* doc/invoke.texi (AVR Options): Document __AVR_ARCH__.
[official-gcc.git] / gcc / emit-rtl.c
blob7d7b1dfb0a132133a586aa160a7ccb832e0091d0
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "vecprim.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "hashtab.h"
49 #include "insn-config.h"
50 #include "recog.h"
51 #include "bitmap.h"
52 #include "basic-block.h"
53 #include "ggc.h"
54 #include "debug.h"
55 #include "langhooks.h"
56 #include "df.h"
57 #include "params.h"
58 #include "target.h"
60 struct target_rtl default_target_rtl;
61 #if SWITCHABLE_TARGET
62 struct target_rtl *this_target_rtl = &default_target_rtl;
63 #endif
65 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
67 /* Commonly used modes. */
69 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
70 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
71 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
72 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
74 /* Datastructures maintained for currently processed function in RTL form. */
76 struct rtl_data x_rtl;
78 /* Indexed by pseudo register number, gives the rtx for that pseudo.
79 Allocated in parallel with regno_pointer_align.
80 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
81 with length attribute nested in top level structures. */
83 rtx * regno_reg_rtx;
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
88 static GTY(()) int label_num = 1;
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
93 is set only for MODE_INT and MODE_VECTOR_INT modes. */
95 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
97 rtx const_true_rtx;
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconsthalf;
105 /* Record fixed-point constant 0 and 1. */
106 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
107 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
109 /* We make one copy of (const_int C) where C is in
110 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
111 to save space during the compilation and simplify comparisons of
112 integers. */
114 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
116 /* Standard pieces of rtx, to be substituted directly into things. */
117 rtx pc_rtx;
118 rtx ret_rtx;
119 rtx simple_return_rtx;
120 rtx cc0_rtx;
122 /* A hash table storing CONST_INTs whose absolute value is greater
123 than MAX_SAVED_CONST_INT. */
125 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
126 htab_t const_int_htab;
128 /* A hash table storing memory attribute structures. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
130 htab_t mem_attrs_htab;
132 /* A hash table storing register attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
134 htab_t reg_attrs_htab;
136 /* A hash table storing all CONST_DOUBLEs. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
138 htab_t const_double_htab;
140 /* A hash table storing all CONST_FIXEDs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
142 htab_t const_fixed_htab;
144 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
145 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
146 #define first_label_num (crtl->emit.x_first_label_num)
148 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx lookup_const_double (rtx);
156 static hashval_t const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx lookup_const_fixed (rtx);
159 static hashval_t mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs *get_reg_attrs (tree, int);
164 static rtx gen_const_vector (enum machine_mode, int);
165 static void copy_rtx_if_shared_1 (rtx *orig);
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability = -1;
171 /* Returns a hash code for X (which is a really a CONST_INT). */
173 static hashval_t
174 const_int_htab_hash (const void *x)
176 return (hashval_t) INTVAL ((const_rtx) x);
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
181 HOST_WIDE_INT *). */
183 static int
184 const_int_htab_eq (const void *x, const void *y)
186 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 static hashval_t
191 const_double_htab_hash (const void *x)
193 const_rtx const value = (const_rtx) x;
194 hashval_t h;
196 if (GET_MODE (value) == VOIDmode)
197 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
198 else
200 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h ^= GET_MODE (value);
204 return h;
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
209 static int
210 const_double_htab_eq (const void *x, const void *y)
212 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
214 if (GET_MODE (a) != GET_MODE (b))
215 return 0;
216 if (GET_MODE (a) == VOIDmode)
217 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
218 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
219 else
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
221 CONST_DOUBLE_REAL_VALUE (b));
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 static hashval_t
227 const_fixed_htab_hash (const void *x)
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
232 h = fixed_hash (CONST_FIXED_VALUE (value));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h ^= GET_MODE (value);
235 return h;
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
241 static int
242 const_fixed_htab_eq (const void *x, const void *y)
244 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
246 if (GET_MODE (a) != GET_MODE (b))
247 return 0;
248 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 static hashval_t
254 mem_attrs_htab_hash (const void *x)
256 const mem_attrs *const p = (const mem_attrs *) x;
258 return (p->alias ^ (p->align * 1000)
259 ^ (p->addrspace * 4000)
260 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
261 ^ ((p->size_known_p ? p->size : 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p->expr, 0));
265 /* Return true if the given memory attributes are equal. */
267 static bool
268 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
270 return (p->alias == q->alias
271 && p->offset_known_p == q->offset_known_p
272 && (!p->offset_known_p || p->offset == q->offset)
273 && p->size_known_p == q->size_known_p
274 && (!p->size_known_p || p->size == q->size)
275 && p->align == q->align
276 && p->addrspace == q->addrspace
277 && (p->expr == q->expr
278 || (p->expr != NULL_TREE && q->expr != NULL_TREE
279 && operand_equal_p (p->expr, q->expr, 0))));
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
284 mem_attrs *). */
286 static int
287 mem_attrs_htab_eq (const void *x, const void *y)
289 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 static void
295 set_mem_attrs (rtx mem, mem_attrs *attrs)
297 void **slot;
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
302 MEM_ATTRS (mem) = 0;
303 return;
306 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
307 if (*slot == 0)
309 *slot = ggc_alloc_mem_attrs ();
310 memcpy (*slot, attrs, sizeof (mem_attrs));
313 MEM_ATTRS (mem) = (mem_attrs *) *slot;
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 static hashval_t
319 reg_attrs_htab_hash (const void *x)
321 const reg_attrs *const p = (const reg_attrs *) x;
323 return ((p->offset * 1000) ^ (intptr_t) p->decl);
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
328 reg_attrs *). */
330 static int
331 reg_attrs_htab_eq (const void *x, const void *y)
333 const reg_attrs *const p = (const reg_attrs *) x;
334 const reg_attrs *const q = (const reg_attrs *) y;
336 return (p->decl == q->decl && p->offset == q->offset);
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
340 MEM of mode MODE. */
342 static reg_attrs *
343 get_reg_attrs (tree decl, int offset)
345 reg_attrs attrs;
346 void **slot;
348 /* If everything is the default, we can just return zero. */
349 if (decl == 0 && offset == 0)
350 return 0;
352 attrs.decl = decl;
353 attrs.offset = offset;
355 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
356 if (*slot == 0)
358 *slot = ggc_alloc_reg_attrs ();
359 memcpy (*slot, &attrs, sizeof (reg_attrs));
362 return (reg_attrs *) *slot;
366 #if !HAVE_blockage
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
368 across this insn. */
371 gen_blockage (void)
373 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
374 MEM_VOLATILE_P (x) = true;
375 return x;
377 #endif
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
385 gen_raw_REG (enum machine_mode mode, int regno)
387 rtx x = gen_rtx_raw_REG (mode, regno);
388 ORIGINAL_REGNO (x) = regno;
389 return x;
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
399 void **slot;
401 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
402 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx && arg == STORE_FLAG_VALUE)
406 return const_true_rtx;
407 #endif
409 /* Look up the CONST_INT in the hash table. */
410 slot = htab_find_slot_with_hash (const_int_htab, &arg,
411 (hashval_t) arg, INSERT);
412 if (*slot == 0)
413 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
415 return (rtx) *slot;
419 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
421 return GEN_INT (trunc_int_for_mode (c, mode));
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
431 static rtx
432 lookup_const_double (rtx real)
434 void **slot = htab_find_slot (const_double_htab, real, INSERT);
435 if (*slot == 0)
436 *slot = real;
438 return (rtx) *slot;
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
444 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
446 rtx real = rtx_alloc (CONST_DOUBLE);
447 PUT_MODE (real, mode);
449 real->u.rv = value;
451 return lookup_const_double (real);
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
458 static rtx
459 lookup_const_fixed (rtx fixed)
461 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
462 if (*slot == 0)
463 *slot = fixed;
465 return (rtx) *slot;
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
474 rtx fixed = rtx_alloc (CONST_FIXED);
475 PUT_MODE (fixed, mode);
477 fixed->u.fv = value;
479 return lookup_const_fixed (fixed);
482 /* Constructs double_int from rtx CST. */
484 double_int
485 rtx_to_double_int (const_rtx cst)
487 double_int r;
489 if (CONST_INT_P (cst))
490 r = double_int::from_shwi (INTVAL (cst));
491 else if (CONST_DOUBLE_AS_INT_P (cst))
493 r.low = CONST_DOUBLE_LOW (cst);
494 r.high = CONST_DOUBLE_HIGH (cst);
496 else
497 gcc_unreachable ();
499 return r;
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
504 a double_int. */
507 immed_double_int_const (double_int i, enum machine_mode mode)
509 return immed_double_const (i.low, i.high, mode);
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
515 implied upper bits are copies of the high bit of i1. The value
516 itself is neither signed nor unsigned. Do not use this routine for
517 non-integer modes; convert to REAL_VALUE_TYPE and use
518 CONST_DOUBLE_FROM_REAL_VALUE. */
521 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
523 rtx value;
524 unsigned int i;
526 /* There are the following cases (note that there are no modes with
527 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
529 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 gen_int_mode.
531 2) If the value of the integer fits into HOST_WIDE_INT anyway
532 (i.e., i1 consists only from copies of the sign bit, and sign
533 of i0 and i1 are the same), then we return a CONST_INT for i0.
534 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
535 if (mode != VOIDmode)
537 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
538 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
539 /* We can get a 0 for an error mark. */
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
541 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
543 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
544 return gen_int_mode (i0, mode);
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
549 return GEN_INT (i0);
551 /* We use VOIDmode for integers. */
552 value = rtx_alloc (CONST_DOUBLE);
553 PUT_MODE (value, VOIDmode);
555 CONST_DOUBLE_LOW (value) = i0;
556 CONST_DOUBLE_HIGH (value) = i1;
558 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
559 XWINT (value, i) = 0;
561 return lookup_const_double (value);
565 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
571 assigned to them.
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
581 if (mode == Pmode && !reload_in_progress)
583 if (regno == FRAME_POINTER_REGNUM
584 && (!reload_completed || frame_pointer_needed))
585 return frame_pointer_rtx;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno == HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed || frame_pointer_needed))
589 return hard_frame_pointer_rtx;
590 #endif
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno == ARG_POINTER_REGNUM)
593 return arg_pointer_rtx;
594 #endif
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
597 return return_address_pointer_rtx;
598 #endif
599 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
601 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
602 return pic_offset_table_rtx;
603 if (regno == STACK_POINTER_REGNUM)
604 return stack_pointer_rtx;
607 #if 0
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
619 if (cfun
620 && cfun->emit
621 && regno_reg_rtx
622 && regno < FIRST_PSEUDO_REGISTER
623 && reg_raw_mode[regno] == mode)
624 return regno_reg_rtx[regno];
625 #endif
627 return gen_raw_REG (mode, regno);
631 gen_rtx_MEM (enum machine_mode mode, rtx addr)
633 rtx rt = gen_rtx_raw_MEM (mode, addr);
635 /* This field is not cleared by the mere allocation of the rtx, so
636 we clear it here. */
637 MEM_ATTRS (rt) = 0;
639 return rt;
642 /* Generate a memory referring to non-trapping constant memory. */
645 gen_const_mem (enum machine_mode mode, rtx addr)
647 rtx mem = gen_rtx_MEM (mode, addr);
648 MEM_READONLY_P (mem) = 1;
649 MEM_NOTRAP_P (mem) = 1;
650 return mem;
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
654 save areas. */
657 gen_frame_mem (enum machine_mode mode, rtx addr)
659 rtx mem = gen_rtx_MEM (mode, addr);
660 MEM_NOTRAP_P (mem) = 1;
661 set_mem_alias_set (mem, get_frame_alias_set ());
662 return mem;
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
669 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
671 rtx mem = gen_rtx_MEM (mode, addr);
672 MEM_NOTRAP_P (mem) = 1;
673 if (!cfun->calls_alloca)
674 set_mem_alias_set (mem, get_frame_alias_set ());
675 return mem;
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
681 bool
682 validate_subreg (enum machine_mode omode, enum machine_mode imode,
683 const_rtx reg, unsigned int offset)
685 unsigned int isize = GET_MODE_SIZE (imode);
686 unsigned int osize = GET_MODE_SIZE (omode);
688 /* All subregs must be aligned. */
689 if (offset % osize != 0)
690 return false;
692 /* The subreg offset cannot be outside the inner object. */
693 if (offset >= isize)
694 return false;
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
699 fix them all. */
700 if (omode == word_mode)
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize >= UNITS_PER_WORD && isize >= osize)
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
709 && GET_MODE_INNER (imode) == omode)
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
723 if (isize != osize)
724 return false;
727 /* Paradoxical subregs must have offset zero. */
728 if (osize > isize)
729 return offset == 0;
731 /* This is a normal subreg. Verify that the offset is representable. */
733 /* For hard registers, we already have most of these rules collected in
734 subreg_offset_representable_p. */
735 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
737 unsigned int regno = REGNO (reg);
739 #ifdef CANNOT_CHANGE_MODE_CLASS
740 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
741 && GET_MODE_INNER (imode) == omode)
743 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
744 return false;
745 #endif
747 return subreg_offset_representable_p (regno, imode, offset, omode);
750 /* For pseudo registers, we want most of the same checks. Namely:
751 If the register no larger than a word, the subreg must be lowpart.
752 If the register is larger than a word, the subreg must be the lowpart
753 of a subword. A subreg does *not* perform arbitrary bit extraction.
754 Given that we've already checked mode/offset alignment, we only have
755 to check subword subregs here. */
756 if (osize < UNITS_PER_WORD)
758 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
759 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
760 if (offset % UNITS_PER_WORD != low_off)
761 return false;
763 return true;
767 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
769 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
770 return gen_rtx_raw_SUBREG (mode, reg, offset);
773 /* Generate a SUBREG representing the least-significant part of REG if MODE
774 is smaller than mode of REG, otherwise paradoxical SUBREG. */
777 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
779 enum machine_mode inmode;
781 inmode = GET_MODE (reg);
782 if (inmode == VOIDmode)
783 inmode = mode;
784 return gen_rtx_SUBREG (mode, reg,
785 subreg_lowpart_offset (mode, inmode));
789 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
791 rtvec
792 gen_rtvec (int n, ...)
794 int i;
795 rtvec rt_val;
796 va_list p;
798 va_start (p, n);
800 /* Don't allocate an empty rtvec... */
801 if (n == 0)
803 va_end (p);
804 return NULL_RTVEC;
807 rt_val = rtvec_alloc (n);
809 for (i = 0; i < n; i++)
810 rt_val->elem[i] = va_arg (p, rtx);
812 va_end (p);
813 return rt_val;
816 rtvec
817 gen_rtvec_v (int n, rtx *argp)
819 int i;
820 rtvec rt_val;
822 /* Don't allocate an empty rtvec... */
823 if (n == 0)
824 return NULL_RTVEC;
826 rt_val = rtvec_alloc (n);
828 for (i = 0; i < n; i++)
829 rt_val->elem[i] = *argp++;
831 return rt_val;
834 /* Return the number of bytes between the start of an OUTER_MODE
835 in-memory value and the start of an INNER_MODE in-memory value,
836 given that the former is a lowpart of the latter. It may be a
837 paradoxical lowpart, in which case the offset will be negative
838 on big-endian targets. */
841 byte_lowpart_offset (enum machine_mode outer_mode,
842 enum machine_mode inner_mode)
844 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
845 return subreg_lowpart_offset (outer_mode, inner_mode);
846 else
847 return -subreg_lowpart_offset (inner_mode, outer_mode);
850 /* Generate a REG rtx for a new pseudo register of mode MODE.
851 This pseudo is assigned the next sequential register number. */
854 gen_reg_rtx (enum machine_mode mode)
856 rtx val;
857 unsigned int align = GET_MODE_ALIGNMENT (mode);
859 gcc_assert (can_create_pseudo_p ());
861 /* If a virtual register with bigger mode alignment is generated,
862 increase stack alignment estimation because it might be spilled
863 to stack later. */
864 if (SUPPORTS_STACK_ALIGNMENT
865 && crtl->stack_alignment_estimated < align
866 && !crtl->stack_realign_processed)
868 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
869 if (crtl->stack_alignment_estimated < min_align)
870 crtl->stack_alignment_estimated = min_align;
873 if (generating_concat_p
874 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
875 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
877 /* For complex modes, don't make a single pseudo.
878 Instead, make a CONCAT of two pseudos.
879 This allows noncontiguous allocation of the real and imaginary parts,
880 which makes much better code. Besides, allocating DCmode
881 pseudos overstrains reload on some machines like the 386. */
882 rtx realpart, imagpart;
883 enum machine_mode partmode = GET_MODE_INNER (mode);
885 realpart = gen_reg_rtx (partmode);
886 imagpart = gen_reg_rtx (partmode);
887 return gen_rtx_CONCAT (mode, realpart, imagpart);
890 /* Make sure regno_pointer_align, and regno_reg_rtx are large
891 enough to have an element for this pseudo reg number. */
893 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
895 int old_size = crtl->emit.regno_pointer_align_length;
896 char *tmp;
897 rtx *new1;
899 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
900 memset (tmp + old_size, 0, old_size);
901 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
903 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
904 memset (new1 + old_size, 0, old_size * sizeof (rtx));
905 regno_reg_rtx = new1;
907 crtl->emit.regno_pointer_align_length = old_size * 2;
910 val = gen_raw_REG (mode, reg_rtx_no);
911 regno_reg_rtx[reg_rtx_no++] = val;
912 return val;
915 /* Update NEW with the same attributes as REG, but with OFFSET added
916 to the REG_OFFSET. */
918 static void
919 update_reg_offset (rtx new_rtx, rtx reg, int offset)
921 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
922 REG_OFFSET (reg) + offset);
925 /* Generate a register with same attributes as REG, but with OFFSET
926 added to the REG_OFFSET. */
929 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
930 int offset)
932 rtx new_rtx = gen_rtx_REG (mode, regno);
934 update_reg_offset (new_rtx, reg, offset);
935 return new_rtx;
938 /* Generate a new pseudo-register with the same attributes as REG, but
939 with OFFSET added to the REG_OFFSET. */
942 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
944 rtx new_rtx = gen_reg_rtx (mode);
946 update_reg_offset (new_rtx, reg, offset);
947 return new_rtx;
950 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
951 new register is a (possibly paradoxical) lowpart of the old one. */
953 void
954 adjust_reg_mode (rtx reg, enum machine_mode mode)
956 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
957 PUT_MODE (reg, mode);
960 /* Copy REG's attributes from X, if X has any attributes. If REG and X
961 have different modes, REG is a (possibly paradoxical) lowpart of X. */
963 void
964 set_reg_attrs_from_value (rtx reg, rtx x)
966 int offset;
967 bool can_be_reg_pointer = true;
969 /* Don't call mark_reg_pointer for incompatible pointer sign
970 extension. */
971 while (GET_CODE (x) == SIGN_EXTEND
972 || GET_CODE (x) == ZERO_EXTEND
973 || GET_CODE (x) == TRUNCATE
974 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
976 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
977 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
978 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
979 can_be_reg_pointer = false;
980 #endif
981 x = XEXP (x, 0);
984 /* Hard registers can be reused for multiple purposes within the same
985 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
986 on them is wrong. */
987 if (HARD_REGISTER_P (reg))
988 return;
990 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
991 if (MEM_P (x))
993 if (MEM_OFFSET_KNOWN_P (x))
994 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
995 MEM_OFFSET (x) + offset);
996 if (can_be_reg_pointer && MEM_POINTER (x))
997 mark_reg_pointer (reg, 0);
999 else if (REG_P (x))
1001 if (REG_ATTRS (x))
1002 update_reg_offset (reg, x, offset);
1003 if (can_be_reg_pointer && REG_POINTER (x))
1004 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1008 /* Generate a REG rtx for a new pseudo register, copying the mode
1009 and attributes from X. */
1012 gen_reg_rtx_and_attrs (rtx x)
1014 rtx reg = gen_reg_rtx (GET_MODE (x));
1015 set_reg_attrs_from_value (reg, x);
1016 return reg;
1019 /* Set the register attributes for registers contained in PARM_RTX.
1020 Use needed values from memory attributes of MEM. */
1022 void
1023 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1025 if (REG_P (parm_rtx))
1026 set_reg_attrs_from_value (parm_rtx, mem);
1027 else if (GET_CODE (parm_rtx) == PARALLEL)
1029 /* Check for a NULL entry in the first slot, used to indicate that the
1030 parameter goes both on the stack and in registers. */
1031 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1032 for (; i < XVECLEN (parm_rtx, 0); i++)
1034 rtx x = XVECEXP (parm_rtx, 0, i);
1035 if (REG_P (XEXP (x, 0)))
1036 REG_ATTRS (XEXP (x, 0))
1037 = get_reg_attrs (MEM_EXPR (mem),
1038 INTVAL (XEXP (x, 1)));
1043 /* Set the REG_ATTRS for registers in value X, given that X represents
1044 decl T. */
1046 void
1047 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1049 if (GET_CODE (x) == SUBREG)
1051 gcc_assert (subreg_lowpart_p (x));
1052 x = SUBREG_REG (x);
1054 if (REG_P (x))
1055 REG_ATTRS (x)
1056 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1057 DECL_MODE (t)));
1058 if (GET_CODE (x) == CONCAT)
1060 if (REG_P (XEXP (x, 0)))
1061 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1062 if (REG_P (XEXP (x, 1)))
1063 REG_ATTRS (XEXP (x, 1))
1064 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1066 if (GET_CODE (x) == PARALLEL)
1068 int i, start;
1070 /* Check for a NULL entry, used to indicate that the parameter goes
1071 both on the stack and in registers. */
1072 if (XEXP (XVECEXP (x, 0, 0), 0))
1073 start = 0;
1074 else
1075 start = 1;
1077 for (i = start; i < XVECLEN (x, 0); i++)
1079 rtx y = XVECEXP (x, 0, i);
1080 if (REG_P (XEXP (y, 0)))
1081 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1086 /* Assign the RTX X to declaration T. */
1088 void
1089 set_decl_rtl (tree t, rtx x)
1091 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1092 if (x)
1093 set_reg_attrs_for_decl_rtl (t, x);
1096 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1097 if the ABI requires the parameter to be passed by reference. */
1099 void
1100 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1102 DECL_INCOMING_RTL (t) = x;
1103 if (x && !by_reference_p)
1104 set_reg_attrs_for_decl_rtl (t, x);
1107 /* Identify REG (which may be a CONCAT) as a user register. */
1109 void
1110 mark_user_reg (rtx reg)
1112 if (GET_CODE (reg) == CONCAT)
1114 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1115 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1117 else
1119 gcc_assert (REG_P (reg));
1120 REG_USERVAR_P (reg) = 1;
1124 /* Identify REG as a probable pointer register and show its alignment
1125 as ALIGN, if nonzero. */
1127 void
1128 mark_reg_pointer (rtx reg, int align)
1130 if (! REG_POINTER (reg))
1132 REG_POINTER (reg) = 1;
1134 if (align)
1135 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1137 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1138 /* We can no-longer be sure just how aligned this pointer is. */
1139 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1142 /* Return 1 plus largest pseudo reg number used in the current function. */
1145 max_reg_num (void)
1147 return reg_rtx_no;
1150 /* Return 1 + the largest label number used so far in the current function. */
1153 max_label_num (void)
1155 return label_num;
1158 /* Return first label number used in this function (if any were used). */
1161 get_first_label_num (void)
1163 return first_label_num;
1166 /* If the rtx for label was created during the expansion of a nested
1167 function, then first_label_num won't include this label number.
1168 Fix this now so that array indices work later. */
1170 void
1171 maybe_set_first_label_num (rtx x)
1173 if (CODE_LABEL_NUMBER (x) < first_label_num)
1174 first_label_num = CODE_LABEL_NUMBER (x);
1177 /* Return a value representing some low-order bits of X, where the number
1178 of low-order bits is given by MODE. Note that no conversion is done
1179 between floating-point and fixed-point values, rather, the bit
1180 representation is returned.
1182 This function handles the cases in common between gen_lowpart, below,
1183 and two variants in cse.c and combine.c. These are the cases that can
1184 be safely handled at all points in the compilation.
1186 If this is not a case we can handle, return 0. */
1189 gen_lowpart_common (enum machine_mode mode, rtx x)
1191 int msize = GET_MODE_SIZE (mode);
1192 int xsize;
1193 int offset = 0;
1194 enum machine_mode innermode;
1196 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1197 so we have to make one up. Yuk. */
1198 innermode = GET_MODE (x);
1199 if (CONST_INT_P (x)
1200 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1201 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1202 else if (innermode == VOIDmode)
1203 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1205 xsize = GET_MODE_SIZE (innermode);
1207 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1209 if (innermode == mode)
1210 return x;
1212 /* MODE must occupy no more words than the mode of X. */
1213 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1214 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1215 return 0;
1217 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1218 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1219 return 0;
1221 offset = subreg_lowpart_offset (mode, innermode);
1223 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1224 && (GET_MODE_CLASS (mode) == MODE_INT
1225 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1227 /* If we are getting the low-order part of something that has been
1228 sign- or zero-extended, we can either just use the object being
1229 extended or make a narrower extension. If we want an even smaller
1230 piece than the size of the object being extended, call ourselves
1231 recursively.
1233 This case is used mostly by combine and cse. */
1235 if (GET_MODE (XEXP (x, 0)) == mode)
1236 return XEXP (x, 0);
1237 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1238 return gen_lowpart_common (mode, XEXP (x, 0));
1239 else if (msize < xsize)
1240 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1242 else if (GET_CODE (x) == SUBREG || REG_P (x)
1243 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1244 || CONST_DOUBLE_P (x) || CONST_INT_P (x))
1245 return simplify_gen_subreg (mode, x, innermode, offset);
1247 /* Otherwise, we can't do this. */
1248 return 0;
1252 gen_highpart (enum machine_mode mode, rtx x)
1254 unsigned int msize = GET_MODE_SIZE (mode);
1255 rtx result;
1257 /* This case loses if X is a subreg. To catch bugs early,
1258 complain if an invalid MODE is used even in other cases. */
1259 gcc_assert (msize <= UNITS_PER_WORD
1260 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1262 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1263 subreg_highpart_offset (mode, GET_MODE (x)));
1264 gcc_assert (result);
1266 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1267 the target if we have a MEM. gen_highpart must return a valid operand,
1268 emitting code if necessary to do so. */
1269 if (MEM_P (result))
1271 result = validize_mem (result);
1272 gcc_assert (result);
1275 return result;
1278 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1279 be VOIDmode constant. */
1281 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1283 if (GET_MODE (exp) != VOIDmode)
1285 gcc_assert (GET_MODE (exp) == innermode);
1286 return gen_highpart (outermode, exp);
1288 return simplify_gen_subreg (outermode, exp, innermode,
1289 subreg_highpart_offset (outermode, innermode));
1292 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1294 unsigned int
1295 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1297 unsigned int offset = 0;
1298 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1300 if (difference > 0)
1302 if (WORDS_BIG_ENDIAN)
1303 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1304 if (BYTES_BIG_ENDIAN)
1305 offset += difference % UNITS_PER_WORD;
1308 return offset;
1311 /* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1313 unsigned int
1314 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1316 unsigned int offset = 0;
1317 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1321 if (difference > 0)
1323 if (! WORDS_BIG_ENDIAN)
1324 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1325 if (! BYTES_BIG_ENDIAN)
1326 offset += difference % UNITS_PER_WORD;
1329 return offset;
1332 /* Return 1 iff X, assumed to be a SUBREG,
1333 refers to the least significant part of its containing reg.
1334 If X is not a SUBREG, always return 1 (it is its own low part!). */
1337 subreg_lowpart_p (const_rtx x)
1339 if (GET_CODE (x) != SUBREG)
1340 return 1;
1341 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1342 return 0;
1344 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1345 == SUBREG_BYTE (x));
1348 /* Return true if X is a paradoxical subreg, false otherwise. */
1349 bool
1350 paradoxical_subreg_p (const_rtx x)
1352 if (GET_CODE (x) != SUBREG)
1353 return false;
1354 return (GET_MODE_PRECISION (GET_MODE (x))
1355 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1358 /* Return subword OFFSET of operand OP.
1359 The word number, OFFSET, is interpreted as the word number starting
1360 at the low-order address. OFFSET 0 is the low-order word if not
1361 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1363 If we cannot extract the required word, we return zero. Otherwise,
1364 an rtx corresponding to the requested word will be returned.
1366 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1367 reload has completed, a valid address will always be returned. After
1368 reload, if a valid address cannot be returned, we return zero.
1370 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1371 it is the responsibility of the caller.
1373 MODE is the mode of OP in case it is a CONST_INT.
1375 ??? This is still rather broken for some cases. The problem for the
1376 moment is that all callers of this thing provide no 'goal mode' to
1377 tell us to work with. This exists because all callers were written
1378 in a word based SUBREG world.
1379 Now use of this function can be deprecated by simplify_subreg in most
1380 cases.
1384 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1386 if (mode == VOIDmode)
1387 mode = GET_MODE (op);
1389 gcc_assert (mode != VOIDmode);
1391 /* If OP is narrower than a word, fail. */
1392 if (mode != BLKmode
1393 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1394 return 0;
1396 /* If we want a word outside OP, return zero. */
1397 if (mode != BLKmode
1398 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1399 return const0_rtx;
1401 /* Form a new MEM at the requested address. */
1402 if (MEM_P (op))
1404 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1406 if (! validate_address)
1407 return new_rtx;
1409 else if (reload_completed)
1411 if (! strict_memory_address_addr_space_p (word_mode,
1412 XEXP (new_rtx, 0),
1413 MEM_ADDR_SPACE (op)))
1414 return 0;
1416 else
1417 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1420 /* Rest can be handled by simplify_subreg. */
1421 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1424 /* Similar to `operand_subword', but never return 0. If we can't
1425 extract the required subword, put OP into a register and try again.
1426 The second attempt must succeed. We always validate the address in
1427 this case.
1429 MODE is the mode of OP, in case it is CONST_INT. */
1432 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1434 rtx result = operand_subword (op, offset, 1, mode);
1436 if (result)
1437 return result;
1439 if (mode != BLKmode && mode != VOIDmode)
1441 /* If this is a register which can not be accessed by words, copy it
1442 to a pseudo register. */
1443 if (REG_P (op))
1444 op = copy_to_reg (op);
1445 else
1446 op = force_reg (mode, op);
1449 result = operand_subword (op, offset, 1, mode);
1450 gcc_assert (result);
1452 return result;
1455 /* Returns 1 if both MEM_EXPR can be considered equal
1456 and 0 otherwise. */
1459 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1461 if (expr1 == expr2)
1462 return 1;
1464 if (! expr1 || ! expr2)
1465 return 0;
1467 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1468 return 0;
1470 return operand_equal_p (expr1, expr2, 0);
1473 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1474 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1475 -1 if not known. */
1478 get_mem_align_offset (rtx mem, unsigned int align)
1480 tree expr;
1481 unsigned HOST_WIDE_INT offset;
1483 /* This function can't use
1484 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1485 || (MAX (MEM_ALIGN (mem),
1486 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1487 < align))
1488 return -1;
1489 else
1490 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1491 for two reasons:
1492 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1493 for <variable>. get_inner_reference doesn't handle it and
1494 even if it did, the alignment in that case needs to be determined
1495 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1496 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1497 isn't sufficiently aligned, the object it is in might be. */
1498 gcc_assert (MEM_P (mem));
1499 expr = MEM_EXPR (mem);
1500 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1501 return -1;
1503 offset = MEM_OFFSET (mem);
1504 if (DECL_P (expr))
1506 if (DECL_ALIGN (expr) < align)
1507 return -1;
1509 else if (INDIRECT_REF_P (expr))
1511 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1512 return -1;
1514 else if (TREE_CODE (expr) == COMPONENT_REF)
1516 while (1)
1518 tree inner = TREE_OPERAND (expr, 0);
1519 tree field = TREE_OPERAND (expr, 1);
1520 tree byte_offset = component_ref_field_offset (expr);
1521 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1523 if (!byte_offset
1524 || !host_integerp (byte_offset, 1)
1525 || !host_integerp (bit_offset, 1))
1526 return -1;
1528 offset += tree_low_cst (byte_offset, 1);
1529 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1531 if (inner == NULL_TREE)
1533 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1534 < (unsigned int) align)
1535 return -1;
1536 break;
1538 else if (DECL_P (inner))
1540 if (DECL_ALIGN (inner) < align)
1541 return -1;
1542 break;
1544 else if (TREE_CODE (inner) != COMPONENT_REF)
1545 return -1;
1546 expr = inner;
1549 else
1550 return -1;
1552 return offset & ((align / BITS_PER_UNIT) - 1);
1555 /* Given REF (a MEM) and T, either the type of X or the expression
1556 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1557 if we are making a new object of this type. BITPOS is nonzero if
1558 there is an offset outstanding on T that will be applied later. */
1560 void
1561 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1562 HOST_WIDE_INT bitpos)
1564 HOST_WIDE_INT apply_bitpos = 0;
1565 tree type;
1566 struct mem_attrs attrs, *defattrs, *refattrs;
1567 addr_space_t as;
1569 /* It can happen that type_for_mode was given a mode for which there
1570 is no language-level type. In which case it returns NULL, which
1571 we can see here. */
1572 if (t == NULL_TREE)
1573 return;
1575 type = TYPE_P (t) ? t : TREE_TYPE (t);
1576 if (type == error_mark_node)
1577 return;
1579 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1580 wrong answer, as it assumes that DECL_RTL already has the right alias
1581 info. Callers should not set DECL_RTL until after the call to
1582 set_mem_attributes. */
1583 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1585 memset (&attrs, 0, sizeof (attrs));
1587 /* Get the alias set from the expression or type (perhaps using a
1588 front-end routine) and use it. */
1589 attrs.alias = get_alias_set (t);
1591 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1592 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1594 /* Default values from pre-existing memory attributes if present. */
1595 refattrs = MEM_ATTRS (ref);
1596 if (refattrs)
1598 /* ??? Can this ever happen? Calling this routine on a MEM that
1599 already carries memory attributes should probably be invalid. */
1600 attrs.expr = refattrs->expr;
1601 attrs.offset_known_p = refattrs->offset_known_p;
1602 attrs.offset = refattrs->offset;
1603 attrs.size_known_p = refattrs->size_known_p;
1604 attrs.size = refattrs->size;
1605 attrs.align = refattrs->align;
1608 /* Otherwise, default values from the mode of the MEM reference. */
1609 else
1611 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1612 gcc_assert (!defattrs->expr);
1613 gcc_assert (!defattrs->offset_known_p);
1615 /* Respect mode size. */
1616 attrs.size_known_p = defattrs->size_known_p;
1617 attrs.size = defattrs->size;
1618 /* ??? Is this really necessary? We probably should always get
1619 the size from the type below. */
1621 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1622 if T is an object, always compute the object alignment below. */
1623 if (TYPE_P (t))
1624 attrs.align = defattrs->align;
1625 else
1626 attrs.align = BITS_PER_UNIT;
1627 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1628 e.g. if the type carries an alignment attribute. Should we be
1629 able to simply always use TYPE_ALIGN? */
1632 /* We can set the alignment from the type if we are making an object,
1633 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1634 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1635 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1637 else if (TREE_CODE (t) == MEM_REF)
1639 tree op0 = TREE_OPERAND (t, 0);
1640 if (TREE_CODE (op0) == ADDR_EXPR
1641 && (DECL_P (TREE_OPERAND (op0, 0))
1642 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1644 if (DECL_P (TREE_OPERAND (op0, 0)))
1645 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1646 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1648 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1649 #ifdef CONSTANT_ALIGNMENT
1650 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1651 attrs.align);
1652 #endif
1654 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1656 unsigned HOST_WIDE_INT ioff
1657 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1658 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1659 attrs.align = MIN (aoff, attrs.align);
1662 else
1663 /* ??? This isn't fully correct, we can't set the alignment from the
1664 type in all cases. */
1665 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1668 else if (TREE_CODE (t) == TARGET_MEM_REF)
1669 /* ??? This isn't fully correct, we can't set the alignment from the
1670 type in all cases. */
1671 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1673 /* If the size is known, we can set that. */
1674 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1676 attrs.size_known_p = true;
1677 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1680 /* If T is not a type, we may be able to deduce some more information about
1681 the expression. */
1682 if (! TYPE_P (t))
1684 tree base;
1685 bool align_computed = false;
1687 if (TREE_THIS_VOLATILE (t))
1688 MEM_VOLATILE_P (ref) = 1;
1690 /* Now remove any conversions: they don't change what the underlying
1691 object is. Likewise for SAVE_EXPR. */
1692 while (CONVERT_EXPR_P (t)
1693 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1694 || TREE_CODE (t) == SAVE_EXPR)
1695 t = TREE_OPERAND (t, 0);
1697 /* Note whether this expression can trap. */
1698 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1700 base = get_base_address (t);
1701 if (base)
1703 if (DECL_P (base)
1704 && TREE_READONLY (base)
1705 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1706 && !TREE_THIS_VOLATILE (base))
1707 MEM_READONLY_P (ref) = 1;
1709 /* Mark static const strings readonly as well. */
1710 if (TREE_CODE (base) == STRING_CST
1711 && TREE_READONLY (base)
1712 && TREE_STATIC (base))
1713 MEM_READONLY_P (ref) = 1;
1715 if (TREE_CODE (base) == MEM_REF
1716 || TREE_CODE (base) == TARGET_MEM_REF)
1717 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1718 0))));
1719 else
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1722 else
1723 as = TYPE_ADDR_SPACE (type);
1725 /* If this expression uses it's parent's alias set, mark it such
1726 that we won't change it. */
1727 if (component_uses_parent_alias_set (t))
1728 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1730 /* If this is a decl, set the attributes of the MEM from it. */
1731 if (DECL_P (t))
1733 attrs.expr = t;
1734 attrs.offset_known_p = true;
1735 attrs.offset = 0;
1736 apply_bitpos = bitpos;
1737 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1739 attrs.size_known_p = true;
1740 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1742 else
1743 attrs.size_known_p = false;
1744 attrs.align = DECL_ALIGN (t);
1745 align_computed = true;
1748 /* If this is a constant, we know the alignment. */
1749 else if (CONSTANT_CLASS_P (t))
1751 attrs.align = TYPE_ALIGN (type);
1752 #ifdef CONSTANT_ALIGNMENT
1753 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1754 #endif
1755 align_computed = true;
1758 /* If this is a field reference and not a bit-field, record it. */
1759 /* ??? There is some information that can be gleaned from bit-fields,
1760 such as the word offset in the structure that might be modified.
1761 But skip it for now. */
1762 else if (TREE_CODE (t) == COMPONENT_REF
1763 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1765 attrs.expr = t;
1766 attrs.offset_known_p = true;
1767 attrs.offset = 0;
1768 apply_bitpos = bitpos;
1769 /* ??? Any reason the field size would be different than
1770 the size we got from the type? */
1773 /* If this is an array reference, look for an outer field reference. */
1774 else if (TREE_CODE (t) == ARRAY_REF)
1776 tree off_tree = size_zero_node;
1777 /* We can't modify t, because we use it at the end of the
1778 function. */
1779 tree t2 = t;
1783 tree index = TREE_OPERAND (t2, 1);
1784 tree low_bound = array_ref_low_bound (t2);
1785 tree unit_size = array_ref_element_size (t2);
1787 /* We assume all arrays have sizes that are a multiple of a byte.
1788 First subtract the lower bound, if any, in the type of the
1789 index, then convert to sizetype and multiply by the size of
1790 the array element. */
1791 if (! integer_zerop (low_bound))
1792 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1793 index, low_bound);
1795 off_tree = size_binop (PLUS_EXPR,
1796 size_binop (MULT_EXPR,
1797 fold_convert (sizetype,
1798 index),
1799 unit_size),
1800 off_tree);
1801 t2 = TREE_OPERAND (t2, 0);
1803 while (TREE_CODE (t2) == ARRAY_REF);
1805 if (DECL_P (t2))
1807 attrs.expr = t2;
1808 attrs.offset_known_p = false;
1809 if (host_integerp (off_tree, 1))
1811 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1812 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1813 attrs.align = DECL_ALIGN (t2);
1814 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1815 attrs.align = aoff;
1816 align_computed = true;
1817 attrs.offset_known_p = true;
1818 attrs.offset = ioff;
1819 apply_bitpos = bitpos;
1822 else if (TREE_CODE (t2) == COMPONENT_REF)
1824 attrs.expr = t2;
1825 attrs.offset_known_p = false;
1826 if (host_integerp (off_tree, 1))
1828 attrs.offset_known_p = true;
1829 attrs.offset = tree_low_cst (off_tree, 1);
1830 apply_bitpos = bitpos;
1832 /* ??? Any reason the field size would be different than
1833 the size we got from the type? */
1837 /* If this is an indirect reference, record it. */
1838 else if (TREE_CODE (t) == MEM_REF
1839 || TREE_CODE (t) == TARGET_MEM_REF)
1841 attrs.expr = t;
1842 attrs.offset_known_p = true;
1843 attrs.offset = 0;
1844 apply_bitpos = bitpos;
1847 if (!align_computed)
1849 unsigned int obj_align = get_object_alignment (t);
1850 attrs.align = MAX (attrs.align, obj_align);
1853 else
1854 as = TYPE_ADDR_SPACE (type);
1856 /* If we modified OFFSET based on T, then subtract the outstanding
1857 bit position offset. Similarly, increase the size of the accessed
1858 object to contain the negative offset. */
1859 if (apply_bitpos)
1861 gcc_assert (attrs.offset_known_p);
1862 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1863 if (attrs.size_known_p)
1864 attrs.size += apply_bitpos / BITS_PER_UNIT;
1867 /* Now set the attributes we computed above. */
1868 attrs.addrspace = as;
1869 set_mem_attrs (ref, &attrs);
1872 void
1873 set_mem_attributes (rtx ref, tree t, int objectp)
1875 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1878 /* Set the alias set of MEM to SET. */
1880 void
1881 set_mem_alias_set (rtx mem, alias_set_type set)
1883 struct mem_attrs attrs;
1885 /* If the new and old alias sets don't conflict, something is wrong. */
1886 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1887 attrs = *get_mem_attrs (mem);
1888 attrs.alias = set;
1889 set_mem_attrs (mem, &attrs);
1892 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1894 void
1895 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1897 struct mem_attrs attrs;
1899 attrs = *get_mem_attrs (mem);
1900 attrs.addrspace = addrspace;
1901 set_mem_attrs (mem, &attrs);
1904 /* Set the alignment of MEM to ALIGN bits. */
1906 void
1907 set_mem_align (rtx mem, unsigned int align)
1909 struct mem_attrs attrs;
1911 attrs = *get_mem_attrs (mem);
1912 attrs.align = align;
1913 set_mem_attrs (mem, &attrs);
1916 /* Set the expr for MEM to EXPR. */
1918 void
1919 set_mem_expr (rtx mem, tree expr)
1921 struct mem_attrs attrs;
1923 attrs = *get_mem_attrs (mem);
1924 attrs.expr = expr;
1925 set_mem_attrs (mem, &attrs);
1928 /* Set the offset of MEM to OFFSET. */
1930 void
1931 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1933 struct mem_attrs attrs;
1935 attrs = *get_mem_attrs (mem);
1936 attrs.offset_known_p = true;
1937 attrs.offset = offset;
1938 set_mem_attrs (mem, &attrs);
1941 /* Clear the offset of MEM. */
1943 void
1944 clear_mem_offset (rtx mem)
1946 struct mem_attrs attrs;
1948 attrs = *get_mem_attrs (mem);
1949 attrs.offset_known_p = false;
1950 set_mem_attrs (mem, &attrs);
1953 /* Set the size of MEM to SIZE. */
1955 void
1956 set_mem_size (rtx mem, HOST_WIDE_INT size)
1958 struct mem_attrs attrs;
1960 attrs = *get_mem_attrs (mem);
1961 attrs.size_known_p = true;
1962 attrs.size = size;
1963 set_mem_attrs (mem, &attrs);
1966 /* Clear the size of MEM. */
1968 void
1969 clear_mem_size (rtx mem)
1971 struct mem_attrs attrs;
1973 attrs = *get_mem_attrs (mem);
1974 attrs.size_known_p = false;
1975 set_mem_attrs (mem, &attrs);
1978 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1979 and its address changed to ADDR. (VOIDmode means don't change the mode.
1980 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1981 returned memory location is required to be valid. The memory
1982 attributes are not changed. */
1984 static rtx
1985 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1987 addr_space_t as;
1988 rtx new_rtx;
1990 gcc_assert (MEM_P (memref));
1991 as = MEM_ADDR_SPACE (memref);
1992 if (mode == VOIDmode)
1993 mode = GET_MODE (memref);
1994 if (addr == 0)
1995 addr = XEXP (memref, 0);
1996 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1997 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1998 return memref;
2000 if (validate)
2002 if (reload_in_progress || reload_completed)
2003 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2004 else
2005 addr = memory_address_addr_space (mode, addr, as);
2008 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2009 return memref;
2011 new_rtx = gen_rtx_MEM (mode, addr);
2012 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2013 return new_rtx;
2016 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2017 way we are changing MEMREF, so we only preserve the alias set. */
2020 change_address (rtx memref, enum machine_mode mode, rtx addr)
2022 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2023 enum machine_mode mmode = GET_MODE (new_rtx);
2024 struct mem_attrs attrs, *defattrs;
2026 attrs = *get_mem_attrs (memref);
2027 defattrs = mode_mem_attrs[(int) mmode];
2028 attrs.expr = NULL_TREE;
2029 attrs.offset_known_p = false;
2030 attrs.size_known_p = defattrs->size_known_p;
2031 attrs.size = defattrs->size;
2032 attrs.align = defattrs->align;
2034 /* If there are no changes, just return the original memory reference. */
2035 if (new_rtx == memref)
2037 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2038 return new_rtx;
2040 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2041 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2044 set_mem_attrs (new_rtx, &attrs);
2045 return new_rtx;
2048 /* Return a memory reference like MEMREF, but with its mode changed
2049 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2050 nonzero, the memory address is forced to be valid.
2051 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2052 and the caller is responsible for adjusting MEMREF base register.
2053 If ADJUST_OBJECT is zero, the underlying object associated with the
2054 memory reference is left unchanged and the caller is responsible for
2055 dealing with it. Otherwise, if the new memory reference is outside
2056 the underlying object, even partially, then the object is dropped. */
2059 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2060 int validate, int adjust_address, int adjust_object)
2062 rtx addr = XEXP (memref, 0);
2063 rtx new_rtx;
2064 enum machine_mode address_mode;
2065 int pbits;
2066 struct mem_attrs attrs, *defattrs;
2067 unsigned HOST_WIDE_INT max_align;
2069 attrs = *get_mem_attrs (memref);
2071 /* If there are no changes, just return the original memory reference. */
2072 if (mode == GET_MODE (memref) && !offset
2073 && (!validate || memory_address_addr_space_p (mode, addr,
2074 attrs.addrspace)))
2075 return memref;
2077 /* ??? Prefer to create garbage instead of creating shared rtl.
2078 This may happen even if offset is nonzero -- consider
2079 (plus (plus reg reg) const_int) -- so do this always. */
2080 addr = copy_rtx (addr);
2082 /* Convert a possibly large offset to a signed value within the
2083 range of the target address space. */
2084 address_mode = get_address_mode (memref);
2085 pbits = GET_MODE_BITSIZE (address_mode);
2086 if (HOST_BITS_PER_WIDE_INT > pbits)
2088 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2089 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2090 >> shift);
2093 if (adjust_address)
2095 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2096 object, we can merge it into the LO_SUM. */
2097 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2098 && offset >= 0
2099 && (unsigned HOST_WIDE_INT) offset
2100 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2101 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2102 plus_constant (address_mode,
2103 XEXP (addr, 1), offset));
2104 else
2105 addr = plus_constant (address_mode, addr, offset);
2108 new_rtx = change_address_1 (memref, mode, addr, validate);
2110 /* If the address is a REG, change_address_1 rightfully returns memref,
2111 but this would destroy memref's MEM_ATTRS. */
2112 if (new_rtx == memref && offset != 0)
2113 new_rtx = copy_rtx (new_rtx);
2115 /* Conservatively drop the object if we don't know where we start from. */
2116 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2118 attrs.expr = NULL_TREE;
2119 attrs.alias = 0;
2122 /* Compute the new values of the memory attributes due to this adjustment.
2123 We add the offsets and update the alignment. */
2124 if (attrs.offset_known_p)
2126 attrs.offset += offset;
2128 /* Drop the object if the new left end is not within its bounds. */
2129 if (adjust_object && attrs.offset < 0)
2131 attrs.expr = NULL_TREE;
2132 attrs.alias = 0;
2136 /* Compute the new alignment by taking the MIN of the alignment and the
2137 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2138 if zero. */
2139 if (offset != 0)
2141 max_align = (offset & -offset) * BITS_PER_UNIT;
2142 attrs.align = MIN (attrs.align, max_align);
2145 /* We can compute the size in a number of ways. */
2146 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2147 if (defattrs->size_known_p)
2149 /* Drop the object if the new right end is not within its bounds. */
2150 if (adjust_object && (offset + defattrs->size) > attrs.size)
2152 attrs.expr = NULL_TREE;
2153 attrs.alias = 0;
2155 attrs.size_known_p = true;
2156 attrs.size = defattrs->size;
2158 else if (attrs.size_known_p)
2160 attrs.size -= offset;
2161 /* ??? The store_by_pieces machinery generates negative sizes. */
2162 gcc_assert (!(adjust_object && attrs.size < 0));
2165 set_mem_attrs (new_rtx, &attrs);
2167 return new_rtx;
2170 /* Return a memory reference like MEMREF, but with its mode changed
2171 to MODE and its address changed to ADDR, which is assumed to be
2172 MEMREF offset by OFFSET bytes. If VALIDATE is
2173 nonzero, the memory address is forced to be valid. */
2176 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2177 HOST_WIDE_INT offset, int validate)
2179 memref = change_address_1 (memref, VOIDmode, addr, validate);
2180 return adjust_address_1 (memref, mode, offset, validate, 0, 0);
2183 /* Return a memory reference like MEMREF, but whose address is changed by
2184 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2185 known to be in OFFSET (possibly 1). */
2188 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2190 rtx new_rtx, addr = XEXP (memref, 0);
2191 enum machine_mode address_mode;
2192 struct mem_attrs attrs, *defattrs;
2194 attrs = *get_mem_attrs (memref);
2195 address_mode = get_address_mode (memref);
2196 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2198 /* At this point we don't know _why_ the address is invalid. It
2199 could have secondary memory references, multiplies or anything.
2201 However, if we did go and rearrange things, we can wind up not
2202 being able to recognize the magic around pic_offset_table_rtx.
2203 This stuff is fragile, and is yet another example of why it is
2204 bad to expose PIC machinery too early. */
2205 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2206 attrs.addrspace)
2207 && GET_CODE (addr) == PLUS
2208 && XEXP (addr, 0) == pic_offset_table_rtx)
2210 addr = force_reg (GET_MODE (addr), addr);
2211 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2214 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2215 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2217 /* If there are no changes, just return the original memory reference. */
2218 if (new_rtx == memref)
2219 return new_rtx;
2221 /* Update the alignment to reflect the offset. Reset the offset, which
2222 we don't know. */
2223 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2224 attrs.offset_known_p = false;
2225 attrs.size_known_p = defattrs->size_known_p;
2226 attrs.size = defattrs->size;
2227 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2228 set_mem_attrs (new_rtx, &attrs);
2229 return new_rtx;
2232 /* Return a memory reference like MEMREF, but with its address changed to
2233 ADDR. The caller is asserting that the actual piece of memory pointed
2234 to is the same, just the form of the address is being changed, such as
2235 by putting something into a register. */
2238 replace_equiv_address (rtx memref, rtx addr)
2240 /* change_address_1 copies the memory attribute structure without change
2241 and that's exactly what we want here. */
2242 update_temp_slot_address (XEXP (memref, 0), addr);
2243 return change_address_1 (memref, VOIDmode, addr, 1);
2246 /* Likewise, but the reference is not required to be valid. */
2249 replace_equiv_address_nv (rtx memref, rtx addr)
2251 return change_address_1 (memref, VOIDmode, addr, 0);
2254 /* Return a memory reference like MEMREF, but with its mode widened to
2255 MODE and offset by OFFSET. This would be used by targets that e.g.
2256 cannot issue QImode memory operations and have to use SImode memory
2257 operations plus masking logic. */
2260 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2262 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0);
2263 struct mem_attrs attrs;
2264 unsigned int size = GET_MODE_SIZE (mode);
2266 /* If there are no changes, just return the original memory reference. */
2267 if (new_rtx == memref)
2268 return new_rtx;
2270 attrs = *get_mem_attrs (new_rtx);
2272 /* If we don't know what offset we were at within the expression, then
2273 we can't know if we've overstepped the bounds. */
2274 if (! attrs.offset_known_p)
2275 attrs.expr = NULL_TREE;
2277 while (attrs.expr)
2279 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2281 tree field = TREE_OPERAND (attrs.expr, 1);
2282 tree offset = component_ref_field_offset (attrs.expr);
2284 if (! DECL_SIZE_UNIT (field))
2286 attrs.expr = NULL_TREE;
2287 break;
2290 /* Is the field at least as large as the access? If so, ok,
2291 otherwise strip back to the containing structure. */
2292 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2293 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2294 && attrs.offset >= 0)
2295 break;
2297 if (! host_integerp (offset, 1))
2299 attrs.expr = NULL_TREE;
2300 break;
2303 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2304 attrs.offset += tree_low_cst (offset, 1);
2305 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2306 / BITS_PER_UNIT);
2308 /* Similarly for the decl. */
2309 else if (DECL_P (attrs.expr)
2310 && DECL_SIZE_UNIT (attrs.expr)
2311 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2312 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2313 && (! attrs.offset_known_p || attrs.offset >= 0))
2314 break;
2315 else
2317 /* The widened memory access overflows the expression, which means
2318 that it could alias another expression. Zap it. */
2319 attrs.expr = NULL_TREE;
2320 break;
2324 if (! attrs.expr)
2325 attrs.offset_known_p = false;
2327 /* The widened memory may alias other stuff, so zap the alias set. */
2328 /* ??? Maybe use get_alias_set on any remaining expression. */
2329 attrs.alias = 0;
2330 attrs.size_known_p = true;
2331 attrs.size = size;
2332 set_mem_attrs (new_rtx, &attrs);
2333 return new_rtx;
2336 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2337 static GTY(()) tree spill_slot_decl;
2339 tree
2340 get_spill_slot_decl (bool force_build_p)
2342 tree d = spill_slot_decl;
2343 rtx rd;
2344 struct mem_attrs attrs;
2346 if (d || !force_build_p)
2347 return d;
2349 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2350 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2351 DECL_ARTIFICIAL (d) = 1;
2352 DECL_IGNORED_P (d) = 1;
2353 TREE_USED (d) = 1;
2354 spill_slot_decl = d;
2356 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2357 MEM_NOTRAP_P (rd) = 1;
2358 attrs = *mode_mem_attrs[(int) BLKmode];
2359 attrs.alias = new_alias_set ();
2360 attrs.expr = d;
2361 set_mem_attrs (rd, &attrs);
2362 SET_DECL_RTL (d, rd);
2364 return d;
2367 /* Given MEM, a result from assign_stack_local, fill in the memory
2368 attributes as appropriate for a register allocator spill slot.
2369 These slots are not aliasable by other memory. We arrange for
2370 them all to use a single MEM_EXPR, so that the aliasing code can
2371 work properly in the case of shared spill slots. */
2373 void
2374 set_mem_attrs_for_spill (rtx mem)
2376 struct mem_attrs attrs;
2377 rtx addr;
2379 attrs = *get_mem_attrs (mem);
2380 attrs.expr = get_spill_slot_decl (true);
2381 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2382 attrs.addrspace = ADDR_SPACE_GENERIC;
2384 /* We expect the incoming memory to be of the form:
2385 (mem:MODE (plus (reg sfp) (const_int offset)))
2386 with perhaps the plus missing for offset = 0. */
2387 addr = XEXP (mem, 0);
2388 attrs.offset_known_p = true;
2389 attrs.offset = 0;
2390 if (GET_CODE (addr) == PLUS
2391 && CONST_INT_P (XEXP (addr, 1)))
2392 attrs.offset = INTVAL (XEXP (addr, 1));
2394 set_mem_attrs (mem, &attrs);
2395 MEM_NOTRAP_P (mem) = 1;
2398 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2401 gen_label_rtx (void)
2403 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2404 NULL, label_num++, NULL);
2407 /* For procedure integration. */
2409 /* Install new pointers to the first and last insns in the chain.
2410 Also, set cur_insn_uid to one higher than the last in use.
2411 Used for an inline-procedure after copying the insn chain. */
2413 void
2414 set_new_first_and_last_insn (rtx first, rtx last)
2416 rtx insn;
2418 set_first_insn (first);
2419 set_last_insn (last);
2420 cur_insn_uid = 0;
2422 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2424 int debug_count = 0;
2426 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2427 cur_debug_insn_uid = 0;
2429 for (insn = first; insn; insn = NEXT_INSN (insn))
2430 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2431 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2432 else
2434 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2435 if (DEBUG_INSN_P (insn))
2436 debug_count++;
2439 if (debug_count)
2440 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2441 else
2442 cur_debug_insn_uid++;
2444 else
2445 for (insn = first; insn; insn = NEXT_INSN (insn))
2446 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2448 cur_insn_uid++;
2451 /* Go through all the RTL insn bodies and copy any invalid shared
2452 structure. This routine should only be called once. */
2454 static void
2455 unshare_all_rtl_1 (rtx insn)
2457 /* Unshare just about everything else. */
2458 unshare_all_rtl_in_chain (insn);
2460 /* Make sure the addresses of stack slots found outside the insn chain
2461 (such as, in DECL_RTL of a variable) are not shared
2462 with the insn chain.
2464 This special care is necessary when the stack slot MEM does not
2465 actually appear in the insn chain. If it does appear, its address
2466 is unshared from all else at that point. */
2467 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2470 /* Go through all the RTL insn bodies and copy any invalid shared
2471 structure, again. This is a fairly expensive thing to do so it
2472 should be done sparingly. */
2474 void
2475 unshare_all_rtl_again (rtx insn)
2477 rtx p;
2478 tree decl;
2480 for (p = insn; p; p = NEXT_INSN (p))
2481 if (INSN_P (p))
2483 reset_used_flags (PATTERN (p));
2484 reset_used_flags (REG_NOTES (p));
2485 if (CALL_P (p))
2486 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2489 /* Make sure that virtual stack slots are not shared. */
2490 set_used_decls (DECL_INITIAL (cfun->decl));
2492 /* Make sure that virtual parameters are not shared. */
2493 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2494 set_used_flags (DECL_RTL (decl));
2496 reset_used_flags (stack_slot_list);
2498 unshare_all_rtl_1 (insn);
2501 unsigned int
2502 unshare_all_rtl (void)
2504 unshare_all_rtl_1 (get_insns ());
2505 return 0;
2509 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2510 Recursively does the same for subexpressions. */
2512 static void
2513 verify_rtx_sharing (rtx orig, rtx insn)
2515 rtx x = orig;
2516 int i;
2517 enum rtx_code code;
2518 const char *format_ptr;
2520 if (x == 0)
2521 return;
2523 code = GET_CODE (x);
2525 /* These types may be freely shared. */
2527 switch (code)
2529 case REG:
2530 case DEBUG_EXPR:
2531 case VALUE:
2532 CASE_CONST_ANY:
2533 case SYMBOL_REF:
2534 case LABEL_REF:
2535 case CODE_LABEL:
2536 case PC:
2537 case CC0:
2538 case RETURN:
2539 case SIMPLE_RETURN:
2540 case SCRATCH:
2541 return;
2542 /* SCRATCH must be shared because they represent distinct values. */
2543 case CLOBBER:
2544 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2545 return;
2546 break;
2548 case CONST:
2549 if (shared_const_p (orig))
2550 return;
2551 break;
2553 case MEM:
2554 /* A MEM is allowed to be shared if its address is constant. */
2555 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2556 || reload_completed || reload_in_progress)
2557 return;
2559 break;
2561 default:
2562 break;
2565 /* This rtx may not be shared. If it has already been seen,
2566 replace it with a copy of itself. */
2567 #ifdef ENABLE_CHECKING
2568 if (RTX_FLAG (x, used))
2570 error ("invalid rtl sharing found in the insn");
2571 debug_rtx (insn);
2572 error ("shared rtx");
2573 debug_rtx (x);
2574 internal_error ("internal consistency failure");
2576 #endif
2577 gcc_assert (!RTX_FLAG (x, used));
2579 RTX_FLAG (x, used) = 1;
2581 /* Now scan the subexpressions recursively. */
2583 format_ptr = GET_RTX_FORMAT (code);
2585 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2587 switch (*format_ptr++)
2589 case 'e':
2590 verify_rtx_sharing (XEXP (x, i), insn);
2591 break;
2593 case 'E':
2594 if (XVEC (x, i) != NULL)
2596 int j;
2597 int len = XVECLEN (x, i);
2599 for (j = 0; j < len; j++)
2601 /* We allow sharing of ASM_OPERANDS inside single
2602 instruction. */
2603 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2604 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2605 == ASM_OPERANDS))
2606 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2607 else
2608 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2611 break;
2614 return;
2617 /* Go through all the RTL insn bodies and check that there is no unexpected
2618 sharing in between the subexpressions. */
2620 DEBUG_FUNCTION void
2621 verify_rtl_sharing (void)
2623 rtx p;
2625 timevar_push (TV_VERIFY_RTL_SHARING);
2627 for (p = get_insns (); p; p = NEXT_INSN (p))
2628 if (INSN_P (p))
2630 reset_used_flags (PATTERN (p));
2631 reset_used_flags (REG_NOTES (p));
2632 if (CALL_P (p))
2633 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2634 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2636 int i;
2637 rtx q, sequence = PATTERN (p);
2639 for (i = 0; i < XVECLEN (sequence, 0); i++)
2641 q = XVECEXP (sequence, 0, i);
2642 gcc_assert (INSN_P (q));
2643 reset_used_flags (PATTERN (q));
2644 reset_used_flags (REG_NOTES (q));
2645 if (CALL_P (q))
2646 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2651 for (p = get_insns (); p; p = NEXT_INSN (p))
2652 if (INSN_P (p))
2654 verify_rtx_sharing (PATTERN (p), p);
2655 verify_rtx_sharing (REG_NOTES (p), p);
2656 if (CALL_P (p))
2657 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2660 timevar_pop (TV_VERIFY_RTL_SHARING);
2663 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2664 Assumes the mark bits are cleared at entry. */
2666 void
2667 unshare_all_rtl_in_chain (rtx insn)
2669 for (; insn; insn = NEXT_INSN (insn))
2670 if (INSN_P (insn))
2672 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2673 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2674 if (CALL_P (insn))
2675 CALL_INSN_FUNCTION_USAGE (insn)
2676 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2680 /* Go through all virtual stack slots of a function and mark them as
2681 shared. We never replace the DECL_RTLs themselves with a copy,
2682 but expressions mentioned into a DECL_RTL cannot be shared with
2683 expressions in the instruction stream.
2685 Note that reload may convert pseudo registers into memories in-place.
2686 Pseudo registers are always shared, but MEMs never are. Thus if we
2687 reset the used flags on MEMs in the instruction stream, we must set
2688 them again on MEMs that appear in DECL_RTLs. */
2690 static void
2691 set_used_decls (tree blk)
2693 tree t;
2695 /* Mark decls. */
2696 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2697 if (DECL_RTL_SET_P (t))
2698 set_used_flags (DECL_RTL (t));
2700 /* Now process sub-blocks. */
2701 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2702 set_used_decls (t);
2705 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2706 Recursively does the same for subexpressions. Uses
2707 copy_rtx_if_shared_1 to reduce stack space. */
2710 copy_rtx_if_shared (rtx orig)
2712 copy_rtx_if_shared_1 (&orig);
2713 return orig;
2716 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2717 use. Recursively does the same for subexpressions. */
2719 static void
2720 copy_rtx_if_shared_1 (rtx *orig1)
2722 rtx x;
2723 int i;
2724 enum rtx_code code;
2725 rtx *last_ptr;
2726 const char *format_ptr;
2727 int copied = 0;
2728 int length;
2730 /* Repeat is used to turn tail-recursion into iteration. */
2731 repeat:
2732 x = *orig1;
2734 if (x == 0)
2735 return;
2737 code = GET_CODE (x);
2739 /* These types may be freely shared. */
2741 switch (code)
2743 case REG:
2744 case DEBUG_EXPR:
2745 case VALUE:
2746 CASE_CONST_ANY:
2747 case SYMBOL_REF:
2748 case LABEL_REF:
2749 case CODE_LABEL:
2750 case PC:
2751 case CC0:
2752 case RETURN:
2753 case SIMPLE_RETURN:
2754 case SCRATCH:
2755 /* SCRATCH must be shared because they represent distinct values. */
2756 return;
2757 case CLOBBER:
2758 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2759 return;
2760 break;
2762 case CONST:
2763 if (shared_const_p (x))
2764 return;
2765 break;
2767 case DEBUG_INSN:
2768 case INSN:
2769 case JUMP_INSN:
2770 case CALL_INSN:
2771 case NOTE:
2772 case BARRIER:
2773 /* The chain of insns is not being copied. */
2774 return;
2776 default:
2777 break;
2780 /* This rtx may not be shared. If it has already been seen,
2781 replace it with a copy of itself. */
2783 if (RTX_FLAG (x, used))
2785 x = shallow_copy_rtx (x);
2786 copied = 1;
2788 RTX_FLAG (x, used) = 1;
2790 /* Now scan the subexpressions recursively.
2791 We can store any replaced subexpressions directly into X
2792 since we know X is not shared! Any vectors in X
2793 must be copied if X was copied. */
2795 format_ptr = GET_RTX_FORMAT (code);
2796 length = GET_RTX_LENGTH (code);
2797 last_ptr = NULL;
2799 for (i = 0; i < length; i++)
2801 switch (*format_ptr++)
2803 case 'e':
2804 if (last_ptr)
2805 copy_rtx_if_shared_1 (last_ptr);
2806 last_ptr = &XEXP (x, i);
2807 break;
2809 case 'E':
2810 if (XVEC (x, i) != NULL)
2812 int j;
2813 int len = XVECLEN (x, i);
2815 /* Copy the vector iff I copied the rtx and the length
2816 is nonzero. */
2817 if (copied && len > 0)
2818 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2820 /* Call recursively on all inside the vector. */
2821 for (j = 0; j < len; j++)
2823 if (last_ptr)
2824 copy_rtx_if_shared_1 (last_ptr);
2825 last_ptr = &XVECEXP (x, i, j);
2828 break;
2831 *orig1 = x;
2832 if (last_ptr)
2834 orig1 = last_ptr;
2835 goto repeat;
2837 return;
2840 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2842 static void
2843 mark_used_flags (rtx x, int flag)
2845 int i, j;
2846 enum rtx_code code;
2847 const char *format_ptr;
2848 int length;
2850 /* Repeat is used to turn tail-recursion into iteration. */
2851 repeat:
2852 if (x == 0)
2853 return;
2855 code = GET_CODE (x);
2857 /* These types may be freely shared so we needn't do any resetting
2858 for them. */
2860 switch (code)
2862 case REG:
2863 case DEBUG_EXPR:
2864 case VALUE:
2865 CASE_CONST_ANY:
2866 case SYMBOL_REF:
2867 case CODE_LABEL:
2868 case PC:
2869 case CC0:
2870 case RETURN:
2871 case SIMPLE_RETURN:
2872 return;
2874 case DEBUG_INSN:
2875 case INSN:
2876 case JUMP_INSN:
2877 case CALL_INSN:
2878 case NOTE:
2879 case LABEL_REF:
2880 case BARRIER:
2881 /* The chain of insns is not being copied. */
2882 return;
2884 default:
2885 break;
2888 RTX_FLAG (x, used) = flag;
2890 format_ptr = GET_RTX_FORMAT (code);
2891 length = GET_RTX_LENGTH (code);
2893 for (i = 0; i < length; i++)
2895 switch (*format_ptr++)
2897 case 'e':
2898 if (i == length-1)
2900 x = XEXP (x, i);
2901 goto repeat;
2903 mark_used_flags (XEXP (x, i), flag);
2904 break;
2906 case 'E':
2907 for (j = 0; j < XVECLEN (x, i); j++)
2908 mark_used_flags (XVECEXP (x, i, j), flag);
2909 break;
2914 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2915 to look for shared sub-parts. */
2917 void
2918 reset_used_flags (rtx x)
2920 mark_used_flags (x, 0);
2923 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2924 to look for shared sub-parts. */
2926 void
2927 set_used_flags (rtx x)
2929 mark_used_flags (x, 1);
2932 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2933 Return X or the rtx for the pseudo reg the value of X was copied into.
2934 OTHER must be valid as a SET_DEST. */
2937 make_safe_from (rtx x, rtx other)
2939 while (1)
2940 switch (GET_CODE (other))
2942 case SUBREG:
2943 other = SUBREG_REG (other);
2944 break;
2945 case STRICT_LOW_PART:
2946 case SIGN_EXTEND:
2947 case ZERO_EXTEND:
2948 other = XEXP (other, 0);
2949 break;
2950 default:
2951 goto done;
2953 done:
2954 if ((MEM_P (other)
2955 && ! CONSTANT_P (x)
2956 && !REG_P (x)
2957 && GET_CODE (x) != SUBREG)
2958 || (REG_P (other)
2959 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2960 || reg_mentioned_p (other, x))))
2962 rtx temp = gen_reg_rtx (GET_MODE (x));
2963 emit_move_insn (temp, x);
2964 return temp;
2966 return x;
2969 /* Emission of insns (adding them to the doubly-linked list). */
2971 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2974 get_last_insn_anywhere (void)
2976 struct sequence_stack *stack;
2977 if (get_last_insn ())
2978 return get_last_insn ();
2979 for (stack = seq_stack; stack; stack = stack->next)
2980 if (stack->last != 0)
2981 return stack->last;
2982 return 0;
2985 /* Return the first nonnote insn emitted in current sequence or current
2986 function. This routine looks inside SEQUENCEs. */
2989 get_first_nonnote_insn (void)
2991 rtx insn = get_insns ();
2993 if (insn)
2995 if (NOTE_P (insn))
2996 for (insn = next_insn (insn);
2997 insn && NOTE_P (insn);
2998 insn = next_insn (insn))
2999 continue;
3000 else
3002 if (NONJUMP_INSN_P (insn)
3003 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3004 insn = XVECEXP (PATTERN (insn), 0, 0);
3008 return insn;
3011 /* Return the last nonnote insn emitted in current sequence or current
3012 function. This routine looks inside SEQUENCEs. */
3015 get_last_nonnote_insn (void)
3017 rtx insn = get_last_insn ();
3019 if (insn)
3021 if (NOTE_P (insn))
3022 for (insn = previous_insn (insn);
3023 insn && NOTE_P (insn);
3024 insn = previous_insn (insn))
3025 continue;
3026 else
3028 if (NONJUMP_INSN_P (insn)
3029 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3030 insn = XVECEXP (PATTERN (insn), 0,
3031 XVECLEN (PATTERN (insn), 0) - 1);
3035 return insn;
3038 /* Return the number of actual (non-debug) insns emitted in this
3039 function. */
3042 get_max_insn_count (void)
3044 int n = cur_insn_uid;
3046 /* The table size must be stable across -g, to avoid codegen
3047 differences due to debug insns, and not be affected by
3048 -fmin-insn-uid, to avoid excessive table size and to simplify
3049 debugging of -fcompare-debug failures. */
3050 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3051 n -= cur_debug_insn_uid;
3052 else
3053 n -= MIN_NONDEBUG_INSN_UID;
3055 return n;
3059 /* Return the next insn. If it is a SEQUENCE, return the first insn
3060 of the sequence. */
3063 next_insn (rtx insn)
3065 if (insn)
3067 insn = NEXT_INSN (insn);
3068 if (insn && NONJUMP_INSN_P (insn)
3069 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3070 insn = XVECEXP (PATTERN (insn), 0, 0);
3073 return insn;
3076 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3077 of the sequence. */
3080 previous_insn (rtx insn)
3082 if (insn)
3084 insn = PREV_INSN (insn);
3085 if (insn && NONJUMP_INSN_P (insn)
3086 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3087 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3090 return insn;
3093 /* Return the next insn after INSN that is not a NOTE. This routine does not
3094 look inside SEQUENCEs. */
3097 next_nonnote_insn (rtx insn)
3099 while (insn)
3101 insn = NEXT_INSN (insn);
3102 if (insn == 0 || !NOTE_P (insn))
3103 break;
3106 return insn;
3109 /* Return the next insn after INSN that is not a NOTE, but stop the
3110 search before we enter another basic block. This routine does not
3111 look inside SEQUENCEs. */
3114 next_nonnote_insn_bb (rtx insn)
3116 while (insn)
3118 insn = NEXT_INSN (insn);
3119 if (insn == 0 || !NOTE_P (insn))
3120 break;
3121 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3122 return NULL_RTX;
3125 return insn;
3128 /* Return the previous insn before INSN that is not a NOTE. This routine does
3129 not look inside SEQUENCEs. */
3132 prev_nonnote_insn (rtx insn)
3134 while (insn)
3136 insn = PREV_INSN (insn);
3137 if (insn == 0 || !NOTE_P (insn))
3138 break;
3141 return insn;
3144 /* Return the previous insn before INSN that is not a NOTE, but stop
3145 the search before we enter another basic block. This routine does
3146 not look inside SEQUENCEs. */
3149 prev_nonnote_insn_bb (rtx insn)
3151 while (insn)
3153 insn = PREV_INSN (insn);
3154 if (insn == 0 || !NOTE_P (insn))
3155 break;
3156 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3157 return NULL_RTX;
3160 return insn;
3163 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3164 routine does not look inside SEQUENCEs. */
3167 next_nondebug_insn (rtx insn)
3169 while (insn)
3171 insn = NEXT_INSN (insn);
3172 if (insn == 0 || !DEBUG_INSN_P (insn))
3173 break;
3176 return insn;
3179 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3180 This routine does not look inside SEQUENCEs. */
3183 prev_nondebug_insn (rtx insn)
3185 while (insn)
3187 insn = PREV_INSN (insn);
3188 if (insn == 0 || !DEBUG_INSN_P (insn))
3189 break;
3192 return insn;
3195 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3196 This routine does not look inside SEQUENCEs. */
3199 next_nonnote_nondebug_insn (rtx insn)
3201 while (insn)
3203 insn = NEXT_INSN (insn);
3204 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3205 break;
3208 return insn;
3211 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3212 This routine does not look inside SEQUENCEs. */
3215 prev_nonnote_nondebug_insn (rtx insn)
3217 while (insn)
3219 insn = PREV_INSN (insn);
3220 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3221 break;
3224 return insn;
3227 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3228 or 0, if there is none. This routine does not look inside
3229 SEQUENCEs. */
3232 next_real_insn (rtx insn)
3234 while (insn)
3236 insn = NEXT_INSN (insn);
3237 if (insn == 0 || INSN_P (insn))
3238 break;
3241 return insn;
3244 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3245 or 0, if there is none. This routine does not look inside
3246 SEQUENCEs. */
3249 prev_real_insn (rtx insn)
3251 while (insn)
3253 insn = PREV_INSN (insn);
3254 if (insn == 0 || INSN_P (insn))
3255 break;
3258 return insn;
3261 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3262 This routine does not look inside SEQUENCEs. */
3265 last_call_insn (void)
3267 rtx insn;
3269 for (insn = get_last_insn ();
3270 insn && !CALL_P (insn);
3271 insn = PREV_INSN (insn))
3274 return insn;
3277 /* Find the next insn after INSN that really does something. This routine
3278 does not look inside SEQUENCEs. After reload this also skips over
3279 standalone USE and CLOBBER insn. */
3282 active_insn_p (const_rtx insn)
3284 return (CALL_P (insn) || JUMP_P (insn)
3285 || (NONJUMP_INSN_P (insn)
3286 && (! reload_completed
3287 || (GET_CODE (PATTERN (insn)) != USE
3288 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3292 next_active_insn (rtx insn)
3294 while (insn)
3296 insn = NEXT_INSN (insn);
3297 if (insn == 0 || active_insn_p (insn))
3298 break;
3301 return insn;
3304 /* Find the last insn before INSN that really does something. This routine
3305 does not look inside SEQUENCEs. After reload this also skips over
3306 standalone USE and CLOBBER insn. */
3309 prev_active_insn (rtx insn)
3311 while (insn)
3313 insn = PREV_INSN (insn);
3314 if (insn == 0 || active_insn_p (insn))
3315 break;
3318 return insn;
3321 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3324 next_label (rtx insn)
3326 while (insn)
3328 insn = NEXT_INSN (insn);
3329 if (insn == 0 || LABEL_P (insn))
3330 break;
3333 return insn;
3336 /* Return the last label to mark the same position as LABEL. Return LABEL
3337 itself if it is null or any return rtx. */
3340 skip_consecutive_labels (rtx label)
3342 rtx insn;
3344 if (label && ANY_RETURN_P (label))
3345 return label;
3347 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3348 if (LABEL_P (insn))
3349 label = insn;
3351 return label;
3354 #ifdef HAVE_cc0
3355 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3356 and REG_CC_USER notes so we can find it. */
3358 void
3359 link_cc0_insns (rtx insn)
3361 rtx user = next_nonnote_insn (insn);
3363 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3364 user = XVECEXP (PATTERN (user), 0, 0);
3366 add_reg_note (user, REG_CC_SETTER, insn);
3367 add_reg_note (insn, REG_CC_USER, user);
3370 /* Return the next insn that uses CC0 after INSN, which is assumed to
3371 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3372 applied to the result of this function should yield INSN).
3374 Normally, this is simply the next insn. However, if a REG_CC_USER note
3375 is present, it contains the insn that uses CC0.
3377 Return 0 if we can't find the insn. */
3380 next_cc0_user (rtx insn)
3382 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3384 if (note)
3385 return XEXP (note, 0);
3387 insn = next_nonnote_insn (insn);
3388 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3389 insn = XVECEXP (PATTERN (insn), 0, 0);
3391 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3392 return insn;
3394 return 0;
3397 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3398 note, it is the previous insn. */
3401 prev_cc0_setter (rtx insn)
3403 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3405 if (note)
3406 return XEXP (note, 0);
3408 insn = prev_nonnote_insn (insn);
3409 gcc_assert (sets_cc0_p (PATTERN (insn)));
3411 return insn;
3413 #endif
3415 #ifdef AUTO_INC_DEC
3416 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3418 static int
3419 find_auto_inc (rtx *xp, void *data)
3421 rtx x = *xp;
3422 rtx reg = (rtx) data;
3424 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3425 return 0;
3427 switch (GET_CODE (x))
3429 case PRE_DEC:
3430 case PRE_INC:
3431 case POST_DEC:
3432 case POST_INC:
3433 case PRE_MODIFY:
3434 case POST_MODIFY:
3435 if (rtx_equal_p (reg, XEXP (x, 0)))
3436 return 1;
3437 break;
3439 default:
3440 gcc_unreachable ();
3442 return -1;
3444 #endif
3446 /* Increment the label uses for all labels present in rtx. */
3448 static void
3449 mark_label_nuses (rtx x)
3451 enum rtx_code code;
3452 int i, j;
3453 const char *fmt;
3455 code = GET_CODE (x);
3456 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3457 LABEL_NUSES (XEXP (x, 0))++;
3459 fmt = GET_RTX_FORMAT (code);
3460 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3462 if (fmt[i] == 'e')
3463 mark_label_nuses (XEXP (x, i));
3464 else if (fmt[i] == 'E')
3465 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3466 mark_label_nuses (XVECEXP (x, i, j));
3471 /* Try splitting insns that can be split for better scheduling.
3472 PAT is the pattern which might split.
3473 TRIAL is the insn providing PAT.
3474 LAST is nonzero if we should return the last insn of the sequence produced.
3476 If this routine succeeds in splitting, it returns the first or last
3477 replacement insn depending on the value of LAST. Otherwise, it
3478 returns TRIAL. If the insn to be returned can be split, it will be. */
3481 try_split (rtx pat, rtx trial, int last)
3483 rtx before = PREV_INSN (trial);
3484 rtx after = NEXT_INSN (trial);
3485 int has_barrier = 0;
3486 rtx note, seq, tem;
3487 int probability;
3488 rtx insn_last, insn;
3489 int njumps = 0;
3491 /* We're not good at redistributing frame information. */
3492 if (RTX_FRAME_RELATED_P (trial))
3493 return trial;
3495 if (any_condjump_p (trial)
3496 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3497 split_branch_probability = INTVAL (XEXP (note, 0));
3498 probability = split_branch_probability;
3500 seq = split_insns (pat, trial);
3502 split_branch_probability = -1;
3504 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3505 We may need to handle this specially. */
3506 if (after && BARRIER_P (after))
3508 has_barrier = 1;
3509 after = NEXT_INSN (after);
3512 if (!seq)
3513 return trial;
3515 /* Avoid infinite loop if any insn of the result matches
3516 the original pattern. */
3517 insn_last = seq;
3518 while (1)
3520 if (INSN_P (insn_last)
3521 && rtx_equal_p (PATTERN (insn_last), pat))
3522 return trial;
3523 if (!NEXT_INSN (insn_last))
3524 break;
3525 insn_last = NEXT_INSN (insn_last);
3528 /* We will be adding the new sequence to the function. The splitters
3529 may have introduced invalid RTL sharing, so unshare the sequence now. */
3530 unshare_all_rtl_in_chain (seq);
3532 /* Mark labels. */
3533 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3535 if (JUMP_P (insn))
3537 mark_jump_label (PATTERN (insn), insn, 0);
3538 njumps++;
3539 if (probability != -1
3540 && any_condjump_p (insn)
3541 && !find_reg_note (insn, REG_BR_PROB, 0))
3543 /* We can preserve the REG_BR_PROB notes only if exactly
3544 one jump is created, otherwise the machine description
3545 is responsible for this step using
3546 split_branch_probability variable. */
3547 gcc_assert (njumps == 1);
3548 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3553 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3554 in SEQ and copy any additional information across. */
3555 if (CALL_P (trial))
3557 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3558 if (CALL_P (insn))
3560 rtx next, *p;
3562 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3563 target may have explicitly specified. */
3564 p = &CALL_INSN_FUNCTION_USAGE (insn);
3565 while (*p)
3566 p = &XEXP (*p, 1);
3567 *p = CALL_INSN_FUNCTION_USAGE (trial);
3569 /* If the old call was a sibling call, the new one must
3570 be too. */
3571 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3573 /* If the new call is the last instruction in the sequence,
3574 it will effectively replace the old call in-situ. Otherwise
3575 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3576 so that it comes immediately after the new call. */
3577 if (NEXT_INSN (insn))
3578 for (next = NEXT_INSN (trial);
3579 next && NOTE_P (next);
3580 next = NEXT_INSN (next))
3581 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3583 remove_insn (next);
3584 add_insn_after (next, insn, NULL);
3585 break;
3590 /* Copy notes, particularly those related to the CFG. */
3591 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3593 switch (REG_NOTE_KIND (note))
3595 case REG_EH_REGION:
3596 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3597 break;
3599 case REG_NORETURN:
3600 case REG_SETJMP:
3601 case REG_TM:
3602 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3604 if (CALL_P (insn))
3605 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3607 break;
3609 case REG_NON_LOCAL_GOTO:
3610 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3612 if (JUMP_P (insn))
3613 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3615 break;
3617 #ifdef AUTO_INC_DEC
3618 case REG_INC:
3619 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3621 rtx reg = XEXP (note, 0);
3622 if (!FIND_REG_INC_NOTE (insn, reg)
3623 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3624 add_reg_note (insn, REG_INC, reg);
3626 break;
3627 #endif
3629 case REG_ARGS_SIZE:
3630 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3631 break;
3633 default:
3634 break;
3638 /* If there are LABELS inside the split insns increment the
3639 usage count so we don't delete the label. */
3640 if (INSN_P (trial))
3642 insn = insn_last;
3643 while (insn != NULL_RTX)
3645 /* JUMP_P insns have already been "marked" above. */
3646 if (NONJUMP_INSN_P (insn))
3647 mark_label_nuses (PATTERN (insn));
3649 insn = PREV_INSN (insn);
3653 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3655 delete_insn (trial);
3656 if (has_barrier)
3657 emit_barrier_after (tem);
3659 /* Recursively call try_split for each new insn created; by the
3660 time control returns here that insn will be fully split, so
3661 set LAST and continue from the insn after the one returned.
3662 We can't use next_active_insn here since AFTER may be a note.
3663 Ignore deleted insns, which can be occur if not optimizing. */
3664 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3665 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3666 tem = try_split (PATTERN (tem), tem, 1);
3668 /* Return either the first or the last insn, depending on which was
3669 requested. */
3670 return last
3671 ? (after ? PREV_INSN (after) : get_last_insn ())
3672 : NEXT_INSN (before);
3675 /* Make and return an INSN rtx, initializing all its slots.
3676 Store PATTERN in the pattern slots. */
3679 make_insn_raw (rtx pattern)
3681 rtx insn;
3683 insn = rtx_alloc (INSN);
3685 INSN_UID (insn) = cur_insn_uid++;
3686 PATTERN (insn) = pattern;
3687 INSN_CODE (insn) = -1;
3688 REG_NOTES (insn) = NULL;
3689 INSN_LOCATION (insn) = curr_insn_location ();
3690 BLOCK_FOR_INSN (insn) = NULL;
3692 #ifdef ENABLE_RTL_CHECKING
3693 if (insn
3694 && INSN_P (insn)
3695 && (returnjump_p (insn)
3696 || (GET_CODE (insn) == SET
3697 && SET_DEST (insn) == pc_rtx)))
3699 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3700 debug_rtx (insn);
3702 #endif
3704 return insn;
3707 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3709 static rtx
3710 make_debug_insn_raw (rtx pattern)
3712 rtx insn;
3714 insn = rtx_alloc (DEBUG_INSN);
3715 INSN_UID (insn) = cur_debug_insn_uid++;
3716 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3717 INSN_UID (insn) = cur_insn_uid++;
3719 PATTERN (insn) = pattern;
3720 INSN_CODE (insn) = -1;
3721 REG_NOTES (insn) = NULL;
3722 INSN_LOCATION (insn) = curr_insn_location ();
3723 BLOCK_FOR_INSN (insn) = NULL;
3725 return insn;
3728 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3730 static rtx
3731 make_jump_insn_raw (rtx pattern)
3733 rtx insn;
3735 insn = rtx_alloc (JUMP_INSN);
3736 INSN_UID (insn) = cur_insn_uid++;
3738 PATTERN (insn) = pattern;
3739 INSN_CODE (insn) = -1;
3740 REG_NOTES (insn) = NULL;
3741 JUMP_LABEL (insn) = NULL;
3742 INSN_LOCATION (insn) = curr_insn_location ();
3743 BLOCK_FOR_INSN (insn) = NULL;
3745 return insn;
3748 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3750 static rtx
3751 make_call_insn_raw (rtx pattern)
3753 rtx insn;
3755 insn = rtx_alloc (CALL_INSN);
3756 INSN_UID (insn) = cur_insn_uid++;
3758 PATTERN (insn) = pattern;
3759 INSN_CODE (insn) = -1;
3760 REG_NOTES (insn) = NULL;
3761 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3762 INSN_LOCATION (insn) = curr_insn_location ();
3763 BLOCK_FOR_INSN (insn) = NULL;
3765 return insn;
3768 /* Add INSN to the end of the doubly-linked list.
3769 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3771 void
3772 add_insn (rtx insn)
3774 PREV_INSN (insn) = get_last_insn();
3775 NEXT_INSN (insn) = 0;
3777 if (NULL != get_last_insn())
3778 NEXT_INSN (get_last_insn ()) = insn;
3780 if (NULL == get_insns ())
3781 set_first_insn (insn);
3783 set_last_insn (insn);
3786 /* Add INSN into the doubly-linked list after insn AFTER. This and
3787 the next should be the only functions called to insert an insn once
3788 delay slots have been filled since only they know how to update a
3789 SEQUENCE. */
3791 void
3792 add_insn_after (rtx insn, rtx after, basic_block bb)
3794 rtx next = NEXT_INSN (after);
3796 gcc_assert (!optimize || !INSN_DELETED_P (after));
3798 NEXT_INSN (insn) = next;
3799 PREV_INSN (insn) = after;
3801 if (next)
3803 PREV_INSN (next) = insn;
3804 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3805 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3807 else if (get_last_insn () == after)
3808 set_last_insn (insn);
3809 else
3811 struct sequence_stack *stack = seq_stack;
3812 /* Scan all pending sequences too. */
3813 for (; stack; stack = stack->next)
3814 if (after == stack->last)
3816 stack->last = insn;
3817 break;
3820 gcc_assert (stack);
3823 if (!BARRIER_P (after)
3824 && !BARRIER_P (insn)
3825 && (bb = BLOCK_FOR_INSN (after)))
3827 set_block_for_insn (insn, bb);
3828 if (INSN_P (insn))
3829 df_insn_rescan (insn);
3830 /* Should not happen as first in the BB is always
3831 either NOTE or LABEL. */
3832 if (BB_END (bb) == after
3833 /* Avoid clobbering of structure when creating new BB. */
3834 && !BARRIER_P (insn)
3835 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3836 BB_END (bb) = insn;
3839 NEXT_INSN (after) = insn;
3840 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3842 rtx sequence = PATTERN (after);
3843 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3847 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3848 the previous should be the only functions called to insert an insn
3849 once delay slots have been filled since only they know how to
3850 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3851 bb from before. */
3853 void
3854 add_insn_before (rtx insn, rtx before, basic_block bb)
3856 rtx prev = PREV_INSN (before);
3858 gcc_assert (!optimize || !INSN_DELETED_P (before));
3860 PREV_INSN (insn) = prev;
3861 NEXT_INSN (insn) = before;
3863 if (prev)
3865 NEXT_INSN (prev) = insn;
3866 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3868 rtx sequence = PATTERN (prev);
3869 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3872 else if (get_insns () == before)
3873 set_first_insn (insn);
3874 else
3876 struct sequence_stack *stack = seq_stack;
3877 /* Scan all pending sequences too. */
3878 for (; stack; stack = stack->next)
3879 if (before == stack->first)
3881 stack->first = insn;
3882 break;
3885 gcc_assert (stack);
3888 if (!bb
3889 && !BARRIER_P (before)
3890 && !BARRIER_P (insn))
3891 bb = BLOCK_FOR_INSN (before);
3893 if (bb)
3895 set_block_for_insn (insn, bb);
3896 if (INSN_P (insn))
3897 df_insn_rescan (insn);
3898 /* Should not happen as first in the BB is always either NOTE or
3899 LABEL. */
3900 gcc_assert (BB_HEAD (bb) != insn
3901 /* Avoid clobbering of structure when creating new BB. */
3902 || BARRIER_P (insn)
3903 || NOTE_INSN_BASIC_BLOCK_P (insn));
3906 PREV_INSN (before) = insn;
3907 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3908 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3912 /* Replace insn with an deleted instruction note. */
3914 void
3915 set_insn_deleted (rtx insn)
3917 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3918 PUT_CODE (insn, NOTE);
3919 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3923 /* Remove an insn from its doubly-linked list. This function knows how
3924 to handle sequences. */
3925 void
3926 remove_insn (rtx insn)
3928 rtx next = NEXT_INSN (insn);
3929 rtx prev = PREV_INSN (insn);
3930 basic_block bb;
3932 /* Later in the code, the block will be marked dirty. */
3933 df_insn_delete (NULL, INSN_UID (insn));
3935 if (prev)
3937 NEXT_INSN (prev) = next;
3938 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3940 rtx sequence = PATTERN (prev);
3941 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3944 else if (get_insns () == insn)
3946 if (next)
3947 PREV_INSN (next) = NULL;
3948 set_first_insn (next);
3950 else
3952 struct sequence_stack *stack = seq_stack;
3953 /* Scan all pending sequences too. */
3954 for (; stack; stack = stack->next)
3955 if (insn == stack->first)
3957 stack->first = next;
3958 break;
3961 gcc_assert (stack);
3964 if (next)
3966 PREV_INSN (next) = prev;
3967 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3968 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3970 else if (get_last_insn () == insn)
3971 set_last_insn (prev);
3972 else
3974 struct sequence_stack *stack = seq_stack;
3975 /* Scan all pending sequences too. */
3976 for (; stack; stack = stack->next)
3977 if (insn == stack->last)
3979 stack->last = prev;
3980 break;
3983 gcc_assert (stack);
3985 if (!BARRIER_P (insn)
3986 && (bb = BLOCK_FOR_INSN (insn)))
3988 if (NONDEBUG_INSN_P (insn))
3989 df_set_bb_dirty (bb);
3990 if (BB_HEAD (bb) == insn)
3992 /* Never ever delete the basic block note without deleting whole
3993 basic block. */
3994 gcc_assert (!NOTE_P (insn));
3995 BB_HEAD (bb) = next;
3997 if (BB_END (bb) == insn)
3998 BB_END (bb) = prev;
4002 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4004 void
4005 add_function_usage_to (rtx call_insn, rtx call_fusage)
4007 gcc_assert (call_insn && CALL_P (call_insn));
4009 /* Put the register usage information on the CALL. If there is already
4010 some usage information, put ours at the end. */
4011 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4013 rtx link;
4015 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4016 link = XEXP (link, 1))
4019 XEXP (link, 1) = call_fusage;
4021 else
4022 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4025 /* Delete all insns made since FROM.
4026 FROM becomes the new last instruction. */
4028 void
4029 delete_insns_since (rtx from)
4031 if (from == 0)
4032 set_first_insn (0);
4033 else
4034 NEXT_INSN (from) = 0;
4035 set_last_insn (from);
4038 /* This function is deprecated, please use sequences instead.
4040 Move a consecutive bunch of insns to a different place in the chain.
4041 The insns to be moved are those between FROM and TO.
4042 They are moved to a new position after the insn AFTER.
4043 AFTER must not be FROM or TO or any insn in between.
4045 This function does not know about SEQUENCEs and hence should not be
4046 called after delay-slot filling has been done. */
4048 void
4049 reorder_insns_nobb (rtx from, rtx to, rtx after)
4051 #ifdef ENABLE_CHECKING
4052 rtx x;
4053 for (x = from; x != to; x = NEXT_INSN (x))
4054 gcc_assert (after != x);
4055 gcc_assert (after != to);
4056 #endif
4058 /* Splice this bunch out of where it is now. */
4059 if (PREV_INSN (from))
4060 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4061 if (NEXT_INSN (to))
4062 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4063 if (get_last_insn () == to)
4064 set_last_insn (PREV_INSN (from));
4065 if (get_insns () == from)
4066 set_first_insn (NEXT_INSN (to));
4068 /* Make the new neighbors point to it and it to them. */
4069 if (NEXT_INSN (after))
4070 PREV_INSN (NEXT_INSN (after)) = to;
4072 NEXT_INSN (to) = NEXT_INSN (after);
4073 PREV_INSN (from) = after;
4074 NEXT_INSN (after) = from;
4075 if (after == get_last_insn())
4076 set_last_insn (to);
4079 /* Same as function above, but take care to update BB boundaries. */
4080 void
4081 reorder_insns (rtx from, rtx to, rtx after)
4083 rtx prev = PREV_INSN (from);
4084 basic_block bb, bb2;
4086 reorder_insns_nobb (from, to, after);
4088 if (!BARRIER_P (after)
4089 && (bb = BLOCK_FOR_INSN (after)))
4091 rtx x;
4092 df_set_bb_dirty (bb);
4094 if (!BARRIER_P (from)
4095 && (bb2 = BLOCK_FOR_INSN (from)))
4097 if (BB_END (bb2) == to)
4098 BB_END (bb2) = prev;
4099 df_set_bb_dirty (bb2);
4102 if (BB_END (bb) == after)
4103 BB_END (bb) = to;
4105 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4106 if (!BARRIER_P (x))
4107 df_insn_change_bb (x, bb);
4112 /* Emit insn(s) of given code and pattern
4113 at a specified place within the doubly-linked list.
4115 All of the emit_foo global entry points accept an object
4116 X which is either an insn list or a PATTERN of a single
4117 instruction.
4119 There are thus a few canonical ways to generate code and
4120 emit it at a specific place in the instruction stream. For
4121 example, consider the instruction named SPOT and the fact that
4122 we would like to emit some instructions before SPOT. We might
4123 do it like this:
4125 start_sequence ();
4126 ... emit the new instructions ...
4127 insns_head = get_insns ();
4128 end_sequence ();
4130 emit_insn_before (insns_head, SPOT);
4132 It used to be common to generate SEQUENCE rtl instead, but that
4133 is a relic of the past which no longer occurs. The reason is that
4134 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4135 generated would almost certainly die right after it was created. */
4137 static rtx
4138 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4139 rtx (*make_raw) (rtx))
4141 rtx insn;
4143 gcc_assert (before);
4145 if (x == NULL_RTX)
4146 return last;
4148 switch (GET_CODE (x))
4150 case DEBUG_INSN:
4151 case INSN:
4152 case JUMP_INSN:
4153 case CALL_INSN:
4154 case CODE_LABEL:
4155 case BARRIER:
4156 case NOTE:
4157 insn = x;
4158 while (insn)
4160 rtx next = NEXT_INSN (insn);
4161 add_insn_before (insn, before, bb);
4162 last = insn;
4163 insn = next;
4165 break;
4167 #ifdef ENABLE_RTL_CHECKING
4168 case SEQUENCE:
4169 gcc_unreachable ();
4170 break;
4171 #endif
4173 default:
4174 last = (*make_raw) (x);
4175 add_insn_before (last, before, bb);
4176 break;
4179 return last;
4182 /* Make X be output before the instruction BEFORE. */
4185 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4187 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4190 /* Make an instruction with body X and code JUMP_INSN
4191 and output it before the instruction BEFORE. */
4194 emit_jump_insn_before_noloc (rtx x, rtx before)
4196 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4197 make_jump_insn_raw);
4200 /* Make an instruction with body X and code CALL_INSN
4201 and output it before the instruction BEFORE. */
4204 emit_call_insn_before_noloc (rtx x, rtx before)
4206 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4207 make_call_insn_raw);
4210 /* Make an instruction with body X and code DEBUG_INSN
4211 and output it before the instruction BEFORE. */
4214 emit_debug_insn_before_noloc (rtx x, rtx before)
4216 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4217 make_debug_insn_raw);
4220 /* Make an insn of code BARRIER
4221 and output it before the insn BEFORE. */
4224 emit_barrier_before (rtx before)
4226 rtx insn = rtx_alloc (BARRIER);
4228 INSN_UID (insn) = cur_insn_uid++;
4230 add_insn_before (insn, before, NULL);
4231 return insn;
4234 /* Emit the label LABEL before the insn BEFORE. */
4237 emit_label_before (rtx label, rtx before)
4239 gcc_checking_assert (INSN_UID (label) == 0);
4240 INSN_UID (label) = cur_insn_uid++;
4241 add_insn_before (label, before, NULL);
4242 return label;
4245 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4248 emit_note_before (enum insn_note subtype, rtx before)
4250 rtx note = rtx_alloc (NOTE);
4251 INSN_UID (note) = cur_insn_uid++;
4252 NOTE_KIND (note) = subtype;
4253 BLOCK_FOR_INSN (note) = NULL;
4254 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4256 add_insn_before (note, before, NULL);
4257 return note;
4260 /* Helper for emit_insn_after, handles lists of instructions
4261 efficiently. */
4263 static rtx
4264 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4266 rtx last;
4267 rtx after_after;
4268 if (!bb && !BARRIER_P (after))
4269 bb = BLOCK_FOR_INSN (after);
4271 if (bb)
4273 df_set_bb_dirty (bb);
4274 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4275 if (!BARRIER_P (last))
4277 set_block_for_insn (last, bb);
4278 df_insn_rescan (last);
4280 if (!BARRIER_P (last))
4282 set_block_for_insn (last, bb);
4283 df_insn_rescan (last);
4285 if (BB_END (bb) == after)
4286 BB_END (bb) = last;
4288 else
4289 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4290 continue;
4292 after_after = NEXT_INSN (after);
4294 NEXT_INSN (after) = first;
4295 PREV_INSN (first) = after;
4296 NEXT_INSN (last) = after_after;
4297 if (after_after)
4298 PREV_INSN (after_after) = last;
4300 if (after == get_last_insn())
4301 set_last_insn (last);
4303 return last;
4306 static rtx
4307 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4308 rtx (*make_raw)(rtx))
4310 rtx last = after;
4312 gcc_assert (after);
4314 if (x == NULL_RTX)
4315 return last;
4317 switch (GET_CODE (x))
4319 case DEBUG_INSN:
4320 case INSN:
4321 case JUMP_INSN:
4322 case CALL_INSN:
4323 case CODE_LABEL:
4324 case BARRIER:
4325 case NOTE:
4326 last = emit_insn_after_1 (x, after, bb);
4327 break;
4329 #ifdef ENABLE_RTL_CHECKING
4330 case SEQUENCE:
4331 gcc_unreachable ();
4332 break;
4333 #endif
4335 default:
4336 last = (*make_raw) (x);
4337 add_insn_after (last, after, bb);
4338 break;
4341 return last;
4344 /* Make X be output after the insn AFTER and set the BB of insn. If
4345 BB is NULL, an attempt is made to infer the BB from AFTER. */
4348 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4350 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4354 /* Make an insn of code JUMP_INSN with body X
4355 and output it after the insn AFTER. */
4358 emit_jump_insn_after_noloc (rtx x, rtx after)
4360 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4363 /* Make an instruction with body X and code CALL_INSN
4364 and output it after the instruction AFTER. */
4367 emit_call_insn_after_noloc (rtx x, rtx after)
4369 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4372 /* Make an instruction with body X and code CALL_INSN
4373 and output it after the instruction AFTER. */
4376 emit_debug_insn_after_noloc (rtx x, rtx after)
4378 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4381 /* Make an insn of code BARRIER
4382 and output it after the insn AFTER. */
4385 emit_barrier_after (rtx after)
4387 rtx insn = rtx_alloc (BARRIER);
4389 INSN_UID (insn) = cur_insn_uid++;
4391 add_insn_after (insn, after, NULL);
4392 return insn;
4395 /* Emit the label LABEL after the insn AFTER. */
4398 emit_label_after (rtx label, rtx after)
4400 gcc_checking_assert (INSN_UID (label) == 0);
4401 INSN_UID (label) = cur_insn_uid++;
4402 add_insn_after (label, after, NULL);
4403 return label;
4406 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4409 emit_note_after (enum insn_note subtype, rtx after)
4411 rtx note = rtx_alloc (NOTE);
4412 INSN_UID (note) = cur_insn_uid++;
4413 NOTE_KIND (note) = subtype;
4414 BLOCK_FOR_INSN (note) = NULL;
4415 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4416 add_insn_after (note, after, NULL);
4417 return note;
4420 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4421 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4423 static rtx
4424 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4425 rtx (*make_raw) (rtx))
4427 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4429 if (pattern == NULL_RTX || !loc)
4430 return last;
4432 after = NEXT_INSN (after);
4433 while (1)
4435 if (active_insn_p (after) && !INSN_LOCATION (after))
4436 INSN_LOCATION (after) = loc;
4437 if (after == last)
4438 break;
4439 after = NEXT_INSN (after);
4441 return last;
4444 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4445 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4446 any DEBUG_INSNs. */
4448 static rtx
4449 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4450 rtx (*make_raw) (rtx))
4452 rtx prev = after;
4454 if (skip_debug_insns)
4455 while (DEBUG_INSN_P (prev))
4456 prev = PREV_INSN (prev);
4458 if (INSN_P (prev))
4459 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4460 make_raw);
4461 else
4462 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4465 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4467 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4469 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4472 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4474 emit_insn_after (rtx pattern, rtx after)
4476 return emit_pattern_after (pattern, after, true, make_insn_raw);
4479 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4481 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4483 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4486 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4488 emit_jump_insn_after (rtx pattern, rtx after)
4490 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4493 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4495 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4497 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4500 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4502 emit_call_insn_after (rtx pattern, rtx after)
4504 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4507 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4509 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4511 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4514 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4516 emit_debug_insn_after (rtx pattern, rtx after)
4518 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4521 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4522 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4523 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4524 CALL_INSN, etc. */
4526 static rtx
4527 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4528 rtx (*make_raw) (rtx))
4530 rtx first = PREV_INSN (before);
4531 rtx last = emit_pattern_before_noloc (pattern, before,
4532 insnp ? before : NULL_RTX,
4533 NULL, make_raw);
4535 if (pattern == NULL_RTX || !loc)
4536 return last;
4538 if (!first)
4539 first = get_insns ();
4540 else
4541 first = NEXT_INSN (first);
4542 while (1)
4544 if (active_insn_p (first) && !INSN_LOCATION (first))
4545 INSN_LOCATION (first) = loc;
4546 if (first == last)
4547 break;
4548 first = NEXT_INSN (first);
4550 return last;
4553 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4554 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4555 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4556 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4558 static rtx
4559 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4560 bool insnp, rtx (*make_raw) (rtx))
4562 rtx next = before;
4564 if (skip_debug_insns)
4565 while (DEBUG_INSN_P (next))
4566 next = PREV_INSN (next);
4568 if (INSN_P (next))
4569 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4570 insnp, make_raw);
4571 else
4572 return emit_pattern_before_noloc (pattern, before,
4573 insnp ? before : NULL_RTX,
4574 NULL, make_raw);
4577 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4579 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4581 return emit_pattern_before_setloc (pattern, before, loc, true,
4582 make_insn_raw);
4585 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4587 emit_insn_before (rtx pattern, rtx before)
4589 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4592 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4594 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4596 return emit_pattern_before_setloc (pattern, before, loc, false,
4597 make_jump_insn_raw);
4600 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4602 emit_jump_insn_before (rtx pattern, rtx before)
4604 return emit_pattern_before (pattern, before, true, false,
4605 make_jump_insn_raw);
4608 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4610 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4612 return emit_pattern_before_setloc (pattern, before, loc, false,
4613 make_call_insn_raw);
4616 /* Like emit_call_insn_before_noloc,
4617 but set insn_location according to BEFORE. */
4619 emit_call_insn_before (rtx pattern, rtx before)
4621 return emit_pattern_before (pattern, before, true, false,
4622 make_call_insn_raw);
4625 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4627 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4629 return emit_pattern_before_setloc (pattern, before, loc, false,
4630 make_debug_insn_raw);
4633 /* Like emit_debug_insn_before_noloc,
4634 but set insn_location according to BEFORE. */
4636 emit_debug_insn_before (rtx pattern, rtx before)
4638 return emit_pattern_before (pattern, before, false, false,
4639 make_debug_insn_raw);
4642 /* Take X and emit it at the end of the doubly-linked
4643 INSN list.
4645 Returns the last insn emitted. */
4648 emit_insn (rtx x)
4650 rtx last = get_last_insn();
4651 rtx insn;
4653 if (x == NULL_RTX)
4654 return last;
4656 switch (GET_CODE (x))
4658 case DEBUG_INSN:
4659 case INSN:
4660 case JUMP_INSN:
4661 case CALL_INSN:
4662 case CODE_LABEL:
4663 case BARRIER:
4664 case NOTE:
4665 insn = x;
4666 while (insn)
4668 rtx next = NEXT_INSN (insn);
4669 add_insn (insn);
4670 last = insn;
4671 insn = next;
4673 break;
4675 #ifdef ENABLE_RTL_CHECKING
4676 case SEQUENCE:
4677 gcc_unreachable ();
4678 break;
4679 #endif
4681 default:
4682 last = make_insn_raw (x);
4683 add_insn (last);
4684 break;
4687 return last;
4690 /* Make an insn of code DEBUG_INSN with pattern X
4691 and add it to the end of the doubly-linked list. */
4694 emit_debug_insn (rtx x)
4696 rtx last = get_last_insn();
4697 rtx insn;
4699 if (x == NULL_RTX)
4700 return last;
4702 switch (GET_CODE (x))
4704 case DEBUG_INSN:
4705 case INSN:
4706 case JUMP_INSN:
4707 case CALL_INSN:
4708 case CODE_LABEL:
4709 case BARRIER:
4710 case NOTE:
4711 insn = x;
4712 while (insn)
4714 rtx next = NEXT_INSN (insn);
4715 add_insn (insn);
4716 last = insn;
4717 insn = next;
4719 break;
4721 #ifdef ENABLE_RTL_CHECKING
4722 case SEQUENCE:
4723 gcc_unreachable ();
4724 break;
4725 #endif
4727 default:
4728 last = make_debug_insn_raw (x);
4729 add_insn (last);
4730 break;
4733 return last;
4736 /* Make an insn of code JUMP_INSN with pattern X
4737 and add it to the end of the doubly-linked list. */
4740 emit_jump_insn (rtx x)
4742 rtx last = NULL_RTX, insn;
4744 switch (GET_CODE (x))
4746 case DEBUG_INSN:
4747 case INSN:
4748 case JUMP_INSN:
4749 case CALL_INSN:
4750 case CODE_LABEL:
4751 case BARRIER:
4752 case NOTE:
4753 insn = x;
4754 while (insn)
4756 rtx next = NEXT_INSN (insn);
4757 add_insn (insn);
4758 last = insn;
4759 insn = next;
4761 break;
4763 #ifdef ENABLE_RTL_CHECKING
4764 case SEQUENCE:
4765 gcc_unreachable ();
4766 break;
4767 #endif
4769 default:
4770 last = make_jump_insn_raw (x);
4771 add_insn (last);
4772 break;
4775 return last;
4778 /* Make an insn of code CALL_INSN with pattern X
4779 and add it to the end of the doubly-linked list. */
4782 emit_call_insn (rtx x)
4784 rtx insn;
4786 switch (GET_CODE (x))
4788 case DEBUG_INSN:
4789 case INSN:
4790 case JUMP_INSN:
4791 case CALL_INSN:
4792 case CODE_LABEL:
4793 case BARRIER:
4794 case NOTE:
4795 insn = emit_insn (x);
4796 break;
4798 #ifdef ENABLE_RTL_CHECKING
4799 case SEQUENCE:
4800 gcc_unreachable ();
4801 break;
4802 #endif
4804 default:
4805 insn = make_call_insn_raw (x);
4806 add_insn (insn);
4807 break;
4810 return insn;
4813 /* Add the label LABEL to the end of the doubly-linked list. */
4816 emit_label (rtx label)
4818 gcc_checking_assert (INSN_UID (label) == 0);
4819 INSN_UID (label) = cur_insn_uid++;
4820 add_insn (label);
4821 return label;
4824 /* Make an insn of code BARRIER
4825 and add it to the end of the doubly-linked list. */
4828 emit_barrier (void)
4830 rtx barrier = rtx_alloc (BARRIER);
4831 INSN_UID (barrier) = cur_insn_uid++;
4832 add_insn (barrier);
4833 return barrier;
4836 /* Emit a copy of note ORIG. */
4839 emit_note_copy (rtx orig)
4841 rtx note;
4843 note = rtx_alloc (NOTE);
4845 INSN_UID (note) = cur_insn_uid++;
4846 NOTE_DATA (note) = NOTE_DATA (orig);
4847 NOTE_KIND (note) = NOTE_KIND (orig);
4848 BLOCK_FOR_INSN (note) = NULL;
4849 add_insn (note);
4851 return note;
4854 /* Make an insn of code NOTE or type NOTE_NO
4855 and add it to the end of the doubly-linked list. */
4858 emit_note (enum insn_note kind)
4860 rtx note;
4862 note = rtx_alloc (NOTE);
4863 INSN_UID (note) = cur_insn_uid++;
4864 NOTE_KIND (note) = kind;
4865 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4866 BLOCK_FOR_INSN (note) = NULL;
4867 add_insn (note);
4868 return note;
4871 /* Emit a clobber of lvalue X. */
4874 emit_clobber (rtx x)
4876 /* CONCATs should not appear in the insn stream. */
4877 if (GET_CODE (x) == CONCAT)
4879 emit_clobber (XEXP (x, 0));
4880 return emit_clobber (XEXP (x, 1));
4882 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4885 /* Return a sequence of insns to clobber lvalue X. */
4888 gen_clobber (rtx x)
4890 rtx seq;
4892 start_sequence ();
4893 emit_clobber (x);
4894 seq = get_insns ();
4895 end_sequence ();
4896 return seq;
4899 /* Emit a use of rvalue X. */
4902 emit_use (rtx x)
4904 /* CONCATs should not appear in the insn stream. */
4905 if (GET_CODE (x) == CONCAT)
4907 emit_use (XEXP (x, 0));
4908 return emit_use (XEXP (x, 1));
4910 return emit_insn (gen_rtx_USE (VOIDmode, x));
4913 /* Return a sequence of insns to use rvalue X. */
4916 gen_use (rtx x)
4918 rtx seq;
4920 start_sequence ();
4921 emit_use (x);
4922 seq = get_insns ();
4923 end_sequence ();
4924 return seq;
4927 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4928 note of this type already exists, remove it first. */
4931 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4933 rtx note = find_reg_note (insn, kind, NULL_RTX);
4935 switch (kind)
4937 case REG_EQUAL:
4938 case REG_EQUIV:
4939 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4940 has multiple sets (some callers assume single_set
4941 means the insn only has one set, when in fact it
4942 means the insn only has one * useful * set). */
4943 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4945 gcc_assert (!note);
4946 return NULL_RTX;
4949 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4950 It serves no useful purpose and breaks eliminate_regs. */
4951 if (GET_CODE (datum) == ASM_OPERANDS)
4952 return NULL_RTX;
4954 if (note)
4956 XEXP (note, 0) = datum;
4957 df_notes_rescan (insn);
4958 return note;
4960 break;
4962 default:
4963 if (note)
4965 XEXP (note, 0) = datum;
4966 return note;
4968 break;
4971 add_reg_note (insn, kind, datum);
4973 switch (kind)
4975 case REG_EQUAL:
4976 case REG_EQUIV:
4977 df_notes_rescan (insn);
4978 break;
4979 default:
4980 break;
4983 return REG_NOTES (insn);
4986 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4988 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
4990 rtx set = single_set (insn);
4992 if (set && SET_DEST (set) == dst)
4993 return set_unique_reg_note (insn, kind, datum);
4994 return NULL_RTX;
4997 /* Return an indication of which type of insn should have X as a body.
4998 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5000 static enum rtx_code
5001 classify_insn (rtx x)
5003 if (LABEL_P (x))
5004 return CODE_LABEL;
5005 if (GET_CODE (x) == CALL)
5006 return CALL_INSN;
5007 if (ANY_RETURN_P (x))
5008 return JUMP_INSN;
5009 if (GET_CODE (x) == SET)
5011 if (SET_DEST (x) == pc_rtx)
5012 return JUMP_INSN;
5013 else if (GET_CODE (SET_SRC (x)) == CALL)
5014 return CALL_INSN;
5015 else
5016 return INSN;
5018 if (GET_CODE (x) == PARALLEL)
5020 int j;
5021 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5022 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5023 return CALL_INSN;
5024 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5025 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5026 return JUMP_INSN;
5027 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5028 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5029 return CALL_INSN;
5031 return INSN;
5034 /* Emit the rtl pattern X as an appropriate kind of insn.
5035 If X is a label, it is simply added into the insn chain. */
5038 emit (rtx x)
5040 enum rtx_code code = classify_insn (x);
5042 switch (code)
5044 case CODE_LABEL:
5045 return emit_label (x);
5046 case INSN:
5047 return emit_insn (x);
5048 case JUMP_INSN:
5050 rtx insn = emit_jump_insn (x);
5051 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5052 return emit_barrier ();
5053 return insn;
5055 case CALL_INSN:
5056 return emit_call_insn (x);
5057 case DEBUG_INSN:
5058 return emit_debug_insn (x);
5059 default:
5060 gcc_unreachable ();
5064 /* Space for free sequence stack entries. */
5065 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5067 /* Begin emitting insns to a sequence. If this sequence will contain
5068 something that might cause the compiler to pop arguments to function
5069 calls (because those pops have previously been deferred; see
5070 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5071 before calling this function. That will ensure that the deferred
5072 pops are not accidentally emitted in the middle of this sequence. */
5074 void
5075 start_sequence (void)
5077 struct sequence_stack *tem;
5079 if (free_sequence_stack != NULL)
5081 tem = free_sequence_stack;
5082 free_sequence_stack = tem->next;
5084 else
5085 tem = ggc_alloc_sequence_stack ();
5087 tem->next = seq_stack;
5088 tem->first = get_insns ();
5089 tem->last = get_last_insn ();
5091 seq_stack = tem;
5093 set_first_insn (0);
5094 set_last_insn (0);
5097 /* Set up the insn chain starting with FIRST as the current sequence,
5098 saving the previously current one. See the documentation for
5099 start_sequence for more information about how to use this function. */
5101 void
5102 push_to_sequence (rtx first)
5104 rtx last;
5106 start_sequence ();
5108 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5111 set_first_insn (first);
5112 set_last_insn (last);
5115 /* Like push_to_sequence, but take the last insn as an argument to avoid
5116 looping through the list. */
5118 void
5119 push_to_sequence2 (rtx first, rtx last)
5121 start_sequence ();
5123 set_first_insn (first);
5124 set_last_insn (last);
5127 /* Set up the outer-level insn chain
5128 as the current sequence, saving the previously current one. */
5130 void
5131 push_topmost_sequence (void)
5133 struct sequence_stack *stack, *top = NULL;
5135 start_sequence ();
5137 for (stack = seq_stack; stack; stack = stack->next)
5138 top = stack;
5140 set_first_insn (top->first);
5141 set_last_insn (top->last);
5144 /* After emitting to the outer-level insn chain, update the outer-level
5145 insn chain, and restore the previous saved state. */
5147 void
5148 pop_topmost_sequence (void)
5150 struct sequence_stack *stack, *top = NULL;
5152 for (stack = seq_stack; stack; stack = stack->next)
5153 top = stack;
5155 top->first = get_insns ();
5156 top->last = get_last_insn ();
5158 end_sequence ();
5161 /* After emitting to a sequence, restore previous saved state.
5163 To get the contents of the sequence just made, you must call
5164 `get_insns' *before* calling here.
5166 If the compiler might have deferred popping arguments while
5167 generating this sequence, and this sequence will not be immediately
5168 inserted into the instruction stream, use do_pending_stack_adjust
5169 before calling get_insns. That will ensure that the deferred
5170 pops are inserted into this sequence, and not into some random
5171 location in the instruction stream. See INHIBIT_DEFER_POP for more
5172 information about deferred popping of arguments. */
5174 void
5175 end_sequence (void)
5177 struct sequence_stack *tem = seq_stack;
5179 set_first_insn (tem->first);
5180 set_last_insn (tem->last);
5181 seq_stack = tem->next;
5183 memset (tem, 0, sizeof (*tem));
5184 tem->next = free_sequence_stack;
5185 free_sequence_stack = tem;
5188 /* Return 1 if currently emitting into a sequence. */
5191 in_sequence_p (void)
5193 return seq_stack != 0;
5196 /* Put the various virtual registers into REGNO_REG_RTX. */
5198 static void
5199 init_virtual_regs (void)
5201 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5202 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5203 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5204 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5205 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5206 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5207 = virtual_preferred_stack_boundary_rtx;
5211 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5212 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5213 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5214 static int copy_insn_n_scratches;
5216 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5217 copied an ASM_OPERANDS.
5218 In that case, it is the original input-operand vector. */
5219 static rtvec orig_asm_operands_vector;
5221 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5222 copied an ASM_OPERANDS.
5223 In that case, it is the copied input-operand vector. */
5224 static rtvec copy_asm_operands_vector;
5226 /* Likewise for the constraints vector. */
5227 static rtvec orig_asm_constraints_vector;
5228 static rtvec copy_asm_constraints_vector;
5230 /* Recursively create a new copy of an rtx for copy_insn.
5231 This function differs from copy_rtx in that it handles SCRATCHes and
5232 ASM_OPERANDs properly.
5233 Normally, this function is not used directly; use copy_insn as front end.
5234 However, you could first copy an insn pattern with copy_insn and then use
5235 this function afterwards to properly copy any REG_NOTEs containing
5236 SCRATCHes. */
5239 copy_insn_1 (rtx orig)
5241 rtx copy;
5242 int i, j;
5243 RTX_CODE code;
5244 const char *format_ptr;
5246 if (orig == NULL)
5247 return NULL;
5249 code = GET_CODE (orig);
5251 switch (code)
5253 case REG:
5254 case DEBUG_EXPR:
5255 CASE_CONST_ANY:
5256 case SYMBOL_REF:
5257 case CODE_LABEL:
5258 case PC:
5259 case CC0:
5260 case RETURN:
5261 case SIMPLE_RETURN:
5262 return orig;
5263 case CLOBBER:
5264 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5265 return orig;
5266 break;
5268 case SCRATCH:
5269 for (i = 0; i < copy_insn_n_scratches; i++)
5270 if (copy_insn_scratch_in[i] == orig)
5271 return copy_insn_scratch_out[i];
5272 break;
5274 case CONST:
5275 if (shared_const_p (orig))
5276 return orig;
5277 break;
5279 /* A MEM with a constant address is not sharable. The problem is that
5280 the constant address may need to be reloaded. If the mem is shared,
5281 then reloading one copy of this mem will cause all copies to appear
5282 to have been reloaded. */
5284 default:
5285 break;
5288 /* Copy the various flags, fields, and other information. We assume
5289 that all fields need copying, and then clear the fields that should
5290 not be copied. That is the sensible default behavior, and forces
5291 us to explicitly document why we are *not* copying a flag. */
5292 copy = shallow_copy_rtx (orig);
5294 /* We do not copy the USED flag, which is used as a mark bit during
5295 walks over the RTL. */
5296 RTX_FLAG (copy, used) = 0;
5298 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5299 if (INSN_P (orig))
5301 RTX_FLAG (copy, jump) = 0;
5302 RTX_FLAG (copy, call) = 0;
5303 RTX_FLAG (copy, frame_related) = 0;
5306 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5308 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5309 switch (*format_ptr++)
5311 case 'e':
5312 if (XEXP (orig, i) != NULL)
5313 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5314 break;
5316 case 'E':
5317 case 'V':
5318 if (XVEC (orig, i) == orig_asm_constraints_vector)
5319 XVEC (copy, i) = copy_asm_constraints_vector;
5320 else if (XVEC (orig, i) == orig_asm_operands_vector)
5321 XVEC (copy, i) = copy_asm_operands_vector;
5322 else if (XVEC (orig, i) != NULL)
5324 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5325 for (j = 0; j < XVECLEN (copy, i); j++)
5326 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5328 break;
5330 case 't':
5331 case 'w':
5332 case 'i':
5333 case 's':
5334 case 'S':
5335 case 'u':
5336 case '0':
5337 /* These are left unchanged. */
5338 break;
5340 default:
5341 gcc_unreachable ();
5344 if (code == SCRATCH)
5346 i = copy_insn_n_scratches++;
5347 gcc_assert (i < MAX_RECOG_OPERANDS);
5348 copy_insn_scratch_in[i] = orig;
5349 copy_insn_scratch_out[i] = copy;
5351 else if (code == ASM_OPERANDS)
5353 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5354 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5355 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5356 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5359 return copy;
5362 /* Create a new copy of an rtx.
5363 This function differs from copy_rtx in that it handles SCRATCHes and
5364 ASM_OPERANDs properly.
5365 INSN doesn't really have to be a full INSN; it could be just the
5366 pattern. */
5368 copy_insn (rtx insn)
5370 copy_insn_n_scratches = 0;
5371 orig_asm_operands_vector = 0;
5372 orig_asm_constraints_vector = 0;
5373 copy_asm_operands_vector = 0;
5374 copy_asm_constraints_vector = 0;
5375 return copy_insn_1 (insn);
5378 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5379 on that assumption that INSN itself remains in its original place. */
5382 copy_delay_slot_insn (rtx insn)
5384 /* Copy INSN with its rtx_code, all its notes, location etc. */
5385 insn = copy_rtx (insn);
5386 INSN_UID (insn) = cur_insn_uid++;
5387 return insn;
5390 /* Initialize data structures and variables in this file
5391 before generating rtl for each function. */
5393 void
5394 init_emit (void)
5396 set_first_insn (NULL);
5397 set_last_insn (NULL);
5398 if (MIN_NONDEBUG_INSN_UID)
5399 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5400 else
5401 cur_insn_uid = 1;
5402 cur_debug_insn_uid = 1;
5403 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5404 first_label_num = label_num;
5405 seq_stack = NULL;
5407 /* Init the tables that describe all the pseudo regs. */
5409 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5411 crtl->emit.regno_pointer_align
5412 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5414 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5416 /* Put copies of all the hard registers into regno_reg_rtx. */
5417 memcpy (regno_reg_rtx,
5418 initial_regno_reg_rtx,
5419 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5421 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5422 init_virtual_regs ();
5424 /* Indicate that the virtual registers and stack locations are
5425 all pointers. */
5426 REG_POINTER (stack_pointer_rtx) = 1;
5427 REG_POINTER (frame_pointer_rtx) = 1;
5428 REG_POINTER (hard_frame_pointer_rtx) = 1;
5429 REG_POINTER (arg_pointer_rtx) = 1;
5431 REG_POINTER (virtual_incoming_args_rtx) = 1;
5432 REG_POINTER (virtual_stack_vars_rtx) = 1;
5433 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5434 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5435 REG_POINTER (virtual_cfa_rtx) = 1;
5437 #ifdef STACK_BOUNDARY
5438 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5439 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5440 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5441 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5443 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5444 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5445 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5446 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5447 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5448 #endif
5450 #ifdef INIT_EXPANDERS
5451 INIT_EXPANDERS;
5452 #endif
5455 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5457 static rtx
5458 gen_const_vector (enum machine_mode mode, int constant)
5460 rtx tem;
5461 rtvec v;
5462 int units, i;
5463 enum machine_mode inner;
5465 units = GET_MODE_NUNITS (mode);
5466 inner = GET_MODE_INNER (mode);
5468 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5470 v = rtvec_alloc (units);
5472 /* We need to call this function after we set the scalar const_tiny_rtx
5473 entries. */
5474 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5476 for (i = 0; i < units; ++i)
5477 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5479 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5480 return tem;
5483 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5484 all elements are zero, and the one vector when all elements are one. */
5486 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5488 enum machine_mode inner = GET_MODE_INNER (mode);
5489 int nunits = GET_MODE_NUNITS (mode);
5490 rtx x;
5491 int i;
5493 /* Check to see if all of the elements have the same value. */
5494 x = RTVEC_ELT (v, nunits - 1);
5495 for (i = nunits - 2; i >= 0; i--)
5496 if (RTVEC_ELT (v, i) != x)
5497 break;
5499 /* If the values are all the same, check to see if we can use one of the
5500 standard constant vectors. */
5501 if (i == -1)
5503 if (x == CONST0_RTX (inner))
5504 return CONST0_RTX (mode);
5505 else if (x == CONST1_RTX (inner))
5506 return CONST1_RTX (mode);
5507 else if (x == CONSTM1_RTX (inner))
5508 return CONSTM1_RTX (mode);
5511 return gen_rtx_raw_CONST_VECTOR (mode, v);
5514 /* Initialise global register information required by all functions. */
5516 void
5517 init_emit_regs (void)
5519 int i;
5520 enum machine_mode mode;
5521 mem_attrs *attrs;
5523 /* Reset register attributes */
5524 htab_empty (reg_attrs_htab);
5526 /* We need reg_raw_mode, so initialize the modes now. */
5527 init_reg_modes_target ();
5529 /* Assign register numbers to the globally defined register rtx. */
5530 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5531 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5532 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5533 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5534 virtual_incoming_args_rtx =
5535 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5536 virtual_stack_vars_rtx =
5537 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5538 virtual_stack_dynamic_rtx =
5539 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5540 virtual_outgoing_args_rtx =
5541 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5542 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5543 virtual_preferred_stack_boundary_rtx =
5544 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5546 /* Initialize RTL for commonly used hard registers. These are
5547 copied into regno_reg_rtx as we begin to compile each function. */
5548 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5549 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5551 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5552 return_address_pointer_rtx
5553 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5554 #endif
5556 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5557 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5558 else
5559 pic_offset_table_rtx = NULL_RTX;
5561 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5563 mode = (enum machine_mode) i;
5564 attrs = ggc_alloc_cleared_mem_attrs ();
5565 attrs->align = BITS_PER_UNIT;
5566 attrs->addrspace = ADDR_SPACE_GENERIC;
5567 if (mode != BLKmode)
5569 attrs->size_known_p = true;
5570 attrs->size = GET_MODE_SIZE (mode);
5571 if (STRICT_ALIGNMENT)
5572 attrs->align = GET_MODE_ALIGNMENT (mode);
5574 mode_mem_attrs[i] = attrs;
5578 /* Create some permanent unique rtl objects shared between all functions. */
5580 void
5581 init_emit_once (void)
5583 int i;
5584 enum machine_mode mode;
5585 enum machine_mode double_mode;
5587 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5588 hash tables. */
5589 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5590 const_int_htab_eq, NULL);
5592 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5593 const_double_htab_eq, NULL);
5595 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5596 const_fixed_htab_eq, NULL);
5598 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5599 mem_attrs_htab_eq, NULL);
5600 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5601 reg_attrs_htab_eq, NULL);
5603 /* Compute the word and byte modes. */
5605 byte_mode = VOIDmode;
5606 word_mode = VOIDmode;
5607 double_mode = VOIDmode;
5609 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5610 mode != VOIDmode;
5611 mode = GET_MODE_WIDER_MODE (mode))
5613 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5614 && byte_mode == VOIDmode)
5615 byte_mode = mode;
5617 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5618 && word_mode == VOIDmode)
5619 word_mode = mode;
5622 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5623 mode != VOIDmode;
5624 mode = GET_MODE_WIDER_MODE (mode))
5626 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5627 && double_mode == VOIDmode)
5628 double_mode = mode;
5631 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5633 #ifdef INIT_EXPANDERS
5634 /* This is to initialize {init|mark|free}_machine_status before the first
5635 call to push_function_context_to. This is needed by the Chill front
5636 end which calls push_function_context_to before the first call to
5637 init_function_start. */
5638 INIT_EXPANDERS;
5639 #endif
5641 /* Create the unique rtx's for certain rtx codes and operand values. */
5643 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5644 tries to use these variables. */
5645 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5646 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5647 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5649 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5650 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5651 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5652 else
5653 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5655 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5656 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5657 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5659 dconstm1 = dconst1;
5660 dconstm1.sign = 1;
5662 dconsthalf = dconst1;
5663 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5665 for (i = 0; i < 3; i++)
5667 const REAL_VALUE_TYPE *const r =
5668 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5670 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5671 mode != VOIDmode;
5672 mode = GET_MODE_WIDER_MODE (mode))
5673 const_tiny_rtx[i][(int) mode] =
5674 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5676 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5677 mode != VOIDmode;
5678 mode = GET_MODE_WIDER_MODE (mode))
5679 const_tiny_rtx[i][(int) mode] =
5680 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5682 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5684 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5685 mode != VOIDmode;
5686 mode = GET_MODE_WIDER_MODE (mode))
5687 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5689 for (mode = MIN_MODE_PARTIAL_INT;
5690 mode <= MAX_MODE_PARTIAL_INT;
5691 mode = (enum machine_mode)((int)(mode) + 1))
5692 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5695 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5697 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5698 mode != VOIDmode;
5699 mode = GET_MODE_WIDER_MODE (mode))
5700 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5702 for (mode = MIN_MODE_PARTIAL_INT;
5703 mode <= MAX_MODE_PARTIAL_INT;
5704 mode = (enum machine_mode)((int)(mode) + 1))
5705 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5707 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5708 mode != VOIDmode;
5709 mode = GET_MODE_WIDER_MODE (mode))
5711 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5712 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5715 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5716 mode != VOIDmode;
5717 mode = GET_MODE_WIDER_MODE (mode))
5719 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5720 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5723 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5724 mode != VOIDmode;
5725 mode = GET_MODE_WIDER_MODE (mode))
5727 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5728 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5729 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5732 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5733 mode != VOIDmode;
5734 mode = GET_MODE_WIDER_MODE (mode))
5736 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5737 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5740 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5741 mode != VOIDmode;
5742 mode = GET_MODE_WIDER_MODE (mode))
5744 FCONST0(mode).data.high = 0;
5745 FCONST0(mode).data.low = 0;
5746 FCONST0(mode).mode = mode;
5747 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5748 FCONST0 (mode), mode);
5751 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5752 mode != VOIDmode;
5753 mode = GET_MODE_WIDER_MODE (mode))
5755 FCONST0(mode).data.high = 0;
5756 FCONST0(mode).data.low = 0;
5757 FCONST0(mode).mode = mode;
5758 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5759 FCONST0 (mode), mode);
5762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5763 mode != VOIDmode;
5764 mode = GET_MODE_WIDER_MODE (mode))
5766 FCONST0(mode).data.high = 0;
5767 FCONST0(mode).data.low = 0;
5768 FCONST0(mode).mode = mode;
5769 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5770 FCONST0 (mode), mode);
5772 /* We store the value 1. */
5773 FCONST1(mode).data.high = 0;
5774 FCONST1(mode).data.low = 0;
5775 FCONST1(mode).mode = mode;
5776 FCONST1(mode).data
5777 = double_int_one.lshift (GET_MODE_FBIT (mode),
5778 HOST_BITS_PER_DOUBLE_INT,
5779 SIGNED_FIXED_POINT_MODE_P (mode));
5780 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5781 FCONST1 (mode), mode);
5784 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5785 mode != VOIDmode;
5786 mode = GET_MODE_WIDER_MODE (mode))
5788 FCONST0(mode).data.high = 0;
5789 FCONST0(mode).data.low = 0;
5790 FCONST0(mode).mode = mode;
5791 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5792 FCONST0 (mode), mode);
5794 /* We store the value 1. */
5795 FCONST1(mode).data.high = 0;
5796 FCONST1(mode).data.low = 0;
5797 FCONST1(mode).mode = mode;
5798 FCONST1(mode).data
5799 = double_int_one.lshift (GET_MODE_FBIT (mode),
5800 HOST_BITS_PER_DOUBLE_INT,
5801 SIGNED_FIXED_POINT_MODE_P (mode));
5802 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5803 FCONST1 (mode), mode);
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5810 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5813 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5814 mode != VOIDmode;
5815 mode = GET_MODE_WIDER_MODE (mode))
5817 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5820 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5821 mode != VOIDmode;
5822 mode = GET_MODE_WIDER_MODE (mode))
5824 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5825 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5828 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5829 mode != VOIDmode;
5830 mode = GET_MODE_WIDER_MODE (mode))
5832 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5833 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5836 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5837 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5838 const_tiny_rtx[0][i] = const0_rtx;
5840 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5841 if (STORE_FLAG_VALUE == 1)
5842 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5844 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5845 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5846 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5847 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5850 /* Produce exact duplicate of insn INSN after AFTER.
5851 Care updating of libcall regions if present. */
5854 emit_copy_of_insn_after (rtx insn, rtx after)
5856 rtx new_rtx, link;
5858 switch (GET_CODE (insn))
5860 case INSN:
5861 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5862 break;
5864 case JUMP_INSN:
5865 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5866 break;
5868 case DEBUG_INSN:
5869 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5870 break;
5872 case CALL_INSN:
5873 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5874 if (CALL_INSN_FUNCTION_USAGE (insn))
5875 CALL_INSN_FUNCTION_USAGE (new_rtx)
5876 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5877 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5878 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5879 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5880 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5881 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5882 break;
5884 default:
5885 gcc_unreachable ();
5888 /* Update LABEL_NUSES. */
5889 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5891 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5893 /* If the old insn is frame related, then so is the new one. This is
5894 primarily needed for IA-64 unwind info which marks epilogue insns,
5895 which may be duplicated by the basic block reordering code. */
5896 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5898 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5899 will make them. REG_LABEL_TARGETs are created there too, but are
5900 supposed to be sticky, so we copy them. */
5901 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5902 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5904 if (GET_CODE (link) == EXPR_LIST)
5905 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5906 copy_insn_1 (XEXP (link, 0)));
5907 else
5908 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5911 INSN_CODE (new_rtx) = INSN_CODE (insn);
5912 return new_rtx;
5915 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5917 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5919 if (hard_reg_clobbers[mode][regno])
5920 return hard_reg_clobbers[mode][regno];
5921 else
5922 return (hard_reg_clobbers[mode][regno] =
5923 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5926 location_t prologue_location;
5927 location_t epilogue_location;
5929 /* Hold current location information and last location information, so the
5930 datastructures are built lazily only when some instructions in given
5931 place are needed. */
5932 static location_t curr_location, last_location;
5934 /* Allocate insn location datastructure. */
5935 void
5936 insn_locations_init (void)
5938 prologue_location = epilogue_location = 0;
5939 curr_location = UNKNOWN_LOCATION;
5940 last_location = UNKNOWN_LOCATION;
5943 /* At the end of emit stage, clear current location. */
5944 void
5945 insn_locations_finalize (void)
5947 epilogue_location = curr_location;
5948 curr_location = UNKNOWN_LOCATION;
5951 /* Set current location. */
5952 void
5953 set_curr_insn_location (location_t location)
5955 curr_location = location;
5958 /* Get current location. */
5959 location_t
5960 curr_insn_location (void)
5962 return curr_location;
5965 /* Return lexical scope block insn belongs to. */
5966 tree
5967 insn_scope (const_rtx insn)
5969 return LOCATION_BLOCK (INSN_LOCATION (insn));
5972 /* Return line number of the statement that produced this insn. */
5974 insn_line (const_rtx insn)
5976 return LOCATION_LINE (INSN_LOCATION (insn));
5979 /* Return source file of the statement that produced this insn. */
5980 const char *
5981 insn_file (const_rtx insn)
5983 return LOCATION_FILE (INSN_LOCATION (insn));
5986 /* Return true if memory model MODEL requires a pre-operation (release-style)
5987 barrier or a post-operation (acquire-style) barrier. While not universal,
5988 this function matches behavior of several targets. */
5990 bool
5991 need_atomic_barrier_p (enum memmodel model, bool pre)
5993 switch (model)
5995 case MEMMODEL_RELAXED:
5996 case MEMMODEL_CONSUME:
5997 return false;
5998 case MEMMODEL_RELEASE:
5999 return pre;
6000 case MEMMODEL_ACQUIRE:
6001 return !pre;
6002 case MEMMODEL_ACQ_REL:
6003 case MEMMODEL_SEQ_CST:
6004 return true;
6005 default:
6006 gcc_unreachable ();
6010 #include "gt-emit-rtl.h"