1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 #include "libgfortran.h"
28 __product_c4 (gfc_array_c4
* retarray
, gfc_array_c4
*array
, index_type
*pdim
)
30 index_type count
[GFC_MAX_DIMENSIONS
- 1];
31 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
32 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
33 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
42 /* Make dim zero based to avoid confusion. */
44 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
45 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
46 if (array
->dim
[0].stride
== 0)
47 array
->dim
[0].stride
= 1;
48 if (retarray
->dim
[0].stride
== 0)
49 retarray
->dim
[0].stride
= 1;
51 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
52 delta
= array
->dim
[dim
].stride
;
54 for (n
= 0; n
< dim
; n
++)
56 sstride
[n
] = array
->dim
[n
].stride
;
57 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
59 for (n
= dim
; n
< rank
; n
++)
61 sstride
[n
] = array
->dim
[n
+ 1].stride
;
63 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
66 for (n
= 0; n
< rank
; n
++)
69 dstride
[n
] = retarray
->dim
[n
].stride
;
75 dest
= retarray
->data
;
89 for (n
= 0; n
< len
; n
++, src
+= delta
)
97 /* Advance to the next element. */
102 while (count
[n
] == extent
[n
])
104 /* When we get to the end of a dimension, reset it and increment
105 the next dimension. */
107 /* We could precalculate these products, but this is a less
108 frequently used path so proabably not worth it. */
109 base
-= sstride
[n
] * extent
[n
];
110 dest
-= dstride
[n
] * extent
[n
];
114 /* Break out of the look. */
129 __mproduct_c4 (gfc_array_c4
* retarray
, gfc_array_c4
* array
, index_type
*pdim
, gfc_array_l4
* mask
)
131 index_type count
[GFC_MAX_DIMENSIONS
- 1];
132 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
133 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
134 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
135 index_type mstride
[GFC_MAX_DIMENSIONS
- 1];
138 GFC_LOGICAL_4
*mbase
;
147 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
148 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
149 if (array
->dim
[0].stride
== 0)
150 array
->dim
[0].stride
= 1;
151 if (retarray
->dim
[0].stride
== 0)
152 retarray
->dim
[0].stride
= 1;
154 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
157 delta
= array
->dim
[dim
].stride
;
158 mdelta
= mask
->dim
[dim
].stride
;
160 for (n
= 0; n
< dim
; n
++)
162 sstride
[n
] = array
->dim
[n
].stride
;
163 mstride
[n
] = mask
->dim
[n
].stride
;
164 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
166 for (n
= dim
; n
< rank
; n
++)
168 sstride
[n
] = array
->dim
[n
+ 1].stride
;
169 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
171 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
174 for (n
= 0; n
< rank
; n
++)
177 dstride
[n
] = retarray
->dim
[n
].stride
;
182 dest
= retarray
->data
;
186 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
188 /* This allows the same loop to be used for all logical types. */
189 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
190 for (n
= 0; n
< rank
; n
++)
193 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
200 GFC_COMPLEX_4 result
;
210 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
219 /* Advance to the next element. */
225 while (count
[n
] == extent
[n
])
227 /* When we get to the end of a dimension, reset it and increment
228 the next dimension. */
230 /* We could precalculate these products, but this is a less
231 frequently used path so proabably not worth it. */
232 base
-= sstride
[n
] * extent
[n
];
233 mbase
-= mstride
[n
] * extent
[n
];
234 dest
-= dstride
[n
] * extent
[n
];
238 /* Break out of the look. */