1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
40 #include "splay-tree.h"
42 #include "langhooks.h"
48 /* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
53 struct S { int i; double d; };
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
71 past immediate descendants, however, since we propagate all
72 grandchildren up one level.
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
78 struct alias_set_entry
GTY(())
80 /* The alias set number, as stored in MEM_ALIAS_SET. */
81 HOST_WIDE_INT alias_set
;
83 /* The children of the alias set. These are not just the immediate
84 children, but, in fact, all descendants. So, if we have:
86 struct T { struct S s; float f; }
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
90 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
96 typedef struct alias_set_entry
*alias_set_entry
;
98 static int rtx_equal_for_memref_p (rtx
, rtx
);
99 static rtx
find_symbolic_term (rtx
);
100 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
101 static void record_set (rtx
, rtx
, void *);
102 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
104 static rtx
find_base_value (rtx
);
105 static int mems_in_disjoint_alias_sets_p (rtx
, rtx
);
106 static int insert_subset_children (splay_tree_node
, void*);
107 static tree
find_base_decl (tree
);
108 static alias_set_entry
get_alias_set_entry (HOST_WIDE_INT
);
109 static rtx
fixed_scalar_and_varying_struct_p (rtx
, rtx
, rtx
, rtx
,
111 static int aliases_everything_p (rtx
);
112 static bool nonoverlapping_component_refs_p (tree
, tree
);
113 static tree
decl_for_component_ref (tree
);
114 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
115 static int nonoverlapping_memrefs_p (rtx
, rtx
);
116 static int write_dependence_p (rtx
, rtx
, int, int);
118 static int nonlocal_mentioned_p_1 (rtx
*, void *);
119 static int nonlocal_mentioned_p (rtx
);
120 static int nonlocal_referenced_p_1 (rtx
*, void *);
121 static int nonlocal_referenced_p (rtx
);
122 static int nonlocal_set_p_1 (rtx
*, void *);
123 static int nonlocal_set_p (rtx
);
124 static void memory_modified_1 (rtx
, rtx
, void *);
126 /* Set up all info needed to perform alias analysis on memory references. */
128 /* Returns the size in bytes of the mode of X. */
129 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
131 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
132 different alias sets. We ignore alias sets in functions making use
133 of variable arguments because the va_arg macros on some systems are
135 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
136 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
138 /* Cap the number of passes we make over the insns propagating alias
139 information through set chains. 10 is a completely arbitrary choice. */
140 #define MAX_ALIAS_LOOP_PASSES 10
142 /* reg_base_value[N] gives an address to which register N is related.
143 If all sets after the first add or subtract to the current value
144 or otherwise modify it so it does not point to a different top level
145 object, reg_base_value[N] is equal to the address part of the source
148 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
149 expressions represent certain special values: function arguments and
150 the stack, frame, and argument pointers.
152 The contents of an ADDRESS is not normally used, the mode of the
153 ADDRESS determines whether the ADDRESS is a function argument or some
154 other special value. Pointer equality, not rtx_equal_p, determines whether
155 two ADDRESS expressions refer to the same base address.
157 The only use of the contents of an ADDRESS is for determining if the
158 current function performs nonlocal memory memory references for the
159 purposes of marking the function as a constant function. */
161 static GTY(()) varray_type reg_base_value
;
162 static rtx
*new_reg_base_value
;
164 /* We preserve the copy of old array around to avoid amount of garbage
165 produced. About 8% of garbage produced were attributed to this
167 static GTY((deletable
)) varray_type old_reg_base_value
;
169 /* Static hunks of RTL used by the aliasing code; these are initialized
170 once per function to avoid unnecessary RTL allocations. */
171 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
173 #define REG_BASE_VALUE(X) \
174 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
175 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
177 /* Vector of known invariant relationships between registers. Set in
178 loop unrolling. Indexed by register number, if nonzero the value
179 is an expression describing this register in terms of another.
181 The length of this array is REG_BASE_VALUE_SIZE.
183 Because this array contains only pseudo registers it has no effect
185 static GTY((length("alias_invariant_size"))) rtx
*alias_invariant
;
186 static GTY(()) unsigned int alias_invariant_size
;
188 /* Vector indexed by N giving the initial (unchanging) value known for
189 pseudo-register N. This array is initialized in init_alias_analysis,
190 and does not change until end_alias_analysis is called. */
191 static GTY((length("reg_known_value_size"))) rtx
*reg_known_value
;
193 /* Indicates number of valid entries in reg_known_value. */
194 static GTY(()) unsigned int reg_known_value_size
;
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 static bool *reg_known_equiv_p
;
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments
;
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry
))) varray_type alias_sets
;
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set
)
223 return (alias_set_entry
)VARRAY_GENERIC_PTR (alias_sets
, alias_set
);
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
230 mems_in_disjoint_alias_sets_p (rtx mem1
, rtx mem2
)
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
252 insert_subset_children (splay_tree_node node
, void *data
)
254 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
259 /* Return 1 if the two specified alias sets may conflict. */
262 alias_sets_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1
== 0 || set2
== 0
269 /* If the two alias sets are the same, they may alias. */
273 /* See if the first alias set is a subset of the second. */
274 ase
= get_alias_set_entry (set1
);
276 && (ase
->has_zero_child
277 || splay_tree_lookup (ase
->children
,
278 (splay_tree_key
) set2
)))
281 /* Now do the same, but with the alias sets reversed. */
282 ase
= get_alias_set_entry (set2
);
284 && (ase
->has_zero_child
285 || splay_tree_lookup (ase
->children
,
286 (splay_tree_key
) set1
)))
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
294 /* Return 1 if the two specified alias sets might conflict, or if any subtype
295 of these alias sets might conflict. */
298 alias_sets_might_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
300 if (set1
== 0 || set2
== 0 || set1
== set2
)
307 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
308 has any readonly fields. If any of the fields have types that
309 contain readonly fields, return true as well. */
312 readonly_fields_p (tree type
)
316 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
317 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
320 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
321 if (TREE_CODE (field
) == FIELD_DECL
322 && (TREE_READONLY (field
)
323 || readonly_fields_p (TREE_TYPE (field
))))
329 /* Return 1 if any MEM object of type T1 will always conflict (using the
330 dependency routines in this file) with any MEM object of type T2.
331 This is used when allocating temporary storage. If T1 and/or T2 are
332 NULL_TREE, it means we know nothing about the storage. */
335 objects_must_conflict_p (tree t1
, tree t2
)
337 HOST_WIDE_INT set1
, set2
;
339 /* If neither has a type specified, we don't know if they'll conflict
340 because we may be using them to store objects of various types, for
341 example the argument and local variables areas of inlined functions. */
342 if (t1
== 0 && t2
== 0)
345 /* If one or the other has readonly fields or is readonly,
346 then they may not conflict. */
347 if ((t1
!= 0 && readonly_fields_p (t1
))
348 || (t2
!= 0 && readonly_fields_p (t2
))
349 || (t1
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t1
))
350 || (t2
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t2
)))
353 /* If they are the same type, they must conflict. */
355 /* Likewise if both are volatile. */
356 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
359 set1
= t1
? get_alias_set (t1
) : 0;
360 set2
= t2
? get_alias_set (t2
) : 0;
362 /* Otherwise they conflict if they have no alias set or the same. We
363 can't simply use alias_sets_conflict_p here, because we must make
364 sure that every subtype of t1 will conflict with every subtype of
365 t2 for which a pair of subobjects of these respective subtypes
366 overlaps on the stack. */
367 return set1
== 0 || set2
== 0 || set1
== set2
;
370 /* T is an expression with pointer type. Find the DECL on which this
371 expression is based. (For example, in `a[i]' this would be `a'.)
372 If there is no such DECL, or a unique decl cannot be determined,
373 NULL_TREE is returned. */
376 find_base_decl (tree t
)
380 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
383 /* If this is a declaration, return it. */
384 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
387 /* Handle general expressions. It would be nice to deal with
388 COMPONENT_REFs here. If we could tell that `a' and `b' were the
389 same, then `a->f' and `b->f' are also the same. */
390 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
393 return find_base_decl (TREE_OPERAND (t
, 0));
396 /* Return 0 if found in neither or both are the same. */
397 d0
= find_base_decl (TREE_OPERAND (t
, 0));
398 d1
= find_base_decl (TREE_OPERAND (t
, 1));
409 d0
= find_base_decl (TREE_OPERAND (t
, 0));
410 d1
= find_base_decl (TREE_OPERAND (t
, 1));
411 d2
= find_base_decl (TREE_OPERAND (t
, 2));
413 /* Set any nonzero values from the last, then from the first. */
414 if (d1
== 0) d1
= d2
;
415 if (d0
== 0) d0
= d1
;
416 if (d1
== 0) d1
= d0
;
417 if (d2
== 0) d2
= d1
;
419 /* At this point all are nonzero or all are zero. If all three are the
420 same, return it. Otherwise, return zero. */
421 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
428 /* Return 1 if all the nested component references handled by
429 get_inner_reference in T are such that we can address the object in T. */
432 can_address_p (tree t
)
434 /* If we're at the end, it is vacuously addressable. */
435 if (! handled_component_p (t
))
438 /* Bitfields are never addressable. */
439 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
442 /* Fields are addressable unless they are marked as nonaddressable or
443 the containing type has alias set 0. */
444 else if (TREE_CODE (t
) == COMPONENT_REF
445 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
446 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
447 && can_address_p (TREE_OPERAND (t
, 0)))
450 /* Likewise for arrays. */
451 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
452 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
453 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
454 && can_address_p (TREE_OPERAND (t
, 0)))
460 /* Return the alias set for T, which may be either a type or an
461 expression. Call language-specific routine for help, if needed. */
464 get_alias_set (tree t
)
468 /* If we're not doing any alias analysis, just assume everything
469 aliases everything else. Also return 0 if this or its type is
471 if (! flag_strict_aliasing
|| t
== error_mark_node
473 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
476 /* We can be passed either an expression or a type. This and the
477 language-specific routine may make mutually-recursive calls to each other
478 to figure out what to do. At each juncture, we see if this is a tree
479 that the language may need to handle specially. First handle things that
485 /* Remove any nops, then give the language a chance to do
486 something with this tree before we look at it. */
488 set
= lang_hooks
.get_alias_set (t
);
492 /* First see if the actual object referenced is an INDIRECT_REF from a
493 restrict-qualified pointer or a "void *". */
494 while (handled_component_p (inner
))
496 inner
= TREE_OPERAND (inner
, 0);
500 /* Check for accesses through restrict-qualified pointers. */
501 if (TREE_CODE (inner
) == INDIRECT_REF
)
503 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
505 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
507 /* If we haven't computed the actual alias set, do it now. */
508 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
510 /* No two restricted pointers can point at the same thing.
511 However, a restricted pointer can point at the same thing
512 as an unrestricted pointer, if that unrestricted pointer
513 is based on the restricted pointer. So, we make the
514 alias set for the restricted pointer a subset of the
515 alias set for the type pointed to by the type of the
517 HOST_WIDE_INT pointed_to_alias_set
518 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
520 if (pointed_to_alias_set
== 0)
521 /* It's not legal to make a subset of alias set zero. */
522 DECL_POINTER_ALIAS_SET (decl
) = 0;
525 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
526 record_alias_subset (pointed_to_alias_set
,
527 DECL_POINTER_ALIAS_SET (decl
));
531 /* We use the alias set indicated in the declaration. */
532 return DECL_POINTER_ALIAS_SET (decl
);
535 /* If we have an INDIRECT_REF via a void pointer, we don't
536 know anything about what that might alias. Likewise if the
537 pointer is marked that way. */
538 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
539 || (TYPE_REF_CAN_ALIAS_ALL
540 (TREE_TYPE (TREE_OPERAND (inner
, 0)))))
544 /* Otherwise, pick up the outermost object that we could have a pointer
545 to, processing conversions as above. */
546 while (handled_component_p (t
) && ! can_address_p (t
))
548 t
= TREE_OPERAND (t
, 0);
552 /* If we've already determined the alias set for a decl, just return
553 it. This is necessary for C++ anonymous unions, whose component
554 variables don't look like union members (boo!). */
555 if (TREE_CODE (t
) == VAR_DECL
556 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
557 return MEM_ALIAS_SET (DECL_RTL (t
));
559 /* Now all we care about is the type. */
563 /* Variant qualifiers don't affect the alias set, so get the main
564 variant. If this is a type with a known alias set, return it. */
565 t
= TYPE_MAIN_VARIANT (t
);
566 if (TYPE_ALIAS_SET_KNOWN_P (t
))
567 return TYPE_ALIAS_SET (t
);
569 /* See if the language has special handling for this type. */
570 set
= lang_hooks
.get_alias_set (t
);
574 /* There are no objects of FUNCTION_TYPE, so there's no point in
575 using up an alias set for them. (There are, of course, pointers
576 and references to functions, but that's different.) */
577 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
580 /* Unless the language specifies otherwise, let vector types alias
581 their components. This avoids some nasty type punning issues in
582 normal usage. And indeed lets vectors be treated more like an
584 else if (TREE_CODE (t
) == VECTOR_TYPE
)
585 set
= get_alias_set (TREE_TYPE (t
));
588 /* Otherwise make a new alias set for this type. */
589 set
= new_alias_set ();
591 TYPE_ALIAS_SET (t
) = set
;
593 /* If this is an aggregate type, we must record any component aliasing
595 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
596 record_component_aliases (t
);
601 /* Return a brand-new alias set. */
603 static GTY(()) HOST_WIDE_INT last_alias_set
;
608 if (flag_strict_aliasing
)
611 VARRAY_GENERIC_PTR_INIT (alias_sets
, 10, "alias sets");
613 VARRAY_GROW (alias_sets
, last_alias_set
+ 2);
614 return ++last_alias_set
;
620 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
621 not everything that aliases SUPERSET also aliases SUBSET. For example,
622 in C, a store to an `int' can alias a load of a structure containing an
623 `int', and vice versa. But it can't alias a load of a 'double' member
624 of the same structure. Here, the structure would be the SUPERSET and
625 `int' the SUBSET. This relationship is also described in the comment at
626 the beginning of this file.
628 This function should be called only once per SUPERSET/SUBSET pair.
630 It is illegal for SUPERSET to be zero; everything is implicitly a
631 subset of alias set zero. */
634 record_alias_subset (HOST_WIDE_INT superset
, HOST_WIDE_INT subset
)
636 alias_set_entry superset_entry
;
637 alias_set_entry subset_entry
;
639 /* It is possible in complex type situations for both sets to be the same,
640 in which case we can ignore this operation. */
641 if (superset
== subset
)
647 superset_entry
= get_alias_set_entry (superset
);
648 if (superset_entry
== 0)
650 /* Create an entry for the SUPERSET, so that we have a place to
651 attach the SUBSET. */
652 superset_entry
= ggc_alloc (sizeof (struct alias_set_entry
));
653 superset_entry
->alias_set
= superset
;
654 superset_entry
->children
655 = splay_tree_new_ggc (splay_tree_compare_ints
);
656 superset_entry
->has_zero_child
= 0;
657 VARRAY_GENERIC_PTR (alias_sets
, superset
) = superset_entry
;
661 superset_entry
->has_zero_child
= 1;
664 subset_entry
= get_alias_set_entry (subset
);
665 /* If there is an entry for the subset, enter all of its children
666 (if they are not already present) as children of the SUPERSET. */
669 if (subset_entry
->has_zero_child
)
670 superset_entry
->has_zero_child
= 1;
672 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
673 superset_entry
->children
);
676 /* Enter the SUBSET itself as a child of the SUPERSET. */
677 splay_tree_insert (superset_entry
->children
,
678 (splay_tree_key
) subset
, 0);
682 /* Record that component types of TYPE, if any, are part of that type for
683 aliasing purposes. For record types, we only record component types
684 for fields that are marked addressable. For array types, we always
685 record the component types, so the front end should not call this
686 function if the individual component aren't addressable. */
689 record_component_aliases (tree type
)
691 HOST_WIDE_INT superset
= get_alias_set (type
);
697 switch (TREE_CODE (type
))
700 if (! TYPE_NONALIASED_COMPONENT (type
))
701 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
706 case QUAL_UNION_TYPE
:
707 /* Recursively record aliases for the base classes, if there are any. */
708 if (TYPE_BINFO (type
) != NULL
&& TYPE_BINFO_BASETYPES (type
) != NULL
)
711 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type
)); i
++)
713 tree binfo
= TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type
), i
);
714 record_alias_subset (superset
,
715 get_alias_set (BINFO_TYPE (binfo
)));
718 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
719 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
720 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
724 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
732 /* Allocate an alias set for use in storing and reading from the varargs
735 static GTY(()) HOST_WIDE_INT varargs_set
= -1;
738 get_varargs_alias_set (void)
741 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
742 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
743 consistently use the varargs alias set for loads from the varargs
744 area. So don't use it anywhere. */
747 if (varargs_set
== -1)
748 varargs_set
= new_alias_set ();
754 /* Likewise, but used for the fixed portions of the frame, e.g., register
757 static GTY(()) HOST_WIDE_INT frame_set
= -1;
760 get_frame_alias_set (void)
763 frame_set
= new_alias_set ();
768 /* Inside SRC, the source of a SET, find a base address. */
771 find_base_value (rtx src
)
775 switch (GET_CODE (src
))
783 /* At the start of a function, argument registers have known base
784 values which may be lost later. Returning an ADDRESS
785 expression here allows optimization based on argument values
786 even when the argument registers are used for other purposes. */
787 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
788 return new_reg_base_value
[regno
];
790 /* If a pseudo has a known base value, return it. Do not do this
791 for non-fixed hard regs since it can result in a circular
792 dependency chain for registers which have values at function entry.
794 The test above is not sufficient because the scheduler may move
795 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
796 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
797 && regno
< VARRAY_SIZE (reg_base_value
))
799 /* If we're inside init_alias_analysis, use new_reg_base_value
800 to reduce the number of relaxation iterations. */
801 if (new_reg_base_value
&& new_reg_base_value
[regno
]
802 && REG_N_SETS (regno
) == 1)
803 return new_reg_base_value
[regno
];
805 if (VARRAY_RTX (reg_base_value
, regno
))
806 return VARRAY_RTX (reg_base_value
, regno
);
812 /* Check for an argument passed in memory. Only record in the
813 copying-arguments block; it is too hard to track changes
815 if (copying_arguments
816 && (XEXP (src
, 0) == arg_pointer_rtx
817 || (GET_CODE (XEXP (src
, 0)) == PLUS
818 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
819 return gen_rtx_ADDRESS (VOIDmode
, src
);
824 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
827 /* ... fall through ... */
832 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
834 /* If either operand is a REG that is a known pointer, then it
836 if (REG_P (src_0
) && REG_POINTER (src_0
))
837 return find_base_value (src_0
);
838 if (REG_P (src_1
) && REG_POINTER (src_1
))
839 return find_base_value (src_1
);
841 /* If either operand is a REG, then see if we already have
842 a known value for it. */
845 temp
= find_base_value (src_0
);
852 temp
= find_base_value (src_1
);
857 /* If either base is named object or a special address
858 (like an argument or stack reference), then use it for the
861 && (GET_CODE (src_0
) == SYMBOL_REF
862 || GET_CODE (src_0
) == LABEL_REF
863 || (GET_CODE (src_0
) == ADDRESS
864 && GET_MODE (src_0
) != VOIDmode
)))
868 && (GET_CODE (src_1
) == SYMBOL_REF
869 || GET_CODE (src_1
) == LABEL_REF
870 || (GET_CODE (src_1
) == ADDRESS
871 && GET_MODE (src_1
) != VOIDmode
)))
874 /* Guess which operand is the base address:
875 If either operand is a symbol, then it is the base. If
876 either operand is a CONST_INT, then the other is the base. */
877 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
878 return find_base_value (src_0
);
879 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
880 return find_base_value (src_1
);
886 /* The standard form is (lo_sum reg sym) so look only at the
888 return find_base_value (XEXP (src
, 1));
891 /* If the second operand is constant set the base
892 address to the first operand. */
893 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
894 return find_base_value (XEXP (src
, 0));
898 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
908 return find_base_value (XEXP (src
, 0));
911 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
913 rtx temp
= find_base_value (XEXP (src
, 0));
915 if (temp
!= 0 && CONSTANT_P (temp
))
916 temp
= convert_memory_address (Pmode
, temp
);
928 /* Called from init_alias_analysis indirectly through note_stores. */
930 /* While scanning insns to find base values, reg_seen[N] is nonzero if
931 register N has been set in this function. */
932 static char *reg_seen
;
934 /* Addresses which are known not to alias anything else are identified
935 by a unique integer. */
936 static int unique_id
;
939 record_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
945 if (GET_CODE (dest
) != REG
)
948 regno
= REGNO (dest
);
950 if (regno
>= VARRAY_SIZE (reg_base_value
))
953 /* If this spans multiple hard registers, then we must indicate that every
954 register has an unusable value. */
955 if (regno
< FIRST_PSEUDO_REGISTER
)
956 n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
963 reg_seen
[regno
+ n
] = 1;
964 new_reg_base_value
[regno
+ n
] = 0;
971 /* A CLOBBER wipes out any old value but does not prevent a previously
972 unset register from acquiring a base address (i.e. reg_seen is not
974 if (GET_CODE (set
) == CLOBBER
)
976 new_reg_base_value
[regno
] = 0;
985 new_reg_base_value
[regno
] = 0;
989 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
990 GEN_INT (unique_id
++));
994 /* If this is not the first set of REGNO, see whether the new value
995 is related to the old one. There are two cases of interest:
997 (1) The register might be assigned an entirely new value
998 that has the same base term as the original set.
1000 (2) The set might be a simple self-modification that
1001 cannot change REGNO's base value.
1003 If neither case holds, reject the original base value as invalid.
1004 Note that the following situation is not detected:
1006 extern int x, y; int *p = &x; p += (&y-&x);
1008 ANSI C does not allow computing the difference of addresses
1009 of distinct top level objects. */
1010 if (new_reg_base_value
[regno
] != 0
1011 && find_base_value (src
) != new_reg_base_value
[regno
])
1012 switch (GET_CODE (src
))
1016 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1017 new_reg_base_value
[regno
] = 0;
1020 /* If the value we add in the PLUS is also a valid base value,
1021 this might be the actual base value, and the original value
1024 rtx other
= NULL_RTX
;
1026 if (XEXP (src
, 0) == dest
)
1027 other
= XEXP (src
, 1);
1028 else if (XEXP (src
, 1) == dest
)
1029 other
= XEXP (src
, 0);
1031 if (! other
|| find_base_value (other
))
1032 new_reg_base_value
[regno
] = 0;
1036 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1037 new_reg_base_value
[regno
] = 0;
1040 new_reg_base_value
[regno
] = 0;
1043 /* If this is the first set of a register, record the value. */
1044 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1045 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1046 new_reg_base_value
[regno
] = find_base_value (src
);
1048 reg_seen
[regno
] = 1;
1051 /* Called from loop optimization when a new pseudo-register is
1052 created. It indicates that REGNO is being set to VAL. f INVARIANT
1053 is true then this value also describes an invariant relationship
1054 which can be used to deduce that two registers with unknown values
1058 record_base_value (unsigned int regno
, rtx val
, int invariant
)
1060 if (invariant
&& alias_invariant
&& regno
< alias_invariant_size
)
1061 alias_invariant
[regno
] = val
;
1063 if (regno
>= VARRAY_SIZE (reg_base_value
))
1064 VARRAY_GROW (reg_base_value
, max_reg_num ());
1066 if (GET_CODE (val
) == REG
)
1068 VARRAY_RTX (reg_base_value
, regno
)
1069 = REG_BASE_VALUE (val
);
1072 VARRAY_RTX (reg_base_value
, regno
)
1073 = find_base_value (val
);
1076 /* Clear alias info for a register. This is used if an RTL transformation
1077 changes the value of a register. This is used in flow by AUTO_INC_DEC
1078 optimizations. We don't need to clear reg_base_value, since flow only
1079 changes the offset. */
1082 clear_reg_alias_info (rtx reg
)
1084 unsigned int regno
= REGNO (reg
);
1086 if (regno
>= FIRST_PSEUDO_REGISTER
)
1088 regno
-= FIRST_PSEUDO_REGISTER
;
1089 if (regno
< reg_known_value_size
)
1091 reg_known_value
[regno
] = reg
;
1092 reg_known_equiv_p
[regno
] = false;
1097 /* If a value is known for REGNO, return it. */
1100 get_reg_known_value (unsigned int regno
)
1102 if (regno
>= FIRST_PSEUDO_REGISTER
)
1104 regno
-= FIRST_PSEUDO_REGISTER
;
1105 if (regno
< reg_known_value_size
)
1106 return reg_known_value
[regno
];
1114 set_reg_known_value (unsigned int regno
, rtx val
)
1116 if (regno
>= FIRST_PSEUDO_REGISTER
)
1118 regno
-= FIRST_PSEUDO_REGISTER
;
1119 if (regno
< reg_known_value_size
)
1120 reg_known_value
[regno
] = val
;
1124 /* Similarly for reg_known_equiv_p. */
1127 get_reg_known_equiv_p (unsigned int regno
)
1129 if (regno
>= FIRST_PSEUDO_REGISTER
)
1131 regno
-= FIRST_PSEUDO_REGISTER
;
1132 if (regno
< reg_known_value_size
)
1133 return reg_known_equiv_p
[regno
];
1139 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1141 if (regno
>= FIRST_PSEUDO_REGISTER
)
1143 regno
-= FIRST_PSEUDO_REGISTER
;
1144 if (regno
< reg_known_value_size
)
1145 reg_known_equiv_p
[regno
] = val
;
1150 /* Returns a canonical version of X, from the point of view alias
1151 analysis. (For example, if X is a MEM whose address is a register,
1152 and the register has a known value (say a SYMBOL_REF), then a MEM
1153 whose address is the SYMBOL_REF is returned.) */
1158 /* Recursively look for equivalences. */
1159 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1161 rtx t
= get_reg_known_value (REGNO (x
));
1165 return canon_rtx (t
);
1168 if (GET_CODE (x
) == PLUS
)
1170 rtx x0
= canon_rtx (XEXP (x
, 0));
1171 rtx x1
= canon_rtx (XEXP (x
, 1));
1173 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1175 if (GET_CODE (x0
) == CONST_INT
)
1176 return plus_constant (x1
, INTVAL (x0
));
1177 else if (GET_CODE (x1
) == CONST_INT
)
1178 return plus_constant (x0
, INTVAL (x1
));
1179 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1183 /* This gives us much better alias analysis when called from
1184 the loop optimizer. Note we want to leave the original
1185 MEM alone, but need to return the canonicalized MEM with
1186 all the flags with their original values. */
1187 else if (GET_CODE (x
) == MEM
)
1188 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1193 /* Return 1 if X and Y are identical-looking rtx's.
1194 Expect that X and Y has been already canonicalized.
1196 We use the data in reg_known_value above to see if two registers with
1197 different numbers are, in fact, equivalent. */
1200 rtx_equal_for_memref_p (rtx x
, rtx y
)
1207 if (x
== 0 && y
== 0)
1209 if (x
== 0 || y
== 0)
1215 code
= GET_CODE (x
);
1216 /* Rtx's of different codes cannot be equal. */
1217 if (code
!= GET_CODE (y
))
1220 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1221 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1223 if (GET_MODE (x
) != GET_MODE (y
))
1226 /* Some RTL can be compared without a recursive examination. */
1230 return REGNO (x
) == REGNO (y
);
1233 return XEXP (x
, 0) == XEXP (y
, 0);
1236 return XSTR (x
, 0) == XSTR (y
, 0);
1241 /* There's no need to compare the contents of CONST_DOUBLEs or
1242 CONST_INTs because pointer equality is a good enough
1243 comparison for these nodes. */
1247 return (XINT (x
, 1) == XINT (y
, 1)
1248 && rtx_equal_for_memref_p (XEXP (x
, 0),
1255 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1257 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1258 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1259 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1260 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1261 /* For commutative operations, the RTX match if the operand match in any
1262 order. Also handle the simple binary and unary cases without a loop. */
1263 if (COMMUTATIVE_P (x
))
1265 rtx xop0
= canon_rtx (XEXP (x
, 0));
1266 rtx yop0
= canon_rtx (XEXP (y
, 0));
1267 rtx yop1
= canon_rtx (XEXP (y
, 1));
1269 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1270 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1271 || (rtx_equal_for_memref_p (xop0
, yop1
)
1272 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1274 else if (NON_COMMUTATIVE_P (x
))
1276 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1277 canon_rtx (XEXP (y
, 0)))
1278 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1279 canon_rtx (XEXP (y
, 1))));
1281 else if (UNARY_P (x
))
1282 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1283 canon_rtx (XEXP (y
, 0)));
1285 /* Compare the elements. If any pair of corresponding elements
1286 fail to match, return 0 for the whole things.
1288 Limit cases to types which actually appear in addresses. */
1290 fmt
= GET_RTX_FORMAT (code
);
1291 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1296 if (XINT (x
, i
) != XINT (y
, i
))
1301 /* Two vectors must have the same length. */
1302 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1305 /* And the corresponding elements must match. */
1306 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1307 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1308 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1313 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1314 canon_rtx (XEXP (y
, i
))) == 0)
1318 /* This can happen for asm operands. */
1320 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1324 /* This can happen for an asm which clobbers memory. */
1328 /* It is believed that rtx's at this level will never
1329 contain anything but integers and other rtx's,
1330 except for within LABEL_REFs and SYMBOL_REFs. */
1338 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1339 X and return it, or return 0 if none found. */
1342 find_symbolic_term (rtx x
)
1348 code
= GET_CODE (x
);
1349 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1354 fmt
= GET_RTX_FORMAT (code
);
1355 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1361 t
= find_symbolic_term (XEXP (x
, i
));
1365 else if (fmt
[i
] == 'E')
1372 find_base_term (rtx x
)
1375 struct elt_loc_list
*l
;
1377 #if defined (FIND_BASE_TERM)
1378 /* Try machine-dependent ways to find the base term. */
1379 x
= FIND_BASE_TERM (x
);
1382 switch (GET_CODE (x
))
1385 return REG_BASE_VALUE (x
);
1388 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1398 return find_base_term (XEXP (x
, 0));
1401 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1403 rtx temp
= find_base_term (XEXP (x
, 0));
1405 if (temp
!= 0 && CONSTANT_P (temp
))
1406 temp
= convert_memory_address (Pmode
, temp
);
1412 val
= CSELIB_VAL_PTR (x
);
1415 for (l
= val
->locs
; l
; l
= l
->next
)
1416 if ((x
= find_base_term (l
->loc
)) != 0)
1422 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1429 rtx tmp1
= XEXP (x
, 0);
1430 rtx tmp2
= XEXP (x
, 1);
1432 /* This is a little bit tricky since we have to determine which of
1433 the two operands represents the real base address. Otherwise this
1434 routine may return the index register instead of the base register.
1436 That may cause us to believe no aliasing was possible, when in
1437 fact aliasing is possible.
1439 We use a few simple tests to guess the base register. Additional
1440 tests can certainly be added. For example, if one of the operands
1441 is a shift or multiply, then it must be the index register and the
1442 other operand is the base register. */
1444 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1445 return find_base_term (tmp2
);
1447 /* If either operand is known to be a pointer, then use it
1448 to determine the base term. */
1449 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1450 return find_base_term (tmp1
);
1452 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1453 return find_base_term (tmp2
);
1455 /* Neither operand was known to be a pointer. Go ahead and find the
1456 base term for both operands. */
1457 tmp1
= find_base_term (tmp1
);
1458 tmp2
= find_base_term (tmp2
);
1460 /* If either base term is named object or a special address
1461 (like an argument or stack reference), then use it for the
1464 && (GET_CODE (tmp1
) == SYMBOL_REF
1465 || GET_CODE (tmp1
) == LABEL_REF
1466 || (GET_CODE (tmp1
) == ADDRESS
1467 && GET_MODE (tmp1
) != VOIDmode
)))
1471 && (GET_CODE (tmp2
) == SYMBOL_REF
1472 || GET_CODE (tmp2
) == LABEL_REF
1473 || (GET_CODE (tmp2
) == ADDRESS
1474 && GET_MODE (tmp2
) != VOIDmode
)))
1477 /* We could not determine which of the two operands was the
1478 base register and which was the index. So we can determine
1479 nothing from the base alias check. */
1484 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1485 return find_base_term (XEXP (x
, 0));
1493 return REG_BASE_VALUE (frame_pointer_rtx
);
1500 /* Return 0 if the addresses X and Y are known to point to different
1501 objects, 1 if they might be pointers to the same object. */
1504 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1505 enum machine_mode y_mode
)
1507 rtx x_base
= find_base_term (x
);
1508 rtx y_base
= find_base_term (y
);
1510 /* If the address itself has no known base see if a known equivalent
1511 value has one. If either address still has no known base, nothing
1512 is known about aliasing. */
1517 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1520 x_base
= find_base_term (x_c
);
1528 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1531 y_base
= find_base_term (y_c
);
1536 /* If the base addresses are equal nothing is known about aliasing. */
1537 if (rtx_equal_p (x_base
, y_base
))
1540 /* The base addresses of the read and write are different expressions.
1541 If they are both symbols and they are not accessed via AND, there is
1542 no conflict. We can bring knowledge of object alignment into play
1543 here. For example, on alpha, "char a, b;" can alias one another,
1544 though "char a; long b;" cannot. */
1545 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1547 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1549 if (GET_CODE (x
) == AND
1550 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1551 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1553 if (GET_CODE (y
) == AND
1554 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1555 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1557 /* Differing symbols never alias. */
1561 /* If one address is a stack reference there can be no alias:
1562 stack references using different base registers do not alias,
1563 a stack reference can not alias a parameter, and a stack reference
1564 can not alias a global. */
1565 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1566 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1569 if (! flag_argument_noalias
)
1572 if (flag_argument_noalias
> 1)
1575 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1576 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1579 /* Convert the address X into something we can use. This is done by returning
1580 it unchanged unless it is a value; in the latter case we call cselib to get
1581 a more useful rtx. */
1587 struct elt_loc_list
*l
;
1589 if (GET_CODE (x
) != VALUE
)
1591 v
= CSELIB_VAL_PTR (x
);
1594 for (l
= v
->locs
; l
; l
= l
->next
)
1595 if (CONSTANT_P (l
->loc
))
1597 for (l
= v
->locs
; l
; l
= l
->next
)
1598 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1601 return v
->locs
->loc
;
1606 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1607 where SIZE is the size in bytes of the memory reference. If ADDR
1608 is not modified by the memory reference then ADDR is returned. */
1611 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1615 switch (GET_CODE (addr
))
1618 offset
= (n_refs
+ 1) * size
;
1621 offset
= -(n_refs
+ 1) * size
;
1624 offset
= n_refs
* size
;
1627 offset
= -n_refs
* size
;
1635 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1638 addr
= XEXP (addr
, 0);
1639 addr
= canon_rtx (addr
);
1644 /* Return nonzero if X and Y (memory addresses) could reference the
1645 same location in memory. C is an offset accumulator. When
1646 C is nonzero, we are testing aliases between X and Y + C.
1647 XSIZE is the size in bytes of the X reference,
1648 similarly YSIZE is the size in bytes for Y.
1649 Expect that canon_rtx has been already called for X and Y.
1651 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1652 referenced (the reference was BLKmode), so make the most pessimistic
1655 If XSIZE or YSIZE is negative, we may access memory outside the object
1656 being referenced as a side effect. This can happen when using AND to
1657 align memory references, as is done on the Alpha.
1659 Nice to notice that varying addresses cannot conflict with fp if no
1660 local variables had their addresses taken, but that's too hard now. */
1663 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1665 if (GET_CODE (x
) == VALUE
)
1667 if (GET_CODE (y
) == VALUE
)
1669 if (GET_CODE (x
) == HIGH
)
1671 else if (GET_CODE (x
) == LO_SUM
)
1674 x
= addr_side_effect_eval (x
, xsize
, 0);
1675 if (GET_CODE (y
) == HIGH
)
1677 else if (GET_CODE (y
) == LO_SUM
)
1680 y
= addr_side_effect_eval (y
, ysize
, 0);
1682 if (rtx_equal_for_memref_p (x
, y
))
1684 if (xsize
<= 0 || ysize
<= 0)
1686 if (c
>= 0 && xsize
> c
)
1688 if (c
< 0 && ysize
+c
> 0)
1693 /* This code used to check for conflicts involving stack references and
1694 globals but the base address alias code now handles these cases. */
1696 if (GET_CODE (x
) == PLUS
)
1698 /* The fact that X is canonicalized means that this
1699 PLUS rtx is canonicalized. */
1700 rtx x0
= XEXP (x
, 0);
1701 rtx x1
= XEXP (x
, 1);
1703 if (GET_CODE (y
) == PLUS
)
1705 /* The fact that Y is canonicalized means that this
1706 PLUS rtx is canonicalized. */
1707 rtx y0
= XEXP (y
, 0);
1708 rtx y1
= XEXP (y
, 1);
1710 if (rtx_equal_for_memref_p (x1
, y1
))
1711 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1712 if (rtx_equal_for_memref_p (x0
, y0
))
1713 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1714 if (GET_CODE (x1
) == CONST_INT
)
1716 if (GET_CODE (y1
) == CONST_INT
)
1717 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1718 c
- INTVAL (x1
) + INTVAL (y1
));
1720 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1723 else if (GET_CODE (y1
) == CONST_INT
)
1724 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1728 else if (GET_CODE (x1
) == CONST_INT
)
1729 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1731 else if (GET_CODE (y
) == PLUS
)
1733 /* The fact that Y is canonicalized means that this
1734 PLUS rtx is canonicalized. */
1735 rtx y0
= XEXP (y
, 0);
1736 rtx y1
= XEXP (y
, 1);
1738 if (GET_CODE (y1
) == CONST_INT
)
1739 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1744 if (GET_CODE (x
) == GET_CODE (y
))
1745 switch (GET_CODE (x
))
1749 /* Handle cases where we expect the second operands to be the
1750 same, and check only whether the first operand would conflict
1753 rtx x1
= canon_rtx (XEXP (x
, 1));
1754 rtx y1
= canon_rtx (XEXP (y
, 1));
1755 if (! rtx_equal_for_memref_p (x1
, y1
))
1757 x0
= canon_rtx (XEXP (x
, 0));
1758 y0
= canon_rtx (XEXP (y
, 0));
1759 if (rtx_equal_for_memref_p (x0
, y0
))
1760 return (xsize
== 0 || ysize
== 0
1761 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1763 /* Can't properly adjust our sizes. */
1764 if (GET_CODE (x1
) != CONST_INT
)
1766 xsize
/= INTVAL (x1
);
1767 ysize
/= INTVAL (x1
);
1769 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1773 /* Are these registers known not to be equal? */
1774 if (alias_invariant
)
1776 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1777 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1779 i_x
= r_x
>= alias_invariant_size
? 0 : alias_invariant
[r_x
];
1780 i_y
= r_y
>= alias_invariant_size
? 0 : alias_invariant
[r_y
];
1782 if (i_x
== 0 && i_y
== 0)
1785 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1786 ysize
, i_y
? i_y
: y
, c
))
1795 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1796 as an access with indeterminate size. Assume that references
1797 besides AND are aligned, so if the size of the other reference is
1798 at least as large as the alignment, assume no other overlap. */
1799 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1801 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1803 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1805 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1807 /* ??? If we are indexing far enough into the array/structure, we
1808 may yet be able to determine that we can not overlap. But we
1809 also need to that we are far enough from the end not to overlap
1810 a following reference, so we do nothing with that for now. */
1811 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1813 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1816 if (GET_CODE (x
) == ADDRESSOF
)
1818 if (y
== frame_pointer_rtx
1819 || GET_CODE (y
) == ADDRESSOF
)
1820 return xsize
<= 0 || ysize
<= 0;
1822 if (GET_CODE (y
) == ADDRESSOF
)
1824 if (x
== frame_pointer_rtx
)
1825 return xsize
<= 0 || ysize
<= 0;
1830 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1832 c
+= (INTVAL (y
) - INTVAL (x
));
1833 return (xsize
<= 0 || ysize
<= 0
1834 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1837 if (GET_CODE (x
) == CONST
)
1839 if (GET_CODE (y
) == CONST
)
1840 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1841 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1843 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1846 if (GET_CODE (y
) == CONST
)
1847 return memrefs_conflict_p (xsize
, x
, ysize
,
1848 canon_rtx (XEXP (y
, 0)), c
);
1851 return (xsize
<= 0 || ysize
<= 0
1852 || (rtx_equal_for_memref_p (x
, y
)
1853 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1860 /* Functions to compute memory dependencies.
1862 Since we process the insns in execution order, we can build tables
1863 to keep track of what registers are fixed (and not aliased), what registers
1864 are varying in known ways, and what registers are varying in unknown
1867 If both memory references are volatile, then there must always be a
1868 dependence between the two references, since their order can not be
1869 changed. A volatile and non-volatile reference can be interchanged
1872 A MEM_IN_STRUCT reference at a non-AND varying address can never
1873 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1874 also must allow AND addresses, because they may generate accesses
1875 outside the object being referenced. This is used to generate
1876 aligned addresses from unaligned addresses, for instance, the alpha
1877 storeqi_unaligned pattern. */
1879 /* Read dependence: X is read after read in MEM takes place. There can
1880 only be a dependence here if both reads are volatile. */
1883 read_dependence (rtx mem
, rtx x
)
1885 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1888 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1889 MEM2 is a reference to a structure at a varying address, or returns
1890 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1891 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1892 to decide whether or not an address may vary; it should return
1893 nonzero whenever variation is possible.
1894 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1897 fixed_scalar_and_varying_struct_p (rtx mem1
, rtx mem2
, rtx mem1_addr
,
1899 int (*varies_p
) (rtx
, int))
1901 if (! flag_strict_aliasing
)
1904 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1905 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1906 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1910 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1911 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1912 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1919 /* Returns nonzero if something about the mode or address format MEM1
1920 indicates that it might well alias *anything*. */
1923 aliases_everything_p (rtx mem
)
1925 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1926 /* If the address is an AND, its very hard to know at what it is
1927 actually pointing. */
1933 /* Return true if we can determine that the fields referenced cannot
1934 overlap for any pair of objects. */
1937 nonoverlapping_component_refs_p (tree x
, tree y
)
1939 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1943 /* The comparison has to be done at a common type, since we don't
1944 know how the inheritance hierarchy works. */
1948 fieldx
= TREE_OPERAND (x
, 1);
1949 typex
= DECL_FIELD_CONTEXT (fieldx
);
1954 fieldy
= TREE_OPERAND (y
, 1);
1955 typey
= DECL_FIELD_CONTEXT (fieldy
);
1960 y
= TREE_OPERAND (y
, 0);
1962 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1964 x
= TREE_OPERAND (x
, 0);
1966 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1968 /* Never found a common type. */
1972 /* If we're left with accessing different fields of a structure,
1974 if (TREE_CODE (typex
) == RECORD_TYPE
1975 && fieldx
!= fieldy
)
1978 /* The comparison on the current field failed. If we're accessing
1979 a very nested structure, look at the next outer level. */
1980 x
= TREE_OPERAND (x
, 0);
1981 y
= TREE_OPERAND (y
, 0);
1984 && TREE_CODE (x
) == COMPONENT_REF
1985 && TREE_CODE (y
) == COMPONENT_REF
);
1990 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1993 decl_for_component_ref (tree x
)
1997 x
= TREE_OPERAND (x
, 0);
1999 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2001 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2004 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2005 offset of the field reference. */
2008 adjust_offset_for_component_ref (tree x
, rtx offset
)
2010 HOST_WIDE_INT ioffset
;
2015 ioffset
= INTVAL (offset
);
2018 tree field
= TREE_OPERAND (x
, 1);
2020 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
2022 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
2023 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2026 x
= TREE_OPERAND (x
, 0);
2028 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2030 return GEN_INT (ioffset
);
2033 /* Return nonzero if we can determine the exprs corresponding to memrefs
2034 X and Y and they do not overlap. */
2037 nonoverlapping_memrefs_p (rtx x
, rtx y
)
2039 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2042 rtx moffsetx
, moffsety
;
2043 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2045 /* Unless both have exprs, we can't tell anything. */
2046 if (exprx
== 0 || expry
== 0)
2049 /* If both are field references, we may be able to determine something. */
2050 if (TREE_CODE (exprx
) == COMPONENT_REF
2051 && TREE_CODE (expry
) == COMPONENT_REF
2052 && nonoverlapping_component_refs_p (exprx
, expry
))
2055 /* If the field reference test failed, look at the DECLs involved. */
2056 moffsetx
= MEM_OFFSET (x
);
2057 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2059 tree t
= decl_for_component_ref (exprx
);
2062 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
2065 else if (TREE_CODE (exprx
) == INDIRECT_REF
)
2067 exprx
= TREE_OPERAND (exprx
, 0);
2068 if (flag_argument_noalias
< 2
2069 || TREE_CODE (exprx
) != PARM_DECL
)
2073 moffsety
= MEM_OFFSET (y
);
2074 if (TREE_CODE (expry
) == COMPONENT_REF
)
2076 tree t
= decl_for_component_ref (expry
);
2079 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2082 else if (TREE_CODE (expry
) == INDIRECT_REF
)
2084 expry
= TREE_OPERAND (expry
, 0);
2085 if (flag_argument_noalias
< 2
2086 || TREE_CODE (expry
) != PARM_DECL
)
2090 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2093 rtlx
= DECL_RTL (exprx
);
2094 rtly
= DECL_RTL (expry
);
2096 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2097 can't overlap unless they are the same because we never reuse that part
2098 of the stack frame used for locals for spilled pseudos. */
2099 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
2100 && ! rtx_equal_p (rtlx
, rtly
))
2103 /* Get the base and offsets of both decls. If either is a register, we
2104 know both are and are the same, so use that as the base. The only
2105 we can avoid overlap is if we can deduce that they are nonoverlapping
2106 pieces of that decl, which is very rare. */
2107 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
2108 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2109 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2111 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
2112 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2113 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2115 /* If the bases are different, we know they do not overlap if both
2116 are constants or if one is a constant and the other a pointer into the
2117 stack frame. Otherwise a different base means we can't tell if they
2119 if (! rtx_equal_p (basex
, basey
))
2120 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2121 || (CONSTANT_P (basex
) && REG_P (basey
)
2122 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2123 || (CONSTANT_P (basey
) && REG_P (basex
)
2124 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2126 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2127 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2129 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2130 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2133 /* If we have an offset for either memref, it can update the values computed
2136 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2138 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2140 /* If a memref has both a size and an offset, we can use the smaller size.
2141 We can't do this if the offset isn't known because we must view this
2142 memref as being anywhere inside the DECL's MEM. */
2143 if (MEM_SIZE (x
) && moffsetx
)
2144 sizex
= INTVAL (MEM_SIZE (x
));
2145 if (MEM_SIZE (y
) && moffsety
)
2146 sizey
= INTVAL (MEM_SIZE (y
));
2148 /* Put the values of the memref with the lower offset in X's values. */
2149 if (offsetx
> offsety
)
2151 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2152 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2155 /* If we don't know the size of the lower-offset value, we can't tell
2156 if they conflict. Otherwise, we do the test. */
2157 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2160 /* True dependence: X is read after store in MEM takes place. */
2163 true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx x
,
2164 int (*varies
) (rtx
, int))
2166 rtx x_addr
, mem_addr
;
2169 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2172 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2173 This is used in epilogue deallocation functions. */
2174 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2176 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2179 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2182 /* Unchanging memory can't conflict with non-unchanging memory.
2183 A non-unchanging read can conflict with a non-unchanging write.
2184 An unchanging read can conflict with an unchanging write since
2185 there may be a single store to this address to initialize it.
2186 Note that an unchanging store can conflict with a non-unchanging read
2187 since we have to make conservative assumptions when we have a
2188 record with readonly fields and we are copying the whole thing.
2189 Just fall through to the code below to resolve potential conflicts.
2190 This won't handle all cases optimally, but the possible performance
2191 loss should be negligible. */
2192 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2195 if (nonoverlapping_memrefs_p (mem
, x
))
2198 if (mem_mode
== VOIDmode
)
2199 mem_mode
= GET_MODE (mem
);
2201 x_addr
= get_addr (XEXP (x
, 0));
2202 mem_addr
= get_addr (XEXP (mem
, 0));
2204 base
= find_base_term (x_addr
);
2205 if (base
&& (GET_CODE (base
) == LABEL_REF
2206 || (GET_CODE (base
) == SYMBOL_REF
2207 && CONSTANT_POOL_ADDRESS_P (base
))))
2210 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2213 x_addr
= canon_rtx (x_addr
);
2214 mem_addr
= canon_rtx (mem_addr
);
2216 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2217 SIZE_FOR_MODE (x
), x_addr
, 0))
2220 if (aliases_everything_p (x
))
2223 /* We cannot use aliases_everything_p to test MEM, since we must look
2224 at MEM_MODE, rather than GET_MODE (MEM). */
2225 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2228 /* In true_dependence we also allow BLKmode to alias anything. Why
2229 don't we do this in anti_dependence and output_dependence? */
2230 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2233 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2237 /* Canonical true dependence: X is read after store in MEM takes place.
2238 Variant of true_dependence which assumes MEM has already been
2239 canonicalized (hence we no longer do that here).
2240 The mem_addr argument has been added, since true_dependence computed
2241 this value prior to canonicalizing. */
2244 canon_true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2245 rtx x
, int (*varies
) (rtx
, int))
2249 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2252 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2253 This is used in epilogue deallocation functions. */
2254 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2256 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2259 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2262 /* If X is an unchanging read, then it can't possibly conflict with any
2263 non-unchanging store. It may conflict with an unchanging write though,
2264 because there may be a single store to this address to initialize it.
2265 Just fall through to the code below to resolve the case where we have
2266 both an unchanging read and an unchanging write. This won't handle all
2267 cases optimally, but the possible performance loss should be
2269 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2272 if (nonoverlapping_memrefs_p (x
, mem
))
2275 x_addr
= get_addr (XEXP (x
, 0));
2277 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2280 x_addr
= canon_rtx (x_addr
);
2281 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2282 SIZE_FOR_MODE (x
), x_addr
, 0))
2285 if (aliases_everything_p (x
))
2288 /* We cannot use aliases_everything_p to test MEM, since we must look
2289 at MEM_MODE, rather than GET_MODE (MEM). */
2290 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2293 /* In true_dependence we also allow BLKmode to alias anything. Why
2294 don't we do this in anti_dependence and output_dependence? */
2295 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2298 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2302 /* Returns nonzero if a write to X might alias a previous read from
2303 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2304 honor the RTX_UNCHANGING_P flags on X and MEM. */
2307 write_dependence_p (rtx mem
, rtx x
, int writep
, int constp
)
2309 rtx x_addr
, mem_addr
;
2313 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2316 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2317 This is used in epilogue deallocation functions. */
2318 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2320 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2323 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2328 /* Unchanging memory can't conflict with non-unchanging memory. */
2329 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2332 /* If MEM is an unchanging read, then it can't possibly conflict with
2333 the store to X, because there is at most one store to MEM, and it
2334 must have occurred somewhere before MEM. */
2335 if (! writep
&& RTX_UNCHANGING_P (mem
))
2339 if (nonoverlapping_memrefs_p (x
, mem
))
2342 x_addr
= get_addr (XEXP (x
, 0));
2343 mem_addr
= get_addr (XEXP (mem
, 0));
2347 base
= find_base_term (mem_addr
);
2348 if (base
&& (GET_CODE (base
) == LABEL_REF
2349 || (GET_CODE (base
) == SYMBOL_REF
2350 && CONSTANT_POOL_ADDRESS_P (base
))))
2354 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2358 x_addr
= canon_rtx (x_addr
);
2359 mem_addr
= canon_rtx (mem_addr
);
2361 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2362 SIZE_FOR_MODE (x
), x_addr
, 0))
2366 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2369 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2370 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2373 /* Anti dependence: X is written after read in MEM takes place. */
2376 anti_dependence (rtx mem
, rtx x
)
2378 return write_dependence_p (mem
, x
, /*writep=*/0, /*constp*/1);
2381 /* Output dependence: X is written after store in MEM takes place. */
2384 output_dependence (rtx mem
, rtx x
)
2386 return write_dependence_p (mem
, x
, /*writep=*/1, /*constp*/1);
2389 /* Unchanging anti dependence: Like anti_dependence but ignores
2390 the UNCHANGING_RTX_P property on const variable references. */
2393 unchanging_anti_dependence (rtx mem
, rtx x
)
2395 return write_dependence_p (mem
, x
, /*writep=*/0, /*constp*/0);
2398 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2399 something which is not local to the function and is not constant. */
2402 nonlocal_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2411 switch (GET_CODE (x
))
2414 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2416 /* Global registers are not local. */
2417 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2418 && global_regs
[subreg_regno (x
)])
2426 /* Global registers are not local. */
2427 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2442 /* Constants in the function's constants pool are constant. */
2443 if (CONSTANT_POOL_ADDRESS_P (x
))
2448 /* Non-constant calls and recursion are not local. */
2452 /* Be overly conservative and consider any volatile memory
2453 reference as not local. */
2454 if (MEM_VOLATILE_P (x
))
2456 base
= find_base_term (XEXP (x
, 0));
2459 /* A Pmode ADDRESS could be a reference via the structure value
2460 address or static chain. Such memory references are nonlocal.
2462 Thus, we have to examine the contents of the ADDRESS to find
2463 out if this is a local reference or not. */
2464 if (GET_CODE (base
) == ADDRESS
2465 && GET_MODE (base
) == Pmode
2466 && (XEXP (base
, 0) == stack_pointer_rtx
2467 || XEXP (base
, 0) == arg_pointer_rtx
2468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2469 || XEXP (base
, 0) == hard_frame_pointer_rtx
2471 || XEXP (base
, 0) == frame_pointer_rtx
))
2473 /* Constants in the function's constant pool are constant. */
2474 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2479 case UNSPEC_VOLATILE
:
2484 if (MEM_VOLATILE_P (x
))
2496 /* Returns nonzero if X might mention something which is not
2497 local to the function and is not constant. */
2500 nonlocal_mentioned_p (rtx x
)
2504 if (GET_CODE (x
) == CALL_INSN
)
2506 if (! CONST_OR_PURE_CALL_P (x
))
2508 x
= CALL_INSN_FUNCTION_USAGE (x
);
2516 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2519 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2520 something which is not local to the function and is not constant. */
2523 nonlocal_referenced_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2530 switch (GET_CODE (x
))
2536 return nonlocal_mentioned_p (x
);
2539 /* Non-constant calls and recursion are not local. */
2543 if (nonlocal_mentioned_p (SET_SRC (x
)))
2546 if (GET_CODE (SET_DEST (x
)) == MEM
)
2547 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2549 /* If the destination is anything other than a CC0, PC,
2550 MEM, REG, or a SUBREG of a REG that occupies all of
2551 the REG, then X references nonlocal memory if it is
2552 mentioned in the destination. */
2553 if (GET_CODE (SET_DEST (x
)) != CC0
2554 && GET_CODE (SET_DEST (x
)) != PC
2555 && GET_CODE (SET_DEST (x
)) != REG
2556 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2557 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
2558 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2559 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2560 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2561 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2562 return nonlocal_mentioned_p (SET_DEST (x
));
2566 if (GET_CODE (XEXP (x
, 0)) == MEM
)
2567 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2571 return nonlocal_mentioned_p (XEXP (x
, 0));
2574 case UNSPEC_VOLATILE
:
2578 if (MEM_VOLATILE_P (x
))
2590 /* Returns nonzero if X might reference something which is not
2591 local to the function and is not constant. */
2594 nonlocal_referenced_p (rtx x
)
2598 if (GET_CODE (x
) == CALL_INSN
)
2600 if (! CONST_OR_PURE_CALL_P (x
))
2602 x
= CALL_INSN_FUNCTION_USAGE (x
);
2610 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2613 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2614 something which is not local to the function and is not constant. */
2617 nonlocal_set_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2624 switch (GET_CODE (x
))
2627 /* Non-constant calls and recursion are not local. */
2636 return nonlocal_mentioned_p (XEXP (x
, 0));
2639 if (nonlocal_mentioned_p (SET_DEST (x
)))
2641 return nonlocal_set_p (SET_SRC (x
));
2644 return nonlocal_mentioned_p (XEXP (x
, 0));
2650 case UNSPEC_VOLATILE
:
2654 if (MEM_VOLATILE_P (x
))
2666 /* Returns nonzero if X might set something which is not
2667 local to the function and is not constant. */
2670 nonlocal_set_p (rtx x
)
2674 if (GET_CODE (x
) == CALL_INSN
)
2676 if (! CONST_OR_PURE_CALL_P (x
))
2678 x
= CALL_INSN_FUNCTION_USAGE (x
);
2686 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2689 /* Mark the function if it is pure or constant. */
2692 mark_constant_function (void)
2695 int nonlocal_memory_referenced
;
2697 if (TREE_READONLY (current_function_decl
)
2698 || DECL_IS_PURE (current_function_decl
)
2699 || TREE_THIS_VOLATILE (current_function_decl
)
2700 || current_function_has_nonlocal_goto
2701 || !targetm
.binds_local_p (current_function_decl
))
2704 /* A loop might not return which counts as a side effect. */
2705 if (mark_dfs_back_edges ())
2708 nonlocal_memory_referenced
= 0;
2710 init_alias_analysis ();
2712 /* Determine if this is a constant or pure function. */
2714 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2716 if (! INSN_P (insn
))
2719 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2720 || volatile_refs_p (PATTERN (insn
)))
2723 if (! nonlocal_memory_referenced
)
2724 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2727 end_alias_analysis ();
2729 /* Mark the function. */
2733 else if (nonlocal_memory_referenced
)
2735 cgraph_rtl_info (current_function_decl
)->pure_function
= 1;
2736 DECL_IS_PURE (current_function_decl
) = 1;
2740 cgraph_rtl_info (current_function_decl
)->const_function
= 1;
2741 TREE_READONLY (current_function_decl
) = 1;
2747 init_alias_once (void)
2751 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2752 /* Check whether this register can hold an incoming pointer
2753 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2754 numbers, so translate if necessary due to register windows. */
2755 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2756 && HARD_REGNO_MODE_OK (i
, Pmode
))
2757 static_reg_base_value
[i
]
2758 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2760 static_reg_base_value
[STACK_POINTER_REGNUM
]
2761 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2762 static_reg_base_value
[ARG_POINTER_REGNUM
]
2763 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2764 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2765 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2766 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2767 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2768 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2772 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2773 to be memory reference. */
2774 static bool memory_modified
;
2776 memory_modified_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
2778 if (GET_CODE (x
) == MEM
)
2780 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2781 memory_modified
= true;
2786 /* Return true when INSN possibly modify memory contents of MEM
2787 (ie address can be modified). */
2789 memory_modified_in_insn_p (rtx mem
, rtx insn
)
2793 memory_modified
= false;
2794 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2795 return memory_modified
;
2798 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2802 init_alias_analysis (void)
2804 unsigned int maxreg
= max_reg_num ();
2810 timevar_push (TV_ALIAS_ANALYSIS
);
2812 reg_known_value_size
= maxreg
- FIRST_PSEUDO_REGISTER
;
2813 reg_known_value
= ggc_calloc (reg_known_value_size
, sizeof (rtx
));
2814 reg_known_equiv_p
= xcalloc (reg_known_value_size
, sizeof (bool));
2816 /* Overallocate reg_base_value to allow some growth during loop
2817 optimization. Loop unrolling can create a large number of
2819 if (old_reg_base_value
)
2821 reg_base_value
= old_reg_base_value
;
2822 /* If varray gets large zeroing cost may get important. */
2823 if (VARRAY_SIZE (reg_base_value
) > 256
2824 && VARRAY_SIZE (reg_base_value
) > 4 * maxreg
)
2825 VARRAY_GROW (reg_base_value
, maxreg
);
2826 VARRAY_CLEAR (reg_base_value
);
2827 if (VARRAY_SIZE (reg_base_value
) < maxreg
)
2828 VARRAY_GROW (reg_base_value
, maxreg
);
2832 VARRAY_RTX_INIT (reg_base_value
, maxreg
, "reg_base_value");
2835 new_reg_base_value
= xmalloc (maxreg
* sizeof (rtx
));
2836 reg_seen
= xmalloc (maxreg
);
2837 if (! reload_completed
&& flag_old_unroll_loops
)
2839 alias_invariant
= ggc_calloc (maxreg
, sizeof (rtx
));
2840 alias_invariant_size
= maxreg
;
2843 /* The basic idea is that each pass through this loop will use the
2844 "constant" information from the previous pass to propagate alias
2845 information through another level of assignments.
2847 This could get expensive if the assignment chains are long. Maybe
2848 we should throttle the number of iterations, possibly based on
2849 the optimization level or flag_expensive_optimizations.
2851 We could propagate more information in the first pass by making use
2852 of REG_N_SETS to determine immediately that the alias information
2853 for a pseudo is "constant".
2855 A program with an uninitialized variable can cause an infinite loop
2856 here. Instead of doing a full dataflow analysis to detect such problems
2857 we just cap the number of iterations for the loop.
2859 The state of the arrays for the set chain in question does not matter
2860 since the program has undefined behavior. */
2865 /* Assume nothing will change this iteration of the loop. */
2868 /* We want to assign the same IDs each iteration of this loop, so
2869 start counting from zero each iteration of the loop. */
2872 /* We're at the start of the function each iteration through the
2873 loop, so we're copying arguments. */
2874 copying_arguments
= true;
2876 /* Wipe the potential alias information clean for this pass. */
2877 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2879 /* Wipe the reg_seen array clean. */
2880 memset (reg_seen
, 0, maxreg
);
2882 /* Mark all hard registers which may contain an address.
2883 The stack, frame and argument pointers may contain an address.
2884 An argument register which can hold a Pmode value may contain
2885 an address even if it is not in BASE_REGS.
2887 The address expression is VOIDmode for an argument and
2888 Pmode for other registers. */
2890 memcpy (new_reg_base_value
, static_reg_base_value
,
2891 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2893 /* Walk the insns adding values to the new_reg_base_value array. */
2894 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2900 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2901 /* The prologue/epilogue insns are not threaded onto the
2902 insn chain until after reload has completed. Thus,
2903 there is no sense wasting time checking if INSN is in
2904 the prologue/epilogue until after reload has completed. */
2905 if (reload_completed
2906 && prologue_epilogue_contains (insn
))
2910 /* If this insn has a noalias note, process it, Otherwise,
2911 scan for sets. A simple set will have no side effects
2912 which could change the base value of any other register. */
2914 if (GET_CODE (PATTERN (insn
)) == SET
2915 && REG_NOTES (insn
) != 0
2916 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2917 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2919 note_stores (PATTERN (insn
), record_set
, NULL
);
2921 set
= single_set (insn
);
2924 && GET_CODE (SET_DEST (set
)) == REG
2925 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2927 unsigned int regno
= REGNO (SET_DEST (set
));
2928 rtx src
= SET_SRC (set
);
2931 if (REG_NOTES (insn
) != 0
2932 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2933 && REG_N_SETS (regno
) == 1)
2934 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2935 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2936 && ! rtx_varies_p (XEXP (note
, 0), 1)
2937 && ! reg_overlap_mentioned_p (SET_DEST (set
),
2940 set_reg_known_value (regno
, XEXP (note
, 0));
2941 set_reg_known_equiv_p (regno
,
2942 REG_NOTE_KIND (note
) == REG_EQUIV
);
2944 else if (REG_N_SETS (regno
) == 1
2945 && GET_CODE (src
) == PLUS
2946 && GET_CODE (XEXP (src
, 0)) == REG
2947 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
2948 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2950 t
= plus_constant (t
, INTVAL (XEXP (src
, 1)));
2951 set_reg_known_value (regno
, t
);
2952 set_reg_known_equiv_p (regno
, 0);
2954 else if (REG_N_SETS (regno
) == 1
2955 && ! rtx_varies_p (src
, 1))
2957 set_reg_known_value (regno
, src
);
2958 set_reg_known_equiv_p (regno
, 0);
2962 else if (GET_CODE (insn
) == NOTE
2963 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2964 copying_arguments
= false;
2967 /* Now propagate values from new_reg_base_value to reg_base_value. */
2968 if (maxreg
!= (unsigned int) max_reg_num())
2970 for (ui
= 0; ui
< maxreg
; ui
++)
2972 if (new_reg_base_value
[ui
]
2973 && new_reg_base_value
[ui
] != VARRAY_RTX (reg_base_value
, ui
)
2974 && ! rtx_equal_p (new_reg_base_value
[ui
],
2975 VARRAY_RTX (reg_base_value
, ui
)))
2977 VARRAY_RTX (reg_base_value
, ui
) = new_reg_base_value
[ui
];
2982 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2984 /* Fill in the remaining entries. */
2985 for (i
= 0; i
< (int)reg_known_value_size
; i
++)
2986 if (reg_known_value
[i
] == 0)
2987 reg_known_value
[i
] = regno_reg_rtx
[i
+ FIRST_PSEUDO_REGISTER
];
2989 /* Simplify the reg_base_value array so that no register refers to
2990 another register, except to special registers indirectly through
2991 ADDRESS expressions.
2993 In theory this loop can take as long as O(registers^2), but unless
2994 there are very long dependency chains it will run in close to linear
2997 This loop may not be needed any longer now that the main loop does
2998 a better job at propagating alias information. */
3004 for (ui
= 0; ui
< maxreg
; ui
++)
3006 rtx base
= VARRAY_RTX (reg_base_value
, ui
);
3007 if (base
&& GET_CODE (base
) == REG
)
3009 unsigned int base_regno
= REGNO (base
);
3010 if (base_regno
== ui
) /* register set from itself */
3011 VARRAY_RTX (reg_base_value
, ui
) = 0;
3013 VARRAY_RTX (reg_base_value
, ui
)
3014 = VARRAY_RTX (reg_base_value
, base_regno
);
3019 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
3022 free (new_reg_base_value
);
3023 new_reg_base_value
= 0;
3026 timevar_pop (TV_ALIAS_ANALYSIS
);
3030 end_alias_analysis (void)
3032 old_reg_base_value
= reg_base_value
;
3033 ggc_free (reg_known_value
);
3034 reg_known_value
= 0;
3035 reg_known_value_size
= 0;
3036 free (reg_known_equiv_p
);
3037 reg_known_equiv_p
= 0;
3038 if (alias_invariant
)
3040 ggc_free (alias_invariant
);
3041 alias_invariant
= 0;
3042 alias_invariant_size
= 0;
3046 #include "gt-alias.h"