 0, 0);
3366 add_reg_note (user
, REG_CC_SETTER
, insn
);
3367 add_reg_note (insn
, REG_CC_USER
, user
);
3370 /* Return the next insn that uses CC0 after INSN, which is assumed to
3371 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3372 applied to the result of this function should yield INSN).
3374 Normally, this is simply the next insn. However, if a REG_CC_USER note
3375 is present, it contains the insn that uses CC0.
3377 Return 0 if we can't find the insn. */
3380 next_cc0_user (rtx insn
)
3382 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3385 return XEXP (note
, 0);
3387 insn
= next_nonnote_insn (insn
);
3388 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3389 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3391 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3397 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3398 note, it is the previous insn. */
3401 prev_cc0_setter (rtx insn
)
3403 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3406 return XEXP (note
, 0);
3408 insn
= prev_nonnote_insn (insn
);
3409 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3416 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3419 find_auto_inc (rtx
*xp
, void *data
)
3422 rtx reg
= (rtx
) data
;
3424 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3427 switch (GET_CODE (x
))
3435 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3446 /* Increment the label uses for all labels present in rtx. */
3449 mark_label_nuses (rtx x
)
3455 code
= GET_CODE (x
);
3456 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3457 LABEL_NUSES (XEXP (x
, 0))++;
3459 fmt
= GET_RTX_FORMAT (code
);
3460 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3463 mark_label_nuses (XEXP (x
, i
));
3464 else if (fmt
[i
] == 'E')
3465 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3466 mark_label_nuses (XVECEXP (x
, i
, j
));
3471 /* Try splitting insns that can be split for better scheduling.
3472 PAT is the pattern which might split.
3473 TRIAL is the insn providing PAT.
3474 LAST is nonzero if we should return the last insn of the sequence produced.
3476 If this routine succeeds in splitting, it returns the first or last
3477 replacement insn depending on the value of LAST. Otherwise, it
3478 returns TRIAL. If the insn to be returned can be split, it will be. */
3481 try_split (rtx pat
, rtx trial
, int last
)
3483 rtx before
= PREV_INSN (trial
);
3484 rtx after
= NEXT_INSN (trial
);
3485 int has_barrier
= 0;
3488 rtx insn_last
, insn
;
3491 /* We're not good at redistributing frame information. */
3492 if (RTX_FRAME_RELATED_P (trial
))
3495 if (any_condjump_p (trial
)
3496 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3497 split_branch_probability
= INTVAL (XEXP (note
, 0));
3498 probability
= split_branch_probability
;
3500 seq
= split_insns (pat
, trial
);
3502 split_branch_probability
= -1;
3504 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3505 We may need to handle this specially. */
3506 if (after
&& BARRIER_P (after
))
3509 after
= NEXT_INSN (after
);
3515 /* Avoid infinite loop if any insn of the result matches
3516 the original pattern. */
3520 if (INSN_P (insn_last
)
3521 && rtx_equal_p (PATTERN (insn_last
), pat
))
3523 if (!NEXT_INSN (insn_last
))
3525 insn_last
= NEXT_INSN (insn_last
);
3528 /* We will be adding the new sequence to the function. The splitters
3529 may have introduced invalid RTL sharing, so unshare the sequence now. */
3530 unshare_all_rtl_in_chain (seq
);
3533 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3537 mark_jump_label (PATTERN (insn
), insn
, 0);
3539 if (probability
!= -1
3540 && any_condjump_p (insn
)
3541 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3543 /* We can preserve the REG_BR_PROB notes only if exactly
3544 one jump is created, otherwise the machine description
3545 is responsible for this step using
3546 split_branch_probability variable. */
3547 gcc_assert (njumps
== 1);
3548 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3553 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3554 in SEQ and copy any additional information across. */
3557 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3562 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3563 target may have explicitly specified. */
3564 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3567 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3569 /* If the old call was a sibling call, the new one must
3571 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3573 /* If the new call is the last instruction in the sequence,
3574 it will effectively replace the old call in-situ. Otherwise
3575 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3576 so that it comes immediately after the new call. */
3577 if (NEXT_INSN (insn
))
3578 for (next
= NEXT_INSN (trial
);
3579 next
&& NOTE_P (next
);
3580 next
= NEXT_INSN (next
))
3581 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3584 add_insn_after (next
, insn
, NULL
);
3590 /* Copy notes, particularly those related to the CFG. */
3591 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3593 switch (REG_NOTE_KIND (note
))
3596 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3602 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3605 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3609 case REG_NON_LOCAL_GOTO
:
3610 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3613 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3619 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3621 rtx reg
= XEXP (note
, 0);
3622 if (!FIND_REG_INC_NOTE (insn
, reg
)
3623 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3624 add_reg_note (insn
, REG_INC
, reg
);
3630 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3638 /* If there are LABELS inside the split insns increment the
3639 usage count so we don't delete the label. */
3643 while (insn
!= NULL_RTX
)
3645 /* JUMP_P insns have already been "marked" above. */
3646 if (NONJUMP_INSN_P (insn
))
3647 mark_label_nuses (PATTERN (insn
));
3649 insn
= PREV_INSN (insn
);
3653 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3655 delete_insn (trial
);
3657 emit_barrier_after (tem
);
3659 /* Recursively call try_split for each new insn created; by the
3660 time control returns here that insn will be fully split, so
3661 set LAST and continue from the insn after the one returned.
3662 We can't use next_active_insn here since AFTER may be a note.
3663 Ignore deleted insns, which can be occur if not optimizing. */
3664 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3665 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3666 tem
= try_split (PATTERN (tem
), tem
, 1);
3668 /* Return either the first or the last insn, depending on which was
3671 ? (after
? PREV_INSN (after
) : get_last_insn ())
3672 : NEXT_INSN (before
);
3675 /* Make and return an INSN rtx, initializing all its slots.
3676 Store PATTERN in the pattern slots. */
3679 make_insn_raw (rtx pattern
)
3683 insn
= rtx_alloc (INSN
);
3685 INSN_UID (insn
) = cur_insn_uid
++;
3686 PATTERN (insn
) = pattern
;
3687 INSN_CODE (insn
) = -1;
3688 REG_NOTES (insn
) = NULL
;
3689 INSN_LOCATION (insn
) = curr_insn_location ();
3690 BLOCK_FOR_INSN (insn
) = NULL
;
3692 #ifdef ENABLE_RTL_CHECKING
3695 && (returnjump_p (insn
)
3696 || (GET_CODE (insn
) == SET
3697 && SET_DEST (insn
) == pc_rtx
)))
3699 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3707 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3710 make_debug_insn_raw (rtx pattern
)
3714 insn
= rtx_alloc (DEBUG_INSN
);
3715 INSN_UID (insn
) = cur_debug_insn_uid
++;
3716 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3717 INSN_UID (insn
) = cur_insn_uid
++;
3719 PATTERN (insn
) = pattern
;
3720 INSN_CODE (insn
) = -1;
3721 REG_NOTES (insn
) = NULL
;
3722 INSN_LOCATION (insn
) = curr_insn_location ();
3723 BLOCK_FOR_INSN (insn
) = NULL
;
3728 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3731 make_jump_insn_raw (rtx pattern
)
3735 insn
= rtx_alloc (JUMP_INSN
);
3736 INSN_UID (insn
) = cur_insn_uid
++;
3738 PATTERN (insn
) = pattern
;
3739 INSN_CODE (insn
) = -1;
3740 REG_NOTES (insn
) = NULL
;
3741 JUMP_LABEL (insn
) = NULL
;
3742 INSN_LOCATION (insn
) = curr_insn_location ();
3743 BLOCK_FOR_INSN (insn
) = NULL
;
3748 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3751 make_call_insn_raw (rtx pattern
)
3755 insn
= rtx_alloc (CALL_INSN
);
3756 INSN_UID (insn
) = cur_insn_uid
++;
3758 PATTERN (insn
) = pattern
;
3759 INSN_CODE (insn
) = -1;
3760 REG_NOTES (insn
) = NULL
;
3761 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3762 INSN_LOCATION (insn
) = curr_insn_location ();
3763 BLOCK_FOR_INSN (insn
) = NULL
;
3768 /* Add INSN to the end of the doubly-linked list.
3769 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3774 PREV_INSN (insn
) = get_last_insn();
3775 NEXT_INSN (insn
) = 0;
3777 if (NULL
!= get_last_insn())
3778 NEXT_INSN (get_last_insn ()) = insn
;
3780 if (NULL
== get_insns ())
3781 set_first_insn (insn
);
3783 set_last_insn (insn
);
3786 /* Add INSN into the doubly-linked list after insn AFTER. This and
3787 the next should be the only functions called to insert an insn once
3788 delay slots have been filled since only they know how to update a
3792 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3794 rtx next
= NEXT_INSN (after
);
3796 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3798 NEXT_INSN (insn
) = next
;
3799 PREV_INSN (insn
) = after
;
3803 PREV_INSN (next
) = insn
;
3804 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3805 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3807 else if (get_last_insn () == after
)
3808 set_last_insn (insn
);
3811 struct sequence_stack
*stack
= seq_stack
;
3812 /* Scan all pending sequences too. */
3813 for (; stack
; stack
= stack
->next
)
3814 if (after
== stack
->last
)
3823 if (!BARRIER_P (after
)
3824 && !BARRIER_P (insn
)
3825 && (bb
= BLOCK_FOR_INSN (after
)))
3827 set_block_for_insn (insn
, bb
);
3829 df_insn_rescan (insn
);
3830 /* Should not happen as first in the BB is always
3831 either NOTE or LABEL. */
3832 if (BB_END (bb
) == after
3833 /* Avoid clobbering of structure when creating new BB. */
3834 && !BARRIER_P (insn
)
3835 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3839 NEXT_INSN (after
) = insn
;
3840 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3842 rtx sequence
= PATTERN (after
);
3843 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3847 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3848 the previous should be the only functions called to insert an insn
3849 once delay slots have been filled since only they know how to
3850 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3854 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3856 rtx prev
= PREV_INSN (before
);
3858 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3860 PREV_INSN (insn
) = prev
;
3861 NEXT_INSN (insn
) = before
;
3865 NEXT_INSN (prev
) = insn
;
3866 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3868 rtx sequence
= PATTERN (prev
);
3869 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3872 else if (get_insns () == before
)
3873 set_first_insn (insn
);
3876 struct sequence_stack
*stack
= seq_stack
;
3877 /* Scan all pending sequences too. */
3878 for (; stack
; stack
= stack
->next
)
3879 if (before
== stack
->first
)
3881 stack
->first
= insn
;
3889 && !BARRIER_P (before
)
3890 && !BARRIER_P (insn
))
3891 bb
= BLOCK_FOR_INSN (before
);
3895 set_block_for_insn (insn
, bb
);
3897 df_insn_rescan (insn
);
3898 /* Should not happen as first in the BB is always either NOTE or
3900 gcc_assert (BB_HEAD (bb
) != insn
3901 /* Avoid clobbering of structure when creating new BB. */
3903 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3906 PREV_INSN (before
) = insn
;
3907 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3908 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3912 /* Replace insn with an deleted instruction note. */
3915 set_insn_deleted (rtx insn
)
3917 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3918 PUT_CODE (insn
, NOTE
);
3919 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3923 /* Remove an insn from its doubly-linked list. This function knows how
3924 to handle sequences. */
3926 remove_insn (rtx insn
)
3928 rtx next
= NEXT_INSN (insn
);
3929 rtx prev
= PREV_INSN (insn
);
3932 /* Later in the code, the block will be marked dirty. */
3933 df_insn_delete (NULL
, INSN_UID (insn
));
3937 NEXT_INSN (prev
) = next
;
3938 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3940 rtx sequence
= PATTERN (prev
);
3941 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3944 else if (get_insns () == insn
)
3947 PREV_INSN (next
) = NULL
;
3948 set_first_insn (next
);
3952 struct sequence_stack
*stack
= seq_stack
;
3953 /* Scan all pending sequences too. */
3954 for (; stack
; stack
= stack
->next
)
3955 if (insn
== stack
->first
)
3957 stack
->first
= next
;
3966 PREV_INSN (next
) = prev
;
3967 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3968 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3970 else if (get_last_insn () == insn
)
3971 set_last_insn (prev
);
3974 struct sequence_stack
*stack
= seq_stack
;
3975 /* Scan all pending sequences too. */
3976 for (; stack
; stack
= stack
->next
)
3977 if (insn
== stack
->last
)
3985 if (!BARRIER_P (insn
)
3986 && (bb
= BLOCK_FOR_INSN (insn
)))
3988 if (NONDEBUG_INSN_P (insn
))
3989 df_set_bb_dirty (bb
);
3990 if (BB_HEAD (bb
) == insn
)
3992 /* Never ever delete the basic block note without deleting whole
3994 gcc_assert (!NOTE_P (insn
));
3995 BB_HEAD (bb
) = next
;
3997 if (BB_END (bb
) == insn
)
4002 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4005 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4007 gcc_assert (call_insn
&& CALL_P (call_insn
));
4009 /* Put the register usage information on the CALL. If there is already
4010 some usage information, put ours at the end. */
4011 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4015 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4016 link
= XEXP (link
, 1))
4019 XEXP (link
, 1) = call_fusage
;
4022 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4025 /* Delete all insns made since FROM.
4026 FROM becomes the new last instruction. */
4029 delete_insns_since (rtx from
)
4034 NEXT_INSN (from
) = 0;
4035 set_last_insn (from
);
4038 /* This function is deprecated, please use sequences instead.
4040 Move a consecutive bunch of insns to a different place in the chain.
4041 The insns to be moved are those between FROM and TO.
4042 They are moved to a new position after the insn AFTER.
4043 AFTER must not be FROM or TO or any insn in between.
4045 This function does not know about SEQUENCEs and hence should not be
4046 called after delay-slot filling has been done. */
4049 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4051 #ifdef ENABLE_CHECKING
4053 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4054 gcc_assert (after
!= x
);
4055 gcc_assert (after
!= to
);
4058 /* Splice this bunch out of where it is now. */
4059 if (PREV_INSN (from
))
4060 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4062 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4063 if (get_last_insn () == to
)
4064 set_last_insn (PREV_INSN (from
));
4065 if (get_insns () == from
)
4066 set_first_insn (NEXT_INSN (to
));
4068 /* Make the new neighbors point to it and it to them. */
4069 if (NEXT_INSN (after
))
4070 PREV_INSN (NEXT_INSN (after
)) = to
;
4072 NEXT_INSN (to
) = NEXT_INSN (after
);
4073 PREV_INSN (from
) = after
;
4074 NEXT_INSN (after
) = from
;
4075 if (after
== get_last_insn())
4079 /* Same as function above, but take care to update BB boundaries. */
4081 reorder_insns (rtx from
, rtx to
, rtx after
)
4083 rtx prev
= PREV_INSN (from
);
4084 basic_block bb
, bb2
;
4086 reorder_insns_nobb (from
, to
, after
);
4088 if (!BARRIER_P (after
)
4089 && (bb
= BLOCK_FOR_INSN (after
)))
4092 df_set_bb_dirty (bb
);
4094 if (!BARRIER_P (from
)
4095 && (bb2
= BLOCK_FOR_INSN (from
)))
4097 if (BB_END (bb2
) == to
)
4098 BB_END (bb2
) = prev
;
4099 df_set_bb_dirty (bb2
);
4102 if (BB_END (bb
) == after
)
4105 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4107 df_insn_change_bb (x
, bb
);
4112 /* Emit insn(s) of given code and pattern
4113 at a specified place within the doubly-linked list.
4115 All of the emit_foo global entry points accept an object
4116 X which is either an insn list or a PATTERN of a single
4119 There are thus a few canonical ways to generate code and
4120 emit it at a specific place in the instruction stream. For
4121 example, consider the instruction named SPOT and the fact that
4122 we would like to emit some instructions before SPOT. We might
4126 ... emit the new instructions ...
4127 insns_head = get_insns ();
4130 emit_insn_before (insns_head, SPOT);
4132 It used to be common to generate SEQUENCE rtl instead, but that
4133 is a relic of the past which no longer occurs. The reason is that
4134 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4135 generated would almost certainly die right after it was created. */
4138 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4139 rtx (*make_raw
) (rtx
))
4143 gcc_assert (before
);
4148 switch (GET_CODE (x
))
4160 rtx next
= NEXT_INSN (insn
);
4161 add_insn_before (insn
, before
, bb
);
4167 #ifdef ENABLE_RTL_CHECKING
4174 last
= (*make_raw
) (x
);
4175 add_insn_before (last
, before
, bb
);
4182 /* Make X be output before the instruction BEFORE. */
4185 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4187 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4190 /* Make an instruction with body X and code JUMP_INSN
4191 and output it before the instruction BEFORE. */
4194 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4196 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4197 make_jump_insn_raw
);
4200 /* Make an instruction with body X and code CALL_INSN
4201 and output it before the instruction BEFORE. */
4204 emit_call_insn_before_noloc (rtx x
, rtx before
)
4206 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4207 make_call_insn_raw
);
4210 /* Make an instruction with body X and code DEBUG_INSN
4211 and output it before the instruction BEFORE. */
4214 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4216 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4217 make_debug_insn_raw
);
4220 /* Make an insn of code BARRIER
4221 and output it before the insn BEFORE. */
4224 emit_barrier_before (rtx before
)
4226 rtx insn
= rtx_alloc (BARRIER
);
4228 INSN_UID (insn
) = cur_insn_uid
++;
4230 add_insn_before (insn
, before
, NULL
);
4234 /* Emit the label LABEL before the insn BEFORE. */
4237 emit_label_before (rtx label
, rtx before
)
4239 gcc_checking_assert (INSN_UID (label
) == 0);
4240 INSN_UID (label
) = cur_insn_uid
++;
4241 add_insn_before (label
, before
, NULL
);
4245 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4248 emit_note_before (enum insn_note subtype
, rtx before
)
4250 rtx note
= rtx_alloc (NOTE
);
4251 INSN_UID (note
) = cur_insn_uid
++;
4252 NOTE_KIND (note
) = subtype
;
4253 BLOCK_FOR_INSN (note
) = NULL
;
4254 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4256 add_insn_before (note
, before
, NULL
);
4260 /* Helper for emit_insn_after, handles lists of instructions
4264 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4268 if (!bb
&& !BARRIER_P (after
))
4269 bb
= BLOCK_FOR_INSN (after
);
4273 df_set_bb_dirty (bb
);
4274 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4275 if (!BARRIER_P (last
))
4277 set_block_for_insn (last
, bb
);
4278 df_insn_rescan (last
);
4280 if (!BARRIER_P (last
))
4282 set_block_for_insn (last
, bb
);
4283 df_insn_rescan (last
);
4285 if (BB_END (bb
) == after
)
4289 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4292 after_after
= NEXT_INSN (after
);
4294 NEXT_INSN (after
) = first
;
4295 PREV_INSN (first
) = after
;
4296 NEXT_INSN (last
) = after_after
;
4298 PREV_INSN (after_after
) = last
;
4300 if (after
== get_last_insn())
4301 set_last_insn (last
);
4307 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4308 rtx (*make_raw
)(rtx
))
4317 switch (GET_CODE (x
))
4326 last
= emit_insn_after_1 (x
, after
, bb
);
4329 #ifdef ENABLE_RTL_CHECKING
4336 last
= (*make_raw
) (x
);
4337 add_insn_after (last
, after
, bb
);
4344 /* Make X be output after the insn AFTER and set the BB of insn. If
4345 BB is NULL, an attempt is made to infer the BB from AFTER. */
4348 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4350 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4354 /* Make an insn of code JUMP_INSN with body X
4355 and output it after the insn AFTER. */
4358 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4360 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4363 /* Make an instruction with body X and code CALL_INSN
4364 and output it after the instruction AFTER. */
4367 emit_call_insn_after_noloc (rtx x
, rtx after
)
4369 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4372 /* Make an instruction with body X and code CALL_INSN
4373 and output it after the instruction AFTER. */
4376 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4378 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4381 /* Make an insn of code BARRIER
4382 and output it after the insn AFTER. */
4385 emit_barrier_after (rtx after
)
4387 rtx insn
= rtx_alloc (BARRIER
);
4389 INSN_UID (insn
) = cur_insn_uid
++;
4391 add_insn_after (insn
, after
, NULL
);
4395 /* Emit the label LABEL after the insn AFTER. */
4398 emit_label_after (rtx label
, rtx after
)
4400 gcc_checking_assert (INSN_UID (label
) == 0);
4401 INSN_UID (label
) = cur_insn_uid
++;
4402 add_insn_after (label
, after
, NULL
);
4406 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4409 emit_note_after (enum insn_note subtype
, rtx after
)
4411 rtx note
= rtx_alloc (NOTE
);
4412 INSN_UID (note
) = cur_insn_uid
++;
4413 NOTE_KIND (note
) = subtype
;
4414 BLOCK_FOR_INSN (note
) = NULL
;
4415 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4416 add_insn_after (note
, after
, NULL
);
4420 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4421 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4424 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4425 rtx (*make_raw
) (rtx
))
4427 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4429 if (pattern
== NULL_RTX
|| !loc
)
4432 after
= NEXT_INSN (after
);
4435 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4436 INSN_LOCATION (after
) = loc
;
4439 after
= NEXT_INSN (after
);
4444 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4445 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4449 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4450 rtx (*make_raw
) (rtx
))
4454 if (skip_debug_insns
)
4455 while (DEBUG_INSN_P (prev
))
4456 prev
= PREV_INSN (prev
);
4459 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4462 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4465 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4467 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4469 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4472 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4474 emit_insn_after (rtx pattern
, rtx after
)
4476 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4479 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4481 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4483 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4486 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4488 emit_jump_insn_after (rtx pattern
, rtx after
)
4490 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4493 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4495 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4497 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4500 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4502 emit_call_insn_after (rtx pattern
, rtx after
)
4504 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4507 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4509 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4511 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4514 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4516 emit_debug_insn_after (rtx pattern
, rtx after
)
4518 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4521 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4522 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4523 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4527 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4528 rtx (*make_raw
) (rtx
))
4530 rtx first
= PREV_INSN (before
);
4531 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4532 insnp
? before
: NULL_RTX
,
4535 if (pattern
== NULL_RTX
|| !loc
)
4539 first
= get_insns ();
4541 first
= NEXT_INSN (first
);
4544 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4545 INSN_LOCATION (first
) = loc
;
4548 first
= NEXT_INSN (first
);
4553 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4554 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4555 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4556 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4559 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4560 bool insnp
, rtx (*make_raw
) (rtx
))
4564 if (skip_debug_insns
)
4565 while (DEBUG_INSN_P (next
))
4566 next
= PREV_INSN (next
);
4569 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4572 return emit_pattern_before_noloc (pattern
, before
,
4573 insnp
? before
: NULL_RTX
,
4577 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4579 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4581 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4585 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4587 emit_insn_before (rtx pattern
, rtx before
)
4589 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4592 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4594 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4596 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4597 make_jump_insn_raw
);
4600 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4602 emit_jump_insn_before (rtx pattern
, rtx before
)
4604 return emit_pattern_before (pattern
, before
, true, false,
4605 make_jump_insn_raw
);
4608 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4610 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4612 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4613 make_call_insn_raw
);
4616 /* Like emit_call_insn_before_noloc,
4617 but set insn_location according to BEFORE. */
4619 emit_call_insn_before (rtx pattern
, rtx before
)
4621 return emit_pattern_before (pattern
, before
, true, false,
4622 make_call_insn_raw
);
4625 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4627 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4629 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4630 make_debug_insn_raw
);
4633 /* Like emit_debug_insn_before_noloc,
4634 but set insn_location according to BEFORE. */
4636 emit_debug_insn_before (rtx pattern
, rtx before
)
4638 return emit_pattern_before (pattern
, before
, false, false,
4639 make_debug_insn_raw
);
4642 /* Take X and emit it at the end of the doubly-linked
4645 Returns the last insn emitted. */
4650 rtx last
= get_last_insn();
4656 switch (GET_CODE (x
))
4668 rtx next
= NEXT_INSN (insn
);
4675 #ifdef ENABLE_RTL_CHECKING
4682 last
= make_insn_raw (x
);
4690 /* Make an insn of code DEBUG_INSN with pattern X
4691 and add it to the end of the doubly-linked list. */
4694 emit_debug_insn (rtx x
)
4696 rtx last
= get_last_insn();
4702 switch (GET_CODE (x
))
4714 rtx next
= NEXT_INSN (insn
);
4721 #ifdef ENABLE_RTL_CHECKING
4728 last
= make_debug_insn_raw (x
);
4736 /* Make an insn of code JUMP_INSN with pattern X
4737 and add it to the end of the doubly-linked list. */
4740 emit_jump_insn (rtx x
)
4742 rtx last
= NULL_RTX
, insn
;
4744 switch (GET_CODE (x
))
4756 rtx next
= NEXT_INSN (insn
);
4763 #ifdef ENABLE_RTL_CHECKING
4770 last
= make_jump_insn_raw (x
);
4778 /* Make an insn of code CALL_INSN with pattern X
4779 and add it to the end of the doubly-linked list. */
4782 emit_call_insn (rtx x
)
4786 switch (GET_CODE (x
))
4795 insn
= emit_insn (x
);
4798 #ifdef ENABLE_RTL_CHECKING
4805 insn
= make_call_insn_raw (x
);
4813 /* Add the label LABEL to the end of the doubly-linked list. */
4816 emit_label (rtx label
)
4818 gcc_checking_assert (INSN_UID (label
) == 0);
4819 INSN_UID (label
) = cur_insn_uid
++;
4824 /* Make an insn of code BARRIER
4825 and add it to the end of the doubly-linked list. */
4830 rtx barrier
= rtx_alloc (BARRIER
);
4831 INSN_UID (barrier
) = cur_insn_uid
++;
4836 /* Emit a copy of note ORIG. */
4839 emit_note_copy (rtx orig
)
4843 note
= rtx_alloc (NOTE
);
4845 INSN_UID (note
) = cur_insn_uid
++;
4846 NOTE_DATA (note
) = NOTE_DATA (orig
);
4847 NOTE_KIND (note
) = NOTE_KIND (orig
);
4848 BLOCK_FOR_INSN (note
) = NULL
;
4854 /* Make an insn of code NOTE or type NOTE_NO
4855 and add it to the end of the doubly-linked list. */
4858 emit_note (enum insn_note kind
)
4862 note
= rtx_alloc (NOTE
);
4863 INSN_UID (note
) = cur_insn_uid
++;
4864 NOTE_KIND (note
) = kind
;
4865 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4866 BLOCK_FOR_INSN (note
) = NULL
;
4871 /* Emit a clobber of lvalue X. */
4874 emit_clobber (rtx x
)
4876 /* CONCATs should not appear in the insn stream. */
4877 if (GET_CODE (x
) == CONCAT
)
4879 emit_clobber (XEXP (x
, 0));
4880 return emit_clobber (XEXP (x
, 1));
4882 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4885 /* Return a sequence of insns to clobber lvalue X. */
4899 /* Emit a use of rvalue X. */
4904 /* CONCATs should not appear in the insn stream. */
4905 if (GET_CODE (x
) == CONCAT
)
4907 emit_use (XEXP (x
, 0));
4908 return emit_use (XEXP (x
, 1));
4910 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4913 /* Return a sequence of insns to use rvalue X. */
4927 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4928 note of this type already exists, remove it first. */
4931 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4933 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4939 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4940 has multiple sets (some callers assume single_set
4941 means the insn only has one set, when in fact it
4942 means the insn only has one * useful * set). */
4943 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4949 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4950 It serves no useful purpose and breaks eliminate_regs. */
4951 if (GET_CODE (datum
) == ASM_OPERANDS
)
4956 XEXP (note
, 0) = datum
;
4957 df_notes_rescan (insn
);
4965 XEXP (note
, 0) = datum
;
4971 add_reg_note (insn
, kind
, datum
);
4977 df_notes_rescan (insn
);
4983 return REG_NOTES (insn
);
4986 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4988 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
4990 rtx set
= single_set (insn
);
4992 if (set
&& SET_DEST (set
) == dst
)
4993 return set_unique_reg_note (insn
, kind
, datum
);
4997 /* Return an indication of which type of insn should have X as a body.
4998 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5000 static enum rtx_code
5001 classify_insn (rtx x
)
5005 if (GET_CODE (x
) == CALL
)
5007 if (ANY_RETURN_P (x
))
5009 if (GET_CODE (x
) == SET
)
5011 if (SET_DEST (x
) == pc_rtx
)
5013 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5018 if (GET_CODE (x
) == PARALLEL
)
5021 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5022 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5024 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5025 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5027 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5028 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5034 /* Emit the rtl pattern X as an appropriate kind of insn.
5035 If X is a label, it is simply added into the insn chain. */
5040 enum rtx_code code
= classify_insn (x
);
5045 return emit_label (x
);
5047 return emit_insn (x
);
5050 rtx insn
= emit_jump_insn (x
);
5051 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5052 return emit_barrier ();
5056 return emit_call_insn (x
);
5058 return emit_debug_insn (x
);
5064 /* Space for free sequence stack entries. */
5065 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5067 /* Begin emitting insns to a sequence. If this sequence will contain
5068 something that might cause the compiler to pop arguments to function
5069 calls (because those pops have previously been deferred; see
5070 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5071 before calling this function. That will ensure that the deferred
5072 pops are not accidentally emitted in the middle of this sequence. */
5075 start_sequence (void)
5077 struct sequence_stack
*tem
;
5079 if (free_sequence_stack
!= NULL
)
5081 tem
= free_sequence_stack
;
5082 free_sequence_stack
= tem
->next
;
5085 tem
= ggc_alloc_sequence_stack ();
5087 tem
->next
= seq_stack
;
5088 tem
->first
= get_insns ();
5089 tem
->last
= get_last_insn ();
5097 /* Set up the insn chain starting with FIRST as the current sequence,
5098 saving the previously current one. See the documentation for
5099 start_sequence for more information about how to use this function. */
5102 push_to_sequence (rtx first
)
5108 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5111 set_first_insn (first
);
5112 set_last_insn (last
);
5115 /* Like push_to_sequence, but take the last insn as an argument to avoid
5116 looping through the list. */
5119 push_to_sequence2 (rtx first
, rtx last
)
5123 set_first_insn (first
);
5124 set_last_insn (last
);
5127 /* Set up the outer-level insn chain
5128 as the current sequence, saving the previously current one. */
5131 push_topmost_sequence (void)
5133 struct sequence_stack
*stack
, *top
= NULL
;
5137 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5140 set_first_insn (top
->first
);
5141 set_last_insn (top
->last
);
5144 /* After emitting to the outer-level insn chain, update the outer-level
5145 insn chain, and restore the previous saved state. */
5148 pop_topmost_sequence (void)
5150 struct sequence_stack
*stack
, *top
= NULL
;
5152 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5155 top
->first
= get_insns ();
5156 top
->last
= get_last_insn ();
5161 /* After emitting to a sequence, restore previous saved state.
5163 To get the contents of the sequence just made, you must call
5164 `get_insns' *before* calling here.
5166 If the compiler might have deferred popping arguments while
5167 generating this sequence, and this sequence will not be immediately
5168 inserted into the instruction stream, use do_pending_stack_adjust
5169 before calling get_insns. That will ensure that the deferred
5170 pops are inserted into this sequence, and not into some random
5171 location in the instruction stream. See INHIBIT_DEFER_POP for more
5172 information about deferred popping of arguments. */
5177 struct sequence_stack
*tem
= seq_stack
;
5179 set_first_insn (tem
->first
);
5180 set_last_insn (tem
->last
);
5181 seq_stack
= tem
->next
;
5183 memset (tem
, 0, sizeof (*tem
));
5184 tem
->next
= free_sequence_stack
;
5185 free_sequence_stack
= tem
;
5188 /* Return 1 if currently emitting into a sequence. */
5191 in_sequence_p (void)
5193 return seq_stack
!= 0;
5196 /* Put the various virtual registers into REGNO_REG_RTX. */
5199 init_virtual_regs (void)
5201 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5202 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5203 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5204 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5205 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5206 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5207 = virtual_preferred_stack_boundary_rtx
;
5211 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5212 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5213 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5214 static int copy_insn_n_scratches
;
5216 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5217 copied an ASM_OPERANDS.
5218 In that case, it is the original input-operand vector. */
5219 static rtvec orig_asm_operands_vector
;
5221 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5222 copied an ASM_OPERANDS.
5223 In that case, it is the copied input-operand vector. */
5224 static rtvec copy_asm_operands_vector
;
5226 /* Likewise for the constraints vector. */
5227 static rtvec orig_asm_constraints_vector
;
5228 static rtvec copy_asm_constraints_vector
;
5230 /* Recursively create a new copy of an rtx for copy_insn.
5231 This function differs from copy_rtx in that it handles SCRATCHes and
5232 ASM_OPERANDs properly.
5233 Normally, this function is not used directly; use copy_insn as front end.
5234 However, you could first copy an insn pattern with copy_insn and then use
5235 this function afterwards to properly copy any REG_NOTEs containing
5239 copy_insn_1 (rtx orig
)
5244 const char *format_ptr
;
5249 code
= GET_CODE (orig
);
5264 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5269 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5270 if (copy_insn_scratch_in
[i
] == orig
)
5271 return copy_insn_scratch_out
[i
];
5275 if (shared_const_p (orig
))
5279 /* A MEM with a constant address is not sharable. The problem is that
5280 the constant address may need to be reloaded. If the mem is shared,
5281 then reloading one copy of this mem will cause all copies to appear
5282 to have been reloaded. */
5288 /* Copy the various flags, fields, and other information. We assume
5289 that all fields need copying, and then clear the fields that should
5290 not be copied. That is the sensible default behavior, and forces
5291 us to explicitly document why we are *not* copying a flag. */
5292 copy
= shallow_copy_rtx (orig
);
5294 /* We do not copy the USED flag, which is used as a mark bit during
5295 walks over the RTL. */
5296 RTX_FLAG (copy
, used
) = 0;
5298 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5301 RTX_FLAG (copy
, jump
) = 0;
5302 RTX_FLAG (copy
, call
) = 0;
5303 RTX_FLAG (copy
, frame_related
) = 0;
5306 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5308 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5309 switch (*format_ptr
++)
5312 if (XEXP (orig
, i
) != NULL
)
5313 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5318 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5319 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5320 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5321 XVEC (copy
, i
) = copy_asm_operands_vector
;
5322 else if (XVEC (orig
, i
) != NULL
)
5324 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5325 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5326 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5337 /* These are left unchanged. */
5344 if (code
== SCRATCH
)
5346 i
= copy_insn_n_scratches
++;
5347 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5348 copy_insn_scratch_in
[i
] = orig
;
5349 copy_insn_scratch_out
[i
] = copy
;
5351 else if (code
== ASM_OPERANDS
)
5353 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5354 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5355 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5356 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5362 /* Create a new copy of an rtx.
5363 This function differs from copy_rtx in that it handles SCRATCHes and
5364 ASM_OPERANDs properly.
5365 INSN doesn't really have to be a full INSN; it could be just the
5368 copy_insn (rtx insn
)
5370 copy_insn_n_scratches
= 0;
5371 orig_asm_operands_vector
= 0;
5372 orig_asm_constraints_vector
= 0;
5373 copy_asm_operands_vector
= 0;
5374 copy_asm_constraints_vector
= 0;
5375 return copy_insn_1 (insn
);
5378 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5379 on that assumption that INSN itself remains in its original place. */
5382 copy_delay_slot_insn (rtx insn
)
5384 /* Copy INSN with its rtx_code, all its notes, location etc. */
5385 insn
= copy_rtx (insn
);
5386 INSN_UID (insn
) = cur_insn_uid
++;
5390 /* Initialize data structures and variables in this file
5391 before generating rtl for each function. */
5396 set_first_insn (NULL
);
5397 set_last_insn (NULL
);
5398 if (MIN_NONDEBUG_INSN_UID
)
5399 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5402 cur_debug_insn_uid
= 1;
5403 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5404 first_label_num
= label_num
;
5407 /* Init the tables that describe all the pseudo regs. */
5409 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5411 crtl
->emit
.regno_pointer_align
5412 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5414 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5416 /* Put copies of all the hard registers into regno_reg_rtx. */
5417 memcpy (regno_reg_rtx
,
5418 initial_regno_reg_rtx
,
5419 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5421 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5422 init_virtual_regs ();
5424 /* Indicate that the virtual registers and stack locations are
5426 REG_POINTER (stack_pointer_rtx
) = 1;
5427 REG_POINTER (frame_pointer_rtx
) = 1;
5428 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5429 REG_POINTER (arg_pointer_rtx
) = 1;
5431 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5432 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5433 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5434 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5435 REG_POINTER (virtual_cfa_rtx
) = 1;
5437 #ifdef STACK_BOUNDARY
5438 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5439 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5440 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5441 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5443 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5444 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5445 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5446 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5447 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5450 #ifdef INIT_EXPANDERS
5455 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5458 gen_const_vector (enum machine_mode mode
, int constant
)
5463 enum machine_mode inner
;
5465 units
= GET_MODE_NUNITS (mode
);
5466 inner
= GET_MODE_INNER (mode
);
5468 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5470 v
= rtvec_alloc (units
);
5472 /* We need to call this function after we set the scalar const_tiny_rtx
5474 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5476 for (i
= 0; i
< units
; ++i
)
5477 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5479 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5483 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5484 all elements are zero, and the one vector when all elements are one. */
5486 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5488 enum machine_mode inner
= GET_MODE_INNER (mode
);
5489 int nunits
= GET_MODE_NUNITS (mode
);
5493 /* Check to see if all of the elements have the same value. */
5494 x
= RTVEC_ELT (v
, nunits
- 1);
5495 for (i
= nunits
- 2; i
>= 0; i
--)
5496 if (RTVEC_ELT (v
, i
) != x
)
5499 /* If the values are all the same, check to see if we can use one of the
5500 standard constant vectors. */
5503 if (x
== CONST0_RTX (inner
))
5504 return CONST0_RTX (mode
);
5505 else if (x
== CONST1_RTX (inner
))
5506 return CONST1_RTX (mode
);
5507 else if (x
== CONSTM1_RTX (inner
))
5508 return CONSTM1_RTX (mode
);
5511 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5514 /* Initialise global register information required by all functions. */
5517 init_emit_regs (void)
5520 enum machine_mode mode
;
5523 /* Reset register attributes */
5524 htab_empty (reg_attrs_htab
);
5526 /* We need reg_raw_mode, so initialize the modes now. */
5527 init_reg_modes_target ();
5529 /* Assign register numbers to the globally defined register rtx. */
5530 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5531 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5532 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5533 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5534 virtual_incoming_args_rtx
=
5535 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5536 virtual_stack_vars_rtx
=
5537 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5538 virtual_stack_dynamic_rtx
=
5539 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5540 virtual_outgoing_args_rtx
=
5541 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5542 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5543 virtual_preferred_stack_boundary_rtx
=
5544 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5546 /* Initialize RTL for commonly used hard registers. These are
5547 copied into regno_reg_rtx as we begin to compile each function. */
5548 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5549 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5551 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5552 return_address_pointer_rtx
5553 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5556 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5557 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5559 pic_offset_table_rtx
= NULL_RTX
;
5561 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5563 mode
= (enum machine_mode
) i
;
5564 attrs
= ggc_alloc_cleared_mem_attrs ();
5565 attrs
->align
= BITS_PER_UNIT
;
5566 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5567 if (mode
!= BLKmode
)
5569 attrs
->size_known_p
= true;
5570 attrs
->size
= GET_MODE_SIZE (mode
);
5571 if (STRICT_ALIGNMENT
)
5572 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5574 mode_mem_attrs
[i
] = attrs
;
5578 /* Create some permanent unique rtl objects shared between all functions. */
5581 init_emit_once (void)
5584 enum machine_mode mode
;
5585 enum machine_mode double_mode
;
5587 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5589 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5590 const_int_htab_eq
, NULL
);
5592 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5593 const_double_htab_eq
, NULL
);
5595 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5596 const_fixed_htab_eq
, NULL
);
5598 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5599 mem_attrs_htab_eq
, NULL
);
5600 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5601 reg_attrs_htab_eq
, NULL
);
5603 /* Compute the word and byte modes. */
5605 byte_mode
= VOIDmode
;
5606 word_mode
= VOIDmode
;
5607 double_mode
= VOIDmode
;
5609 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5611 mode
= GET_MODE_WIDER_MODE (mode
))
5613 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5614 && byte_mode
== VOIDmode
)
5617 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5618 && word_mode
== VOIDmode
)
5622 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5624 mode
= GET_MODE_WIDER_MODE (mode
))
5626 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5627 && double_mode
== VOIDmode
)
5631 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5633 #ifdef INIT_EXPANDERS
5634 /* This is to initialize {init|mark|free}_machine_status before the first
5635 call to push_function_context_to. This is needed by the Chill front
5636 end which calls push_function_context_to before the first call to
5637 init_function_start. */
5641 /* Create the unique rtx's for certain rtx codes and operand values. */
5643 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5644 tries to use these variables. */
5645 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5646 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5647 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5649 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5650 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5651 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5653 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5655 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5656 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5657 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5662 dconsthalf
= dconst1
;
5663 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5665 for (i
= 0; i
< 3; i
++)
5667 const REAL_VALUE_TYPE
*const r
=
5668 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5670 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5672 mode
= GET_MODE_WIDER_MODE (mode
))
5673 const_tiny_rtx
[i
][(int) mode
] =
5674 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5676 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5678 mode
= GET_MODE_WIDER_MODE (mode
))
5679 const_tiny_rtx
[i
][(int) mode
] =
5680 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5682 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5684 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5686 mode
= GET_MODE_WIDER_MODE (mode
))
5687 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5689 for (mode
= MIN_MODE_PARTIAL_INT
;
5690 mode
<= MAX_MODE_PARTIAL_INT
;
5691 mode
= (enum machine_mode
)((int)(mode
) + 1))
5692 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5695 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5697 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5699 mode
= GET_MODE_WIDER_MODE (mode
))
5700 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5702 for (mode
= MIN_MODE_PARTIAL_INT
;
5703 mode
<= MAX_MODE_PARTIAL_INT
;
5704 mode
= (enum machine_mode
)((int)(mode
) + 1))
5705 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5707 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5709 mode
= GET_MODE_WIDER_MODE (mode
))
5711 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5712 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5715 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5717 mode
= GET_MODE_WIDER_MODE (mode
))
5719 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5720 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5723 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5725 mode
= GET_MODE_WIDER_MODE (mode
))
5727 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5728 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5729 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5732 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5734 mode
= GET_MODE_WIDER_MODE (mode
))
5736 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5737 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5740 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5742 mode
= GET_MODE_WIDER_MODE (mode
))
5744 FCONST0(mode
).data
.high
= 0;
5745 FCONST0(mode
).data
.low
= 0;
5746 FCONST0(mode
).mode
= mode
;
5747 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5748 FCONST0 (mode
), mode
);
5751 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5753 mode
= GET_MODE_WIDER_MODE (mode
))
5755 FCONST0(mode
).data
.high
= 0;
5756 FCONST0(mode
).data
.low
= 0;
5757 FCONST0(mode
).mode
= mode
;
5758 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5759 FCONST0 (mode
), mode
);
5762 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5764 mode
= GET_MODE_WIDER_MODE (mode
))
5766 FCONST0(mode
).data
.high
= 0;
5767 FCONST0(mode
).data
.low
= 0;
5768 FCONST0(mode
).mode
= mode
;
5769 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5770 FCONST0 (mode
), mode
);
5772 /* We store the value 1. */
5773 FCONST1(mode
).data
.high
= 0;
5774 FCONST1(mode
).data
.low
= 0;
5775 FCONST1(mode
).mode
= mode
;
5777 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5778 HOST_BITS_PER_DOUBLE_INT
,
5779 SIGNED_FIXED_POINT_MODE_P (mode
));
5780 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5781 FCONST1 (mode
), mode
);
5784 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5786 mode
= GET_MODE_WIDER_MODE (mode
))
5788 FCONST0(mode
).data
.high
= 0;
5789 FCONST0(mode
).data
.low
= 0;
5790 FCONST0(mode
).mode
= mode
;
5791 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5792 FCONST0 (mode
), mode
);
5794 /* We store the value 1. */
5795 FCONST1(mode
).data
.high
= 0;
5796 FCONST1(mode
).data
.low
= 0;
5797 FCONST1(mode
).mode
= mode
;
5799 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5800 HOST_BITS_PER_DOUBLE_INT
,
5801 SIGNED_FIXED_POINT_MODE_P (mode
));
5802 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5803 FCONST1 (mode
), mode
);
5806 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5808 mode
= GET_MODE_WIDER_MODE (mode
))
5810 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5813 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5815 mode
= GET_MODE_WIDER_MODE (mode
))
5817 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5820 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5822 mode
= GET_MODE_WIDER_MODE (mode
))
5824 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5825 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5828 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5830 mode
= GET_MODE_WIDER_MODE (mode
))
5832 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5833 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5836 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5837 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5838 const_tiny_rtx
[0][i
] = const0_rtx
;
5840 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5841 if (STORE_FLAG_VALUE
== 1)
5842 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5844 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5845 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5846 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5847 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5850 /* Produce exact duplicate of insn INSN after AFTER.
5851 Care updating of libcall regions if present. */
5854 emit_copy_of_insn_after (rtx insn
, rtx after
)
5858 switch (GET_CODE (insn
))
5861 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5865 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5869 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5873 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5874 if (CALL_INSN_FUNCTION_USAGE (insn
))
5875 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5876 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5877 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5878 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5879 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5880 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5881 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5888 /* Update LABEL_NUSES. */
5889 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5891 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5893 /* If the old insn is frame related, then so is the new one. This is
5894 primarily needed for IA-64 unwind info which marks epilogue insns,
5895 which may be duplicated by the basic block reordering code. */
5896 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5898 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5899 will make them. REG_LABEL_TARGETs are created there too, but are
5900 supposed to be sticky, so we copy them. */
5901 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5902 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5904 if (GET_CODE (link
) == EXPR_LIST
)
5905 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5906 copy_insn_1 (XEXP (link
, 0)));
5908 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5911 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5915 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5917 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5919 if (hard_reg_clobbers
[mode
][regno
])
5920 return hard_reg_clobbers
[mode
][regno
];
5922 return (hard_reg_clobbers
[mode
][regno
] =
5923 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5926 location_t prologue_location
;
5927 location_t epilogue_location
;
5929 /* Hold current location information and last location information, so the
5930 datastructures are built lazily only when some instructions in given
5931 place are needed. */
5932 static location_t curr_location
, last_location
;
5934 /* Allocate insn location datastructure. */
5936 insn_locations_init (void)
5938 prologue_location
= epilogue_location
= 0;
5939 curr_location
= UNKNOWN_LOCATION
;
5940 last_location
= UNKNOWN_LOCATION
;
5943 /* At the end of emit stage, clear current location. */
5945 insn_locations_finalize (void)
5947 epilogue_location
= curr_location
;
5948 curr_location
= UNKNOWN_LOCATION
;
5951 /* Set current location. */
5953 set_curr_insn_location (location_t location
)
5955 curr_location
= location
;
5958 /* Get current location. */
5960 curr_insn_location (void)
5962 return curr_location
;
5965 /* Return lexical scope block insn belongs to. */
5967 insn_scope (const_rtx insn
)
5969 return LOCATION_BLOCK (INSN_LOCATION (insn
));
5972 /* Return line number of the statement that produced this insn. */
5974 insn_line (const_rtx insn
)
5976 return LOCATION_LINE (INSN_LOCATION (insn
));
5979 /* Return source file of the statement that produced this insn. */
5981 insn_file (const_rtx insn
)
5983 return LOCATION_FILE (INSN_LOCATION (insn
));
5986 /* Return true if memory model MODEL requires a pre-operation (release-style)
5987 barrier or a post-operation (acquire-style) barrier. While not universal,
5988 this function matches behavior of several targets. */
5991 need_atomic_barrier_p (enum memmodel model
, bool pre
)
5995 case MEMMODEL_RELAXED
:
5996 case MEMMODEL_CONSUME
:
5998 case MEMMODEL_RELEASE
:
6000 case MEMMODEL_ACQUIRE
:
6002 case MEMMODEL_ACQ_REL
:
6003 case MEMMODEL_SEQ_CST
:
6010 #include "gt-emit-rtl.h"