1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
43 Here's an example of using the dataflow routines.
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for the
111 hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
170 a read-modify write operation. We generate both a use and a def
171 and again mark them read/write.
176 #include "coretypes.h"
180 #include "insn-config.h"
182 #include "function.h"
184 #include "alloc-pool.h"
185 #include "hard-reg-set.h"
186 #include "basic-block.h"
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;}); \
200 static alloc_pool df_ref_pool
;
201 static alloc_pool df_link_pool
;
202 static struct df
*ddf
;
204 static void df_reg_table_realloc (struct df
*, int);
205 static void df_insn_table_realloc (struct df
*, unsigned int);
206 static void df_bb_table_realloc (struct df
*, unsigned int);
207 static void df_bitmaps_alloc (struct df
*, bitmap
, int);
208 static void df_bitmaps_free (struct df
*, int);
209 static void df_free (struct df
*);
210 static void df_alloc (struct df
*, int);
212 static rtx
df_reg_use_gen (unsigned int);
214 static inline struct df_link
*df_link_create (struct ref
*, struct df_link
*);
215 static struct df_link
*df_ref_unlink (struct df_link
**, struct ref
*);
216 static void df_def_unlink (struct df
*, struct ref
*);
217 static void df_use_unlink (struct df
*, struct ref
*);
218 static void df_insn_refs_unlink (struct df
*, basic_block
, rtx
);
220 static void df_bb_refs_unlink (struct df
*, basic_block
);
221 static void df_refs_unlink (struct df
*, bitmap
);
224 static struct ref
*df_ref_create (struct df
*, rtx
, rtx
*, rtx
,
225 enum df_ref_type
, enum df_ref_flags
);
226 static void df_ref_record_1 (struct df
*, rtx
, rtx
*, rtx
, enum df_ref_type
,
228 static void df_ref_record (struct df
*, rtx
, rtx
*, rtx
, enum df_ref_type
,
230 static void df_def_record_1 (struct df
*, rtx
, basic_block
, rtx
);
231 static void df_defs_record (struct df
*, rtx
, basic_block
, rtx
);
232 static void df_uses_record (struct df
*, rtx
*, enum df_ref_type
,
233 basic_block
, rtx
, enum df_ref_flags
);
234 static void df_insn_refs_record (struct df
*, basic_block
, rtx
);
235 static void df_bb_refs_record (struct df
*, basic_block
);
236 static void df_refs_record (struct df
*, bitmap
);
238 static void df_bb_reg_def_chain_create (struct df
*, basic_block
);
239 static void df_reg_def_chain_create (struct df
*, bitmap
, bool);
240 static void df_bb_reg_use_chain_create (struct df
*, basic_block
);
241 static void df_reg_use_chain_create (struct df
*, bitmap
, bool);
242 static void df_bb_du_chain_create (struct df
*, basic_block
, bitmap
);
243 static void df_du_chain_create (struct df
*, bitmap
);
244 static void df_bb_ud_chain_create (struct df
*, basic_block
);
245 static void df_ud_chain_create (struct df
*, bitmap
);
246 static void df_bb_rd_local_compute (struct df
*, basic_block
);
247 static void df_rd_local_compute (struct df
*, bitmap
);
248 static void df_bb_ru_local_compute (struct df
*, basic_block
);
249 static void df_ru_local_compute (struct df
*, bitmap
);
250 static void df_bb_lr_local_compute (struct df
*, basic_block
);
251 static void df_lr_local_compute (struct df
*, bitmap
);
252 static void df_bb_reg_info_compute (struct df
*, basic_block
, bitmap
);
253 static void df_reg_info_compute (struct df
*, bitmap
);
255 static int df_bb_luids_set (struct df
*df
, basic_block
);
256 static int df_luids_set (struct df
*df
, bitmap
);
258 static int df_modified_p (struct df
*, bitmap
);
259 static int df_refs_queue (struct df
*);
260 static int df_refs_process (struct df
*);
261 static int df_bb_refs_update (struct df
*, basic_block
);
262 static int df_refs_update (struct df
*, bitmap
);
263 static void df_analyze_1 (struct df
*, bitmap
, int, int);
265 static void df_insns_modify (struct df
*, basic_block
, rtx
, rtx
);
266 static int df_rtx_mem_replace (rtx
*, void *);
267 static int df_rtx_reg_replace (rtx
*, void *);
268 void df_refs_reg_replace (struct df
*, bitmap
, struct df_link
*, rtx
, rtx
);
270 static int df_def_dominates_all_uses_p (struct df
*, struct ref
*def
);
271 static int df_def_dominates_uses_p (struct df
*, struct ref
*def
, bitmap
);
272 static struct ref
*df_bb_insn_regno_last_use_find (struct df
*, basic_block
,
274 static struct ref
*df_bb_insn_regno_first_def_find (struct df
*, basic_block
,
277 static void df_chain_dump (struct df_link
*, FILE *file
);
278 static void df_chain_dump_regno (struct df_link
*, FILE *file
);
279 static void df_regno_debug (struct df
*, unsigned int, FILE *);
280 static void df_ref_debug (struct df
*, struct ref
*, FILE *);
281 static void df_rd_transfer_function (int, int *, void *, void *, void *,
283 static void df_ru_transfer_function (int, int *, void *, void *, void *,
285 static void df_lr_transfer_function (int, int *, void *, void *, void *,
287 static void hybrid_search (basic_block
, struct dataflow
*,
288 sbitmap
, sbitmap
, sbitmap
);
291 /* Local memory allocation/deallocation routines. */
294 /* Increase the insn info table to have space for at least SIZE + 1
297 df_insn_table_realloc (struct df
*df
, unsigned int size
)
300 if (size
<= df
->insn_size
)
303 /* Make the table a little larger than requested, so we do not need
304 to enlarge it so often. */
305 size
+= df
->insn_size
/ 4;
307 df
->insns
= xrealloc (df
->insns
, size
* sizeof (struct insn_info
));
309 memset (df
->insns
+ df
->insn_size
, 0,
310 (size
- df
->insn_size
) * sizeof (struct insn_info
));
312 df
->insn_size
= size
;
314 if (! df
->insns_modified
)
316 df
->insns_modified
= BITMAP_XMALLOC ();
317 bitmap_zero (df
->insns_modified
);
321 /* Increase the bb info table to have space for at least SIZE + 1
325 df_bb_table_realloc (struct df
*df
, unsigned int size
)
328 if (size
<= df
->n_bbs
)
331 /* Make the table a little larger than requested, so we do not need
332 to enlarge it so often. */
333 size
+= df
->n_bbs
/ 4;
335 df
->bbs
= xrealloc (df
->bbs
, size
* sizeof (struct bb_info
));
337 memset (df
->bbs
+ df
->n_bbs
, 0, (size
- df
->n_bbs
) * sizeof (struct bb_info
));
342 /* Increase the reg info table by SIZE more elements. */
344 df_reg_table_realloc (struct df
*df
, int size
)
346 /* Make table 25 percent larger by default. */
348 size
= df
->reg_size
/ 4;
350 size
+= df
->reg_size
;
351 if (size
< max_reg_num ())
352 size
= max_reg_num ();
354 df
->regs
= xrealloc (df
->regs
, size
* sizeof (struct reg_info
));
355 df
->reg_def_last
= xrealloc (df
->reg_def_last
,
356 size
* sizeof (struct ref
*));
358 /* Zero the new entries. */
359 memset (df
->regs
+ df
->reg_size
, 0,
360 (size
- df
->reg_size
) * sizeof (struct reg_info
));
366 /* Allocate bitmaps for each basic block. */
369 df_bitmaps_alloc (struct df
*df
, bitmap blocks
, int flags
)
373 df
->n_defs
= df
->def_id
;
374 df
->n_uses
= df
->use_id
;
377 blocks
= df
->all_blocks
;
379 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
381 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
387 /* Allocate bitmaps for reaching definitions. */
388 bb_info
->rd_kill
= BITMAP_XMALLOC ();
389 bb_info
->rd_gen
= BITMAP_XMALLOC ();
390 bb_info
->rd_in
= BITMAP_XMALLOC ();
391 bb_info
->rd_out
= BITMAP_XMALLOC ();
395 bitmap_clear (bb_info
->rd_kill
);
396 bitmap_clear (bb_info
->rd_gen
);
397 bitmap_clear (bb_info
->rd_in
);
398 bitmap_clear (bb_info
->rd_out
);
406 /* Allocate bitmaps for upward exposed uses. */
407 bb_info
->ru_kill
= BITMAP_XMALLOC ();
408 bb_info
->ru_gen
= BITMAP_XMALLOC ();
409 bb_info
->ru_in
= BITMAP_XMALLOC ();
410 bb_info
->ru_out
= BITMAP_XMALLOC ();
414 bitmap_clear (bb_info
->ru_kill
);
415 bitmap_clear (bb_info
->ru_gen
);
416 bitmap_clear (bb_info
->ru_in
);
417 bitmap_clear (bb_info
->ru_out
);
425 /* Allocate bitmaps for live variables. */
426 bb_info
->lr_def
= BITMAP_XMALLOC ();
427 bb_info
->lr_use
= BITMAP_XMALLOC ();
428 bb_info
->lr_in
= BITMAP_XMALLOC ();
429 bb_info
->lr_out
= BITMAP_XMALLOC ();
433 bitmap_clear (bb_info
->lr_def
);
434 bitmap_clear (bb_info
->lr_use
);
435 bitmap_clear (bb_info
->lr_in
);
436 bitmap_clear (bb_info
->lr_out
);
443 /* Free bitmaps for each basic block. */
445 df_bitmaps_free (struct df
*df
, int flags
)
451 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
456 if ((flags
& DF_RD
) && bb_info
->rd_in
)
458 /* Free bitmaps for reaching definitions. */
459 BITMAP_XFREE (bb_info
->rd_kill
);
460 bb_info
->rd_kill
= NULL
;
461 BITMAP_XFREE (bb_info
->rd_gen
);
462 bb_info
->rd_gen
= NULL
;
463 BITMAP_XFREE (bb_info
->rd_in
);
464 bb_info
->rd_in
= NULL
;
465 BITMAP_XFREE (bb_info
->rd_out
);
466 bb_info
->rd_out
= NULL
;
469 if ((flags
& DF_RU
) && bb_info
->ru_in
)
471 /* Free bitmaps for upward exposed uses. */
472 BITMAP_XFREE (bb_info
->ru_kill
);
473 bb_info
->ru_kill
= NULL
;
474 BITMAP_XFREE (bb_info
->ru_gen
);
475 bb_info
->ru_gen
= NULL
;
476 BITMAP_XFREE (bb_info
->ru_in
);
477 bb_info
->ru_in
= NULL
;
478 BITMAP_XFREE (bb_info
->ru_out
);
479 bb_info
->ru_out
= NULL
;
482 if ((flags
& DF_LR
) && bb_info
->lr_in
)
484 /* Free bitmaps for live variables. */
485 BITMAP_XFREE (bb_info
->lr_def
);
486 bb_info
->lr_def
= NULL
;
487 BITMAP_XFREE (bb_info
->lr_use
);
488 bb_info
->lr_use
= NULL
;
489 BITMAP_XFREE (bb_info
->lr_in
);
490 bb_info
->lr_in
= NULL
;
491 BITMAP_XFREE (bb_info
->lr_out
);
492 bb_info
->lr_out
= NULL
;
495 df
->flags
&= ~(flags
& (DF_RD
| DF_RU
| DF_LR
));
499 /* Allocate and initialize dataflow memory. */
501 df_alloc (struct df
*df
, int n_regs
)
506 df_link_pool
= create_alloc_pool ("df_link pool", sizeof (struct df_link
),
508 df_ref_pool
= create_alloc_pool ("df_ref pool", sizeof (struct ref
), 100);
510 /* Perhaps we should use LUIDs to save memory for the insn_refs
511 table. This is only a small saving; a few pointers. */
512 n_insns
= get_max_uid () + 1;
516 /* Approximate number of defs by number of insns. */
517 df
->def_size
= n_insns
;
518 df
->defs
= xmalloc (df
->def_size
* sizeof (*df
->defs
));
522 /* Approximate number of uses by twice number of insns. */
523 df
->use_size
= n_insns
* 2;
524 df
->uses
= xmalloc (df
->use_size
* sizeof (*df
->uses
));
527 df
->n_bbs
= last_basic_block
;
529 /* Allocate temporary working array used during local dataflow analysis. */
530 df_insn_table_realloc (df
, n_insns
);
532 df_reg_table_realloc (df
, df
->n_regs
);
534 df
->bbs_modified
= BITMAP_XMALLOC ();
535 bitmap_zero (df
->bbs_modified
);
539 df
->bbs
= xcalloc (last_basic_block
, sizeof (struct bb_info
));
541 df
->all_blocks
= BITMAP_XMALLOC ();
543 bitmap_set_bit (df
->all_blocks
, bb
->index
);
547 /* Free all the dataflow info. */
549 df_free (struct df
*df
)
551 df_bitmaps_free (df
, DF_ALL
);
579 if (df
->bbs_modified
)
580 BITMAP_XFREE (df
->bbs_modified
);
581 df
->bbs_modified
= 0;
583 if (df
->insns_modified
)
584 BITMAP_XFREE (df
->insns_modified
);
585 df
->insns_modified
= 0;
587 BITMAP_XFREE (df
->all_blocks
);
590 free_alloc_pool (df_ref_pool
);
591 free_alloc_pool (df_link_pool
);
594 /* Local miscellaneous routines. */
596 /* Return a USE for register REGNO. */
597 static rtx
df_reg_use_gen (unsigned int regno
)
602 reg
= regno_reg_rtx
[regno
];
604 use
= gen_rtx_USE (GET_MODE (reg
), reg
);
609 /* Return a CLOBBER for register REGNO. */
610 static rtx
df_reg_clobber_gen (unsigned int regno
)
615 reg
= regno_reg_rtx
[regno
];
617 use
= gen_rtx_CLOBBER (GET_MODE (reg
), reg
);
621 /* Local chain manipulation routines. */
623 /* Create a link in a def-use or use-def chain. */
624 static inline struct df_link
*
625 df_link_create (struct ref
*ref
, struct df_link
*next
)
627 struct df_link
*link
;
629 link
= pool_alloc (df_link_pool
);
635 /* Releases members of the CHAIN. */
638 free_reg_ref_chain (struct df_link
**chain
)
640 struct df_link
*act
, *next
;
642 for (act
= *chain
; act
; act
= next
)
645 pool_free (df_link_pool
, act
);
651 /* Add REF to chain head pointed to by PHEAD. */
652 static struct df_link
*
653 df_ref_unlink (struct df_link
**phead
, struct ref
*ref
)
655 struct df_link
*link
= *phead
;
661 /* Only a single ref. It must be the one we want.
662 If not, the def-use and use-def chains are likely to
664 if (link
->ref
!= ref
)
666 /* Now have an empty chain. */
671 /* Multiple refs. One of them must be us. */
672 if (link
->ref
== ref
)
677 for (; link
->next
; link
= link
->next
)
679 if (link
->next
->ref
== ref
)
681 /* Unlink from list. */
682 link
->next
= link
->next
->next
;
693 /* Unlink REF from all def-use/use-def chains, etc. */
695 df_ref_remove (struct df
*df
, struct ref
*ref
)
697 if (DF_REF_REG_DEF_P (ref
))
699 df_def_unlink (df
, ref
);
700 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].defs
, ref
);
704 df_use_unlink (df
, ref
);
705 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].uses
, ref
);
711 /* Unlink DEF from use-def and reg-def chains. */
713 df_def_unlink (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
)
715 struct df_link
*du_link
;
716 unsigned int dregno
= DF_REF_REGNO (def
);
718 /* Follow def-use chain to find all the uses of this def. */
719 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
721 struct ref
*use
= du_link
->ref
;
723 /* Unlink this def from the use-def chain. */
724 df_ref_unlink (&DF_REF_CHAIN (use
), def
);
726 DF_REF_CHAIN (def
) = 0;
728 /* Unlink def from reg-def chain. */
729 df_ref_unlink (&df
->regs
[dregno
].defs
, def
);
731 df
->defs
[DF_REF_ID (def
)] = 0;
735 /* Unlink use from def-use and reg-use chains. */
737 df_use_unlink (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*use
)
739 struct df_link
*ud_link
;
740 unsigned int uregno
= DF_REF_REGNO (use
);
742 /* Follow use-def chain to find all the defs of this use. */
743 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
745 struct ref
*def
= ud_link
->ref
;
747 /* Unlink this use from the def-use chain. */
748 df_ref_unlink (&DF_REF_CHAIN (def
), use
);
750 DF_REF_CHAIN (use
) = 0;
752 /* Unlink use from reg-use chain. */
753 df_ref_unlink (&df
->regs
[uregno
].uses
, use
);
755 df
->uses
[DF_REF_ID (use
)] = 0;
758 /* Local routines for recording refs. */
761 /* Create a new ref of type DF_REF_TYPE for register REG at address
762 LOC within INSN of BB. */
764 df_ref_create (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
765 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
767 struct ref
*this_ref
;
769 this_ref
= pool_alloc (df_ref_pool
);
770 DF_REF_REG (this_ref
) = reg
;
771 DF_REF_LOC (this_ref
) = loc
;
772 DF_REF_INSN (this_ref
) = insn
;
773 DF_REF_CHAIN (this_ref
) = 0;
774 DF_REF_TYPE (this_ref
) = ref_type
;
775 DF_REF_FLAGS (this_ref
) = ref_flags
;
776 DF_REF_DATA (this_ref
) = NULL
;
778 if (ref_type
== DF_REF_REG_DEF
)
780 if (df
->def_id
>= df
->def_size
)
782 /* Make table 25 percent larger. */
783 df
->def_size
+= (df
->def_size
/ 4);
784 df
->defs
= xrealloc (df
->defs
,
785 df
->def_size
* sizeof (*df
->defs
));
787 DF_REF_ID (this_ref
) = df
->def_id
;
788 df
->defs
[df
->def_id
++] = this_ref
;
792 if (df
->use_id
>= df
->use_size
)
794 /* Make table 25 percent larger. */
795 df
->use_size
+= (df
->use_size
/ 4);
796 df
->uses
= xrealloc (df
->uses
,
797 df
->use_size
* sizeof (*df
->uses
));
799 DF_REF_ID (this_ref
) = df
->use_id
;
800 df
->uses
[df
->use_id
++] = this_ref
;
806 /* Create a new reference of type DF_REF_TYPE for a single register REG,
807 used inside the LOC rtx of INSN. */
809 df_ref_record_1 (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
810 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
812 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
816 /* Create new references of type DF_REF_TYPE for each part of register REG
817 at address LOC within INSN of BB. */
819 df_ref_record (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
820 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
824 if (GET_CODE (reg
) != REG
&& GET_CODE (reg
) != SUBREG
)
827 /* For the reg allocator we are interested in some SUBREG rtx's, but not
828 all. Notably only those representing a word extraction from a multi-word
829 reg. As written in the docu those should have the form
830 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
831 XXX Is that true? We could also use the global word_mode variable. */
832 if (GET_CODE (reg
) == SUBREG
833 && (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (word_mode
)
834 || GET_MODE_SIZE (GET_MODE (reg
))
835 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg
)))))
837 loc
= &SUBREG_REG (reg
);
839 ref_flags
|= DF_REF_STRIPPED
;
842 regno
= REGNO (GET_CODE (reg
) == SUBREG
? SUBREG_REG (reg
) : reg
);
843 if (regno
< FIRST_PSEUDO_REGISTER
)
848 if (! (df
->flags
& DF_HARD_REGS
))
851 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
852 for the mode, because we only want to add references to regs, which
853 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
854 reference the whole reg 0 in DI mode (which would also include
855 reg 1, at least, if 0 and 1 are SImode registers). */
856 endregno
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
857 if (GET_CODE (reg
) == SUBREG
)
858 regno
+= subreg_regno_offset (regno
, GET_MODE (SUBREG_REG (reg
)),
859 SUBREG_BYTE (reg
), GET_MODE (reg
));
862 for (i
= regno
; i
< endregno
; i
++)
863 df_ref_record_1 (df
, regno_reg_rtx
[i
],
864 loc
, insn
, ref_type
, ref_flags
);
868 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
873 /* Return nonzero if writes to paradoxical SUBREGs, or SUBREGs which
874 are too narrow, are read-modify-write. */
876 read_modify_subreg_p (rtx x
)
878 unsigned int isize
, osize
;
879 if (GET_CODE (x
) != SUBREG
)
881 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
882 osize
= GET_MODE_SIZE (GET_MODE (x
));
883 /* Paradoxical subreg writes don't leave a trace of the old content. */
884 return (isize
> osize
&& isize
> UNITS_PER_WORD
);
888 /* Process all the registers defined in the rtx, X. */
890 df_def_record_1 (struct df
*df
, rtx x
, basic_block bb
, rtx insn
)
894 enum df_ref_flags flags
= 0;
896 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
898 if (GET_CODE (x
) == EXPR_LIST
|| GET_CODE (x
) == CLOBBER
)
904 /* Some targets place small structures in registers for
905 return values of functions. */
906 if (GET_CODE (dst
) == PARALLEL
&& GET_MODE (dst
) == BLKmode
)
910 for (i
= XVECLEN (dst
, 0) - 1; i
>= 0; i
--)
912 rtx temp
= XVECEXP (dst
, 0, i
);
913 if (GET_CODE (temp
) == EXPR_LIST
|| GET_CODE (temp
) == CLOBBER
914 || GET_CODE (temp
) == SET
)
915 df_def_record_1 (df
, temp
, bb
, insn
);
920 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
921 be handy for the reg allocator. */
922 while (GET_CODE (dst
) == STRICT_LOW_PART
923 || GET_CODE (dst
) == ZERO_EXTRACT
924 || GET_CODE (dst
) == SIGN_EXTRACT
925 || ((df
->flags
& DF_FOR_REGALLOC
) == 0
926 && read_modify_subreg_p (dst
)))
928 /* Strict low part always contains SUBREG, but we do not want to make
929 it appear outside, as whole register is always considered. */
930 if (GET_CODE (dst
) == STRICT_LOW_PART
)
932 loc
= &XEXP (dst
, 0);
935 loc
= &XEXP (dst
, 0);
937 flags
|= DF_REF_READ_WRITE
;
940 if (GET_CODE (dst
) == REG
941 || (GET_CODE (dst
) == SUBREG
&& GET_CODE (SUBREG_REG (dst
)) == REG
))
942 df_ref_record (df
, dst
, loc
, insn
, DF_REF_REG_DEF
, flags
);
946 /* Process all the registers defined in the pattern rtx, X. */
948 df_defs_record (struct df
*df
, rtx x
, basic_block bb
, rtx insn
)
950 RTX_CODE code
= GET_CODE (x
);
952 if (code
== SET
|| code
== CLOBBER
)
954 /* Mark the single def within the pattern. */
955 df_def_record_1 (df
, x
, bb
, insn
);
957 else if (code
== PARALLEL
)
961 /* Mark the multiple defs within the pattern. */
962 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
964 code
= GET_CODE (XVECEXP (x
, 0, i
));
965 if (code
== SET
|| code
== CLOBBER
)
966 df_def_record_1 (df
, XVECEXP (x
, 0, i
), bb
, insn
);
972 /* Process all the registers used in the rtx at address LOC. */
974 df_uses_record (struct df
*df
, rtx
*loc
, enum df_ref_type ref_type
,
975 basic_block bb
, rtx insn
, enum df_ref_flags flags
)
999 /* If we are clobbering a MEM, mark any registers inside the address
1001 if (GET_CODE (XEXP (x
, 0)) == MEM
)
1002 df_uses_record (df
, &XEXP (XEXP (x
, 0), 0),
1003 DF_REF_REG_MEM_STORE
, bb
, insn
, flags
);
1005 /* If we're clobbering a REG then we have a def so ignore. */
1009 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_MEM_LOAD
, bb
, insn
, 0);
1013 /* While we're here, optimize this case. */
1015 /* In case the SUBREG is not of a REG, do not optimize. */
1016 if (GET_CODE (SUBREG_REG (x
)) != REG
)
1018 loc
= &SUBREG_REG (x
);
1019 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
);
1022 /* ... Fall through ... */
1025 df_ref_record (df
, x
, loc
, insn
, ref_type
, flags
);
1030 rtx dst
= SET_DEST (x
);
1032 df_uses_record (df
, &SET_SRC (x
), DF_REF_REG_USE
, bb
, insn
, 0);
1034 switch (GET_CODE (dst
))
1037 if ((df
->flags
& DF_FOR_REGALLOC
) == 0
1038 && read_modify_subreg_p (dst
))
1040 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1041 insn
, DF_REF_READ_WRITE
);
1051 df_uses_record (df
, &XEXP (dst
, 0),
1052 DF_REF_REG_MEM_STORE
,
1055 case STRICT_LOW_PART
:
1056 /* A strict_low_part uses the whole REG and not just the SUBREG. */
1057 dst
= XEXP (dst
, 0);
1058 if (GET_CODE (dst
) != SUBREG
)
1060 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1061 insn
, DF_REF_READ_WRITE
);
1065 df_uses_record (df
, &XEXP (dst
, 0), DF_REF_REG_USE
, bb
, insn
,
1067 df_uses_record (df
, &XEXP (dst
, 1), DF_REF_REG_USE
, bb
, insn
, 0);
1068 df_uses_record (df
, &XEXP (dst
, 2), DF_REF_REG_USE
, bb
, insn
, 0);
1069 dst
= XEXP (dst
, 0);
1081 case UNSPEC_VOLATILE
:
1085 /* Traditional and volatile asm instructions must be considered to use
1086 and clobber all hard registers, all pseudo-registers and all of
1087 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1089 Consider for instance a volatile asm that changes the fpu rounding
1090 mode. An insn should not be moved across this even if it only uses
1091 pseudo-regs because it might give an incorrectly rounded result.
1093 For now, just mark any regs we can find in ASM_OPERANDS as
1096 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1097 We can not just fall through here since then we would be confused
1098 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1099 traditional asms unlike their normal usage. */
1100 if (code
== ASM_OPERANDS
)
1104 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
1105 df_uses_record (df
, &ASM_OPERANDS_INPUT (x
, j
),
1106 DF_REF_REG_USE
, bb
, insn
, 0);
1118 /* Catch the def of the register being modified. */
1119 df_ref_record (df
, XEXP (x
, 0), &XEXP (x
, 0), insn
, DF_REF_REG_DEF
, DF_REF_READ_WRITE
);
1121 /* ... Fall through to handle uses ... */
1127 /* Recursively scan the operands of this expression. */
1129 const char *fmt
= GET_RTX_FORMAT (code
);
1132 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1136 /* Tail recursive case: save a function call level. */
1142 df_uses_record (df
, &XEXP (x
, i
), ref_type
, bb
, insn
, flags
);
1144 else if (fmt
[i
] == 'E')
1147 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1148 df_uses_record (df
, &XVECEXP (x
, i
, j
), ref_type
,
1156 /* Record all the df within INSN of basic block BB. */
1158 df_insn_refs_record (struct df
*df
, basic_block bb
, rtx insn
)
1166 /* Record register defs. */
1167 df_defs_record (df
, PATTERN (insn
), bb
, insn
);
1169 if (df
->flags
& DF_EQUIV_NOTES
)
1170 for (note
= REG_NOTES (insn
); note
;
1171 note
= XEXP (note
, 1))
1173 switch (REG_NOTE_KIND (note
))
1177 df_uses_record (df
, &XEXP (note
, 0), DF_REF_REG_USE
,
1184 if (GET_CODE (insn
) == CALL_INSN
)
1189 /* Record the registers used to pass arguments. */
1190 for (note
= CALL_INSN_FUNCTION_USAGE (insn
); note
;
1191 note
= XEXP (note
, 1))
1193 if (GET_CODE (XEXP (note
, 0)) == USE
)
1194 df_uses_record (df
, &XEXP (XEXP (note
, 0), 0), DF_REF_REG_USE
,
1198 /* The stack ptr is used (honorarily) by a CALL insn. */
1199 x
= df_reg_use_gen (STACK_POINTER_REGNUM
);
1200 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_USE
, bb
, insn
, 0);
1202 if (df
->flags
& DF_HARD_REGS
)
1204 /* Calls may also reference any of the global registers,
1205 so they are recorded as used. */
1206 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1209 x
= df_reg_use_gen (i
);
1210 df_uses_record (df
, &SET_DEST (x
),
1211 DF_REF_REG_USE
, bb
, insn
, 0);
1216 /* Record the register uses. */
1217 df_uses_record (df
, &PATTERN (insn
),
1218 DF_REF_REG_USE
, bb
, insn
, 0);
1220 if (GET_CODE (insn
) == CALL_INSN
)
1224 if (df
->flags
& DF_HARD_REGS
)
1226 /* Kill all registers invalidated by a call. */
1227 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1228 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1230 rtx reg_clob
= df_reg_clobber_gen (i
);
1231 df_defs_record (df
, reg_clob
, bb
, insn
);
1235 /* There may be extra registers to be clobbered. */
1236 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1238 note
= XEXP (note
, 1))
1239 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1240 df_defs_record (df
, XEXP (note
, 0), bb
, insn
);
1246 /* Record all the refs within the basic block BB. */
1248 df_bb_refs_record (struct df
*df
, basic_block bb
)
1252 /* Scan the block an insn at a time from beginning to end. */
1253 FOR_BB_INSNS (bb
, insn
)
1257 /* Record defs within INSN. */
1258 df_insn_refs_record (df
, bb
, insn
);
1264 /* Record all the refs in the basic blocks specified by BLOCKS. */
1266 df_refs_record (struct df
*df
, bitmap blocks
)
1270 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1272 df_bb_refs_record (df
, bb
);
1276 /* Dataflow analysis routines. */
1278 /* Create reg-def chains for basic block BB. These are a list of
1279 definitions for each register. */
1282 df_bb_reg_def_chain_create (struct df
*df
, basic_block bb
)
1286 /* Perhaps the defs should be sorted using a depth first search
1287 of the CFG (or possibly a breadth first search). */
1289 FOR_BB_INSNS_REVERSE (bb
, insn
)
1291 struct df_link
*link
;
1292 unsigned int uid
= INSN_UID (insn
);
1294 if (! INSN_P (insn
))
1297 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1299 struct ref
*def
= link
->ref
;
1300 unsigned int dregno
= DF_REF_REGNO (def
);
1302 /* Do not add ref's to the chain twice, i.e., only add new
1303 refs. XXX the same could be done by testing if the
1304 current insn is a modified (or a new) one. This would be
1306 if (DF_REF_ID (def
) < df
->def_id_save
)
1309 df
->regs
[dregno
].defs
= df_link_create (def
, df
->regs
[dregno
].defs
);
1315 /* Create reg-def chains for each basic block within BLOCKS. These
1316 are a list of definitions for each register. If REDO is true, add
1317 all defs, otherwise just add the new defs. */
1320 df_reg_def_chain_create (struct df
*df
, bitmap blocks
, bool redo
)
1323 #ifdef ENABLE_CHECKING
1326 unsigned old_def_id_save
= df
->def_id_save
;
1330 #ifdef ENABLE_CHECKING
1331 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1332 if (df
->regs
[regno
].defs
)
1336 /* Pretend that all defs are new. */
1337 df
->def_id_save
= 0;
1340 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1342 df_bb_reg_def_chain_create (df
, bb
);
1345 df
->def_id_save
= old_def_id_save
;
1348 /* Remove all reg-def chains stored in the dataflow object DF. */
1351 df_reg_def_chain_clean (struct df
*df
)
1355 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1356 free_reg_ref_chain (&df
->regs
[regno
].defs
);
1359 /* Create reg-use chains for basic block BB. These are a list of uses
1360 for each register. */
1363 df_bb_reg_use_chain_create (struct df
*df
, basic_block bb
)
1367 /* Scan in forward order so that the last uses appear at the start
1370 FOR_BB_INSNS (bb
, insn
)
1372 struct df_link
*link
;
1373 unsigned int uid
= INSN_UID (insn
);
1375 if (! INSN_P (insn
))
1378 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1380 struct ref
*use
= link
->ref
;
1381 unsigned int uregno
= DF_REF_REGNO (use
);
1383 /* Do not add ref's to the chain twice, i.e., only add new
1384 refs. XXX the same could be done by testing if the
1385 current insn is a modified (or a new) one. This would be
1387 if (DF_REF_ID (use
) < df
->use_id_save
)
1390 df
->regs
[uregno
].uses
1391 = df_link_create (use
, df
->regs
[uregno
].uses
);
1397 /* Create reg-use chains for each basic block within BLOCKS. These
1398 are a list of uses for each register. If REDO is true, remove the
1399 old reg-use chains first, otherwise just add new uses to them. */
1402 df_reg_use_chain_create (struct df
*df
, bitmap blocks
, bool redo
)
1405 #ifdef ENABLE_CHECKING
1408 unsigned old_use_id_save
= df
->use_id_save
;
1412 #ifdef ENABLE_CHECKING
1413 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1414 if (df
->regs
[regno
].uses
)
1418 /* Pretend that all uses are new. */
1419 df
->use_id_save
= 0;
1422 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1424 df_bb_reg_use_chain_create (df
, bb
);
1427 df
->use_id_save
= old_use_id_save
;
1430 /* Remove all reg-use chains stored in the dataflow object DF. */
1433 df_reg_use_chain_clean (struct df
*df
)
1437 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1438 free_reg_ref_chain (&df
->regs
[regno
].uses
);
1441 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1443 df_bb_du_chain_create (struct df
*df
, basic_block bb
, bitmap ru
)
1445 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1448 bitmap_copy (ru
, bb_info
->ru_out
);
1450 /* For each def in BB create a linked list (chain) of uses
1451 reached from the def. */
1452 FOR_BB_INSNS_REVERSE (bb
, insn
)
1454 struct df_link
*def_link
;
1455 struct df_link
*use_link
;
1456 unsigned int uid
= INSN_UID (insn
);
1458 if (! INSN_P (insn
))
1461 /* For each def in insn... */
1462 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1464 struct ref
*def
= def_link
->ref
;
1465 unsigned int dregno
= DF_REF_REGNO (def
);
1467 DF_REF_CHAIN (def
) = 0;
1469 /* While the reg-use chains are not essential, it
1470 is _much_ faster to search these short lists rather
1471 than all the reaching uses, especially for large functions. */
1472 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1473 use_link
= use_link
->next
)
1475 struct ref
*use
= use_link
->ref
;
1477 if (bitmap_bit_p (ru
, DF_REF_ID (use
)))
1480 = df_link_create (use
, DF_REF_CHAIN (def
));
1482 bitmap_clear_bit (ru
, DF_REF_ID (use
));
1487 /* For each use in insn... */
1488 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1490 struct ref
*use
= use_link
->ref
;
1491 bitmap_set_bit (ru
, DF_REF_ID (use
));
1497 /* Create def-use chains from reaching use bitmaps for basic blocks
1500 df_du_chain_create (struct df
*df
, bitmap blocks
)
1505 ru
= BITMAP_XMALLOC ();
1507 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1509 df_bb_du_chain_create (df
, bb
, ru
);
1516 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1518 df_bb_ud_chain_create (struct df
*df
, basic_block bb
)
1520 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1521 struct ref
**reg_def_last
= df
->reg_def_last
;
1524 memset (reg_def_last
, 0, df
->n_regs
* sizeof (struct ref
*));
1526 /* For each use in BB create a linked list (chain) of defs
1527 that reach the use. */
1528 FOR_BB_INSNS (bb
, insn
)
1530 unsigned int uid
= INSN_UID (insn
);
1531 struct df_link
*use_link
;
1532 struct df_link
*def_link
;
1534 if (! INSN_P (insn
))
1537 /* For each use in insn... */
1538 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1540 struct ref
*use
= use_link
->ref
;
1541 unsigned int regno
= DF_REF_REGNO (use
);
1543 DF_REF_CHAIN (use
) = 0;
1545 /* Has regno been defined in this BB yet? If so, use
1546 the last def as the single entry for the use-def
1547 chain for this use. Otherwise, we need to add all
1548 the defs using this regno that reach the start of
1550 if (reg_def_last
[regno
])
1553 = df_link_create (reg_def_last
[regno
], 0);
1557 /* While the reg-def chains are not essential, it is
1558 _much_ faster to search these short lists rather than
1559 all the reaching defs, especially for large
1561 for (def_link
= df
->regs
[regno
].defs
; def_link
;
1562 def_link
= def_link
->next
)
1564 struct ref
*def
= def_link
->ref
;
1566 if (bitmap_bit_p (bb_info
->rd_in
, DF_REF_ID (def
)))
1569 = df_link_create (def
, DF_REF_CHAIN (use
));
1576 /* For each def in insn... record the last def of each reg. */
1577 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1579 struct ref
*def
= def_link
->ref
;
1580 int dregno
= DF_REF_REGNO (def
);
1582 reg_def_last
[dregno
] = def
;
1588 /* Create use-def chains from reaching def bitmaps for basic blocks
1591 df_ud_chain_create (struct df
*df
, bitmap blocks
)
1595 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1597 df_bb_ud_chain_create (df
, bb
);
1604 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1605 void *out
, void *gen
, void *kill
,
1606 void *data ATTRIBUTE_UNUSED
)
1608 *changed
= bitmap_union_of_diff (out
, gen
, in
, kill
);
1613 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1614 void *out
, void *gen
, void *kill
,
1615 void *data ATTRIBUTE_UNUSED
)
1617 *changed
= bitmap_union_of_diff (in
, gen
, out
, kill
);
1622 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1623 void *out
, void *use
, void *def
,
1624 void *data ATTRIBUTE_UNUSED
)
1626 *changed
= bitmap_union_of_diff (in
, use
, out
, def
);
1630 /* Compute local reaching def info for basic block BB. */
1632 df_bb_rd_local_compute (struct df
*df
, basic_block bb
)
1634 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1637 for (insn
= BB_HEAD (bb
); insn
&& insn
!= NEXT_INSN (BB_END (bb
));
1638 insn
= NEXT_INSN (insn
))
1640 unsigned int uid
= INSN_UID (insn
);
1641 struct df_link
*def_link
;
1643 if (! INSN_P (insn
))
1646 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1648 struct ref
*def
= def_link
->ref
;
1649 unsigned int regno
= DF_REF_REGNO (def
);
1650 struct df_link
*def2_link
;
1652 for (def2_link
= df
->regs
[regno
].defs
; def2_link
;
1653 def2_link
= def2_link
->next
)
1655 struct ref
*def2
= def2_link
->ref
;
1657 /* Add all defs of this reg to the set of kills. This
1658 is greedy since many of these defs will not actually
1659 be killed by this BB but it keeps things a lot
1661 bitmap_set_bit (bb_info
->rd_kill
, DF_REF_ID (def2
));
1663 /* Zap from the set of gens for this BB. */
1664 bitmap_clear_bit (bb_info
->rd_gen
, DF_REF_ID (def2
));
1667 bitmap_set_bit (bb_info
->rd_gen
, DF_REF_ID (def
));
1671 bb_info
->rd_valid
= 1;
1675 /* Compute local reaching def info for each basic block within BLOCKS. */
1677 df_rd_local_compute (struct df
*df
, bitmap blocks
)
1681 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1683 df_bb_rd_local_compute (df
, bb
);
1688 /* Compute local reaching use (upward exposed use) info for basic
1691 df_bb_ru_local_compute (struct df
*df
, basic_block bb
)
1693 /* This is much more tricky than computing reaching defs. With
1694 reaching defs, defs get killed by other defs. With upwards
1695 exposed uses, these get killed by defs with the same regno. */
1697 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1701 FOR_BB_INSNS_REVERSE (bb
, insn
)
1703 unsigned int uid
= INSN_UID (insn
);
1704 struct df_link
*def_link
;
1705 struct df_link
*use_link
;
1707 if (! INSN_P (insn
))
1710 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1712 struct ref
*def
= def_link
->ref
;
1713 unsigned int dregno
= DF_REF_REGNO (def
);
1715 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1716 use_link
= use_link
->next
)
1718 struct ref
*use
= use_link
->ref
;
1720 /* Add all uses of this reg to the set of kills. This
1721 is greedy since many of these uses will not actually
1722 be killed by this BB but it keeps things a lot
1724 bitmap_set_bit (bb_info
->ru_kill
, DF_REF_ID (use
));
1726 /* Zap from the set of gens for this BB. */
1727 bitmap_clear_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1731 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1733 struct ref
*use
= use_link
->ref
;
1734 /* Add use to set of gens in this BB. */
1735 bitmap_set_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1741 /* Compute local reaching use (upward exposed use) info for each basic
1742 block within BLOCKS. */
1744 df_ru_local_compute (struct df
*df
, bitmap blocks
)
1748 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1750 df_bb_ru_local_compute (df
, bb
);
1755 /* Compute local live variable info for basic block BB. */
1757 df_bb_lr_local_compute (struct df
*df
, basic_block bb
)
1759 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1762 FOR_BB_INSNS_REVERSE (bb
, insn
)
1764 unsigned int uid
= INSN_UID (insn
);
1765 struct df_link
*link
;
1767 if (! INSN_P (insn
))
1770 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1772 struct ref
*def
= link
->ref
;
1773 unsigned int dregno
= DF_REF_REGNO (def
);
1775 /* Add def to set of defs in this BB. */
1776 bitmap_set_bit (bb_info
->lr_def
, dregno
);
1778 bitmap_clear_bit (bb_info
->lr_use
, dregno
);
1781 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1783 struct ref
*use
= link
->ref
;
1784 /* Add use to set of uses in this BB. */
1785 bitmap_set_bit (bb_info
->lr_use
, DF_REF_REGNO (use
));
1791 /* Compute local live variable info for each basic block within BLOCKS. */
1793 df_lr_local_compute (struct df
*df
, bitmap blocks
)
1797 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1799 df_bb_lr_local_compute (df
, bb
);
1804 /* Compute register info: lifetime, bb, and number of defs and uses
1805 for basic block BB. */
1807 df_bb_reg_info_compute (struct df
*df
, basic_block bb
, bitmap live
)
1809 struct reg_info
*reg_info
= df
->regs
;
1810 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1813 bitmap_copy (live
, bb_info
->lr_out
);
1815 FOR_BB_INSNS_REVERSE (bb
, insn
)
1817 unsigned int uid
= INSN_UID (insn
);
1819 struct df_link
*link
;
1821 if (! INSN_P (insn
))
1824 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1826 struct ref
*def
= link
->ref
;
1827 unsigned int dregno
= DF_REF_REGNO (def
);
1829 /* Kill this register. */
1830 bitmap_clear_bit (live
, dregno
);
1831 reg_info
[dregno
].n_defs
++;
1834 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1836 struct ref
*use
= link
->ref
;
1837 unsigned int uregno
= DF_REF_REGNO (use
);
1839 /* This register is now live. */
1840 bitmap_set_bit (live
, uregno
);
1841 reg_info
[uregno
].n_uses
++;
1844 /* Increment lifetimes of all live registers. */
1845 EXECUTE_IF_SET_IN_BITMAP (live
, 0, regno
,
1847 reg_info
[regno
].lifetime
++;
1853 /* Compute register info: lifetime, bb, and number of defs and uses. */
1855 df_reg_info_compute (struct df
*df
, bitmap blocks
)
1860 live
= BITMAP_XMALLOC ();
1862 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1864 df_bb_reg_info_compute (df
, bb
, live
);
1867 BITMAP_XFREE (live
);
1871 /* Assign LUIDs for BB. */
1873 df_bb_luids_set (struct df
*df
, basic_block bb
)
1878 /* The LUIDs are monotonically increasing for each basic block. */
1880 FOR_BB_INSNS (bb
, insn
)
1883 DF_INSN_LUID (df
, insn
) = luid
++;
1884 DF_INSN_LUID (df
, insn
) = luid
;
1890 /* Assign LUIDs for each basic block within BLOCKS. */
1892 df_luids_set (struct df
*df
, bitmap blocks
)
1897 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1899 total
+= df_bb_luids_set (df
, bb
);
1905 /* Perform dataflow analysis using existing DF structure for blocks
1906 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1908 df_analyze_1 (struct df
*df
, bitmap blocks
, int flags
, int update
)
1914 struct dataflow dflow
;
1918 if (flags
& DF_UD_CHAIN
)
1919 aflags
|= DF_RD
| DF_RD_CHAIN
;
1921 if (flags
& DF_DU_CHAIN
)
1925 aflags
|= DF_RU_CHAIN
;
1927 if (flags
& DF_REG_INFO
)
1931 blocks
= df
->all_blocks
;
1936 df_refs_update (df
, NULL
);
1937 /* More fine grained incremental dataflow analysis would be
1938 nice. For now recompute the whole shebang for the
1941 df_refs_unlink (df
, blocks
);
1943 /* All the def-use, use-def chains can be potentially
1944 modified by changes in one block. The size of the
1945 bitmaps can also change. */
1949 /* Scan the function for all register defs and uses. */
1951 df_refs_record (df
, blocks
);
1953 /* Link all the new defs and uses to the insns. */
1954 df_refs_process (df
);
1957 /* Allocate the bitmaps now the total number of defs and uses are
1958 known. If the number of defs or uses have changed, then
1959 these bitmaps need to be reallocated. */
1960 df_bitmaps_alloc (df
, NULL
, aflags
);
1962 /* Set the LUIDs for each specified basic block. */
1963 df_luids_set (df
, blocks
);
1965 /* Recreate reg-def and reg-use chains from scratch so that first
1966 def is at the head of the reg-def chain and the last use is at
1967 the head of the reg-use chain. This is only important for
1968 regs local to a basic block as it speeds up searching. */
1969 if (aflags
& DF_RD_CHAIN
)
1971 df_reg_def_chain_create (df
, blocks
, false);
1974 if (aflags
& DF_RU_CHAIN
)
1976 df_reg_use_chain_create (df
, blocks
, false);
1979 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
);
1980 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
);
1981 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
);
1982 df
->inverse_dfs_map
= xmalloc (sizeof (int) * last_basic_block
);
1983 df
->inverse_rc_map
= xmalloc (sizeof (int) * last_basic_block
);
1984 df
->inverse_rts_map
= xmalloc (sizeof (int) * last_basic_block
);
1986 flow_depth_first_order_compute (df
->dfs_order
, df
->rc_order
);
1987 flow_reverse_top_sort_order_compute (df
->rts_order
);
1988 for (i
= 0; i
< n_basic_blocks
; i
++)
1990 df
->inverse_dfs_map
[df
->dfs_order
[i
]] = i
;
1991 df
->inverse_rc_map
[df
->rc_order
[i
]] = i
;
1992 df
->inverse_rts_map
[df
->rts_order
[i
]] = i
;
1996 /* Compute the sets of gens and kills for the defs of each bb. */
1997 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
1998 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
1999 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2000 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2002 df_rd_local_compute (df
, df
->flags
& DF_RD
? blocks
: df
->all_blocks
);
2005 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2006 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2007 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2008 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2011 dflow
.repr
= SR_BITMAP
;
2012 dflow
.dir
= DF_FORWARD
;
2013 dflow
.conf_op
= DF_UNION
;
2014 dflow
.transfun
= df_rd_transfer_function
;
2015 dflow
.n_blocks
= n_basic_blocks
;
2016 dflow
.order
= df
->rc_order
;
2019 iterative_dataflow (&dflow
);
2026 if (aflags
& DF_UD_CHAIN
)
2028 /* Create use-def chains. */
2029 df_ud_chain_create (df
, df
->all_blocks
);
2031 if (! (flags
& DF_RD
))
2037 /* Compute the sets of gens and kills for the upwards exposed
2039 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2040 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2041 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2042 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2044 df_ru_local_compute (df
, df
->flags
& DF_RU
? blocks
: df
->all_blocks
);
2048 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2049 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2050 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2051 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2054 dflow
.repr
= SR_BITMAP
;
2055 dflow
.dir
= DF_BACKWARD
;
2056 dflow
.conf_op
= DF_UNION
;
2057 dflow
.transfun
= df_ru_transfer_function
;
2058 dflow
.n_blocks
= n_basic_blocks
;
2059 dflow
.order
= df
->rts_order
;
2062 iterative_dataflow (&dflow
);
2069 if (aflags
& DF_DU_CHAIN
)
2071 /* Create def-use chains. */
2072 df_du_chain_create (df
, df
->all_blocks
);
2074 if (! (flags
& DF_RU
))
2078 /* Free up bitmaps that are no longer required. */
2080 df_bitmaps_free (df
, dflags
);
2084 /* Compute the sets of defs and uses of live variables. */
2085 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2086 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2087 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2088 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2090 df_lr_local_compute (df
, df
->flags
& DF_LR
? blocks
: df
->all_blocks
);
2094 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2095 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2096 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2097 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2100 dflow
.repr
= SR_BITMAP
;
2101 dflow
.dir
= DF_BACKWARD
;
2102 dflow
.conf_op
= DF_UNION
;
2103 dflow
.transfun
= df_lr_transfer_function
;
2104 dflow
.n_blocks
= n_basic_blocks
;
2105 dflow
.order
= df
->rts_order
;
2108 iterative_dataflow (&dflow
);
2115 if (aflags
& DF_REG_INFO
)
2117 df_reg_info_compute (df
, df
->all_blocks
);
2120 free (df
->dfs_order
);
2121 free (df
->rc_order
);
2122 free (df
->rts_order
);
2123 free (df
->inverse_rc_map
);
2124 free (df
->inverse_dfs_map
);
2125 free (df
->inverse_rts_map
);
2129 /* Initialize dataflow analysis. */
2135 df
= xcalloc (1, sizeof (struct df
));
2137 /* Squirrel away a global for debugging. */
2144 /* Start queuing refs. */
2146 df_refs_queue (struct df
*df
)
2148 df
->def_id_save
= df
->def_id
;
2149 df
->use_id_save
= df
->use_id
;
2150 /* ???? Perhaps we should save current obstack state so that we can
2156 /* Process queued refs. */
2158 df_refs_process (struct df
*df
)
2162 /* Build new insn-def chains. */
2163 for (i
= df
->def_id_save
; i
!= df
->def_id
; i
++)
2165 struct ref
*def
= df
->defs
[i
];
2166 unsigned int uid
= DF_REF_INSN_UID (def
);
2168 /* Add def to head of def list for INSN. */
2170 = df_link_create (def
, df
->insns
[uid
].defs
);
2173 /* Build new insn-use chains. */
2174 for (i
= df
->use_id_save
; i
!= df
->use_id
; i
++)
2176 struct ref
*use
= df
->uses
[i
];
2177 unsigned int uid
= DF_REF_INSN_UID (use
);
2179 /* Add use to head of use list for INSN. */
2181 = df_link_create (use
, df
->insns
[uid
].uses
);
2187 /* Update refs for basic block BB. */
2189 df_bb_refs_update (struct df
*df
, basic_block bb
)
2194 /* While we have to scan the chain of insns for this BB, we do not
2195 need to allocate and queue a long chain of BB/INSN pairs. Using
2196 a bitmap for insns_modified saves memory and avoids queuing
2199 FOR_BB_INSNS (bb
, insn
)
2203 uid
= INSN_UID (insn
);
2205 if (bitmap_bit_p (df
->insns_modified
, uid
))
2207 /* Delete any allocated refs of this insn. MPH, FIXME. */
2208 df_insn_refs_unlink (df
, bb
, insn
);
2210 /* Scan the insn for refs. */
2211 df_insn_refs_record (df
, bb
, insn
);
2220 /* Process all the modified/deleted insns that were queued. */
2222 df_refs_update (struct df
*df
, bitmap blocks
)
2225 int count
= 0, bbno
;
2227 df
->n_regs
= max_reg_num ();
2228 if (df
->n_regs
>= df
->reg_size
)
2229 df_reg_table_realloc (df
, 0);
2235 FOR_EACH_BB_IN_BITMAP (df
->bbs_modified
, 0, bb
,
2237 count
+= df_bb_refs_update (df
, bb
);
2242 EXECUTE_IF_AND_IN_BITMAP (df
->bbs_modified
, blocks
, 0, bbno
,
2244 count
+= df_bb_refs_update (df
, BASIC_BLOCK (bbno
));
2248 df_refs_process (df
);
2253 /* Return nonzero if any of the requested blocks in the bitmap
2254 BLOCKS have been modified. */
2256 df_modified_p (struct df
*df
, bitmap blocks
)
2265 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
)
2266 && (! blocks
|| (blocks
== (bitmap
) -1) || bitmap_bit_p (blocks
, bb
->index
)))
2275 /* Analyze dataflow info for the basic blocks specified by the bitmap
2276 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2277 modified blocks if BLOCKS is -1. */
2280 df_analyze (struct df
*df
, bitmap blocks
, int flags
)
2284 /* We could deal with additional basic blocks being created by
2285 rescanning everything again. */
2286 if (df
->n_bbs
&& df
->n_bbs
!= (unsigned int) last_basic_block
)
2289 update
= df_modified_p (df
, blocks
);
2290 if (update
|| (flags
!= df
->flags
))
2296 /* Recompute everything from scratch. */
2299 /* Allocate and initialize data structures. */
2300 df_alloc (df
, max_reg_num ());
2301 df_analyze_1 (df
, 0, flags
, 0);
2306 if (blocks
== (bitmap
) -1)
2307 blocks
= df
->bbs_modified
;
2312 df_analyze_1 (df
, blocks
, flags
, 1);
2313 bitmap_zero (df
->bbs_modified
);
2314 bitmap_zero (df
->insns_modified
);
2320 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2321 the order of the remaining entries. Returns the length of the resulting
2325 prune_to_subcfg (int list
[], unsigned len
, bitmap blocks
)
2329 for (act
= 0, last
= 0; act
< len
; act
++)
2330 if (bitmap_bit_p (blocks
, list
[act
]))
2331 list
[last
++] = list
[act
];
2336 /* Alternative entry point to the analysis. Analyse just the part of the cfg
2337 graph induced by BLOCKS.
2339 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2340 here, and simultaneously not make even greater chaos in it. We behave
2341 slightly differently in some details, especially in handling modified
2345 df_analyze_subcfg (struct df
*df
, bitmap blocks
, int flags
)
2349 struct dataflow dflow
;
2352 if (flags
& DF_UD_CHAIN
)
2353 flags
|= DF_RD
| DF_RD_CHAIN
;
2354 if (flags
& DF_DU_CHAIN
)
2357 flags
|= DF_RU_CHAIN
;
2358 if (flags
& DF_REG_INFO
)
2363 df_alloc (df
, max_reg_num ());
2365 /* Mark all insns as modified. */
2369 FOR_BB_INSNS (bb
, insn
)
2371 df_insn_modify (df
, bb
, insn
);
2378 df_reg_def_chain_clean (df
);
2379 df_reg_use_chain_clean (df
);
2381 df_refs_update (df
, blocks
);
2383 /* Clear the updated stuff from ``modified'' bitmaps. */
2384 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2386 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
))
2388 FOR_BB_INSNS (bb
, insn
)
2390 bitmap_clear_bit (df
->insns_modified
, INSN_UID (insn
));
2393 bitmap_clear_bit (df
->bbs_modified
, bb
->index
);
2397 /* Allocate the bitmaps now the total number of defs and uses are
2398 known. If the number of defs or uses have changed, then
2399 these bitmaps need to be reallocated. */
2400 df_bitmaps_alloc (df
, blocks
, flags
);
2402 /* Set the LUIDs for each specified basic block. */
2403 df_luids_set (df
, blocks
);
2405 /* Recreate reg-def and reg-use chains from scratch so that first
2406 def is at the head of the reg-def chain and the last use is at
2407 the head of the reg-use chain. This is only important for
2408 regs local to a basic block as it speeds up searching. */
2409 if (flags
& DF_RD_CHAIN
)
2411 df_reg_def_chain_create (df
, blocks
, true);
2414 if (flags
& DF_RU_CHAIN
)
2416 df_reg_use_chain_create (df
, blocks
, true);
2419 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2420 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2421 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2423 flow_depth_first_order_compute (df
->dfs_order
, df
->rc_order
);
2424 flow_reverse_top_sort_order_compute (df
->rts_order
);
2426 n_blocks
= prune_to_subcfg (df
->dfs_order
, n_basic_blocks
, blocks
);
2427 prune_to_subcfg (df
->rc_order
, n_basic_blocks
, blocks
);
2428 prune_to_subcfg (df
->rts_order
, n_basic_blocks
, blocks
);
2430 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2431 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2432 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2433 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2437 /* Compute the sets of gens and kills for the defs of each bb. */
2438 df_rd_local_compute (df
, blocks
);
2440 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2442 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2443 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2444 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2445 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2448 dflow
.repr
= SR_BITMAP
;
2449 dflow
.dir
= DF_FORWARD
;
2450 dflow
.conf_op
= DF_UNION
;
2451 dflow
.transfun
= df_rd_transfer_function
;
2452 dflow
.n_blocks
= n_blocks
;
2453 dflow
.order
= df
->rc_order
;
2456 iterative_dataflow (&dflow
);
2459 if (flags
& DF_UD_CHAIN
)
2461 /* Create use-def chains. */
2462 df_ud_chain_create (df
, blocks
);
2467 /* Compute the sets of gens and kills for the upwards exposed
2469 df_ru_local_compute (df
, blocks
);
2471 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2473 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2474 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2475 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2476 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2479 dflow
.repr
= SR_BITMAP
;
2480 dflow
.dir
= DF_BACKWARD
;
2481 dflow
.conf_op
= DF_UNION
;
2482 dflow
.transfun
= df_ru_transfer_function
;
2483 dflow
.n_blocks
= n_blocks
;
2484 dflow
.order
= df
->rts_order
;
2487 iterative_dataflow (&dflow
);
2490 if (flags
& DF_DU_CHAIN
)
2492 /* Create def-use chains. */
2493 df_du_chain_create (df
, blocks
);
2498 /* Compute the sets of defs and uses of live variables. */
2499 df_lr_local_compute (df
, blocks
);
2503 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2504 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2505 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2506 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2509 dflow
.repr
= SR_BITMAP
;
2510 dflow
.dir
= DF_BACKWARD
;
2511 dflow
.conf_op
= DF_UNION
;
2512 dflow
.transfun
= df_lr_transfer_function
;
2513 dflow
.n_blocks
= n_blocks
;
2514 dflow
.order
= df
->rts_order
;
2517 iterative_dataflow (&dflow
);
2520 if (flags
& DF_REG_INFO
)
2522 df_reg_info_compute (df
, blocks
);
2530 free (df
->dfs_order
);
2531 free (df
->rc_order
);
2532 free (df
->rts_order
);
2535 /* Free all the dataflow info and the DF structure. */
2537 df_finish (struct df
*df
)
2543 /* Unlink INSN from its reference information. */
2545 df_insn_refs_unlink (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
, rtx insn
)
2547 struct df_link
*link
;
2550 uid
= INSN_UID (insn
);
2552 /* Unlink all refs defined by this insn. */
2553 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2554 df_def_unlink (df
, link
->ref
);
2556 /* Unlink all refs used by this insn. */
2557 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2558 df_use_unlink (df
, link
->ref
);
2560 df
->insns
[uid
].defs
= 0;
2561 df
->insns
[uid
].uses
= 0;
2566 /* Unlink all the insns within BB from their reference information. */
2568 df_bb_refs_unlink (struct df
*df
, basic_block bb
)
2572 /* Scan the block an insn at a time from beginning to end. */
2573 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
2577 /* Unlink refs for INSN. */
2578 df_insn_refs_unlink (df
, bb
, insn
);
2580 if (insn
== BB_END (bb
))
2586 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2587 Not currently used. */
2589 df_refs_unlink (struct df
*df
, bitmap blocks
)
2595 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2597 df_bb_refs_unlink (df
, bb
);
2603 df_bb_refs_unlink (df
, bb
);
2608 /* Functions to modify insns. */
2611 /* Delete INSN and all its reference information. */
2613 df_insn_delete (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
, rtx insn
)
2615 /* If the insn is a jump, we should perhaps call delete_insn to
2616 handle the JUMP_LABEL? */
2618 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2619 if (insn
== BB_HEAD (bb
))
2622 /* Delete the insn. */
2625 df_insn_modify (df
, bb
, insn
);
2627 return NEXT_INSN (insn
);
2630 /* Mark that basic block BB was modified. */
2633 df_bb_modify (struct df
*df
, basic_block bb
)
2635 if ((unsigned) bb
->index
>= df
->n_bbs
)
2636 df_bb_table_realloc (df
, df
->n_bbs
);
2638 bitmap_set_bit (df
->bbs_modified
, bb
->index
);
2641 /* Mark that INSN within BB may have changed (created/modified/deleted).
2642 This may be called multiple times for the same insn. There is no
2643 harm calling this function if the insn wasn't changed; it will just
2644 slow down the rescanning of refs. */
2646 df_insn_modify (struct df
*df
, basic_block bb
, rtx insn
)
2650 uid
= INSN_UID (insn
);
2651 if (uid
>= df
->insn_size
)
2652 df_insn_table_realloc (df
, uid
);
2654 df_bb_modify (df
, bb
);
2655 bitmap_set_bit (df
->insns_modified
, uid
);
2657 /* For incremental updating on the fly, perhaps we could make a copy
2658 of all the refs of the original insn and turn them into
2659 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2660 the original refs. If validate_change fails then these anti-refs
2661 will just get ignored. */
2664 typedef struct replace_args
2673 /* Replace mem pointed to by PX with its associated pseudo register.
2674 DATA is actually a pointer to a structure describing the
2675 instruction currently being scanned and the MEM we are currently
2678 df_rtx_mem_replace (rtx
*px
, void *data
)
2680 replace_args
*args
= (replace_args
*) data
;
2683 if (mem
== NULL_RTX
)
2686 switch (GET_CODE (mem
))
2692 /* We're not interested in the MEM associated with a
2693 CONST_DOUBLE, so there's no need to traverse into one. */
2697 /* This is not a MEM. */
2701 if (!rtx_equal_p (args
->match
, mem
))
2702 /* This is not the MEM we are currently replacing. */
2705 /* Actually replace the MEM. */
2706 validate_change (args
->insn
, px
, args
->replacement
, 1);
2714 df_insn_mem_replace (struct df
*df
, basic_block bb
, rtx insn
, rtx mem
, rtx reg
)
2720 args
.replacement
= reg
;
2723 /* Search and replace all matching mems within insn. */
2724 for_each_rtx (&insn
, df_rtx_mem_replace
, &args
);
2727 df_insn_modify (df
, bb
, insn
);
2729 /* ???? FIXME. We may have a new def or one or more new uses of REG
2730 in INSN. REG should be a new pseudo so it won't affect the
2731 dataflow information that we currently have. We should add
2732 the new uses and defs to INSN and then recreate the chains
2733 when df_analyze is called. */
2734 return args
.modified
;
2738 /* Replace one register with another. Called through for_each_rtx; PX
2739 points to the rtx being scanned. DATA is actually a pointer to a
2740 structure of arguments. */
2742 df_rtx_reg_replace (rtx
*px
, void *data
)
2745 replace_args
*args
= (replace_args
*) data
;
2750 if (x
== args
->match
)
2752 validate_change (args
->insn
, px
, args
->replacement
, 1);
2760 /* Replace the reg within every ref on CHAIN that is within the set
2761 BLOCKS of basic blocks with NEWREG. Also update the regs within
2764 df_refs_reg_replace (struct df
*df
, bitmap blocks
, struct df_link
*chain
, rtx oldreg
, rtx newreg
)
2766 struct df_link
*link
;
2770 blocks
= df
->all_blocks
;
2772 args
.match
= oldreg
;
2773 args
.replacement
= newreg
;
2776 for (link
= chain
; link
; link
= link
->next
)
2778 struct ref
*ref
= link
->ref
;
2779 rtx insn
= DF_REF_INSN (ref
);
2781 if (! INSN_P (insn
))
2784 if (bitmap_bit_p (blocks
, DF_REF_BBNO (ref
)))
2786 df_ref_reg_replace (df
, ref
, oldreg
, newreg
);
2788 /* Replace occurrences of the reg within the REG_NOTES. */
2789 if ((! link
->next
|| DF_REF_INSN (ref
)
2790 != DF_REF_INSN (link
->next
->ref
))
2791 && REG_NOTES (insn
))
2794 for_each_rtx (®_NOTES (insn
), df_rtx_reg_replace
, &args
);
2799 /* Temporary check to ensure that we have a grip on which
2800 regs should be replaced. */
2807 /* Replace all occurrences of register OLDREG with register NEWREG in
2808 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2809 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2810 routine expects the reg-use and reg-def chains to be valid. */
2812 df_reg_replace (struct df
*df
, bitmap blocks
, rtx oldreg
, rtx newreg
)
2814 unsigned int oldregno
= REGNO (oldreg
);
2816 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].defs
, oldreg
, newreg
);
2817 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].uses
, oldreg
, newreg
);
2822 /* Try replacing the reg within REF with NEWREG. Do not modify
2823 def-use/use-def chains. */
2825 df_ref_reg_replace (struct df
*df
, struct ref
*ref
, rtx oldreg
, rtx newreg
)
2827 /* Check that insn was deleted by being converted into a NOTE. If
2828 so ignore this insn. */
2829 if (! INSN_P (DF_REF_INSN (ref
)))
2832 if (oldreg
&& oldreg
!= DF_REF_REG (ref
))
2835 if (! validate_change (DF_REF_INSN (ref
), DF_REF_LOC (ref
), newreg
, 1))
2838 df_insn_modify (df
, DF_REF_BB (ref
), DF_REF_INSN (ref
));
2844 df_bb_def_use_swap (struct df
*df
, basic_block bb
, rtx def_insn
, rtx use_insn
, unsigned int regno
)
2850 struct df_link
*link
;
2852 def
= df_bb_insn_regno_first_def_find (df
, bb
, def_insn
, regno
);
2856 use
= df_bb_insn_regno_last_use_find (df
, bb
, use_insn
, regno
);
2860 /* The USE no longer exists. */
2861 use_uid
= INSN_UID (use_insn
);
2862 df_use_unlink (df
, use
);
2863 df_ref_unlink (&df
->insns
[use_uid
].uses
, use
);
2865 /* The DEF requires shifting so remove it from DEF_INSN
2866 and add it to USE_INSN by reusing LINK. */
2867 def_uid
= INSN_UID (def_insn
);
2868 link
= df_ref_unlink (&df
->insns
[def_uid
].defs
, def
);
2870 link
->next
= df
->insns
[use_uid
].defs
;
2871 df
->insns
[use_uid
].defs
= link
;
2874 link
= df_ref_unlink (&df
->regs
[regno
].defs
, def
);
2876 link
->next
= df
->regs
[regno
].defs
;
2877 df
->insns
[regno
].defs
= link
;
2880 DF_REF_INSN (def
) = use_insn
;
2885 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2886 insns must be processed by this routine. */
2888 df_insns_modify (struct df
*df
, basic_block bb
, rtx first_insn
, rtx last_insn
)
2892 for (insn
= first_insn
; ; insn
= NEXT_INSN (insn
))
2896 /* A non-const call should not have slipped through the net. If
2897 it does, we need to create a new basic block. Ouch. The
2898 same applies for a label. */
2899 if ((GET_CODE (insn
) == CALL_INSN
2900 && ! CONST_OR_PURE_CALL_P (insn
))
2901 || GET_CODE (insn
) == CODE_LABEL
)
2904 uid
= INSN_UID (insn
);
2906 if (uid
>= df
->insn_size
)
2907 df_insn_table_realloc (df
, uid
);
2909 df_insn_modify (df
, bb
, insn
);
2911 if (insn
== last_insn
)
2917 /* Emit PATTERN before INSN within BB. */
2919 df_pattern_emit_before (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2922 rtx prev_insn
= PREV_INSN (insn
);
2924 /* We should not be inserting before the start of the block. */
2925 if (insn
== BB_HEAD (bb
))
2927 ret_insn
= emit_insn_before (pattern
, insn
);
2928 if (ret_insn
== insn
)
2931 df_insns_modify (df
, bb
, NEXT_INSN (prev_insn
), ret_insn
);
2936 /* Emit PATTERN after INSN within BB. */
2938 df_pattern_emit_after (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2942 ret_insn
= emit_insn_after (pattern
, insn
);
2943 if (ret_insn
== insn
)
2946 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2951 /* Emit jump PATTERN after INSN within BB. */
2953 df_jump_pattern_emit_after (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2957 ret_insn
= emit_jump_insn_after (pattern
, insn
);
2958 if (ret_insn
== insn
)
2961 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2966 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2968 This function should only be used to move loop invariant insns
2969 out of a loop where it has been proven that the def-use info
2970 will still be valid. */
2972 df_insn_move_before (struct df
*df
, basic_block bb
, rtx insn
, basic_block before_bb
, rtx before_insn
)
2974 struct df_link
*link
;
2978 return df_pattern_emit_before (df
, insn
, before_bb
, before_insn
);
2980 uid
= INSN_UID (insn
);
2982 /* Change bb for all df defined and used by this insn. */
2983 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2984 DF_REF_BB (link
->ref
) = before_bb
;
2985 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2986 DF_REF_BB (link
->ref
) = before_bb
;
2988 /* The lifetimes of the registers used in this insn will be reduced
2989 while the lifetimes of the registers defined in this insn
2990 are likely to be increased. */
2992 /* ???? Perhaps all the insns moved should be stored on a list
2993 which df_analyze removes when it recalculates data flow. */
2995 return emit_insn_before (insn
, before_insn
);
2998 /* Functions to query dataflow information. */
3002 df_insn_regno_def_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3003 rtx insn
, unsigned int regno
)
3006 struct df_link
*link
;
3008 uid
= INSN_UID (insn
);
3010 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3012 struct ref
*def
= link
->ref
;
3014 if (DF_REF_REGNO (def
) == regno
)
3021 /* Finds the reference corresponding to the definition of REG in INSN.
3022 DF is the dataflow object. */
3025 df_find_def (struct df
*df
, rtx insn
, rtx reg
)
3027 struct df_link
*defs
;
3029 for (defs
= DF_INSN_DEFS (df
, insn
); defs
; defs
= defs
->next
)
3030 if (rtx_equal_p (DF_REF_REG (defs
->ref
), reg
))
3036 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3039 df_reg_used (struct df
*df
, rtx insn
, rtx reg
)
3041 struct df_link
*uses
;
3043 for (uses
= DF_INSN_USES (df
, insn
); uses
; uses
= uses
->next
)
3044 if (rtx_equal_p (DF_REF_REG (uses
->ref
), reg
))
3051 df_def_dominates_all_uses_p (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
)
3053 struct df_link
*du_link
;
3055 /* Follow def-use chain to find all the uses of this def. */
3056 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
3058 struct ref
*use
= du_link
->ref
;
3059 struct df_link
*ud_link
;
3061 /* Follow use-def chain to check all the defs for this use. */
3062 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
3063 if (ud_link
->ref
!= def
)
3071 df_insn_dominates_all_uses_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3075 struct df_link
*link
;
3077 uid
= INSN_UID (insn
);
3079 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3081 struct ref
*def
= link
->ref
;
3083 if (! df_def_dominates_all_uses_p (df
, def
))
3091 /* Return nonzero if all DF dominates all the uses within the bitmap
3094 df_def_dominates_uses_p (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
,
3097 struct df_link
*du_link
;
3099 /* Follow def-use chain to find all the uses of this def. */
3100 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
3102 struct ref
*use
= du_link
->ref
;
3103 struct df_link
*ud_link
;
3105 /* Only worry about the uses within BLOCKS. For example,
3106 consider a register defined within a loop that is live at the
3108 if (bitmap_bit_p (blocks
, DF_REF_BBNO (use
)))
3110 /* Follow use-def chain to check all the defs for this use. */
3111 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
3112 if (ud_link
->ref
!= def
)
3120 /* Return nonzero if all the defs of INSN within BB dominates
3121 all the corresponding uses. */
3123 df_insn_dominates_uses_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3124 rtx insn
, bitmap blocks
)
3127 struct df_link
*link
;
3129 uid
= INSN_UID (insn
);
3131 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3133 struct ref
*def
= link
->ref
;
3135 /* Only consider the defs within BLOCKS. */
3136 if (bitmap_bit_p (blocks
, DF_REF_BBNO (def
))
3137 && ! df_def_dominates_uses_p (df
, def
, blocks
))
3144 /* Return the basic block that REG referenced in or NULL if referenced
3145 in multiple basic blocks. */
3147 df_regno_bb (struct df
*df
, unsigned int regno
)
3149 struct df_link
*defs
= df
->regs
[regno
].defs
;
3150 struct df_link
*uses
= df
->regs
[regno
].uses
;
3151 struct ref
*def
= defs
? defs
->ref
: 0;
3152 struct ref
*use
= uses
? uses
->ref
: 0;
3153 basic_block bb_def
= def
? DF_REF_BB (def
) : 0;
3154 basic_block bb_use
= use
? DF_REF_BB (use
) : 0;
3156 /* Compare blocks of first def and last use. ???? FIXME. What if
3157 the reg-def and reg-use lists are not correctly ordered. */
3158 return bb_def
== bb_use
? bb_def
: 0;
3162 /* Return nonzero if REG used in multiple basic blocks. */
3164 df_reg_global_p (struct df
*df
, rtx reg
)
3166 return df_regno_bb (df
, REGNO (reg
)) != 0;
3170 /* Return total lifetime (in insns) of REG. */
3172 df_reg_lifetime (struct df
*df
, rtx reg
)
3174 return df
->regs
[REGNO (reg
)].lifetime
;
3178 /* Return nonzero if REG live at start of BB. */
3180 df_bb_reg_live_start_p (struct df
*df
, basic_block bb
, rtx reg
)
3182 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3184 #ifdef ENABLE_CHECKING
3185 if (! bb_info
->lr_in
)
3189 return bitmap_bit_p (bb_info
->lr_in
, REGNO (reg
));
3193 /* Return nonzero if REG live at end of BB. */
3195 df_bb_reg_live_end_p (struct df
*df
, basic_block bb
, rtx reg
)
3197 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3199 #ifdef ENABLE_CHECKING
3200 if (! bb_info
->lr_in
)
3204 return bitmap_bit_p (bb_info
->lr_out
, REGNO (reg
));
3208 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3209 after life of REG2, or 0, if the lives overlap. */
3211 df_bb_regs_lives_compare (struct df
*df
, basic_block bb
, rtx reg1
, rtx reg2
)
3213 unsigned int regno1
= REGNO (reg1
);
3214 unsigned int regno2
= REGNO (reg2
);
3221 /* The regs must be local to BB. */
3222 if (df_regno_bb (df
, regno1
) != bb
3223 || df_regno_bb (df
, regno2
) != bb
)
3226 def2
= df_bb_regno_first_def_find (df
, bb
, regno2
);
3227 use1
= df_bb_regno_last_use_find (df
, bb
, regno1
);
3229 if (DF_INSN_LUID (df
, DF_REF_INSN (def2
))
3230 > DF_INSN_LUID (df
, DF_REF_INSN (use1
)))
3233 def1
= df_bb_regno_first_def_find (df
, bb
, regno1
);
3234 use2
= df_bb_regno_last_use_find (df
, bb
, regno2
);
3236 if (DF_INSN_LUID (df
, DF_REF_INSN (def1
))
3237 > DF_INSN_LUID (df
, DF_REF_INSN (use2
)))
3244 /* Return last use of REGNO within BB. */
3246 df_bb_regno_last_use_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3248 struct df_link
*link
;
3250 /* This assumes that the reg-use list is ordered such that for any
3251 BB, the last use is found first. However, since the BBs are not
3252 ordered, the first use in the chain is not necessarily the last
3253 use in the function. */
3254 for (link
= df
->regs
[regno
].uses
; link
; link
= link
->next
)
3256 struct ref
*use
= link
->ref
;
3258 if (DF_REF_BB (use
) == bb
)
3265 /* Return first def of REGNO within BB. */
3267 df_bb_regno_first_def_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3269 struct df_link
*link
;
3271 /* This assumes that the reg-def list is ordered such that for any
3272 BB, the first def is found first. However, since the BBs are not
3273 ordered, the first def in the chain is not necessarily the first
3274 def in the function. */
3275 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3277 struct ref
*def
= link
->ref
;
3279 if (DF_REF_BB (def
) == bb
)
3285 /* Return last def of REGNO within BB. */
3287 df_bb_regno_last_def_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3289 struct df_link
*link
;
3290 struct ref
*last_def
= NULL
;
3293 /* This assumes that the reg-def list is ordered such that for any
3294 BB, the first def is found first. However, since the BBs are not
3295 ordered, the first def in the chain is not necessarily the first
3296 def in the function. */
3297 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3299 struct ref
*def
= link
->ref
;
3300 /* The first time in the desired block. */
3301 if (DF_REF_BB (def
) == bb
)
3303 /* The last def in the desired block. */
3311 /* Return first use of REGNO inside INSN within BB. */
3313 df_bb_insn_regno_last_use_find (struct df
*df
,
3314 basic_block bb ATTRIBUTE_UNUSED
, rtx insn
,
3318 struct df_link
*link
;
3320 uid
= INSN_UID (insn
);
3322 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
3324 struct ref
*use
= link
->ref
;
3326 if (DF_REF_REGNO (use
) == regno
)
3334 /* Return first def of REGNO inside INSN within BB. */
3336 df_bb_insn_regno_first_def_find (struct df
*df
,
3337 basic_block bb ATTRIBUTE_UNUSED
, rtx insn
,
3341 struct df_link
*link
;
3343 uid
= INSN_UID (insn
);
3345 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3347 struct ref
*def
= link
->ref
;
3349 if (DF_REF_REGNO (def
) == regno
)
3357 /* Return insn using REG if the BB contains only a single
3358 use and def of REG. */
3360 df_bb_single_def_use_insn_find (struct df
*df
, basic_block bb
, rtx insn
, rtx reg
)
3364 struct df_link
*du_link
;
3366 def
= df_bb_insn_regno_first_def_find (df
, bb
, insn
, REGNO (reg
));
3371 du_link
= DF_REF_CHAIN (def
);
3378 /* Check if def is dead. */
3382 /* Check for multiple uses. */
3386 return DF_REF_INSN (use
);
3389 /* Functions for debugging/dumping dataflow information. */
3392 /* Dump a def-use or use-def chain for REF to FILE. */
3394 df_chain_dump (struct df_link
*link
, FILE *file
)
3396 fprintf (file
, "{ ");
3397 for (; link
; link
= link
->next
)
3399 fprintf (file
, "%c%d ",
3400 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3401 DF_REF_ID (link
->ref
));
3403 fprintf (file
, "}");
3407 /* Dump a chain of refs with the associated regno. */
3409 df_chain_dump_regno (struct df_link
*link
, FILE *file
)
3411 fprintf (file
, "{ ");
3412 for (; link
; link
= link
->next
)
3414 fprintf (file
, "%c%d(%d) ",
3415 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3416 DF_REF_ID (link
->ref
),
3417 DF_REF_REGNO (link
->ref
));
3419 fprintf (file
, "}");
3423 /* Dump dataflow info. */
3425 df_dump (struct df
*df
, int flags
, FILE *file
)
3433 fprintf (file
, "\nDataflow summary:\n");
3434 fprintf (file
, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3435 df
->n_regs
, df
->n_defs
, df
->n_uses
, df
->n_bbs
);
3441 fprintf (file
, "Reaching defs:\n");
3444 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3446 if (! bb_info
->rd_in
)
3449 fprintf (file
, "bb %d in \t", bb
->index
);
3450 dump_bitmap (file
, bb_info
->rd_in
);
3451 fprintf (file
, "bb %d gen \t", bb
->index
);
3452 dump_bitmap (file
, bb_info
->rd_gen
);
3453 fprintf (file
, "bb %d kill\t", bb
->index
);
3454 dump_bitmap (file
, bb_info
->rd_kill
);
3455 fprintf (file
, "bb %d out \t", bb
->index
);
3456 dump_bitmap (file
, bb_info
->rd_out
);
3460 if (flags
& DF_UD_CHAIN
)
3462 fprintf (file
, "Use-def chains:\n");
3463 for (j
= 0; j
< df
->n_defs
; j
++)
3467 fprintf (file
, "d%d bb %d luid %d insn %d reg %d ",
3468 j
, DF_REF_BBNO (df
->defs
[j
]),
3469 DF_INSN_LUID (df
, DF_REF_INSN (df
->defs
[j
])),
3470 DF_REF_INSN_UID (df
->defs
[j
]),
3471 DF_REF_REGNO (df
->defs
[j
]));
3472 if (df
->defs
[j
]->flags
& DF_REF_READ_WRITE
)
3473 fprintf (file
, "read/write ");
3474 df_chain_dump (DF_REF_CHAIN (df
->defs
[j
]), file
);
3475 fprintf (file
, "\n");
3482 fprintf (file
, "Reaching uses:\n");
3485 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3487 if (! bb_info
->ru_in
)
3490 fprintf (file
, "bb %d in \t", bb
->index
);
3491 dump_bitmap (file
, bb_info
->ru_in
);
3492 fprintf (file
, "bb %d gen \t", bb
->index
);
3493 dump_bitmap (file
, bb_info
->ru_gen
);
3494 fprintf (file
, "bb %d kill\t", bb
->index
);
3495 dump_bitmap (file
, bb_info
->ru_kill
);
3496 fprintf (file
, "bb %d out \t", bb
->index
);
3497 dump_bitmap (file
, bb_info
->ru_out
);
3501 if (flags
& DF_DU_CHAIN
)
3503 fprintf (file
, "Def-use chains:\n");
3504 for (j
= 0; j
< df
->n_uses
; j
++)
3508 fprintf (file
, "u%d bb %d luid %d insn %d reg %d ",
3509 j
, DF_REF_BBNO (df
->uses
[j
]),
3510 DF_INSN_LUID (df
, DF_REF_INSN (df
->uses
[j
])),
3511 DF_REF_INSN_UID (df
->uses
[j
]),
3512 DF_REF_REGNO (df
->uses
[j
]));
3513 if (df
->uses
[j
]->flags
& DF_REF_READ_WRITE
)
3514 fprintf (file
, "read/write ");
3515 df_chain_dump (DF_REF_CHAIN (df
->uses
[j
]), file
);
3516 fprintf (file
, "\n");
3523 fprintf (file
, "Live regs:\n");
3526 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3528 if (! bb_info
->lr_in
)
3531 fprintf (file
, "bb %d in \t", bb
->index
);
3532 dump_bitmap (file
, bb_info
->lr_in
);
3533 fprintf (file
, "bb %d use \t", bb
->index
);
3534 dump_bitmap (file
, bb_info
->lr_use
);
3535 fprintf (file
, "bb %d def \t", bb
->index
);
3536 dump_bitmap (file
, bb_info
->lr_def
);
3537 fprintf (file
, "bb %d out \t", bb
->index
);
3538 dump_bitmap (file
, bb_info
->lr_out
);
3542 if (flags
& (DF_REG_INFO
| DF_RD_CHAIN
| DF_RU_CHAIN
))
3544 struct reg_info
*reg_info
= df
->regs
;
3546 fprintf (file
, "Register info:\n");
3547 for (j
= 0; j
< df
->n_regs
; j
++)
3549 if (((flags
& DF_REG_INFO
)
3550 && (reg_info
[j
].n_uses
|| reg_info
[j
].n_defs
))
3551 || ((flags
& DF_RD_CHAIN
) && reg_info
[j
].defs
)
3552 || ((flags
& DF_RU_CHAIN
) && reg_info
[j
].uses
))
3554 fprintf (file
, "reg %d", j
);
3555 if ((flags
& DF_RD_CHAIN
) && (flags
& DF_RU_CHAIN
))
3557 basic_block bb
= df_regno_bb (df
, j
);
3560 fprintf (file
, " bb %d", bb
->index
);
3562 fprintf (file
, " bb ?");
3564 if (flags
& DF_REG_INFO
)
3566 fprintf (file
, " life %d", reg_info
[j
].lifetime
);
3569 if ((flags
& DF_REG_INFO
) || (flags
& DF_RD_CHAIN
))
3571 fprintf (file
, " defs ");
3572 if (flags
& DF_REG_INFO
)
3573 fprintf (file
, "%d ", reg_info
[j
].n_defs
);
3574 if (flags
& DF_RD_CHAIN
)
3575 df_chain_dump (reg_info
[j
].defs
, file
);
3578 if ((flags
& DF_REG_INFO
) || (flags
& DF_RU_CHAIN
))
3580 fprintf (file
, " uses ");
3581 if (flags
& DF_REG_INFO
)
3582 fprintf (file
, "%d ", reg_info
[j
].n_uses
);
3583 if (flags
& DF_RU_CHAIN
)
3584 df_chain_dump (reg_info
[j
].uses
, file
);
3587 fprintf (file
, "\n");
3591 fprintf (file
, "\n");
3596 df_insn_debug (struct df
*df
, rtx insn
, FILE *file
)
3601 uid
= INSN_UID (insn
);
3602 if (uid
>= df
->insn_size
)
3605 if (df
->insns
[uid
].defs
)
3606 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3607 else if (df
->insns
[uid
].uses
)
3608 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3612 fprintf (file
, "insn %d bb %d luid %d defs ",
3613 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3614 df_chain_dump (df
->insns
[uid
].defs
, file
);
3615 fprintf (file
, " uses ");
3616 df_chain_dump (df
->insns
[uid
].uses
, file
);
3617 fprintf (file
, "\n");
3622 df_insn_debug_regno (struct df
*df
, rtx insn
, FILE *file
)
3627 uid
= INSN_UID (insn
);
3628 if (uid
>= df
->insn_size
)
3631 if (df
->insns
[uid
].defs
)
3632 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3633 else if (df
->insns
[uid
].uses
)
3634 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3638 fprintf (file
, "insn %d bb %d luid %d defs ",
3639 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3640 df_chain_dump_regno (df
->insns
[uid
].defs
, file
);
3641 fprintf (file
, " uses ");
3642 df_chain_dump_regno (df
->insns
[uid
].uses
, file
);
3643 fprintf (file
, "\n");
3648 df_regno_debug (struct df
*df
, unsigned int regno
, FILE *file
)
3650 if (regno
>= df
->reg_size
)
3653 fprintf (file
, "reg %d life %d defs ",
3654 regno
, df
->regs
[regno
].lifetime
);
3655 df_chain_dump (df
->regs
[regno
].defs
, file
);
3656 fprintf (file
, " uses ");
3657 df_chain_dump (df
->regs
[regno
].uses
, file
);
3658 fprintf (file
, "\n");
3663 df_ref_debug (struct df
*df
, struct ref
*ref
, FILE *file
)
3665 fprintf (file
, "%c%d ",
3666 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
3668 fprintf (file
, "reg %d bb %d luid %d insn %d chain ",
3671 DF_INSN_LUID (df
, DF_REF_INSN (ref
)),
3672 INSN_UID (DF_REF_INSN (ref
)));
3673 df_chain_dump (DF_REF_CHAIN (ref
), file
);
3674 fprintf (file
, "\n");
3677 /* Functions for debugging from GDB. */
3680 debug_df_insn (rtx insn
)
3682 df_insn_debug (ddf
, insn
, stderr
);
3688 debug_df_reg (rtx reg
)
3690 df_regno_debug (ddf
, REGNO (reg
), stderr
);
3695 debug_df_regno (unsigned int regno
)
3697 df_regno_debug (ddf
, regno
, stderr
);
3702 debug_df_ref (struct ref
*ref
)
3704 df_ref_debug (ddf
, ref
, stderr
);
3709 debug_df_defno (unsigned int defno
)
3711 df_ref_debug (ddf
, ddf
->defs
[defno
], stderr
);
3716 debug_df_useno (unsigned int defno
)
3718 df_ref_debug (ddf
, ddf
->uses
[defno
], stderr
);
3723 debug_df_chain (struct df_link
*link
)
3725 df_chain_dump (link
, stderr
);
3726 fputc ('\n', stderr
);
3731 dataflow_set_a_op_b (enum set_representation repr
,
3732 enum df_confluence_op op
,
3733 void *rslt
, void *op1
, void *op2
)
3741 sbitmap_a_or_b (rslt
, op1
, op2
);
3744 case DF_INTERSECTION
:
3745 sbitmap_a_and_b (rslt
, op1
, op2
);
3757 bitmap_a_or_b (rslt
, op1
, op2
);
3760 case DF_INTERSECTION
:
3761 bitmap_a_and_b (rslt
, op1
, op2
);
3775 dataflow_set_copy (enum set_representation repr
, void *dest
, void *src
)
3780 sbitmap_copy (dest
, src
);
3784 bitmap_copy (dest
, src
);
3792 /* Hybrid search algorithm from "Implementation Techniques for
3793 Efficient Data-Flow Analysis of Large Programs". */
3796 hybrid_search (basic_block bb
, struct dataflow
*dataflow
,
3797 sbitmap visited
, sbitmap pending
, sbitmap considered
)
3803 SET_BIT (visited
, bb
->index
);
3804 if (!TEST_BIT (pending
, bb
->index
))
3806 RESET_BIT (pending
, i
);
3808 #define HS(E_ANTI, E_ANTI_NEXT, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3809 E, E_NEXT, E_BB, E_START_BB, OUT_SET) \
3812 /* Calculate <conf_op> of predecessor_outs. */ \
3813 bitmap_zero (IN_SET[i]); \
3814 for (e = bb->E_ANTI; e; e = e->E_ANTI_NEXT) \
3816 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3818 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3821 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3822 IN_SET[i], IN_SET[i], \
3823 OUT_SET[e->E_ANTI_BB->index]); \
3826 (*dataflow->transfun)(i, &changed, \
3827 dataflow->in[i], dataflow->out[i], \
3828 dataflow->gen[i], dataflow->kill[i], \
3834 for (e = bb->E; e; e = e->E_NEXT) \
3836 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3839 if (!TEST_BIT (considered, e->E_BB->index)) \
3842 SET_BIT (pending, e->E_BB->index); \
3845 for (e = bb->E; e; e = e->E_NEXT) \
3847 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3850 if (!TEST_BIT (considered, e->E_BB->index)) \
3853 if (!TEST_BIT (visited, e->E_BB->index)) \
3854 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3858 if (dataflow
->dir
== DF_FORWARD
)
3859 HS (pred
, pred_next
, src
, ENTRY_BLOCK_PTR
, dataflow
->in
,
3860 succ
, succ_next
, dest
, EXIT_BLOCK_PTR
, dataflow
->out
);
3862 HS (succ
, succ_next
, dest
, EXIT_BLOCK_PTR
, dataflow
->out
,
3863 pred
, pred_next
, src
, ENTRY_BLOCK_PTR
, dataflow
->in
);
3866 /* This function will perform iterative bitvector dataflow described by
3867 DATAFLOW, producing the in and out sets. Only the part of the cfg
3868 induced by blocks in DATAFLOW->order is taken into account.
3870 For forward problems, you probably want to pass in a mapping of
3871 block number to rc_order (like df->inverse_rc_map). */
3874 iterative_dataflow (struct dataflow
*dataflow
)
3877 sbitmap visited
, pending
, considered
;
3879 pending
= sbitmap_alloc (last_basic_block
);
3880 visited
= sbitmap_alloc (last_basic_block
);
3881 considered
= sbitmap_alloc (last_basic_block
);
3882 sbitmap_zero (pending
);
3883 sbitmap_zero (visited
);
3884 sbitmap_zero (considered
);
3886 for (i
= 0; i
< dataflow
->n_blocks
; i
++)
3888 idx
= dataflow
->order
[i
];
3889 SET_BIT (pending
, idx
);
3890 SET_BIT (considered
, idx
);
3891 if (dataflow
->dir
== DF_FORWARD
)
3892 dataflow_set_copy (dataflow
->repr
,
3893 dataflow
->out
[idx
], dataflow
->gen
[idx
]);
3895 dataflow_set_copy (dataflow
->repr
,
3896 dataflow
->in
[idx
], dataflow
->gen
[idx
]);
3901 for (i
= 0; i
< dataflow
->n_blocks
; i
++)
3903 idx
= dataflow
->order
[i
];
3905 if (TEST_BIT (pending
, idx
) && !TEST_BIT (visited
, idx
))
3906 hybrid_search (BASIC_BLOCK (idx
), dataflow
,
3907 visited
, pending
, considered
);
3910 if (sbitmap_first_set_bit (pending
) == -1)
3913 sbitmap_zero (visited
);
3916 sbitmap_free (pending
);
3917 sbitmap_free (visited
);
3918 sbitmap_free (considered
);