* Makefile.am: Remove references to types.m4.
[official-gcc.git] / libgfortran / generated / product_r4.c
blobc615bbd33da936e4cb01b1029c26bf3fcdc5c4b5
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include "libgfortran.h"
27 void
28 __product_r4 (gfc_array_r4 * retarray, gfc_array_r4 *array, index_type *pdim)
30 index_type count[GFC_MAX_DIMENSIONS - 1];
31 index_type extent[GFC_MAX_DIMENSIONS - 1];
32 index_type sstride[GFC_MAX_DIMENSIONS - 1];
33 index_type dstride[GFC_MAX_DIMENSIONS - 1];
34 GFC_REAL_4 *base;
35 GFC_REAL_4 *dest;
36 index_type rank;
37 index_type n;
38 index_type len;
39 index_type delta;
40 index_type dim;
42 /* Make dim zero based to avoid confusion. */
43 dim = (*pdim) - 1;
44 rank = GFC_DESCRIPTOR_RANK (array) - 1;
45 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
46 if (array->dim[0].stride == 0)
47 array->dim[0].stride = 1;
48 if (retarray->dim[0].stride == 0)
49 retarray->dim[0].stride = 1;
51 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
52 delta = array->dim[dim].stride;
54 for (n = 0; n < dim; n++)
56 sstride[n] = array->dim[n].stride;
57 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
59 for (n = dim; n < rank; n++)
61 sstride[n] = array->dim[n + 1].stride;
62 extent[n] =
63 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
66 for (n = 0; n < rank; n++)
68 count[n] = 0;
69 dstride[n] = retarray->dim[n].stride;
70 if (extent[n] <= 0)
71 len = 0;
74 base = array->data;
75 dest = retarray->data;
77 while (base)
79 GFC_REAL_4 *src;
80 GFC_REAL_4 result;
81 src = base;
84 result = 1;
85 if (len <= 0)
86 *dest = 1;
87 else
89 for (n = 0; n < len; n++, src += delta)
92 result *= *src;
94 *dest = result;
97 /* Advance to the next element. */
98 count[0]++;
99 base += sstride[0];
100 dest += dstride[0];
101 n = 0;
102 while (count[n] == extent[n])
104 /* When we get to the end of a dimension, reset it and increment
105 the next dimension. */
106 count[n] = 0;
107 /* We could precalculate these products, but this is a less
108 frequently used path so proabably not worth it. */
109 base -= sstride[n] * extent[n];
110 dest -= dstride[n] * extent[n];
111 n++;
112 if (n == rank)
114 /* Break out of the look. */
115 base = NULL;
116 break;
118 else
120 count[n]++;
121 base += sstride[n];
122 dest += dstride[n];
128 void
129 __mproduct_r4 (gfc_array_r4 * retarray, gfc_array_r4 * array, index_type *pdim, gfc_array_l4 * mask)
131 index_type count[GFC_MAX_DIMENSIONS - 1];
132 index_type extent[GFC_MAX_DIMENSIONS - 1];
133 index_type sstride[GFC_MAX_DIMENSIONS - 1];
134 index_type dstride[GFC_MAX_DIMENSIONS - 1];
135 index_type mstride[GFC_MAX_DIMENSIONS - 1];
136 GFC_REAL_4 *dest;
137 GFC_REAL_4 *base;
138 GFC_LOGICAL_4 *mbase;
139 int rank;
140 int dim;
141 index_type n;
142 index_type len;
143 index_type delta;
144 index_type mdelta;
146 dim = (*pdim) - 1;
147 rank = GFC_DESCRIPTOR_RANK (array) - 1;
148 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
149 if (array->dim[0].stride == 0)
150 array->dim[0].stride = 1;
151 if (retarray->dim[0].stride == 0)
152 retarray->dim[0].stride = 1;
154 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
155 if (len <= 0)
156 return;
157 delta = array->dim[dim].stride;
158 mdelta = mask->dim[dim].stride;
160 for (n = 0; n < dim; n++)
162 sstride[n] = array->dim[n].stride;
163 mstride[n] = mask->dim[n].stride;
164 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
166 for (n = dim; n < rank; n++)
168 sstride[n] = array->dim[n + 1].stride;
169 mstride[n] = mask->dim[n + 1].stride;
170 extent[n] =
171 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
174 for (n = 0; n < rank; n++)
176 count[n] = 0;
177 dstride[n] = retarray->dim[n].stride;
178 if (extent[n] <= 0)
179 return;
182 dest = retarray->data;
183 base = array->data;
184 mbase = mask->data;
186 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
188 /* This allows the same loop to be used for all logical types. */
189 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
190 for (n = 0; n < rank; n++)
191 mstride[n] <<= 1;
192 mdelta <<= 1;
193 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
196 while (base)
198 GFC_REAL_4 *src;
199 GFC_LOGICAL_4 *msrc;
200 GFC_REAL_4 result;
201 src = base;
202 msrc = mbase;
205 result = 1;
206 if (len <= 0)
207 *dest = 1;
208 else
210 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
213 if (*msrc)
214 result *= *src;
216 *dest = result;
219 /* Advance to the next element. */
220 count[0]++;
221 base += sstride[0];
222 mbase += mstride[0];
223 dest += dstride[0];
224 n = 0;
225 while (count[n] == extent[n])
227 /* When we get to the end of a dimension, reset it and increment
228 the next dimension. */
229 count[n] = 0;
230 /* We could precalculate these products, but this is a less
231 frequently used path so proabably not worth it. */
232 base -= sstride[n] * extent[n];
233 mbase -= mstride[n] * extent[n];
234 dest -= dstride[n] * extent[n];
235 n++;
236 if (n == rank)
238 /* Break out of the look. */
239 base = NULL;
240 break;
242 else
244 count[n]++;
245 base += sstride[n];
246 mbase += mstride[n];
247 dest += dstride[n];